1
|
Palomino Lago E, Ross AKC, McClellan A, Guest DJ. Identification of a global gene expression signature associated with the genetic risk of catastrophic fracture in iPSC-derived osteoblasts from Thoroughbred horses. Anim Genet 2025; 56:e13504. [PMID: 39801206 PMCID: PMC11726005 DOI: 10.1111/age.13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 11/18/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
Bone fractures are a significant problem in Thoroughbred racehorses. The risk of fracture is influenced by both genetic and environmental factors. To determine the biological processes that are affected in genetically susceptible horses, we utilised polygenic risk scoring to establish induced pluripotent stem cells (iPSCs) from horses at high and low genetic risk. RNA-sequencing on iPSC-derived osteoblasts revealed 112 genes that were significantly differentially expressed. Forty-three of these genes have known roles in bone, 27 are not yet annotated in the equine genome and 42 currently have no described role in bone. However, many of the proteins encoded by the known and unknown genes have reported interactions. Functional enrichment analyses revealed that the differentially expressed genes were overrepresented in processes regulating the extracellular matrix and pathways known to be involved in bone remodelling and bone diseases. Gene set enrichment analysis also detected numerous biological processes and pathways involved in glycolysis with the associated genes having a higher expression in the iPSC-osteoblasts from horses with low polygenic risk scores for fracture. Therefore, the differentially expressed genes may be relevant for maintaining bone homeostasis and contribute to fracture risk. A deeper understanding of the consequences of mis-regulation of these genes and the identification of the DNA variants which underpin their differential expression may reveal more about the molecular mechanisms which are involved in equine bone health and fracture risk.
Collapse
Affiliation(s)
- Esther Palomino Lago
- Department of Clinical Sciences and Services, Centre for Vaccinology and Regenerative MedicineThe Royal Veterinary CollegeHatfieldHertsUK
| | - Amy K. C. Ross
- Department of Clinical Sciences and Services, Centre for Vaccinology and Regenerative MedicineThe Royal Veterinary CollegeHatfieldHertsUK
| | - Alyce McClellan
- Animal Health TrustNewmarketUK
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Deborah J. Guest
- Department of Clinical Sciences and Services, Centre for Vaccinology and Regenerative MedicineThe Royal Veterinary CollegeHatfieldHertsUK
| |
Collapse
|
2
|
Rodríguez-Sosa MR, Del Castillo LM, Belarra A, Zapata AG, Alfaro D. The lack of EphB3 receptor prevents bone loss in mouse models of osteoporosis. J Bone Miner Res 2024; 39:1008-1024. [PMID: 38739682 DOI: 10.1093/jbmr/zjae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/21/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Bone homeostasis is a complex process in which some Eph kinase receptors and their ephrin ligands appear to be involved. In the present study, we address this issue by examining, both in vitro and in vivo, the role of EphB2 and EphB3 in mesenchymal stromal/stem cell (MSC) differentiation into bone tissue. This was first evaluated by quantitative reverse transcription PCR (RT-qPCR) and histological staining in MSCs cultured in specific mediums revealing that although EphB2-/- MSCs mainly expressed pro-adipogenic transcription factors, EphB3-/- MSCs showed abundant osteogenic transcripts, such as Runx2, Msx2, and Sp7. To clarify the underlying molecular mechanisms, we found that the lack of EphB3 signaling alters the genetic profile of differentiating MSCs, reducing the expression of many inhibitory molecules and antagonists of the BMP signaling pathway, and increasing Bmp7 expression, a robust bone inductor. Then, to confirm the osteogenic role of EphB3 in vivo, we studied the condition of 2 mouse models of induced bone loss (ovariectomy or long-term glucocorticoid treatment). Interestingly, in both models, both WT and EphB2-/- mice equally developed the disease but EphB3-/- mice did not exhibit the typical bone loss, nor an increase in urine Ca2+ or blood serum CTX-1. This phenotype in EphB3-KO mice could be due to their significantly higher proportions of osteoprogenitor cells and preosteoblasts, and their lower number of osteoclasts, as compared with WT and EphB2-KO mice. Thus, we conclude that EphB3 acts as a negative regulator of the osteogenic differentiation, and its absence prevents bone loss in mice subjected to ovariectomy or dexamethasone treatment.
Collapse
Affiliation(s)
- Mariano R Rodríguez-Sosa
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, C.P. 28040, Madrid, Spain
- Research Institute Hospital "12 de Octubre" (imas12), C.P. 28041, Madrid, Spain
| | - Luis M Del Castillo
- Reproductive Medicine Research Group, IVI Foundation, Health Research Institute Hospital La Fe (IIS La Fe), C.P. 46026, Valencia, Spain
| | - Adrián Belarra
- Micro-CT Laboratory, Central Radioactive Facility, Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Medicine, Complutense University of Madrid, C.P. 28040, Madrid, Spain
| | - Agustín G Zapata
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, C.P. 28040, Madrid, Spain
| | - David Alfaro
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, C.P. 28040, Madrid, Spain
| |
Collapse
|
3
|
Shen S, Si M, Zeng C, Liu EK, Chen Y, Vacher J, Zhao H, Mohan S, Xing W. Leucine Repeat Rich Kinase 1 Controls Osteoclast Activity by Managing Lysosomal Trafficking and Secretion. BIOLOGY 2023; 12:511. [PMID: 37106712 PMCID: PMC10135754 DOI: 10.3390/biology12040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
We previously demonstrated that mice with targeted deletion of the leucine repeat rich kinase 1 (Lrrk1) gene were osteopetrotic due to the failure of osteoclasts to resorb bone. To determine how LRRK1 regulates osteoclast activity, we examined the intracellular and extracellular acidification with an acidotropic probe, acridine orange, in live osteoclasts on bone slices. We examined lysosome distribution in osteoclasts by localization of LAMP-2, cathepsin K, and v-ATPase by immunofluorescent staining with specific antibodies. We found that both vertical and horizontal cross-sectional images of the wild-type (WT) osteoclasts showed orange-staining of the intracellular acidic vacuoles/lysosomes dispersed to the ruffled border. By contrast, the LRRK1 deficient osteoclasts exhibited fluorescent orange staining in the cytoplasm away from the extracellular lacunae because of an altered distribution of the acidic vacuoles/lysosomes. In addition, WT osteoclasts displayed a peripheral distribution of LAMP-2 positive lysosomes with a typical actin ring. The clustered F-actin constitutes a peripheral sealing zone and a ruffled border which was stretched out into a resorption pit. The LAMP-2 positive lysosomes were also distributed to the sealing zone, and the cell was associated with a resorption pit. By contrast, LRRK1-deficient osteoclasts showed diffused F-actin throughout the cytoplasm. The sealing zone was weak and not associated with a resorption pit. LAMP-2 positive lysosomes were also diffuse in the cytoplasm and were not distributed to the ruffled border. Although the LRRK1-deficient osteoclast expressed normal levels of cathepsin K and v-ATPase, the lysosomal-associated cathepsin K and v-ATPase were not accumulated at the ruffled border in Lrrk1 KO osteoclasts. Our data indicate that LRRK1 controls osteoclast activity by regulating lysosomal distribution, acid secretion, and protease exocytosis.
Collapse
Affiliation(s)
- Sandi Shen
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Mingjue Si
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Canjun Zeng
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Elaine K. Liu
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357, USA
| | - Yian Chen
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357, USA
| | - Jean Vacher
- Institut de Recherches Cliniques de Montreal, Montreal, QC H2W 1R7, Canada
- Département de Médecine, Université de Montréal, Montréal, QC H2W 1R7, Canada
| | - Haibo Zhao
- Southern California Institute for Research and Education, Long Beach, CA 90822, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Weirong Xing
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
4
|
Tao R, Mi B, Hu Y, Lin S, Xiong Y, Lu X, Panayi AC, Li G, Liu G. Hallmarks of peripheral nerve function in bone regeneration. Bone Res 2023; 11:6. [PMID: 36599828 PMCID: PMC9813170 DOI: 10.1038/s41413-022-00240-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/27/2022] [Accepted: 11/03/2022] [Indexed: 01/06/2023] Open
Abstract
Skeletal tissue is highly innervated. Although different types of nerves have been recently identified in the bone, the crosstalk between bone and nerves remains unclear. In this review, we outline the role of the peripheral nervous system (PNS) in bone regeneration following injury. We first introduce the conserved role of nerves in tissue regeneration in species ranging from amphibians to mammals. We then present the distribution of the PNS in the skeletal system under physiological conditions, fractures, or regeneration. Furthermore, we summarize the ways in which the PNS communicates with bone-lineage cells, the vasculature, and immune cells in the bone microenvironment. Based on this comprehensive and timely review, we conclude that the PNS regulates bone regeneration through neuropeptides or neurotransmitters and cells in the peripheral nerves. An in-depth understanding of the roles of peripheral nerves in bone regeneration will inform the development of new strategies based on bone-nerve crosstalk in promoting bone repair and regeneration.
Collapse
Affiliation(s)
- Ranyang Tao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Yiqiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Xuan Lu
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, 02215, MA, USA
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China.
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China.
| |
Collapse
|
5
|
Xing W, Larkin D, Pourteymoor S, Tambunan W, Gomez GA, Liu EK, Mohan S. Lack of Skeletal Effects in Mice with Targeted Disruptionof Prolyl Hydroxylase Domain 1 ( Phd1) Gene Expressed in Chondrocytes. Life (Basel) 2022; 13:106. [PMID: 36676055 PMCID: PMC9862499 DOI: 10.3390/life13010106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
The critical importance of hypoxia-inducible factor (HIF)s in the regulation of endochondral bone formation is now well established. HIF protein levels are closely regulated by the prolyl hydroxylase domain-containing protein (PHD) mediated ubiquitin-proteasomal degradation pathway. Of the three PHD family members expressed in bone, we previously showed that mice with conditional disruption of the Phd2 gene in chondrocytes led to a massive increase in the trabecular bone mass of the long bones. By contrast, loss of Phd3 expression in chondrocytes had no skeletal effects. To investigate the role of Phd1 expressed in chondrocytes on skeletal development, we conditionally disrupted the Phd1 gene in chondrocytes by crossing Phd1 floxed mice with Collagen 2α1-Cre mice for evaluation of a skeletal phenotype. At 12 weeks of age, neither body weight nor body length was significantly different in the Cre+; Phd1flox/flox conditional knockout (cKO) mice compared to Cre−; Phd1flox/flox wild-type (WT) control mice. Micro-CT measurements revealed significant gender differences in the trabecular bone volume adjusted for tissue volume at the secondary spongiosa of the femur and the tibia for both genotypes, but no genotype differences were found for any of the trabecular bone measurements of either femur or tibia. Similarly, cortical bone parameters were not affected in the Phd1 cKO mice compared to control mice. Histomorphometric analyses revealed no significant differences in bone area, bone formation rate or mineral apposition rate in the secondary spongiosa of femurs between cKO and WT control mice. Loss of Phd1 expression in chondrocytes did not affect the expression of markers of chondrocytes (collage 2, collagen 10) or osteoblasts (alkaline phosphatase, bone sialoprotein) in the bones of cKO mice. Based on these and our published data, we conclude that of the three PHD family members, only Phd2 expressed in chondrocytes regulates endochondral bone formation and development of peak bone mass in mice.
Collapse
Affiliation(s)
- Weirong Xing
- Musculoskeletal Disease Center, Loma Linda VA Healthcare System, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Destiney Larkin
- Musculoskeletal Disease Center, Loma Linda VA Healthcare System, Loma Linda, CA 92357, USA
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, Loma Linda VA Healthcare System, Loma Linda, CA 92357, USA
| | - William Tambunan
- Musculoskeletal Disease Center, Loma Linda VA Healthcare System, Loma Linda, CA 92357, USA
| | - Gustavo A. Gomez
- Musculoskeletal Disease Center, Loma Linda VA Healthcare System, Loma Linda, CA 92357, USA
| | - Elaine K. Liu
- Musculoskeletal Disease Center, Loma Linda VA Healthcare System, Loma Linda, CA 92357, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Loma Linda VA Healthcare System, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
6
|
Şen S, Erber R. Neuronal Guidance Molecules in Bone Remodeling and Orthodontic Tooth Movement. Int J Mol Sci 2022; 23:ijms231710077. [PMID: 36077474 PMCID: PMC9456342 DOI: 10.3390/ijms231710077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
During orthodontic tooth movement, mechanically induced remodeling occurs in the alveolar bone due to the action of orthodontic forces. The number of factors identified to be involved in mechanically induced bone remodeling is growing steadily. With the uncovering of the functions of neuronal guidance molecules (NGMs) for skeletal development as well as for bone homeostasis, NGMs are now also among the potentially significant factors for the regulation of bone remodeling during orthodontic tooth movement. This narrative review attempts to summarize the functions of NGMs in bone homeostasis and provides insight into the currently sparse literature on the functions of these molecules during orthodontic tooth movement. Presently, four families of NGMs are known: Netrins, Slits, Semaphorins, ephrins and Eph receptors. A search of electronic databases revealed roles in bone homeostasis for representatives from all four NGM families. Functions during orthodontic tooth movement, however, were only identified for Semaphorins, ephrins and Eph receptors. For these, crucial prerequisites for participation in the regulation of orthodontically induced bone remodeling, such as expression in cells of the periodontal ligament and in the alveolar bone, as well as mechanical inducibility, were shown, which suggests that the importance of NGMs in orthodontic tooth movement may be underappreciated to date and further research might be warranted.
Collapse
Affiliation(s)
- Sinan Şen
- Department of Orthodontics, University Medical Center Schleswig-Holstein, Campus Kiel, Christian Albrechts University, 24105 Kiel, Germany
- Correspondence: ; Tel.: +49-431-5002-6301
| | - Ralf Erber
- Department of Orthodontics and Dentofacial Orthopedics, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Mohan S, Kesavan C. T-cell factor 7L2 is a novel regulator of osteoblast functions that acts in part by modulation of hypoxia signaling. Am J Physiol Endocrinol Metab 2022; 322:E528-E539. [PMID: 35466691 PMCID: PMC9169825 DOI: 10.1152/ajpendo.00035.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
T-cell-like factor (TCF)7l2, a key effector of canonical Wnt signaling, is highly expressed in bone but nothing is known about its role in regulating osteoblast function. To test this, we generated mice with conditional disruption of Tcf7l2 gene in osteoblast lineages using Tcf7l2 floxed and Col1α2-Cre mice. Skeletal parameters were evaluated using heterozygous conditional knockdown (HCKD) mice since homozygous conditional knockout died during pregnancy or immediately after birth. At 5 wk of age, trabecular bone mass of long bones was reduced by 35% as measured by microcomputed tomography (μCT). Histology data showed a 42% reduction in femur trabecular bone mass caused by reduced bone formation. Knockdown of Tcf7l2 expression in osteoblasts decreased proliferation and differentiation by 20%-40%. Expression levels of genes (Hif1α, Vegf, and β-catenin) targeted by TCF7L2 were decreased by 50% in Tcf7l2-deficient osteoblasts and bones of HCKD mice. We found that the Hif1α gene promoter contained multiple putative TCF7L2 motifs and stabilization of HIF1α protein levels rescued expression of TCF7L2 target genes and alkaline phosphatase (ALP) activity in Tcf7l2-deficient osteoblasts. Furthermore, Tcf7l2 overexpression increased proliferation in the presence of canonical Wnt3a that was not affected by β-catenin inhibitor providing evidence for a noncanonical signaling in mediating TCF7L2 effects. Tcf7l2 expression was increased in response to mechanical strain (MS) in vitro and in vivo, and disruption of Tcf7l2 expression in osteoblasts reduced MS-induced ALP activity by 35%. We conclude that Tcf7l2, a mechanoresponsive gene, is an important regulator of osteoblast function acting, in part, via hypoxia signaling.NEW & NOTEWORTHY TCF7L2 is expressed by bone but it was not known whether TCF7L2 expression influenced bone development. By using a mouse model with conditional disruption of Tcf7l2 in osteoblast lineage cells, we have demonstrated for the first time, that TCF7L2 plays an important role in regulating osteoblasts via a noncanonical pathway.
Collapse
Affiliation(s)
- Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, California
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, California
- Department of Orthopedics, School of Medicine, Loma Linda University, Loma Linda, California
| | - Chandrasekhar Kesavan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, California
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
8
|
Kemppainen AV, Finnilä MA, Heikkinen A, Härönen H, Izzi V, Kauppinen S, Saarakkala S, Pihlajaniemi T, Koivunen J. The CMS19 disease model specifies a pivotal role for collagen XIII in bone homeostasis. Sci Rep 2022; 12:5866. [PMID: 35393492 PMCID: PMC8990013 DOI: 10.1038/s41598-022-09653-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in the COL13A1 gene result in congenital myasthenic syndrome type 19 (CMS19), a disease of neuromuscular synapses and including various skeletal manifestations, particularly facial dysmorphisms. The phenotypic consequences in Col13a1 null mice (Col13a1−/−) recapitulate the muscle findings of the CMS19 patients. Collagen XIII (ColXIII) is exists as two forms, a transmembrane protein and a soluble molecule. While the Col13a1−/− mice have poorly formed neuromuscular junctions, the prevention of shedding of the ColXIII ectodomain in the Col13a1tm/tm mice results in acetylcholine receptor clusters of increased size and complexity. In view of the bone abnormalities in CMS19, we here studied the tubular and calvarial bone morphology of the Col13a1−/− mice. We discovered several craniofacial malformations, albeit less pronounced ones than in the human disease, and a reduction of cortical bone mass in aged mice. In the Col13a1tm/tm mice, where ColXIII is synthesized but the ectodomain shedding is prevented due to a mutation in a protease recognition sequence, the cortical bone mass decreased as well with age and the cephalometric analyses revealed significant craniofacial abnormalities but no clear phenotypical pattern. To conclude, our data indicates an intrinsic role for ColXIII, particularly the soluble form, in the upkeep of bone with aging and suggests the possibility of previously undiscovered bone pathologies in patients with CMS19.
Collapse
Affiliation(s)
- A V Kemppainen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
| | - M A Finnilä
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
| | - A Heikkinen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
| | - H Härönen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
| | - V Izzi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland.,Faculty of Medicine, University of Oulu, 90014, Oulu, Finland.,Foundation for the Finnish Cancer Institute, Tukholmankatu 8, 00130, Helsinki, Finland
| | - S Kauppinen
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
| | - S Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - T Pihlajaniemi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
| | - J Koivunen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland.
| |
Collapse
|
9
|
Mice with Targeted Knockout of Tetraspanin 3 Exhibit Reduced Trabecular Bone Mass Caused by Decreased Osteoblast Functions. Cells 2022; 11:cells11060977. [PMID: 35326428 PMCID: PMC8946581 DOI: 10.3390/cells11060977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
Tetraspanin3 (TSPAN3) was identified as a binding partner of claudin11 (CLDN11) in osteoblasts and other cell types. Mice with targeted disruption of Cldn11 exhibited trabecular bone mass deficit caused by reduced bone formation and osteoblast function. To determine if the disruption of CLDN11 interacting protein gene Tspan3 results in a similar skeletal phenotype as that of Cldn11 knockout (KO) mice, we generated homozygous Tspan3 KO and heterozygous control mice and characterized their skeletal phenotypes at 13 weeks of age. Micro-CT measurements of the secondary spongiosa of the distal femur revealed 17% and 29% reduction in trabecular bone volume adjusted for tissue volume (BV/TV) in the male and female mice, respectively. Similarly, trabecular BV/TV of the proximal tibia was reduced by 19% and 20% in the male and female mice, respectively. The reduced trabecular bone mass was caused primarily by reduced trabecular thickness and number, and increased trabecular spacing. Consistent with the reduced bone formation as confirmed by histomorphometry analyses, serum alkaline phosphatase was reduced by 11% in the KO mice as compared with controls. Our findings indicate that TSPAN3 is an important positive regulator of osteoblast function and trabecular bone mass, and the interaction of TSPAN3 with CLDN11 could contribute in part to the bone forming effects of Cldn11 in mice.
Collapse
|
10
|
Abstract
The EPH receptor tyrosine kinases and their signaling partners, the EPHRINS, comprise a large class of cell signaling molecules that plays diverse roles in development. As cell membrane-anchored signaling molecules, they regulate cellular organization by modulating the strength of cellular contacts, usually by impacting the actin cytoskeleton or cell adhesion programs. Through these cellular functions, EPH/EPHRIN signaling often regulates tissue shape. Indeed, recent evidence indicates that this signaling family is ancient and associated with the origin of multicellularity. Though extensively studied, our understanding of the signaling mechanisms employed by this large family of signaling proteins remains patchwork, and a truly "canonical" EPH/EPHRIN signal transduction pathway is not known and may not exist. Instead, several foundational evolutionarily conserved mechanisms are overlaid by a myriad of tissue -specific functions, though common themes emerge from these as well. Here, I review recent advances and the related contexts that have provided new understanding of the conserved and varied molecular and cellular mechanisms employed by EPH/EPHRIN signaling during development.
Collapse
Affiliation(s)
- Jeffrey O Bush
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, United States; Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, United States; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, United States; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
11
|
Bereza S, Yong R, Gronthos S, Arthur A, Ranjitkar S, Anderson PJ. Craniomaxillofacial morphology in a murine model of ephrinB1 conditional deletion in osteoprogenitor cells. Arch Oral Biol 2022; 137:105389. [DOI: 10.1016/j.archoralbio.2022.105389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/02/2022]
|
12
|
Xing W, Pourteymoor S, Chen Y, Mohan S. Targeted Deletion of the Claudin12 Gene in Mice Increases Articular Cartilage and Inhibits Chondrocyte Differentiation. Front Endocrinol (Lausanne) 2022; 13:931318. [PMID: 35937800 PMCID: PMC9354527 DOI: 10.3389/fendo.2022.931318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022] Open
Abstract
To study the role of Claudin (CLDN)12 in bone, we developed mice with a targeted deletion of exon2 in the Cldn12 gene for skeletal phenotype analysis. Micro-CT analysis of the secondary spongiosa of distal femurs of mice with targeted disruption of the Cldn12 gene and control littermates showed no significant genotype-specific differences in either cortical or trabecular bone parameters for either gender in 13-week-old mice. Immunohistochemistry revealed that while CLDN12 was expressed in both differentiating chondrocytes and osteoblasts of the secondary spongiosa of 3-week-old wild-type mice, its expression was restricted to differentiating chondrocytes in the articular cartilage and growth plate in adult mice. Articular cartilage area at the knee were increased by 47% in Cldn12 knockout (KO) mice compared to control littermates. Micro-CT analyses found that while the trabecular number was increased by 9% and the trabecular spacing was reduced by 9% in the femoral epiphysis of Cldn12 KO mice, neither bone volume nor bone volume adjusted for tissue volume was different between the two genotypes. The expression levels of Clusterin, Lubricin and Mmp13 were increased by 56%, 46%, and 129%, respectively, in primary articular chondrocytes derived from KO compared to control mice. Our data indicate that targeted deletion of the Cldn12 gene in mice increases articular cartilage, in part, by promoting articular chondrocyte phenotype.
Collapse
Affiliation(s)
- Weirong Xing
- Musculoskeletal Disease Center, VA Loma Linda Healthcare Systems, Loma Linda, CA, United States
- Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, VA Loma Linda Healthcare Systems, Loma Linda, CA, United States
| | - Yian Chen
- Musculoskeletal Disease Center, VA Loma Linda Healthcare Systems, Loma Linda, CA, United States
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare Systems, Loma Linda, CA, United States
- Department of Medicine, Loma Linda University, Loma Linda, CA, United States
- Department of Biochemistry, Loma Linda University, Loma Linda, CA, United States
- Department of Orthopedic Surgery, Loma Linda University, Loma Linda, CA, United States
- *Correspondence: Subburaman Mohan,
| |
Collapse
|
13
|
Kamath RAD, Benson MD. EphB3 as a Potential Mediator of Developmental and Reparative Osteogenesis. Cells Tissues Organs 2021; 212:125-137. [PMID: 34695818 PMCID: PMC9397499 DOI: 10.1159/000520369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/14/2021] [Indexed: 11/19/2022] Open
Abstract
The ephrin-B family of membrane-bound ligands is involved in skeletal patterning, osteogenesis, and bone homeostasis. Yet, despite the increasing collection of data affirming their importance in bone, the Eph tyrosine kinases that serve as the receptors for these ephrins in osteoblast stem cell niches remain unidentified. Here we report the expression of EphB3 at sites of bone growth in the embryo, especially at the calvaria suture fronts, periosteum, chondrocytes, and trabeculae of developing long bones. Strong EphB3 expression persisted in the adult calvarial sutures and in the proliferative chondrocytes of long bones, both of which are documented niches for osteoblastic stem cells. We observed EphB3-positive cells in the tissue filling a created calvarial injury, further implying EphB3 involvement in bone healing. Genetic knockout of EphB3 caused an increase in the bone tissue volume as a fraction of total volume in 6-week-old calvaria and in femoral trabecular density, compared to wild type controls. This difference resolved by 12 weeks of age, when we instead observed an increase in the bone volume of femoral trabeculae and in trabecular thickness. Our data identify EphB3 as a candidate regulator of osteogenesis either alone or in combination with other bone-expressed Ephs, and indicate that it appears to function as a limiter of bone growth.
Collapse
Affiliation(s)
- Rajay A. D. Kamath
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave., Dallas TX 75246, USA
| | - M. Douglas Benson
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave., Dallas TX 75246, USA
| |
Collapse
|
14
|
Prolyl Hydroxylase Domain-Containing Protein 3 Gene Expression in Chondrocytes Is Not Essential for Bone Development in Mice. Cells 2021; 10:cells10092200. [PMID: 34571849 PMCID: PMC8470734 DOI: 10.3390/cells10092200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 01/28/2023] Open
Abstract
We previously showed that conditional disruption of the Phd2 gene in chondrocytes led to a massive increase in long bone trabecular bone mass. Loss of Phd2 gene expression or inhibition of PHD2 activity by a specific inhibitor resulted in a several-fold compensatory increase in Phd3 expression in chondrocytes. To determine if expression of PHD3 plays a role in endochondral bone formation, we conditionally disrupted the Phd3 gene in chondrocytes by crossing Phd3 floxed (Phd3flox/flox) mice with Col2α1-Cre mice. Loss of Phd3 expression in the chondrocytes of Cre+; Phd3flox/flox conditional knockout (cKO) mice was confirmed by real time PCR. At 16 weeks of age, neither body weight nor body length was significantly different in the Phd3 cKO mice compared to Cre−; Phd3flox/flox wild-type (WT) mice. Areal BMD measurements of total body as well as femur, tibia, and lumbar skeletal sites were not significantly different between the cKO and WT mice at 16 weeks of age. Micro-CT measurements revealed significant gender differences in the trabecular bone volume adjusted for tissue volume at the secondary spongiosa of the femur and the tibia for both genotypes, but no genotype difference was found for any of the trabecular bone measurements of either the femur or the tibia. Trabecular bone volume of distal femur epiphysis was not different between cKO and WT mice. Histology analyses revealed Phd3 cKO mice exhibited a comparable chondrocyte differentiation and proliferation, as evidenced by no changes in cartilage thickness and area in the cKO mice as compared to WT littermates. Consistent with the in vivo data, lentiviral shRNA-mediated knockdown of Phd3 expression in chondrocytes did not affect the expression of markers of chondrocyte differentiation (Col2, Col10, Acan, Sox9). Our study found that Phd2 but not Phd3 expressed in chondrocytes regulates endochondral bone formation, and the compensatory increase in Phd3 expression in the chondrocytes of Phd2 cKO mice is not the cause for increased trabecular bone mass in Phd2 cKO mice.
Collapse
|
15
|
Arthur A, Gronthos S. Eph-Ephrin Signaling Mediates Cross-Talk Within the Bone Microenvironment. Front Cell Dev Biol 2021; 9:598612. [PMID: 33634116 PMCID: PMC7902060 DOI: 10.3389/fcell.2021.598612] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Skeletal integrity is maintained through the tightly regulated bone remodeling process that occurs continuously throughout postnatal life to replace old bone and to repair skeletal damage. This is maintained primarily through complex interactions between bone resorbing osteoclasts and bone forming osteoblasts. Other elements within the bone microenvironment, including stromal, osteogenic, hematopoietic, endothelial and neural cells, also contribute to maintaining skeletal integrity. Disruption of the dynamic interactions between these diverse cellular systems can lead to poor bone health and an increased susceptibility to skeletal diseases including osteopenia, osteoporosis, osteoarthritis, osteomalacia, and major fractures. Recent reports have implicated a direct role for the Eph tyrosine kinase receptors and their ephrin ligands during bone development, homeostasis and skeletal repair. These membrane-bound molecules mediate contact-dependent signaling through both the Eph receptors, termed forward signaling, and through the ephrin ligands, referred to as reverse signaling. This review will focus on Eph/ ephrin cross-talk as mediators of hematopoietic and stromal cell communication, and how these interactions contribute to blood/ bone marrow function and skeletal integrity during normal steady state or pathological conditions.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
16
|
Abeynayake N, Arthur A, Gronthos S. Crosstalk between skeletal and neural tissues is critical for skeletal health. Bone 2021; 142:115645. [PMID: 32949783 DOI: 10.1016/j.bone.2020.115645] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
Abstract
Emerging evidence in the literature describes a physical and functional association between the neural and skeletal systems that forms a neuro-osteogenic network. This communication between bone cells and neural tissues within the skeleton is important in facilitating bone skeletal growth, homeostasis and repair. The growth and repair of the skeleton is dependent on correct neural innervation for correct skeletal developmental growth and fracture repair, while pathological conditions such as osteoporosis are accelerated by disruptions to sympathetic innervation. To date, different molecular mechanisms have been reported to mediate communication between bone and neural populations. This review highlights the important role of various cell surface receptors, cytokines and associated ligands as potential regulators of skeletal development, homeostasis, and repair, by mediating interactions between the skeletal and nervous systems. Specifically, this review describes how Bone Morphogenetic Proteins (BMPs), Eph/ephrin, Chemokine CXCL12, Calcitonin Gene-related Peptide (CGRP), Netrins, Neurotrophins (NTs), Slit/Robo and the Semaphorins (Semas) contribute to the cross talk between bone cells and peripheral nerves, and the importance of these interactions in maintaining skeletal health.
Collapse
Affiliation(s)
- Nethmi Abeynayake
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
17
|
Azad T, Rezaei R, Surendran A, Singaravelu R, Boulton S, Dave J, Bell JC, Ilkow CS. Hippo Signaling Pathway as a Central Mediator of Receptors Tyrosine Kinases (RTKs) in Tumorigenesis. Cancers (Basel) 2020; 12:cancers12082042. [PMID: 32722184 PMCID: PMC7463967 DOI: 10.3390/cancers12082042] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
The Hippo pathway plays a critical role in tissue and organ growth under normal physiological conditions, and its dysregulation in malignant growth has made it an attractive target for therapeutic intervention in the fight against cancer. To date, its complex signaling mechanisms have made it difficult to identify strong therapeutic candidates. Hippo signaling is largely carried out by two main activated signaling pathways involving receptor tyrosine kinases (RTKs)—the RTK/RAS/PI3K and the RTK-RAS-MAPK pathways. However, several RTKs have also been shown to regulate this pathway to engage downstream Hippo effectors and ultimately influence cell proliferation. In this text, we attempt to review the diverse RTK signaling pathways that influence Hippo signaling in the context of oncogenesis.
Collapse
Affiliation(s)
- Taha Azad
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Reza Rezaei
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Abera Surendran
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Ragunath Singaravelu
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Stephen Boulton
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jaahnavi Dave
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - John C. Bell
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Carolina S. Ilkow
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +1-613-737-8899 (ext. 75208)
| |
Collapse
|
18
|
Arthur A, Paton S, Zannettino ACW, Gronthos S. Conditional knockout of ephrinB1 in osteogenic progenitors delays the process of endochondral ossification during fracture repair. Bone 2020; 132:115189. [PMID: 31863961 DOI: 10.1016/j.bone.2019.115189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/29/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022]
Abstract
The Eph receptor tyrosine kinase ligand, ephrinB1 (EfnB1) is important for correct skeletal and cartilage development, however, the role of EfnB1 in fracture repair is unknown. This study investigated the role of EfnB1 during fracture repair where EfnB1 expression increased significantly at 1 and 2 weeks post fracture in C57Bl/6 wildtype mice, coinciding with the haematoma, soft callus formation/remodelling stages, respectively. To investigate the specific role of EfnB1 within the osteogenic lineage during fracture repair, male mice with a conditional deletion of EfnB1 in the osteogenic lineage (EfnB1OBfl/O), driven by the Osterix (Osx) promoter, and their male Osx:Cre counterparts were subject to a femoral fracture with internal fixation. Two weeks post fracture micro computed tomography (μCT) analysis revealed that EfnB1OBfl/O mice displayed a significant decrease in bone volume relative to tissue volume within the fracture callus. This was attributed to an alteration in the distribution of osteoclasts within the fracture site, a significant elevation in cartilaginous tissue and reduction in the osteoprogenitor population and calcein labelled bone within the fracture site of EfnB1OBfl/O mice. Supportive in vitro studies demonstrated that under osteogenic conditions, cultured EfnB1OBfl/O stromal cells derived from the 2 week fracture site exhibited a reduced capacity to produce mineral and decreased expression of the osteogenic gene, Osterix, when compared to Osx:Cre controls. These findings suggest that the loss of EfnB1 delays the fracture repair process. The present study confirmed that EFNB1 activation in human BMSC, following stimulation with soluble-EphB2 resulted in de-phosphorylation of TAZ, demonstrating similarities in EfnB1 signalling between human and mouse stromal populations. Overall, the present study provides evidence that loss of EfnB1 in the osteo/chondrogenic lineages delays the soft callus formation/remodelling stages of the fracture repair process.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Sharon Paton
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Andrew C W Zannettino
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
19
|
Song GJ, Gupta DP, Rahman MH, Park HT, Al Ghouleh I, Bisello A, Lee MG, Park JY, Park HH, Jun JH, Chung KW, Choi BO, Suk K. Loss-of-function of EBP50 is a new cause of hereditary peripheral neuropathy: EBP50 functions in peripheral nerve system. Glia 2020; 68:1794-1809. [PMID: 32077526 DOI: 10.1002/glia.23805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
Abstract
Finding causative genetic mutations is important in the diagnosis and treatment of hereditary peripheral neuropathies. This study was conducted to find new genes involved in the pathophysiology of hereditary peripheral neuropathy. We identified a new mutation in the EBP50 gene, which is co-segregated with neuropathic phenotypes, including motor and sensory deficit in a family with Charcot-Marie-Tooth disease. EBP50 is known to be important for the formation of microvilli in epithelial cells, and the discovery of this gene mutation allowed us to study the function of EBP50 in the nervous system. EBP50 was strongly expressed in the nodal and paranodal regions of sciatic nerve fibers, where Schwann cell microvilli contact the axolemma, and at the growth tips of primary Schwann cells. In addition, EBP50 expression was decreased in mouse models of peripheral neuropathy. Knockout mice were used to study EBP50 function in the peripheral nervous system. Interestingly motor function deficit and abnormal histology of nerve fibers were observed in EBP50+/- heterozygous mice at 12 months of age, but not 3 months. in vitro studies using Schwann cells showed that NRG1-induced AKT activation and migration were significantly reduced in cells overexpressing the I325V mutant of EBP50 or cells with knocked-down EBP50 expression. In conclusion, we show for the first time that loss of function due to EBP50 gene deficiency or mutation can cause peripheral neuropathy.
Collapse
Affiliation(s)
- Gyun Jee Song
- Department of Medical Science, Institute for Bio-Medical Convergence, Catholic Kwandong University, International St. Mary's Hospital, Incheon, Republic of Korea
| | - Deepak Prasad Gupta
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hwan Tae Park
- Department of Molecular Neuroscience, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Imad Al Ghouleh
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alessandro Bisello
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Maan-Gee Lee
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Yong Park
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Jin Hyun Jun
- Department of Senior Healthcare, BK21 Plus Program, Graduate School of Eulji University, Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam, Republic of Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju, Republic of Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
20
|
Wang W, Yuan C, Geng T, Liu Y, Zhu S, Zhang C, Liu Z, Wang P. EphrinB2 overexpression enhances osteogenic differentiation of dental pulp stem cells partially through ephrinB2-mediated reverse signaling. Stem Cell Res Ther 2020; 11:40. [PMID: 31996240 PMCID: PMC6990579 DOI: 10.1186/s13287-019-1540-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/19/2019] [Accepted: 12/23/2019] [Indexed: 12/23/2022] Open
Abstract
Background Alveolar bone loss is a frequent occurrence. Dental pulp stem cells (DPSCs) which have invasive accessibility and high osteogenic potential is a promising source for cell-based bone regeneration. EphrinB2 is involved in bone homeostasis and osteogenesis. The aim of this study was to investigate the effect and mechanism of ephrinB2 overexpression on osteogenic differentiation of DPSCs and bone defect repair. Methods EphrinB2 expression was analyzed during osteogenic induction of human DPSCs (hDPSCs). Endogenous ephrinB2 expression in hDPSCs was then upregulated using EfnB2 lentiviral vectors. The effect of ephrinB2 overexpression on osteogenic differentiation capacity of hDPSCs was investigated in vitro, and activation of ephrinB2-EphB4 bidirectional signaling in ephrinB2-overexpressing hDPSCs was detected. In vivo, a canine alveolar bone defect model was established and canine DPSCs (cDPSCs) were cultured, characterized, EfnB2-tranfected, and combined with a PuraMatrix scaffold. Micro-CT analysis was performed to evaluate the therapeutic effect of ephrinB2-overexpressing cDPSCs on bone defect repair. Results EphrinB2 was upregulated after osteogenic induction of hDPSCs. EphrinB2 overexpression enhanced osteogenic differentiation capacity of hDPSCs in vitro. Moreover, p-ephrinB2 instead of p-EphB4 was upregulated by ephrinB2 overexpression, and activation of ephrinB2-mediated reverse signaling promoted osteogenic differentiation of hDPSCs. In a canine bone defect model, ephrinB2 overexpression in cDPSCs significantly improved trabecular bone volume per tissue volume (BV/TV) and trabecular thickness, as demonstrated by radiographic analysis. Conclusions EphrinB2 overexpression enhanced osteogenic potential of DPSCs partially via upregulation of ephrinB2-mediated reverse signaling and effectively promoted alveolar bone defect repair. Electronic supplementary material The online version of this article (10.1186/s13287-019-1540-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen Wang
- Affiliated Stomatological Hospital of Xuzhou Medical University, No. 130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China
| | - Changyong Yuan
- Affiliated Stomatological Hospital of Xuzhou Medical University, No. 130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China
| | - Tengyu Geng
- Affiliated Stomatological Hospital of Xuzhou Medical University, No. 130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China
| | - Yi Liu
- Affiliated Stomatological Hospital of Xuzhou Medical University, No. 130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China
| | - Shaoyue Zhu
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Chengfei Zhang
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Zongxiang Liu
- Affiliated Stomatological Hospital of Xuzhou Medical University, No. 130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China.
| | - Penglai Wang
- Affiliated Stomatological Hospital of Xuzhou Medical University, No. 130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China.
| |
Collapse
|
21
|
Eph/ephrin Signaling and Biology of Mesenchymal Stromal/Stem Cells. J Clin Med 2020; 9:jcm9020310. [PMID: 31979096 PMCID: PMC7074403 DOI: 10.3390/jcm9020310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) have emerged as important therapeutic agents, owing to their easy isolation and culture, and their remarkable immunomodulatory and anti-inflammatory properties. However, MSCs constitute a heterogeneous cell population which does not express specific cell markers and has important problems for in vivo homing, and factors regulating their survival, proliferation, and differentiation are largely unknown. Accordingly, in the present article, we review the current evidence on the relationships between Eph kinase receptors, their ephrin ligands, and MSCs. These molecules are involved in the adult homeostasis of numerous tissues, and we and other authors have demonstrated their expression in human and murine MSCs derived from both bone marrow and adipose tissue, as well as their involvement in the MSC biology. We extend these studies providing new results on the effects of Eph/ephrins in the differentiation and immunomodulatory properties of MSCs.
Collapse
|
22
|
Lindsey RC, Xing W, Pourteymoor S, Godwin C, Gow A, Mohan S. Novel Role for Claudin-11 in the Regulation of Osteoblasts via Modulation of ADAM10-Mediated Notch Signaling. J Bone Miner Res 2019; 34:1910-1922. [PMID: 31112308 PMCID: PMC6813858 DOI: 10.1002/jbmr.3763] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/23/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022]
Abstract
The claudin (Cldn) family comprises 27 members of 20 to 34 kDa transmembrane tight junction proteins. In addition to Cldns' established canonical role as barriers controlling paracellular flow of molecules, a distinct noncanonical role for them as mediators of cell signaling is now emerging. In our studies evaluating Cldn family expression levels during osteoblast differentiation, Cldn-11 showed the largest increase (60-fold). Immunohistochemistry studies revealed high Cldn-11 expression in trabecular (Tb) bone lining cells. Micro-CT analysis of femurs and vertebrae of Cldn-11 knock-out (KO) mice at 12 weeks of age exhibited a 40% (p < 0.01) reduction in Tb bone volume adjusted for tissue volume compared with control mice, a change caused by significant reductions in Tb number and thickness and increase in Tb separation. Histomorphometry and serum biomarker studies revealed that reduced bone formation, not increased resorption, is the cause for reduced Tb bone volume in the Cldn-11 KO mice. Cldn-11 KO osteoblasts expressed reduced ALP and BSP, whereas Cldn-11 overexpression in MC3T3-E1 cells increased expression of ALP and BSP. Mechanistically, Cldn-11 interacted with tetraspanin (Tspan)3 in osteoblasts, and Tspan3 knockdown reduced osteoblast differentiation. Because members of the Tspan family regulate cell functions via Notch signaling, we evaluated whether Cldn-11/Tspan3 regulates Notch signaling in osteoblasts. Accordingly, Notch targets Hey1 and Hey2 were significantly upregulated in Cldn-11 overexpressing cultures but downregulated in both Cldn-11 KO and Tspan3 knockdown osteoblasts. Because ADAM10 has been shown to interact with Tspan family members to regulate Notch signaling, we evaluated whether Cldn-11 regulates ADAM10 expression. Cldn-11 overexpressing cells express more mature ADAM10, and an ADAM10 inhibitor blocked the Cldn-11 effect on osteoblast differentiation. Based on these data, we propose Cldn-11 as a novel component of an osteoblast cell surface protein complex, comprising Tspan3 and ADAM10, which regulates Notch signaling and cell differentiation. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Richard C Lindsey
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, USA.,Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Weirong Xing
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, USA.,Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, USA
| | - Catrina Godwin
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, USA
| | - Alexander Gow
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.,Carman and Ann Adams Department of Pediatrics, Wayne State University, Detroit, MI, USA.,Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, USA.,Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Orthopedics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
23
|
Xing W, Godwin C, Pourteymoor S, Mohan S. Conditional disruption of the osterix gene in chondrocytes during early postnatal growth impairs secondary ossification in the mouse tibial epiphysis. Bone Res 2019; 7:24. [PMID: 31646014 PMCID: PMC6804621 DOI: 10.1038/s41413-019-0064-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/04/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
In our previous studies, we have found that the prepubertal increase in thyroid hormone levels induces osterix (Osx) signaling in hypertrophic chondrocytes to transdifferentiate them into osteoblasts. To test if Osx expressed in chondrocytes directly contributes to transdifferentiation and secondary ossification, we generated Osx flox/flox ; Col2-Cre-ERT2 mice and knocked out Osx with a single injection of tamoxifen at postnatal day (P) 3 prior to evaluation of the epiphyseal bone phenotype by µCT, histology, and immunohistochemistry (IHC) at P21. Vehicle (oil)-treated Osx flox/flox ; Col2-Cre-ERT2 and tamoxifen-treated, Cre-negative Osx flox/flox mice were used as controls. µCT analysis of tibial epiphyses revealed that trabecular bone mass was reduced by 23% in the Osx conditional knockout (cKO) compared with control mice. Trabecular number and thickness were reduced by 28% and 8%, respectively, while trabecular separation was increased by 24% in the cKO mice. Trichrome staining of longitudinal sections of tibial epiphyses showed that bone area and bone area adjusted for total area were decreased by 22% and 18%, respectively. IHC studies revealed the presence of abundant Osx-expressing prehypertrophic chondrocytes in the epiphyses of control mice at P10, but not in the cKO mice. Furthermore, expression levels of MMP13, COL10, ALP, and BSP were considerably reduced in the epiphyses of cKO mice. We also found that Osx overexpression in ATDC5 chondrocytes increased expression of Col10, Mmp13, Alp, and Bsp. Our data indicate that Osx expressed in chondrocytes plays a significant role in secondary ossification by regulating expression of genes involved in chondrocyte hypertrophy and osteoblast transdifferentiation.
Collapse
Affiliation(s)
- Weirong Xing
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357 USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92357 USA
| | - Catrina Godwin
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357 USA
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357 USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357 USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92357 USA
- Department of Orthopedics, Loma Linda University, Loma Linda, CA 92357 USA
- Department of Biochemistry, Loma Linda University, Loma Linda, CA 92357 USA
| |
Collapse
|
24
|
Si M, Zeng C, Goodluck H, Shen S, Mohan S, Xing W. A small molecular inhibitor of LRRK1 identified by homology modeling and virtual screening suppresses osteoclast function, but not osteoclast differentiation, in vitro. Aging (Albany NY) 2019; 11:3250-3261. [PMID: 31113907 PMCID: PMC6555463 DOI: 10.18632/aging.101977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/12/2019] [Indexed: 01/31/2023]
Abstract
We used TGFβ activation kinase 1 as a template to build a 3D structure of the human LRRK1 kinase domain (hLRRK1 KD) and performed small molecule docking. One of the chemicals (IN04) that docked into the pocket was chosen for evaluation of biological effects on osteoclasts (OCs) in vitro. INO4 at 16 nM completely blocked ATP binding to hLRRK1 KD in an in vitro pulldown assay. In differentiation and pit assays, while the number of OCs on bone slices were comparable for OCs treated with IN04 and DMSO, IN04 treatment of OCs significantly impaired their ability to resorb bone. The area of pits on bone slices was reduced by 43% at 5 μM and 83% at 10 μM as compared to DMSO. Individual pits appeared smaller and shallower. F-actin staining revealed that DMSO-treated OCs displayed clear actin rings, and F-actin forms a peripheral sealing zone. By contrast, IN04-treated OCs showed disarranged F-actin in the cytoplasm, and F-actin failed to form a sealing zone on bone slices. IN04 treatment had no effects on OC-derived coupling factor production nor on osteoblast nodule formation. Our data indicate IN04 is a potent inhibitor of LRRK1, suppressing OC function with no effect on OC formation.
Collapse
Affiliation(s)
- Mingjue Si
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda 92357, CA, USA
- Department of Medicine, Loma Linda University, Loma Linda 92350, CA, USA
- Equal contribution
| | - Canjun Zeng
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda 92357, CA, USA
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Equal contribution
| | - Helen Goodluck
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda 92357, CA, USA
- Equal contribution
| | - Sandi Shen
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda 92357, CA, USA
- Department of Medicine, Loma Linda University, Loma Linda 92350, CA, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda 92357, CA, USA
- Department of Medicine, Loma Linda University, Loma Linda 92350, CA, USA
| | - Weirong Xing
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda 92357, CA, USA
- Department of Medicine, Loma Linda University, Loma Linda 92350, CA, USA
| |
Collapse
|
25
|
Arthur A, Nguyen TM, Paton S, Zannettino ACW, Gronthos S. Loss of EfnB1 in the osteogenic lineage compromises their capacity to support hematopoietic stem/progenitor cell maintenance. Exp Hematol 2018; 69:43-53. [PMID: 30326247 DOI: 10.1016/j.exphem.2018.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
The bone marrow stromal microenvironment contributes to the maintenance and function of hematopoietic stem/progenitor cells (HSPCs). The Eph receptor tyrosine kinase family members have been implicated in bone homeostasis and stromal support of HSPCs. The present study examined the influence of EfnB1-expressing osteogenic lineage on HSPC function. Mice with conditional deletion of EfnB1 in the osteogenic lineage (EfnB1OB-/-), driven by the Osterix promoter, exhibited a reduced prevalence of osteogenic progenitors and osteoblasts, correlating to lower numbers of HSPCs compared with Osx:Cre mice. Long-term culture-initiating cell (LTC-IC) assays confirmed that the loss of EfnB1 within bone cells hindered HSPC function, with a significant reduction in colony formation in EfnB1OB-/- mice compared with Osx:Cre mice. Human studies confirmed that activation of EPHB2 on CD34+ HSPCs via EFNB1-Fc stimulation enhanced myeloid/erythroid colony formation, whereas functional blocking of either EPHB1 or EPHB2 inhibited the maintenance of LTC-ICs. Moreover, EFNB1 reverse signaling in human and mouse stromal cells was found to be required for the activation of the HSPC-promoting factor CXCL12. Collectively, the results of this study confirm that EfnB1 contributes to the stromal support of HSPC function and maintenance and may be an important factor in regulating the HSPC niche.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia; Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Thao M Nguyen
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia; Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Sharon Paton
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia; Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Andrew C W Zannettino
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia; Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
| |
Collapse
|
26
|
Changes in ephrin gene expression during bone healing identify a restricted repertoire of ephrins mediating fracture repair. Histochem Cell Biol 2018; 151:43-55. [PMID: 30250975 DOI: 10.1007/s00418-018-1712-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2018] [Indexed: 12/30/2022]
Abstract
To identify the repertoire of ephrin genes that might regulate endochondral bone fracture repair, we examined changes in ephrin ligand and receptor (Eph) gene expression in fracture callus tissues during bone fracture healing. Ephrin and Eph proteins were then localized in the fracture callus tissues present when changes in gene expression were observed. Ephrin gene expression was widespread in fracture tissues, but the repertoire of ephrin genes with significant changes in expression that might suggest a regulatory role in fracture callus development was restricted to the ephrin A family members Epha4, Epha5 and the ephrin B family member Efnb1. After 3 weeks of healing, Epha4 fracture expression was downregulated from 1.3- to 0.8-fold and Epha5 fracture expression was upregulated from 1.2- to 1.5-fold of intact contralateral femur expression, respectively. Efnb1 expression was downregulated from 1.5- to 1.2-fold after 2 weeks post-fracture. These ephrin proteins were localized to fracture callus prehypertrophic chondrocytes and osteoblasts, as well as to the periosteum and fibrous tissues. The observed positive correlation between mRNA levels of EfnB1 with Col10 and Epha5 with Bglap, together with colocalized expression with their respective proteins, suggest that EfnB1 is a positive mediator of prehypertrophic chondrocyte development and that Epha5 contributes to osteoblast-mediated mineralization of fracture callus. In contrast, mRNA levels of Epha4 and Efnb1 correlated negatively with Bglap, thus suggesting a negative role for these two ephrin family members in mature osteoblast functions. Given the number of family members and widespread expression of the ephrins, a characterization of changes in ephrin gene expression provides a basis for identifying ephrin family members that might regulate the molecular pathways of bone fracture repair. This approach suggests that a highly restricted repertoire of ephrins, EfnB1 and EphA5, are the major mediators of fracture callus cartilage hypertrophy and ossification, respectively, and proposes candidates for additional functional study and eventual therapeutic application.
Collapse
|
27
|
Arthur A, Nguyen TM, Paton S, Klisuric A, Zannettino ACW, Gronthos S. The osteoprogenitor-specific loss of ephrinB1 results in an osteoporotic phenotype affecting the balance between bone formation and resorption. Sci Rep 2018; 8:12756. [PMID: 30143786 PMCID: PMC6109077 DOI: 10.1038/s41598-018-31190-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023] Open
Abstract
The present study investigated the effects of conditional deletion of ephrinB1 in osteoprogenitor cells driven by the Osterix (Osx) promoter, on skeletal integrity in a murine model of ovariectomy-induced (OVX) osteoporosis. Histomorphometric and μCT analyses revealed that loss of ephrinB1 in sham Osx:cre-ephrinB1fl/fl mice caused a reduction in trabecular bone comparable to OVX Osx:Cre mice, which was associated with a significant reduction in bone formation rates and decrease in osteoblast numbers. Interestingly, these observations were not exacerbated in OVX Osx:cre-ephrinB1fl/fl mice. Furthermore, sham Osx:cre-ephrinB1fl/fl mice displayed significantly higher osteoclast numbers and circulating degraded collagen type 1 compared to OVX Osx:Cre mice. Confirmation studies found that cultured monocytes expressing EphB2 formed fewer TRAP+ multinucleated osteoclasts and exhibited lower resorption activity in the presence of soluble ephrinB1-Fc compared to IgG control. This inhibition of osteoclast formation and function induced by ephrinB1-Fc was reversed in the presence of an EphB2 chemical inhibitor. Collectively, these observations suggest that ephrinB1, expressed by osteoprogenitors, influences bone loss during the development of osteoporosis, by regulating both osteoblast and osteoclast formation and function, leading to a loss of skeletal integrity.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, 5005, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, 5000, SA, Australia
| | - Thao M Nguyen
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, 5005, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, 5000, SA, Australia
| | - Sharon Paton
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, 5005, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, 5000, SA, Australia.,Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, 5005, SA, Australia
| | - Ana Klisuric
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, 5005, SA, Australia
| | - Andrew C W Zannettino
- South Australian Health and Medical Research Institute, Adelaide, 5000, SA, Australia.,Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, 5005, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, 5005, SA, Australia. .,South Australian Health and Medical Research Institute, Adelaide, 5000, SA, Australia.
| |
Collapse
|
28
|
Si M, Goodluck H, Zeng C, Pan S, Todd EM, Morley SC, Qin X, Mohan S, Xing W. LRRK1 regulation of actin assembly in osteoclasts involves serine 5 phosphorylation of L-plastin. J Cell Biochem 2018; 119:10351-10357. [PMID: 30136304 PMCID: PMC6218268 DOI: 10.1002/jcb.27377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022]
Abstract
Mice with disruption of Lrrk1 and patients with nonfunctional mutant Lrrk1 exhibit severe osteopetrosis phenotypes because of osteoclast cytoskeletal dysfunction. To understand how Lrrk1 regulates osteoclast function by modulating cytoskeleton rearrangement, we examined the proteins that are differentially phosphorylated in wild‐type mice and Lrrk1‐deficient osteoclasts by metal affinity purification coupled liquid chromatography/mass spectrometry (LC/MS) analyses. One of the candidates that we identified by LC/MS is L‐plastin, an actin bundling protein. We found that phosphorylation of L‐plastin at serine (Ser) residues 5 was present in wild‐type osteoclasts but not in Lrrk1‐deficient cells. Western blot analyses with antibodies specific for Ser5 phosphorylated L‐plastin confirmed the reduced L‐plastin Ser5 phosphorylation in Lrrk1 knockout (KO) osteoclasts. micro computed tomography (Micro‐CT) analyses revealed that the trabecular bone volume of the distal femur was increased by 27% in the 16 to 21‐week‐old L‐plastin KO females as compared with the wild‐type control mice. The ratio of bone volume to tissue volume and connectivity density were increased by 44% and 47% (both P < 0.05), respectively, in L‐plastin KO mice. Our data suggest that targeted disruption of L‐plastin increases trabecular bone volume, and phosphorylation of Ser5 in L‐plastin in the Lrrk1 signaling pathway may in part contribute to actin assembly in mature osteoclasts.
Collapse
Affiliation(s)
- Mingjue Si
- Department of Radiology, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Medicine, Loma Linda University, Loma Linda, California
| | - Helen Goodluck
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California
| | - Canjun Zeng
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California.,Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Songqin Pan
- Proteomics Core Facility, University of California, Riverside, California
| | - Elizabeth M Todd
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Sharon Celeste Morley
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Xuezhong Qin
- Department of Medicine, Loma Linda University, Loma Linda, California.,Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California
| | - Subburaman Mohan
- Department of Medicine, Loma Linda University, Loma Linda, California.,Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California
| | - Weirong Xing
- Department of Medicine, Loma Linda University, Loma Linda, California.,Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California.,Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
29
|
Lindsey RC, Rundle CH, Mohan S. Role of IGF1 and EFN-EPH signaling in skeletal metabolism. J Mol Endocrinol 2018; 61:T87-T102. [PMID: 29581239 PMCID: PMC5966337 DOI: 10.1530/jme-17-0284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/26/2018] [Indexed: 01/11/2023]
Abstract
Insulin-like growth factor 1(IGF1) and ephrin ligand (EFN)-receptor (EPH) signaling are both crucial for bone cell function and skeletal development and maintenance. IGF1 signaling is the major mediator of growth hormone-induced bone growth, but a host of different signals and factors regulate IGF1 signaling at the systemic and local levels. Disruption of the Igf1 gene results in reduced peak bone mass in both experimental animal models and humans. Additionally, EFN-EPH signaling is a complex system which, particularly through cell-cell interactions, contributes to the development and differentiation of many bone cell types. Recent evidence has demonstrated several ways in which the IGF1 and EFN-EPH signaling pathways interact with and depend upon each other to regulate bone cell function. While much remains to be elucidated, the interaction between these two signaling pathways opens a vast array of new opportunities for investigation into the mechanisms of and potential therapies for skeletal conditions such as osteoporosis and fracture repair.
Collapse
Affiliation(s)
- Richard C Lindsey
- Musculoskeletal Disease CenterVA Loma Linda Healthcare System, Loma Linda, California, USA
- Division of BiochemistryDepartment of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, USA
- Center for Health Disparities and Molecular MedicineDepartment of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Charles H Rundle
- Musculoskeletal Disease CenterVA Loma Linda Healthcare System, Loma Linda, California, USA
- Department of MedicineLoma Linda University, Loma Linda, California, USA
| | - Subburaman Mohan
- Musculoskeletal Disease CenterVA Loma Linda Healthcare System, Loma Linda, California, USA
- Division of BiochemistryDepartment of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, USA
- Center for Health Disparities and Molecular MedicineDepartment of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, USA
- Department of MedicineLoma Linda University, Loma Linda, California, USA
| |
Collapse
|
30
|
Alfaro D, Zapata AG. Eph/Ephrin-mediated stimulation of human bone marrow mesenchymal stromal cells correlates with changes in cell adherence and increased cell death. Stem Cell Res Ther 2018; 9:172. [PMID: 29941036 PMCID: PMC6019728 DOI: 10.1186/s13287-018-0912-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/11/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022] Open
Abstract
Background Mesenchymal stromal cells (MSC) are components of connective tissues and, in vitro, cell entities characterized by cell adhesion and immunophenotyping, although specific markers for their identification are lacking. Currently, MSC derived from either human bone marrow (BM-MSC) or adipose tissue (Ad-MSC) are considered the main sources of MSC for cell therapy. Eph receptors and their ligands, Ephrins, are molecules involved in cell adhesion and migration in several tissues and organs. In the current study, we analyze the pattern of Eph/Ephrin expression in MSC and evaluate the effects of blockade and stimulation of these receptor/ligand pairs on their biology. Methods Eph/Ephrin expression was analyzed in both BM-MSC and Ad-MSC by qRT-PCR. Then, we supplied BM-MSC cultures with either blocking or activating compounds to evaluate their effects on MSC proliferation, survival, and cell cycle by FACS. Changes in cytoskeleton and integrin α5β1 expression were studied in stimulated BM-MSC by immunofluorescence microscopy and FACS, respectively. Results Higher numbers of Eph/Ephrin transcripts occurred in BM-MSC than in Ad-MSC. In addition, the blocking of Eph/Ephrin signaling correlated with decreased numbers of BM-MSC due to increased proportions of apoptotic cells in the cultures but without variations in the cycling cells. Unexpectedly, activation of Eph/Ephrin signaling by clustered Eph/Ephrin fusion proteins also resulted in increased proportions of apoptotic MSC. In this case, MSC underwent important morphological changes, associated with altered cytoskeleton and integrin α5β1 expression, which did not occur under the blocking conditions. Conclusions Taken together, these results suggest that Eph/Ephrin activation affects cell survival through alterations in cell attachment to culture plates, affecting the biology of BM-MSC. Electronic supplementary material The online version of this article (10.1186/s13287-018-0912-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Alfaro
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, C/ José Antonio Novais, 12, CP 28040, Madrid, Spain
| | - Agustín G Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, C/ José Antonio Novais, 12, CP 28040, Madrid, Spain.
| |
Collapse
|
31
|
A novel miR17/protein tyrosine phosphatase-oc/EphA4 regulatory axis of osteoclast activity. Arch Biochem Biophys 2018; 650:30-38. [PMID: 29763590 PMCID: PMC5985224 DOI: 10.1016/j.abb.2018.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 12/17/2022]
Abstract
Information about the molecular mechanisms leading to the activation of the osteoclast is relatively limited. While there is compelling evidence that the signaling mechanisms of Src and integrin β3 are essential for osteoclast activation, the regulation of these two signaling mechanisms is not fully understood. In this review, evidence supporting a novel regulatory axis of osteoclast activation that plays an upstream regulatory role in both the Src and integrin β3 signaling during osteoclast activation is discussed. This regulatory axis contains three unique components: a structurally unique transmembrane protein-tyrosine phosphatase, PTP-oc, EphA4, and miR17. In the first component, PTP-oc activates the Src signaling through dephosphorylation of the inhibitory tyr-527 of Src. This in turn activates the integrin β3 signaling, enhances the JNK2/NFκB signaling, promotes the ITAM/Syk signaling, and suppresses the ITIM/Shp1 signaling; the consequence of which is activation of the osteoclast. In the second component, EphA4 inhibits osteoclast activity by suppressing the integrin β3 signaling. PTP-oc relieves the suppressive actions of EphA4 by directly dephosphorylating EphA4. In the third component, PTP-oc expression is negatively regulated by miR17. Accordingly, suppression of miR17 during osteoclast activation upregulates the PTP-oc signaling and suppresses the EphA4 signaling, resulting in the activation of the osteoclast. This regulatory axis is unique, in that each of the three components acts to exert suppressive action on their respective immediate downstream inhibitory step. Because the final downstream event is the EphA4-mediated inhibition of osteoclast activation, the overall effect of this mechanism is the stimulation of osteoclast activity.
Collapse
|
32
|
|
33
|
Russell SA, Bashaw GJ. Axon guidance pathways and the control of gene expression. Dev Dyn 2018; 247:571-580. [PMID: 29226467 DOI: 10.1002/dvdy.24609] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 12/20/2022] Open
Abstract
Axons need to be properly guided to their targets to form synaptic connections, and this requires interactions between highly conserved extracellular and transmembrane ligands and their cell surface receptors. The majority of studies on axon guidance signaling pathways have focused on the role of these pathways in rearranging the local cytoskeleton and plasma membrane in growth cones and axons. However, a smaller body of work has demonstrated that axon guidance signaling pathways also control gene expression via local translation and transcription. Recent studies on axon guidance ligands and receptors have begun to uncover the requirements for these alternative mechanisms in processes required for neural circuit formation: axon guidance, synaptogenesis, and cell migration. Understanding the mechanisms by which axon guidance signaling regulates local translation and transcription will create a more complete picture of neural circuit formation, and they may be applied more broadly to other tissues where axon guidance ligands and receptors are required for morphogenesis. Developmental Dynamics 247:571-580, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Samantha A Russell
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
34
|
Sterner RM, Kremer KN, Al-Kali A, Patnaik MM, Gangat N, Litzow MR, Kaufmann SH, Westendorf JJ, van Wijnen AJ, Hedin KE. Histone deacetylase inhibitors reduce differentiating osteoblast-mediated protection of acute myeloid leukemia cells from cytarabine. Oncotarget 2017; 8:94569-94579. [PMID: 29212250 PMCID: PMC5706896 DOI: 10.18632/oncotarget.21809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/15/2017] [Indexed: 12/04/2022] Open
Abstract
The bone marrow microenvironment protects acute myeloid leukemia (AML) cells during chemotherapy and is a major factor in relapse. Here, we examined which type(s) of bone marrow cells are responsible for the relapse of AML following treatment with cytarabine (Ara-C), and we identified a means to inhibit this protection. To determine the protective cell type(s), AML cells were treated with Ara-C, and AML cell survival in the presence or absence of osteoblast lineage cells was assessed. Cultured AML cells and patient bone marrow isolates were each significantly protected from Ara-C-induced apoptosis by co-culture with differentiating osteoblasts. Moreover, pretreating differentiating osteoblasts with the histone deacetylase inhibitors (HDACi) vorinostat and panobinostat abrogated the ability of the differentiating osteoblasts to protect AML cells. Together, our results indicate that differentiating osteoblasts have the potential to promote residual AML in the bone marrow following standard chemotherapy and act via a mechanism requiring HDACi-sensitive gene expression. Using HDACi to target the leukemic microenvironment in combination with Ara-C could potentially improve treatment of AML. Moreover, other strategies for manipulating bone marrow osteoblasts may also help eradicate AML cells and reduce relapse.
Collapse
Affiliation(s)
- Rosalie M Sterner
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA.,Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
| | - Kimberly N Kremer
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
| | - Aref Al-Kali
- Division of Hematology and Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
| | - Mrinal M Patnaik
- Division of Hematology and Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
| | - Naseema Gangat
- Division of Hematology and Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
| | - Mark R Litzow
- Division of Hematology and Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
| | - Scott H Kaufmann
- Division of Hematology and Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA.,Department of Oncology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery and Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery and Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
| | - Karen E Hedin
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
| |
Collapse
|
35
|
Aghajanian P, Xing W, Cheng S, Mohan S. Epiphyseal bone formation occurs via thyroid hormone regulation of chondrocyte to osteoblast transdifferentiation. Sci Rep 2017; 7:10432. [PMID: 28874841 PMCID: PMC5585223 DOI: 10.1038/s41598-017-11050-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/18/2017] [Indexed: 01/08/2023] Open
Abstract
Endochondral ossification in the diaphysis of long bones has been studied in-depth during fetal development but not postnatally in the epiphysis. Immunohistochemical studies revealed that Sox9 and Col2 expressing immature chondrocytes in the epiphysis transition into prehypertrophic and hypetrophic chondrocytes and finally into osteoblasts expressing Col1 and BSP during postnatal day 7–10, when serum levels of thyroid hormone (TH) rise. Lineage tracing using Rosa-td tomatoCol2-Cre-ERT2 mice treated with tamoxifen indicated that the same Col2 expressing chondrocytes expressed prehypertrophic, hypertrophic, and subsequently bone formation markers in a sequential manner in euthyroid but not hypothyroid mice, thus providing evidence that chondrocyte to osteoblast transdifferentiation is TH-dependent. Vascular invasion was apparent at the time of bone formation but not earlier. In vitro studies revealed that TH acting via TRα1 promoted expression of SHH while TRβ1 activation increased IHH but inhibited SHH expression. SHH promoted expression of markers of immature chondrocytes but inhibited chondrocyte hypertrophy while IHH promoted chondrocyte hypertrophy. Based on our data, we propose a model in which TH acting through TRα1 and TRβ1, respectively, fine tune levels of SHH and IHH and, thereby control the transit of proliferating immature chondrocytes into mature hypertrophic chondrocytes to become osteoblasts at the epiphysis.
Collapse
Affiliation(s)
- Patrick Aghajanian
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California, United States
| | - Weirong Xing
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California, United States.,Department of Medicine, Loma Linda University, Loma Linda, California, United States
| | - Shaohong Cheng
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California, United States
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California, United States. .,Department of Medicine, Loma Linda University, Loma Linda, California, United States. .,Department of Orthopedics, Loma Linda University, Loma Linda, California, United States. .,Department of Biochemistry, Loma Linda University, Loma Linda, California, United States.
| |
Collapse
|
36
|
Tosato G. Ephrin ligands and Eph receptors contribution to hematopoiesis. Cell Mol Life Sci 2017; 74:3377-3394. [PMID: 28589441 PMCID: PMC11107787 DOI: 10.1007/s00018-017-2566-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/12/2017] [Accepted: 06/01/2017] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem and progenitor cells reside predominantly in the bone marrow. They supply billions of mature blood cells every day during life through maturation into multilineage progenitors and self-renewal. Newly produced mature cells serve to replenish the pool of circulating blood cells at the end of their life-span. These mature blood cells and a few hematopoietic progenitors normally exit the bone marrow through the sinusoidal vessels, a specialized venous vascular system that spreads throughout the bone marrow. Many signals regulate the coordinated mobilization of hematopoietic cells from the bone marrow to the circulation. In this review, we present recent advances on hematopoiesis and hematopoietic cell mobilization with a focus on the role of Ephrin ligands and their Eph receptors. These constitute a large family of transmembrane ligands and receptors that play critical roles in development and postnatally. New insights point to distinct roles of ephrin and Eph in different aspects of hematopoiesis.
Collapse
Affiliation(s)
- Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 4124, Bethesda, MD, 20892, USA.
| |
Collapse
|
37
|
Matsumura S, Quispe-Salcedo A, Schiller CM, Shin JS, Locke BM, Yakar S, Shimizu E. IGF-1 Mediates EphrinB1 Activation in Regulating Tertiary Dentin Formation. J Dent Res 2017; 96:1153-1161. [PMID: 28489485 DOI: 10.1177/0022034517708572] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Eph receptors belong to a subfamily of receptor tyrosine kinases that are activated by membrane-spanning ligands called ephrins. Previously, we demonstrated that the ephrinB1-EphB2 interaction regulates odontogenic/osteogenic differentiation from dental pulp cells (DPCs) in vitro. The goal of this study was to identify the molecular mechanisms regulated by the EphB2/ephrinB1 system that govern tertiary dentin formation in vitro and in vivo. During tooth development, ephrinB1, and EphB2 were expressed in preodontoblast and odontoblasts at postnatal day 4. EphrinB1 was continuously expressed in odontoblasts and odontoblastic processes until the completion of tooth eruption. In addition, ephrinB1 was expressed in odontoblastic processes 2 wk following tooth injury without pulp exposure, whereas EphB2 was expressed in the center of pulp niches but not odontoblasts. In a model of tooth injury with pulp exposure, ephrinB1 was strongly expressed in odontoblasts 4 wk postinjury. In vitro studies with human and mouse DPCs treated with calcium hydroxide (CH) or mineral trioxide aggregate (MTA) showed an increased expression of insulin-like growth factor 1 (IGF-1). Experiments using several inhibitors of IGF-1 receptor signaling revealed that inhibiting the Ras/Raf-1/MAPK pathway inhibited EphB2 expression, and inhibiting the PI3K/Akt/mTOR pathway specifically inhibited ephrinB1 gene expression. Tooth injury in mice with odontoblast-specific IGF-1 receptor ablation exhibited a reduced tertiary dentin volume, mineral density, and ephrinB1 expression 4 wk following injury. We conclude that the IGF-1/ephrinB1 axis plays significant roles in the early stages of tooth injury. Further research is needed to fully understand the potential of targeting ephrinB1 as a regenerative pulp therapy.
Collapse
Affiliation(s)
- S Matsumura
- 1 Department of Oral and Maxillofacial Radiology, University of Connecticut Health Center, School of Dental Medicine, Farmington, Connecticut, USA
| | - A Quispe-Salcedo
- 2 Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| | - C M Schiller
- 2 Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| | - J S Shin
- 2 Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| | - B M Locke
- 2 Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| | - S Yakar
- 2 Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| | - E Shimizu
- 2 Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA.,3 Oral Biology Department, Rutgers School of Dental Medicine, Newark, New Jersey, USA
| |
Collapse
|
38
|
Laidlaw BJ, Schmidt TH, Green JA, Allen CDC, Okada T, Cyster JG. The Eph-related tyrosine kinase ligand Ephrin-B1 marks germinal center and memory precursor B cells. J Exp Med 2017; 214:639-649. [PMID: 28143955 PMCID: PMC5339677 DOI: 10.1084/jem.20161461] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/19/2016] [Accepted: 12/19/2016] [Indexed: 02/01/2023] Open
Abstract
Identification of germinal center (GC) B cells is typically reliant on the use of surface activation markers that exhibit a wide range of expression. Here, we identify Ephrin-B1, a ligand for Eph-related receptor tyrosine kinases, as a specific marker of mature GC B cells. The number of Ephrin-B1+ GC B cells increases during the course of an immune response with Ephrin-B1+ GC B cells displaying elevated levels of Bcl6, S1pr2, and Aicda relative to their Ephrin-B1- counterparts. We further identified a small proportion of recently dividing, somatically mutated Ephrin-B1+ GC B cells that have begun to down-regulate Bcl6 and S1pr2 and express markers associated with memory B cells, such as CD38 and EBI2. Transcriptional analysis indicates that these cells are developmentally related to memory B cells, and likely represent a population of GC memory precursor (PreMem) B cells. GC PreMem cells display enhanced survival relative to bulk GC B cells, localize near the edge of the GC, and are predominantly found within the light zone. These findings offer insight into the significant heterogeneity that exists within the GC B cell population and provide tools to further dissect signals regulating the differentiation of GC B cells.
Collapse
Affiliation(s)
- Brian J Laidlaw
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Timothy H Schmidt
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Jesse A Green
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Christopher D C Allen
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
- Department of Anatomy, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143
| | - Takaharu Okada
- Laboratory for Tissue Dynamics, Institute of Physical and Chemical Research Center for Integrative Medical Sciences (IMS-RCAI), Yokohama, Kanagawa 230-0045, Japan
| | - Jason G Cyster
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
39
|
The role of Eph/ephrin molecules in stromal–hematopoietic interactions. Int J Hematol 2016; 103:145-54. [PMID: 26475284 DOI: 10.1007/s12185-015-1886-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022]
Abstract
Bone marrow mesenchymal stromal/stem cells(BMSC) are fundamental regulatory elements of the hematopoietic stem cell niche; however, the molecular signals that mediate BMSC support of hematopoiesis are poorly understood. Recent studies indicate that BMSC and hematopoietic stem/progenitors cells differentially express the Eph cell surface tyrosine kinase receptors, and their ephrinligands. Eph/ephrin interactions are thought to mediate cross-talk between BMSC and different hematopoietic cell populations to influence cell development, migration and function. This review summarizes Eph/ephrin interactions in the regulation of BMSC communication with hematopoietic stem/progenitor cells and discusses Eph/ephrintargeted therapeutic strategies that are currently being pursued or various hematotological malignancies.
Collapse
|
40
|
Nguyen TM, Arthur A, Paton S, Hemming S, Panagopoulos R, Codrington J, Walkley CR, Zannettino ACW, Gronthos S. Loss of ephrinB1 in osteogenic progenitor cells impedes endochondral ossification and compromises bone strength integrity during skeletal development. Bone 2016; 93:12-21. [PMID: 27622886 DOI: 10.1016/j.bone.2016.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/16/2016] [Accepted: 09/09/2016] [Indexed: 12/25/2022]
Abstract
The EphB receptor tyrosine kinase family and their ephrinB ligands have been implicated as mediators of skeletal development and bone homeostasis in humans, where mutations in ephrinB1 contribute to frontonasal dysplasia and coronal craniosynostosis. In mouse models, ephrinB1 has been shown to be a critical factor mediating osteoblast function. The present study examined the functional importance of ephrinB1 during endochondral ossification using the Cre recombination system with targeted deletion of ephrinB1 (EfnB1fl/fl) in osteogenic progenitor cells, under the control of the osterix (Osx:Cre) promoter. The Osx:EfnB1-/- mice displayed aberrant bone growth during embryonic and postnatal skeletal development up to 4weeks of age, when compared to the Osx:Cre controls. Furthermore, compared to the Osx:Cre control mice, the Osx:EfnB1-/- mice exhibited significantly weaker and less rigid bones, with a reduction in trabecular/ cortical bone formation, reduced trabecular architecture and a reduction in the size of the growth plates at the distal end of the femora from newborn through to 4weeks of age. The aberrant bone formation correlated with increased numbers of tartrate resistant acid phosphatase positive osteoclasts and decreased numbers of bone lining osteoblasts in 4week old Osx:EfnB1-/- mice, compared to Osx:Cre control mice. Taken together, these observations demonstrate the importance of ephrinB1 signalling between cells of the skeleton required for endochondral ossification.
Collapse
Affiliation(s)
- Thao M Nguyen
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Division of Haematology, SA Pathology, Adelaide, SA, Australia
| | - Sharon Paton
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Sarah Hemming
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Romana Panagopoulos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - John Codrington
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Carl R Walkley
- St Vincent's Institute of Medical Research and Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Vic, Australia
| | - Andrew C W Zannettino
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
41
|
Zeng C, Goodluck H, Qin X, Liu B, Mohan S, Xing W. Leucine-rich repeat kinase-1 regulates osteoclast function by modulating RAC1/Cdc42 Small GTPase phosphorylation and activation. Am J Physiol Endocrinol Metab 2016; 311:E772-E780. [PMID: 27600824 PMCID: PMC5241559 DOI: 10.1152/ajpendo.00189.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/26/2016] [Indexed: 11/24/2022]
Abstract
Leucine-rich repeat kinase-1 (Lrrk1) consists of ankyrin repeats (ANK), leucine-rich repeats (LRR), a GTPase-like domain of Roc (ROC), a COR domain, a serine/threonine kinase domain (KD), and WD40 repeats (WD40). Previous studies have revealed that knockout (KO) of Lrrk1 in mice causes severe osteopetrosis, and a human mutation of Lrrk1 leads to osteosclerotic metaphysial dysplasia. The molecular mechanism by which Lrrk1 regulates osteoclast function is unknown. In this study, we generated a series of Lrrk1 mutants and evaluated their ability to rescue defective bone resorption in Lrrk1-deficient osteoclasts by use of pit formation assays. Overexpression of Lrrk1 or LRR-truncated Lrrk1, but not ANK-truncated Lrrk1, WD40-truncated Lrrk1, Lrrk1-KD, or K651A mutant Lrrk1, rescued bone resorption function of Lrrk1 KO osteoclasts. We next examined whether RAC1/Cdc42 small GTPases are direct substrates of Lrrk1 in osteoclasts. Western blot and pull-down assays revealed that Lrrk1 deficiency in osteoclasts resulted in reduced phosphorylation and activation of RAC1/Cdc42. In vitro kinase assays confirmed that recombinant Lrrk1 phosphorylated RAC1-GST protein, and immunoprecipitation showed that the interaction of Lrrk1 with RAC1 occurred within 10 min after RANKL treatment. Overexpression of constitutively active Q61L RAC1 partially rescued the resorptive function of Lrrk1-deficient osteoclasts. Furthermore, lack of Lrrk1 in osteoclasts led to reduced autophosphorylation of p21 protein-activated kinase-1 at Ser144, catalyzed by RAC1/Cdc42 binding and activation. Our data indicate that Lrrk1 regulates osteoclast function by directly modulating phosphorylation and activation of small GTPase RAC1/Cdc42 and that its function depends on ANK, ROC, WD40, and kinase domains.
Collapse
Affiliation(s)
- Canjun Zeng
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, California; Department of Orthopedics, The Third Affiliated Hospital Of Southern Medical University, Guangzhou, China
| | - Helen Goodluck
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, California
| | - Xuezhong Qin
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, California; Department of Medicine, Loma Linda University, Loma Linda, California
| | - Bo Liu
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, California; Department of Orthopedics, The Third Xiangya Hosptial, Central South University, Changsha, Hunan, China
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, California; Department of Medicine, Loma Linda University, Loma Linda, California
| | - Weirong Xing
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, California; Department of Medicine, Loma Linda University, Loma Linda, California;
| |
Collapse
|
42
|
Rundle CH, Xing W, Lau KHW, Mohan S. Bidirectional ephrin signaling in bone. Osteoporos Sarcopenia 2016; 2:65-76. [PMID: 30775469 PMCID: PMC6372807 DOI: 10.1016/j.afos.2016.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/27/2016] [Accepted: 05/04/2016] [Indexed: 12/12/2022] Open
Abstract
The interaction between ephrin ligands (efn) and their receptors (Eph) is capable of inducing forward signaling, from ligand to receptor, as well as reverse signaling, from receptor to ligand. The ephrins are widely expressed in many tissues, where they mediate cell migration and adherence, properties that make the efn-Eph signaling critically important in establishing and maintaining tissue boundaries. The efn-Eph system has also received considerable attention in skeletal tissues, as ligand and receptor combinations are predicted to mediate interactions between the different types of cells that regulate bone development and homeostasis. This review summarizes our current understanding of efn-Eph signaling with a particular focus on the expression and functions of ephrins and their receptors in bone.
Collapse
Affiliation(s)
- Charles H Rundle
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton St, Loma Linda, CA 92357, USA.,Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Weirong Xing
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton St, Loma Linda, CA 92357, USA.,Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Kin-Hing William Lau
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton St, Loma Linda, CA 92357, USA.,Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton St, Loma Linda, CA 92357, USA.,Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
43
|
Xing W, Aghajanian P, Goodluck H, Kesavan C, Cheng S, Pourteymoor S, Watt H, Alarcon C, Mohan S. Thyroid hormone receptor-β1 signaling is critically involved in regulating secondary ossification via promoting transcription of the Ihh gene in the epiphysis. Am J Physiol Endocrinol Metab 2016; 310:E846-54. [PMID: 27026086 PMCID: PMC4895449 DOI: 10.1152/ajpendo.00541.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/17/2016] [Indexed: 12/18/2022]
Abstract
Thyroid hormone (TH) action is mediated through two nuclear TH receptors, THRα and THRβ. Although the role of THRα is well established in bone, less is known about the relevance of THRβ-mediated signaling in bone development. On ther basis of our recent finding that TH signaling is essential for initiation and formation of secondary ossification center, we evaluated the role of THRs in mediating TH effects on epiphysial bone formation. Two-day treatment of TH-deficient Tshr(-/-) mice with TH increased THRβ1 mRNA level 3.4-fold at day 7 but had no effect on THRα1 mRNA level at the proximal tibia epiphysis. Treatment of serum-free cultures of tibias from 3-day-old mice with T3 increased THRβ1 expression 2.1- and 13-fold, respectively, at 24 and 72 h. Ten-day treatment of Tshr(-/-) newborns (days 5-14) with THRβ1 agonist GC1 at 0.2 or 2.0 μg/day increased BV/TV at day 21 by 225 and 263%, respectively, compared with vehicle treatment. Two-day treatment with GC1 (0.2 μg/day) increased expression levels of Indian hedgehog (Ihh) 100-fold, osterix 15-fold, and osteocalcin 59-fold compared with vehicle at day 7 in the proximal tibia epiphysis. Gel mobility shift assay demonstrated that a putative TH response element in the distal promoter of mouse Ihh gene interacted with THRβ1. GC1 treatment (1 nM) increased Ihh distal promoter activity 20-fold after 48 h in chondroctyes. Our data suggest a novel role for THRβ1 in secondary ossification at the epiphysis that involves transcriptional upregulation of Ihh gene.
Collapse
Affiliation(s)
- Weirong Xing
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California; Department of Medicine, Loma Linda University, Loma Linda, California
| | - Patrick Aghajanian
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Helen Goodluck
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Chandrasekhar Kesavan
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California; Department of Medicine, Loma Linda University, Loma Linda, California
| | - Shaohong Cheng
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Heather Watt
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Catrina Alarcon
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California; Department of Medicine, Loma Linda University, Loma Linda, California; Department of Orthopedics, Loma Linda University, Loma Linda, California; and Department of Biochemistry, Loma Linda University, Loma Linda, California
| |
Collapse
|
44
|
Iida A, Xing W, Docx MKF, Nakashima T, Wang Z, Kimizuka M, Van Hul W, Rating D, Spranger J, Ohashi H, Miyake N, Matsumoto N, Mohan S, Nishimura G, Mortier G, Ikegawa S. Identification of biallelic LRRK1 mutations in osteosclerotic metaphyseal dysplasia and evidence for locus heterogeneity. J Med Genet 2016; 53:568-74. [PMID: 27055475 DOI: 10.1136/jmedgenet-2016-103756] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/19/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Osteosclerotic metaphyseal dysplasia (OSMD) is a unique form of osteopetrosis characterised by severe osteosclerosis localised to the bone ends. The mode of inheritance is autosomal recessive. Its genetic basis is not known. OBJECTIVE To identify the disease gene for OSMD. METHODS AND RESULTS By whole exome sequencing in a boy with OSMD, we identified a homozygous 7 bp deletion (c.5938_5944delGAGTGGT) in the LRRK1 gene. His skeletal phenotype recapitulated that seen in the Lrrk1-deficient mouse. The shared skeletal hallmarks included severe sclerosis in the undermodelled metaphyses and epiphyseal margins of the tubular bones, costal ends, vertebral endplates and margins of the flat bones. The deletion is predicted to result in an elongated LRRK1 protein (p.E1980Afs*66) that lacks a part of its WD40 domains. In vitro functional studies using osteoclasts from Lrrk1-deficient mice showed that the deletion was a loss of function mutation. Genetic analysis of LRRK1 in two unrelated patients with OSMD suggested that OSMD is a genetically heterogeneous condition. CONCLUSIONS This is the first study to identify the causative gene of OSMD. Our study provides evidence that LRRK1 plays a critical role in the regulation of bone mass in humans.
Collapse
Affiliation(s)
- Aritoshi Iida
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Weirong Xing
- Musculoskeletal Disease Center, Jerry L Pettis Memorial VA Medical Center, Loma Linda, California, USA Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Martine K F Docx
- Department of Paediatric Chronic Diseases and Nephrology, Queen Paola Children's Hospital, Antwerp, Belgium
| | - Tomoki Nakashima
- Department of Cell Signaling, Graduate school of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan Japan Science and Technology Agency, PRESTO, Tokyo, Japan
| | - Zheng Wang
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan State Key Laboratory of Medical Molecular Biology, McKusick-Zhang Center for Genetic Medicine and Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mamori Kimizuka
- Department of Orthopaedics, National Rehabilitation Center for Disabled Children, Tokyo, Japan
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Dietz Rating
- Department of Pediatrics, St Annastiftskinderkrankenhaus, Ludwigshafen, Germany
| | - Jürgen Spranger
- Centre for Pediatrics and Adolescent Medicine, Freiburg, Germany
| | - Hirohumi Ohashi
- Division of Medical Genetics, Saitama Children's Medical Center, Saitama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L Pettis Memorial VA Medical Center, Loma Linda, California, USA Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Gen Nishimura
- Department of Pediatric Imaging, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Geert Mortier
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan Department of Orthopaedics, National Rehabilitation Center for Disabled Children, Tokyo, Japan
| |
Collapse
|
45
|
Wu M, Ai W, Chen L, Zhao S, Liu E. Bradykinin receptors and EphB2/EphrinB2 pathway in response to high glucose-induced osteoblast dysfunction and hyperglycemia-induced bone deterioration in mice. Int J Mol Med 2016; 37:565-74. [PMID: 26782642 PMCID: PMC4771119 DOI: 10.3892/ijmm.2016.2457] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/30/2015] [Indexed: 01/06/2023] Open
Abstract
This study was carried out in order to investigate bone dysfunction and the involvement of bradykinin receptors and the Eph/Ephrin signaling pathway in osteoblasts and in mice with diabetes-related osteoporosis in response to exposure to high glucose. Osteogenic transdifferentiation was inhibited when the osteoblasts were exposed to high glucose, and the expression levels of bone formation-related genes [Runx2 and alkaline phosphatase (ALP)] were decreased, while those of bone resorption-related genes [matrix metalloproteinase (MMP)9 and carbonic anhydrase II (CAII)] were increased. Moreover, the mRNA and protein expression levels of bradykinin receptor B1 (BK1R)/bradykinin receptor B2 (BK2R) and EphB2/EphrinB2 were significantly decreased in the osteoblasts following exposure to high glucose. Intriguingly, the interaction between BK2R and EphB2/EphrinB2 was confirmed, and BK2R loss-of-function significantly decreased the mRNA and protein expression levels of EphB2/EphrinB4. In vivo, hyperglycemia induced the disequilibrium of calcium homeostasis through the inhibition of bone formation and the acceleration of bone resorption, which was manifested by the reduction of trabecular bone mass of the primary and secondary spongiosa, as well as by the increase in the number of mature osteoclasts throughout the proximal tibial metaphysis in mice with diabetes-related osteoporosis. Furthermore, the mRNA and protein expression levels of BK1R/BK2R and EphB2/EphrinB2 in the tibias of the mice with diabetes-related osteoporosis were significantly decreased. These results demonstrate that bradykinin receptors and the EphB4/EphrinB2 pathway mediate the development of complications in mice with diabetes-related osteoporosis and suggest that the inactivation of bradykinin receptors and the EphB4/EphrinB2 pathway enhance the severity of complications in mice with diabetes-related osteoporosis.
Collapse
Affiliation(s)
- Min Wu
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Wenting Ai
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Lin Chen
- Department of Pathology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
46
|
Popov C, Kohler J, Docheva D. Activation of EphA4 and EphB2 Reverse Signaling Restores the Age-Associated Reduction of Self-Renewal, Migration, and Actin Turnover in Human Tendon Stem/Progenitor Cells. Front Aging Neurosci 2016; 7:246. [PMID: 26779014 PMCID: PMC4701947 DOI: 10.3389/fnagi.2015.00246] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/14/2015] [Indexed: 12/23/2022] Open
Abstract
Tendon tissues, due to their composition and function, are prone to suffer age-related degeneration and diseases as well as to respond poorly to current repair strategies. It has been suggested that local stem cells, named tendon stem/progenitor cells (TSPCs), play essential roles in tendon maintenance and healing. Recently, we have shown that TSPC exhibit a distinct age-related phenotype involving transcriptomal shift, poor self-renewal, and elevated senescence coupled with reduced cell migration and actin dynamics. Here, we report for the first time the significant downregulation of the ephrin receptors EphA4, EphB2 and B4 and ligands EFNB1 in aged-TSPC (A-TSPC). Rescue experiments, by delivery of target-specific clustered proteins, revealed that activation of EphA4- or EphB2-dependent reverse signaling could restore the migratory ability and normalize the actin turnover of A-TSPC. However, only EphA4-Fc stimulation improved A-TSPC cell proliferation to levels comparable to young-TSPC (Y-TSPC). Hence, our novel data suggests that decreased expression of ephrin receptors during tendon aging and degeneration limits the establishment of appropriate cell-cell interactions between TSPC and significantly diminished their proliferation, motility, and actin turnover. Taken together, we could propose that this mechanism might be contributing to the inferior and delayed tendon healing common for aged individuals.
Collapse
Affiliation(s)
- Cvetan Popov
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig Maximilians University Munich, Germany
| | - Julia Kohler
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig Maximilians University Munich, Germany
| | - Denitsa Docheva
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig Maximilians University Munich, Germany
| |
Collapse
|
47
|
Kremer KN, Dudakovic A, Hess AD, Smith BD, Karp JE, Kaufmann SH, Westendorf JJ, van Wijnen AJ, Hedin KE. Histone Deacetylase Inhibitors Target the Leukemic Microenvironment by Enhancing a Nherf1-Protein Phosphatase 1α-TAZ Signaling Pathway in Osteoblasts. J Biol Chem 2015; 290:29478-92. [PMID: 26491017 DOI: 10.1074/jbc.m115.668160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 01/20/2023] Open
Abstract
Disrupting the protective signals provided by the bone marrow microenvironment will be critical for more effective combination drug therapies for acute myeloid leukemia (AML). Cells of the osteoblast lineage that reside in the endosteal niche have been implicated in promoting survival of AML cells. Here, we investigated how to prevent this protective interaction. We previously showed that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis of AML cells, unless the leukemic cells receive protective signals provided by differentiating osteoblasts (8, 10). We now identify a novel signaling pathway in differentiating osteoblasts that can be manipulated to disrupt the osteoblast-mediated protection of AML cells. Treating differentiating osteoblasts with histone deacetylase inhibitors (HDACi) abrogated their ability to protect co-cultured AML cells from SDF-1-induced apoptosis. HDACi prominently up-regulated expression of the Nherf1 scaffold protein, which played a major role in preventing osteoblast-mediated protection of AML cells. Protein phosphatase-1α (PP1α) was identified as a novel Nherf1 interacting protein that acts as the downstream mediator of this response by promoting nuclear localization of the TAZ transcriptional modulator. Moreover, independent activation of either PP1α or TAZ was sufficient to prevent osteoblast-mediated protection of AML cells even in the absence of HDACi. Together, these results indicate that HDACi target the AML microenvironment by enhancing activation of the Nherf1-PP1α-TAZ pathway in osteoblasts. Selective drug targeting of this osteoblast signaling pathway may improve treatments of AML by rendering leukemic cells in the bone marrow more susceptible to apoptosis.
Collapse
Affiliation(s)
| | | | - Allan D Hess
- the Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland 21287
| | - B Douglas Smith
- the Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland 21287
| | - Judith E Karp
- the Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland 21287
| | - Scott H Kaufmann
- Oncology and Molecular Pharmacology & Experimental Therapeutics and
| | - Jennifer J Westendorf
- Orthopedic Surgery, the Center of Regenerative Medicine, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905 and
| | - Andre J van Wijnen
- Orthopedic Surgery, the Center of Regenerative Medicine, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905 and
| | | |
Collapse
|
48
|
Abstract
There is increasing evidence that in addition to having major roles in morphogenesis, in some tissues Eph receptor and ephrin signaling regulates the differentiation of cells. In one mode of deployment, cell contact dependent Eph-ephrin activation induces a distinct fate of cells at the interface of their expression domains, for example in early ascidian embryos and in the vertebrate hindbrain. In another mode, overlapping Eph receptor and ephrin expression underlies activation within a cell population, which promotes or inhibits cell differentiation in bone remodelling, neural progenitors and keratinocytes. Eph-ephrin activation also contributes to formation of the appropriate number of progenitor cells by increasing or decreasing cell proliferation. These multiple roles of Eph receptor and ephrin signaling may enable a coupling between morphogenesis and the differentiation and proliferation of cells.
Collapse
Key Words
- Eph receptor
- Eph receptor, Erythropoietin-producing hepatocellular carcinoma cell receptor
- FGF, Fibroblast growth factor
- IGF-1, Insulin-like growth factor-1
- JNK, c-Jun N-terminal kinase
- MAPK, Mitogen activated protein kinase
- NFAT, Nuclear factor of activated T-cells
- RGS3, Regulator of G-protein signaling 3
- STAT3, Signal transducer and activator of transcription 3
- TAZ, Tafazzin
- TCR, T cell receptor
- TEC, Thymic epithelial cell
- TGF, Transforming growth factor
- ZHX2, Zinc fingers and homeoboxes 2
- ascidian development
- bone
- cell proliferation
- differentiation
- ephrin
- ephrin, Eph receptor interacting protein
- hindbrain
- keratinocytes
- neural progenitors
- p120GAP, GTPase activating protein
- thymocytes
Collapse
Affiliation(s)
- David G Wilkinson
- a Division of Developmental Neurobiology; MRC National Institute for Medical Research ; London , UK
| |
Collapse
|
49
|
Isolated Sagittal Synostosis in a Boy with Craniofrontonasal Dysplasia and a Novel EFNB1 Mutation. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2015; 3:e427. [PMID: 26180728 PMCID: PMC4494497 DOI: 10.1097/gox.0000000000000369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 03/30/2015] [Indexed: 11/26/2022]
Abstract
Craniofrontonasal syndrome (CFNS) is a rare X-linked disorder that shows greater severity in females and is largely attributed to mutations in EFNB1. A 7-year-old boy presented with hypertelorism, broad nasal root, midfacial hypoplasia, mandibular prognathia, ptosis, and scaphocephaly was clinically diagnosed with CFNS. Three-dimensional computed tomographic scans confirmed the isolated sagittal synostosis. His mother also showed clinical features of CFNS, but less severe. Genetic tests uncovered a novel C to T mutation at nucleotide 466 (c.466C>T) in exon 1 of EFNB1 for both. To the best of our knowledge, this is the only reported incident of CFNS in a male child exhibiting isolated sagittal synostosis.
Collapse
|
50
|
Nguyen TM, Arthur A, Panagopoulos R, Paton S, Hayball JD, Zannettino ACW, Purton LE, Matsuo K, Gronthos S. EphB4 Expressing Stromal Cells Exhibit an Enhanced Capacity for Hematopoietic Stem Cell Maintenance. Stem Cells 2015; 33:2838-49. [PMID: 26033476 DOI: 10.1002/stem.2069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/30/2015] [Indexed: 12/12/2022]
Abstract
The tyrosine kinase receptor, EphB4, mediates cross-talk between stromal and hematopoietic populations during bone remodeling, fracture repair and arthritis, through its interactions with the ligand, ephrin-B2. This study demonstrated that transgenic EphB4 mice (EphB4 Tg), over-expressing EphB4 under the control of collagen type-1 promoter, exhibited higher frequencies of osteogenic cells and hematopoietic stem/progenitor cells (HSC), correlating with a higher frequency of long-term culture-initiating cells (LTC-IC), compared with wild type (WT) mice. EphB4 Tg stromal feeder layers displayed a greater capacity to support LTC-IC in vitro, where blocking EphB4/ephrin-B2 interactions decreased LTC-IC output. Similarly, short hairpin RNA-mediated EphB4 knockdown in human bone marrow stromal cells reduced their ability to support high ephrin-B2 expressing CD34(+) HSC in LTC-IC cultures. Notably, irradiated EphB4 Tg mouse recipients displayed enhanced bone marrow reconstitution capacity and enhanced homing efficiency of transplanted donor hematopoietic stem/progenitor cells relative to WT controls. Studies examining the expression of hematopoietic supportive factors produced by stromal cells indicated that CXCL12, Angiopoietin-1, IL-6, FLT-3 ligand, and osteopontin expression were more highly expressed in EphB4 Tg stromal cells compared with WT controls. These findings indicate that EphB4 facilitates stromal-mediated support of hematopoiesis, and constitute a novel component of the HSC niche.
Collapse
Affiliation(s)
- Thao M Nguyen
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Centre for Stem Cell Research, University of Adelaide, Adelaide, South Australia, Australia.,School of Pharmacy and Medical Sciences and Sansom Institute, University of South Australia, Adelaide, South Australia, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Division of Haematology, SA Pathology, Adelaide, South Australia, Australia
| | - Romana Panagopoulos
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Sharon Paton
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - John D Hayball
- School of Pharmacy and Medical Sciences and Sansom Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Andrew C W Zannettino
- Centre for Stem Cell Research, University of Adelaide, Adelaide, South Australia, Australia.,Myeloma Research Laboratory, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Louise E Purton
- Stem Cell Regulation Unit, St Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, School of Medicine, Keio University, Tokyo, Japan
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Centre for Stem Cell Research, University of Adelaide, Adelaide, South Australia, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|