1
|
Cai YD, Liu X, Chow GK, Hidalgo S, Jackson KC, Vasquez CD, Gao ZY, Lam VH, Tabuloc CA, Zheng H, Zhao C, Chiu JC. Alternative splicing of Clock transcript mediates the response of circadian clocks to temperature changes. Proc Natl Acad Sci U S A 2024; 121:e2410680121. [PMID: 39630861 PMCID: PMC11648895 DOI: 10.1073/pnas.2410680121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Circadian clocks respond to temperature changes over the calendar year, allowing organisms to adjust their daily biological rhythms to optimize health and fitness. In Drosophila, seasonal adaptations are regulated by temperature-sensitive alternative splicing (AS) of period (per) and timeless (tim) genes that encode key transcriptional repressors of clock gene expression. Although Clock (Clk) gene encodes the critical activator of circadian gene expression, AS of its transcripts and its potential role in temperature regulation of clock function have not been explored. Here, we observed that Clk transcripts undergo temperature-sensitive AS. Specifically, cold temperature leads to the production of an alternative Clk transcript, hereinafter termed Clk-cold, which encodes a CLK isoform with an in-frame deletion of four amino acids proximal to the DNA binding domain. Notably, serine 13 (S13), which we found to be a CK1α-dependent phosphorylation site, is deleted in CLK-cold protein. We demonstrated that upon phosphorylation at CLK(S13), CLK-DNA interaction is reduced, thus decreasing transcriptional activity of CLK. This is in agreement with our findings that CLK occupancy at clock genes and transcriptional output are elevated at cold temperature likely due to higher amounts of CLK-cold isoforms that lack S13 residue. Finally, we showed that PER promotes CK1α-dependent phosphorylation of CLK(S13), supporting kinase-scaffolding role of repressor proteins as a conserved feature in the regulation of eukaryotic circadian clocks. This study provides insights into the complex collaboration between AS and phospho-regulation in shaping temperature responses of the circadian clock.
Collapse
Affiliation(s)
- Yao D. Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Xianhui Liu
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou, Jiangsu215123, China
| | - Gary K. Chow
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Kiya C. Jackson
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Cameron D. Vasquez
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Zita Y. Gao
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Vu H. Lam
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Christine A. Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School and Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Caifeng Zhao
- Biological Mass Spectrometry Facility, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School and Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| |
Collapse
|
2
|
Cai YD, Chow GK, Hidalgo S, Liu X, Jackson KC, Vasquez CD, Gao ZY, Lam VH, Tabuloc CA, Zheng H, Zhao C, Chiu JC. Alternative splicing of clock transcript mediates the response of circadian clocks to temperature changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593646. [PMID: 38766142 PMCID: PMC11100826 DOI: 10.1101/2024.05.10.593646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Circadian clocks respond to temperature changes over the calendar year, allowing organisms to adjust their daily biological rhythms to optimize health and fitness. In Drosophila, seasonal adaptations and temperature compensation are regulated by temperature-sensitive alternative splicing (AS) of period (per) and timeless (tim) genes that encode key transcriptional repressors of clock gene expression. Although clock (clk) gene encodes the critical activator of clock gene expression, AS of its transcripts and its potential role in temperature regulation of clock function have not been explored. We therefore sought to investigate whether clk exhibits AS in response to temperature and the functional changes of the differentially spliced transcripts. We observed that clk transcripts indeed undergo temperature-sensitive AS. Specifically, cold temperature leads to the production of an alternative clk transcript, hereinafter termed clk-cold, which encodes a CLK isoform with an in-frame deletion of four amino acids proximal to the DNA binding domain. Notably, serine 13 (S13), which we found to be a CK1α-dependent phosphorylation site, is among the four amino acids deleted in CLK-cold protein. Using a combination of transgenic fly, tissue culture, and in vitro experiments, we demonstrated that upon phosphorylation at CLK(S13), CLK-DNA interaction is reduced, thus decreasing CLK occupancy at clock gene promoters. This is in agreement with our findings that CLK occupancy at clock genes and transcriptional output are elevated at cold temperature, which can be explained by the higher amounts of CLK-cold isoforms that lack S13 residue. This study provides new insights into the complex collaboration between AS and phospho-regulation in shaping temperature responses of the circadian clock.
Collapse
Affiliation(s)
- Yao D. Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Gary K. Chow
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Kiya C. Jackson
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Cameron D. Vasquez
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Zita Y. Gao
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Vu H. Lam
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Christine A. Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Caifeng Zhao
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
3
|
Yuan Y, Chen Q, Brovkina M, Clowney EJ, Yadlapalli S. Clock-dependent chromatin accessibility rhythms regulate circadian transcription. PLoS Genet 2024; 20:e1011278. [PMID: 38805552 PMCID: PMC11161047 DOI: 10.1371/journal.pgen.1011278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/07/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Chromatin organization plays a crucial role in gene regulation by controlling the accessibility of DNA to transcription machinery. While significant progress has been made in understanding the regulatory role of clock proteins in circadian rhythms, how chromatin organization affects circadian rhythms remains poorly understood. Here, we employed ATAC-seq (Assay for Transposase-Accessible Chromatin with Sequencing) on FAC-sorted Drosophila clock neurons to assess genome-wide chromatin accessibility at dawn and dusk over the circadian cycle. We observed significant oscillations in chromatin accessibility at promoter and enhancer regions of hundreds of genes, with enhanced accessibility either at dusk or dawn, which correlated with their peak transcriptional activity. Notably, genes with enhanced accessibility at dusk were enriched with E-box motifs, while those more accessible at dawn were enriched with VRI/PDP1-box motifs, indicating that they are regulated by the core circadian feedback loops, PER/CLK and VRI/PDP1, respectively. Further, we observed a complete loss of chromatin accessibility rhythms in per01 null mutants, with chromatin consistently accessible at both dawn and dusk, underscoring the critical role of Period protein in driving chromatin compaction during the repression phase at dawn. Together, this study demonstrates the significant role of chromatin organization in circadian regulation, revealing how the interplay between clock proteins and chromatin structure orchestrates the precise timing of biological processes throughout the day. This work further implies that variations in chromatin accessibility might play a central role in the generation of diverse circadian gene expression patterns in clock neurons.
Collapse
Affiliation(s)
- Ye Yuan
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Qianqian Chen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Margarita Brovkina
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - E Josephine Clowney
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Swathi Yadlapalli
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
4
|
Ma D, Ojha P, Yu AD, Araujo MS, Luo W, Keefer E, Díaz MM, Wu M, Joiner WJ, Abruzzi KC, Rosbash M. Timeless noncoding DNA contains cell-type preferential enhancers important for proper Drosophila circadian regulation. Proc Natl Acad Sci U S A 2024; 121:e2321338121. [PMID: 38568969 PMCID: PMC11009632 DOI: 10.1073/pnas.2321338121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
To address the contribution of transcriptional regulation to Drosophila clock gene expression and to behavior, we generated a series of CRISPR-mediated deletions within two regions of the circadian gene timeless (tim), an intronic E-box region and an upstream E-box region that are both recognized by the key transcription factor Clock (Clk) and its heterodimeric partner Cycle. The upstream deletions but not an intronic deletion dramatically impact tim expression in fly heads; the biggest upstream deletion reduces peak RNA levels and tim RNA cycling amplitude to about 15% of normal, and there are similar effects on tim protein (TIM). The cycling amplitude of other clock genes is also strongly reduced, in these cases due to increases in trough levels. These data underscore the important contribution of the upstream E-box enhancer region to tim expression and of TIM to clock gene transcriptional repression in fly heads. Surprisingly, tim expression in clock neurons is only modestly affected by the biggest upstream deletion and is similarly affected by a deletion of the intronic E-box region. This distinction between clock neurons and glia is paralleled by a dramatically enhanced accessibility of the intronic enhancer region within clock neurons. This distinctive feature of tim chromatin was revealed by ATAC-seq (assay for transposase-accessible chromatin with sequencing) assays of purified neurons and glia as well as of fly heads. The enhanced cell type-specific accessibility of the intronic enhancer region explains the resilience of clock neuron tim expression and circadian behavior to deletion of the otherwise more prominent upstream tim E-box region.
Collapse
Affiliation(s)
- Dingbang Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201210, China
- Shanghai Key Laboratory of Aging Studies, Shanghai201210, China
| | - Pranav Ojha
- HHMI, Brandeis University, Waltham, MA02453
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Albert D. Yu
- HHMI, Brandeis University, Waltham, MA02453
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Maisa S. Araujo
- Laboratory of Entomology, Fiocruz Rondônia and Programa de Pós-Graduação em Biologia Experimental/Programa Nacional de Pós-Doutorado, Federal University Foundation of Rondônia, Porto Velho76801-974, Brazil
| | - Weifei Luo
- Guangxi Academy of Sciences, Nanning530003, China
| | - Evelyn Keefer
- HHMI, Brandeis University, Waltham, MA02453
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Madelen M. Díaz
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL33136
| | - Meilin Wu
- Department of Pharmacology, University of California, San Diego, La Jolla, CA92093
| | - William J. Joiner
- Department of Pharmacology, University of California, San Diego, La Jolla, CA92093
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA92093
| | - Katharine C. Abruzzi
- HHMI, Brandeis University, Waltham, MA02453
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Michael Rosbash
- HHMI, Brandeis University, Waltham, MA02453
- Department of Biology, Brandeis University, Waltham, MA02453
| |
Collapse
|
5
|
Zhu P, Peek CB. Circadian timing of satellite cell function and muscle regeneration. Curr Top Dev Biol 2024; 158:307-339. [PMID: 38670711 DOI: 10.1016/bs.ctdb.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Recent research has highlighted an important role for the molecular circadian machinery in the regulation of tissue-specific function and stress responses. Indeed, disruption of circadian function, which is pervasive in modern society, is linked to accelerated aging, obesity, and type 2 diabetes. Furthermore, evidence supporting the importance of the circadian clock within both the mature muscle tissue and satellite cells to regulate the maintenance of muscle mass and repair capacity in response injury has recently emerged. Here, we review the discovery of circadian clocks within the satellite cell (a.k.a. adult muscle stem cell) and how they act to regulate metabolism, epigenetics, and myogenesis during both healthy and diseased states.
Collapse
Affiliation(s)
- Pei Zhu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Medicine-Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| | - Clara B Peek
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Medicine-Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
6
|
Anna G, John M, Kannan NN. miR-277 regulates the phase of circadian activity-rest rhythm in Drosophila melanogaster. Front Physiol 2023; 14:1082866. [PMID: 38089472 PMCID: PMC10714010 DOI: 10.3389/fphys.2023.1082866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/07/2023] [Indexed: 12/30/2023] Open
Abstract
Circadian clocks temporally organize behaviour and physiology of organisms with a rhythmicity of about 24 h. In Drosophila, the circadian clock is composed of mainly four clock genes: period (per), timeless (tim), Clock (Clk) and cycle (cyc) which constitutes the transcription-translation feedback loop. The circadian clock is further regulated via post-transcriptional and post-translational mechanisms among which microRNAs (miRNAs) are well known post-transcriptional regulatory molecules. Here, we identified and characterized the role of miRNA-277 (miR-277) expressed in the clock neurons in regulating the circadian rhythm. Downregulation of miR-277 in the pacemaker neurons expressing circadian neuropeptide, pigment dispersing factor (PDF) advanced the phase of the morning activity peak under 12 h light: 12 h dark cycles (LD) at lower light intensities and these flies exhibited less robust rhythms compared to the controls under constant darkness. In addition, downregulation of miR-277 in the PDF expressing neurons abolished the Clk gene transcript oscillation under LD. Our study points to the potential role of miR-277 in fine tuning the Clk expression and in maintaining the phase of the circadian rhythm in Drosophila.
Collapse
Affiliation(s)
| | | | - Nisha N. Kannan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, Kerala, India
| |
Collapse
|
7
|
Yuan Y, Chen Q, Brovkina M, Clowney EJ, Yadlapalli S. Clock-dependent chromatin accessibility rhythms regulate circadian transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553315. [PMID: 37645872 PMCID: PMC10462003 DOI: 10.1101/2023.08.15.553315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Chromatin organization plays a crucial role in gene regulation by controlling the accessibility of DNA to transcription machinery. While significant progress has been made in understanding the regulatory role of clock proteins in circadian rhythms, how chromatin organization affects circadian rhythms remains poorly understood. Here, we employed ATAC-seq (Assay for Transposase-Accessible Chromatin with Sequencing) on FAC-sorted Drosophila clock neurons to assess genome-wide chromatin accessibility over the circadian cycle. We observed significant circadian oscillations in chromatin accessibility at promoter and enhancer regions of hundreds of genes, with enhanced accessibility either at dusk or dawn, which correlated with their peak transcriptional activity. Notably, genes with enhanced accessibility at dusk were enriched with E-box motifs, while those more accessible at dawn were enriched with VRI/PDP1-box motifs, indicating that they are regulated by the core circadian feedback loops, PER/CLK and VRI/PDP1, respectively. Further, we observed a complete loss of chromatin accessibility rhythms in per01 null mutants, with chromatin consistently accessible throughout the circadian cycle, underscoring the critical role of Period protein in driving chromatin compaction during the repression phase. Together, this study demonstrates the significant role of chromatin organization in circadian regulation, revealing how the interplay between clock proteins and chromatin structure orchestrates the precise timing of biological processes throughout the day. This work further implies that variations in chromatin accessibility might play a central role in the generation of diverse circadian gene expression patterns in clock neurons.
Collapse
Affiliation(s)
- Ye Yuan
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qianqian Chen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Margarita Brovkina
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - E Josephine Clowney
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, MI 48109, USA
| | - Swathi Yadlapalli
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Tabuloc CA, Cai YD, Kwok RS, Chan EC, Hidalgo S, Chiu JC. CLOCK and TIMELESS regulate rhythmic occupancy of the BRAHMA chromatin-remodeling protein at clock gene promoters. PLoS Genet 2023; 19:e1010649. [PMID: 36809369 PMCID: PMC9983840 DOI: 10.1371/journal.pgen.1010649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/03/2023] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
Circadian clock and chromatin-remodeling complexes are tightly intertwined systems that regulate rhythmic gene expression. The circadian clock promotes rhythmic expression, timely recruitment, and/or activation of chromatin remodelers, while chromatin remodelers regulate accessibility of clock transcription factors to the DNA to influence expression of clock genes. We previously reported that the BRAHMA (BRM) chromatin-remodeling complex promotes the repression of circadian gene expression in Drosophila. In this study, we investigated the mechanisms by which the circadian clock feeds back to modulate daily BRM activity. Using chromatin immunoprecipitation, we observed rhythmic BRM binding to clock gene promoters despite constitutive BRM protein expression, suggesting that factors other than protein abundance are responsible for rhythmic BRM occupancy at clock-controlled loci. Since we previously reported that BRM interacts with two key clock proteins, CLOCK (CLK) and TIMELESS (TIM), we examined their effect on BRM occupancy to the period (per) promoter. We observed reduced BRM binding to the DNA in clk null flies, suggesting that CLK is involved in enhancing BRM occupancy to initiate transcriptional repression at the conclusion of the activation phase. Additionally, we observed reduced BRM binding to the per promoter in flies overexpressing TIM, suggesting that TIM promotes BRM removal from DNA. These conclusions are further supported by elevated BRM binding to the per promoter in flies subjected to constant light and experiments in Drosophila tissue culture in which the levels of CLK and TIM are manipulated. In summary, this study provides new insights into the reciprocal regulation between the circadian clock and the BRM chromatin-remodeling complex.
Collapse
Affiliation(s)
- Christine A. Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Yao D. Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Rosanna S. Kwok
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Elizabeth C. Chan
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| |
Collapse
|
9
|
Stanton D, Justin HS, Reitzel AM. Step in Time: Conservation of Circadian Clock Genes in Animal Evolution. Integr Comp Biol 2022; 62:1503-1518. [PMID: 36073444 DOI: 10.1093/icb/icac140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 01/05/2023] Open
Abstract
Over the past few decades, the molecular mechanisms responsible for circadian phenotypes of animals have been studied in increasing detail in mammals, some insects, and other invertebrates. Particular circadian proteins and their interactions are shared across evolutionary distant animals, resulting in a hypothesis for the canonical circadian clock of animals. As the number of species for which the circadian clockwork has been described increases, the circadian clock in animals driving cyclical phenotypes becomes less similar. Our focus in this review is to develop and synthesize the current literature to better understand the antiquity and evolution of the animal circadian clockwork. Here, we provide an updated understanding of circadian clock evolution in animals, largely through the lens of conserved genes characterized in the circadian clock identified in bilaterian species. These comparisons reveal extensive variation within the likely composition of the core clock mechanism, including losses of many genes, and that the ancestral clock of animals does not equate to the bilaterian clock. Despite the loss of these core genes, these species retain circadian behaviors and physiology, suggesting novel clocks have evolved repeatedly. Additionally, we highlight highly conserved cellular processes (e.g., cell division, nutrition) that intersect with the circadian clock of some animals. The conservation of these processes throughout the animal tree remains essentially unknown, but understanding their role in the evolution and maintenance of the circadian clock will provide important areas for future study.
Collapse
Affiliation(s)
- Daniel Stanton
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - Hannah S Justin
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte NC 28223, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte NC 28223, USA
| |
Collapse
|
10
|
Liu S, Zhou J, Kong L, Cai Y, Liu H, Xie Z, Xiao X, James AA, Chen XG. Clock genes regulate mating activity rhythms in the vector mosquitoes, Aedes albopictus and Culex quinquefasciatus. PLoS Negl Trop Dis 2022; 16:e0010965. [PMID: 36455055 DOI: 10.1371/journal.pntd.0010965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/13/2022] [Accepted: 11/20/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Endogenous circadian rhythms result from genetically-encoded molecular clocks, whose components and downstream output factors cooperate to generate cyclic changes in activity. Mating is an important activity of mosquitoes, however, the key aspects of mating rhythm patterns and their regulatory mechanisms in two vector mosquito species, Aedes albopictus and Culex quinquefasciatus, remain unclear. METHODOLOGY/PRINCIPAL FINDINGS We determined and compared the diel mating activity rhythms of these two mosquito species and discovered that Ae. albopictus had mating peaks in the light/dark transition periods (ZT0-3 and ZT9-12), while Cx. quinquefasciatus only had a mating peak at ZT12-15. Knockouts of the clock (clk) orthologous genes (Aalclk and Cxqclk) resulted in phase delay or phase reversal of the mating peaks in Ae. albopictus and Cx. quinquefasciatus, respectively. In addition, the temporal expression pattern of the desaturase orthologous genes, desat1, in both mosquito species was also different in respective wild-type strains and showed phase changes similar to the mating rhythms in clk mutant strains. Inhibition of desat1 expression resulted in decreased mating activity in male mosquitoes of both species but not females. In addition, desat1 regulated cuticular hydrocarbons' synthesis in both species. Silencing desat1 in male Ae. albopictus resulted in decreases of nonadecane and tricosane, which promoted mating, with concomitant increases of heptacosane, which inhibited mating. Silencing desat1 in male Cx. quinquefasciatus also resulted in decreases of tricosane, which promoted mating. CONCLUSIONS/SIGNIFICANCE These results suggest that Aalclk and Cxqclk have significant roles in the mating activity rhythms in both Ae. albopictus and Cx. quinquefasciatus by regulating the temporal expression of the desat1 gene under LD cycles, which affects sex pheromone synthesis and mating. This work provides insights into the molecular regulatory mechanism of distinct mating rhythm of Ae. albopictus and Cx. quinquefasciatus and may provide a basis for the control of these two important vector mosquitoes.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiayong Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ling Kong
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yiquan Cai
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hongkai Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhensheng Xie
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaolin Xiao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine California, United States of America
- Department of Molecular Biology & Biochemistry, University of California, Irvine California, United States of America
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Rivas GBS, Zhou J, Merlin C, Hardin PE. CLOCKWORK ORANGE promotes CLOCK-CYCLE activation via the putative Drosophila ortholog of CLOCK INTERACTING PROTEIN CIRCADIAN. Curr Biol 2021; 31:4207-4218.e4. [PMID: 34331859 DOI: 10.1016/j.cub.2021.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/04/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
The Drosophila circadian clock is driven by a transcriptional feedback loop in which CLOCK-CYCLE (CLK-CYC) binds E-boxes to transcribe genes encoding the PERIOD-TIMELESS (PER-TIM) repressor, which releases CLK-CYC from E-boxes to inhibit transcription. CLOCKWORK ORANGE (CWO) reinforces PER-TIM repression by binding E-boxes to maintain PER-TIM bound CLK-CYC off DNA, but also promotes CLK-CYC transcription through an unknown mechanism. To determine how CWO activates CLK-CYC transcription, we identified CWO target genes that are upregulated in the absence of CWO repression, conserved in mammals, and preferentially expressed in brain pacemaker neurons. Among the genes identified was a putative ortholog of mouse Clock Interacting Protein Circadian (Cipc), which represses CLOCK-BMAL1 transcription. Reducing or eliminating Drosophila Cipc expression shortens period, while overexpressing Cipc lengthens period, which is consistent with previous work showing that Drosophila Cipc represses CLK-CYC transcription in S2 cells. Cipc represses CLK-CYC transcription in vivo, but not uniformly, as per is strongly repressed, tim less so, and vri hardly at all. Long period rhythms in cwo mutant flies are largely rescued when Cipc expression is reduced or eliminated, indicating that increased Cipc expression mediates the period lengthening of cwo mutants. Consistent with this behavioral rescue, eliminating Cipc rescues the decreased CLK-CYC transcription in cwo mutant flies, where per is strongly rescued, tim is moderately rescued, and vri shows little rescue. These results suggest a mechanism for CWO-dependent CLK-CYC activation: CWO inhibition of CIPC repression promotes CLK-CYC transcription. This mechanism may be conserved since cwo and Cipc perform analogous roles in the mammalian circadian clock.
Collapse
Affiliation(s)
- Gustavo B S Rivas
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Jian Zhou
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Christine Merlin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Paul E Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
12
|
Zhang J, Li S, Li W, Chen Z, Guo H, Liu J, Xu Y, Xiao Y, Zhang L, Arunkumar KP, Smagghe G, Xia Q, Goldsmith MR, Takeda M, Mita K. Circadian regulation of night feeding and daytime detoxification in a formidable Asian pest Spodoptera litura. Commun Biol 2021; 4:286. [PMID: 33674721 PMCID: PMC7935888 DOI: 10.1038/s42003-021-01816-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/08/2021] [Indexed: 01/08/2023] Open
Abstract
Voracious feeding, trans-continental migration and insecticide resistance make Spodoptera litura among the most difficult Asian agricultural pests to control. Larvae exhibit strong circadian behavior, feeding actively at night and hiding in soil during daytime. The daily pattern of larval metabolism was reversed, with higher transcription levels of genes for digestion (amylase, protease, lipase) and detoxification (CYP450s, GSTs, COEs) in daytime than at night. To investigate the control of these processes, we annotated nine essential clock genes and analyzed their transcription patterns, followed by functional analysis of their coupling using siRNA knockdown of interlocked negative feedback system core and repressor genes (SlituClk, SlituBmal1 and SlituCwo). Based on phase relationships and overexpression in cultured cells the controlling mechanism seems to involve direct coupling of the circadian processes to E-boxes in responding promoters. Additional manipulations involving exposure to the neonicotinoid imidacloprid suggested that insecticide application must be based on chronotoxicological considerations for optimal effectiveness. Zhang et al. show that the circadian gene coupling between night feeding and day detoxification is regulated through the binding of circadian elements to E-boxes in Spodoptera litura, one of the most difficult Asian agricultural pests to control. Exposure of these larvae to a pesticide affects them more at night than during the day, suggesting the need for time-of-day considerations for pesticide application.
Collapse
Affiliation(s)
- Jiwei Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Shenglong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Wanshun Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Zhiwei Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Huizhen Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Jianqiu Liu
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Yajing Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Yingdan Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Liying Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Kallare P Arunkumar
- Central Muga Eri Research and Training Institute, (CMER&TI), Central Silk Board, Lahdoigarh, Jorhat, India
| | - Guy Smagghe
- College of Plant Protection and Academy of Agricultural Sciences, Southwest University, Chongqing, China.,Department of Plants and Crops, Laboratory of Agrozoology and International Joint China-Belgium Laboratory on Sustainable Control of Crop Pests, Ghent University, Ghent, Belgium
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Marian R Goldsmith
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA.
| | - Makio Takeda
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| | - Kazuei Mita
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China. .,Biological Science Research Center, Southwest University, Chongqing, China.
| |
Collapse
|
13
|
Mahesh G, Rivas GBS, Caster C, Ost EB, Amunugama R, Jones R, Allen DL, Hardin PE. Proteomic analysis of Drosophila CLOCK complexes identifies rhythmic interactions with SAGA and Tip60 complex component NIPPED-A. Sci Rep 2020; 10:17951. [PMID: 33087840 PMCID: PMC7578830 DOI: 10.1038/s41598-020-75009-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
Circadian clocks keep time via ~ 24 h transcriptional feedback loops. In Drosophila, CLOCK-CYCLE (CLK-CYC) activators and PERIOD-TIMELESS (PER-TIM) repressors are feedback loop components whose transcriptional status varies over a circadian cycle. Although changes in the state of activators and repressors has been characterized, how their status is translated to transcriptional activity is not understood. We used mass spectrometry to identify proteins that interact with GFP-tagged CLK (GFP-CLK) in fly heads at different times of day. Many expected and novel interacting proteins were detected, of which several interacted rhythmically and were potential regulators of protein levels, activity or transcriptional output. Genes encoding these proteins were tested to determine if they altered circadian behavior via RNAi knockdown in clock cells. The NIPPED-A protein, a scaffold for the SAGA and Tip60 histone modifying complexes, interacts with GFP-CLK as transcription is activated, and reducing Nipped-A expression lengthens circadian period. RNAi analysis of other SAGA complex components shows that the SAGA histone deubiquitination (DUB) module lengthened period similarly to Nipped-A RNAi knockdown and weakened rhythmicity, whereas reducing Tip60 HAT expression drastically weakened rhythmicity. These results suggest that CLK-CYC binds NIPPED-A early in the day to promote transcription through SAGA DUB and Tip60 HAT activity.
Collapse
Affiliation(s)
- Guruswamy Mahesh
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Gustavo B S Rivas
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Courtney Caster
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Evan B Ost
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | | | | | | | - Paul E Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
14
|
Molecular Regulation of Circadian Chromatin. J Mol Biol 2020; 432:3466-3482. [PMID: 31954735 DOI: 10.1016/j.jmb.2020.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/13/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
Circadian rhythms are generated by transcriptional negative feedback loops and require histone modifications and chromatin remodeling to ensure appropriate timing and amplitude of clock gene expression. Circadian modifications to histones are important for transcriptional initiation and feedback inhibition serving as signaling platform for chromatin-remodeling enzymes. Current models indicate circadian-regulated facultative heterochromatin (CRFH) is a conserved mechanism at clock genes in Neurospora, Drosophila, and mice. CRFH consists of antiphasic rhythms in activating and repressive modifications generating chromatin states that cycle between transcriptionally permissive and nonpermissive. There are rhythms in histone H3 lysine 9 and 27 acetylation (H3K9ac and H3K27ac) and histone H3 lysine 4 methylation (H3K4me) during activation; while deacetylation, histone H3 lysine 9 methylation (H3K9me) and heterochromatin protein 1 (HP1) are hallmarks of repression. ATP-dependent chromatin-remodeling enzymes control accessibility, nucleosome positioning/occupancy, and nuclear organization. In Neurospora, the rhythm in facultative heterochromatin is mediated by the frequency (frq) natural antisense transcript (NAT) qrf. While in mammals, histone deacetylases (HDACs), histone H3 lysine 9 methyltransferase (KMT1/SUV39), and components of nucleosome remodeling and deacetylase (NuRD) are part of the nuclear PERIOD complex (PER complex). Genomics efforts have found relationships among rhythmic chromatin modifications at clock-controlled genes (ccg) revealing circadian control of genome-wide chromatin states. There are also circadian clock-regulated lncRNAs with an emerging function that includes assisting in chromatin dynamics. In this review, we explore the connections between circadian clock, chromatin remodeling, lncRNAs, and CRFH and how these impact rhythmicity, amplitude, period, and phase of circadian clock genes.
Collapse
|
15
|
Bu B, Chen L, Zheng L, He W, Zhang L. Nipped-A regulates the Drosophila circadian clock via histone deubiquitination. EMBO J 2020; 39:e101259. [PMID: 31538360 PMCID: PMC6939192 DOI: 10.15252/embj.2018101259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 08/25/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022] Open
Abstract
Psychiatric diseases are often accompanied by circadian disruptions, but the molecular underpinnings remain largely unclear. To address this, we screened genes that have been previously reported to be associated with psychiatric diseases and found that TRRAP, a gene associated with schizophrenia, is involved in circadian rhythm regulation. Knocking down Nipped-A, the Drosophila homolog of human TRRAP, leads to lengthened period of locomotor rhythms in flies. Molecular analysis demonstrates that NIPPED-A sets the pace of the clock by increasing the mRNA and protein levels of core clock genes timeless (tim) and Par domain protein 1ε (Pdp1ε). Furthermore, we found that NIPPED-A promotes the transcription of tim and Pdp1ε possibly by facilitating deubiquitination of histone H2B via the deubiquitination module of the transcription co-activator Spt-Ada-Gcn5 acetyltransferase complex. Taken together, these findings reveal a novel role for NIPPED-A in epigenetic regulation of the clock.
Collapse
Affiliation(s)
- Bei Bu
- Key Laboratory of Molecular Biophysics of Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubeiChina
- Henan Key Laboratory of Reproduction and GeneticsCenter for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Lixia Chen
- Key Laboratory of Molecular Biophysics of Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Liubin Zheng
- Key Laboratory of Molecular Biophysics of Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Weiwei He
- Key Laboratory of Molecular Biophysics of Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubeiChina
- Institute of Brain ResearchHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
16
|
Kozak GM, Wadsworth CB, Kahne SC, Bogdanowicz SM, Harrison RG, Coates BS, Dopman EB. Genomic Basis of Circannual Rhythm in the European Corn Borer Moth. Curr Biol 2019; 29:3501-3509.e5. [DOI: 10.1016/j.cub.2019.08.053] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
|
17
|
Singh K, Jha NK, Thakur A. Spatiotemporal chromatin dynamics - A telltale of circadian epigenetic gene regulation. Life Sci 2019; 221:377-391. [PMID: 30721705 DOI: 10.1016/j.lfs.2019.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/27/2019] [Accepted: 02/01/2019] [Indexed: 01/08/2023]
Abstract
Over the course of evolution, nature has forced organisms under selection pressure to hardwire an internal time keeping device that defines 24 h of a daily cycle of physiological and behavioral rhythms, known as circadian rhythms. At the cellular level, the cycle is governed by significant fractions of transcriptomes, which are under the control of transcriptional and translational feedback loop of clock genes. Intriguingly, this feedback loop is regulated at multiple stratums such as at the transcriptional and translational levels, which direct a cell towards producing a robust rhythm by sustaining the repeated stoichiometry of protein products. Moreover, with the advent of state of the art paradigms, epigenetic regulation of circadian rhythms has been becoming more evident at present time. Light-induced recurring fluctuations in chromatin acetylation concurrent with the binding of RNA Pol II and integration of miRNAs monitor the chromatin modifiers or clock genes expression to drive temporal rhythmicity. Furthermore, CLOCK protein intrinsic histone acetyl transferase activity, the interaction of CLOCK-BMAL-1 with HAT enzymes, and the involvement of many histone deacetylases also maintain the rhythmic protein profile. Additionally, the critical role of the rhythmic methylation pattern of clock genes in battery of cancer and metabolic disorders also defines its importance. Therefore, in this review, we focused on accumulating all the present data available on epigenetics and circadian rhythms. Interestingly, we also gathered evidence from the available literature pinpointing towards the dynamic nature of chromatin architecture governed by long and short-range regulatory elements DNA contacts arising daily, that was thought to be steady otherwise.
Collapse
Affiliation(s)
- Kunal Singh
- Department of Biotechnology, Noida Institute of Engineering & Technology (NIET), Greater Noida, India.
| | - Niraj Kumar Jha
- Department of Biotechnology, Noida Institute of Engineering & Technology (NIET), Greater Noida, India
| | - Abhimanyu Thakur
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
18
|
Park J, Belden WJ. Long non-coding RNAs have age-dependent diurnal expression that coincides with age-related changes in genome-wide facultative heterochromatin. BMC Genomics 2018; 19:777. [PMID: 30373515 PMCID: PMC6206985 DOI: 10.1186/s12864-018-5170-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/15/2018] [Indexed: 12/21/2022] Open
Abstract
Background Disrupted diurnal rhythms cause accelerated aging and an increased incidence in age-related disease and morbidity. The circadian clock governs cell physiology and metabolism by controlling transcription and chromatin. The goal of this study is to further understand the mechanism of age-related changes to circadian chromatin with a focus on facultative heterochromatin and diurnal non-coding RNAs. Results We performed a combined RNA-seq and ChIP-seq at two diurnal time-points for three different age groups to examine the connection between age-related changes to circadian transcription and heterochromatin in neuronal tissue. Our analysis focused on uncovering the relationships between long non-coding RNA (lncRNA) and age-related changes to histone H3 lysine 9 tri-methylation (H3K9me3), in part because the Period (Per) complex can direct facultative heterochromatin and models of aging suggest age-related changes to heterochromatin and DNA methylation. Our results reveal that lncRNAs and circadian output change dramatically with age, but the core clock genes remain rhythmic. Age-related changes in clock-controlled gene (ccg) expression indicate there are age-dependent circadian output that change from anabolic to catabolic processes during aging. In addition, there are diurnal and age-related changes in H3K9me3 that coincide with changes in transcription. Conclusions The data suggest a model where some age-related changes in diurnal expression are partially attributed to age-related alterations to rhythmic facultative heterochromatin. The changes in heterochromatin are potentially mediated by changes in diurnal lncRNA creating an interlocked circadian-chromatin regulatory network that undergoes age-dependent metamorphosis. Electronic supplementary material The online version of this article (10.1186/s12864-018-5170-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinhee Park
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - William J Belden
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
19
|
Niepoth N, Ke G, de Roode JC, Groot AT. Comparing Behavior and Clock Gene Expression between Caterpillars, Butterflies, and Moths. J Biol Rhythms 2017; 33:52-64. [DOI: 10.1177/0748730417746458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Natalie Niepoth
- *Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - Gao Ke
- *Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Jacobus C. de Roode
- *Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, GA, USA
| | - Astrid T. Groot
- *Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
20
|
Fu J, Murphy KA, Zhou M, Li YH, Lam VH, Tabuloc CA, Chiu JC, Liu Y. Codon usage affects the structure and function of the Drosophila circadian clock protein PERIOD. Genes Dev 2017; 30:1761-75. [PMID: 27542830 PMCID: PMC5002980 DOI: 10.1101/gad.281030.116] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/15/2016] [Indexed: 11/25/2022]
Abstract
Fu et al. show that Drosophila period (dper) codon usage is important for circadian clock function. Codon optimization of dper resulted in conformational changes of dPER protein, altered dPER phosphorylation profile and stability, and impaired dPER function in the circadian negative feedback loop, which manifests into changes in molecular rhythmicity and abnormal circadian behavioral output. Codon usage bias is a universal feature of all genomes, but its in vivo biological functions in animal systems are not clear. To investigate the in vivo role of codon usage in animals, we took advantage of the sensitivity and robustness of the Drosophila circadian system. By codon-optimizing parts of Drosophila period (dper), a core clock gene that encodes a critical component of the circadian oscillator, we showed that dper codon usage is important for circadian clock function. Codon optimization of dper resulted in conformational changes of the dPER protein, altered dPER phosphorylation profile and stability, and impaired dPER function in the circadian negative feedback loop, which manifests into changes in molecular rhythmicity and abnormal circadian behavioral output. This study provides an in vivo example that demonstrates the role of codon usage in determining protein structure and function in an animal system. These results suggest a universal mechanism in eukaryotes that uses a codon usage “code” within genetic codons to regulate cotranslational protein folding.
Collapse
Affiliation(s)
- Jingjing Fu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Katherine A Murphy
- Department of Entomology and Nematology, University of California at Davis, Davis, California 95616, USA
| | - Mian Zhou
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Ying H Li
- Department of Entomology and Nematology, University of California at Davis, Davis, California 95616, USA
| | - Vu H Lam
- Department of Entomology and Nematology, University of California at Davis, Davis, California 95616, USA
| | - Christine A Tabuloc
- Department of Entomology and Nematology, University of California at Davis, Davis, California 95616, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, University of California at Davis, Davis, California 95616, USA
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
21
|
SMiLE-seq identifies binding motifs of single and dimeric transcription factors. Nat Methods 2017; 14:316-322. [DOI: 10.1038/nmeth.4143] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 11/06/2016] [Indexed: 11/08/2022]
|
22
|
Kwok RS, Lam VH, Chiu JC. Understanding the role of chromatin remodeling in the regulation of circadian transcription in Drosophila. Fly (Austin) 2016; 9:145-54. [PMID: 26926115 PMCID: PMC4862430 DOI: 10.1080/19336934.2016.1143993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Circadian clocks enable organisms to anticipate daily changes in the environment and coordinate temporal rhythms in physiology and behavior with the 24-h day-night cycle. The robust cycling of circadian gene expression is critical for proper timekeeping, and is regulated by transcription factor binding, RNA polymerase II (RNAPII) recruitment and elongation, and post-transcriptional mechanisms. Recently, it has become clear that dynamic alterations in chromatin landscape at the level of histone posttranslational modification and nucleosome density facilitate rhythms in transcription factor recruitment and RNAPII activity, and are essential for progression through activating and repressive phases of circadian transcription. Here, we discuss the characterization of the BRAHMA (BRM) chromatin-remodeling protein in Drosophila in the context of circadian clock regulation. By dissecting its catalytic vs. non-catalytic activities, we propose a model in which the non-catalytic activity of BRM functions to recruit repressive factors to limit the transcriptional output of CLOCK (CLK) during the active phase of circadian transcription, while the primary function of the ATP-dependent catalytic activity is to tune and prevent over-recruitment of negative regulators by increasing nucleosome density. Finally, we divulge ongoing efforts and investigative directions toward a deeper mechanistic understanding of transcriptional regulation of circadian gene expression at the chromatin level.
Collapse
Affiliation(s)
- Rosanna S Kwok
- a Department of Entomology and Nematology ; University of California Davis ; Davis , CA 95616 , USA
| | - Vu H Lam
- a Department of Entomology and Nematology ; University of California Davis ; Davis , CA 95616 , USA
| | - Joanna C Chiu
- a Department of Entomology and Nematology ; University of California Davis ; Davis , CA 95616 , USA
| |
Collapse
|
23
|
Zhou J, Yu W, Hardin PE. CLOCKWORK ORANGE Enhances PERIOD Mediated Rhythms in Transcriptional Repression by Antagonizing E-box Binding by CLOCK-CYCLE. PLoS Genet 2016; 12:e1006430. [PMID: 27814361 PMCID: PMC5096704 DOI: 10.1371/journal.pgen.1006430] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/17/2016] [Indexed: 01/13/2023] Open
Abstract
The Drosophila circadian oscillator controls daily rhythms in physiology, metabolism and behavior via transcriptional feedback loops. CLOCK-CYCLE (CLK-CYC) heterodimers initiate feedback loop function by binding E-box elements to activate per and tim transcription. PER-TIM heterodimers then accumulate, bind CLK-CYC to inhibit transcription, and are ultimately degraded to enable the next round of transcription. The timing of transcriptional events in this feedback loop coincide with, and are controlled by, rhythms in CLK-CYC binding to E-boxes. PER rhythmically binds CLK-CYC to initiate transcriptional repression, and subsequently promotes the removal of CLK-CYC from E-boxes. However, little is known about the mechanism by which CLK-CYC is removed from DNA. Previous studies demonstrated that the transcription repressor CLOCKWORK ORANGE (CWO) contributes to core feedback loop function by repressing per and tim transcription in cultured S2 cells and in flies. Here we show that CWO rhythmically binds E-boxes upstream of core clock genes in a reciprocal manner to CLK, thereby promoting PER-dependent removal of CLK-CYC from E-boxes, and maintaining repression until PER is degraded and CLK-CYC displaces CWO from E-boxes to initiate transcription. These results suggest a model in which CWO co-represses CLK-CYC transcriptional activity in conjunction with PER by competing for E-box binding once CLK-CYC-PER complexes have formed. Given that CWO orthologs DEC1 and DEC2 also target E-boxes bound by CLOCK-BMAL1, a similar mechanism may operate in the mammalian clock.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| | - Wangjie Yu
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| | - Paul E. Hardin
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
24
|
Hamada Y, Tokuoka A, Bando T, Ohuchi H, Tomioka K. Enhancer of zeste plays an important role in photoperiodic modulation of locomotor rhythm in the cricket, Gryllus bimaculatus. ZOOLOGICAL LETTERS 2016; 2:5. [PMID: 26998345 PMCID: PMC4799529 DOI: 10.1186/s40851-016-0042-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
INTRODUCTION Insects show daily behavioral rhythms controlled by an endogenous oscillator, the circadian clock. The rhythm synchronizes to daily light-dark cycles (LD) and changes waveform in association with seasonal change in photoperiod. RESULTS To explore the molecular basis of the photoperiod-dependent changes in circadian locomotor rhythm, we investigated the role of a chromatin modifier, Enhancer of zeste (Gb'E(z)), in the cricket, Gryllus bimaculatus. Under a 12 h:12 h LD (LD 12:12), Gb'E(z) was constitutively expressed in the optic lobe, the site of the biological clock; active phase (α) and rest phase (ρ) were approximately 12 h in duration, and α/ρ ratio was approximately 1.0. When transferred to LD 20:4, the α/ρ ratio decreased significantly, and the Gb'E(z) expression level was significantly reduced at 6 h and 10 h after light-on, as was reflected in the reduced level of trimethylation of histone H3 lysine 27. This change was associated with change in clock gene expression profiles. The photoperiod-dependent changes in α/ρ ratio and clock gene expression profiles were prevented by knocking down Gb'E(z) by RNAi. CONCLUSIONS These results suggest that histone modification by Gb'E(z) is involved in photoperiodic modulation of the G. bimaculatus circadian rhythm.
Collapse
Affiliation(s)
- Yoshimasa Hamada
- />Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530 Japan
| | - Atsushi Tokuoka
- />Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530 Japan
| | - Tetsuya Bando
- />Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama 700-8558 Japan
| | - Hideyo Ohuchi
- />Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama 700-8558 Japan
| | - Kenji Tomioka
- />Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530 Japan
| |
Collapse
|
25
|
Kwok RS, Li YH, Lei AJ, Edery I, Chiu JC. The Catalytic and Non-catalytic Functions of the Brahma Chromatin-Remodeling Protein Collaborate to Fine-Tune Circadian Transcription in Drosophila. PLoS Genet 2015; 11:e1005307. [PMID: 26132408 PMCID: PMC4488936 DOI: 10.1371/journal.pgen.1005307] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 05/28/2015] [Indexed: 11/18/2022] Open
Abstract
Daily rhythms in gene expression play a critical role in the progression of circadian clocks, and are under regulation by transcription factor binding, histone modifications, RNA polymerase II (RNAPII) recruitment and elongation, and post-transcriptional mechanisms. Although previous studies have shown that clock-controlled genes exhibit rhythmic chromatin modifications, less is known about the functions performed by chromatin remodelers in animal clockwork. Here we have identified the Brahma (Brm) complex as a regulator of the Drosophila clock. In Drosophila, CLOCK (CLK) is the master transcriptional activator driving cyclical gene expression by participating in an auto-inhibitory feedback loop that involves stimulating the expression of the main negative regulators, period (per) and timeless (tim). BRM functions catalytically to increase nucleosome density at the promoters of per and tim, creating an overall restrictive chromatin landscape to limit transcriptional output during the active phase of cycling gene expression. In addition, the non-catalytic function of BRM regulates the level and binding of CLK to target promoters and maintains transient RNAPII stalling at the per promoter, likely by recruiting repressive and pausing factors. By disentangling its catalytic versus non-catalytic functions at the promoters of CLK target genes, we uncovered a multi-leveled mechanism in which BRM fine-tunes circadian transcription. The circadian clock is an endogenous timing system that enables organisms to anticipate daily changes in their external environment and temporally coordinate key biological functions that are important to their survival. Central to Drosophila clockwork is a key transcription factor CLOCK (CLK). CLK activates expression of target genes only during specific parts of the day, thereby orchestrating rhythmic expression of hundreds of clock-controlled genes, which consequently manifest into daily rhythms in physiology and behavior. In this study, we demonstrated that the Brahma (Brm) chromatin-remodeling protein interacts with CLK and fine-tune the levels of CLK-dependent transcription to maintain the robustness of the circadian clock. Specifically, we uncovered two distinct but collaborative functions of Brm. Brm possesses a non-catalytic function that negatively regulates the binding of CLK to target genes and limits transcriptional output, likely by recruiting repressive protein complexes. Catalytically, Brm functions by condensing the chromatin at CLK target genes, specifically when transcription is active. This serves to precisely control the level of repressive factors likely recruited by Brm as well as other transcriptional regulators. By disentangling these two roles of Brm, our study uncovered a multi-layered mechanism in which a chromatin remodeler regulates the circadian clock.
Collapse
Affiliation(s)
- Rosanna S. Kwok
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, California, United States of America
| | - Ying H. Li
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, California, United States of America
| | - Anna J. Lei
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, California, United States of America
| | - Isaac Edery
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Bosler O, Girardet C, Franc JL, Becquet D, François-Bellan AM. Structural plasticity of the circadian timing system. An overview from flies to mammals. Front Neuroendocrinol 2015; 38:50-64. [PMID: 25703789 DOI: 10.1016/j.yfrne.2015.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/22/2022]
Abstract
The circadian timing system orchestrates daily variations in physiology and behavior through coordination of multioscillatory cell networks that are highly plastic in responding to environmental changes. Over the last decade, it has become clear that this plasticity involves structural changes and that the changes may be observed not only in central brain regions where the master clock cells reside but also in clock-controlled structures. This review considers experimental data in invertebrate and vertebrate model systems, mainly flies and mammals, illustrating various forms of structural circadian plasticity from cellular to circuit-based levels. It highlights the importance of these plastic events in the functional adaptation of the clock to the changing environment.
Collapse
Affiliation(s)
- Olivier Bosler
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France.
| | - Clémence Girardet
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France.
| | - Jean-Louis Franc
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France
| | - Denis Becquet
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France
| | - Anne-Marie François-Bellan
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France
| |
Collapse
|
27
|
Jaumouillé E, Machado Almeida P, Stähli P, Koch R, Nagoshi E. Transcriptional regulation via nuclear receptor crosstalk required for the Drosophila circadian clock. Curr Biol 2015; 25:1502-8. [PMID: 26004759 PMCID: PMC4454776 DOI: 10.1016/j.cub.2015.04.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 03/10/2015] [Accepted: 04/08/2015] [Indexed: 12/13/2022]
Abstract
Circadian clocks in large part rely on transcriptional feedback loops. At the core of the clock machinery, the transcriptional activators CLOCK/BMAL1 (in mammals) and CLOCK/CYCLE (CLK/CYC) (in Drosophila) drive the expression of the period (per) family genes. The PER-containing complexes inhibit the activity of CLOCK/BMAL1 or CLK/CYC, thereby forming a negative feedback loop [1]. In mammals, the ROR and REV-ERB family nuclear receptors add positive and negative transcriptional regulation to this core negative feedback loop to ensure the generation of robust circadian molecular oscillation [2]. Despite the overall similarities between mammalian and Drosophila clocks, whether comparable mechanisms via nuclear receptors are required for the Drosophila clock remains unknown. We show here that the nuclear receptor E75, the fly homolog of REV-ERB α and REV-ERB β, and the NR2E3 subfamily nuclear receptor UNF are components of the molecular clocks in the Drosophila pacemaker neurons. In vivo assays in conjunction with the in vitro experiments demonstrate that E75 and UNF bind to per regulatory sequences and act together to enhance the CLK/CYC-mediated transcription of the per gene, thereby completing the core transcriptional feedback loop necessary for the free-running clockwork. Our results identify a missing link in the Drosophila clock and highlight the significance of the transcriptional regulation via nuclear receptors in metazoan circadian clocks.
Collapse
Affiliation(s)
- Edouard Jaumouillé
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland; Department of Genetics and Evolution, Sciences III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Pedro Machado Almeida
- Department of Genetics and Evolution, Sciences III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Patrick Stähli
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Rafael Koch
- Department of Genetics and Evolution, Sciences III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution, Sciences III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
28
|
Duong HA, Weitz CJ. Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes. Nat Struct Mol Biol 2014; 21:126-32. [PMID: 24413057 DOI: 10.1038/nsmb.2746] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/25/2013] [Indexed: 12/25/2022]
Abstract
The mammalian circadian clock is built on a molecular feedback loop in which the Period (PER) proteins, acting in a large, poorly understood complex, repress Clock-Bmal1, the transcription factor driving their expression. We found that mouse PER complexes include the histone methyltransferase HP1γ-Suv39h. PER proteins recruited HP1γ-Suv39h to the Per1 and Per2 promoters, and HP1γ-Suv39h proved important for circadian di- and trimethylation of histone H3 Lys9 (H3K9) at the Per1 promoter, feedback repression and clock function. HP1γ-Suv39h was recruited to the Per1 and Per2 promoters ~4 h after recruitment of HDAC1, a PER-associated protein previously implicated in clock function and H3K9 deacetylation at the Per1 promoter. PER complexes containing HDAC1 or HP1γ-Suv39h appeared to be physically separable. Circadian clock negative feedback by the PER complex thus involves dynamic, ordered recruitment of repressive chromatin modifiers to DNA-bound Clock-Bmal1.
Collapse
Affiliation(s)
- Hao A Duong
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Charles J Weitz
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Meireles-Filho ACA, Bardet AF, Yáñez-Cuna JO, Stampfel G, Stark A. cis-regulatory requirements for tissue-specific programs of the circadian clock. Curr Biol 2013; 24:1-10. [PMID: 24332542 DOI: 10.1016/j.cub.2013.11.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/24/2013] [Accepted: 11/06/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Broadly expressed transcriptions factors (TFs) control tissue-specific programs of gene expression through interactions with local TF networks. A prime example is the circadian clock: although the conserved TFs CLOCK (CLK) and CYCLE (CYC) control a transcriptional circuit throughout animal bodies, rhythms in behavior and physiology are generated tissue specifically. Yet, how CLK and CYC determine tissue-specific clock programs has remained unclear. RESULTS Here, we use a functional genomics approach to determine the cis-regulatory requirements for clock specificity. We first determine CLK and CYC genome-wide binding targets in heads and bodies by ChIP-seq and show that they have distinct DNA targets in the two tissue contexts. Computational dissection of CLK/CYC context-specific binding sites reveals sequence motifs for putative partner factors, which are predictive for individual binding sites. Among them, we show that the opa and GATA motifs, differentially enriched in head and body binding sites respectively, can be bound by OPA and SERPENT (SRP). They act synergistically with CLK/CYC in the Drosophila feedback loop, suggesting that they help to determine their direct targets and therefore orchestrate tissue-specific clock outputs. In addition, using in vivo transgenic assays, we validate that GATA motifs are required for proper tissue-specific gene expression in the adult fat body, midgut, and Malpighian tubules, revealing a cis-regulatory signature for enhancers of the peripheral circadian clock. CONCLUSIONS Our results reveal how universal clock circuits can regulate tissue-specific rhythms and, more generally, provide insights into the mechanism by which universal TFs can be modulated to drive tissue-specific programs of gene expression.
Collapse
Affiliation(s)
| | - Anaïs F Bardet
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
| | - J Omar Yáñez-Cuna
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
| | - Gerald Stampfel
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria.
| |
Collapse
|
30
|
Franken P. A role for clock genes in sleep homeostasis. Curr Opin Neurobiol 2013; 23:864-72. [DOI: 10.1016/j.conb.2013.05.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/01/2013] [Accepted: 05/11/2013] [Indexed: 11/27/2022]
|
31
|
Damulewicz M, Rosato E, Pyza E. Circadian regulation of the Na+/K+-ATPase alpha subunit in the visual system is mediated by the pacemaker and by retina photoreceptors in Drosophila melanogaster. PLoS One 2013; 8:e73690. [PMID: 24040028 PMCID: PMC3769360 DOI: 10.1371/journal.pone.0073690] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 07/29/2013] [Indexed: 12/20/2022] Open
Abstract
We investigated the diurnal oscillation in abundance of the catalytic α subunit of the sodium/potassium pump (ATPα) in the brain of Drosophila melanogaster. This rhythm is bimodal and is particularly robust in the glia cells of the lamina, the first optic neuropil. We observed loss of ATPα cycling in lamina glia in behaviourally arrhythmic per01 and tim01 mutants and in flies overexpressing the pro-apoptotic gene hid in the PDF-positive clock neurons. Moreover, the rhythm of ATPα abundance was altered in cry01 and Pdf0 mutants, in flies with a weakened clock mechanism in retina photoreceptor cells and in those subject to downregulation of the neuropeptide ITP by RNAi. This complex, rhythmic regulation of the α subunit suggests that the sodium/potassium pump may be a key target of the circadian pacemaker to impose daily control on brain activities, such as rhythmic changes in neuronal plasticity, which are best observed in the visual system.
Collapse
Affiliation(s)
- Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Ezio Rosato
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Kraków, Poland
- * E-mail:
| |
Collapse
|
32
|
Transcriptional corepressor TOPLESS complexes with pseudoresponse regulator proteins and histone deacetylases to regulate circadian transcription. Proc Natl Acad Sci U S A 2012; 110:761-6. [PMID: 23267111 DOI: 10.1073/pnas.1215010110] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Circadian clocks are ubiquitous molecular time-keeping mechanisms that coordinate physiology and metabolism and provide an adaptive advantage to higher plants. The central oscillator of the plant clock is composed of interlocked feedback loops that involve multiple repressive factors acting throughout the circadian cycle. Pseudo response regulators (PRRs) comprise a five-member family that is essential to the function of the central oscillator. PRR5, PRR7, and PRR9 can bind the promoters of the core clock genes circadian clock associated 1 (CCA1) and late elongated hypocotyl (LHY) to restrict their expression to near dawn, but the mechanism has been unclear. Here we report that members of the plant Groucho/Tup1 corepressor family, topless/topless-related (TPL/TPR), interact with these three PRR proteins at the CCA1 and LHY promoters to repress transcription and alter circadian period. This activity is diminished in the presence of the inhibitor trichostatin A, indicating the requirement of histone deacetylase for full TPL activity. Additionally, a complex of PRR9, TPL, and histone deacetylase 6, can form in vivo, implicating this tripartite association as a central repressor of circadian gene expression. Our findings show that the TPL/TPR corepressor family are components of the central circadian oscillator mechanism and reinforces the role of this family as central to multiple signaling pathways in higher plants.
Collapse
|
33
|
Stratmann M, Suter DM, Molina N, Naef F, Schibler U. Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome. Mol Cell 2012; 48:277-87. [PMID: 22981862 DOI: 10.1016/j.molcel.2012.08.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 05/08/2012] [Accepted: 08/07/2012] [Indexed: 10/27/2022]
Abstract
The transcription factors BMAL1 and CLOCK drive the circadian transcription of clock and clock-controlled genes, such as Dbp. To investigate the kinetics of BMAL1 binding to target genes in real time, we generated a cell line harboring tandem arrays of Dbp repeats and monitored the binding of a fluorescent BMAL1 fusion protein to these arrays by time-lapse microscopy. BMAL1 occupancy at the Dbp locus was highly circadian and strictly dependent on CLOCK. Moreover, BMAL1-CLOCK associations with Dbp were extremely unstable and displayed stochastic, proteasome-dependent fluctuations. Proteasome inhibition prolonged the residence time of BMAL1-CLOCK but resulted in an immediate attenuation of Dbp transcription. In cells harboring a single Dbp-luciferase reporter gene copy, this silencing was shown to be caused by a decrease in both the frequencies and sizes of transcriptional bursts. Thus, BMAL1 and CLOCK may act as Kamikaze activators, in that they are rapidly degraded once bound to Dbp chromatin.
Collapse
Affiliation(s)
- Markus Stratmann
- Department of Molecular Biology, Sciences III, University of Geneva, and National Centre of Competence in Research Frontiers in Genetics, 1211 Geneva, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Onishi Y, Kawano Y. Rhythmic binding of Topoisomerase I impacts on the transcription of Bmal1 and circadian period. Nucleic Acids Res 2012; 40:9482-92. [PMID: 22904072 PMCID: PMC3479213 DOI: 10.1093/nar/gks779] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Bmal1 gene is essential for the circadian system, and its promoter has a unique open chromatin structure. We examined the mechanism of topoisomerase I (Top1) to understand the role of the unique chromatin structure in Bmal1 gene regulation. Camptothecin, a Top1 inhibitor, and Top1 small interfering RNA (siRNA) enhanced Baml1 transcription and lengthened its circadian period. Top1 is located at an intermediate region between two ROREs that are critical cis-elements of circadian transcription and the profile of Top1 binding indicated anti-phase circadian oscillation of Bmal1 transcription. Promoter assays showed that the Top1-binding site is required for transcriptional suppression and that it functions cooperatively with the distal RORE, supporting that Bmal1 transcription is upregulated by Top1 inhibition. A DNA fragment between the ROREs, where the Top1-binding site is located, behaved like a right-handed superhelical twist, and modulation of Top1 activity by camptothecin and Top1 siRNA altered the footprint profile, indicating modulation of the chromatin structure. These data indicate that Top1 modulates the chromatin structure of the Bmal1 promoter, regulates Bmal1 transcription and influences the circadian period.
Collapse
Affiliation(s)
- Yoshiaki Onishi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Tsukuba 305-8566, Japan.
| | | |
Collapse
|
35
|
Rakshit K, Krishnan N, Guzik EM, Pyza E, Giebultowicz JM. Effects of aging on the molecular circadian oscillations in Drosophila. Chronobiol Int 2012; 29:5-14. [PMID: 22217096 DOI: 10.3109/07420528.2011.635237] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Circadian clocks maintain temporal homeostasis by generating daily output rhythms in molecular, cellular, and physiological functions. Output rhythms, such as sleep/wake cycles and hormonal fluctuations, tend to deteriorate during aging in humans, rodents, and fruit flies. However, it is not clear whether this decay is caused by defects in the core transcriptional clock, or weakening of the clock-output pathways, or both. The authors monitored age-related changes in behavioral and molecular rhythms in Drosophila melanogaster. Aging was associated with disrupted rest/activity patterns and lengthening of the free-running period of the circadian locomotor activity rhythm. The expression of core clock genes was measured in heads and bodies of young, middle-aged, and old flies. Transcriptional oscillations of four clock genes, period, timeless, Par domain protein 1ϵ, and vrille, were significantly reduced in heads, but not in bodies, of aging flies. It was determined that reduced transcription of these genes was not caused by the deficient expression of their activators, encoded by Clock and cycle genes. Interestingly, transcriptional activation by CLOCK-CYCLE complexes was impaired despite reduced levels of the PERIOD repressor protein in old flies. These data suggest that aging alters the properties of the core transcriptional clock in flies such that both the positive and the negative limbs of the clock are attenuated.
Collapse
Affiliation(s)
- Kuntol Rakshit
- Department of Zoology, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | |
Collapse
|
36
|
Grabek KR, Chabot CC. Daily Rhythms of PERIOD protein in the eyestalk of the American lobster, Homarus americanus. MARINE AND FRESHWATER BEHAVIOUR AND PHYSIOLOGY 2012; 45:269-279. [PMID: 23487569 PMCID: PMC3593242 DOI: 10.1080/10236244.2012.730209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The daily rhythm of PERIOD protein (PER) expression is an integral component of the circadian clock, which is found among a broad range of animal species including fruit flies, marine mollusks and even humans. The use of antibodies directed against PER has provided a helpful tool in the discovery of PER homologues and the labeling of putative pacemaker cells, especially in animals for which an annotated genome is not readily available. In this study, DrosophilaPER antibodies were used to probe for PER in the American lobster, Homarus americanus. This species exhibits robust endogenous circadian rhythms but the circadian clock has yet to be located or characterized. PER was detected in the eyestalks of the lobster but not in the brain. Furthermore, a significant effect of the LD cycle on daily PER abundance was identified, and PER was significantly more abundant at mid dark than in early light or mid light hours. Our results suggest that PER is a part of the molecular machinery of the circadian clock located in the eyestalk of the lobster.
Collapse
Affiliation(s)
- Katharine R Grabek
- Human Medical Genetics Program, Department of Cellular and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | | |
Collapse
|
37
|
Abruzzi KC, Rodriguez J, Menet JS, Desrochers J, Zadina A, Luo W, Tkachev S, Rosbash M. Drosophila CLOCK target gene characterization: implications for circadian tissue-specific gene expression. Genes Dev 2011; 25:2374-86. [PMID: 22085964 DOI: 10.1101/gad.178079.111] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
CLOCK (CLK) is a master transcriptional regulator of the circadian clock in Drosophila. To identify CLK direct target genes and address circadian transcriptional regulation in Drosophila, we performed chromatin immunoprecipitation (ChIP) tiling array assays (ChIP-chip) with a number of circadian proteins. CLK binding cycles on at least 800 sites with maximal binding in the early night. The CLK partner protein CYCLE (CYC) is on most of these sites. The CLK/CYC heterodimer is joined 4-6 h later by the transcriptional repressor PERIOD (PER), indicating that the majority of CLK targets are regulated similarly to core circadian genes. About 30% of target genes also show cycling RNA polymerase II (Pol II) binding. Many of these generate cycling RNAs despite not being documented in prior RNA cycling studies. This is due in part to different RNA isoforms and to fly head tissue heterogeneity. CLK has specific targets in different tissues, implying that important CLK partner proteins and/or mechanisms contribute to gene-specific and tissue-specific regulation.
Collapse
Affiliation(s)
- Katharine Compton Abruzzi
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Mongrain V, La Spada F, Curie T, Franken P. Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex. PLoS One 2011; 6:e26622. [PMID: 22039518 PMCID: PMC3200344 DOI: 10.1371/journal.pone.0026622] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/29/2011] [Indexed: 11/18/2022] Open
Abstract
We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), -6, -12, and -18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and -6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven.
Collapse
Affiliation(s)
- Valérie Mongrain
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Department of Psychiatry, Université de Montréal, Montréal, Canada
| | - Francesco La Spada
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Thomas Curie
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
39
|
Abstract
Circadian rhythms in mammals are generated by a feedback loop in which the three PERIOD (PER) proteins, acting in a large complex, inhibit the transcriptional activity of the CLOCK-BMAL1 dimer, which represses their own expression. Although fundamental, the mechanism of negative feedback in the mammalian clock, or any eukaryotic clock, is unknown. We analyzed protein constituents of PER complexes purified from mouse tissues and identified PSF (polypyrimidine tract-binding protein-associated splicing factor). Our analysis indicates that PSF within the PER complex recruits SIN3A, a scaffold for assembly of transcriptional inhibitory complexes and that the PER complex thereby rhythmically delivers histone deacetylases to the Per1 promoter, which repress Per1 transcription. These findings provide a function for the PER complex and a molecular mechanism for circadian clock negative feedback.
Collapse
Affiliation(s)
| | | | | | - Charles J. Weitz
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
40
|
Weber F, Zorn D, Rademacher C, Hung HC. Post-translational timing mechanisms of the Drosophila circadian clock. FEBS Lett 2011; 585:1443-9. [PMID: 21486567 DOI: 10.1016/j.febslet.2011.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 03/29/2011] [Accepted: 04/04/2011] [Indexed: 11/20/2022]
Abstract
Circadian clocks allow a temporal coordination and segregation of physiological, metabolic, and behavioural processes as well as their synchronization with the environmental cycles of day and night. Circadian regulation thereby provides a vital advantage, improving an organisms' adaptation to its environment. The molecular clock can be synchronized with environmental cycles of day and night, but is able to maintain a self-sustained molecular oscillation also in the absence of environmental stimuli. Interlocked transcriptional-translational feedback loops were shown to form the basis of circadian clock function in all phyla from bacteria, fungi, plants, insects to humans. More recently post-translational regulation was identified to be equally important, if not sufficient for molecular clock function and accurate timing of circadian transcription. Here we review recent insights into post-translational timing mechanisms that control the circadian clock, with a particular focus on Drosophila. Analogous to transcriptional feedback regulation, circadian clock function in Drosophila appears to rely on inter-connected post-translational timers. Post-translational regulation of clock proteins illustrates mechanisms that allow a precise temporal control of transcription factors in general and of circadian transcription in particular.
Collapse
Affiliation(s)
- Frank Weber
- University of Heidelberg Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
41
|
Menet JS, Abruzzi KC, Desrochers J, Rodriguez J, Rosbash M. Dynamic PER repression mechanisms in the Drosophila circadian clock: from on-DNA to off-DNA. Genes Dev 2010; 24:358-67. [PMID: 20159956 DOI: 10.1101/gad.1883910] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transcriptional feedback loops are central to the generation and maintenance of circadian rhythms. In animal systems as well as Neurospora, transcriptional repression is believed to occur by catalytic post-translational events. We report here in the Drosophila model two different mechanisms by which the circadian repressor PERIOD (PER) inhibits CLOCK/CYCLE (CLK/CYC)-mediated transcription. First, PER is recruited to circadian promoters, which leads to the nighttime decrease of CLK/CYC activity. This decrease is proportional to PER levels on DNA, and PER recruitment probably occurs via CLK. Then CLK is released from DNA and sequestered in a strong, approximately 1:1 PER-CLK off-DNA complex. The data indicate that the PER levels bound to CLK change dynamically and are important for repression, first on-DNA and then off-DNA. They also suggest that these mechanisms occur upstream of post-translational events, and that elements of this two-step mechanism likely apply to mammals.
Collapse
Affiliation(s)
- Jerome S Menet
- Department of Biology, Howard Hughes Medical Institute, National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Mehra A, Baker CL, Loros JJ, Dunlap JC. Post-translational modifications in circadian rhythms. Trends Biochem Sci 2009; 34:483-90. [PMID: 19740663 DOI: 10.1016/j.tibs.2009.06.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 06/02/2009] [Accepted: 06/02/2009] [Indexed: 11/20/2022]
Abstract
The pace has quickened in circadian biology research. In particular, an abundance of results focused on post-translational modifications (PTMs) is sharpening our view of circadian molecular clockworks. PTMs affect nearly all aspects of clock biology; in some cases they are essential for clock function and in others, they provide layers of regulatory fine-tuning. Our goal is to review recent advances in clock PTMs, help make sense of emerging themes, and spotlight intriguing (and perhaps controversial) new findings. We focus on PTMs affecting the core functions of eukaryotic clocks, in particular the functionally related oscillators in Neurospora crassa, Drosophila melanogaster, and mammalian cells.
Collapse
Affiliation(s)
- Arun Mehra
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Many aspects of behavior such as aggression, courtship, sexual orientation, and the sleep-wake cycle are determined by specific genes. Although point mutations in these genes predictably change characteristics of behavior, substantial variation can be observed among a population as well as during the lifetime of individuals. The origin of variation in behavior, however, is largely unknown. Here the authors investigated the role of HSP90 for the circadian control of behavior in Drosophila. They found that a partial loss of HSP90 function, either by mutagenesis or by pharmacological inhibition, did not affect the circadian clock itself, but the translation of molecular oscillations into behavioral rhythms. In HSP90-deficient flies behavioral activity was no longer stringently coupled to molecular oscillations giving rise to a large variation in individual behavioral activity patterns. The results show that HSP90 is a potent capacitor of behavioral variation, analogous to its role in morphology. Decreased HSP90 activity not only increases behavioral variability among a population, but interestingly also during the lifetime of individuals.
Collapse
Affiliation(s)
- Hsiu-Cheng Hung
- Biochemie-Zentrum Heidelberg, Ruprecht-Karls Universität Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
45
|
Hung HC, Maurer C, Zorn D, Chang WL, Weber F. Sequential and compartment-specific phosphorylation controls the life cycle of the circadian CLOCK protein. J Biol Chem 2009; 284:23734-42. [PMID: 19564332 DOI: 10.1074/jbc.m109.025064] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The circadian clock facilitates a temporal coordination of most homeostatic activities and their synchronization with the environmental cycles of day and night. The core oscillating activity of the circadian clock is formed by a heterodimer of the transcription factors CLOCK (CLK) and CYCLE (CYC). Post-translational regulation of CLK/CYC has previously been shown to be crucial for clock function and accurate timing of circadian transcription. Here we report that a sequential and compartment-specific phosphorylation of the Drosophila CLK protein assigns specific localization and activity patterns. Total and nuclear amounts of CLK protein were found to oscillate over the course of a day in circadian neurons. Detailed analysis of the cellular distribution and phosphorylation of CLK revealed that newly synthesized CLK is hypophosphorylated in the cytoplasm prior to nuclear import. In the nucleus, CLK is converted into an intermediate phosphorylation state that correlates with trans-activation of circadian transcription. Hyperphosphorylation and degradation are promoted by nuclear export of the CLK protein. Surprisingly, CLK localized to discrete nuclear foci in cell culture as well as in circadian neurons of the larval brain. These subnuclear sites likely contain a storage form of the transcription factor, while homogeneously distributed nuclear CLK appears to be the transcriptionally active form. These results show that sequential post-translational modifications and subcellular distribution regulate the activity of the CLK protein, indicating a core post-translational timing mechanism of the circadian clock.
Collapse
Affiliation(s)
- Hsiu-Cheng Hung
- Biochemistry Center Heidelberg (BZH), University of Heidelberg, Heidelberg 69120, Germany
| | | | | | | | | |
Collapse
|
46
|
Maurer C, Hung HC, Weber F. Cytoplasmic interaction with CYCLE promotes the post-translational processing of the circadian CLOCK protein. FEBS Lett 2009; 583:1561-6. [DOI: 10.1016/j.febslet.2009.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/02/2009] [Accepted: 04/03/2009] [Indexed: 12/01/2022]
|
47
|
DOUBLETIME plays a noncatalytic role to mediate CLOCK phosphorylation and repress CLOCK-dependent transcription within the Drosophila circadian clock. Mol Cell Biol 2009; 29:1452-8. [PMID: 19139270 DOI: 10.1128/mcb.01777-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Circadian clocks keep time via gene expression feedback loops that are controlled by time-of-day-specific changes in the synthesis, activity, and degradation of transcription factors. Within the Drosophila melanogaster circadian clock, DOUBLETIME (DBT) kinase is necessary for the phosphorylation of PERIOD (PER), a transcriptional repressor, and CLOCK (CLK), a transcriptional activator, as CLK-dependent transcription is being repressed. PER- and DBT-containing protein complexes feed back to repress CLK-dependent transcription, but how DBT promotes PER and CLK phosphorylation and how PER and CLK phosphorylation contributes to transcriptional repression have not been defined. Here, we show that DBT catalytic activity is not required for CLK phosphorylation or transcriptional repression and that PER phosphorylation is dispensable for repressing CLK-dependent transcription. These results support a model in which DBT plays a novel noncatalytic role in recruiting additional kinases that phosphorylate CLK, thereby repressing transcription. A similar mechanism likely operates in mammals, given the conserved activities of PER, DBT, and CLK orthologs.
Collapse
|
48
|
Circadian gene expression is resilient to large fluctuations in overall transcription rates. EMBO J 2008; 28:123-34. [PMID: 19078963 DOI: 10.1038/emboj.2008.262] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 11/24/2008] [Indexed: 11/08/2022] Open
Abstract
Mammalian circadian oscillators are considered to rely on transcription/translation feedback loops in clock gene expression. The major and essential loop involves the autorepression of cryptochrome (Cry1, Cry2) and period (Per1, Per2) genes. The rhythm-generating circuitry is functional in most cell types, including cultured fibroblasts. Using this system, we show that significant reduction in RNA polymerase II-dependent transcription did not abolish circadian oscillations, but surprisingly accelerated them. A similar period shortening was observed at reduced incubation temperatures in wild-type mouse fibroblasts, but not in cells lacking Per1. Our data suggest that mammalian circadian oscillators are resilient to large fluctuations in general transcription rates and temperature, and that PER1 has an important function in transcription and temperature compensation.
Collapse
|
49
|
Weber F. Remodeling the clock: coactivators and signal transduction in the circadian clockworks. Naturwissenschaften 2008; 96:321-37. [PMID: 19052721 DOI: 10.1007/s00114-008-0474-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Revised: 10/21/2008] [Accepted: 11/05/2008] [Indexed: 01/25/2023]
Abstract
Most organisms on earth such as cyanobacteria, fungi, plants, insects, animals, and humans synchronize their physiological and behavioral activities with the environmental cycles of day and night. Significant progress has been made in unraveling the genetic components that constitute a molecular circadian clock, which facilitates the temporal control of physiology and behavior. Clock genes assemble interlocked transcriptional/translational feedback loops that underlie the circadian oscillations. Recent investigations revealed that posttranslational regulation of clock proteins is crucial for functioning of the molecular oscillator and for precise temporal control of circadian transcription. This review provides an overview of the homologous clockworks in Drosophila and mammals, with a special focus on recent insights in the posttranslational regulation of clock proteins as well as the role of coactivators, repressors, and signal transduction for circadian controlled genome-wide transcription. The emerging mechanisms of clock gene regulation provide an understanding of the temporal control of transcription in general and the circadian orchestration of physiology and behavior in particular.
Collapse
Affiliation(s)
- Frank Weber
- Biochemie-Zentrum Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|