1
|
Zhang M, Xiong W, Qiao R, Li M, Zhang C, Yang C, Zhu Y, He J, Ma Z. Irisin in the modulation of bone and cartilage homeostasis: a review on osteoarthritis relief potential. Front Physiol 2025; 16:1570157. [PMID: 40313878 PMCID: PMC12043700 DOI: 10.3389/fphys.2025.1570157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025] Open
Abstract
Osteoarthritis, a progressive and degenerative joint disease, disrupts the integrity of the entire joint structure, underscoring the urgency of identifying more effective therapeutic strategies and innovative targets. Among these, exercise therapy is considered a key component in the early management of osteoarthritis, functioning by stimulating the secretion of myokines from the skeletal muscle system. Irisin, a myokine predominantly secreted by skeletal muscle during exercise and encoded by the FNDC5 gene, has garnered attention for its regulatory effects on bone health. Emerging evidence suggests that irisin may play a protective role in osteoarthritis by promoting tissue homeostasis, enhancing subchondral bone density and microstructure, and inhibiting chondrocyte apoptosis. By improving chondrocyte viability, preserving extracellular matrix integrity, and maintaining homeostasis in osteoblasts, osteoclasts, and osteocytes, irisin emerges as a promising therapeutic target for osteoarthritis. This review delves into the role of irisin in osteoarthritis pathogenesis, highlighting its influence on cartilage and bone metabolism as well as its dynamic relationship with exercise. Additionally, this review suggests that further exploration on its specific molecular mechanisms, optimization of drug delivery systems, and strategic utilization of exercise-induced benefits will be pivotal in unlocking the full potential of irisin as a novel intervention for osteoarthritis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yan Zhu
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiaying He
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhigui Ma
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
2
|
Xue L, Guan Q, Zhang L. Bone Modelling and Remodelling in Cold Environment. Biomolecules 2025; 15:564. [PMID: 40305297 PMCID: PMC12025219 DOI: 10.3390/biom15040564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
People engaged in various activities in cold environments-such as those living in cold climates, polar workers, cold storage workers, and athletes engaged in winter sports-are frequently affected by cold environments. Therefore, it is of great significance to explore the modelling and remodelling of bones in cold environments. Cold environments can shorten the length of bones, thin the thickness of bones, decrease bone mineral density (BMD), change the biomechanical properties of bones, and lead to bone loss. In addition, cold directly affects the bone microenvironment. Exposure to cold causes spindle-like and fibroblast-like changes in bone marrow mesenchymal stem cells (BMSCs) and decreases their proliferation, and cold exposure promotes the osteogenic differentiation of BMSCs partly through the p38 MAPK pathway. Cold also alters the dendritic differentiation of OBs by reducing the transmembrane glycoprotein E11/podoplanin and damages endothelial cells (ECs) by elevating levels of VEGF, resulting in a reduced blood supply and thus fewer OBs. In addition, cold promotes lipolysis of marrow adipose tissue (MAT), but in combination with exercise, it can promote the differentiation of BMSCs into MAT. Cold environments interfere with angiogenesis and inhibit bone growth by affecting factors such as platelet-derived growth factor type BB (PDGF-BB), slit guidance ligand 3 (SLIT3), Notch, and VEGF. In addition, cold environments may promote bone resorption by activating sympathetic nerves to activate β-adrenergic receptors and regulating leptin secretion, and regulate bone metabolism by activating the p38 MAPK signalling pathway and increasing the synthesis of brown fat, which ultimately inhibit bone formation and enhance bone resorption. In this paper, we describe the effects of cold environments on bones in the locomotor system in terms of bone structure, bone mass, biomechanical properties, and various skeletal cells, bone blood vessels, and bone fat systems in the bone microenvironment.
Collapse
Affiliation(s)
- Leyi Xue
- College of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China;
| | - Qiao Guan
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China;
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China;
| |
Collapse
|
3
|
Guo Y, Zhang J, Gong L, Liu N, Liu Q, Liu Z, Guo B, Yang J. Mechanical Loading Induces NRF2 Nuclear Translocation to Epigenetically Remodel Oxidative Stress Defense in Osteocytes. Antioxidants (Basel) 2025; 14:346. [PMID: 40227420 PMCID: PMC11939503 DOI: 10.3390/antiox14030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 04/15/2025] Open
Abstract
The mechano-responsiveness of osteocytes is critical for maintaining bone health and associated with a reduced oxidative stress defense, yet the precise molecular mechanisms remain incompletely understood. Here, we address the gap by investigating the epigenetic reprogramming that drives osteocyte responses to mechanical loading. We found overall remodeling of antioxidant response under mechanical loading and identified NRF2, a key transcription factor in oxidative stress response, which plays a vital role in the epigenetic remodeling of osteocytes. The results showed that mechanical loading enhanced NRF2 protein stability, promoted its nuclear translocation, and activated osteocyte-specific transcriptional programs. In contrast, pharmacological stabilization of NRF2 failed to fully replicate these effects, underscoring the unique role of mechanical stimuli in modulating NRF2 activity and antioxidant function. Our findings highlight the potential therapeutic limitations of NRF2-stabilizing drugs and suggest that combining pharmacological approaches with mechanical interventions could offer more effective treatments to maintain oxidative homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baosheng Guo
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (Y.G.); (J.Z.); (L.G.); (N.L.); (Q.L.); (Z.L.)
| | - Jingping Yang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (Y.G.); (J.Z.); (L.G.); (N.L.); (Q.L.); (Z.L.)
| |
Collapse
|
4
|
Kanai T, Osawa K, Kajiwara K, Sato Y, Sawa Y. Study of Podoplanin-Deficient Mouse Bone with Mechanical Stress. Dent J (Basel) 2025; 13:61. [PMID: 39996935 PMCID: PMC11854086 DOI: 10.3390/dj13020061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/20/2024] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
Objective: We investigated morphological differences in osteocyte processes between aged mice and our original podoplanin-conditional knockout (cKO) mice in which the floxed exon 3 of podoplanin was deleted by Dmp-1-driven Cre (Dmp1-Cre;PdpnΔ/Δ). Methods: SEM observation on osteocyte cell process, histochemistry for bone remodeling with mechanostress, and RT-PCR for RANKL and M-CSF in podoplanin cKO mouse bone with mechanostress was investigated. Results: SEM observations showed fewer and thinner osteocyte processes in femurs from 23-week-old Dmp1-Cre;PdpnΔ/Δ mice than from 23-week-old wild-type mice, while the numbers of osteocyte processes in femurs and calvarias were similar in 23-week-old Dmp1-Cre;PdpnΔ/Δ mice and 48-week-old wild-type mice. Furthermore, cell process numbers in femurs and calvarias were significantly smaller in 23-week-old Dmp1-Cre;PdpnΔ/Δ mice than in 48-week-old wild-type mice. In the test for differences in alveolar bone resorption under mechanical stress between Dmp1-Cre;PdpnΔ/Δ and wild-type mice, the area of TRAP-positive resorption pits was larger in wild-type mice than in Dmp1-Cre;PdpnΔ/Δ mice. In a quantitative tissue PCR analysis, the mRNA expression levels of RANKL and M-CSF in alveolar bone under mechanical stress were significantly lower in Dmp1-Cre;PdpnΔ/Δ mice than in wild-type mice. These results suggest that a reduction in cell process formation in osteocytes with podoplanin cKO affected the absorption of alveolar bone under mechanical stress in Dmp1-Cre;PdpnΔ/Δ mice. Conclusions: In podoplanin-deficient bone, the deformation of osteocyte processes by mechanical stimuli is not recognized as a stress due to the lower number of cell processes with podoplanin deficiency; therefore, the production of osteoclast migration/differentiation factors by activated osteocytes is not fully induced and macrophage migration to alveolar bone with mechanical stress appeared to be suppressed. These results indicate that podoplanin-dependent osteocyte process formation indirectly plays a key role in sensing mechanical stress in bone.
Collapse
Affiliation(s)
- Takenori Kanai
- Department of Orthodontics, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo 060-8586, Japan; (T.K.); (K.O.); (Y.S.)
| | - Kyoko Osawa
- Department of Orthodontics, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo 060-8586, Japan; (T.K.); (K.O.); (Y.S.)
| | - Koichiro Kajiwara
- Department of Oral Growth & Development, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo 060-8586, Japan;
| | - Yoshiaki Sato
- Department of Orthodontics, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo 060-8586, Japan; (T.K.); (K.O.); (Y.S.)
| | - Yoshihiko Sawa
- Department of Oral Function & Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-0914, Japan
| |
Collapse
|
5
|
Huan F, Jiang X. Serum Podoplanin Levels as a Potential Biomarker for Diabetic Nephropathy Progression: A Cross-Sectional Study. Diabetes Metab Syndr Obes 2024; 17:4701-4710. [PMID: 39660339 PMCID: PMC11630725 DOI: 10.2147/dmso.s500608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
Objective The study aimed to investigate the impact of serum Podoplanin levels on diabetic nephropathy in patients with type 2 diabetes mellitus (T2DM). Patients and methods Between January 2022 and December 2023, the Department of Nephrology at Nantong Second People's Hospital selected 276 patients with T2DM and 150 healthy controls for this investigation. Systematic data collection was performed to gather information on biomarkers and biochemical parameters. Results When T2DM patients (n=276) and healthy controls (n=150) were compared, considerably lowered serum Podoplanin levels were observed. In all 276 patients, serum Podoplanin levels were negatively associated with age (r=-0.127, P=0.035), body mass index (BMI) (r=-0.292, P<0.001), duration of diabetes (r=-0.323, P<0.001), systolic blood pressure (SBP) (r=-0.255, P<0.001), diastolic blood pressure (DBP) (r=-0.138, P=0.022), fasting blood glucose (FBG) (r=-0.196, P=0.001), glycated hemoglobin (HbA1c) (r=-0.095, P=0.117), triglyceride (TG) (r=-0.157, P=0.009), total cholesterol (TC) (r=-0.126, P=0.036), low-density lipoprotein cholesterol (LDL-C) (r=-0.187, P=0.002), serum creatinine (Scr) (r=-0.500, P<0.001), neutrophil gelatinase-associated lipocalin (NGAL) (r=-0.339, P<0.001), and kidney injury molecule-1 (KIM-1) (r=-0.568, P<0.001), and was positively correlated with high-density lipoprotein cholesterol (HDL-C) (r=0.343, P<0.001) and estimated glomerular filtration rate (eGFR) (r=0.442, P<0.001). The multivariate logistic regression analysis showed that diabetic patients with DN had lowered levels of serum Podoplanin (OR=0.022, 95% CI=0.005-0.100; P<0.001), lower SBP, Scr, NGAL, and KIM-1. Conclusion The results indicated that diabetic patients with DN have lower levels of serum Podoplanin. A more considerable population-based prospective investigation is essential to validate our findings.
Collapse
Affiliation(s)
- Feng Huan
- Public Health Medical Prevention Collaboration Department, First People’s Hospital, Nantong City, Jiangsu, 226014, People’s Republic of China
| | - Xia Jiang
- Department of Nephrology, Nantong Rehabilitation Hospital (Nantong Second People’s Hospital), Jiangsu, 226000, People’s Republic of China
| |
Collapse
|
6
|
Dhimmar B, Modi U, Parihar SS, Makwana P, Boldrini CL, Vasita R. Fabrication of micropatterned PCL-collagen nanofibrous scaffold for cellular confinement induced early osteogenesis. BIOMATERIALS ADVANCES 2024; 164:213991. [PMID: 39146607 DOI: 10.1016/j.bioadv.2024.213991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/06/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
The intricate interaction of the scaffold's architecture/geometry and with the cells is essential for tissue engineering and regenerative medicine. Cells sense their surrounding dynamic cues such as biophysical, biomechanical, and biochemical, and respond to them differently. Numerous studies have recently explored and reported the effect of contact guidance by culturing various types of cells on different types of micropatterned substrates such as microgrooves, geometric (square and triangle) micropattern, microstrips, micropatterned nanofibers. Amongst all of these micropatterned polymeric substrates; electrospun nanofibers have been regarded as a suitable substrate as it mimics the native ECM architectures. Therefore, in the present study; stencil-assisted electrospun Grid-lined micropatterned PCL-Collagen nanofibers (GLMPCnfs) were fabricated and its influence on the alignment and differentiation of pre-osteoblast cells (MC3T3-E1) was investigated. The randomly orientated Non-patterned PCL-Collagen nanofibers (NPPCnfs) were used as control. The patterns were characterized for their geometrical features such as area and thickness of deposition using surface profiler and scanning electron microscopy. A 61 % decrease in the overall area of GLMPCnfs as compared to the stencil area demonstrated the potential of electrofocusing phenomenon in the process of patterning electrospun nanofibers into various micron-scale structures. The MC3T3-E1 cells were confined and aligned in the direction of GLMPCnfs as confirmed by a high cellular aspect ratio (AR = 5.41), lower cellular shape index (CSI = 0.243), and cytoskeletal reorganization assessed through the F-actin filament immunocytochemistry (ICC) imaging. The aligned cells along the GLMPCnfs exhibited elevated alkaline phosphatase activity and enhanced mineralization. Furthermore, the gene expression profiling revealed upregulation of key osteogenic markers, such as ALP, OCN, OPN, COL1A1, and osteocyte markers DMP1, and SOST. Consequently, the research highlights the impact of GLMPCnfs on the cellular behaviour that results to the pre-osteoblast differentiation and the potential for stimulant-free early osteogenesis. These results offer an extensive understanding and mechanistic insight into how scaffold topography can be modified to influence cellular responses for effective bone regeneration strategies.
Collapse
Affiliation(s)
- Bindiya Dhimmar
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Unnati Modi
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Shayan Singh Parihar
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Pooja Makwana
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Chiara Liliana Boldrini
- Department of Materials Science and Solar Energy Research Center MIBSOLAR University of Milano-Biococca, and INSTM Milano-Biococca Research Unit Via Cozzi 55, I-20125 Milano, Italy
| | - Rajesh Vasita
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India; Terasaki Institute of Biomedical Innovation, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Lee SJ, Jung DK, Im S, You C, Kim JE, Bae JS, Kim MS, Yea K, Park EK. Ank-mediated pyrophosphate regulates shear stress-induced small extracellular vesicle production in 3D-cultured osteocytes. Anim Cells Syst (Seoul) 2024; 28:495-505. [PMID: 39445097 PMCID: PMC11497576 DOI: 10.1080/19768354.2024.2409460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/20/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Osteocytes are located in the lacunae of fluid-filled bone and communicate with neighboring or distant cells by secreting small extracellular vesicles (sEVs) and growth factors as well as via dendrite-dendrite direct connections. However, the mechanism regulating sEV production in osteocytes is yet to be elucidated. In this study, we investigated sEV production and its underlying mechanism in osteocytes cultured on a three dimensional (3D) scaffold. We employed a perfusion system to apply shear stress stimulation to MLO-Y4 cells cultured on a 3D biphasic calcium phosphate (BCP) scaffold and analyzed sEV production and gene expression using RNA sequencing. We found that the expression of genes associated with sEV biogenesis and the secretory pathway were enhanced by fluid shear stress in MLO-Y4 cells cultured on a 3D BCP scaffold. In particular, fluid shear stress induced the expression of Ank, a pyrophosphate transporter, in 3D-cultured MLO-Y4 cells. The role of Ank in sEV production was further examined. Probenecid, an Ank inhibitor, significantly suppressed shear stress-induced sEV production, whereas Ank cDNA overexpression stimulated it. The inhibition of shear stress-induced sEV production by probenecid was recovered by the exogenous addition of pyrophosphate to MLO-Y4 cells. These findings suggest that shear stress-mediated sEV production in 3D-cultured osteocytes is regulated by extracellular pyrophosphate transported by Ank.
Collapse
Affiliation(s)
- Su Jeong Lee
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea
| | - Deuk Kju Jung
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea
| | - Soomin Im
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea
| | - Changkook You
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute (CMRI), School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Mee-seon Kim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea
| | - Kyungmoo Yea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
8
|
Li X, Sun Y, Wang S, Si C, Li H, Chang B. A 3-Dimensional Scaffolding System Recapitulates the Hierarchical Osteon Structure. ACS OMEGA 2024; 9:41368-41377. [PMID: 39398190 PMCID: PMC11465375 DOI: 10.1021/acsomega.4c04146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024]
Abstract
The bone is composed of solid cortical bone and honeycomb-like trabecular bone. Although the cortical bone provides the substantial mechanical strength of the bone, few studies have focused on its regeneration. As the structural and functional units of the cortical bone, osteons play critical roles in bone turnover. Composed of osteocytes, lamellae, lacunocanalicular network, and Haversian canals, osteons exhibit a delicate and hierarchical architecture. Studies have attempted to reconstruct the osteonal structure with artificial approaches; however, hardly the four elements were recapitulated simultaneously. In this work, a series of bioengineering techniques, including electrospinning, micropatterning, and laser-directed microfabrication, were employed to develop a three-dimensional scaffolding system, which successfully recapitulated the osteon structure in vitro. The physiological morphology and bioactivity of osteocytes were emulated, the intercellular communications between osteocytes were identified, and the concentric lamellae and Haversian canals were simulated as well. This work constructed an in vivo-like platform for osteon study, providing convenience for exploring the interaction among the osteonal elements.
Collapse
Affiliation(s)
- Xiheng Li
- Hospital of Stomatology,
Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130021, China
- Hospital of Stomatology, Department of Pediatric Dentistry, Jilin University, Changchun 130021, China
| | - Yalu Sun
- Hospital of Stomatology,
Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130021, China
- Hospital of Stomatology, Department of Pediatric Dentistry, Jilin University, Changchun 130021, China
| | - Shuangshuang Wang
- School and Hospital of Stomatology, Department of Oral Pathology, China Medical University, Shenyang 110001, China
| | - Chao Si
- Hospital of Stomatology,
Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130021, China
- Hospital of Stomatology, Department of Pediatric Dentistry, Jilin University, Changchun 130021, China
| | - Huen Li
- Hospital of Stomatology,
Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130021, China
- Hospital of Stomatology, Department of Pediatric Dentistry, Jilin University, Changchun 130021, China
| | - Bei Chang
- Hospital of Stomatology,
Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130021, China
- Hospital of Stomatology, Department of Pediatric Dentistry, Jilin University, Changchun 130021, China
| |
Collapse
|
9
|
He X, Yamada M, Watanabe J, Pengyu Q, Chen J, Egusa H. Titanium nanotopography enhances mechano-response of osteocyte three-dimensional network toward osteoblast activation. BIOMATERIALS ADVANCES 2024; 163:213939. [PMID: 38954876 DOI: 10.1016/j.bioadv.2024.213939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
The bone turnover capability influences the acquisition and maintenance of osseointegration. The architectures of osteocyte three-dimensional (3D) networks determine the direction and activity of bone turnover through osteocyte intercellular crosstalk, which exchanges prostaglandins through gap junctions in response to mechanical loading. Titanium nanosurfaces with anisotropically patterned dense nanospikes promote the development of osteocyte lacunar-canalicular networks. We investigated the effects of titanium nanosurfaces on intercellular network development and regulatory capabilities of bone turnover in osteocytes under cyclic compressive loading. MLO-Y4 mouse osteocyte-like cell lines embedded in type I collagen 3D gels on titanium nanosurfaces promoted the formation of intercellular networks and gap junctions even under static culture conditions, in contrast to the poor intercellular connectivity in machined titanium surfaces. The osteocyte 3D network on the titanium nanosurfaces further enhanced gap junction formation after additional culturing under cyclic compressive loading simulating masticatory loading, beyond the degree observed on machined titanium surfaces. A prostaglandin synthesis inhibitor cancelled the dual effects of titanium nanosurfaces and cyclic compressive loading on the upregulation of gap junction-related genes in the osteocyte 3D culture. Supernatants from osteocyte monolayer culture on titanium nanosurfaces promoted osteocyte maturation and intercellular connections with gap junctions. With cyclic loading, titanium nanosurfaces induced expression of the regulatory factors of bone turnover in osteocyte 3D cultures, toward higher osteoblast activation than that observed on machined surfaces. Titanium nanosurfaces with anisotropically patterned dense nanospikes promoted intercellular 3D network development and regulatory function toward osteoblast activation in osteocytes activated by cyclic compressive loading, through intercellular crosstalk by prostaglandin.
Collapse
Affiliation(s)
- Xindie He
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan; Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Masahiro Yamada
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan.
| | - Jun Watanabe
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Qu Pengyu
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Jiang Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan; Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan.
| |
Collapse
|
10
|
Haraguchi-Kitakamae M, Nakajima Y, Yamamoto T, Hongo H, Cui J, Shi Y, Liu X, Yao Q, Maruoka H, Abe M, Sekiguchi T, Yokoyama A, Amizuka N, Sasano Y, Hasegawa T. Regional difference in the distribution of alkaline phosphatase, PHOSPHO1, and calcein labeling in the femoral metaphyseal trabeculae in parathyroid hormone-administered mice. J Oral Biosci 2024; 66:554-566. [PMID: 38942193 DOI: 10.1016/j.job.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
OBJECTIVES This study aimed to elucidate whether the administration of parathyroid hormone (PTH) results in remodeling- or modeling-based bone formation in different regions of the murine femora, and whether the PTH-driven bone formation would facilitate osteoblastic differentiation into osteocytes. METHODS Six-week-old male C57BL/6J mice were employed to examine the distribution of alkaline phosphatase (ALP), PHOSPHO1, podoplanin, and calcein labeling in two distinct long bone regions: the metaphyseal trabeculae close to the chondro-osseous junction (COJ) and those distant from the COJ in three mouse groups, a control group receiving a vehicle (sham group) and groups receiving hPTH (1-34) twice a day (PTH BID group) or four times a day (PTH QID group) for two weeks. RESULTS The sham group showed PHOSPHO1-reactive mature osteoblasts localized primarily at the COJ, whereas the PTH BID/QID groups exhibited extended lines of PHOSPHO1-reactive osteoblasts even in regions distant from the COJ. The PTH QID group displayed fragmented calcein labeling in trabeculae close to the COJ, whereas continuous labeling was observed in trabeculae distant from the COJ. Osteoblasts tended to express podoplanin and PHOSPHO1 independently in the close and distant regions of the sham group, while osteoblasts in the PTH-administered groups showed immunoreactivity of podoplanin and PHOSPHO1 together in the close and distant regions. CONCLUSIONS Administration of PTH may accelerate remodeling-based bone formation in regions close to the COJ while predominantly inducing modeling-based bone formation in distant regions. PTH appeared to simultaneously facilitate osteoblastic bone mineralization and differentiation into osteocytes in both remodeling- and modeling-based bone formation.
Collapse
Affiliation(s)
- Mai Haraguchi-Kitakamae
- Division of Craniofacial Development and Tissue Biology, Graduate School of Dentistry, Tohoku University, Sendai, Japan; Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan
| | - Yuhi Nakajima
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, Nagoya, Japan
| | - Tomomaya Yamamoto
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan; Department of Dentistry, Japan Ground Self-Defense Force, Camp Shinmachi, Japan
| | - Hiromi Hongo
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan
| | - Jiaxin Cui
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan
| | - Yan Shi
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan
| | - Xuanyu Liu
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan; Oral and Maxillofacial Surgery, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan
| | - Qi Yao
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan
| | - Haruhi Maruoka
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan
| | - Miki Abe
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan
| | - Tamaki Sekiguchi
- Oral and Maxillofacial Surgery, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan
| | - Ayako Yokoyama
- Gerodontology, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan
| | - Norio Amizuka
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan
| | - Yasuyuki Sasano
- Division of Craniofacial Development and Tissue Biology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Tomoka Hasegawa
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan.
| |
Collapse
|
11
|
Kuroda Y, Yoda M, Kawaai K, Tatenuma M, Mizoguchi T, Ito S, Kasahara M, Wu Y, Takano H, Momose A, Matsuo K. Developing long bones respond to surrounding tissues by trans-pairing of periosteal osteoclasts and endocortical osteoblasts. Development 2024; 151:dev202194. [PMID: 39119717 PMCID: PMC11423808 DOI: 10.1242/dev.202194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Developing long bones alter their shape while maintaining uniform cortical thickness via coordinated activity of bone-forming osteoblasts and bone-resorbing osteoclasts at periosteal and endosteal surfaces, a process we designate trans-pairing. Two types of trans-pairing shift cortical bone in opposite orientations: peri-forming trans-pairing (peri-t-p) increases bone marrow space and endo-forming trans-pairing (endo-t-p) decreases it, via paired activity of bone resorption and formation across the cortex. Here, we focused on endo-t-p in growing bones. Analysis of endo-t-p activity in the cortex of mouse fibulae revealed osteoclasts under the periosteum compressed by muscles, and expression of RANKL in periosteal cells of the cambium layer. Furthermore, mature osteoblasts were localized on the endosteum, while preosteoblasts were at the periosteum and within cortical canals. X-ray tomographic microscopy revealed the presence of cortical canals more closely associated with endo- than with peri-t-p. Sciatic nerve transection followed by muscle atrophy and unloading induced circumferential endo-t-p with concomitant spread of cortical canals. Such canals likely supply the endosteum with preosteoblasts from the periosteum under endo-t-p, allowing bone shape to change in response to mechanical stress or nerve injury.
Collapse
Affiliation(s)
- Yukiko Kuroda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Masaki Yoda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Katsuhiro Kawaai
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Motoharu Tatenuma
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | | | - Shinichirou Ito
- Department of Pharmacology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Masataka Kasahara
- Department of Pharmacology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Yanlin Wu
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba, Sendai Miyagi 980-8577, Japan
| | - Hidekazu Takano
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba, Sendai Miyagi 980-8577, Japan
| | - Atsushi Momose
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba, Sendai Miyagi 980-8577, Japan
- JASRI/SPring-8, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5198, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
12
|
Gilbert SJ, Jones R, Egan BJ, Bonnet CS, Evans SL, Mason DJ. Investigating mechanical and inflammatory pathological mechanisms in osteoarthritis using MSC-derived osteocyte-like cells in 3D. Front Endocrinol (Lausanne) 2024; 15:1359052. [PMID: 39157681 PMCID: PMC11328832 DOI: 10.3389/fendo.2024.1359052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Changes to bone physiology play a central role in the development of osteoarthritis with the mechanosensing osteocyte releasing factors that drive disease progression. This study developed a humanised in vitro model to detect osteocyte responses to either interleukin-6, a driver of degeneration and bone remodelling in animal and human joint injury, or mechanical loading, to mimic osteoarthritis stimuli in joints. Methods Human MSC cells (Y201) were differentiated in 3-dimensional type I collagen gels in osteogenic media and osteocyte phenotype assessed by RTqPCR and immunostaining. Gels were subjected to a single pathophysiological load or stimulated with interleukin-6 with unloaded or unstimulated cells as controls. RNA was extracted 1-hour post-load and assessed by RNAseq. Markers of pain, bone remodelling, and inflammation were quantified by RT-qPCR and ELISA. Results Y201 cells embedded within 3D collagen gels assumed dendritic morphology and expressed mature osteocytes markers. Mechanical loading of the osteocyte model regulated 7564 genes (Padj p<0.05, 3026 down, 4538 up). 93% of the osteocyte transcriptome signature was expressed in the model with 38% of these genes mechanically regulated. Mechanically loaded osteocytes regulated 26% of gene ontology pathways linked to OA pain, 40% reflecting bone remodelling and 27% representing inflammation. Load regulated genes associated with osteopetrosis, osteoporosis and osteoarthritis. 42% of effector genes in a genome-wide association study meta-analysis were mechanically regulated by osteocytes with 10 genes representing potential druggable targets. Interleukin-6 stimulation of osteocytes at concentrations reported in human synovial fluids from patients with OA or following knee injury, regulated similar readouts to mechanical loading including markers of pain, bone remodelling, and inflammation. Discussion We have developed a reproducible model of human osteocyte like cells that express >90% of the genes in the osteocyte transcriptome signature. Mechanical loading and inflammatory stimulation regulated genes and proteins implicated in osteoarthritis symptoms of pain as well as inflammation and degeneration underlying disease progression. Nearly half of the genes classified as 'effectors' in GWAS were mechanically regulated in this model. This model will be useful in identifying new mechanisms underlying bone and joint pathologies and testing drugs targeting those mechanisms.
Collapse
Affiliation(s)
- Sophie J. Gilbert
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ryan Jones
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ben J. Egan
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Cleo Selina Bonnet
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Sam L. Evans
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Engineering, Cardiff University, Cardiff, United Kingdom
| | - Deborah J. Mason
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
13
|
Sakamoto E, Kitase Y, Fitt AJ, Zhu Z, Awad K, Brotto M, White KE, Welc SS, Bergwitz C, Bonewald LF. Both enantiomers of β-aminoisobutyric acid BAIBA regulate Fgf23 via MRGPRD receptor by activating distinct signaling pathways in osteocytes. Cell Rep 2024; 43:114397. [PMID: 38935499 PMCID: PMC11350516 DOI: 10.1016/j.celrep.2024.114397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/24/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
With exercise, muscle and bone produce factors with beneficial effects on brain, fat, and other organs. Exercise in mice increased fibroblast growth factor 23 (FGF23), urine phosphate, and the muscle metabolite L-β-aminoisobutyric acid (L-BAIBA), suggesting that L-BAIBA may play a role in phosphate metabolism. Here, we show that L-BAIBA increases in serum with exercise and elevates Fgf23 in osteocytes. The D enantiomer, described to be elevated with exercise in humans, can also induce Fgf23 but through a delayed, indirect process via sclerostin. The two enantiomers both signal through the same receptor, Mas-related G-protein-coupled receptor type D, but activate distinct signaling pathways; L-BAIBA increases Fgf23 through Gαs/cAMP/PKA/CBP/β-catenin and Gαq/PKC/CREB, whereas D-BAIBA increases Fgf23 indirectly through sclerostin via Gαi/NF-κB. In vivo, both enantiomers increased Fgf23 in bone in parallel with elevated urinary phosphate excretion. Thus, exercise-induced increases in BAIBA and FGF23 work together to maintain phosphate homeostasis.
Collapse
Affiliation(s)
- Eijiro Sakamoto
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Yukiko Kitase
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Alexander J Fitt
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Zewu Zhu
- Section of Endocrinology and Metabolism, Yale School of Medicine, New Haven, CT 06519, USA
| | - Kamal Awad
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington, Arlington, TX 76019, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington, Arlington, TX 76019, USA
| | - Kenneth E White
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Department of Molecular and Medical Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Steven S Welc
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Clemens Bergwitz
- Section of Endocrinology and Metabolism, Yale School of Medicine, New Haven, CT 06519, USA
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Department of Orthopaedic Surgery, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
14
|
Ding S, Chen Y, Huang C, Song L, Liang Z, Wei B. Perception and response of skeleton to mechanical stress. Phys Life Rev 2024; 49:77-94. [PMID: 38564907 DOI: 10.1016/j.plrev.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Mechanical stress stands as a fundamental factor in the intricate processes governing the growth, development, morphological shaping, and maintenance of skeletal mass. The profound influence of stress in shaping the skeletal framework prompts the assertion that stress essentially births the skeleton. Despite this acknowledgment, the mechanisms by which the skeleton perceives and responds to mechanical stress remain enigmatic. In this comprehensive review, our scrutiny focuses on the structural composition and characteristics of sclerotin, leading us to posit that it serves as the primary structure within the skeleton responsible for bearing and perceiving mechanical stress. Furthermore, we propose that osteocytes within the sclerotin emerge as the principal mechanical-sensitive cells, finely attuned to perceive mechanical stress. And a detailed analysis was conducted on the possible transmission pathways of mechanical stress from the extracellular matrix to the nucleus.
Collapse
Affiliation(s)
- Sicheng Ding
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yiren Chen
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Chengshuo Huang
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lijun Song
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhen Liang
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| | - Bo Wei
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
15
|
Li X, Zhao J, Chen L, Zhou X, Qiu M, Deng L, Yang K, Xu Y. HIF-1α activation impairs dendrites formation and elongation in osteocytogenesis. Heliyon 2024; 10:e32889. [PMID: 39005918 PMCID: PMC11239586 DOI: 10.1016/j.heliyon.2024.e32889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024] Open
Abstract
Osteocytes are terminally differentiated cells derived from osteoblasts and are deeply embedded within the bone matrix. They play a critical role in bone remodeling by generating a lacuno-canalicular network (LCN) and controlling the transport of nutrients. Due to the absence of blood vessels within the bone matrix, it is widely believed that osteocytes develop in a hypoxic environment. However, the mechanisms of osteocytogenesis and the role of oxygen sensing in this process remain unclear. Hypoxia-inducible factors (HIFs) are major transcriptional factors involved in oxygen sensing. Previous studies have shown that accumulation of HIFs in osteoblasts leads to abnormal bone remodeling, potentially linked with the alterations of the LCN network. Specifically, HIF-1α is hypothesized to play a more significant role in regulating bone remodeling compared to HIF-2α. Therefore, we investigated the functions of HIF-1α in dendrite formation and the establishment of the LCN network during osteocytogenesis. Immunostaining and scanning electron microscopy revealed that the E11 protein aggregates to form a ring structure that defines the site for dendrite initiation. This process is followed by activation of the ERM/RhoA pathway and recruitment of matrix metalloproteinase 14 (MMP14) to facilitate extracellular matrix degradation, enabling dendrite elongation. However, both hypoxic treatment and overexpression of HIF-1α impair ring formation, resulting in reduced ERM/RhoA activity and decreased matrix degradation capability. These findings suggest that abnormal HIF-1α activity in local areas could contribute to impaired LCN network formation and abnormal bone remodeling observed in bone diseases such as osteopenia and aging.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, 215006, China
- Department of Orthopaedics, Affiliated Hospital of Jining Medical University, No. 89, Guhuai Road, Jining, 272029, Shandong Province, China
| | - Jian Zhao
- Department of Orthopaedics, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, Shandong, China
| | - Lei Chen
- Department of Orthopaedics, Affiliated Hospital of Jining Medical University, No. 89, Guhuai Road, Jining, 272029, Shandong Province, China
| | - Xinyi Zhou
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Minglong Qiu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Kai Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, 215006, China
| |
Collapse
|
16
|
Marozin S, Simon-Nobbe B, Huth A, Beyerer E, Weber L, Nüssler A, Lepperdinger G. Aggregation of human osteoblasts unlocks self-reliant differentiation and constitutes a microenvironment for 3D-co-cultivation with other bone marrow cells. Sci Rep 2024; 14:10345. [PMID: 38710795 PMCID: PMC11074281 DOI: 10.1038/s41598-024-60986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Skeletal bone function relies on both cells and cellular niches, which, when combined, provide guiding cues for the control of differentiation and remodeling processes. Here, we propose an in vitro 3D model based on human fetal osteoblasts, which eases the study of osteocyte commitment in vitro and thus provides a means to examine the influences of biomaterials, substances or cells on the regulation of these processes. Aggregates were formed from human fetal osteoblasts (hFOB1.19) and cultivated under proliferative, adipo- and osteoinductive conditions. When cultivated under osteoinductive conditions, the vitality of the aggregates was compromised, the expression levels of the mineralization-related gene DMP1 and the amount of calcification and matrix deposition were lower, and the growth of the spheroids stalled. However, within spheres under growth conditions without specific supplements, self-organization processes occur, which promote extracellular calcium deposition, and osteocyte-like cells develop. Long-term cultivated hFOB aggregates were free of necrotic areas. Moreover, hFOB aggregates cultivated under standard proliferative conditions supported the co-cultivation of human monocytes, microvascular endothelial cells and stromal cells. Overall, the model presented here comprises a self-organizing and easily accessible 3D osteoblast model for studying bone marrow formation and in vitro remodeling and thus provides a means to test druggable molecular pathways with the potential to promote life-long bone formation and remodeling.
Collapse
Affiliation(s)
- Sabrina Marozin
- Department of Biosciences and Medical Biology, University Salzburg, 5020, Salzburg, Austria.
| | - Birgit Simon-Nobbe
- Department of Biosciences and Medical Biology, University Salzburg, 5020, Salzburg, Austria
| | - Astrid Huth
- Department of Biosciences and Medical Biology, University Salzburg, 5020, Salzburg, Austria
| | - Evelyn Beyerer
- Department of Biosciences and Medical Biology, University Salzburg, 5020, Salzburg, Austria
| | - Laurenz Weber
- Department of Biosciences and Medical Biology, University Salzburg, 5020, Salzburg, Austria
| | - Andreas Nüssler
- Siegfried Weller Institut (SWI) | BG Klinik Tübingen, Tübingen, Germany
| | - Günter Lepperdinger
- Department of Biosciences and Medical Biology, University Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
17
|
Zheng Y, Wang P, Zhao L, Xing L, Xu H, Li N, Zhao Y, Shi Q, Liang Q, Wang Y. A novel therapy for fracture healing by increasing lymphatic drainage. J Orthop Translat 2024; 45:66-74. [PMID: 38511124 PMCID: PMC10950565 DOI: 10.1016/j.jot.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/03/2024] [Accepted: 02/06/2024] [Indexed: 03/22/2024] Open
Abstract
Background The musculoskeletal system contains an extensive network of lymphatic vessels. Decreased lymph flow of the draining collecting lymphatics usually occurs in clinic after traumatic fractures. However, whether defects in lymphatic drainage can affect fracture healing is unclear. Methods To investigate the effect of lymphatic dysfunction on fracture healing, we used a selective VEGFR3 tyrosine kinase inhibitor to treat tibial fractured mice for 5 weeks versus a vehicle-treated control. To ensure successfully establishing deceased lymphatic drainage model for fractured mice, we measured lymphatic clearance by near infrared indocyanine green lymphatic imaging (NIR-ICG) and the volume of the draining popliteal lymph nodes (PLNs) by ultrasound at the whole phases of fracture healing. In addition, hindlimb edema from day 0 to day 7 post-fracture, pain sensation by Hargreaves test at day 1 post-fracture, bone histomorphometry by micro-CT and callus composition by Alcian Blue-Hematoxylin/Orange G staining at day 14 post-fracture, and bone quality by biomechanical testing at day 35 post-fracture were applied to evaluate fracture healing. To promote fracture healing via increasing lymphatic drainage, we then treated fractured mice with anti-mouse podoplanin (PDPN) neutralizing antibody or isotype IgG antibody for 1 week to observe lymphatic drainage function and assess bone repair as methods described above. Results Compared to vehicle-treated group, SAR-treatment group significantly decreased lymphatic clearance and the volume of draining PLNs. SAR-treatment group significantly increased soft tissue swelling, and reduced bone volume (BV)/tissue volume (TV), trabecular number (Tb.N), woven bone and biomechanical properties of fracture callus. In addition, anti-PDPN treated group significantly reduced the number of CD41+ platelets in PLNs and increased the number of pulsatile lymphatic vessels, lymphatic clearance and the volume of PLNs. Moreover, anti-PDPN treated group significantly reduced hindlimb edema and pain sensation and increased BV/TV, trabecular number (Tb.Th), woven bone and biomechanical properties of fracture callus. Conclusions Inhibition of proper lymphatic drainage function delayed fracture healing. Use of a anti-PDPN neutralizing antibody reduced lymphatic platelet thrombosis (LPT), increased lymphatic drainage and improved fracture healing. The translational potential of this article (1) We demonstrated lymphatic drainage function is crucial for fracture healing. (2) To unblock the lymphatic drainage and prevent the risk of bleeding and mortality by blood thinner, we demonstrated PDPN neutralizing antibody is a novel and safe way forward in the treatment of bone fracture healing by eliminating LPT and increasing lymphatic drainage.
Collapse
Affiliation(s)
- Yangkang Zheng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Pengyu Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Li Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine and Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Ning Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Yongjian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - YongJun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| |
Collapse
|
18
|
Lopez AN, Bazer FW, Wu G. Functions and Metabolism of Amino Acids in Bones and Joints of Cats and Dogs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1446:155-175. [PMID: 38625528 DOI: 10.1007/978-3-031-54192-6_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The bone is a large and complex organ (12-15% of body weight) consisting of specialized connective tissues (bone matrix and bone marrow), whereas joints are composed of cartilage, tendons, ligaments, synovial joint capsules and membranes, and a synovial joint cavity filled with synovial fluid. Maintaining healthy bones and joints is a dynamic and complex process, as bone deposition (formation of new bone materials) and resorption (breakdown of the bone matrix to release calcium and phosphorus) are the continuous processes to determine bone balance. Bones are required for locomotion, protection of internal organs, and have endocrine functions to maintain mineral homeostasis. Joints are responsible for resisting mechanical stress/trauma, aiding in locomotion, and supporting the overall musculoskeletal system. Amino acids have multiple regulatory, compositional, metabolic, and functional roles in maintaining the health of bones and joints. Their disorders are prevalent in mammals and significantly reduce the quality of life. These abnormalities in companion animals, specifically cats and dogs, commonly lead to elective euthanasia due to the poor quality of life. Multiple disorders of bones and joints result from genetic predisposition and are heritable, but other factors such as nutrition, growth rate, trauma, and physical activity affect how the disorder manifests. Treatments for cats and dogs are primarily to slow the progression of these disorders and assist in pain management. Therapeutic supplements such as Cosequin and formulated diets rich in amino acids are used commonly as treatments for companion animals to reduce pain and slow the progression of those diseases. Also, amino acids (e.g., taurine, arginine, glycine, proline, and 4-hydroxyproline), and glucosamine reduce inflammation and pain in animals with bone and joint disorders. Gaining insight into how amino acids function in maintaining bone and joint health can aid in developing preventative diets and therapeutic supplementations of amino acids to improve the quality of life in companion animals.
Collapse
Affiliation(s)
- Arianna N Lopez
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
19
|
Liu G, Wei J, Xiao W, Xie W, Ru Q, Chen L, Wu Y, Mobasheri A, Li Y. Insights into the Notch signaling pathway in degenerative musculoskeletal disorders: Mechanisms and perspectives. Biomed Pharmacother 2023; 169:115884. [PMID: 37981460 DOI: 10.1016/j.biopha.2023.115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
Degenerative musculoskeletal disorders are a group of age-related diseases of the locomotive system that severely affects the patient's ability to work and cause adverse sequalae such as fractures and even death. The incidence and prevalence of degenerative musculoskeletal disorders is rising owing to the aging of the world's population. The Notch signaling pathway, which is expressed in almost all organ systems, extensively regulates cell proliferation and differentiation as well as cellular fate. Notch signaling shows increased activity in degenerative musculoskeletal disorders and retards the progression of degeneration to some extent. The review focuses on four major degenerative musculoskeletal disorders (osteoarthritis, intervertebral disc degeneration, osteoporosis, and sarcopenia) and summarizes the pathophysiological functions of Notch signaling in these disorders, especially its role in stem/progenitor cells in each disorder. Finally, a conclusion will be presented to explore the research and application of the perspectives on Notch signaling in degenerative musculoskeletal disorders.
Collapse
Affiliation(s)
- Gaoming Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jun Wei
- Department of Clinical Medical School, Xinjiang Medical University, Urumqi 830054, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China; Department of Clinical Medical School, Xinjiang Medical University, Urumqi 830054, China.
| |
Collapse
|
20
|
Ma L, Wang W, Xu G, Li H, Liu F, Shao H, Zhang X, Ma Y, Li G, Li H, Gao S, Ling P. Connexin 43 in the function and homeostasis of osteocytes: a narrative review. ANNALS OF JOINT 2023; 9:10. [PMID: 38529291 PMCID: PMC10929443 DOI: 10.21037/aoj-23-65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/29/2023] [Indexed: 03/27/2024]
Abstract
Background and Objective Connexin 43 (Cx43) is the main gap junction (GJ) protein and hemichannel protein in bone tissue. It is involved in the formation of hemichannels and GJs and establishes channels that can communicate directly to exchange substances and signals, affecting the structure and function of osteocytes. CX43 is very important for the normal development of bone tissue and the establishment and balance of bone reconstruction. However, the molecular mechanisms by which CX43 regulates osteoblast function and homeostasis have been less well studied, and this article provides a review of research in this area. Methods We searched the PubMed, EMBASE, Cochrane Library, and Web of Science databases for studies published up to June 2023 using the keywords Connexin 43/Cx43 and Osteocytes. Screening of literatures according to inclusion and exclusion guidelines and summarized the results. Key Content and Findings Osteocytes, osteoblasts, and osteoclasts all express Cx43 and form an overall network through the interaction between GJs. Cx43 is not only involved in the mechanical response of bone tissue but also in the regulation of signal transduction, which could provide new molecular markers and novel targets for the treatment of certain bone diseases. Conclusions Cx43 is expressed in osteoblasts, osteoclasts, and osteoclasts and plays an important role in regulating the function, signal transduction, and mechanotransduction of osteocytes. This review offers a new contribution to the literature by summarizing the relationship between Cx43, a key protein of bone tissue, and osteoblasts.
Collapse
Affiliation(s)
- Liang Ma
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
- Post-doctoral Station of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenzhao Wang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guixuan Xu
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- Department of Joint Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Fei Liu
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Huarong Shao
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Xiuhua Zhang
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Yuxia Ma
- Post-doctoral Station of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Gang Li
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui Li
- Department of Operating Room, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuzhong Gao
- Post-doctoral Station of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peixue Ling
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
| |
Collapse
|
21
|
Killinger M, Kratochvilová A, Reihs EI, Matalová E, Klepárník K, Rothbauer M. Microfluidic device for enhancement and analysis of osteoblast differentiation in three-dimensional cell cultures. J Biol Eng 2023; 17:77. [PMID: 38098075 PMCID: PMC10722696 DOI: 10.1186/s13036-023-00395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Three-dimensional (3D) cell cultures are to date the gold standard in biomedical research fields due to their enhanced biological functions compared to conventional two-dimensional (2D) cultures. 3D cell spheroids, as well as organoids, are better suited to replicate tissue functions, which enables their use both as in vitro models for basic research and toxicology, as well as building blocks used in tissue/organ biofabrication approaches. Culturing 3D spheroids from bone-derived cells is an emerging technology for both disease modelling and drug screening applications. Bone tissue models are mainly limited by the implementation of sophisticated devices and procedures that can foster a tissue-specific 3D cell microenvironment along with a dynamic cultivation regime. In this study, we consequently developed, optimized and characterized an advanced perfused microfluidic platform to improve the reliability of 3D bone cell cultivation and to enhance aspects of bone tissue maturation in vitro. Moreover, biomechanical stimulation generated by fluid flow inside the arrayed chamber, was used to mimic a more dynamic cell environment emulating a highly vascularized bone we expected to improve the osteogenic 3D microenvironment in the developed multifunctional spheroid-array platform. The optimized 3D cell culture protocols in our murine bone-on-a-chip spheroid model exhibited increased mineralization and viability compared to static conditions. As a proof-of-concept, we successfully confirmed on the beneficial effects of a dynamic culture environment on osteogenesis and used our platform for analysis of bone-derived spheroids produced from primary human pre-osteoblasts. To conclude, the newly developed system represents a powerful tool for studying human bone patho/physiology in vitro under more relevant and dynamic culture conditions converging the advantages of microfluidic platforms with multi-spheroid array technologies.
Collapse
Affiliation(s)
- Michael Killinger
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, Academy of Sciences, Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Adéla Kratochvilová
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic
| | - Eva Ingeborg Reihs
- Cell Chip Group, Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Technical University Vienna, Vienna, Austria
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Eva Matalová
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic
| | - Karel Klepárník
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, Academy of Sciences, Brno, Czech Republic
| | - Mario Rothbauer
- Cell Chip Group, Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Technical University Vienna, Vienna, Austria.
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide a background on osteocytes and the primary cilium, discussing the role it plays in osteocyte mechanosensing. RECENT FINDINGS Osteocytes are thought to be the primary mechanosensing cells in bone tissue, regulating bone adaptation in response to exercise, with the primary cilium suggested to be a key mechanosensing mechanism in bone. More recent work has suggested that, rather than being direct mechanosensors themselves, primary cilia in bone may instead form a key chemo-signalling nexus for processing mechanoregulated signalling pathways. Recent evidence suggests that pharmacologically induced lengthening of the primary cilium in osteocytes may potentiate greater mechanotransduction, rather than greater mechanosensing. While more research is required to delineate the specific osteocyte mechanobiological molecular mechanisms governed by the primary cilium, it is clear from the literature that the primary cilium has significant potential as a therapeutic target to treat mechanoregulated bone diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Stefaan W Verbruggen
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK.
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK.
- Centre for Predictive in vitro Models, Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK.
| | - Anuphan Sittichokechaiwut
- Department of Preventive Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
- Center of Excellence in Biomaterials, Naresuan University, Phitsanulok, Thailand
| | - Gwendolen C Reilly
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
- Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
23
|
André G, Chretien A, Demoulin A, Beersaerts M, Docquier PL, Behets C. Col1A-2 Mutation in Osteogenesis Imperfecta Mice Contributes to Long Bone Fragility by Modifying Cell-Matrix Organization. Int J Mol Sci 2023; 24:17010. [PMID: 38069332 PMCID: PMC10707465 DOI: 10.3390/ijms242317010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a rare congenital bone dysplasia generally caused by a mutation of one of the type I collagen genes and characterized by low bone mass, numerous fractures, and bone deformities. The collagen organization and osteocyte lacuna arrangement were investigated in the long bones of 17-week-old wildtype (WT, n = 17) and osteogenesis imperfecta mice (OIM, n = 16) that is a validated model of severe human OI in order to assess their possible role in bone fragility. Fractures were counted after in vivo scanning at weeks 5, 11, and 17. Humerus, femur, and tibia diaphyses from both groups were analyzed ex vivo with pQCT, polarized and ordinary light histology, and Nano-CT. The fractures observed in the OIM were more numerous in the humerus and femur than in the tibia, whereas the quantitative bone parameters were altered in different ways among these bones. Collagen fiber organization appeared disrupted, with a lower birefringence in OIM than WT bones, whereas the osteocyte lacunae were more numerous, more spherical, and not aligned in a lamellar pattern. These modifications, which are typical of immature and less mechanically competent bone, attest to the reciprocal alteration of collagen matrix and osteocyte lacuna organization in the OIM, thereby contributing to bone fragility.
Collapse
Affiliation(s)
- Grégoire André
- Pole of Morphology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (G.A.); (A.C.); (A.D.); (M.B.)
| | - Antoine Chretien
- Pole of Morphology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (G.A.); (A.C.); (A.D.); (M.B.)
| | - Antoine Demoulin
- Pole of Morphology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (G.A.); (A.C.); (A.D.); (M.B.)
| | - Mélanie Beersaerts
- Pole of Morphology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (G.A.); (A.C.); (A.D.); (M.B.)
| | - Pierre-Louis Docquier
- Neuromusculoskeletal Lab, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Catherine Behets
- Pole of Morphology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (G.A.); (A.C.); (A.D.); (M.B.)
| |
Collapse
|
24
|
Šromová V, Sobola D, Kaspar P. A Brief Review of Bone Cell Function and Importance. Cells 2023; 12:2576. [PMID: 37947654 PMCID: PMC10648520 DOI: 10.3390/cells12212576] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
This review focuses on understanding the macroscopic and microscopic characteristics of bone tissue and reviews current knowledge of its physiology. It explores how these features intricately collaborate to maintain the balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, which plays a pivotal role in shaping not only our physical framework but also overall health. In this work, a comprehensive exploration of microscopic and macroscopic features of bone tissue is presented.
Collapse
Affiliation(s)
- Veronika Šromová
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, 601 90 Brno, Czech Republic
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, 601 90 Brno, Czech Republic;
| | - Dinara Sobola
- Academy of Sciences of the Czech Republic, Institute of Physics of Materials, Žižkova 22, 616 62 Brno, Czech Republic
| | - Pavel Kaspar
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, 601 90 Brno, Czech Republic;
| |
Collapse
|
25
|
Nile M, Folwaczny M, Wichelhaus A, Baumert U, Janjic Rankovic M. Fluid flow shear stress and tissue remodeling-an orthodontic perspective: evidence synthesis and differential gene expression network analysis. Front Bioeng Biotechnol 2023; 11:1256825. [PMID: 37795174 PMCID: PMC10545883 DOI: 10.3389/fbioe.2023.1256825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction: This study aimed to identify and analyze in vitro studies investigating the biological effect of fluid-flow shear stress (FSS) on cells found in the periodontal ligament and bone tissue. Method: We followed the PRISMA guideline for systematic reviews. A PubMed search strategy was developed, studies were selected according to predefined eligibility criteria, and the risk of bias was assessed. Relevant data related to cell source, applied FSS, and locus-specific expression were extracted. Based on this evidence synthesis and, as an original part of this work, analysis of differential gene expression using over-representation and network-analysis was performed. Five relevant publicly available gene expression datasets were analyzed using gene set enrichment analysis (GSEA). Result: A total of 6,974 articles were identified. Titles and abstracts were screened, and 218 articles were selected for full-text assessment. Finally, 120 articles were included in this study. Sample size determination and statistical analysis related to methodological quality and the ethical statement item in reporting quality were most frequently identified as high risk of bias. The analyzed studies mostly used custom-made fluid-flow apparatuses (61.7%). FSS was most frequently applied for 0.5 h, 1 h, or 2 h, whereas FSS magnitudes ranged from 6 to 20 dyn/cm2 depending on cell type and flow profile. Fluid-flow frequencies of 1 Hz in human cells and 1 and 5 Hz in mouse cells were mostly applied. FSS upregulated genes/metabolites responsible for tissue formation (AKT1, alkaline phosphatase, BGLAP, BMP2, Ca2+, COL1A1, CTNNB1, GJA1, MAPK1/MAPK3, PDPN, RUNX2, SPP1, TNFRSF11B, VEGFA, WNT3A) and inflammation (nitric oxide, PGE-2, PGI-2, PTGS1, PTGS2). Protein-protein interaction networks were constructed and analyzed using over-representation analysis and GSEA to identify shared signaling pathways. Conclusion: To our knowledge, this is the first review giving a comprehensive overview and discussion of methodological technical details regarding fluid flow application in 2D cell culture in vitro experimental conditions. Therefore, it is not only providing valuable information about cellular molecular events and their quantitative and qualitative analysis, but also confirming the reproducibility of previously published results.
Collapse
Affiliation(s)
- Mustafa Nile
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, Munich, Germany
| | - Matthias Folwaczny
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, Munich, Germany
| | - Uwe Baumert
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, Munich, Germany
| | - Mila Janjic Rankovic
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
26
|
Munir A, Reseland JE, Tiainen H, Haugen HJ, Sikorski P, Christiansen EF, Reinholt FP, Syversen U, Solberg LB. Osteocyte-Like Cells Differentiated From Primary Osteoblasts in an Artificial Human Bone Tissue Model. JBMR Plus 2023; 7:e10792. [PMID: 37701151 PMCID: PMC10494512 DOI: 10.1002/jbm4.10792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 09/14/2023] Open
Abstract
In vitro models of primary human osteocytes embedded in natural mineralized matrix without artificial scaffolds are lacking. We have established cell culture conditions that favored the natural 3D orientation of the bone cells and stimulated the cascade of signaling needed for primary human osteoblasts to differentiate into osteocytes with the characteristically phenotypical dendritic network between cells. Primary human osteoblasts cultured in a 3D rotating bioreactor and incubated with a combination of vitamins A, C, and D for up to 21 days produced osteospheres resembling native bone. Osteocyte-like cells were identified as entrapped, stellate-shaped cells interconnected through canaliculi embedded in a structured, mineralized, collagen matrix. These cells expressed late osteoblast and osteocyte markers such as osteocalcin (OCN), podoplanin (E11), dentin matrix acidic phosphoprotein 1 (DMP1), and sclerostin (SOST). Organized collagen fibrils, observed associated with the cell hydroxyapatite (HAp) crystals, were found throughout the spheroid and in between the collagen fibrils. In addition to osteocyte-like cells, the spheroids consisted of osteoblasts at various differentiation stages surrounded by a rim of cells resembling lining cells. This resemblance to native bone indicates a model system with potential for studying osteocyte-like cell differentiation, cross-talk between bone cells, and the mineralization process in a bonelike structure in vitro without artificial scaffolds. In addition, natural extracellular matrix may allow for the study of tissue-specific biochemical, biophysical, and mechanical properties. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Arooj Munir
- Department of BiomaterialsInstitute of Clinical Dentistry, University of OsloOsloNorway
| | - Janne Elin Reseland
- Department of BiomaterialsInstitute of Clinical Dentistry, University of OsloOsloNorway
| | - Hanna Tiainen
- Department of BiomaterialsInstitute of Clinical Dentistry, University of OsloOsloNorway
| | - Håvard Jostein Haugen
- Department of BiomaterialsInstitute of Clinical Dentistry, University of OsloOsloNorway
| | - Pawel Sikorski
- Department of PhysicsNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | | | | | - Unni Syversen
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Lene Bergendal Solberg
- Department of PathologyOslo University HospitalOsloNorway
- Division of Orthopedic SurgeryOslo University HospitalOsloNorway
| |
Collapse
|
27
|
Lee BS, Murray C, Liu J, Kim M, Hwang MS, Yueh T, Mansour M, Qamar S, Agarwal G, Kim DG. The myosin and RhoGAP MYO9B influences osteocyte dendrite growth and responses to mechanical stimuli. Front Bioeng Biotechnol 2023; 11:1243303. [PMID: 37675403 PMCID: PMC10477788 DOI: 10.3389/fbioe.2023.1243303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction: Myosin IXB (MYO9B) is an unconventional myosin with RhoGAP activity and thus is a regulator of actin cytoskeletal organization. MYO9B was previously shown to be necessary for skeletal growth and health and to play a role in actin-based functions of both osteoblasts and osteoclasts. However, its role in responses to mechanical stimulation of bone cells has not yet been described. Therefore, experiments were undertaken to determine the role of MYO9B in bone cell responses to mechanical stress both in vitro and in vivo. Methods: MYO9B expression was knocked down in osteoblast and osteocyte cell lines using RNA interference and the resulting cells were subjected to mechanical stresses including cyclic tensile strain, fluid shear stress, and plating on different substrates (no substrate vs. monomeric or polymerized collagen type I). Osteocytic cells were also subjected to MYO9B regulation through Slit-Robo signaling. Further, wild-type or Myo9b -/- mice were subjected to a regimen of whole-body vibration (WBV) and changes in bone quality were assessed by micro-CT. Results: Unlike control cells, MYO9B-deficient osteoblastic cells subjected to uniaxial cyclic tensile strain were unable to orient their actin stress fibers perpendicular to the strain. Osteocytic cells in which MYO9B was knocked down exhibited elongated dendrites but were unable to respond normally to treatments that increase dendrite length such as fluid shear stress and Slit-Robo signaling. Osteocytic responses to mechanical stimuli were also found to be dependent on the polymerization state of collagen type I substrates. Wild-type mice responded to WBV with increased bone tissue mineral density values while Myo9b -/- mice responded with bone loss. Discussion: These results demonstrate that MYO9B plays a key role in mechanical stress-induced responses of bone cells in vitro and in vivo.
Collapse
Affiliation(s)
- Beth S. Lee
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Cynthia Murray
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jie Liu
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Minji Kim
- Department of Orthodontics, Graduate School of Clinical Dentistry, Ewha Womans University, Seoul, Republic of Korea
| | - Min Sik Hwang
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Tina Yueh
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Myrna Mansour
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Sana Qamar
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Gunjan Agarwal
- Department of Mechanical and Aerospace Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
28
|
Krasnova O, Neganova I. Assembling the Puzzle Pieces. Insights for in Vitro Bone Remodeling. Stem Cell Rev Rep 2023; 19:1635-1658. [PMID: 37204634 DOI: 10.1007/s12015-023-10558-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
As a highly dynamic organ, bone changes during throughout a person's life. This process is referred to as 'bone remodeling' and it involves two stages - a well-balanced osteoclastic bone resorption and an osteoblastic bone formation. Under normal physiological conditions bone remodeling is highly regulated that ensures tight coupling between bone formation and resorption, and its disruption results in a bone metabolic disorder, most commonly osteoporosis. Though osteoporosis is one of the most prevalent skeletal ailments that affect women and men aged over 40 of all races and ethnicities, currently there are few, if any safe and effective therapeutic interventions available. Developing state-of-the-art cellular systems for bone remodeling and osteoporosis can provide important insights into the cellular and molecular mechanisms involved in skeletal homeostasis and advise better therapies for patients. This review describes osteoblastogenesis and osteoclastogenesis as two vital processes for producing mature, active bone cells in the context of interactions between cells and the bone matrix. In addition, it considers current approaches in bone tissue engineering, pointing out cell sources, core factors and matrices used in scientific practice for modeling bone diseases and testing drugs. Finally, it focuses on the challenges that bone regenerative medicine is currently facing.
Collapse
Affiliation(s)
- O Krasnova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - I Neganova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia.
| |
Collapse
|
29
|
Zhang X, Pu X, Pi C, Xie J. The role of fibroblast growth factor 7 in cartilage development and diseases. Life Sci 2023:121804. [PMID: 37245839 DOI: 10.1016/j.lfs.2023.121804] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Fibroblast growth factor 7 (FGF7), also known as keratinocyte growth factor (KGF), shows a crucial biological significance in tissue development, wound repair, tumorigenesis, and immune reconstruction. In the skeletal system, FGF7 directs the cellular synaptic extension of individual cells and facilities functional gap junction intercellular communication of a collective of cells. Moreover, it promotes the osteogenic differentiation of stem cells via a cytoplasmic signaling network. For cartilage, reports have indicated the potential role of FGF7 on the regulation of key molecules Cx43 in cartilage and Runx2 in hypertrophic cartilage. However, the molecular mechanism of FGF7 in chondrocyte behaviors and cartilage pathological process remains largely unknown. In this review, we systematically summarize the recent biological function of FGF7 and its regulatory role on chondrocytes and cartilage diseases, especially through the hot focus of two key molecules, Runx2 and Cx43. The current knowledge of FGF7 on the physiological and pathological processes of chondrocytes and cartilage provides us new cues for wound repair of cartilage defect and therapy of cartilage diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaohua Pu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
30
|
Abstract
Although osteoblasts and osteocytes are descended from the same lineage, they each have unique and essential roles in bone. Targeting gene deletion to osteoblasts and osteocytes using the Cre/loxP system has greatly increased our current understanding of how these cells function. Additionally, the use of the Cre/loxP system in conjunction with cell-specific reporters has enabled lineage tracing of these bone cells both in vivo and ex vivo. However, concerns have been raised regarding the specificity of the promoters used and the resulting off-target effects on cells within and outside of the bone. In this review, we have summarized the main mouse models that have been used to determine the functions of specific genes in osteoblasts and osteocytes. We discuss the expression patterns and specificity of the different promoter fragments during osteoblast to osteocyte differentiation in vivo. We also highlight how their expression in non-skeletal tissues may complicate the interpretation of study results. A thorough understanding of when and where these promoters are activated will enable improved study design and greater confidence in data interpretation.
Collapse
Affiliation(s)
- Y Kitase
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States of America
| | - M Prideaux
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States of America.
| |
Collapse
|
31
|
Puts R, Khaffaf A, Shaka M, Zhang H, Raum K. Focused Low-Intensity Pulsed Ultrasound (FLIPUS) Mitigates Apoptosis of MLO-Y4 Osteocyte-like Cells. Bioengineering (Basel) 2023; 10:bioengineering10030387. [PMID: 36978778 PMCID: PMC10045139 DOI: 10.3390/bioengineering10030387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Long cytoplasmic processes of osteocytes orchestrate bone activity by integration of biochemical and mechanical signals and regulate load-induced bone adaptation. Low-Intensity Pulsed Ultrasound (LIPUS) is a clinically used technique for fracture healing that delivers mechanical impulses to the damaged bone tissue in a non-invasive and non-ionizing manner. The mechanism of action of LIPUS is still controversially discussed in the scientific community. In this study, the effect of focused LIPUS (FLIPUS) on the survival of starved MLO-Y4 osteocytes was investigated in vitro. Osteocytes stimulated for 10 min with FLIPUS exhibited extended dendrites, which formed frequent connections to neighboring cells and spanned longer distances. The sonicated cells displayed thick actin bundles and experienced increase in expression of connexin 43 (Cx43) proteins, especially on their dendrites, and E11 glycoprotein, which is responsible for the elongation of cellular cytoplasmic processes. After stimulation, expression of cell growth and survival genes as well as genes related to cell-cell communication was augmented. In addition, cell viability was improved after the sonication, and a decrease in ATP release in the medium was observed. In summary, FLIPUS mitigated apoptosis of starved osteocytes, which is likely related to the formation of the extensive dendritic network that ensured cell survival.
Collapse
Affiliation(s)
- Regina Puts
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies, Charité-Universitätsmedizin, 13353 Berlin, Germany
| | - Aseel Khaffaf
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| | - Maria Shaka
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| | - Hui Zhang
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| | - Kay Raum
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| |
Collapse
|
32
|
Brent MB. Pharmaceutical treatment of bone loss: From animal models and drug development to future treatment strategies. Pharmacol Ther 2023; 244:108383. [PMID: 36933702 DOI: 10.1016/j.pharmthera.2023.108383] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Animal models are fundamental to advance our knowledge of the underlying pathophysiology of bone loss and to study pharmaceutical countermeasures against it. The animal model of post-menopausal osteoporosis from ovariectomy is the most widely used preclinical approach to study skeletal deterioration. However, several other animal models exist, each with unique characteristics such as bone loss from disuse, lactation, glucocorticoid excess, or exposure to hypobaric hypoxia. The present review aimed to provide a comprehensive overview of these animal models to emphasize the importance and significance of investigating bone loss and pharmaceutical countermeasures from perspectives other than post-menopausal osteoporosis only. Hence, the pathophysiology and underlying cellular mechanisms involved in the various types of bone loss are different, and this might influence which prevention and treatment strategies are the most effective. In addition, the review sought to map the current landscape of pharmaceutical countermeasures against osteoporosis with an emphasis on how drug development has changed from being driven by clinical observations and enhancement or repurposing of existing drugs to today's use of targeted anti-bodies that are the result of advanced insights into the underlying molecular mechanisms of bone formation and resorption. Moreover, new treatment combinations or repurposing opportunities of already approved drugs with a focus on dabigatran, parathyroid hormone and abaloparatide, growth hormone, inhibitors of the activin signaling pathway, acetazolamide, zoledronate, and romosozumab are discussed. Despite the considerable progress in drug development, there is still a clear need to improve treatment strategies and develop new pharmaceuticals against various types of osteoporosis. The review also highlights that new treatment indications should be explored using multiple animal models of bone loss in order to ensure a broad representation of different types of skeletal deterioration instead of mainly focusing on primary osteoporosis from post-menopausal estrogen deficiency.
Collapse
Affiliation(s)
- Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Denmark, Wilhelm Meyers Allé 3, 8000 Aarhus C, Denmark.
| |
Collapse
|
33
|
Li Q, Wang R, Zhang Z, Wang H, Lu X, Zhang J, Kong APS, Tian XY, Chan HF, Chung ACK, Cheng JCY, Jiang Q, Lee WYW. Sirt3 mediates the benefits of exercise on bone in aged mice. Cell Death Differ 2023; 30:152-167. [PMID: 36153410 PMCID: PMC9883264 DOI: 10.1038/s41418-022-01053-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 02/01/2023] Open
Abstract
Exercise in later life is important for bone health and delays the progression of osteoporotic bone loss. Osteocytes are the major bone cells responsible for transforming mechanical stimuli into cellular signals through their highly specialized lacunocanalicular networks (LCN). Osteocyte activity and LCN degenerate with aging, thus might impair the effectiveness of exercise on bone health; however, the underlying mechanism and clinical implications remain elusive. Herein, we showed that deletion of Sirt3 in osteocytes could impair the formation of osteocyte dendritic processes and inhibit bone gain in response to exercise in vivo. Mechanistic studies revealed that Sirt3 regulates E11/gp38 through the protein kinase A (PKA)/cAMP response element-binding protein (CREB) signaling pathway. Additionally, the Sirt3 activator honokiol enhanced the sensitivity of osteocytes to fluid shear stress in vitro, and intraperitoneal injection of honokiol reduced bone loss in aged mice in a dose-dependent manner. Collectively, Sirt3 in osteocytes regulates bone mass and mechanical responses through the regulation of E11/gp38. Therefore, targeting Sirt3 could be a novel therapeutic strategy to prevent age-related bone loss and augment the benefits of exercise on the senescent skeleton.
Collapse
Affiliation(s)
- Qiangqiang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Rongliang Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhe Zhang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
| | - Haixing Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaomin Lu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jiajun Zhang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
| | - Alice Pik-Shan Kong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hon-Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Arthur Chi-Kong Chung
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jack Chun-Yiu Cheng
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| | - Wayne Yuk-Wai Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
34
|
Wang JS, Wein MN. Pathways Controlling Formation and Maintenance of the Osteocyte Dendrite Network. Curr Osteoporos Rep 2022; 20:493-504. [PMID: 36087214 PMCID: PMC9718876 DOI: 10.1007/s11914-022-00753-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the molecular mechanisms involved in osteocyte dendrite formation, summarize the similarities between osteocytic and neuronal projections, and highlight the importance of osteocyte dendrite maintenance in human skeletal disease. RECENT FINDINGS It is suggested that there is a causal relationship between the loss of osteocyte dendrites and the increased osteocyte apoptosis during conditions including aging, microdamage, and skeletal disease. A few mechanisms are proposed to control dendrite formation and outgrowth, such as via the regulation of actin polymerization dynamics. This review addresses the impact of osteocyte dendrites in bone health and disease. Recent advances in multi-omics, in vivo and in vitro models, and microscopy-based imaging have provided novel approaches to reveal the underlying mechanisms that regulate dendrite development. Future therapeutic approaches are needed to target the process of osteocyte dendrite formation.
Collapse
Affiliation(s)
- Jialiang S Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
35
|
Hamilton KL, Greenspan AA, Shienbaum AJ, Fischer BD, Bottaro A, Goldberg GS. Maackia amurensis seed lectin (MASL) ameliorates articular cartilage destruction and increases movement velocity of mice with TNFα induced rheumatoid arthritis. Biochem Biophys Rep 2022; 32:101341. [PMID: 36120492 PMCID: PMC9471970 DOI: 10.1016/j.bbrep.2022.101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Up to 70 million people around the world suffer from rheumatoid arthritis. Current treatment options have varied efficacy and can cause unwanted side effects. New approaches are needed to treat this condition. Sialic acid modifications on chondrocyte receptors have been associated with arthritic inflammation and joint destruction. For example, the transmembrane mucin receptor protein podoplanin (PDPN) has been identified as a functionally relevant receptor that presents extracellular sialic acid motifs. PDPN signaling promotes inflammation and invasion associated with arthritis and, therefore, has emerged as a target that can be used to inhibit arthritic inflammation. Maackia amurensis seed lectin (MASL) can target PDPN on chondrocytes to decrease inflammatory signaling cascades and reduce cartilage destruction in a lipopolysaccharide induced osteoarthritis mouse model. Here, we investigated the effects of MASL on rheumatoid arthritis progression in a TNFα transgenic (TNF-Tg) mouse model. Results from this study indicate that MASL can be administered orally to ameliorate joint malformation and increase velocity of movement exhibited by these TNF-Tg mice. These data support the consideration of MASL as a potential treatment for rheumatoid arthritis.
Collapse
Affiliation(s)
- Kelly L. Hamilton
- Rowan University School of Osteopathic Medicine and Graduate School of Biomedical Sciences, 2 Medical Center Dr., Stratford, NJ, 08084, USA
- Medstar Georgetown University Hospital, 3800 Reservoir Road NW, Washington, DC, 20007, USA
| | - Amanda A. Greenspan
- Rowan University School of Osteopathic Medicine and Graduate School of Biomedical Sciences, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Alan J. Shienbaum
- Keystone Medical Laboratories & Pathology Associates, 781 Keystone Industrial Park, Throop, PA, 18512, USA
| | - Bradford D. Fischer
- Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ, 08103, USA
| | - Andrea Bottaro
- Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ, 08103, USA
| | - Gary S. Goldberg
- Rowan University School of Osteopathic Medicine and Graduate School of Biomedical Sciences, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| |
Collapse
|
36
|
Associated changes in stiffness of collagen scaffolds during osteoblast mineralisation and bone formation. BMC Res Notes 2022; 15:310. [PMID: 36153566 PMCID: PMC9509582 DOI: 10.1186/s13104-022-06203-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
Objective Engineering bone in 3D is important for both regenerative medicine purposes and for the development of accurate in vitro models of bone tissue. The changing material stiffness of bone tissue had not yet been monitored throughout the process of mineralisation and bone nodule formation by osteoblasts either during in vitro engineering or in development perspective. Results Within this short research note, stiffness changes (Young’s modulus) during in vitro bone formation by primary osteoblasts in dense collagen scaffolds were monitored using atomic force microscopy. Data analysis revealed significant stiffening of 3D bone cultures at day 5 and 8 that was correlated with the onset of mineral deposition (p < 0.00005).
Collapse
|
37
|
Wang S, Xiao L, Prasadam I, Crawford R, Zhou Y, Xiao Y. Inflammatory macrophages interrupt osteocyte maturation and mineralization via regulating the Notch signaling pathway. Mol Med 2022; 28:102. [PMID: 36058911 PMCID: PMC9441044 DOI: 10.1186/s10020-022-00530-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/10/2022] [Indexed: 11/12/2022] Open
Abstract
Background It is well-known that both macrophages and osteocytes are critical regulators of osteogenesis and osteoclastogenesis, yet there is limited understanding of the macrophage-osteocyte interaction, and how their crosstalk could affect bone homeostasis and mineralization. This research therefore aims to investigate the effects of macrophage polarization on osteocyte maturation and mineralization process. Methods A macrophage-derived conditioned medium based osteocyte culture was set up to investigate the impact of macrophages on osteocyte maturation and terminal mineralization. Surgically induced osteoarthritis (OA) rat model was used to further investigate the macrophage-osteocyte interaction in inflammatory bone remodeling, as well as the involvement of the Notch signaling pathway in the mineralization process. Results Our results identified that osteocytes were confined in an immature stage after the M1 macrophage stimulation, showing a more rounded morphology, higher expression of early osteocyte marker E11, and significantly lower expression of mature osteocyte marker DMP1. Immature osteocytes were also found in inflammatory bone remodeling areas, showing altered morphology and mineralized structures similar to those observed under the stimulation of M1 macrophages in vitro, suggesting that M1 macrophages negatively affect osteocyte maturation, leading to abnormal mineralization. The Notch signaling pathway was found to be down regulated in M1 macrophage-stimulated osteocytes as well as osteocytes in inflammatory bone. Overexpression of the Notch signaling pathway in osteocytes showed a significant circumvention on the negative effects from M1 macrophage. Conclusion Taken together, our findings provide valuable insights into the mechanisms involved in abnormal bone mineralization under inflammatory conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00530-4.
Collapse
Affiliation(s)
- Shengfang Wang
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia.,Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, 4000, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, QLD, 4000, Australia
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia.,Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, 4000, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, QLD, 4000, Australia
| | - Indira Prasadam
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia.,Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, 4000, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, QLD, 4000, Australia
| | - Ross Crawford
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia.,Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, 4000, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, QLD, 4000, Australia
| | - Yinghong Zhou
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia. .,Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, 4000, Australia. .,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, QLD, 4000, Australia. .,School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, 4006, Australia.
| | - Yin Xiao
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia. .,Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, 4000, Australia. .,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
38
|
Prouvé E, Rémy M, Feuillie C, Molinari M, Chevallier P, Drouin B, Laroche G, Durrieu MC. Interplay of matrix stiffness and stress relaxation in directing osteogenic differentiation of mesenchymal stem cells. Biomater Sci 2022; 10:4978-4996. [PMID: 35801706 DOI: 10.1039/d2bm00485b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study is to investigate the impact of the stiffness and stress relaxation of poly(acrylamide-co-acrylic acid) hydrogels on the osteogenic differentiation of human mesenchymal stem cells (hMSCs). Varying the amount of the crosslinker and the ratio between the monomers enabled the obtainment of hydrogels with controlled mechanical properties, as characterized using unconfined compression and atomic force microscopy (AFM). Subsequently, the surface of the hydrogels was functionalized with a mimetic peptide of the BMP-2 protein, in order to favor the osteogenic differentiation of hMSCs. Finally, hMSCs were cultured on the hydrogels with different stiffness and stress relaxation: 15 kPa - 15%, 60 kPa - 15%, 140 kPa - 15%, 100 kPa - 30%, and 140 kPa - 70%. The cells on hydrogels with stiffnesses from 60 kPa to 140 kPa presented a star-like shape, typical of osteocytes, which has only been reported by our group for two-dimensional substrates. Then, the extent of hMSC differentiation was evaluated by using immunofluorescence and by quantifying the expression of both osteoblast markers (Runx-2 and osteopontin) and osteocyte markers (E11, DMP1, and sclerostin). It was found that a stiffness of 60 kPa led to a higher expression of osteocyte markers as compared to stiffnesses of 15 and 140 kPa. Finally, the strongest expression of osteoblast and osteocyte differentiation markers was observed for the hydrogel with a high relaxation of 70% and a stiffness of 140 kPa.
Collapse
Affiliation(s)
- Emilie Prouvé
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, 1065 Avenue de la médecine, Québec G1V 0A6, Canada. .,Axe médecine régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec G1L 3L5, Canada.,Université de Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.,CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.,Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.
| | - Murielle Rémy
- Université de Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.,CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.,Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.
| | - Cécile Feuillie
- Université de Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.,CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.,Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.
| | - Michael Molinari
- Université de Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.,CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.,Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.
| | - Pascale Chevallier
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, 1065 Avenue de la médecine, Québec G1V 0A6, Canada. .,Axe médecine régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec G1L 3L5, Canada
| | - Bernard Drouin
- Axe médecine régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec G1L 3L5, Canada
| | - Gaétan Laroche
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, 1065 Avenue de la médecine, Québec G1V 0A6, Canada. .,Axe médecine régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec G1L 3L5, Canada
| | - Marie-Christine Durrieu
- Université de Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.,CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.,Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.
| |
Collapse
|
39
|
Murshid SA. Bone permeability and mechanotransduction: Some current insights into the function of the lacunar-canalicular network. Tissue Cell 2022; 75:101730. [PMID: 35032785 DOI: 10.1016/j.tice.2022.101730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Lacunar-canalicular (LC) permeability involves the passage of fluids, nutrients, oxygen, ions, and signalling molecules through bone tissue, facilitating the maintenance of bone vitality and function and responses to various physiological conditions and diseases. LC permeability and fluid flow-shear stress/drag force play important roles in mechanotransduction in bone tissue by inducing mechanical stimuli in osteocytes, modulating cellular functions, and determining bone adaptation. Alterations in LC structure may therefore influence the fluid flow pattern through the LC network, thereby affecting the ability of osteocytes to sense and translate mechanical signals and possibly contributing to bone remodelling. Several bone-health conditions are associated with changes in LC structure and function and may affect mechanotransduction and responses, although the mechanisms underlying these associations are still not fully understood. In this review, recent studies of LC networks, their formation and transfer mechanical stimuli, and changes in structure, functional permeability, and mechanotransduction that result from age, pathology, and mechanical loading are discussed. Additionally, applications of vibration and low-intensity pulsed ultrasound in bone healthcare and regeneration fields are also presented.
Collapse
Affiliation(s)
- Sakhr Ahmed Murshid
- Institute for Globally Distributed Open Research and Education (IGDORE); Ilmajoki Health Public Dental Clinics, Social and Health Care Services in Jalasjärvi, Ilmajoki, Kurikka, Finland.
| |
Collapse
|
40
|
Alioli C, Demesmay L, Peyruchaud O, Machuca-Gayet I. Autotaxin/Lysophosphatidic Acid Axis: From Bone Biology to Bone Disorders. Int J Mol Sci 2022; 23:ijms23073427. [PMID: 35408784 PMCID: PMC8998661 DOI: 10.3390/ijms23073427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/01/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a natural bioactive phospholipid with pleiotropic activities affecting multiple tissues, including bone. LPA exerts its biological functions by binding to G-protein coupled LPA receptors (LPA1-6) to stimulate cell migration, proliferation, and survival. It is largely produced by autotaxin (ATX), a secreted enzyme with lysophospholipase D activity that converts lysophosphatidylcholine (LPC) into active LPA. Beyond its enzymatic activity, ATX serves as a docking molecule facilitating the efficient delivery of LPA to its specific cell surface receptors. Thus, LPA effects are the result of local production by ATX in a given tissue or cell type. As a consequence, the ATX/LPA axis should be considered as an entity to better understand their roles in physiology and pathophysiology and to propose novel therapeutic strategies. Herein, we provide not only an extensive overview of the relevance of the ATX/LPA axis in bone cell commitment and differentiation, skeletal development, and bone disorders, but also discuss new working hypotheses emerging from the interplay of ATX/LPA with well-established signaling pathways regulating bone mass.
Collapse
|
41
|
Idulhaq M, Mudigdo A, Utomo P, Wasita B. The Evidence-based Effect of Platelet-rich Fibrin in Osteogenesis: A Systematic Review and Meta-analysis. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
ABSTRACT
Background: Platelet Rich Fibrin (PRF) is a growth factor concentration functioning as an initiator of wound healing and bone regeneration, and it is mainly reported in dentistry rehabilitation and rejuvenation.
Objective: summarize and analyze the evidence based on the effect of PRF on the bone osteogenesis
Methods: A comprehensive search was conducted on the bibliographic databases or Medical Subject Headings in the PubMed. The search was conducted among articles that were published between 2010 and 2021. Required article information was extracted from each article by abstract and full paper availability that focuses on the Platelet-Rich Fibrin (PRF) And Osteogenesis. We recruited studies with the design was employed clinical trials with in vitro and in vivo approaches. The only study that provided osteogenesis outcome proceeded to the quantitative analysis.
Results: Regarding literature search and screening processes, it yielded 24 studies for qualitative assessment and eleven studies for quantitative analysis. Most of the studies performed a combination of PRF with other materials such as Mg ring, BMSCs, Gold nanoparticles, and PDLSCs. It showed that PRF combined with other materials enhanced the osteogenic ability. The assessment of PRF only showed the various result in multiple outcome markers. For the ALP, the mean difference is 1.40 [1.14-1.67] p-value 0.001. It indicates there is a significant effect of PRF application with the increase of ALP. For the RUNX2, there is a significant effect of PRF application with the increase of RUNX2 1.10 [0.93, 1.26]. For OCN, the mean difference of PRF in OCN is 0.77 [0.43, 1.12] p=0.001. It showed a significant effect of PRF application with the increase of OCN. There is also a significant effect of PRF application for TRAP with the declining number of TRAP is -1.59 [-2.96, -0.22] p=0.001.
Conclusion: PRF combined with other materials showed more promising results rather than PRF only. Moreover, in the assessment of PRF only, it was found that PRF has a significant effect in accelerating bone osteogenesis.
Keywords:
PRF, Platelet-Rich Fibrin, Osteogenesis
Collapse
|
42
|
Abstract
Osteocytes, former osteoblasts encapsulated by mineralized bone matrix, are far from being passive and metabolically inactive bone cells. Instead, osteocytes are multifunctional and dynamic cells capable of integrating hormonal and mechanical signals and transmitting them to effector cells in bone and in distant tissues. Osteocytes are a major source of molecules that regulate bone homeostasis by integrating both mechanical cues and hormonal signals that coordinate the differentiation and function of osteoclasts and osteoblasts. Osteocyte function is altered in both rare and common bone diseases, suggesting that osteocyte dysfunction is directly involved in the pathophysiology of several disorders affecting the skeleton. Advances in osteocyte biology initiated the development of novel therapeutics interfering with osteocyte-secreted molecules. Moreover, osteocytes are targets and key distributors of biological signals mediating the beneficial effects of several bone therapeutics used in the clinic. Here we review the most recent discoveries in osteocyte biology demonstrating that osteocytes regulate bone homeostasis and bone marrow fat via paracrine signaling, influence body composition and energy metabolism via endocrine signaling, and contribute to the damaging effects of diabetes mellitus and hematologic and metastatic cancers in the skeleton.
Collapse
Affiliation(s)
- Jesus Delgado-Calle
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Teresita Bellido
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas,3Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
43
|
Bioengineering the ameloblastoma tumour to study its effect on bone nodule formation. Sci Rep 2021; 11:24088. [PMID: 34916549 PMCID: PMC8677805 DOI: 10.1038/s41598-021-03484-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/03/2021] [Indexed: 01/09/2023] Open
Abstract
Ameloblastoma is a benign, epithelial cancer of the jawbone, which causes bone resorption and disfigurement to patients affected. The interaction of ameloblastoma with its tumour stroma drives invasion and progression. We used stiff collagen matrices to engineer active bone forming stroma, to probe the interaction of ameloblastoma with its native tumour bone microenvironment. This bone-stroma was assessed by nano-CT, transmission electron microscopy (TEM), Raman spectroscopy and gene analysis. Furthermore, we investigated gene correlation between bone forming 3D bone stroma and ameloblastoma introduced 3D bone stroma. Ameloblastoma cells increased expression of MMP-2 and -9 and RANK temporally in 3D compared to 2D. Our 3D biomimetic model formed bone nodules of an average surface area of 0.1 mm2 and average height of 92.37 [Formula: see text] 7.96 μm over 21 days. We demonstrate a woven bone phenotype with distinct mineral and matrix components and increased expression of bone formation genes in our engineered bone. Introducing ameloblastoma to the bone stroma, completely inhibited bone formation, in a spatially specific manner. Multivariate gene analysis showed that ameloblastoma cells downregulate bone formation genes such as RUNX2. Through the development of a comprehensive bone stroma, we show that an ameloblastoma tumour mass prevents osteoblasts from forming new bone nodules and severely restricted the growth of existing bone nodules. We have identified potential pathways for this inhibition. More critically, we present novel findings on the interaction of stromal osteoblasts with ameloblastoma.
Collapse
|
44
|
Yadav AM, Bagade MM, Ghumnani S, Raman S, Saha B, Kubatzky KF, Ashma R. The phytochemical plumbagin reciprocally modulates osteoblasts and osteoclasts. Biol Chem 2021; 403:211-229. [PMID: 34882360 DOI: 10.1515/hsz-2021-0290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/08/2021] [Indexed: 12/28/2022]
Abstract
Bone metabolism is essential for maintaining bone mineral density and bone strength through a balance between bone formation and bone resorption. Bone formation is associated with osteoblast activity whereas bone resorption is linked to osteoclast differentiation. Osteoblast progenitors give rise to the formation of mature osteoblasts whereas monocytes are the precursors for multi-nucleated osteoclasts. Chronic inflammation, auto-inflammation, hormonal changes or adiposity have the potential to disturb the balance between bone formation and bone loss. Several plant-derived components are described to modulate bone metabolism and alleviate osteoporosis by enhancing bone formation and inhibiting bone resorption. The plant-derived naphthoquinone plumbagin is a bioactive compound that can be isolated from the roots of the Plumbago genus. It has been used as traditional medicine for treating infectious diseases, rheumatoid arthritis and dermatological diseases. Reportedly, plumbagin exerts its biological activities primarily through induction of reactive oxygen species and triggers osteoblast-mediated bone formation. It is plausible that plumbagin's reciprocal actions - inhibiting or inducing death in osteoclasts but promoting survival or growth of osteoblasts - are a function of the synergy with bone-metabolizing hormones calcitonin, Parathormone and vitamin D. Herein, we develop a framework for plausible molecular modus operandi of plumbagin in bone metabolism.
Collapse
Affiliation(s)
- Avinash M Yadav
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Manali M Bagade
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Soni Ghumnani
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Sujatha Raman
- Center for Complementary and Integrative Health (CCIH), Interdisciplinary School of Health Sciences (ISHS), Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Bhaskar Saha
- National Center for Cell Science, Pune-411007, Maharashtra, India
| | - Katharina F Kubatzky
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | - Richa Ashma
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| |
Collapse
|
45
|
Du J, He Z, Cui J, Li H, Xu M, Zhang S, Zhang S, Yan M, Qu X, Yu Z. Osteocyte Apoptosis Contributes to Cold Exposure-induced Bone Loss. Front Bioeng Biotechnol 2021; 9:733582. [PMID: 34858954 PMCID: PMC8632005 DOI: 10.3389/fbioe.2021.733582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence indicates that bone mass is regulated by systemic energy balance. Temperature variations have profound effects on energy metabolism in animals, which will affect bone remodeling. But the mechanism remains unclear. 2-month-old C57BL/6J male mice were exposed to cold (4°C) and normal (23°C) temperatures for 28 days and the effects of cold exposure on bone mass was investigated. Micro-computed tomography results showed that bone volume fraction was significantly reduced after 14 days of exposure to cold temperature, and it was recovered after 28 days. Ploton silver staining and immunohistochemical results further revealed that exposure to cold decreased canalicular length, number of E11-and MMP13-positive osteocytes after 14 days, but they returned to the baseline levels after 28 days, different from the normal temperature control group. In addition, change of Caspase-3 indicated that exposure to cold temperature augmented apoptosis of osteocytes. In vitro results confirmed the positive effect of brown adipocytes on osteocyte‘s dendrites and E11 expression. In conclusion, our findings indicate that cold exposure can influence bone mass in a time-dependent manner, with bone mass decreasing and recovering at 2 and 4 weeks respectively. The change of bone mass may be caused by the apoptosis osteocytes. Brown adipocyte tissue could influence bone remodeling through affecting osteocyte.
Collapse
Affiliation(s)
- Jingke Du
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zihao He
- Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, Beijing, China
| | - Junqi Cui
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanjun Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingming Xu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuhong Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangyan Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengning Yan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
Moharrer Y, Boerckel JD. Tunnels in the rock: Dynamics of osteocyte morphogenesis. Bone 2021; 153:116104. [PMID: 34245936 PMCID: PMC8478866 DOI: 10.1016/j.bone.2021.116104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022]
Abstract
Osteocytes are dynamic, bone matrix-remodeling cells that form an intricate network of interconnected projections through the bone matrix, called the lacunar-canalicular system. Osteocytes are the dominant mechanosensory cells in bone and their mechanosensory and mechanotransductive functions follow their morphological form. During osteocytogenesis and development of the osteocyte lacunar-canalicular network, osteocytes must dramatically remodel both their cytoskeleton and their extracellular matrix. In this review, we summarize our current understanding of the mechanisms that govern osteocyte differentiation, cytoskeletal morphogenesis, mechanotransduction, and matrix remodeling. We postulate that the physiologic activation of matrix remodeling in adult osteocytes, known as perilacunar/canalicular remodeling (PLR) represents a re-activation of the developmental program by which the osteocyte network is first established. While much of osteocyte biology remains unclear, new tools and approaches make the present moment a particularly fruitful and exciting time to study the development of these remarkable cells.
Collapse
Affiliation(s)
- Yasaman Moharrer
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States of America; Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Joel D Boerckel
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States of America; Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, United States of America; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
47
|
Wang JS, Kamath T, Mazur CM, Mirzamohammadi F, Rotter D, Hojo H, Castro CD, Tokavanich N, Patel R, Govea N, Enishi T, Wu Y, da Silva Martins J, Bruce M, Brooks DJ, Bouxsein ML, Tokarz D, Lin CP, Abdul A, Macosko EZ, Fiscaletti M, Munns CF, Ryder P, Kost-Alimova M, Byrne P, Cimini B, Fujiwara M, Kronenberg HM, Wein MN. Control of osteocyte dendrite formation by Sp7 and its target gene osteocrin. Nat Commun 2021; 12:6271. [PMID: 34725346 PMCID: PMC8560803 DOI: 10.1038/s41467-021-26571-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023] Open
Abstract
Some osteoblasts embed within bone matrix, change shape, and become dendrite-bearing osteocytes. The circuitry that drives dendrite formation during "osteocytogenesis" is poorly understood. Here we show that deletion of Sp7 in osteoblasts and osteocytes causes defects in osteocyte dendrites. Profiling of Sp7 target genes and binding sites reveals unexpected repurposing of this transcription factor to drive dendrite formation. Osteocrin is a Sp7 target gene that promotes osteocyte dendrite formation and rescues defects in Sp7-deficient mice. Single-cell RNA-sequencing demonstrates defects in osteocyte maturation in the absence of Sp7. Sp7-dependent osteocyte gene networks are associated with human skeletal diseases. Moreover, humans with a SP7R316C mutation show defective osteocyte morphology. Sp7-dependent genes that mark osteocytes are enriched in neurons, highlighting shared features between osteocytic and neuronal connectivity. These findings reveal a role for Sp7 and its target gene Osteocrin in osteocytogenesis, revealing that pathways that control osteocyte development influence human bone diseases.
Collapse
Affiliation(s)
- Jialiang S Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tushar Kamath
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Courtney M Mazur
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fatemeh Mirzamohammadi
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Plastic and Reconstructive Surgery, Wright State University, Dayton, OH, USA
| | - Daniel Rotter
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Hironori Hojo
- Center for Disease Biology and Integrative Medicine, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Christian D Castro
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicha Tokavanich
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rushi Patel
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicolas Govea
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA
| | - Tetsuya Enishi
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Orthopedic Surgery, Tokushima Municipal Hospital, Tokushima, Japan
| | - Yunshu Wu
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | - Michael Bruce
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel J Brooks
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MaA, USA
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MaA, USA
| | - Danielle Tokarz
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Chemistry, Saint Mary's University, Halifax, Canada
| | - Charles P Lin
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Abdul Abdul
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Evan Z Macosko
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa Fiscaletti
- Pediatric Department, Sainte-Justine University Hospital Centre, Montreal, Canada
| | - Craig F Munns
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Paediatrics & Child Health, University of Sydney, Sydney, 2006, Australia
| | - Pearl Ryder
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Imaging Platform, Cambridge, MA, USA
| | - Maria Kost-Alimova
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Center for the Development of Therapeutics, Cambridge, MA, USA
| | - Patrick Byrne
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Center for the Development of Therapeutics, Cambridge, MA, USA
| | - Beth Cimini
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Imaging Platform, Cambridge, MA, USA
| | - Makoto Fujiwara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
48
|
Liu X, Bai M, Sun Y, Hu X, Wang C, Xie J, Ye L. FGF7-induced E11 facilitates cell-cell communication through connexin43. Int J Biol Sci 2021; 17:3862-3874. [PMID: 34671204 PMCID: PMC8495393 DOI: 10.7150/ijbs.65240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/26/2021] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factors (FGFs) include a large family of growth factors that play a critical role in maintaining bone homeostasis, but the specific role of its members such as FGF7 does not well understand. Osteoblasts are a kind of major cells essential for bone formation. Osteoblasts interact with one another to create the unique structure of osteons. The well-connected osteons constitute the cortical bone. As an early osteocyte marker that triggers actin cytoskeleton dynamics, E11 is essential for osteoblasts' dendrites formation. However, the upstream which regulates E11 is mainly unknown. The purpose of this study was to examine the influence of FGF7 on the expression and the distribution of E11 in osteoblasts, which mediated osteoblasts' processes formation and gap junctional intercellular communication (GJIC) partly through connexin43 (Cx43). We first demonstrated that FGF7 increased the expression of E11 in osteoblasts. We then showed that FGF7 promoted osteoblasts' dendrites elongation and functional gap junctions formation. Furthermore, E11 interacted directly with Cx43 in primary osteoblasts. MAPK pathway and PI3K-AKT pathway were involved in the effect of FGF7. Our results shed light on the unique role of FGF7 on osteoblasts, which may indicate that FGF7 plays a more significant role in the later stages of bone development and homeostasis.
Collapse
Affiliation(s)
- Xiaoyu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yimin Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xuchen Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
49
|
Toda Nakamura M, Zhang H, Guo D, Ueharu H, Pan H, Scott G, Harris M, Ray M, Feng JQ, Harris SE, Bonewald LF, Mishina Y. Podoplanin is dispensable for mineralized tissue formation and maintenance in the Swiss outbred mouse background. Genesis 2021; 59:e23450. [PMID: 34487426 DOI: 10.1002/dvg.23450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/07/2022]
Abstract
Podoplanin, PDPN, is a mucin-type transmembrane glycoprotein widely expressed in many tissues, including lung, kidney, lymph nodes, and mineralized tissues. Its function is critical for lymphatic formation, differentiation of type I alveolar epithelial lung cells, and for bone response to biomechanical loading. It has previously been shown that Pdpn null mice die at birth due to respiratory failure emphasizing the importance of Pdpn in alveolar lung development. During the course of generation of Pdpn mutant mice, we found that most Pdpn null mice in the 129S6 and C57BL6/J mixed genetic background die at the perinatal stage, similar to previously published studies with Pdpn null mice, while all Pdpn null mice bred with Swiss outbred mice survived. Surviving mutant mice in the 129S6 and C57BL6/J mixed genetic background showed alterations in the osteocyte lacunocanalicular network, especially reduced osteocyte canaliculi in the tibial cortex with increased tibial trabecular bone. However, adult Pdpn null mice in the Swiss outbred background showed no overt differences in their osteocyte lacunocnalicular network, bone density, and no overt differences when challenged with exercise. Together, these data suggest that genetic variations present in the Swiss outbred mice compensate for the loss of function of PDPN in lung, kidney, and bone.
Collapse
Affiliation(s)
- Masako Toda Nakamura
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.,Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Honghao Zhang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Dayong Guo
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Hiroki Ueharu
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Haichun Pan
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Greg Scott
- Knock Out Core, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Marie Harris
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA.,UT Health San Antonio, Graduate School of Biomedical Sciences, San Antonio, Texas, USA
| | - Manas Ray
- Knock Out Core, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Jiang Q Feng
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA.,Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, Texas, USA
| | - Stephen E Harris
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA.,UT Health San Antonio, Graduate School of Biomedical Sciences, San Antonio, Texas, USA
| | - Lynda F Bonewald
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA.,Indiana Center for Musculoskeletal Health and Department of Anatomy, Cell Biology and Physiology, Indiana University, Indianapolis, Indiana, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
50
|
Fournier R, Harrison RE. Methods for studying MLO-Y4 osteocytes in collagen-hydroxyapatite scaffolds in the rotary cell culture system. Connect Tissue Res 2021; 62:436-453. [PMID: 32375524 DOI: 10.1080/03008207.2020.1764548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: The rotary cell culture system (RCCS) is a common clinorotation device for cell culture. It is also used as a low-shear suspension culture bioreactor to form functionalized 3D tissue constructs and to model microgravity. We sought to develop a 3D scaffold composed of type I collagen and hydroxyapatite (collagen-HA) to characterize MLO-Y4 osteocytes following suspension culture or clinorotation.Materials and Methods: MLO-Y4 cells were embedded in collagen-HA. The scaffold was formed into droplets for suspension culture or wall-adhered to the RCCS for clinorotation. AFM, rheometry, immunofluorescence and qRT-PCR were employed to measure the scaffold stiffness, cell viability and gene expression of cells in collagen-HA scaffolds. Dendritic cells were visualized and quantified and gene expression after suspension culture and clinorotation was compared to static controls.Results: The optimized scaffold for the RCCS consisted of collagen with 6 mg/mL HA which had a stiffness of < 1 kPa. MLO-Y4 cell viability was higher in collagen-HA scaffolds, compared to scaffolds without HA. Collagen-HA scaffolds induced higher osteocyte-specific gene expression compared to cells cultured on 2D plastic. Cells in the scaffold downregulated DMP1, E11, IL-6, and RANKL, and had fewer dendritic cells following suspension culture whereas clinorotation downregulated DMP1 and E11 genes, compared to static controls.Conclusions: Suspension culture for 3 days in collagen-HA stimulates growth of osteocytes but may also desensitize them to mechanical cues. Clinorotation for 3 days in collagen-HA does not stimulate proliferation or expression of mechanosensitive genes, indicating that it may be an effective mechanical unloading environment.
Collapse
Affiliation(s)
- Roxanne Fournier
- Department of Cell & Systems Biology and the Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Rene E Harrison
- Department of Cell & Systems Biology and the Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|