1
|
Kato G. Regulatory Roles of the N-Terminal Intrinsically Disordered Region of Modular Src. Int J Mol Sci 2022; 23:2241. [PMID: 35216357 PMCID: PMC8874404 DOI: 10.3390/ijms23042241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
Src, the prototype of Src family kinases (SFKs), is a modular protein consisting of SH4 (SH4) and unique (UD) domains in an N-terminal intrinsically disordered region (IDR), and SH3, SH2, and kinase (KD) folded domains conserved among SFKs. Src functions as a pleiotropic signaling hub in proliferating and post-mitotic cells, and it is related to cancer and neurological diseases. However, its regulatory mechanism is unclear because the existing canonical model is derived from crystallographic analyses of folded constructs lacking the IDR. This work reviews nuclear magnetic resonance analyses of partially structured lipid-binding segments in the flexible UD and the fuzzy intramolecular complex (FIMC) comprising IDR and SH3 domains, which interacts with lipid membranes and proteins. Furthermore, recently determined IDR-related Src characteristics are discussed, including dimerization, SH4/KD intramolecular fastener bundling of folded domains, and the sorting of adhesive structures. Finally, the modulatory roles of IDR phosphorylation in Src activities involving the FIMC are explored. The new regulatory roles of IDRs are integrated with the canonical model to elucidate the functions of full-length Src. This review presents new aspects of Src regulation, and provides a future direction for studies on the structure and function of Src, and their implications for pathological processes.
Collapse
Affiliation(s)
- Goro Kato
- Laboratory of Biological Chemistry, Center for Medical Education and Sciences, University of Yamanashi, 1110 Shimokato, Chuo 409-3898, Yamanashi, Japan
| |
Collapse
|
2
|
Hou W, Wei B, Liu HS. The Protective Effect of Panax notoginseng Mixture on Hepatic Ischemia/Reperfusion Injury in Mice via Regulating NR3C2, SRC, and GAPDH. Front Pharmacol 2021; 12:756259. [PMID: 34858181 PMCID: PMC8632037 DOI: 10.3389/fphar.2021.756259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Panax notoginseng mixture (PNM) has the characteristics of multicomponent, multitarget, and multieffect, which can cope with the multidirectional and multidimensional complex pathological process caused by hepatic ischemia/reperfusion injury (HIRI). Our animal experiments showed that PNM composed of notoginseng, dogwood, and white peony root could significantly reduce the level of aspartate transaminase and alanine aminotransferase in the blood of mice with HIRI, indicating that this preparation had a protective effect on HIRI in mice. Therefore, on this basis, the molecular mechanism of PNM intervention in HIRI was further explored by network pharmacology. First, target genes corresponding to active components and HIRI were obtained through databases such as TCMSP, Pharm Mapper, Swiss Target Prediction, GeneCards, and so on. All target genes were standardized by Uniprot database, and a total of 291 target genes with their intersection were obtained. Then, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and biological processes (BPs) of 291 target genes were obtained through the online public platform of DAVID. A total of 177 KEGG pathways and 337 BPs were obtained by setting p < 0.01 and false discovery rate <0.05. The network mapping map of components and disease targets was drawn by Cytoscape, and the top 10 Hub target genes related to HIRI were obtained. At the same time, the String database was used to obtain the protein-protein interaction dataset, which was imported into Cytoscape, and the first 10 Hub target genes were obtained. The Hub target genes obtained by the above two methods were molecular docking with their corresponding small molecule compounds through DockThor online tool. The results showed that the docking of paeoniflorin with glyceraldehyde 3-phosphate dehydrogenase (GAPDH), paeoniflorin and loganin with SRC, ginsenoside Rb1 with NR3C2, ursolic acid and oleanolic acid with IL-6, paeoniflorin docking VEGFA, and MMP9. Finally, NR3C2, SRC, and GAPDH were identified as target genes in this study by referring to relevant literature reports. After verification by immunohistochemical experiments, compared with the sham group, the above three target genes were highly expressed in the HIRI group (p < 0.01). Compared with the HIRI group, the expression of three target genes in the PNM + HIRI group was significantly decreased (p < 0.01). The results showed that PNM could protect mouse HIRI by decreasing the expression of NR3C2, SRC, and GAPDH.
Collapse
Affiliation(s)
- Wen Hou
- NHC Key Laboratory of Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Bao Wei
- Department of Surgery, Children's Hospital, Tianjin, China
| | - Hong Sheng Liu
- NHC Key Laboratory of Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
3
|
Ortiz MA, Mikhailova T, Li X, Porter BA, Bah A, Kotula L. Src family kinases, adaptor proteins and the actin cytoskeleton in epithelial-to-mesenchymal transition. Cell Commun Signal 2021; 19:67. [PMID: 34193161 PMCID: PMC8247114 DOI: 10.1186/s12964-021-00750-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
Over a century of scientific inquiry since the discovery of v-SRC but still no final judgement on SRC function. However, a significant body of work has defined Src family kinases as key players in tumor progression, invasion and metastasis in human cancer. With the ever-growing evidence supporting the role of epithelial-mesenchymal transition (EMT) in invasion and metastasis, so does our understanding of the role SFKs play in mediating these processes. Here we describe some key mechanisms through which Src family kinases play critical role in epithelial homeostasis and how their function is essential for the propagation of invasive signals. Video abstract.
Collapse
Affiliation(s)
- Maria A. Ortiz
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Tatiana Mikhailova
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Baylee A. Porter
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
| | - Leszek Kotula
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| |
Collapse
|
4
|
Kall SL, Whitlatch K, Smithgall TE, Lavie A. Molecular basis for the interaction between human choline kinase alpha and the SH3 domain of the c-Src tyrosine kinase. Sci Rep 2019; 9:17121. [PMID: 31745227 PMCID: PMC6864063 DOI: 10.1038/s41598-019-53447-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/30/2019] [Indexed: 01/09/2023] Open
Abstract
Choline kinase alpha is a 457-residue protein that catalyzes the reaction between ATP and choline to yield ADP and phosphocholine. This metabolic action has been well studied because of choline kinase's link to cancer malignancy and poor patient prognosis. As the myriad of x-ray crystal structures available for this enzyme show, chemotherapeutic drug design has centered on stopping the catalytic activity of choline kinase and reducing the downstream metabolites it produces. Furthermore, these crystal structures only reveal the catalytic domain of the protein, residues 80-457. However, recent studies provide evidence for a non-catalytic protein-binding role for choline kinase alpha. Here, we show that choline kinase alpha interacts with the SH3 domain of c-Src. Co-precipitation assays, surface plasmon resonance, and crystallographic analysis of a 1.5 Å structure demonstrate that this interaction is specific and is mediated by the poly-proline region found N-terminal to the catalytic domain of choline kinase. Taken together, these data offer strong evidence that choline kinase alpha has a heretofore underappreciated role in protein-protein interactions, which offers an exciting new way to approach drug development against this cancer-enhancing protein.
Collapse
Affiliation(s)
- Stefanie L Kall
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
| | - Kindra Whitlatch
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15219, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15219, USA
| | - Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, 60607, USA.
- The Jesse Brown VA Medical Center, Chicago, Illinois, 60612, USA.
| |
Collapse
|
5
|
Yu L, Das P, Vall AJ, Yan Y, Gao X, Sifre MI, Bortner CD, Castro L, Kissling GE, Moore AB, Dixon D. Bisphenol A induces human uterine leiomyoma cell proliferation through membrane-associated ERα36 via nongenomic signaling pathways. Mol Cell Endocrinol 2019; 484:59-68. [PMID: 30615907 PMCID: PMC6450385 DOI: 10.1016/j.mce.2019.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 11/17/2022]
Abstract
The role of ERα36 in regulating BPA's effects and its potential as a risk factor for human uterine fibroids were evaluated. BPA at low concentrations (10-6 μM - 10 μM) increased proliferation by facilitating progression of hormonally regulated, immortalized human uterine leiomyoma (ht-UtLM; fibroid) cells from G0-G1 into S phase of the cell cycle; whereas, higher concentrations (100 μM-200 μM) decreased growth. BPA upregulated ERα36 gene and protein expression, and induced increased SOS1 and Grb2 protein expression, both of which are mediators of the MAPKp44/42/ERK1/2 pathway. EGFR (pEGFR), Ras, and MAPKp44/42 were phosphorylated with concurrent Src activation in ht-UtLM cells within 10 min of BPA exposure. BPA enhanced colocalization of phosphorylated Src (pSrc) to ERα36 and coimmunoprecipitation of pSrc with pEGFR. Silencing ERα36 with siERα36 abolished the above effects. BPA induced proliferation in ht-UtLM cells through membrane-associated ERα36 with activation of Src, EGFR, Ras, and MAPK nongenomic signaling pathways.
Collapse
Affiliation(s)
- Linda Yu
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), Division of the NTP (DNTP), Research Triangle Park, NC, 27709, USA
| | - Parikshit Das
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), Division of the NTP (DNTP), Research Triangle Park, NC, 27709, USA
| | - Alejandra J Vall
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), Division of the NTP (DNTP), Research Triangle Park, NC, 27709, USA
| | - Yitang Yan
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), Division of the NTP (DNTP), Research Triangle Park, NC, 27709, USA
| | - Xioahua Gao
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), Division of the NTP (DNTP), Research Triangle Park, NC, 27709, USA
| | - Maria I Sifre
- Flow Cytometry Center, Signal Transduction Laboratory, Research Triangle Park, NC, 27709, USA
| | - Carl D Bortner
- Flow Cytometry Center, Signal Transduction Laboratory, Research Triangle Park, NC, 27709, USA
| | - Lysandra Castro
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), Division of the NTP (DNTP), Research Triangle Park, NC, 27709, USA
| | - Grace E Kissling
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (HHS), Research Triangle Park, NC, 27709, USA
| | - Alicia B Moore
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), Division of the NTP (DNTP), Research Triangle Park, NC, 27709, USA
| | - Darlene Dixon
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), Division of the NTP (DNTP), Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
6
|
Paladino D, Yue P, Furuya H, Acoba J, Rosser CJ, Turkson J. A novel nuclear Src and p300 signaling axis controls migratory and invasive behavior in pancreatic cancer. Oncotarget 2016; 7:7253-67. [PMID: 26695438 PMCID: PMC4872783 DOI: 10.18632/oncotarget.6635] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 11/23/2015] [Indexed: 12/23/2022] Open
Abstract
The presence of Src in the nuclear compartment has been previously reported, although its significance has remained largely unknown. We sought to delineate the functions of the nuclear pool of Src within the context of malignant progression. Active Src is localized within the nuclei of human pancreatic cancer cells and mouse fibroblasts over-expressing c-Src where it is associated with p300. Nuclear Src additionally promotes the tyrosine phosphorylation of p300 in pancreatic cancer Panc-1 cells. Src, together with p300, is associated with the high-mobility group AT-hook (HMGA)2 and SET and MYND domain-containing protein (SMYD)3 gene promoters and regulates their expression in a Src-dependent manner. These nuclear Src-dependent events correlate with anchorage-independent soft-agar growth and the migratory properties in both pancreatic Panc-1 cells and mouse fibroblasts over-expressing Src. Moreover, analyses of human pancreatic ductal adenocarcinoma (PDAC) tumor tissues detected the association of nuclear Src with the HMGA2 and SMYD3 gene promoters. Our findings for the first time show the critical importance of nuclear Src and p300 function in the migratory properties of pancreatic cancer cells. Further, data together identify a previously unknown role of nuclear Src in the regulation of gene expression in association with p300 within the context of cells harboring activated or over-expressing Src. This novel mechanism of nuclear Src-p300 axis in PDAC invasiveness and metastasis may provide an opportunity for developing more effective early clinical interventions for this lethal disease. Active Src is complexed with and phosphorylates p300 in the nucleus, and the complex is bound to HMGA2 and SMYD3 genes, thereby regulating their expression to promote pancreatic tumor cell migration and invasiveness.
Collapse
Affiliation(s)
- David Paladino
- Natural Products and Experimental Therapeutics Program, University of Hawaii Cancer Center, University of Hawaii, Manoa, Honolulu, HI 96813, USA.,Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii, Manoa, Honolulu, HI 96813, USA
| | - Peibin Yue
- Natural Products and Experimental Therapeutics Program, University of Hawaii Cancer Center, University of Hawaii, Manoa, Honolulu, HI 96813, USA.,Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii, Manoa, Honolulu, HI 96813, USA
| | - Hideki Furuya
- Clinical and Translational Research Program, University of Hawaii Cancer Center, University of Hawaii, Manoa, Honolulu, HI 96813, USA
| | - Jared Acoba
- Clinical and Translational Research Program, University of Hawaii Cancer Center, University of Hawaii, Manoa, Honolulu, HI 96813, USA
| | - Charles J Rosser
- Clinical and Translational Research Program, University of Hawaii Cancer Center, University of Hawaii, Manoa, Honolulu, HI 96813, USA
| | - James Turkson
- Natural Products and Experimental Therapeutics Program, University of Hawaii Cancer Center, University of Hawaii, Manoa, Honolulu, HI 96813, USA.,Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii, Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
7
|
Lipid binding by the Unique and SH3 domains of c-Src suggests a new regulatory mechanism. Sci Rep 2013; 3:1295. [PMID: 23416516 PMCID: PMC3575015 DOI: 10.1038/srep01295] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/01/2013] [Indexed: 12/18/2022] Open
Abstract
c-Src is a non-receptor tyrosine kinase involved in numerous signal transduction pathways. The kinase, SH3 and SH2 domains of c-Src are attached to the membrane-anchoring SH4 domain through the flexible Unique domain. Here we show intra- and intermolecular interactions involving the Unique and SH3 domains suggesting the presence of a previously unrecognized additional regulation layer in c-Src. We have characterized lipid binding by the Unique and SH3 domains, their intramolecular interaction and its allosteric modulation by a SH3-binding peptide or by Calcium-loaded calmodulin binding to the Unique domain. We also show reduced lipid binding following phosphorylation at conserved sites of the Unique domain. Finally, we show that injection of full-length c-Src with mutations that abolish lipid binding by the Unique domain causes a strong in vivo phenotype distinct from that of wild-type c-Src in a Xenopus oocyte model system, confirming the functional role of the Unique domain in c-Src regulation.
Collapse
|
8
|
Nakayama Y, Matsui Y, Takeda Y, Okamoto M, Abe K, Fukumoto Y, Yamaguchi N. c-Src but not Fyn promotes proper spindle orientation in early prometaphase. J Biol Chem 2012; 287:24905-15. [PMID: 22689581 DOI: 10.1074/jbc.m112.341578] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Src family tyrosine kinases (SFKs) participate in mitotic signal transduction events, including mitotic entry, cleavage furrow ingression, and cytokinesis abscission. Although SFKs have been shown to associate with the mitotic spindle, the role of SFKs in mitotic spindle formation remains unclear. Here, we show that c-Src promotes proper spindle orientation in early prometaphase. Src localizes close to spindle poles in a manner independent of Src kinase activity. Three-dimensional analyses showed that Src inhibition induced spindle misorientation, exhibiting a tilting spindle in early prometaphase. Spindle misorientation is frequently seen in SYF cells, which harbor triple knock-out mutations of c-Src, c-Yes, and Fyn, and reintroduction of c-Src but not Fyn into SYF cells rescued spindle misorientation. Spindle misorientation was also observed upon Src inhibition under conditions in which Aurora B was inhibited. Inducible expression of c-Src promoted a properly oriented bipolar spindle, which was suppressed by Src inhibition. Aster formation was severely inhibited in SYF cells upon Aurora B inhibition, which was rescued by reintroduction of c-Src into SYF cells. Furthermore, reintroduction of c-Src facilitated microtubule regrowth from cold-induced depolymerization and accelerated M phase progression. These results suggest that c-Src is involved in spindle orientation through centrosome-mediated aster formation.
Collapse
Affiliation(s)
- Yuji Nakayama
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Maures TJ, Su HW, Argetsinger LS, Grinstein S, Carter-Su C. Phosphorylation controls a dual-function polybasic nuclear localization sequence in the adapter protein SH2B1β to regulate its cellular function and distribution. J Cell Sci 2011; 124:1542-52. [PMID: 21486950 DOI: 10.1242/jcs.078949] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An intriguing question in cell biology is what targets proteins to, and regulates their translocation between, specific cellular locations. Here we report that the polybasic nuclear localization sequence (NLS) required for nuclear entry of the adapter protein and candidate human obesity gene product SH2B1β, also localizes SH2B1β to the plasma membrane (PM), most probably via electrostatic interactions. Binding of SH2B1β to the PM also requires its dimerization domain. Phosphorylation of serine residues near this polybasic region, potentially by protein kinase C, releases SH2B1β from the PM and enhances nuclear entry. Release of SH2B1β from the PM and/or nuclear entry appear to be required for SH2B1β enhancement of nerve growth factor (NGF)-induced expression of urokinase plasminogen activator receptor gene and neurite outgrowth of PC12 cells. Taken together, our results provide strong evidence that the polybasic NLS region of SH2B1 serves the dual function of localizing SH2B1 to both the nucleus and the PM, the latter most probably through electrostatic interactions that are enhanced by SH2B1β dimerization. Cycling between the different cellular compartments is a consequence of the phosphorylation and dephosphorylation of serine residues near the NLS and is important for physiological effects of SH2B1, including NGF-induced gene expression and neurite outgrowth.
Collapse
Affiliation(s)
- Travis J Maures
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-5622, USA
| | | | | | | | | |
Collapse
|
10
|
Hayes MJ, Moss SE. Annexin 2 has a dual role as regulator and effector of v-Src in cell transformation. J Biol Chem 2009; 284:10202-10. [PMID: 19193640 PMCID: PMC2665074 DOI: 10.1074/jbc.m807043200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 02/04/2009] [Indexed: 01/03/2023] Open
Abstract
Cell transformation by v-Src involves rearrangement of the actin cytoskeleton, disassembly of focal adhesions, and the development of anchorage-independent growth. Here, we report that this is dependent on annexin 2, a v-Src substrate and calcium-dependent regulator of actin dynamics. Using a thermoactivatable mutant of v-Src, we show that at the permissive temperature, annexin 2 becomes phosphorylated and colocalizes with activated v-Src and focal adhesion kinase both at the plasma membrane and in a Rab11-positive compartment of the endosomal pathway. In cells depleted of annexin 2 by small interfering RNA, v-Src becomes activated at the permissive temperature but does not target to the plasma membrane or to perinuclear vesicles, and cell transformation does not occur. Our findings reveal a dual role for annexin 2, first as a regulator of v-Src trafficking and targeting and second as a v-Src effector in the reorganization of actin.
Collapse
Affiliation(s)
- Matthew J Hayes
- Division of Cell Biology, University College London Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, United Kingdom
| | | |
Collapse
|
11
|
Yi CR, Rosenberg N. Gag influences transformation by Abelson murine leukemia virus and suppresses nuclear localization of the v-Abl protein. J Virol 2007; 81:9461-8. [PMID: 17596313 PMCID: PMC1951412 DOI: 10.1128/jvi.00735-07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Like the v-Onc proteins encoded by many transforming retroviruses, the v-Abl protein is expressed as a Gag-Onc fusion. Although the Gag-derived myristoylation signal targets the v-Abl protein to the plasma membrane, the protein contains the entire MA and p12 sequences and a small number of CA-derived residues. To understand the role of Gag sequences in transformation, mutants lacking portions of these sequences were examined for the effects of these deletions on v-Abl function and localization. Deletion of the N-terminal third of p12 or all of p12 enhanced the transformation of both pre-B cells and NIH 3T3 cells. In contrast, deletions in MA or a deletion removing all of Gag except the first 34 amino acids important for myristoylation highly compromised the ability to transform either cell type. Although all of the mutant proteins retained kinase activity, those defective in transformation were reduced in their ability to activate Erk, suggesting a role for Gag sequences in v-Abl signaling. Immunofluorescence analysis revealed that a v-Abl protein retaining only the first 34 amino acids of Gag localized to the nucleus. These data indicate that Gag sequences are important for normal v-Abl signaling and that they suppress nuclear localization of the molecule.
Collapse
Affiliation(s)
- Chae-Ryun Yi
- Molecular Microbiology Graduate Program, Sackler School of Graduate Biomedical Sciences, Tufts Medical School, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
12
|
Safadi-Chamberlain F, Wang LP, Payne S, Lim CU, Stratford S, Chavez J, Fox M, Spiegel S, Summers S. Effect of a membrane-targeted sphingosine kinase 1 on cell proliferation and survival. Biochem J 2005; 388:827-34. [PMID: 15693752 PMCID: PMC1183462 DOI: 10.1042/bj20041726] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Numerous extracellular stimuli activate SK1 (sphingosine kinase type 1) to catalyse the production of sphingosine 1-phosphate, a bioactive lipid that functions as both an extracellular ligand for a family of G-protein-linked receptors and as a putative intracellular messenger. Phorbol esters, calcium or immunoglobulin receptors stimulate SK1 by promoting its translocation to the plasma membrane, which brings it into proximity both to its substrate (i.e. sphingosine) and to activating acidic phospholipids (e.g. phosphatidylserine). To evaluate the consequence of SK translocation, we generated an SK1-derivative tagged with a myristoylation sequence (Myr-SK1) on its N-terminus and overexpressed the construct in 3T3-L1 fibroblasts using recombinant retrovirus. Myr-SK1 overexpression increased SK activity by more than 50-fold in crude membranes, while only stimulating cytoplasmic SK activity by 4-fold. In contrast, the overexpression of WT-SK1 (wild-type SK1), as well as that of a construct containing a false myristoylation sequence (A2-Myr-SK1), markedly increased SK activity in both membrane and cytoplasmic compartments. Immunofluorescence confirmed that Myr-SK1 preferentially localized at the plasma membrane, whereas WT-SK1 and A2-Myr-SK1 partitioned in cytoplasmic/perinuclear cellular regions. Surprisingly, Myr-SK1 overexpression significantly decreased the rates of cell proliferation by delaying exit from G0/G1 phase. Moreover, expression of Myr-SK1 but not WT-SK1 or A2-Myr-SK1 protected cells from apoptosis induced by serum withdrawal. Collectively, these findings reveal that altering the subcellular location of SK1 has marked effects on cell function, with plasma membrane-associated SK having a potent inhibitory effect on the G1-S phase transition.
Collapse
Affiliation(s)
- Farida Safadi-Chamberlain
- *Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, U.S.A
| | - Li-Ping Wang
- *Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, U.S.A
| | - Shawn G. Payne
- †Department of Biochemistry, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0614, U.S.A
| | - Chang-Uk Lim
- ‡Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80523-1870, U.S.A
| | - Suzanne Stratford
- *Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, U.S.A
| | - Jose Antonio Chavez
- *Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, U.S.A
| | - Michael H. Fox
- §Department of Biochemistry and Molecular Biology, Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1870, U.S.A
| | - Sarah Spiegel
- †Department of Biochemistry, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0614, U.S.A
| | - Scott A. Summers
- *Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
13
|
Chandrasekharan S, Qiu TH, Alkharouf N, Brantley K, Mitchell JB, Liu ET. Characterization of mice deficient in the Src family nonreceptor tyrosine kinase Frk/rak. Mol Cell Biol 2002; 22:5235-47. [PMID: 12077350 PMCID: PMC139782 DOI: 10.1128/mcb.22.14.5235-5247.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Frk/rak belongs to a novel family of Src kinases with epithelial tissue-specific expression. Although developmental expression patterns and functional overexpression in vitro have associated these kinases with growth suppression and differentiation, their physiological functions remain largely unknown. We therefore generated mice carrying a null mutation in iyk, the mouse homolog of Frk/rak. We report here that frk/rak(-/-) mice are viable, show similar growth rates to wild-type animals, and are fertile. Furthermore, a 2-year study of health and survival did not identify differences in the incidence and spectrum of spontaneous tumors or provide evidence of hyperplasias in frk/rak(-/-) epithelial tissues. Histological analysis of organs failed to reveal any morphological changes in epithelial tissues that normally express high levels of Frk/rak. Ultrastructural analysis of intestinal enterocytes did not identify defects in brush border morphology or structural polarization, demonstrating that Frk/rak is dispensable for intestinal cytodifferentiation. Additionally, frk/rak-null mice do not display altered sensitivity to intestinal damage induced by ionizing radiation. cDNA microarray analysis revealed an increase in c-src expression and identified subtle changes in the expression of genes regulated by thyroid hormones. Significant decreases in the circulating levels of T3 but not T4 hormone are consistent with this observation and reminiscent of euthyroid sick syndrome, a stress-associated clinical condition.
Collapse
Affiliation(s)
- Subhashini Chandrasekharan
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
14
|
Murray D, Arbuzova A, Hangyás-Mihályné G, Gambhir A, Ben-Tal N, Honig B, McLaughlin S. Electrostatic properties of membranes containing acidic lipids and adsorbed basic peptides: theory and experiment. Biophys J 1999; 77:3176-88. [PMID: 10585939 PMCID: PMC1300588 DOI: 10.1016/s0006-3495(99)77148-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction of heptalysine with vesicles formed from mixtures of the acidic lipid phosphatidylserine (PS) and the zwitterionic lipid phosphatidylcholine (PC) was examined experimentally and theoretically. Three types of experiments showed that smeared charge theories (e.g., Gouy-Chapman-Stern) underestimate the membrane association when the peptide concentration is high. First, the zeta potential of PC/PS vesicles in 100 mM KCl solution increased more rapidly with heptalysine concentration (14.5 mV per decade) than predicted by a smeared charge theory (6.0 mV per decade). Second, changing the net surface charge density of vesicles by the same amount in two distinct ways produced dramatically different effects: the molar partition coefficient decreased 1000-fold when the mole percentage of PS was decreased from 17% to 4%, but decreased only 10-fold when the peptide concentration was increased to 1 microM. Third, high concentrations of basic peptides reversed the charge on PS and PC/PS vesicles. Calculations based on finite difference solutions to the Poisson-Boltzmann equation applied to atomic models of heptalysine and PC/PS membranes provide a molecular explanation for the observations: a peptide adsorbing to the membrane in the presence of other surface-adsorbed peptides senses a local potential more negative than the average potential. The biological implications of these "discreteness-of-charge" effects are discussed.
Collapse
Affiliation(s)
- D Murray
- Department of Physiology and Biophysics, Health Sciences Center, SUNY Stony Brook, Stony Brook, New York 11794-8661, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Seya T, Kurita M, Iwata K, Yanagi Y, Tanaka K, Shida K, Hatanaka M, Matsumoto M, Jun S, Hirano A, Ueda S, Nagasawa S. The CD46 transmembrane domain is required for efficient formation of measles-virus-mediated syncytium. Biochem J 1997; 322 ( Pt 1):135-44. [PMID: 9078253 PMCID: PMC1218168 DOI: 10.1042/bj3220135] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two phosphatidylinositol (PI)-anchored versions of a measles virus (MV) receptor membrane cofactor protein (MCP; CD46) were generated by fusing the extracellular domain of MCP to the decay-accelerating factor (DAF; CD55) or its PI anchor. The PI-anchored forms of MCP expressed on Chinese hamster ovary cells, otherwise non-permissive to MV, conferred a smaller MV cytopathic effect than a wild-type MCP, a Ser/Thr-rich domain-deletion mutant and a cytoplasmic tail-deletion mutant of MCP. Therefore the differences in MV receptor properties between the two PI-anchored and three transmembrane forms were investigated. The PI-anchored forms were predominantly expressed on microvilli as in DAF, whereas the other transmembrane forms were found on intracellular membranes. The PI-anchored forms conferred high MV-binding capacity compared with the transmembrane versions. MV replication was, however, severely suppressed in cells expressing the PI-anchored forms, resulting in ineffective syncytium formation. In contrast, cell-to-cell fusion occurred efficiently after co-transfection of cDNA species encoding MV-H. MV-F and any version of MCP. Thus the PI-anchored forms, despite showing sufficient MV binding and cell-to-cell fusion competence together with MV-H and MV-F, mediate inefficient MV entry or replication, which causes severe suppression of the MV cytopathic effect. A biased receptor distribution on microvilli might participate in the selection of a low MV uptake pathway in the PI-anchored forms of MCP. Taken together, the transmembrane portion of MCP is a critical factor for effective virus-cell fusion and the subsequent MV replication.
Collapse
Affiliation(s)
- T Seya
- Department of Immunology, Center for Adult Diseases Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Klippel A, Reinhard C, Kavanaugh WM, Apell G, Escobedo MA, Williams LT. Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways. Mol Cell Biol 1996; 16:4117-27. [PMID: 8754810 PMCID: PMC231408 DOI: 10.1128/mcb.16.8.4117] [Citation(s) in RCA: 390] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Phosphatidylinositol (PI) 3-kinase is a cytoplasmic signaling molecule recruited to the membrane by activated growth factor receptors. The p85 subunit of PI 3-kinase links the catalytic p110 subunit to activated growth factor receptors and is required for enzymatic activity of p110. In this report, we describe the effects of expressing novel forms of p110 that are targeted to the membrane by either N-terminal myristoylation or C-terminal farnesylation. The expression of membrane-localized p110 is sufficient to trigger downstream responses characteristic of growth factor action, including the stimulation of pp70 S6 kinase, Akt/Rac, and Jun N-terminal kinase (JNK). These responses can also be triggered by expression of a form of p110 (p110*) that is cytosolic but exhibits a high specific activity. Finally, targeting of pl10* to the membrane results in maximal activation of downstream responses. Our data demonstrate that either membrane-targeted forms of p110 or a form of p110 with high specific activity can act as constitutively active PI 3-kinases and induce PI 3-kinase-dependent responses in the absence of growth factor stimulation. The results also show that PI 3-kinase activation is sufficient to stimulate several kinases that appear to function in different signaling pathways.
Collapse
Affiliation(s)
- A Klippel
- Chiron Corporation, Emeryville, California 94608, USA
| | | | | | | | | | | |
Collapse
|
17
|
Dunant NM, Senften M, Ballmer-Hofer K. Polyomavirus middle-T antigen associates with the kinase domain of Src-related tyrosine kinases. J Virol 1996; 70:1323-30. [PMID: 8627648 PMCID: PMC189951 DOI: 10.1128/jvi.70.3.1323-1330.1996] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Middle-T antigen of mouse polyomavirus, an oncogenic DNA virus, associates with and activates the cellular tyrosine kinases c-Src, c-Yes, and Fyn. This interaction is essential for polyomavirus-mediated transformation of cells in culture and tumor formation in animals. To determine the domain of c-Src directing association with middle-T, mutant c-Src proteins lacking the amino-terminal unique domain and the myristylation signal, the SH2 domain, the SH3 domain, or all three of these domains were coexpressed with middle-T in NIH 3T3 cells. All mutants were found to associate with middle-T, demonstrating that the kinase domain of c-Src, including the carboxy-terminal regulatory tail, is sufficient for association with middle-T. Moreover, we found that Hck, another member of the Src kinase family, does not bind middle-T, while chimeric kinases consisting of the amino-terminal domains of c-Src fused to the kinase domain of Hck or the amino-terminal domains of Hck fused to the kinase domain of c-Src associated with middle-T. Hck mutated at its carboxy-terminal regulatory residue, tyrosine 501, was also found to associate with middle-T. These results suggest that in Hck, the postulated intramolecular interaction between the carboxy-terminal regulatory tyrosine and the SH2 domain prevents association with middle-T. This intramolecular interaction apparently also limits the ability of c-Src to associate with middle-T, since removal of the SH2 or SH3 domain increases the efficiency with which middle-T binds c-Src.
Collapse
Affiliation(s)
- N M Dunant
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | |
Collapse
|
18
|
Robbins SM, Quintrell NA, Bishop JM. Myristoylation and differential palmitoylation of the HCK protein-tyrosine kinases govern their attachment to membranes and association with caveolae. Mol Cell Biol 1995; 15:3507-15. [PMID: 7791757 PMCID: PMC230587 DOI: 10.1128/mcb.15.7.3507] [Citation(s) in RCA: 199] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The human proto-oncogene HCK encodes two versions of a protein-tyrosine kinase, with molecular weights of 59,000 (p59hck) and 61,000 (p61hck). The two proteins arise from a single mRNA by alternative initiations of translation. In this study, we explored the functions of these proteins by determining their locations within cells and by characterizing lipid modifications required for the proteins to reach those locations. We found that p59hck is entirely associated with cellular membranes, including the organelles known as caveolae; in contrast, only a portion of p61hck is situated on membranes, and none is detectable in preparations of caveolae. These distinctions can be attributed to differential modification of the two HCK proteins with fatty acids. Both proteins are at least in part myristoylated, p59hck more so than p61hck. In addition, however, p59hck is palmitoylated on cysteine 3 in the protein. Palmitoylation of the protein requires prior myristoylation and, in turn, is required for targeting to caveolae. These findings are in accord with recent reports for other members of the SRC family of protein-tyrosine kinases. Taken together, the results suggest that HCK and several of its relatives may participate in the functions of caveolae, which apparently include the transduction of signals across the plasma membrane to the interior of the cell.
Collapse
Affiliation(s)
- S M Robbins
- Department of Microbiology, University of California, San Francisco 94143-0552, USA
| | | | | |
Collapse
|
19
|
Sigal CT, Zhou W, Buser CA, McLaughlin S, Resh MD. Amino-terminal basic residues of Src mediate membrane binding through electrostatic interaction with acidic phospholipids. Proc Natl Acad Sci U S A 1994; 91:12253-7. [PMID: 7527558 PMCID: PMC45415 DOI: 10.1073/pnas.91.25.12253] [Citation(s) in RCA: 191] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Membrane targeting of pp60src (Src) is mediated by its myristoylated amino terminus. We demonstrate that, in addition to myristate, six basic residues in the amino terminus are essential for high-affinity binding to the lipid bilayer via electrostatic interaction with acidic phospholipids. Specifically, c-Src was shown to bind 2500-fold more strongly to vesicles composed of the physiological ratio of 2:1 phosphatidylcholine (PC)/phosphatidylserine (PS) than to neutral PC bilayer vesicles. The apparent Kd for binding of c-Src to the PC/PS bilayer was 6 x 10(-7) M. This interaction is sufficiently strong to account for c-Src membrane targeting. Mutants of c-Src in which the amino-terminal basic residues were replaced by neutral asparagine residues exhibited binding isotherms approaching that of wild-type binding to neutral bilayers (apparent Kd of 2 x 10(-3) M). The transforming v-Src and activated c-Src (Y527F) proteins also bound more strongly to PC/PS bilayers (apparent Kd of approximately 1 x 10(-5) M) than to neutral PC bilayers. In vivo experiments with Src mutants confirmed the role of positive charge in mediating membrane binding and cellular transformation.
Collapse
Affiliation(s)
- C T Sigal
- Cell Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
| | | | | | | | | |
Collapse
|
20
|
Strand D, Jakobs R, Merdes G, Neumann B, Kalmes A, Heid HW, Husmann I, Mechler BM. The Drosophila lethal(2)giant larvae tumor suppressor protein forms homo-oligomers and is associated with nonmuscle myosin II heavy chain. J Biophys Biochem Cytol 1994; 127:1361-73. [PMID: 7962095 PMCID: PMC2120250 DOI: 10.1083/jcb.127.5.1361] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Inactivation of the Drosophila lethal(2)giant larvae (l(2)gl) gene causes malignant tumors in the brain and the imaginal discs and produces developmental abnormalities in other tissues, including the germline, the ring gland and the salivary glands. Our investigations into the l(2)gl function have revealed that the gene product, or p127 protein, acts as a cytoskeletal protein distributed in both the cytoplasm and on the inner face of lateral cell membranes in a number of tissues throughout development. To determine whether p127 can form oligomers or can stably interact with other proteins we have analyzed the structure of the cytosolic form of p127. Using gel filtration and immunoaffinity chromatography we found that p127 is consistently recovered as high molecular weight complexes that contain predominantly p127 and at least ten additional proteins. Blot overlay assays indicated that p127 can form homo-oligomers and the use of a series of chimaeric proteins made of segments of p127 fused to protein A, which alone behaves as a monomer, showed that p127 contains at least three distinct domains contributing to its homo-oligomerization. Among the proteins separated from the immuno-purified p127 complexes or isolated by virtue of their affinity to p127, we identified one of the proteins by microsequencing as nonmuscle myosin II heavy chain. Further blot overlay assay showed that p127 can directly interact with nonmuscle myosin II. These findings confirm that p127 is a component of a cytoskeletal network including myosin and suggest that the neoplastic transformation resulting from l(2)gl gene inactivation may be caused by the partial disruption of this network.
Collapse
Affiliation(s)
- D Strand
- Department of Developmental Genetics, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Csk phosphorylates Src family members at a key regulatory tyrosine in the C-terminal tail and suppresses their activities. It is not known whether Csk activity is regulated. To examine the features of Csk required for Src suppression, we expressed Csk mutants in a cell line with a disrupted csk gene. Expression of wild-type Csk suppressed Src, but Csk with mutations in the SH2, SH3, and catalytic domains did not suppress Src. An SH3 deletion mutant of Csk was fully active against in vitro substrates, but two SH2 domain mutants were essentially inactive. Whereas Src repressed by Csk was predominantly perinuclear, the activated Src in cells lacking Csk was localized to structures resembling podosomes. Activated mutant Src was also in podosomes, even in the presence of Csk. When Src was not active, Csk was diffusely located in the cytosol, but when Src was active, Csk colocalized with activated Src to podosomes. Csk also localizes to podosomes of cells transformed by an activated Src that lacks the major tyrosine autophosphorylation site, suggesting that the relocalization of Csk is not a consequence of the binding of the Csk SH2 domain to phosphorylated Src. A catalytically inactive Csk mutant also localized with Src to podosomes, but SH3 and SH2 domain mutants did not, suggesting that the SH3 and SH2 domains are both necessary to target Csk to places where Src is active. The failure of the catalytically active SH3 mutant of Csk to regulate Src may be due to its inability to colocalize with active Src.
Collapse
|
22
|
Abstract
Csk phosphorylates Src family members at a key regulatory tyrosine in the C-terminal tail and suppresses their activities. It is not known whether Csk activity is regulated. To examine the features of Csk required for Src suppression, we expressed Csk mutants in a cell line with a disrupted csk gene. Expression of wild-type Csk suppressed Src, but Csk with mutations in the SH2, SH3, and catalytic domains did not suppress Src. An SH3 deletion mutant of Csk was fully active against in vitro substrates, but two SH2 domain mutants were essentially inactive. Whereas Src repressed by Csk was predominantly perinuclear, the activated Src in cells lacking Csk was localized to structures resembling podosomes. Activated mutant Src was also in podosomes, even in the presence of Csk. When Src was not active, Csk was diffusely located in the cytosol, but when Src was active, Csk colocalized with activated Src to podosomes. Csk also localizes to podosomes of cells transformed by an activated Src that lacks the major tyrosine autophosphorylation site, suggesting that the relocalization of Csk is not a consequence of the binding of the Csk SH2 domain to phosphorylated Src. A catalytically inactive Csk mutant also localized with Src to podosomes, but SH3 and SH2 domain mutants did not, suggesting that the SH3 and SH2 domains are both necessary to target Csk to places where Src is active. The failure of the catalytically active SH3 mutant of Csk to regulate Src may be due to its inability to colocalize with active Src.
Collapse
Affiliation(s)
- B W Howell
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | |
Collapse
|
23
|
Shenoy-Scaria AM, Dietzen DJ, Kwong J, Link DC, Lublin DM. Cysteine3 of Src family protein tyrosine kinase determines palmitoylation and localization in caveolae. J Biophys Biochem Cytol 1994; 126:353-63. [PMID: 7518463 PMCID: PMC2200018 DOI: 10.1083/jcb.126.2.353] [Citation(s) in RCA: 327] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Recent work has demonstrated that p56lck, a member of the Src family of protein tyrosine kinases (PTKs), is modified by palmitoylation of a cysteine residue(s) within the first 10 amino acids of the protein (in addition to amino-terminal myristoylation that is a common modification of the Src family of PTKs). This is now extended to three other members of this family by showing incorporation of [3H]palmitate into p59fyn, p55fgr, and p56hck, but not into p60src. The [3H]palmitate was released by treatment with neutral hydroxylamine, indicating a thioester linkage to the protein. Individual replacement of the two cysteine residues within the first 10 amino acids of p59fyn and p56lck with serine indicated that Cys3 was the major determinant of palmitoylation, as well as association of the PTK with glycosyl-phosphatidylinositol-anchored proteins. Introduction of Cys3 into p60src led to its palmitoylation. p59fyn but not p60src partitioned into Triton-insoluble complexes that contain caveolae, microinvaginations of the plasma membrane. Mapping of the requirement for partitioning into caveolae demonstrated that the amino-terminal sequence Met-Gly-Cys is both necessary and sufficient within the context of a Src family PTK to confer localization into caveolae. Palmitoylation of this motif in p59fyn also modestly increased its overall avidity for membranes. These results highlight the role of the amino-terminal motif Met-Gly-Cys in determining the structure and properties of members of the Src family of PTKs.
Collapse
Affiliation(s)
- A M Shenoy-Scaria
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | | | |
Collapse
|
24
|
Zhou W, Parent LJ, Wills JW, Resh MD. Identification of a membrane-binding domain within the amino-terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids. J Virol 1994; 68:2556-69. [PMID: 8139035 PMCID: PMC236733 DOI: 10.1128/jvi.68.4.2556-2569.1994] [Citation(s) in RCA: 448] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Retroviral Gag proteins are targeted to the plasma membrane, where they play the central role in virion formation. Several studies have suggested that the membrane-binding signal is contained within the amino-terminal matrix sequence; however, the precise location has never been determined for the Gag protein of any retrovirus. In this report, we show that the first 31 residues of human immunodeficiency virus type 1 Gag protein can function independently as a membrane-targeting domain when fused to heterologous proteins. A bipartite membrane-targeting motif was identified, consisting of the myristylated N-terminal 14 amino acids and a highly basic region that binds acidic phospholipids. Replacement of the N-terminal membrane-targeting domain of pp60v-src with that of human immunodeficiency virus type 1 Gag elicits efficient membrane binding and a transforming phenotype. Removal of myristate or the basic region results in decreased membrane binding of Gag-Src chimeras in vitro and impaired virion formation by Pr55gag in vivo. We propose that the N-terminal Gag sequence functions as a targeting signal to direct interaction with acidic phospholipids on the cytoplasmic leaflet of the plasma membrane.
Collapse
Affiliation(s)
- W Zhou
- Cell Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | | | | | | |
Collapse
|
25
|
Van Etten RA, Jackson PK, Baltimore D, Sanders MC, Matsudaira PT, Janmey PA. The COOH terminus of the c-Abl tyrosine kinase contains distinct F- and G-actin binding domains with bundling activity. J Cell Biol 1994; 124:325-40. [PMID: 8294516 PMCID: PMC2119935 DOI: 10.1083/jcb.124.3.325] [Citation(s) in RCA: 212] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The myristoylated form of c-Abl protein, as well as the P210bcr/abl protein, have been shown by indirect immunofluorescence to associate with F-actin stress fibers in fibroblasts. Analysis of deletion mutants of c-Abl stably expressed in fibroblasts maps the domain responsible for this interaction to the extreme COOH-terminus of Abl. This domain mediates the association of a heterologous protein with F-actin filaments after microinjection into NIH 3T3 cells, and directly binds to F-actin in a cosedimentation assay. Microinjection and cosedimentation assays localize the actin-binding domain to a 58 amino acid region, including a charged motif at the extreme COOH-terminus that is important for efficient binding. F-actin binding by Abl is calcium independent, and Abl competes with gelsolin for binding to F-actin. In addition to the F-actin binding domain, the COOH-terminus of Abl contains a proline-rich region that mediates binding and sequestration of G-actin, and the Abl F- and G-actin binding domains cooperate to bundle F-actin filaments in vitro. The COOH terminus of Abl thus confers several novel localizing functions upon the protein, including actin binding, nuclear localization, and DNA binding. Abl may modify and receive signals from the F-actin cytoskeleton in vivo, and is an ideal candidate to mediate signal transduction from the cell surface and cytoskeleton to the nucleus.
Collapse
Affiliation(s)
- R A Van Etten
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | |
Collapse
|
26
|
Zheng J, Knighton DR, Xuong NH, Taylor SS, Sowadski JM, Ten Eyck LF. Crystal structures of the myristylated catalytic subunit of cAMP-dependent protein kinase reveal open and closed conformations. Protein Sci 1993; 2:1559-73. [PMID: 8251932 PMCID: PMC2142252 DOI: 10.1002/pro.5560021003] [Citation(s) in RCA: 232] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Three crystal structures, representing two distinct conformational states, of the mammalian catalytic subunit of cAMP-dependent protein kinase were solved using molecular replacement methods starting from the refined structure of the recombinant catalytic subunit ternary complex (Zheng, J., et al., 1993a, Biochemistry 32, 2154-2161). These structures correspond to the free apoenzyme, a binary complex with an iodinated inhibitor peptide, and a ternary complex with both ATP and the unmodified inhibitor peptide. The apoenzyme and the binary complex crystallized in an open conformation, whereas the ternary complex crystallized in a closed conformation similar to the ternary complex of the recombinant enzyme. The model of the binary complex, refined at 2.9 A resolution, shows the conformational changes associated with the open conformation. These can be described by a rotation of the small lobe and a displacement of the C-terminal 30 residues. This rotation of the small lobe alters the cleft interface in the active-site region surrounding the glycine-rich loop and Thr 197, a critical phosphorylation site. In addition to the conformational changes, the myristylation site, absent in the recombinant enzyme, was clearly defined in the binary complex. The myristic acid binds in a deep hydrophobic pocket formed by four segments of the protein that are widely dispersed in the linear sequence. The N-terminal 40 residues that lie outside the conserved catalytic core are anchored by the N-terminal myristylate plus an amphipathic helix that spans both lobes and is capped by Trp 30. Both posttranslational modifications, phosphorylation and myristylation, contribute directly to the stable structure of this enzyme.
Collapse
Affiliation(s)
- J Zheng
- Department of Chemistry, University of California at San Diego, La Jolla 92093
| | | | | | | | | | | |
Collapse
|
27
|
Suppression of c-Src activity by C-terminal Src kinase involves the c-Src SH2 and SH3 domains: analysis with Saccharomyces cerevisiae. Mol Cell Biol 1993. [PMID: 7689149 DOI: 10.1128/mcb.13.9.5290] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The kinase activity of c-Src is normally repressed in vertebrate cells by extensive phosphorylation of Y-527. C-terminal Src kinase (CSK) is a candidate for the enzyme that catalyzes this phosphorylation. We have used budding yeast to study the regulation of c-Src activity by CSK in intact cells. Expression of c-Src in Saccharomyces cerevisiae, which lacks endogenous c-Src and Y-527 kinases, induces a kinase-dependent growth inhibition. Coexpression of CSK in these cells results in phosphorylation of c-Src on Y-527 and suppression of the c-Src phenotype. CSK does not fully suppress the activity of c-Src mutants lacking portions of the SH2 or SH3 domains, even though these mutant proteins are phosphorylated on Y-527 by CSK both in vivo and in vitro. These results suggest that both the SH2 and SH3 domains of c-Src are required for the suppression of c-Src activity by Y-527 phosphorylation.
Collapse
|
28
|
Murphy SM, Bergman M, Morgan DO. Suppression of c-Src activity by C-terminal Src kinase involves the c-Src SH2 and SH3 domains: analysis with Saccharomyces cerevisiae. Mol Cell Biol 1993; 13:5290-300. [PMID: 7689149 PMCID: PMC360223 DOI: 10.1128/mcb.13.9.5290-5300.1993] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The kinase activity of c-Src is normally repressed in vertebrate cells by extensive phosphorylation of Y-527. C-terminal Src kinase (CSK) is a candidate for the enzyme that catalyzes this phosphorylation. We have used budding yeast to study the regulation of c-Src activity by CSK in intact cells. Expression of c-Src in Saccharomyces cerevisiae, which lacks endogenous c-Src and Y-527 kinases, induces a kinase-dependent growth inhibition. Coexpression of CSK in these cells results in phosphorylation of c-Src on Y-527 and suppression of the c-Src phenotype. CSK does not fully suppress the activity of c-Src mutants lacking portions of the SH2 or SH3 domains, even though these mutant proteins are phosphorylated on Y-527 by CSK both in vivo and in vitro. These results suggest that both the SH2 and SH3 domains of c-Src are required for the suppression of c-Src activity by Y-527 phosphorylation.
Collapse
Affiliation(s)
- S M Murphy
- Department of Physiology, University of California, San Francisco 94143-0444
| | | | | |
Collapse
|
29
|
Expression of p60v-src in Saccharomyces cerevisiae results in elevation of p34CDC28 kinase activity and release of the dependence of DNA replication on mitosis. Mol Cell Biol 1993. [PMID: 7687746 DOI: 10.1128/mcb.13.8.5112] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the oncogenic protein tyrosine kinase p60v-src in the yeast Saccharomyces cerevisiae has been shown to result in rapid cell death (J. S. Brugge, G. Jarosik, J. Andersen, A. Queral-Lustig, M. Fedor-Chaiken, and J. R. Broach, Mol. Cell. Biol. 7:2180-2187, 1987). Work described here demonstrates that v-Src expression results in accumulation of large-budded cells and a nuclear division block without blocking cytokinesis. Flow-cytometric analysis indicates that the DNA content of these cells is elevated beyond the G2 DNA content, and genetic studies indicate that v-Src expression causes aneuploidy. The activity of Cdc28 kinase, which controls the G1/S and G2/M transitions in S. cerevisiae, increases during galactose induction in a Src+ strain but not in an isogenic Src- strain. These observations indicate that v-Src expression disrupts p34CDC28 kinase regulation, allowing DNA replication to proceed in the absence of a prior mitotic event.
Collapse
|
30
|
Boschelli F. Expression of p60v-src in Saccharomyces cerevisiae results in elevation of p34CDC28 kinase activity and release of the dependence of DNA replication on mitosis. Mol Cell Biol 1993; 13:5112-21. [PMID: 7687746 PMCID: PMC360166 DOI: 10.1128/mcb.13.8.5112-5121.1993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Expression of the oncogenic protein tyrosine kinase p60v-src in the yeast Saccharomyces cerevisiae has been shown to result in rapid cell death (J. S. Brugge, G. Jarosik, J. Andersen, A. Queral-Lustig, M. Fedor-Chaiken, and J. R. Broach, Mol. Cell. Biol. 7:2180-2187, 1987). Work described here demonstrates that v-Src expression results in accumulation of large-budded cells and a nuclear division block without blocking cytokinesis. Flow-cytometric analysis indicates that the DNA content of these cells is elevated beyond the G2 DNA content, and genetic studies indicate that v-Src expression causes aneuploidy. The activity of Cdc28 kinase, which controls the G1/S and G2/M transitions in S. cerevisiae, increases during galactose induction in a Src+ strain but not in an isogenic Src- strain. These observations indicate that v-Src expression disrupts p34CDC28 kinase regulation, allowing DNA replication to proceed in the absence of a prior mitotic event.
Collapse
Affiliation(s)
- F Boschelli
- Department of Biochemistry, Wayne State University School of Medicine, Detroit, Michigan 48201
| |
Collapse
|
31
|
The ADP/ATP carrier is the 32-kilodalton receptor for an NH2-terminally myristylated src peptide but not for pp60src polypeptide. Mol Cell Biol 1993. [PMID: 8474462 DOI: 10.1128/mcb.13.5.3084] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Membrane binding of pp60src is initiated via its myristylated NH2 terminus. To identify a candidate pp60src docking protein or receptor in the membrane, a radiolabelled peptide corresponding to the pp60src NH2-terminal membrane binding domain was cross-linked to fibroblast membranes and found to specifically label a 32-kDa protein. This protein was purified by appending an affinity tag to the peptide probe so that the cross-linked complex could be isolated via affinity chromatography. Microsequencing indicated that the 32-kDa protein was the mitochondrial ADP/ATP carrier (AAC). This result was further confirmed by the ability of an antibody to the AAC to immunoprecipitate the cross-linked complex, by the ability of certain inhibitors of the AAC to block cross-linking, and by membrane fractionation to show that complex formation occurred essentially exclusively in the mitochondrial fraction. While the AAC bound the myristyl-src peptide in a specific manner both in vitro and in vivo, its localization to the inner membrane of the mitochondrion precludes its being a pp60src binding protein. An analysis of pp60v-src binding in vitro was consistent with this expectation. Thus, use of a myristyl-src peptide revealed an unexpected and previously unidentified binding capacity of the AAC, most likely related to the ability of long-chain fatty acyl coenzyme As to serve as AAC inhibitors. The amphipathic nature of the pp60src NH2 terminus suggests alternative strategies for uncovering pp60src membrane binding species.
Collapse
|
32
|
Sigal CT, Resh MD. The ADP/ATP carrier is the 32-kilodalton receptor for an NH2-terminally myristylated src peptide but not for pp60src polypeptide. Mol Cell Biol 1993; 13:3084-92. [PMID: 8474462 PMCID: PMC359701 DOI: 10.1128/mcb.13.5.3084-3092.1993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Membrane binding of pp60src is initiated via its myristylated NH2 terminus. To identify a candidate pp60src docking protein or receptor in the membrane, a radiolabelled peptide corresponding to the pp60src NH2-terminal membrane binding domain was cross-linked to fibroblast membranes and found to specifically label a 32-kDa protein. This protein was purified by appending an affinity tag to the peptide probe so that the cross-linked complex could be isolated via affinity chromatography. Microsequencing indicated that the 32-kDa protein was the mitochondrial ADP/ATP carrier (AAC). This result was further confirmed by the ability of an antibody to the AAC to immunoprecipitate the cross-linked complex, by the ability of certain inhibitors of the AAC to block cross-linking, and by membrane fractionation to show that complex formation occurred essentially exclusively in the mitochondrial fraction. While the AAC bound the myristyl-src peptide in a specific manner both in vitro and in vivo, its localization to the inner membrane of the mitochondrion precludes its being a pp60src binding protein. An analysis of pp60v-src binding in vitro was consistent with this expectation. Thus, use of a myristyl-src peptide revealed an unexpected and previously unidentified binding capacity of the AAC, most likely related to the ability of long-chain fatty acyl coenzyme As to serve as AAC inhibitors. The amphipathic nature of the pp60src NH2 terminus suggests alternative strategies for uncovering pp60src membrane binding species.
Collapse
Affiliation(s)
- C T Sigal
- Department of Cell Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | | |
Collapse
|
33
|
Myristylation is required for Tyr-527 dephosphorylation and activation of pp60c-src in mitosis. Mol Cell Biol 1993. [PMID: 7680096 DOI: 10.1128/mcb.13.3.1464] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The chicken proto-oncoprotein c-Src is phosphorylated by p34cdc2 during mitosis concomitant with increased c-Src tyrosine kinase activity. On the basis of indirect evidence, we previously suggested that this is caused by partial dephosphorylation at Tyr-527, the phosphorylation of which suppresses c-Src kinase activity. In support of this hypothesis, we now show that treatment of cells with a protein tyrosine phosphatase inhibitor, sodium vanadate, blocks the mitotic increase in Src kinase activity. Also, we show that an amino-terminal mutation that prevents myristylation (and membrane localization) of c-Src does not interfere with the p34cdc2-mediated phosphorylations but blocks both mitotic dephosphorylation of Tyr-527 (in kinase-defective Src) and stimulation of c-Src kinase activity. Furthermore, in unsynchronized cells, the kinase activity of nonmyristylated c-Src is suppressed by 60% relative to wild-type c-Src, presumably because of increased Tyr-527 phosphorylation. Consistent with this, the Tyr-527 dephosphorylation rate measured in cell homogenates is much higher for wild-type, myristylated c-Src than for nonmyristylated c-Src. Tyr-527 phosphatase activity was primarily associated with the nonsoluble subcellular fraction. These findings suggest that the phosphatase(s) that acts on Tyr-527 is membrane bound and indicate that membrane localization of c-Src is necessary for its mitotic activation by dephosphorylation of Tyr-527.
Collapse
|
34
|
Bagrodia S, Taylor SJ, Shalloway D. Myristylation is required for Tyr-527 dephosphorylation and activation of pp60c-src in mitosis. Mol Cell Biol 1993; 13:1464-70. [PMID: 7680096 PMCID: PMC359457 DOI: 10.1128/mcb.13.3.1464-1470.1993] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The chicken proto-oncoprotein c-Src is phosphorylated by p34cdc2 during mitosis concomitant with increased c-Src tyrosine kinase activity. On the basis of indirect evidence, we previously suggested that this is caused by partial dephosphorylation at Tyr-527, the phosphorylation of which suppresses c-Src kinase activity. In support of this hypothesis, we now show that treatment of cells with a protein tyrosine phosphatase inhibitor, sodium vanadate, blocks the mitotic increase in Src kinase activity. Also, we show that an amino-terminal mutation that prevents myristylation (and membrane localization) of c-Src does not interfere with the p34cdc2-mediated phosphorylations but blocks both mitotic dephosphorylation of Tyr-527 (in kinase-defective Src) and stimulation of c-Src kinase activity. Furthermore, in unsynchronized cells, the kinase activity of nonmyristylated c-Src is suppressed by 60% relative to wild-type c-Src, presumably because of increased Tyr-527 phosphorylation. Consistent with this, the Tyr-527 dephosphorylation rate measured in cell homogenates is much higher for wild-type, myristylated c-Src than for nonmyristylated c-Src. Tyr-527 phosphatase activity was primarily associated with the nonsoluble subcellular fraction. These findings suggest that the phosphatase(s) that acts on Tyr-527 is membrane bound and indicate that membrane localization of c-Src is necessary for its mitotic activation by dephosphorylation of Tyr-527.
Collapse
Affiliation(s)
- S Bagrodia
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853
| | | | | |
Collapse
|
35
|
Horne WC, Neff L, Chatterjee D, Lomri A, Levy JB, Baron R. Osteoclasts express high levels of pp60c-src in association with intracellular membranes. J Cell Biol 1992; 119:1003-13. [PMID: 1385441 PMCID: PMC2289690 DOI: 10.1083/jcb.119.4.1003] [Citation(s) in RCA: 196] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Deletion of the c-src gene in transgenic mice by homologous recombination leads to osteopetrosis, a skeletal defect characterized by markedly deficient bone resorption (Soriano, P., C. Montgomery, R. Geske, and A. Bradley. 1991. Cell. 64:693-702), demonstrating a critical functional role of pp60c-src in osteoclast activity. Since decreased bone resorption could result from a defect either within the osteoclast or within other cells present in its environment, indirectly affecting osteoclast functions, we determined which cell(s) in bone expressed high levels of pp60c-src Measuring pp60c-src protein and kinase activities in osteoclasts and immunolocalizing pp60c-src in bone, we find that expression of pp60c-src is nearly as high in osteoclasts as in brain and platelets. In contrast, other bone cells contain only very low levels of the protein. In addition, expression of the c-src gene product increases when bone marrow cells are induced to express an osteoclast-like phenotype by 1,25-dihydroxy-vitamin D3, further suggesting that high expression of pp60c-src is part of the osteoclast phenotype. Three other src-like kinases, c-fyn, c-yes, and c-lyn, are also expressed in osteoclasts at ratios to pp60c-src similar to what is found in platelets. These src-related proteins do not, however, compensate for the absence of pp60c-src in the src- mice, thereby suggesting that pp60c-src may have a specific function in osteoclasts. Although further work is necessary to elucidate what the critical role of pp60c-src in osteoclasts is, our observation that the protein is associated mostly with the membranes of intracellular organelles suggests the possibility that this role might be at least in part related to the targeting or fusion of membrane vesicles.
Collapse
Affiliation(s)
- W C Horne
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | | | | | |
Collapse
|
36
|
Silverman L, Resh MD. Lysine residues form an integral component of a novel NH2-terminal membrane targeting motif for myristylated pp60v-src. J Cell Biol 1992; 119:415-25. [PMID: 1400583 PMCID: PMC2289653 DOI: 10.1083/jcb.119.2.415] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Association of pp60v-src with the plasma membrane is fundamental to generation of the transformed phenotype. Although myristylation of pp60v-src is required for interaction with a membrane-bound receptor, the importance of NH2-terminal amino acids in receptor binding has not yet been uncoupled from their role in signaling myristylation. Using chimeric src proteins, peptides identical or related to the NH2 terminus of src, and site-directed mutagenesis, we demonstrate that NH2-terminal lysines in conjunction with myristate are essential for membrane localization. Subsequent to NH2-terminal interaction with the "src receptor," internal regions of the src protein also participate in membrane binding. This novel NH2-terminal motif and internal contact mechanism may direct other members of the src family of tyrosine kinases to their membrane receptors.
Collapse
Affiliation(s)
- L Silverman
- Department of Cell Biology and Genetics, Memorial Sloan-Kettering Cancer, Center, New York 10021
| | | |
Collapse
|
37
|
Kaplan KB, Swedlow JR, Varmus HE, Morgan DO. Association of p60c-src with endosomal membranes in mammalian fibroblasts. J Cell Biol 1992; 118:321-33. [PMID: 1378446 PMCID: PMC2290043 DOI: 10.1083/jcb.118.2.321] [Citation(s) in RCA: 205] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have examined the subcellular localization of p60c-src in mammalian fibroblasts. Analysis of indirect immunofluorescence by three-dimensional optical sectioning microscopy revealed a granular cytoplasmic staining that co-localized with the microtubule organizing center. Immunofluorescence experiments with antibodies against a number of membrane markers demonstrated a striking co-localization between p60c-src and the cation-dependent mannose-6-phosphate receptor (CI-MPR), a marker that identifies endosomes. Both p60c-src and the CI-MPR were found to cluster at the spindle poles throughout mitosis. In addition, treatment of interphase and mitotic cells with brefeldin A resulted in a clustering of p60c-src and CI-MPR at a peri-centriolar position. Biochemical fractionation of cellular membranes showed that a major proportion of p60c-src co-enriched with endocytic membranes. Treatment of membranes containing HRP to alter their apparent density also altered the density of p60c-src-containing membranes. Similar density shift experiments with total cellular membranes revealed that the majority of membrane-associated p60c-src in the cell is associated with endosomes, while very little is associated with plasma membranes. These results support a role for p60c-src in the regulation of endosomal membranes and protein trafficking.
Collapse
Affiliation(s)
- K B Kaplan
- Department of Microbiology, University of California, San Francisco 94143
| | | | | | | |
Collapse
|
38
|
Linstedt AD, Vetter ML, Bishop JM, Kelly RB. Specific association of the proto-oncogene product pp60c-src with an intracellular organelle, the PC12 synaptic vesicle. J Biophys Biochem Cytol 1992; 117:1077-84. [PMID: 1374414 PMCID: PMC2289481 DOI: 10.1083/jcb.117.5.1077] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The protein product of the proto-oncogene c-src is a membrane-associated tyrosine kinase of unknown function. Identification of pp60c-src target membranes may elucidate the function of the c-src protein. The available evidence indicates that pp60c-src associates with distinct membranes within single cell types and has different distributions in different cell types. Our experiments demonstrate targeting of pp60c-src to an isolatable and biochemically identified membrane fraction in the neuroendocrine cell line PC12. The c-src protein was found to be specifically associated with synaptic vesicles since: (a) the pp60c-src immunofluorescent pattern overlapped with a synaptic vesicle marker, synaptophysin; (b) a significant proportion (44%) of the pp60c-src from PC12 but not fibroblast postnuclear supernatants was recovered in a small vesicle fraction; (c) an anti-synaptophysin cytoplasmic domain antibody immunodepleted all of the pp60c-src vesicles in this fraction, and (d) pp60c-src copurified during a 100-fold purification of PC12 synaptic vesicles. These results suggest a role for the c-src protein in the regulation of synaptic vesicle function.
Collapse
Affiliation(s)
- A D Linstedt
- Program in Neuroscience, University of California, San Francisco 94143-0534
| | | | | | | |
Collapse
|
39
|
Abstract
N-terminal myristoylation can promote the association of proteins with the plasma membrane, a property that is required for oncogenic variants of Src and Abl to transform fibroblastic cell types. The P210bcr/abl protein of chronic myelogenous leukemia cells is not myristoylated and does not stably transform NIH 3T3 fibroblasts; however, it will transform lymphoid and myeloid cell types in vitro and in vivo, suggesting that myristoylation is not required for Abl variants to transform hematopoietic cells. To test this hypothesis, we introduced point mutations that disrupt myristoylation into two activated Abl proteins, v-Abl and a deletion mutant of c-Abl (delta XB), and examined their ability to transform an interleukin-3-dependent lymphoblastoid cell line, Ba/F3. Neither of the nonmyristoylated Abl proteins transformed NIH 3T3 fibroblasts, but like P210bcr/abl, both were capable of transforming the Ba/F3 cells to factor independence and tumorigenicity. Nonmyristoylated Abl variants did not associate with the plasma membrane in the transformed Ba/F3 cells. These results demonstrate that Abl proteins can transform hematopoietic cells in the absence of membrane association and suggest that distinct functions of Abl are required for transformation of fibroblast and hematopoietic cell types.
Collapse
|
40
|
Daley GQ, Van Etten RA, Jackson PK, Bernards A, Baltimore D. Nonmyristoylated Abl proteins transform a factor-dependent hematopoietic cell line. Mol Cell Biol 1992; 12:1864-71. [PMID: 1549131 PMCID: PMC369630 DOI: 10.1128/mcb.12.4.1864-1871.1992] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
N-terminal myristoylation can promote the association of proteins with the plasma membrane, a property that is required for oncogenic variants of Src and Abl to transform fibroblastic cell types. The P210bcr/abl protein of chronic myelogenous leukemia cells is not myristoylated and does not stably transform NIH 3T3 fibroblasts; however, it will transform lymphoid and myeloid cell types in vitro and in vivo, suggesting that myristoylation is not required for Abl variants to transform hematopoietic cells. To test this hypothesis, we introduced point mutations that disrupt myristoylation into two activated Abl proteins, v-Abl and a deletion mutant of c-Abl (delta XB), and examined their ability to transform an interleukin-3-dependent lymphoblastoid cell line, Ba/F3. Neither of the nonmyristoylated Abl proteins transformed NIH 3T3 fibroblasts, but like P210bcr/abl, both were capable of transforming the Ba/F3 cells to factor independence and tumorigenicity. Nonmyristoylated Abl variants did not associate with the plasma membrane in the transformed Ba/F3 cells. These results demonstrate that Abl proteins can transform hematopoietic cells in the absence of membrane association and suggest that distinct functions of Abl are required for transformation of fibroblast and hematopoietic cell types.
Collapse
Affiliation(s)
- G Q Daley
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | | | | | | | | |
Collapse
|
41
|
Phillips WD, Maimone MM, Merlie JP. Mutagenesis of the 43-kD postsynaptic protein defines domains involved in plasma membrane targeting and AChR clustering. J Cell Biol 1991; 115:1713-23. [PMID: 1757470 PMCID: PMC2289204 DOI: 10.1083/jcb.115.6.1713] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The postsynaptic membrane of the neuromuscular junction contains a myristoylated 43-kD protein (43k) that is closely associated with the cytoplasmic face of the nicotinic acetylcholine receptor (AChR)-rich plasma membrane. Previously, we described fibroblast cell lines expressing recombinant AChRs. Transfection of these cell lines with 43k was necessary and sufficient for reorganization of AChR into discrete 43k-rich plasma membrane domains (Phillips, W. D., C. Kopta, P. Blount, P. D. Gardner, J. H. Steinbach, and J. P. Merlie. 1991. Science (Wash. DC). 251:568-570). Here we demonstrate the utility of this expression system for the study of 43k function by site-directed mutagenesis. Substitution of a termination codon for Asp254 produced a truncated (28-kD) protein that associated poorly with the cell membrane. The conversion of Gly2 to Ala2, to preclude NH2-terminal myristoylation, reduced the frequency with which 43k formed plasma membrane domains by threefold, but did not eliminate the aggregation of AChRs at these domains. Since both NH2 and COOH-termini seemed important for association of 43k with the plasma membrane, a deletion mutant was constructed in which the codon Gln15 was fused in-frame to Ile255 to create a 19-kD protein. This mutated protein formed 43k-rich plasma membrane domains at wild-type frequency, but the domains failed to aggregate AChRs, suggesting that the central part of the 43k polypeptide may be involved in AChR aggregation. Our results suggest that membrane association and AChR interactions are separable functions of the 43k molecule.
Collapse
Affiliation(s)
- W D Phillips
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
42
|
The amino-terminal 14 amino acids of v-src can functionally replace the extracellular and transmembrane domains of v-erbB. Mol Cell Biol 1991. [PMID: 1678856 DOI: 10.1128/mcb.11.9.4760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The retroviral oncogene v-erbB encodes a truncated form of the receptor for epidermal growth factor, an integral membrane protein-tyrosine kinase. By contrast, the oncogene v-src encodes a protein-tyrosine kinase that is a peripheral membrane protein. The morphologies and spectra of cells transformed by these two oncogenes differ. In an effort to identify the functional determinant(s) of these differences, we constructed and tested first deletion mutants of v-erbB and then chimeras between v-src and v-erbB. As reported previously, the absence of any membrane anchorage eliminated transformation by v-erbB. Anchorage of the cytoplasmic kinase domain of v-erbB to membranes with amino-terminal portions of the v-src protein permitted transformation. The phenotype and spectrum of transformation were those expected for v-erbB rather than for v-src. The transforming chimeras lost their biological activity if the signal for myristylation at the amino terminus of v-src was compromised by mutation. Biochemical fractionations revealed a correlation between transforming activity and the association of chimeric gene products with the membrane fraction of the cell. For reasons not yet apparent, the combined presence of membrane anchorage domains of v-src, and the transmembrane domain of v-erbB in the same chimera typically (but not inevitably) impeded transformation. Our results suggest that the specificity of transformation by v-erbB resides in the selection of substrates by the cytoplasmic domain of the gene product. The protein retains access to those substrates even when anchored to the membrane in the manner of a peripheral rather than a transmembrane protein.
Collapse
|
43
|
McMahon M, Schatzman RC, Bishop JM. The amino-terminal 14 amino acids of v-src can functionally replace the extracellular and transmembrane domains of v-erbB. Mol Cell Biol 1991; 11:4760-70. [PMID: 1678856 PMCID: PMC361376 DOI: 10.1128/mcb.11.9.4760-4770.1991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The retroviral oncogene v-erbB encodes a truncated form of the receptor for epidermal growth factor, an integral membrane protein-tyrosine kinase. By contrast, the oncogene v-src encodes a protein-tyrosine kinase that is a peripheral membrane protein. The morphologies and spectra of cells transformed by these two oncogenes differ. In an effort to identify the functional determinant(s) of these differences, we constructed and tested first deletion mutants of v-erbB and then chimeras between v-src and v-erbB. As reported previously, the absence of any membrane anchorage eliminated transformation by v-erbB. Anchorage of the cytoplasmic kinase domain of v-erbB to membranes with amino-terminal portions of the v-src protein permitted transformation. The phenotype and spectrum of transformation were those expected for v-erbB rather than for v-src. The transforming chimeras lost their biological activity if the signal for myristylation at the amino terminus of v-src was compromised by mutation. Biochemical fractionations revealed a correlation between transforming activity and the association of chimeric gene products with the membrane fraction of the cell. For reasons not yet apparent, the combined presence of membrane anchorage domains of v-src, and the transmembrane domain of v-erbB in the same chimera typically (but not inevitably) impeded transformation. Our results suggest that the specificity of transformation by v-erbB resides in the selection of substrates by the cytoplasmic domain of the gene product. The protein retains access to those substrates even when anchored to the membrane in the manner of a peripheral rather than a transmembrane protein.
Collapse
Affiliation(s)
- M McMahon
- Department of Microbiology and Immunology, University of California, San Francisco 94143
| | | | | |
Collapse
|
44
|
Prange R, Clemen A, Streeck RE. Myristylation is involved in intracellular retention of hepatitis B virus envelope proteins. J Virol 1991; 65:3919-23. [PMID: 2041101 PMCID: PMC241429 DOI: 10.1128/jvi.65.7.3919-3923.1991] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The envelope of hepatitis B virus contains three related proteins, one of which is myristylated. The nonmyristylated small and middle protein are assembled into empty envelope particles which are secreted from cells, whereas the myristylated large envelope protein is mainly found in complete virions and is not secreted in the absence of the nucleocapsid. The block to secretion can be partially overcome by mutation or deletion of the myristylation site. Creation of a myristyl attachment site in the small protein impairs the secretion of empty envelope particles but not their intracellular assembly. Myristylation may therefore play a crucial role in hepatitis B virus replication by channeling the envelope proteins into complete viral particles.
Collapse
Affiliation(s)
- R Prange
- Institut für Medizinische Mikrobiologie, Johannes Gutenberg-Universität Mainz, Germany
| | | | | |
Collapse
|
45
|
David-Pfeuty T, Nouvian-Dooghe Y. Immunolocalization of the cellular src protein in interphase and mitotic NIH c-src overexpresser cells. J Cell Biol 1990; 111:3097-116. [PMID: 1702788 PMCID: PMC2116410 DOI: 10.1083/jcb.111.6.3097] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The mouse mAb, mAb 327, that recognizes specifically both pp60v-src and pp60c-src in a wide variety of cells, has been used to determine precisely the various locations of pp60c-src in NIH c-src overexpresser cells, using the technique of immunofluorescence microscopy. In interphase cells, the protein exhibits two main distributions: one that appears uniform and in association with the cell surface and the other that is patchy and juxtanuclear and coincides with the centrosomes. The juxtanuclear aggregation of pp60c-src-containing patches depends on microtubules and does not seem to occur within the Golgi apparatus and the rough ER. At the G2-to-M-phase transition, a drastic change in the localization patterns of pp60c-src takes place. We also report experiments in which the NIH c-src overexpresser cells were exposed to Con A for various times to induce a redistribution of the cell surface Con A receptors. We show that, at each stage of the Con A-mediated endocytotic process, the Con A-receptor complexes redistribute into structures to which pp60c-src appears also to be associated: at first, into patches that form at the cell surface level and then, into a cap that stands at the cell center in a juxtanuclear position and that coincides with the Golgi apparatus. During this capping process, pp60c-src-containing vesicles continue to accumulate in a centriolar spot, as in interphase, Con A-untreated cells, from which Con A is excluded. The significance of the intracellular locations of pp60c-src to the possible functions of the protein is discussed. Also, the distribution patterns of the cellular protein in the NIH c-src overexpresser cells are compared with those of pp60v-src in RSV-transformed cells. The differences observed are discussed in relation with the differences in transforming capacities of the two proteins. Finally, the possible physiological significance of the association between pp60c-src and the structures generated after the binding of Con A to its surface receptors is addressed.
Collapse
Affiliation(s)
- T David-Pfeuty
- Institut Curie-Biologie, Centre Universitaire, Orsay, France
| | | |
Collapse
|