1
|
Xu C, Si L, Wang W, Li Z, Song Z, Wang Q, Liu A, Yu J, Fang W, Zhong W, Wang Z, Zhang Y, Liu J, Zhang S, Cai X, Liu A, Li W, Zhan P, Liu H, Lv T, Miao L, Min L, Chen Y, Yuan J, Wang F, Jiang Z, Lin G, Pu X, Lin R, Liu W, Rao C, Lv D, Yu Z, Lei L, Li X, Tang C, Zhou C, Zhang J, Xue J, Guo H, Chu Q, Meng R, Wu J, Zhang R, Hu X, Zhou J, Zhu Z, Li Y, Qiu H, Xia F, Lu Y, Chen X, Ge R, Dai E, Han Y, Pan W, Luo J, Jia H, Dong X, Pang F, Wang K, Wang L, Zhu Y, Xie Y, Lin X, Cai J, Wei J, Lan F, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Wan B, Lv D, Wei Q, Kang J, Zhang J, Zhang C, Yu G, Ou J, Shi L, Li Z, Liu Z, Liu J, Yang N, Wu L, Wang H, Jin G, Yang L, et alXu C, Si L, Wang W, Li Z, Song Z, Wang Q, Liu A, Yu J, Fang W, Zhong W, Wang Z, Zhang Y, Liu J, Zhang S, Cai X, Liu A, Li W, Zhan P, Liu H, Lv T, Miao L, Min L, Chen Y, Yuan J, Wang F, Jiang Z, Lin G, Pu X, Lin R, Liu W, Rao C, Lv D, Yu Z, Lei L, Li X, Tang C, Zhou C, Zhang J, Xue J, Guo H, Chu Q, Meng R, Wu J, Zhang R, Hu X, Zhou J, Zhu Z, Li Y, Qiu H, Xia F, Lu Y, Chen X, Ge R, Dai E, Han Y, Pan W, Luo J, Jia H, Dong X, Pang F, Wang K, Wang L, Zhu Y, Xie Y, Lin X, Cai J, Wei J, Lan F, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Wan B, Lv D, Wei Q, Kang J, Zhang J, Zhang C, Yu G, Ou J, Shi L, Li Z, Liu Z, Liu J, Yang N, Wu L, Wang H, Jin G, Yang L, Wang G, Fang M, Fang Y, Li Y, Wang X, Zhang Y, Ma S, Wang B, Zhang X, Song Y, Lu Y. Expert consensus on the diagnosis and treatment of NTRK gene fusion solid tumors in China. Thorac Cancer 2022; 13:3084-3097. [PMID: 36127731 PMCID: PMC9626341 DOI: 10.1111/1759-7714.14644] [Show More Authors] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 01/07/2023] Open
Abstract
Gene fusions can drive tumor development for multiple types of cancer. Currently, many drugs targeting gene fusions are being approved for clinical application. At present, tyrosine receptor kinase (TRK) inhibitors targeting neurotrophic tyrosine receptor kinase (NTRK) gene fusions are among the first "tumor agnostic" drugs approved for pan-cancer use. Representative TRK inhibitors, including larotrectinib and entrectinib, have shown high efficacy for many types of cancer. At the same time, several second-generation drugs designed to overcome first-generation drug resistance are undergoing clinical development. Due to the rarity of NTRK gene fusions in common cancer types and technical issues regarding the complexity of fusion patterns, effectively screening patients for TRK inhibitor treatment in routine clinical practice is challenging. Different detection methods including immunohistochemistry, fluorescence in situ hybridization, reverse transcription-polymerase chain reaction, and (DNA and/or RNA-based) next-generation sequencing have pros and cons. As such, recommending suitable tests for individual patients and ensuring the quality of tests is essential. Moreover, at present, there is a lack of systematic review for the clinical efficacy and development status of first- and second-generation TRK inhibitors. To resolve the above issues, our expert group has reached a consensus regarding the diagnosis and treatment of NTRK gene fusion solid tumors, aiming to standardize clinical practice with the goal of benefiting patients with NTRK gene fusions treated with TRK inhibitors.
Collapse
Affiliation(s)
- Chunwei Xu
- Institute of Cancer and Basic Medicine (ICBM)Chinese Academy of SciencesHangzhouPeople's Republic of China,Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and SarcomaPeking University Cancer Hospital and InstituteBeijingPeople's Republic of China
| | - Wenxian Wang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouPeople's Republic of China
| | - Ziming Li
- Department of Shanghai Lung Cancer Center, Shanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Zhengbo Song
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouPeople's Republic of China
| | - Qian Wang
- Department of Respiratory MedicineAffiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese MedicineNanjingPeople's Republic of China
| | - Aijun Liu
- Senior Department of PathologyThe 7th Medical Center of PLA General HospitalBeijingPeople's Republic of China
| | - Jinpu Yu
- Cancer Molecular Diagnostics CoreTianjin Medical University Cancer Institute and HospitalTianjinPeople's Republic of China
| | - Wenfeng Fang
- Department of Medical OncologySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouPeople's Republic of China
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung CancerGuangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of MedicineGuangzhouPeople's Republic of China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal UnitHunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaPeople's Republic of China
| | - Jingjing Liu
- Department of Thoracic CancerJilin Cancer HospitalChangchunPeople's Republic of China
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer CenterZhejiang University School of MedicineHangzhouPeople's Republic of China
| | - Xiuyu Cai
- Department of VIP InpatientSun Yet‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouPeople's Republic of China
| | - Anwen Liu
- Department of OncologySecond Affiliated Hospital of Nanchang UniversityNanchangPeople's Republic of China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of Medicine, Cancer Center, Zhejiang UniversityHangzhouPeople's Republic of China
| | - Ping Zhan
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Hongbing Liu
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Liyun Miao
- Department of Respiratory MedicineAffiliated Drum Tower Hospital, Medical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Lingfeng Min
- Department of Respiratory MedicineClinical Medical School of Yangzhou University, Subei People's Hospital of Jiangsu ProvinceYangzhouPeople's Republic of China
| | - Yu Chen
- Department of Medical OncologyFujian Medical University Cancer Hospital and Fujian Cancer HospitalFuzhouPeople's Republic of China
| | - Jingping Yuan
- Department of PathologyRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Feng Wang
- Department of Internal Medicine, Cancer Center of PLA, Qinhuai Medical AreaAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Zhansheng Jiang
- Department of Integrative OncologyTianjin Medical University Cancer Institute and HospitalTianjinPeople's Republic of China
| | - Gen Lin
- Department of Medical OncologyFujian Medical University Cancer Hospital and Fujian Cancer HospitalFuzhouPeople's Republic of China
| | - Xingxiang Pu
- Department of Medical Oncology, Lung Cancer and Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaPeople's Republic of China
| | - Rongbo Lin
- Department of Medical OncologyFujian Medical University Cancer Hospital and Fujian Cancer HospitalFuzhouPeople's Republic of China
| | - Weifeng Liu
- Department of Orthopaedic Oncology Surgery, Beijing Ji Shui Tan HospitalPeking UniversityBeijingPeople's Republic of China
| | - Chuangzhou Rao
- Department of Radiotherapy and Chemotherapy, Hwamei HospitalUniversity of Chinese Academy of SciencesNingboPeople's Republic of China
| | - Dongqing Lv
- Department of Pulmonary MedicineTaizhou Hospital of Wenzhou Medical UniversityTaizhouPeople's Republic of China
| | - Zongyang Yu
- Department of Respiratory Medicine, The 900th Hospital of the Joint Logistics Team (The Former Fuzhou General Hospital)Fujian Medical UniversityFuzhouPeople's Republic of China
| | - Lei Lei
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouPeople's Republic of China
| | - Xiaoyan Li
- Department of Oncology, Beijing Tiantan HospitalCapital Medical UniversityBeijingPeople's Republic of China
| | - Chuanhao Tang
- Department of Medical OncologyPeking University International HospitalBeijingPeople's Republic of China
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University (The First Affiliated Hospital of Guangzhou Medical University)GuangzhouPeople's Republic of China
| | - Junping Zhang
- Department of Thoracic OncologyShanxi Academy of Medical Sciences, Shanxi Bethune HospitalTaiyuanPeople's Republic of China
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiPeople's Republic of China
| | - Hui Guo
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople's Republic of China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople's Republic of China
| | - Jingxun Wu
- Department of Medical Oncology, The First Affiliated Hospital of MedicineXiamen UniversityXiamenPeople's Republic of China
| | - Rui Zhang
- Department of Medical OncologyCancer Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Xiao Hu
- Zhejiang Key Laboratory of Radiation OncologyCancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)HangzhouPeople's Republic of China
| | - Jin Zhou
- Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and TechnologyChengduPeople's Republic of China
| | - Zhengfei Zhu
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiPeople's Republic of China
| | - Yongheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation OncologyPeking University Cancer Hospital and InstituteBeijingPeople's Republic of China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople's Republic of China
| | - Fan Xia
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiPeople's Republic of China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anPeople's Republic of China
| | - Xiaofeng Chen
- Department of OncologyJiangsu Province Hospital and Nanjing Medical University First Affiliated HospitalNanjingPeople's Republic of China
| | - Rui Ge
- Department of General SurgeryHuadong Hospital Affiliated to Fudan UniversityShanghaiPeople's Republic of China
| | - Enyong Dai
- Department of Oncology and HematologyChina‐Japan Union Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Yu Han
- Department of Gastrointestinal OncologyHarbin Medical University Cancer HospitalHarbinPeople's Republic of China
| | - Weiwei Pan
- Department of Cell Biology, College of MedicineJiaxing UniversityJiaxingPeople's Republic of China
| | - Jiancheng Luo
- Aiyi Technology Co., LtdBeijingPeople's Republic of China
| | - Hongtao Jia
- Aiyi Technology Co., LtdBeijingPeople's Republic of China
| | - Xiaowei Dong
- Department of PathologyShanghai OrigiMed Co, LtdShanghaiPeople's Republic of China
| | - Fei Pang
- Department of PathologyShanghai OrigiMed Co, LtdShanghaiPeople's Republic of China
| | - Kai Wang
- Department of PathologyShanghai OrigiMed Co, LtdShanghaiPeople's Republic of China
| | - Liping Wang
- Department of OncologyBaotou Cancer HospitalBaotouPeople's Republic of China
| | - Youcai Zhu
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun HospitalThe Third Affiliated Hospital of Jiaxing UniversityJiaxingPeople's Republic of China
| | - Yanru Xie
- Department of OncologyLishui Municipal Central HospitalLishuiPeople's Republic of China
| | - Xinqin Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University (The First Affiliated Hospital of Guangzhou Medical University)GuangzhouPeople's Republic of China
| | - Jing Cai
- Department of OncologySecond Affiliated Hospital of Nanchang UniversityNanchangPeople's Republic of China
| | - Jia Wei
- Department of the Comprehensive Cancer CenterAffiliated Drum Tower Hospital, Medical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Fen Lan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of Medicine, Cancer Center, Zhejiang UniversityHangzhouPeople's Republic of China
| | - Huijing Feng
- Department of Thoracic OncologyShanxi Academy of Medical Sciences, Shanxi Bethune HospitalTaiyuanPeople's Republic of China
| | - Lin Wang
- Department of PathologyShanxi Academy of Medical Sciences, Shanxi Bethune HospitalTaiyuanPeople's Republic of China
| | - Yingying Du
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| | - Wang Yao
- Department of Interventional OncologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou HospitalZhejiang University School of MedicineHuzhouPeople's Republic of China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Dongmei Yuan
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Yanwen Yao
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Jianhui Huang
- Department of OncologyLishui Municipal Central HospitalLishuiPeople's Republic of China
| | - Yinbin Zhang
- Department of Oncology, The Second Affiliated Hospital of Medical CollegeXi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Pingli Sun
- Department of PathologyThe Second Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Hong Wang
- Senior Department of OncologyThe 5th Medical Center of PLA General HospitalBeijingPeople's Republic of China
| | - Mingxiang Ye
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Dong Wang
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Zhaofeng Wang
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Bing Wan
- Department of Respiratory MedicineThe Affiliated Jiangning Hospital of Nanjing Medical UniversityNanjingPeople's Republic of China
| | - Donglai Lv
- Department of Clinical OncologyThe 901 Hospital of Joint Logistics Support Force of People Liberation ArmyHefeiPeople's Republic of China
| | - Qing Wei
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouPeople's Republic of China
| | - Jin Kang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung CancerGuangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of MedicineGuangzhouPeople's Republic of China
| | - Jiatao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung CancerGuangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of MedicineGuangzhouPeople's Republic of China
| | - Chao Zhang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Genhua Yu
- Department of Radiation OncologyZhebei Mingzhou HospitalHuzhouPeople's Republic of China
| | - Juanjuan Ou
- Department of Oncology and Southwest Cancer Center, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Lin Shi
- Department of Respiratory MedicineZhongshan Hospital, Fudan UniversityShanghaiPeople's Republic of China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of PathologyPeking University Cancer Hospital and InstituteBeijingPeople's Republic of China
| | - Zhefeng Liu
- Senior Department of OncologyThe 5th Medical Center of PLA General HospitalBeijingPeople's Republic of China
| | - Jing Liu
- Department of Oncology, Ruijin HospitalShanghai Jiao tong University School of MedicineShanghaiPeople's Republic of China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal UnitHunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaPeople's Republic of China
| | - Lin Wu
- Department of Medical Oncology, Lung Cancer and Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaPeople's Republic of China
| | - Huijuan Wang
- Department of Internal MedicineThe Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhouPeople's Republic of China
| | - Gu Jin
- Department of Bone and Soft‐Tissue SurgeryChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouPeople's Republic of China
| | - Liu Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceZhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical CollegeHangzhouPeople's Republic of China
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinqiao HospitalThird Military Medical UniversityChongqingPeople's Republic of China
| | - Meiyu Fang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouPeople's Republic of China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw HospitalZhejiang UniversityHangzhouPeople's Republic of China
| | - Yuan Li
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiPeople's Republic of China
| | - Xiaojia Wang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouPeople's Republic of China
| | - Yiping Zhang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouPeople's Republic of China
| | - Shenglin Ma
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology, Research of Zhejiang ProvinceAffiliated Hangzhou Cancer Hospital, Cancer Center, Zhejiang University School of MedicineHangzhouPeople's Republic of China
| | - Biyun Wang
- Department of Breast Cancer and Urological Medical OncologyFudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan UnviersityShanghaiPeople's Republic of China
| | - Xiaotian Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal OncologyPeking University Cancer Hospital and InstituteBeijingPeople's Republic of China
| | - Yong Song
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Yuanzhi Lu
- Department of Clinical PathologyThe First Affiliated Hospital of Jinan UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
2
|
Zhang Y, Liu Y, Zhou Y, Zhang Q, Han T, Tang C, Fan W. Pyrazolo[1,5-a]pyrimidine based Trk inhibitors: Design, synthesis, biological activity evaluation. Bioorg Med Chem Lett 2021; 31:127712. [PMID: 33246108 DOI: 10.1016/j.bmcl.2020.127712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022]
Abstract
Tropomyosin receptor kinases (Trks), a transmembrane receptor tyrosine kinases, have attracted more and more attention as a drug target. Here we reported the structure-based synthesis and biological evaluation of novel pyrazolo[1,5-a]pyrimidine derivatives as Trk inhibitors, which exhibited potent Trk inhibitory activities. Particularly, compounds 8a, 8f, 9a, 9b and 9f (IC50 < 5 nM) showed significant inhibitory potency against Trk.
Collapse
Affiliation(s)
- Yongjie Zhang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Yan Liu
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Ying Zhou
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Qing Zhang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Tianfu Han
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Chunlei Tang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China.
| | - Weizheng Fan
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China.
| |
Collapse
|
3
|
Joshi SK, Davare MA, Druker BJ, Tognon CE. Revisiting NTRKs as an emerging oncogene in hematological malignancies. Leukemia 2019; 33:2563-2574. [PMID: 31551508 PMCID: PMC7410820 DOI: 10.1038/s41375-019-0576-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022]
Abstract
NTRK fusions are dominant oncogenic drivers found in rare solid tumors. These fusions have also been identified in more common cancers, such as lung and colorectal carcinomas, albeit at low frequencies. Patients harboring these fusions demonstrate significant clinical response to inhibitors such as entrectinib and larotrectinib. Although current trials have focused entirely on solid tumors, there is evidence supporting the use of these drugs for patients with leukemia. To assess the broader applicability for Trk inhibitors in hematological malignancies, this review describes the current state of knowledge about alterations in the NTRK family in these disorders. We present these findings in relation to the discovery and therapeutic targeting of BCR–ABL1 in chronic myeloid leukemia. The advent of deep sequencing technologies has shown that NTRK fusions and somatic mutations are present in a variety of hematologic malignancies. Efficacy of Trk inhibitors has been demonstrated in NTRK-fusion positive human leukemia cell lines and patient-derived xenograft studies, highlighting the potential clinical utility of these inhibitors for a subset of leukemia patients.
Collapse
Affiliation(s)
- Sunil K Joshi
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States.,Department of Physiology & Pharmacology, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Monika A Davare
- Papé Pediatric Research Institute, Oregon Health & Science University, Portland, OR, United States.,Division of Pediatric Hematology & Oncology, Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States. .,Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, United States. .,Howard Hughes Medical Institute, Oregon Health & Science University, Portland, OR, United States.
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States. .,Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, United States. .,Howard Hughes Medical Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
4
|
Sigal DS, Bhangoo MS, Hermel JA, Pavlick DC, Frampton G, Miller VA, Ross JS, Ali SM. Comprehensive genomic profiling identifies novel NTRK fusions in neuroendocrine tumors. Oncotarget 2018; 9:35809-35812. [PMID: 30533196 PMCID: PMC6254675 DOI: 10.18632/oncotarget.26260] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/06/2018] [Indexed: 12/20/2022] Open
Abstract
CGP results from >60,000 cases were screened to identify NTRK fusion events from cases of neuroendocrine tumors. 2417 NET patients from diverse anatomic sites were identified. From this dataset, six cases harbored NTRK fusions which included intra- and inter-chromosomal translocations. A NTRK fusion frequency of approximately 0.3% was found across all subtypes of NETs. Three cases involved translocations of NTRK1 with unique fusion partners (GPATCH4, PIP5K1A, CCDC19). Co-occurring alterations occurred in five cases. NTRK alterations were identified in nearly the full spectrum of NETs, including from the small intestine, pancreas, lung, and others. With the late stage clinical development of NTRK TKIs (including entrectinib and larotrectinib), these findings may further inform targeted approaches to therapy in NET.
Collapse
Affiliation(s)
- Darren S. Sigal
- Division of Hematology/Oncology, Scripps Clinic Medical Group, La Jolla, CA, USA
| | - Munveer S. Bhangoo
- Division of Hematology/Oncology, Scripps Clinic Medical Group, La Jolla, CA, USA
| | - Jonathan A. Hermel
- Department of Graduate Medical Education, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | | | | | | |
Collapse
|
5
|
Yan W, Lakkaniga NR, Carlomagno F, Santoro M, McDonald NQ, Lv F, Gunaganti N, Frett B, Li HY. Insights into Current Tropomyosin Receptor Kinase (TRK) Inhibitors: Development and Clinical Application. J Med Chem 2018; 62:1731-1760. [PMID: 30188734 DOI: 10.1021/acs.jmedchem.8b01092] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The use of kinase-directed precision medicine has been heavily pursued since the discovery and development of imatinib. Annually, it is estimated that around ∼20 000 new cases of tropomyosin receptor kinase (TRK) cancers are diagnosed, with the majority of cases exhibiting a TRK genomic rearrangement. In this Perspective, we discuss current development and clinical applications for TRK precision medicine by providing the following: (1) the biological background and significance of the TRK kinase family, (2) a compilation of known TRK inhibitors and analysis of their cocrystal structures, (3) an overview of TRK clinical trials, and (4) future perspectives for drug discovery and development of TRK inhibitors.
Collapse
Affiliation(s)
- Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Francesca Carlomagno
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Via S Pansini 5 , 80131 Naples , Italy.,Istituto di Endocrinologia e Oncologia Sperimentale del CNR , Via S Pansini 5 , 80131 Naples , Italy
| | - Massimo Santoro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Via S Pansini 5 , 80131 Naples , Italy
| | - Neil Q McDonald
- Signaling and Structural Biology Laboratory , The Francis Crick Institute , London NW1 1AT , U.K.,Institute of Structural and Molecular Biology, Department of Biological Sciences , Birkbeck College , Malet Street , London WC1E 7HX , U.K
| | - Fengping Lv
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Naresh Gunaganti
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| |
Collapse
|
6
|
Farina AR, Cappabianca L, Ruggeri P, Gneo L, Pellegrini C, Fargnoli MC, Mackay AR. The oncogenic neurotrophin receptor tropomyosin-related kinase variant, TrkAIII. J Exp Clin Cancer Res 2018; 37:119. [PMID: 29914559 PMCID: PMC6006588 DOI: 10.1186/s13046-018-0786-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022] Open
Abstract
Oncogenes derived from the neurotrophin receptor tropomyosin-related kinase TrkA act as drivers in sub-populations of a wide-range of human cancers. This, combined with a recent report that both adult and childhood cancers driven by novel oncogenic TrkA chimeric-fusions exhibit profound, long-lived therapeutic responses to the Trk inhibitor Larotrectinib, highlights the need to improve clinical detection of TrkA oncogene-driven cancers in order to maximise this novel therapeutic potential. Cancers potentially driven by TrkA oncogenes include a proportion of paediatric neuroblastomas (NBs) that express the alternative TrkA splice variant TrkAIII, which exhibits exon 6, 7 and 9 skipping and oncogenic-activity that depends upon deletion of the extracellular D4 Ig-like domain. In contrast to fully spliced TrkA, which exhibits tumour suppressor activity in NB and associates with good prognosis, TrkAIII associates with advanced stage metastatic disease, post therapeutic relapse and worse prognosis, induces malignant transformation of NIH-3T3 cells and exhibits oncogenic activity in NB models. TrkAIII induction in NB cells is stress-regulated by conditions that mimic hypoxia or perturbate the ER with potential to change TrkA tumour-suppressing signals into oncogenic TrkAIII signals within the stressful tumour microenvironment. In contrast to cell surface TrkA, TrkAIII re-localises to intracellular pre-Golgi membranes, centrosomes and mitochondria, within which it exhibits spontaneous ligand-independent activation, triggering a variety of mechanisms that promote tumorigenicity and malignant behaviour, which impact the majority of cancer hallmarks. In this review, we present updates on TrkAIII detection and association with human malignancies, the multiple ways TrkAIII exerts oncogenic activity and potential therapeutic approaches for TrkAIII expressing cancers, with particular reference to NB.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, L’Aquila, Italy
| | - Lucia Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, L’Aquila, Italy
| | - Pierdomenico Ruggeri
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, L’Aquila, Italy
| | - Luciana Gneo
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, L’Aquila, Italy
| | - Cristina Pellegrini
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, L’Aquila, Italy
| | - Maria-Concetta Fargnoli
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, L’Aquila, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
7
|
Travaglia A, Pietropaolo A, Di Martino R, Nicoletti VG, La Mendola D, Calissano P, Rizzarelli E. A small linear peptide encompassing the NGF N-terminus partly mimics the biological activities of the entire neurotrophin in PC12 cells. ACS Chem Neurosci 2015; 6:1379-92. [PMID: 25939060 DOI: 10.1021/acschemneuro.5b00069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ever since the discovery of its neurite growth promoting activity in sympathetic and sensory ganglia, nerve growth factor (NGF) became the prototype of the large family of neurotrophins. The use of primary cultures and clonal cell lines has revealed several distinct actions of NGF and other neurotrophins. Among several models of NGF activity, the clonal cell line PC12 is the most widely employed. Thus, in the presence of NGF, through the activation of the transmembrane protein TrkA, these cells undergo a progressive mitotic arrest and start to grow electrically excitable neuritis. A vast number of studies opened intriguing aspects of NGF mechanisms of action, its biological properties, and potential use as therapeutic agents. In this context, identifying and utilizing small portions of NGF is of great interest and involves several human diseases including Alzheimer's disease. Here we report the specific action of the peptide encompassing the 1-14 sequence of the human NGF (NGF(1-14)), identified on the basis of scattered indications present in literature. The biological activity of NGF(1-14) was tested on PC12 cells, and its binding with TrkA was predicted by means of a computational approach. NGF(1-14) does not elicit the neurite outgrowth promoting activity, typical of the whole protein, and it only has a moderate action on PC12 proliferation. However, this peptide exerts, in a dose and time dependent fashion, an effective and specific NGF-like action on some highly conserved and biologically crucial intermediates of its intracellular targets such as Akt and CREB. These findings indicate that not all TrkA pathways must be at all times operative, and open the possibility of testing each of them in relation with specific NGF needs, biological actions, and potential therapeutic use.
Collapse
Affiliation(s)
- Alessio Travaglia
- Center for Neural Science, New York University, 4 Washington Place, New York, New York 10003, United States
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Rossana Di Martino
- Istituto di Bioimmagini e Fisiologia Molecolare (IBFM)-CNR, C.da Pietrapollastra-Pisciotto, Cefalù, Palermo 90015, Italy
| | - Vincenzo G. Nicoletti
- Dipartimento di Scienze Biomediche e Biotecnologiche - Sezione di Biochimica Medica, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB) − Sezione Biomolecole, Consorzio Interuniversitario, Viale Medaglie d’Oro 305, 00136 Roma, Italy
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano, 64-65, 00143 Rome, Italy
| | | |
Collapse
|
8
|
The TPM3-NTRK1 rearrangement is a recurring event in colorectal carcinoma and is associated with tumor sensitivity to TRKA kinase inhibition. Mol Oncol 2014; 8:1495-507. [PMID: 24962792 DOI: 10.1016/j.molonc.2014.06.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 05/23/2014] [Accepted: 06/03/2014] [Indexed: 12/16/2022] Open
Abstract
The NTRK1 gene encodes Tropomyosin-related kinase A (TRKA), the high-affinity Nerve Growth Factor Receptor. NTRK1 was originally isolated from a colorectal carcinoma (CRC) sample as component of a somatic rearrangement (TPM3-NTRK1) resulting in expression of the oncogenic chimeric protein TPM3-TRKA, but there has been no subsequent report regarding the relevance of this oncogene in CRC. The KM12 human CRC cell line expresses the chimeric TPM3-TRKA protein and is hypersensitive to TRKA kinase inhibition. We report the detailed characterization of the TPM3-NTRK1 genomic rearrangement in KM12 cells and through a cellular screening approach, the identification of NMS-P626, a novel highly potent and selective TRKA inhibitor. NMS-P626 suppressed TPM3-TRKA phosphorylation and downstream signaling in KM12 cells and showed remarkable antitumor activity in mice bearing KM12 tumors. Finally, using quantitative reverse transcriptase PCR and immunohistochemistry (IHC) we identified the TPM3-NTRK1 rearrangement in a CRC clinical sample, therefore suggesting that this chromosomal translocation is indeed a low frequency recurring event in CRC and that such patients might benefit from therapy with TRKA kinase inhibitors.
Collapse
|
9
|
Giannakopoulou D, Daguin-Nerrière V, Mitsacos A, Kouvelas ED, Neveu I, Giompres P, Brachet P. Ectopic expression of TrKA in the adult rat basal ganglia induces both nerve growth factor-dependent and -independent neuronal responses. J Neurosci Res 2012; 90:1507-21. [DOI: 10.1002/jnr.23031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/16/2011] [Accepted: 12/27/2011] [Indexed: 12/30/2022]
|
10
|
Genetic analysis of Ras signalling pathways in cell proliferation, migration and survival. EMBO J 2010; 29:1091-104. [PMID: 20150892 DOI: 10.1038/emboj.2010.7] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 01/18/2010] [Indexed: 02/08/2023] Open
Abstract
We have used mouse embryonic fibroblasts (MEFs) devoid of Ras proteins to illustrate that they are essential for proliferation and migration, but not for survival, at least in these cells. These properties are unique to the Ras subfamily of proteins because ectopic expression of other Ras-like small GTPases, even when constitutively active, could not compensate for the absence of Ras proteins. Only constitutive activation of components of the Raf/Mek/Erk pathway was sufficient to sustain normal proliferation and migration of MEFs devoid of Ras proteins. Activation of the phosphatidylinositol 3-kinase (PI3K)/PTEN/Akt and Ral guanine exchange factor (RalGEF)/Ral pathways, either alone or in combination, failed to induce proliferation or migration of Rasless cells, although they cooperated with Raf/Mek/Erk signalling to reproduce the full response mediated by Ras signalling. In contrast to current hypotheses, Ras signalling did not induce proliferation by inducing expression of D-type Cyclins. Rasless MEFs had normal levels of Cyclin D1/Cdk4 and Cyclin E/Cdk2. However, these complexes were inactive. Inactivation of the pocket proteins or knock down of pRb relieved MEFs from their dependence on Ras signalling to proliferate.
Collapse
|
11
|
Abstract
Neurotrophins (NTs) and their receptors play a key role in neurogenesis and survival. The TRK (tropomyosin-related kinase) receptor protein tyrosine kinases (TRKA, TRKB, TRKC) are high-affinity NT receptors that are expressed in a variety of human tissues. Their role in normal and malignant hematopoiesis is poorly understood. In a prospective study involving 94 adult patients we demonstrate for the first time cell-surface expression of the 3 TRKs and constitutive activation in blasts from patients with de novo or secondary acute leukemia. At least one TRK was expressed in 55% of the analyzed cases. We establish a clear correlation between the TRK expression pattern and FAB classification. Although only few point mutations were found in TRK sequences by reverse-transcriptase-polymerase chain reaction (RT-PCR), we observed coexpression of BDNF (ligand for TRKB) in more than 50% of TRKB(+) cases (16/30). Activation of TRKA or TRKB by NGF and BDNF, respectively, efficiently rescued murine myeloid cells from irradiation-induced apoptosis. Coexpression of TRKB/BDNF or TRKA/NGF in murine hematopoietic cells induced leukemia. Moreover, activation of TRKs was important for survival of both human and murine leukemic cells. Our findings suggest that TRKs play an important role in leukemogenesis and may serve as a new drug target.
Collapse
|
12
|
Balanced expression of various TrkB receptor isoforms from the Ntrk2 gene locus in the mouse nervous system. Mol Cell Neurosci 2008; 39:465-77. [DOI: 10.1016/j.mcn.2008.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 07/23/2008] [Accepted: 07/30/2008] [Indexed: 11/18/2022] Open
|
13
|
Faux C, Hawadle M, Nixon J, Wallace A, Lee S, Murray S, Stoker A. PTPσ binds and dephosphorylates neurotrophin receptors and can suppress NGF-dependent neurite outgrowth from sensory neurons. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1689-700. [DOI: 10.1016/j.bbamcr.2007.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 06/22/2007] [Accepted: 06/25/2007] [Indexed: 12/25/2022]
|
14
|
Tacconelli A, Farina AR, Cappabianca L, Gulino A, Mackay AR. Alternative TrkAIII splicing: a potential regulated tumor-promoting switch and therapeutic target in neuroblastoma. Future Oncol 2007; 1:689-98. [PMID: 16556046 DOI: 10.2217/14796694.1.5.689] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An association between elevated tyrosine kinase receptor (Trk)-A expression and better prognosis; the absence of mutation-activated TrkA oncogenes; the induction of apoptosis, growth arrest, morphological differentiation and inhibition of xenograft growth; and angiogenesis by TrkA gene transduction, provide the basis for the current concept of an exclusively tumor-suppressor role for TrkA in the aggressive pediatric tumor, neuroblastoma. This concept, however, has recently been challenged by the discovery of a novel hypoxia-regulated alternative TrkAIII splice variant, initial data for which suggest predominant expression in advanced-stage neuroblastoma. TrkAIII exhibits neuroblastoma xenograft tumor-promoting activity associated with the induction of a more angiogenic and stress-resistant neuroblastoma phenotype and antagonises nerve growth factor/TrkAI antioncogenic signaling. In this short review, the authors integrate this novel information into a modified concept that places alternative TrkA splicing as a potential pivotal regulator of neuroblastoma behavior and identifies the TrkAIII alternative splice variant as a potential biomarker of patient prognosis and novel therapeutic target.
Collapse
Affiliation(s)
- Antonella Tacconelli
- University of L'Aquila, Department of Experimental Medicine, Via Vetoio, Coppito 2, 67100 L'Aquila, Italy
| | | | | | | | | |
Collapse
|
15
|
Abstract
Although neurotrophins of the nerve growth factor (NGF) family are best known for their neurite outgrowth-inducing and survival-promoting effects on neuronal cells, these are actually pleiotropic growth factors acting physiologically on many different cell types of our body. As for many other growth factors, dysregulation of neurotrophin signal transduction is found in a number of tumors where they can accompany or contribute to malignant transformation. Interestingly, tropomyosin-related kinase (Trk) receptor activation can either support or suppress tumor growth, depending on the tumor type. These same divergent responses have been observed with neurotrophins binding to the p75NTR neurotrophin receptor on tumor cells. This article summarizes the current knowledge on the role of neurotrophins and their receptors in malignancies, with special focus on tumors of neuropathological interest.
Collapse
Affiliation(s)
- Alex Krüttgen
- Institute for Neuropathology, University Hospital, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany.
| | | | | |
Collapse
|
16
|
Zaccaro MC, Lee HB, Pattarawarapan M, Xia Z, Caron A, L'Heureux PJ, Bengio Y, Burgess K, Saragovi HU. Selective Small Molecule Peptidomimetic Ligands of TrkC and TrkA Receptors Afford Discrete or Complete Neurotrophic Activities. ACTA ACUST UNITED AC 2005; 12:1015-28. [PMID: 16183026 DOI: 10.1016/j.chembiol.2005.06.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 06/28/2005] [Accepted: 06/28/2005] [Indexed: 01/08/2023]
Abstract
We designed a minilibrary of 55 small molecule peptidomimetics based on beta-turns of the neurotrophin growth factor polypeptides neurotrophin-3 (NT-3) and nerve growth factor (NGF). Direct binding, binding competition, and biological screens identified agonistic ligands of the ectodomain of the neurotrophin receptors TrkC and TrkA. Agonism is intrinsic to the peptidomimetic ligand (in the absence of neurotrophins), and/or can also be detected as potentiation of neurotrophin action. Remarkably, some peptidomimetics afford both neurotrophic activities of cell survival and neuronal differentiation, while others afford discrete signals leading to either survival or differentiation. The high rate of hits identified suggests that focused minilibraries may be desirable for developing bioactive ligands of cell surface receptors. Small, selective, proteolytically stable ligands with defined biological activity may have therapeutic potential.
Collapse
Affiliation(s)
- Maria Clara Zaccaro
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tacconelli A, Farina AR, Cappabianca L, Desantis G, Tessitore A, Vetuschi A, Sferra R, Rucci N, Argenti B, Screpanti I, Gulino A, Mackay AR. TrkA alternative splicing: a regulated tumor-promoting switch in human neuroblastoma. Cancer Cell 2004; 6:347-60. [PMID: 15488758 DOI: 10.1016/j.ccr.2004.09.011] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 07/22/2004] [Accepted: 09/07/2004] [Indexed: 12/14/2022]
Abstract
We identify a novel alternative TrkA splice variant, TrkAIII, with deletion of exons 6, 7, and 9 and functional extracellular IG-C1 and N-glycosylation domains, that exhibits expression restricted to undifferentiated early neural progenitors, human neuroblastomas (NBs), and a subset of other neural crest-derived tumors. This NGF-unresponsive isoform is oncogenic in NIH3T3 cells and promotes tumorigenic NB cell behavior in vitro and in vivo (cell survival, xenograft growth, angiogenesis) resulting from spontaneous tyrosine kinase activity and IP3K/Akt/NF-kappaB but not Ras/MAPK signaling. TrkAIII antagonizes NGF/TrkAI signaling, which is responsible for NB growth arrest and differentiation through Ras/MAPK, and its expression is promoted by hypoxia at the expense of NGF-responsive receptors, providing a mechanism for converting NGF/TrkA/Ras/MAPK antioncogenic signals to TrkAIII/IP3K/Akt/NF-kappaB tumor-promoting signals during tumor progression.
Collapse
Affiliation(s)
- Antonella Tacconelli
- Department of Experimental Medicine, University of L'Aquila, Via Vetoio, Coppito 2, 67100 L'Aquila, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Skup M, Dwornik A, Macias M, Sulejczak D, Wiater M, Czarkowska-Bauch J. Long-term locomotor training up-regulates TrkB(FL) receptor-like proteins, brain-derived neurotrophic factor, and neurotrophin 4 with different topographies of expression in oligodendroglia and neurons in the spinal cord. Exp Neurol 2002; 176:289-307. [PMID: 12359171 DOI: 10.1006/exnr.2002.7943] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neurotrophins are potent regulators of neuronal survival, maintenance, and synaptic strength. In particular, brain-derived neurotrophic factor (BDNF), acting through full-length TrkB receptor (TrkB(FL)), is implicated in the stimulation of neurotransmission. Physical activity has been reported to increase BDNF expression in the brain and spinal cord. In this study we have evaluated the hypothesis that activation of a spinal neuronal network, due to exercise, affects the entire spinal neurotrophin system acting via TrkB receptors by modulation of BDNF, neurotrophin 4 (NT-4), and their TrkB receptor proteins. We investigated the effect of treadmill walking (4 weeks, 1 km daily) on distribution patterns and response intensity of these proteins in the lumbar spinal cord of adult rats. Training enhanced immunoreactivity (IR) of both neurotrophins. BDNF IR increased in cell processes of spinal gray matter, mainly in dendrites. NT-4 IR was augmented in the white matter fibers, which were, in part, of astrocytic identity. Training strongly increased both staining intensity and number of TrkB(FL)-like IR small cells of the spinal gray matter. The majority of these small cells were oligodendrocytes, representing both their precursor and their mature forms. In contrast, training did not exert an effect on expression of the truncated form of TrkB receptor in the spinal cord. These results show that both neuronal and nonneuronal cells may be actively recruited to BDNF/NT-4/TrkB(FL) neurotrophin signaling which can be up-regulated by training. Oligodendrocytes of the spinal gray matter were particularly responsive to exercise, pointing to their involvement in activity-driven cross talk between neurons and glia.
Collapse
Affiliation(s)
- Malgorzata Skup
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St. 02-093 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
19
|
Leoni C, Valtorta F. Constitutive TrkA activity in receptor-overexpressing PC12 clones. Biochem Biophys Res Commun 2002; 291:972-8. [PMID: 11866461 DOI: 10.1006/bbrc.2002.6571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have studied ligand-independent signaling by the nerve growth factor receptor TrkA in PC12 clones, under conditions of receptor overexpression. Our results indicate that TrkA-overexpressing PC12 clones display constitutive receptor activation, involving both the mature, 140-kDa form and the immature, intracellular 110-kDa form of the receptor. Phosphorylation of Tyr 674/675, located in the activation loop domain and reflecting TrkA kinase activity, appears particularly prominent in the immature form of the receptor. Constitutive receptor activation is able to chronically stimulate the PI-3 kinase/Akt as well as the mitogen-activated protein kinase pathways, leading to ligand-independent neurite extension. Under conditions of overexpression, a significant fraction of the receptor is retained intracellularly by thiol-mediated mechanisms. Exposure of the cells to reducing agents promotes translocation of the intracellular pool of the receptor to the plasma membrane and suppresses ligand-independent neurite outgrowth. Our results suggest that the levels of expression of TrkA, both intracellularly and at the cell surface, may act to modulate its kinase activity and generate ligand-independent downstream signaling.
Collapse
Affiliation(s)
- Chiara Leoni
- Department of Neuroscience, S. Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | | |
Collapse
|
20
|
Zaccaro MC, Ivanisevic L, Perez P, Meakin SO, Saragovi HU. p75 Co-receptors regulate ligand-dependent and ligand-independent Trk receptor activation, in part by altering Trk docking subdomains. J Biol Chem 2001; 276:31023-9. [PMID: 11425862 DOI: 10.1074/jbc.m104630200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurotrophins signal via Trk tyrosine kinase receptors and a common receptor called p75. Nerve growth factor is the cognate ligand for TrkA, brain-derived neurotrophic factor for TrkB, and neurotrophin-3 (NT-3) for TrkC. NT-3 also binds TrkA and TrkB as a heterologous ligand. All neurotrophins bind p75, which regulates ligand affinity and Trk signals. Trk extracellular domain has five subdomains: a leucine-rich motif, two cysteine-rich clusters, and immunoglobulin-like subdomains IgG-C1 and IgG-C2. The IgG-C1 subdomain is surface exposed in the tertiary structure and regulates ligand-independent activation. The IgG-C2 subdomain is less exposed but regulates cognate ligand binding and Trk activation. NT-3 as a heterologous ligand of TrkA and TrkB optimally requires the IgG-C2 but also binds other subdomains of these receptors. When p75 is co-expressed, major changes are observed; NGF-TrkA activation can occur also via the cysteine 1 subdomain, and brain-derived neurotrophic factor-TrkB activation requires the TrkB leucine-rich motif and cysteine 2 subdomains. We propose a two-site model of Trk binding and activation, regulated conformationally by the IgG-C1 subdomain. Moreover, p75 affects Trk subdomain utilization in ligand-dependent activation, possibly by conformational or allosteric control.
Collapse
Affiliation(s)
- M C Zaccaro
- Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|
21
|
Arevalo JC, Conde B, Hempstead BI, Chao MV, Martín-Zanca D, Pérez P. A novel mutation within the extracellular domain of TrkA causes constitutive receptor activation. Oncogene 2001; 20:1229-34. [PMID: 11313867 DOI: 10.1038/sj.onc.1204215] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2000] [Revised: 12/28/2000] [Accepted: 01/03/2001] [Indexed: 11/08/2022]
Abstract
The TrkA NGF receptor extracellular region contains three leucine repeats flanked by cysteine clusters and two immunoglobulin-like domains that are required for specific ligand binding. Deletion of the immunoglobulin-like domains abolishes NGF binding and causes ligand independent activation of the receptor. Here we report a specific mutation that increases the binding affinity of the TrkA receptor for NGF. A change of proline 203 to alanine (P203A) in the linker region between the leucine repeats and the first Ig-like domain increased NGF binding by decreasing the ligand rate of dissociation. This mutated receptor was appropriately expressed on the cell surface and promoted ligand-independent neurite outgrowth in PC12nnr5 cells. The mutant receptor was capable of spontaneous dimerization and was constitutively phosphorylated in the absence of ligand. Moreover, expression of TrkA-P203A receptor in fibroblasts induced DNA synthesis and transformation and generated tumours in nude mice. These data suggest that domains outside of the immunoglobulin-like structure contribute to ligand binding and constitutive activation of Trk receptors.
Collapse
Affiliation(s)
- J C Arevalo
- Instituto de Microbiologia Bioquimica, Departamento de Microbiologia y Genetica, CSIC Universidad de Salamanca, 37007 Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Jordan-Sciutto KL, Murray Fenner BA, Wiley CA, Achim CL. Response of cell cycle proteins to neurotrophic factor and chemokine stimulation in human neuroglia. Exp Neurol 2001; 167:205-14. [PMID: 11161609 PMCID: PMC3683587 DOI: 10.1006/exnr.2000.7594] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased expression of neurotrophins (e.g., NGF, BDNF) and chemokines (e.g., RANTES) has been observed in neurodegenerative diseases. We examined the effect of these factors on intracellular signaling cascades inducing cell cycle proteins p53, pRb, and E2F1 in human fetal mixed neuronal and glial cells. Comparing neurotrophin- and chemokine-treated cultures with untreated controls showed altered subcellular localization and expression of hyperphosphorylated retinoblastoma protein (ppRb), E2F1, and p53. Using immunofluorescent laser confocal microscopy, E2F1 and ppRb were detected exclusively in neuronal nuclei in control cultures while p53 was cytoplasmic in astrocytes and nuclear in neurons. Following treatment with neurotrophins, E2F1 and ppRb were observed in the cytoplasm of neurons, while p53 was observed in both neuronal and astrocytic nuclei. Similar findings were observed following treatment with RANTES. Semiquantitative analysis using immunoblots showed an increase in the amount of phosphorylated pRb in treated cultures. Induction of cell cycle proteins may play a role in neurodegeneration associated with neurotrophin and chemokine stimulation.
Collapse
Affiliation(s)
- K L Jordan-Sciutto
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | |
Collapse
|
23
|
Vidal F, Lopez P, López-Fernández LA, Ranc F, Scimeca JC, Cuzin F, Rassoulzadegan M. Gene trap analysis of germ cell signaling to Sertoli cells: NGF-TrkA mediated induction of Fra1 and Fos by post-meiotic germ cells. J Cell Sci 2001; 114:435-43. [PMID: 11148144 DOI: 10.1242/jcs.114.2.435] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of complex signalisation networks involving distinct cell types is required to understand most developmental processes. Differentiation of male germ cells in adult mammals involves such a cross-talk between Sertoli cells, the somatic component which supports and controls germinal differentiation, and germ cells at their successive maturation stages. We developed a gene trapping strategy to identify genes, which, in Sertoli cells, are either up- or down-regulated by signals emitted by the germinal component. A library of approximately 2,000 clones was constituted from colonies independently selected from the Sertoli line 15P-1 by growth in drug-containing medium after random integration of a promoter-less (beta)geo transgene (neo(r)-lacZ fusion), which will be expressed as a fusion transcript from a ‘trapped’ cellular promoter, different in each clone. A first screen conducted on 700 events identified six clones in which beta-galactosidase activity was increased and one in which it was repressed upon addition of germ cells. The targeted loci were identified by cloning and sequencing the genomic region 5′ of the insert. One of them was identified as the gene encoding Fra1, a component of the AP1 transcription regulatory complex. Accumulation of Fra1 mRNA was induced, both in 15P-1 and in freshly explanted Sertoli cells, by addition of either round spermatids or nerve growth factor (NGF). The effect of NGF was mediated by the TrkA receptor and the ERK1-ERK2 kinase kinase pathway. Fos and Fra1 transcription were induced within the first hour after addition of the neurotrophin, but, unlike what is observed after serum induction in the same cells, a second wave of transcription of Fra1, but not of Fos, started 16 hours later and peaked at higher levels at about 20 hours. These results suggest that AP1 activation may be an important relay in the Sertoli-germ cell cross-talk, and validate the gene trapping approach as a tool for the identification of target genes in cell culture systems.
Collapse
Affiliation(s)
- F Vidal
- Unité 470 de l'Institut National de la Santé et de la Recherche Médicale and Unité Mixte CNRS-Université 6549, Université de Nice, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Musholt TJ, Musholt PB, Khaladj N, Schulz D, Scheumann GF, Klempnauer J. Prognostic significance of RET and NTRK1 rearrangements in sporadic papillary thyroid carcinoma. Surgery 2000; 128:984-93. [PMID: 11114633 DOI: 10.1067/msy.2000.110845] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The expression of RET/PTC chimeras was demonstrated in 10% to 20% of sporadic papillary thyroid carcinomas (PTCs), whereas rearrangements of NTRK1 were detected less frequently. Some investigators have hypothesized that RET/PTC activation is preferentially associated with slow-growing tumors of low malignancy in elderly patients; other studies support the contrary. METHODS Expression analysis of RET and NTRK1 was performed by duplex reverse transcription-polymerase chain reaction in tumor tissues from 119 patients with PTC. Samples with suspected rearrangements were further analyzed for the expression of the hybrid messenger RNAs RET/PTC 1 to RET/PTC 7 and for known NTRK1 chimeras, respectively. RESULTS Seventeen of 119 tumors (14.3%) revealed somatic rearrangements of RET; NTRK1-derived hybrids were demonstrated in 15 cases (12.6%). In patients with RET/PTC chimeras, a statistically not significant tendency towards younger age, lower recurrence rate, and improved survival was observed, despite increased incidence of lymph node metastasis. Cumulative survival analysis of NTRK1 rearrangement-positive individuals demonstrated a worse outcome when compared with patients with expression of RET hybrids (P =.055). CONCLUSIONS The high incidence of yet uncharacterized NTRK1 hybrid mRNAs in our patient cohort leads to the speculation that activating chromosomal rearrangements of several tyrosine kinase receptors may be a common feature of PTCs and that the expression of distinct chimeras may potentially be of prognostic significance.
Collapse
Affiliation(s)
- T J Musholt
- Department of Visceral and Transplantation Surgery, Hannover University Medical School, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Zhang Y, Moheban DB, Conway BR, Bhattacharyya A, Segal RA. Cell surface Trk receptors mediate NGF-induced survival while internalized receptors regulate NGF-induced differentiation. J Neurosci 2000; 20:5671-8. [PMID: 10908605 PMCID: PMC6772538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Internalization and transport of a ligand-receptor complex are required to initiate cell body responses to target-derived neurotrophin. However, it is not known whether internalized receptors and cell surface receptors initiate the same signaling pathways and biological responses. Here we use a temperature-sensitive mutant of dynamin (G273D) to control the subcellular localization of activated NGF receptors (Trks). We show that dynamin function is required for ligand-dependent endocytosis of Trk receptors. In PC12 cells, nerve growth factor (NGF) stimulation promotes both survival and neuronal differentiation. These distinct biological responses to NGF are controlled by receptors signaling from different locations within the cell. Neuronal differentiation is promoted by catalytically active Trks within endosomes in the cell interior. In contrast, survival responses are initiated by activated receptors at the cell surface where they orchestrate prolonged activation of the kinase Akt. Thus, interactions between Trk receptor tyrosine kinases and intracellular signaling molecules are dictated both by phosphotyrosine motifs within the receptors and by the intracellular location of phosphorylated receptors.
Collapse
Affiliation(s)
- Y Zhang
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
26
|
Maliartchouk S, Debeir T, Beglova N, Cuello AC, Gehring K, Saragovi HU. Genuine monovalent ligands of TrkA nerve growth factor receptors reveal a novel pharmacological mechanism of action. J Biol Chem 2000; 275:9946-56. [PMID: 10744669 DOI: 10.1074/jbc.275.14.9946] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Developing small molecule agonistic ligands for tyrosine kinase receptors has been difficult, and it is generally thought that such ligands require bivalency. Moreover, multisubunit receptors are difficult to target, because each subunit contributes to ligand affinity, and each subunit may have distinct and sometimes opposing functions. Here, the nerve growth factor receptor subunits p75 and the tyrosine kinase TrkA were studied using artificial ligands that bind specifically to their extracellular domain. Bivalent TrkA ligands afford robust signals. However, genuine monomeric and monovalent TrkA ligands afford partial agonism, activate the tyrosine kinase activity, cause receptor internalization, and induce survival and differentiation in cell lines and primary neurons. Monomeric and monovalent TrkA ligands can synergize with ligands that bind the p75 subunit. However, the p75 ligands used in this study must be bivalent, and monovalent p75 ligands have no effect. These findings will be useful in designing and developing screens of small molecules selective for tyrosine kinase receptors and indicate that strategies for designing agonists of multisubunit receptors require consideration of the role of each subunit. Last, the strategy of using anti-receptor mAbs and small molecule hormone mimics as receptor ligands could be applied to the study of many other heteromeric cell surface receptors.
Collapse
Affiliation(s)
- S Maliartchouk
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Tumor development in different cell types and tissue locations involves many pathways, distinct genes and exogenous factors. Tumor type-specific chromosome rearrangements resulting in fusion genes or promoter swapping are believed to be involved in the early development of many tumor types. They are present in almost all cases of a particular tumor type and cases have been described that carry only tumor type-specific translocations without any signs of other cytogenetic changes. The mechanisms behind chromosome rearrangements in solid tumors are largely unknown. Radiation is an important factor in thyroid carcinomas but no com-$bmon sequence motifs are made out in the break points of solid tumors. The fusion genes found in sarcomas are dominated by the transcription factor type of genes with the TLS/FUS and EWS series of fusion genes as the largest group. More than 50% of papillary thyroid carcinomas carry fusion proteins with tyrosine kinase activity. Rearrangements involving HMGIC, HMGIY, and PLAG1 are common in benign mesenchymal tumors and salivary gland adenomas. Many recurrent tumor translocations show a strict specificity for tumor type. This specificity can most likely be explained by the specific sets of target genes that are deregulated by the fusion gene products. Identification of the downstream target genes is currently the object of intense research and may provide us with information that will help design better diagnostic tools and eventually find a cure for these diseases.
Collapse
Affiliation(s)
- P Aman
- Department of Pathology, Lundberg Laboratory for Cancer Research, Göteborg University, Gula Stråket 8, Gothenburg, 41345, Sweden
| |
Collapse
|
28
|
Watson FL, Porcionatto MA, Bhattacharyya A, Stiles CD, Segal RA. TrkA glycosylation regulates receptor localization and activity. JOURNAL OF NEUROBIOLOGY 1999; 39:323-36. [PMID: 10235685 DOI: 10.1002/(sici)1097-4695(199905)39:2<323::aid-neu15>3.0.co;2-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The human nerve growth factor receptor (TrkA) contains four potential N-glycosylation sites that are highly conserved within the Trk family of neurotrophin receptors, and nine additional sites that are less well conserved. Using a microscale deglycosylation assay, we show here that both conserved and variable N-glycosylation sites are used during maturation of TrkA. Glycosylation at these sites serves two distinct functions. First, glycosylation is necessary to prevent ligand-independent activation of TrkA. Unglycosylated TrkA core protein is phosphorylated even in the absence of ligand stimulation and displays constitutive kinase activity as well as constitutive interaction with the signaling molecules Shc and PLC-gamma. Second, glycosylation is required to localize TrkA to the cell surface, where it can trigger the Ras/Raf/MAP kinase cascade. Using confocal microscopy, we show that unglycosylated active Trk receptors are trapped intracellularly. Furthermore, the unglycosylated active TrkA receptors are unable to activate kinases in the Ras-MAP kinase pathway, MEK and Erk. Consistent with these biochemical observations, unglycosylated TrkA core protein does not promote neuronal differentiation in Trk PC12 cells even at high levels of constitutive catalytic activity.
Collapse
Affiliation(s)
- F L Watson
- Harvard Medical School and Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|
29
|
Abstract
Nerve growth factor (NGF) initiates its biological effects by promoting the dimerization and activation of the tyrosine kinase receptor TrkA. The requirements for NGF signaling through the TrkA receptor have been defined extensively from studies in immortalized cells, involving transfection of NIH 3T3, COS, and PC12 cells. In the present study, we tested the effects of extracellular and intracellular mutations of TrkA after DNA-mediated transfection in primary cultures of embryonic day 17 hippocampal neurons. We found that the action of the TrkA receptor on neuronal differentiation depends on specific motifs in the extracellular domain and on tyrosine 490 (Y490), the site for SHC protein binding. In contrast with previous observations in a PC12 background, a mutation in the SHC Y490 binding site in TrkA resulted in a loss of NGF-dependent process formation. These results indicate that tyrosine 490 is necessary for neurite outgrowth in hippocampal neurons. Moreover, a constitutively active form of TrkA did not give enhanced responsiveness in hippocampal neurons, indicating that the behavior of TrkA receptors in primary neuronal cells is distinct from that of other cell types.
Collapse
Affiliation(s)
- L Aibel
- Skirball Institute, New York University Medical Center, New York 10016, USA
| | | | | | | |
Collapse
|
30
|
Abstract
BACKGROUND TrkA, the high affinity, tyrosine kinase receptor for nerve growth factor (NGF) has been implicated as an oncogene in several neoplasms. In prostate cancer, inhibitors of the NGF/TrkA signal pathway results in tumor growth inhibition. In contrast, inhibition of this trk pathway in the normal prostate produces no effect. One explanation for this difference between normal and malignant prostate is that TrkA is mutated in prostate cancer, changing its function. To test this possibility human primary prostate cancers were screened for evidence of mutations in the TrkA gene to identify how this gene might be activated in prostate cancer. METHODS Single-strand conformation polymorphism was used to screen genomic DNA, isolated from 42 human primary prostate cancers. In samples in which an aberrant banding pattern was identified, the screen was repeated using both the tumor DNA and DNA isolated from normal tissue of the same patients. Genetic changes were confirmed by direct sequencing of the aberrantly migrating bands. RESULTS Although somatic mutations were not identified in any of the exons screened, four polymorphisms were detected in three different exons. Some of these polymorphisms occurred in the majority of the patients screened, but their frequencies were similar when compared with DNA isolated from a control group. CONCLUSIONS Genetic mutations of TrkA do not seem to play a significant role in activation of this pathway in prostate cancer. However, the absence of mutations in otherwise genetically unstable prostate tumor DNA suggests that intact NGF/TrkA pathways may be important in prostate cancer development.
Collapse
Affiliation(s)
- D J George
- Department of Medical Oncology, Johns Hopkins Medical Institution, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
31
|
Abstract
The endoplasmic reticulum (ER) uses various mechanisms to ensure that only properly folded proteins enter the secretory pathway. For proteins that oligomerize in the ER, the proper tertiary and quaternary structures must be achieved before their release. Although some proteins fold before oligomerization, others initiate oligomerization cotranslationally. Here, we discuss these different strategies and some of the unique problems they present for the ER quality control system. One mechanism used by the ER is thiol retention. Thiol retention operates by monitoring the redox state of specific cysteine residue(s) and was discovered in studies on the assembly of IgM, a complex oligomeric glycoprotein. This system is also involved in retaining other unassembled proteins in the ER. Mutations that result in uneven numbers of cysteine residues can subject yet other proteins to thiol retention, altering their oligomerization status and function. The implications of these results on the effects of thiol retention on protein function and cell fate are discussed.
Collapse
Affiliation(s)
- P S Reddy
- Department of Microbiology, Boston University School of Medicine, MA 02118, USA
| | | |
Collapse
|
32
|
Abstract
The members of the neurotrophin family play key biological roles in the development of the nervous system. Based on studies initially in cell lines (e.g., the rat pheochromocytoma PC12 cells), neurotrophins have been found to be important mediators of proliferation, differentiation, and survival in the normal brain, but their role in brain tumors remains unclear. Since neurotrophins and neurotrophin receptors are frequently detected in biopsy samples of central nervous system medulloblastomas, efforts have been undertaken in several laboratories to elucidate the potential effects of neurotrophins on the growth and differentiation of these tumors. Results from these studies may have both basic and clinical implications because medulloblastomas resemble embryonic neuroectodermal stem cells and/or their immature neuronal and glial progeny. This review focuses on recent developments in our understanding of the role of neurotrophins in medulloblastomas, especially the ability of nerve growth factor to induce apoptosis in vitro in medulloblastomas.
Collapse
Affiliation(s)
- T T Chou
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104-4283, USA
| | | | | |
Collapse
|
33
|
Ninkina N, Grashchuck M, Buchman VL, Davies AM. TrkB variants with deletions in the leucine-rich motifs of the extracellular domain. J Biol Chem 1997; 272:13019-25. [PMID: 9148911 DOI: 10.1074/jbc.272.20.13019] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have isolated two novel variants involving the extracellular domain of TrkB from developing sensory neurons. These variants are generated by alternative splicing and lack two or all three of the leucine-rich motifs. Each of these variants is expressed as isoforms that possess or lack the intracellular tyrosine kinase domain. Fibroblast cell lines stably expressing these variants do not bind any of the TrkB ligands (brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5) and neither survive nor undergo morphological transformation in response to neurotrophins. These results demonstrate that the leucine-rich motifs in TrkB are essential for ligand binding and signaling and indicate that the extracellular immunoglobulin-like domains alone are insufficient to confer neurotrophin binding to TrkB.
Collapse
Affiliation(s)
- N Ninkina
- School of Biological and Medical Sciences, University of St. Andrews, St. Andrews, Fife KY16 9AJ, Scotland
| | | | | | | |
Collapse
|
34
|
Windisch JM, Marksteiner R, Schneider R. Nerve growth factor binding site on TrkA mapped to a single 24-amino acid leucine-rich motif. J Biol Chem 1995; 270:28133-8. [PMID: 7499302 DOI: 10.1074/jbc.270.47.28133] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The extracellular domains of the TrkA nerve growth factor (NGF) receptor and its homologs harbor a modular mosaic of potential ligand binding motifs, namely two immunoglobulin (Ig)-like modules and an LRM3 cassette consisting of a tandem array of three leucine-rich motifs (LRMs) flanked by cysteine-rich clusters (Schneider, R., and Schweiger, M. (1991) Oncogene 6, 1807-1811). Identification of a structural motif capable of specifically recognizing the various neurotrophins was achieved by assessing their affinities to isolated recombinant modules of TrkA and TrkB. In both receptors the LRM3 cassette alone could mediate the respective neurotrophin selectivities and affinities. Further tracking down of this NGF-binding site in TrkA strikingly revealed that a single LRM of 24 amino acids could bind NGF selectively with nanomolar affinity. Since this is the first example of a single LRM with a highly specific, well defined function, it might serve as a valuable tool to elucidate the general structural requirements of substrate recognition and high affinity binding in the large superfamily of LRM-containing proteins.
Collapse
Affiliation(s)
- J M Windisch
- Institute of Biochemistry, University of Innsbruck, Austria
| | | | | |
Collapse
|
35
|
Abstract
The Trk family of tyrosine-protein kinases, TrkA, TrkB, and TrkC, are the signaling receptors that mediate the biological properties of the NGF family of neurotrophins. This family of growth factors includes in addition to NGF, BDNF, NT-3, and NT-4. TrkA is the NGF receptor. TrkB serves as a receptor for both BDNF and NT-4, and TrkC is the primary receptor for NT-3. NT-3 is a somewhat promiscuous ligand that can also activate TrkA and TrkB receptors at high concentrations. The trkB and trkC genes also encode noncatalytic receptor isoforms of an, as yet, unknown function. In addition to the Trk receptors, the NGF family of neurotrophins also binds with low affinity to an unrelated molecule, designated p75, a member of the TNF-receptor superfamily. Recently, we have generated strains of mice lacking each of these tyrosine-kinase receptors by gene targeting in embryonic stem cells. Characterization of these mutant mice is providing relevant information regarding the critical role that these receptors play in the ontogeny of the mammalian nervous system.
Collapse
Affiliation(s)
- M Barbacid
- Department of Molecular Biology, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543-4000, USA
| |
Collapse
|
36
|
Watts RG, Ben-Ari ET, Bernstein LR, Birrer MJ, Winterstein D, Wendel E, Colburn NH. c-jun and multistage carcinogenesis: association of overexpression of introduced c-jun with progression toward a neoplastic endpoint in mouse JB6 cells sensitive to tumor promoter-induced transformation. Mol Carcinog 1995; 13:27-36. [PMID: 7766308 DOI: 10.1002/mc.2940130106] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tumor promoters such as 12-O-tetradecanoylphorbol-13-acetate (TPA) and epidermal growth factor (EGF) induce neoplastic transformation, elevated c-jun protein expression, and activator protein-1 (AP-1)-dependent gene expression in JB6 mouse epidermal cells sensitive to tumor promoters (clone 415a P+ cells). In contrast, JB6 cells resistant to tumor promoter-induced transformation (clone 307b P- cells) exhibit a greatly reduced TPA or EGF inducible c-jun expression and AP-1 activity. We have recently shown that induced AP-1 is necessary for tumor promoter-induced transformation of P+ cells because introduction of a dominant negative c-jun mutant into P+ cells inhibits both AP-1 dependent transactivation and the transformation response to tumor promoter. The intent of the investigation presented here was to test the hypothesis that elevation of AP-1 activity is sufficient to cause progression to the P+ phenotype in P- cells or to the transformed phenotype in P+ cells. Clonally derived P+ and P- recipient cells transfected with a human c-jun expression construct and overexpressing c-jun protein were tested for progression by assaying for constitutive or inducible anchorage independent phenotype and nude-mouse tumorigenicity. Overexpression of c-jun did not produce progression in P- cells but did increase the probability of progression in P+ cells (two of five transfectant cell lines progressed to the tumor phenotype). In addition, c-jun overexpression did not increase AP-1 activity in any of the P-/c-jun transfectants or in the two of five P+/c-jun transfectants that acquired the transformed phenotype. The P+/c-jun transfectants that showed elevated AP-1 activity did not progress to the tumor phenotype, demonstrating that an increase in AP-1 activity is insufficient for this progression. Since P(+)-to-tumor phenotype progression occurred in cells overexpressing c-jun but not AP-1, we propose that P(+)-to-transformed phenotype progression is c-jun dependent and AP-1 independent.
Collapse
Affiliation(s)
- R G Watts
- Laboratory of Viral Carcinogenesis, NCI, FCRDC, Frederick, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Nakagawara A, Liu XG, Ikegaki N, White PS, Yamashiro DJ, Nycum LM, Biegel JA, Brodeur GM. Cloning and chromosomal localization of the human TRK-B tyrosine kinase receptor gene (NTRK2). Genomics 1995; 25:538-46. [PMID: 7789988 DOI: 10.1016/0888-7543(95)80055-q] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
There is increasing evidence that neutrophins and their receptors play an important role in regulating development of both the central and the peripheral nervous systems. Human TRK-A (NTRK1) and TRK-C (NTRK3) have been cloned and sequenced, but only a truncated form of human TRK-B has been published. Therefore, we isolated complementary DNAs spanning the entire coding region of both human full-length and truncated forms of TRK-B from human brain cDNA libraries. Human full-length TRK-B codes for a protein of 822 amino acid residues. The putative mature peptide sequence is 49% homologous to human TRK-A and 55% to full-length human TRK-C, with 40% amino acid identify among TRK-A, -B, and -C. Nine of 13 cysteine residues, 4 of 12N-glycosylation sites in the extracellular domain, and 10 of 13 tyrosine residues in the intracellular domain are conserved among human TRK-A, -B, and -C. There is a cluster of 10 serine residues in the juxtamembrane region of TRK-B that is absent in TRK-A. Two major sizes of TRK-B transcripts were expressed in human brain. Northern blot analysis using probes specific for the extracellular or the tyrosine kinase domain revealed that the 9.5-kb band encodes the full-length TRK-B mRNA and the 8.0-kb band encodes the truncated form of TRK-B mRNA. By fluorescence in situ hybridization and somatic cell hybrid mapping, the human TRK-B gene was localized to chromosome 9q22.1.
Collapse
Affiliation(s)
- A Nakagawara
- Division of Oncology, Children's Hospital of Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Many oncogenes encode protein tyrosine kinases (PTKs). Oncogenic mutations of these genes invariably result in constitutive activation of these PTKs. Autophosphorylation of the PTKs and tyrosine phosphorylation of their cellular substrates are essential events for transmission of the mitogenic signal into cells. The recent discovery of the characteristic amino acid sequences, of the src homology domains 2 and 3 (SH2 and SH3), and extensive studies on proteins containing the SH2 and SH3 domains have revealed that protein tyrosine-phosphorylation of PTKs provides phosphotyrosine sites for SH2 binding and allows extracellular signals to be relayed into the nucleus through a chain of protein-protein interactions mediated by the SH2 and SH3 domains. Studies on oncogenes, PTKs and SH2/SH3-containing proteins have made a tremendous contribution to our understanding of the mechanisms for the control of cell growth, oncogenesis, and signal transduction. This review is intended to provide an outline of the most recent progress in the study of signal transduction by PTKs. Copyright 1994 S. Karger AG, Basel
Collapse
Affiliation(s)
- D. Liu
- Department of Microbiology, The Mount Sinai School of Medicine, New York, N.Y., USA
| | | |
Collapse
|
39
|
Mulligan LM, Kwok JB, Healey CS, Elsdon MJ, Eng C, Gardner E, Love DR, Mole SE, Moore JK, Papi L. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 1993; 363:458-60. [PMID: 8099202 DOI: 10.1038/363458a0] [Citation(s) in RCA: 1188] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Multiple endocrine neoplasia type 2A (MEN 2A) is a dominantly inherited cancer syndrome that affects tissues derived from neural ectoderm. It is characterized by medullary thyroid carcinoma (MTC) and phaeochromocytoma. The MEN2A gene has recently been localized by a combination of genetic and physical mapping techniques to a 480-kilobase region in chromosome 10q11.2 (refs 2,3). The DNA segment encompasses the RET proto-oncogene, a receptor tyrosine kinase gene expressed in MTC and phaeochromocytoma and at lower levels in normal human thyroid. This suggested RET as a candidate for the MEN2A gene. We have identified missense mutations of the RET proto-oncogene in 20 of 23 apparently distinct MEN 2A families, but not in 23 normal controls. Further, 19 of these 20 mutations affect the same conserved cysteine residue at the boundary of the RET extracellular and transmembrane domains.
Collapse
Affiliation(s)
- L M Mulligan
- Department of Pathology, University of Cambridge, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- M V Chao
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, New York 10021
| |
Collapse
|
41
|
Klein R, Lamballe F, Bryant S, Barbacid M. The trkB tyrosine protein kinase is a receptor for neurotrophin-4. Neuron 1992; 8:947-56. [PMID: 1375038 DOI: 10.1016/0896-6273(92)90209-v] [Citation(s) in RCA: 256] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurotrophin-4 is a novel member of the nerve growth factor family of neurotrophins recently isolated from Xenopus and viper DNA. We now report that the Xenopus NT-4 protein (XNT-4) can mediate some of its biological properties through gp145trkB, a murine tyrosine protein kinase previously identified as a primary receptor for the related brain-derived neurotrophic factor (BDNF). XNT-4 displaces 125I-labeled BDNF from binding to cells expressing gp145trkB receptors, induces their rapid phosphorylation on tyrosine residues, and causes the morphologic transformation of NIH 3T3 cells when coexpressed with gp145trkB. Moreover, XNT-4 induces the differentiation of PC12 cells into sympathetic-like neurons only if they ectopically express gp145trkB receptors. None of these biochemical or biological effects could be observed when XNT-4 was added to cells expressing the related receptors. Replacement of one of the extracellular cysteines (Cys-345) of gp145trkB by a serine residue prevents its activation by XNT-4 but not by BDNF. Therefore, XNT-4 and BDNF may interact with at least partially distinct domains within the gp145trkB receptor.
Collapse
Affiliation(s)
- R Klein
- Department of Molecular Biology, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543-4000
| | | | | | | |
Collapse
|
42
|
Barbacid M, Lamballe F, Pulido D, Klein R. The trk family of tyrosine protein kinase receptors. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1072:115-27. [PMID: 1751544 DOI: 10.1016/0304-419x(91)90010-i] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- M Barbacid
- Department of Molecular Biology, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ 08543-4000
| | | | | | | |
Collapse
|
43
|
Lamballe F, Klein R, Barbacid M. trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell 1991; 66:967-79. [PMID: 1653651 DOI: 10.1016/0092-8674(91)90442-2] [Citation(s) in RCA: 811] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report the isolation and molecular characterization of trkC, a new member of the trk family of tyrosine protein kinase genes. trkC is preferentially expressed in the brain. In situ hybridization studies revealed trkC transcripts in the hippocampus, cerebral cortex, and the granular cell layer of the cerebellum. The product of the trkC gene has been identified as a glycoprotein of 145,000 daltons, gp145trkC, which is equally related to the previously characterized gp140trk and gp145trkB tyrosine kinases. gp145trkC is a functional receptor for neurotrophin-3 (NT-3). However, gp145trkC does not bind the highly related neurotrophic factors NGF or BDNF. In proliferating cells, the interaction between gp145trkC and NT-3 elicits a more efficient biological response than when NT-3 binds to its other receptors gp140trk and gp145trkB. These results indicate that gp145trkC may play an important role in mediating the neurotrophic effects of NT-3.
Collapse
Affiliation(s)
- F Lamballe
- Department of Molecular Biology, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543-4000
| | | | | |
Collapse
|
44
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1991; 19:4577-89. [PMID: 1886797 PMCID: PMC328687 DOI: 10.1093/nar/19.16.4577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
45
|
Cordon-Cardo C, Tapley P, Jing SQ, Nanduri V, O'Rourke E, Lamballe F, Kovary K, Klein R, Jones KR, Reichardt LF. The trk tyrosine protein kinase mediates the mitogenic properties of nerve growth factor and neurotrophin-3. Cell 1991; 66:173-83. [PMID: 1649007 PMCID: PMC2711891 DOI: 10.1016/0092-8674(91)90149-s] [Citation(s) in RCA: 410] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The product of the trk proto-oncogene encodes a receptor for nerve growth factor (NGF). Here we show that NGF is a powerful mitogen that can induce resting NIH 3T3 cells to enter S phase, grow in semisolid medium, and become morphologically transformed. These mitogenic effects are absolutely dependent on expression of gp140trk receptors, but do not require the presence of the previously described low affinity NGF receptor. gp140trk also serves as a receptor for the related factor neurotrophin-3 (NT-3), but not for brain-derived neurotrophic factor. Both NGF and NT-3 induce the rapid phosphorylation of gp140trk receptors and the transient expression of c-Fos proteins. However, NT-3 appears to elicit more limited mitogenic responses than NGF. These results indicate that the product of the trk proto-oncogene is sufficient to mediate signal transduction processes induced by NGF and NT-3, at least in proliferating cells.
Collapse
Affiliation(s)
- C Cordon-Cardo
- Department of Molecular Biology, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543-4000
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1991; 19:1967-70. [PMID: 2030988 PMCID: PMC328160 DOI: 10.1093/nar/19.8.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|