1
|
Sagia GM, Georgiou X, Chamilos G, Diallinas G, Dimou S. Distinct trafficking routes of polarized and non-polarized membrane cargoes in Aspergillus nidulans. eLife 2024; 13:e103355. [PMID: 39431919 DOI: 10.7554/elife.103355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024] Open
Abstract
Membrane proteins are sorted to the plasma membrane via Golgi-dependent trafficking. However, our recent studies challenged the essentiality of Golgi in the biogenesis of specific transporters. Here, we investigate the trafficking mechanisms of membrane proteins by following the localization of the polarized R-SNARE SynA versus the non-polarized transporter UapA, synchronously co-expressed in wild-type or isogenic genetic backgrounds repressible for conventional cargo secretion. In wild-type, the two cargoes dynamically label distinct secretory compartments, highlighted by the finding that, unlike SynA, UapA does not colocalize with the late-Golgi. In line with early partitioning into distinct secretory carriers, the two cargoes collapse in distinct ER-Exit Sites (ERES) in a sec31ts background. Trafficking via distinct cargo-specific carriers is further supported by showing that repression of proteins essential for conventional cargo secretion does not affect UapA trafficking, while blocking SynA secretion. Overall, this work establishes the existence of distinct, cargo-dependent, trafficking mechanisms, initiating at ERES and being differentially dependent on Golgi and SNARE interactions.
Collapse
Affiliation(s)
- Georgia Maria Sagia
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| | - Xenia Georgiou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| | - Georgios Chamilos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
- School of Medicine, University of Crete, Heraklion, Greece
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
| | - Sofia Dimou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| |
Collapse
|
2
|
Bravo-Plaza I, Tagua VG, Arst HN, Alonso A, Pinar M, Monterroso B, Galindo A, Peñalva MA. The Uso1 globular head interacts with SNAREs to maintain viability even in the absence of the coiled-coil domain. eLife 2023; 12:e85079. [PMID: 37249218 PMCID: PMC10275640 DOI: 10.7554/elife.85079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/29/2023] [Indexed: 05/31/2023] Open
Abstract
Uso1/p115 and RAB1 tether ER-derived vesicles to the Golgi. Uso1/p115 contains a globular-head-domain (GHD), a coiled-coil (CC) mediating dimerization/tethering, and a C-terminal region (CTR) interacting with golgins. Uso1/p115 is recruited to vesicles by RAB1. Genetic studies placed Uso1 paradoxically acting upstream of, or in conjunction with RAB1 (Sapperstein et al., 1996). We selected two missense mutations in uso1 resulting in E6K and G540S in the GHD that rescued lethality of rab1-deficient Aspergillus nidulans. The mutations are phenotypically additive, their combination suppressing the complete absence of RAB1, which emphasizes the key physiological role of the GHD. In living hyphae Uso1 recurs on puncta (60 s half-life) colocalizing partially with the Golgi markers RAB1, Sed5, and GeaA/Gea1/Gea2, and totally with the retrograde cargo receptor Rer1, consistent with Uso1 dwelling in a very early Golgi compartment from which ER residents reaching the Golgi recycle back to the ER. Localization of Uso1, but not of Uso1E6K/G540S, to puncta is abolished by compromising RAB1 function, indicating that E6K/G540S creates interactions bypassing RAB1. That Uso1 delocalization correlates with a decrease in the number of Gea1 cisternae supports that Uso1-and-Rer1-containing puncta are where the protein exerts its physiological role. In S-tag-coprecipitation experiments, Uso1 is an associate of the Sed5/Bos1/Bet1/Sec22 SNARE complex zippering vesicles with the Golgi, with Uso1E6K/G540S showing a stronger association. Using purified proteins, we show that Bos1 and Bet1 bind the Uso1 GHD directly. However, Bet1 is a strong E6K/G540S-independent binder, whereas Bos1 is weaker but becomes as strong as Bet1 when the GHD carries E6K/G540S. G540S alone markedly increases GHD binding to Bos1, whereas E6K causes a weaker effect, correlating with their phenotypic contributions. AlphaFold2 predicts that G540S increases the binding of the GHD to the Bos1 Habc domain. In contrast, E6K lies in an N-terminal, potentially alpha-helical, region that sensitive genetic tests indicate as required for full Uso1 function. Remarkably, this region is at the end of the GHD basket opposite to the end predicted to interact with Bos1. We show that, unlike dimeric full-length and CTR∆ Uso1 proteins, the GHD lacking the CC/CTR dimerization domain, whether originating from bacteria or Aspergillus extracts and irrespective of whether it carries or not E6K/G540S, would appear to be monomeric. With the finding that overexpression of E6K/G540S and wild-type GHD complement uso1∆, our data indicate that the GHD monomer is capable of providing, at least partially, the essential Uso1 functions, and that long-range tethering activity is dispensable. Rather, these findings strongly suggest that the essential role of Uso1 involves the regulation of SNAREs.
Collapse
Affiliation(s)
- Ignacio Bravo-Plaza
- Department of Cellular and Molecular Biology, CSIC Centro de Investigaciones BiológicasMadridSpain
| | - Victor G Tagua
- Instituto de Tecnologías Biomédicas, Hospital Universitario Nuestra Señora de CandelariaSanta Cruz de TenerifeSpain
| | - Herbert N Arst
- Department of Infectious Diseases, Faculty of Medicine, Flowers Building, Imperial CollegeLondonUnited Kingdom
| | - Ana Alonso
- Department of Cellular and Molecular Biology, CSIC Centro de Investigaciones BiológicasMadridSpain
| | - Mario Pinar
- Department of Cellular and Molecular Biology, CSIC Centro de Investigaciones BiológicasMadridSpain
| | - Begoña Monterroso
- Department of Structural and Chemical Biology, CSIC Centro de Investigaciones BiológicasMadridSpain
| | - Antonio Galindo
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Francis Crick AvenueCambridgeUnited Kingdom
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, CSIC Centro de Investigaciones BiológicasMadridSpain
| |
Collapse
|
3
|
Heffernan LF, Suckrau PM, Banerjee T, Mysior MM, Simpson JC. An imaging-based RNA interference screen for modulators of the Rab6-mediated Golgi-to-ER pathway in mammalian cells. Front Cell Dev Biol 2022; 10:1050190. [DOI: 10.3389/fcell.2022.1050190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
In mammalian cells, membrane traffic pathways play a critical role in connecting the various compartments of the endomembrane system. Each of these pathways is highly regulated, requiring specific machinery to ensure their fidelity. In the early secretory pathway, transport between the endoplasmic reticulum (ER) and Golgi apparatus is largely regulated via cytoplasmic coat protein complexes that play a role in identifying cargo and forming the transport carriers. The secretory pathway is counterbalanced by the retrograde pathway, which is essential for the recycling of molecules from the Golgi back to the ER. It is believed that there are at least two mechanisms to achieve this - one using the cytoplasmic COPI coat complex, and another, poorly characterised pathway, regulated by the small GTPase Rab6. In this work, we describe a systematic RNA interference screen targeting proteins associated with membrane fusion, in order to identify the machinery responsible for the fusion of Golgi-derived Rab6 carriers at the ER. We not only assess the delivery of Rab6 to the ER, but also one of its cargo molecules, the Shiga-like toxin B-chain. These screens reveal that three proteins, VAMP4, STX5, and SCFD1/SLY1, are all important for the fusion of Rab6 carriers at the ER. Live cell imaging experiments also show that the depletion of SCFD1/SLY1 prevents the membrane fusion event, suggesting that this molecule is an essential regulator of this pathway.
Collapse
|
4
|
Du LL. Resurrection from lethal knockouts: Bypass of gene essentiality. Biochem Biophys Res Commun 2020; 528:405-412. [PMID: 32507598 DOI: 10.1016/j.bbrc.2020.05.207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 01/03/2023]
Abstract
Understanding genotype-phenotype relationships is a central pursuit in biology. Gene knockout generates a complete loss-of-function genotype and is a commonly used approach for probing gene functions. The most severe phenotypic consequence of gene knockout is lethality. Genes with a lethal knockout phenotype are called essential genes. Based on genome-wide knockout analyses in yeasts, up to approximately a quarter of genes in a genome can be essential. Like other genotype-phenotype relationships, gene essentiality is subject to background effects and can vary due to gene-gene interactions. In particular, for some essential genes, lethality caused by knockout can be rescued by extragenic suppressors. Such "bypass of essentiality" (BOE) gene-gene interactions have been an understudied type of genetic suppression. A recent systematic analysis revealed that, remarkably, the essentiality of nearly 30% of essential genes in the fission yeast Schizosaccharomyces pombe can be bypassed by BOE interactions. Here, I review the history and recent progress on uncovering and understanding the bypass of gene essentiality.
Collapse
Affiliation(s)
- Li-Lin Du
- National Institute of Biological Sciences, Beijing, 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Adnan M, Islam W, Zhang J, Zheng W, Lu GD. Diverse Role of SNARE Protein Sec22 in Vesicle Trafficking, Membrane Fusion, and Autophagy. Cells 2019; 8:E337. [PMID: 30974782 PMCID: PMC6523435 DOI: 10.3390/cells8040337] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 01/09/2023] Open
Abstract
Protein synthesis begins at free ribosomes or ribosomes attached with the endoplasmic reticulum (ER). Newly synthesized proteins are transported to the plasma membrane for secretion through conventional or unconventional pathways. In conventional protein secretion, proteins are transported from the ER lumen to Golgi lumen and through various other compartments to be secreted at the plasma membrane, while unconventional protein secretion bypasses the Golgi apparatus. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins are involved in cargo vesicle trafficking and membrane fusion. The ER localized vesicle associated SNARE (v-SNARE) protein Sec22 plays a major role during anterograde and retrograde transport by promoting efficient membrane fusion and assisting in the assembly of higher order complexes by homodimer formation. Sec22 is not only confined to ER-Golgi intermediate compartments (ERGIC) but also facilitates formation of contact sites between ER and plasma membranes. Sec22 mutation is responsible for the development of atherosclerosis and symptoms in the brain in Alzheimer's disease and aging in humans. In the fruit fly Drosophila melanogaster, Sec22 is essential for photoreceptor morphogenesis, the wingless signaling pathway, and normal ER, Golgi, and endosome morphology. In the plant Arabidopsis thaliana, it is involved in development, and in the nematode Caenorhabditis elegans, it is in involved in the RNA interference (RNAi) pathway. In filamentous fungi, it affects cell wall integrity, growth, reproduction, pathogenicity, regulation of reactive oxygen species (ROS), expression of extracellular enzymes, and transcriptional regulation of many development related genes. This review provides a detailed account of Sec22 function, summarizes its domain structure, discusses its genetic redundancy with Ykt6, discusses what is known about its localization to discrete membranes, its contributions in conventional and unconventional autophagy, and a variety of other roles across different cellular systems ranging from higher to lower eukaryotes, and highlights some of the surprises that have originated from research on Sec22.
Collapse
Affiliation(s)
- Muhammad Adnan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Bio-pesticides and Chemical Biology Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Waqar Islam
- College of Geographical Sciences, Fujian Normal University, Fuzhou 350007, Fujian, China.
| | - Jing Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Bio-pesticides and Chemical Biology Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Bio-pesticides and Chemical Biology Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Bio-pesticides and Chemical Biology Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Gerards M, Cannino G, González de Cózar JM, Jacobs HT. Intracellular vesicle trafficking plays an essential role in mitochondrial quality control. Mol Biol Cell 2018; 29:809-819. [PMID: 29343549 PMCID: PMC5905294 DOI: 10.1091/mbc.e17-10-0619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Drosophila gene products Bet1, Slh, and CG10144, predicted to function in intracellular vesicle trafficking, were previously found to be essential for mitochondrial nucleoid maintenance. Here we show that Slh and Bet1 cooperate to maintain mitochondrial functions. In their absence, mitochondrial content, membrane potential, and respiration became abnormal, accompanied by mitochondrial proteotoxic stress, but without direct effects on mtDNA. Immunocytochemistry showed that both Slh and Bet1 are localized at the Golgi, together with a proportion of Rab5-positive vesicles. Some Bet1, as well as a tiny amount of Slh, cofractionated with highly purified mitochondria, while live-cell imaging showed coincidence of fluorescently tagged Bet1 with most Lysotracker-positive and a small proportion of Mitotracker-positive structures. This three-way association was disrupted in cells knocked down for Slh, although colocalized lysosomal and mitochondrial signals were still seen. Neither Slh nor Bet1 was required for global mitophagy or endocytosis, but prolonged Slh knockdown resulted in G2 growth arrest, with increased cell diameter. These effects were shared with knockdown of betaCOP but not of CG1044, Snap24, or Syntaxin6. Our findings implicate vesicle sorting at the cis-Golgi in mitochondrial quality control.
Collapse
Affiliation(s)
- Mike Gerards
- Faculty of Medicine and Life Sciences and Tampere University Hospital, FI-33014 University of Tampere, Finland.,Maastricht Center for Systems Biology (MaCSBio), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Giuseppe Cannino
- Faculty of Medicine and Life Sciences and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Jose M González de Cózar
- Faculty of Medicine and Life Sciences and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Howard T Jacobs
- Faculty of Medicine and Life Sciences and Tampere University Hospital, FI-33014 University of Tampere, Finland.,Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| |
Collapse
|
7
|
Rodepeter FR, Wiegand S, Lüers HG, Bonaterra GA, Lowe AW, Bette M, Jacob R, Mandic R. Indication for differential sorting of the rat v-SNARE splice isoforms VAMP-1a and -1b. Biochem Cell Biol 2017; 95:500-509. [PMID: 28314111 DOI: 10.1139/bcb-2016-0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins are essential constituents of the intracellular trafficking machinery. The variable C-terminus in the 2 rat VAMP-1 splice isoforms VAMP-1a and -1b potentially acts as a sorting signal, because similar changes at the C-terminal end of a human VAMP-1 splice isoform resulted in its sorting to mitochondria. To evaluate the differences in the subcellular localization of these two v-SNARE proteins, VAMP-1a and -1b proteins tagged with green fluorescent protein (GFP) and red fluorescent protein (RFP) were expressed in HeLa, COS-7, and MDCK cells and evaluated by conventional confocal as well as total internal reflection fluorescence microscopy. Regions consistent with the endoplasmic reticulum and Golgi apparatus demonstrated a major overlap of both signals. In the periphery, vesicular structures were observed that mainly expressed one of the 2 isoforms. Within our experimental settings, we could not observe sorting of any of the 2 isoforms to mitochondria or peroxisomes, whereas both isoforms were found expressed in a minor subset of singular vesicles, which sporadically appeared to co-localize with the exocyst marker EXOC3/Sec6. Because vesicular structures were seen that expressed only one of the two splice variants, it is possible that VAMP-1a and VAMP-1b are sorted to distinct cellular compartments that require further characterization.
Collapse
Affiliation(s)
- Fiona R Rodepeter
- a Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Giessen and Marburg, Campus Marburg, 3.BA, Room +3/08070, Baldingerstrasse, D-35033 Marburg, Germany
| | - Susanne Wiegand
- a Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Giessen and Marburg, Campus Marburg, 3.BA, Room +3/08070, Baldingerstrasse, D-35033 Marburg, Germany
| | - Hans-Georg Lüers
- b Department of Cell Biology, Institute of Anatomy and Cell Biology, Philipps-Universität, Marburg, Germany
| | - Gabriel A Bonaterra
- c Department of Medical Cell Biology, Philipps-Universität, Marburg, Germany
| | - Anson W Lowe
- d Department of Medicine, Stanford University, Stanford, CA, USA
| | - Michael Bette
- e Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps-Universität, Marburg, Germany
| | - Ralf Jacob
- f Institute of Cell Biology and Cell Pathology, Philipps-Universität, Marburg, Germany
| | - Robert Mandic
- a Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Giessen and Marburg, Campus Marburg, 3.BA, Room +3/08070, Baldingerstrasse, D-35033 Marburg, Germany
| |
Collapse
|
8
|
Mukherjee I, Barlowe C. Overexpression of Sly41 suppresses COPII vesicle-tethering deficiencies by elevating intracellular calcium levels. Mol Biol Cell 2016; 27:1635-49. [PMID: 27030673 PMCID: PMC4865320 DOI: 10.1091/mbc.e15-10-0704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/22/2016] [Indexed: 11/29/2022] Open
Abstract
SLY41 is a multicopy suppressor of mutations in the essential Ypt1 GTPase. Overexpression of Sly41 elevates cytosolic Ca2+ concentration, which stimulates SNARE-dependent fusion of COPII vesicles with Golgi membranes and suppresses deficiencies in Ypt1-dependent vesicle tethering. Thus Ca2+ positively regulates vesicle fusion with Golgi membranes. SLY41 was identified as a multicopy suppressor of loss of Ypt1, a Rab GTPase essential for COPII vesicle tethering at the Golgi complex. SLY41 encodes a polytopic membrane protein with homology to a class of solute transporter proteins, but how overexpression suppresses vesicle-tethering deficiencies is not known. Here we show that Sly41 is efficiently packaged into COPII vesicles and actively cycles between the ER and Golgi compartments. SLY41 displays synthetic negative genetic interactions with PMR1, which encodes the major Golgi-localized Ca2+/Mn2+ transporter and suggests that Sly41 influences cellular Ca2+ and Mn2+ homeostasis. Experiments using the calcium probe aequorin to measure intracellular Ca2+ concentrations in live cells reveal that Sly41 overexpression significantly increases cytosolic calcium levels. Although specific substrates of the Sly41 transporter were not identified, our findings indicate that localized overexpression of Sly41 to the early secretory pathway elevates cytosolic calcium levels to suppress vesicle-tethering mutants. In vitro SNARE cross-linking assays were used to directly monitor the influence of Ca2+ on tethering and fusion of COPII vesicles with Golgi membranes. Strikingly, calcium at suppressive concentrations stimulated SNARE-dependent membrane fusion when vesicle-tethering activity was reduced. These results show that calcium positively regulates the SNARE-dependent fusion stage of ER–Golgi transport.
Collapse
Affiliation(s)
- Indrani Mukherjee
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Charles Barlowe
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
9
|
Margulis NG, Wilson JD, Bentivoglio CM, Dhungel N, Gitler AD, Barlowe C. Analysis of COPII Vesicles Indicates a Role for the Emp47-Ssp120 Complex in Transport of Cell Surface Glycoproteins. Traffic 2016; 17:191-210. [PMID: 26650540 DOI: 10.1111/tra.12356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 11/30/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
Coat protein complex II (COPII) vesicle formation at the endoplasmic reticulum (ER) transports nascent secretory proteins forward to the Golgi complex. To further define the machinery that packages secretory cargo and targets vesicles to Golgi membranes, we performed a comprehensive proteomic analysis of purified COPII vesicles. In addition to previously known proteins, we identified new vesicle proteins including Coy1, Sly41 and Ssp120, which were efficiently packaged into COPII vesicles for trafficking between the ER and Golgi compartments. Further characterization of the putative calcium-binding Ssp120 protein revealed a tight association with Emp47 and in emp47Δ cells Ssp120 was mislocalized and secreted. Genetic analyses demonstrated that EMP47 and SSP120 display identical synthetic positive interactions with IRE1 and synthetic negative interactions with genes involved in cell wall assembly. Our findings support a model in which the Emp47-Ssp120 complex functions in transport of plasma membrane glycoproteins through the early secretory pathway.
Collapse
Affiliation(s)
- Neil G Margulis
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Joshua D Wilson
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | | | - Nripesh Dhungel
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Present address: Singer Instruments, Roadwater, Watchet, Somerset, TA23 0RE, UK
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Charles Barlowe
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| |
Collapse
|
10
|
Van Zyl JHD, Den Haan R, Van Zyl WH. Overexpression of native Saccharomyces cerevisiae ER-to-Golgi SNARE genes increased heterologous cellulase secretion. Appl Microbiol Biotechnol 2015; 100:505-18. [PMID: 26450509 DOI: 10.1007/s00253-015-7022-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/14/2015] [Accepted: 09/05/2015] [Indexed: 12/30/2022]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment receptor proteins (SNAREs) are essential components of the yeast protein-trafficking machinery and are required at the majority of membrane fusion events in the cell, where they facilitate SNARE-mediated fusion between the protein transport vesicles, the various membrane-enclosed organelles and, ultimately, the plasma membrane. We have demonstrated an increase in secretory titers for the Talaromyces emersonii Cel7A (Te-Cel7A, a cellobiohydrolase) and the Saccharomycopsis fibuligera Cel3A (Sf-Cel3A, a β-glucosidase) expressed in Saccharomyces cerevisiae through single and co-overexpression of some of the endoplasmic reticulum (ER)-to-Golgi SNAREs (BOS1, BET1, SEC22 and SED5). Overexpression of SED5 yielded the biggest improvements for both of the cellulolytic reporter proteins tested, with maximum increases in extracellular enzyme activity of 22 % for the Sf-Cel3A and 68 % for the Te-Cel7A. Co-overexpression of the ER-to-Golgi SNAREs yielded proportionately smaller increases for the Te-Cel7A (46 %), with the Sf-Cel3A yielding no improvement. Co-overexpression of the most promising exocytic SNARE components identified in literature for secretory enhancement of the cellulolytic proteins tested (SSO1 for Sf-Cel3A and SNC1 for Te-Cel7A) with the most effective ER-to-Golgi SNARE components identified in this study (SED5 for both Sf-Cel3A and Te-Cel7A) yielded variable results, with Sf-Cel3A improved by 131 % and Te-Cel7A yielding no improvement. Improvements were largely independent of gene dosage as all strains only integrated single additional SNARE gene copies, with episomal variance between the most improved strains shown to be insignificant. This study has added further credence to the notion that SNARE proteins fulfil an essential role within a larger cascade of secretory machinery components that could contribute significantly to future improvements to S. cerevisiae as protein production host.
Collapse
Affiliation(s)
- John Henry D Van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Riaan Den Haan
- Department of Biotechnology, University of the Western Cape, Bellville, 7530, South Africa
| | - Willem H Van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7602, South Africa.
| |
Collapse
|
11
|
Functional Analysis of Developmentally Regulated Genes chs7 and sec22 in the Ascomycete Sordaria macrospora. G3-GENES GENOMES GENETICS 2015; 5:1233-45. [PMID: 25873638 PMCID: PMC4478551 DOI: 10.1534/g3.115.017681] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During sexual development, filamentous ascomycetes form complex, three-dimensional fruiting bodies for the generation and dispersal of spores. In previous studies, we identified genes with evolutionary conserved expression patterns during fruiting body formation in several fungal species. Here, we present the functional analysis of two developmentally up-regulated genes, chs7 and sec22, in the ascomycete Sordaria macrospora. The genes encode a class VII (division III) chitin synthase and a soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) protein, respectively. Deletion mutants of chs7 had normal vegetative growth and were fully fertile but showed sensitivity toward cell wall stress. Deletion of sec22 resulted in a reduced number of ascospores and in defects in ascospore pigmentation and germination, whereas vegetative growth was normal in the mutant. A SEC22-EGFP fusion construct under control of the native sec22 promoter and terminator regions was expressed during different stages of sexual development. Expression of several development-related genes was deregulated in the sec22 mutant, including three genes involved in melanin biosynthesis. Our data indicate that chs7 is dispensable for fruiting body formation in S. macrospora, whereas sec22 is required for ascospore maturation and germination and thus involved in late stages of sexual development.
Collapse
|
12
|
Qu X, Chatty PR, Roeder AHK. Endomembrane trafficking protein SEC24A regulates cell size patterning in Arabidopsis. PLANT PHYSIOLOGY 2014; 166:1877-90. [PMID: 25315606 PMCID: PMC4256882 DOI: 10.1104/pp.114.246033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Size is a critical property of a cell, but how it is determined is still not well understood. The sepal epidermis of Arabidopsis (Arabidopsis thaliana) contains cells with a diversity of sizes ranging from giant cells to small cells. Giant cells have undergone endoreduplication, a specialized cell cycle in which cells replicate their DNA but fail to divide, becoming polyploid and enlarged. Through forward genetics, we have identified a new mutant with ectopic giant cells covering the sepal epidermis. Surprisingly, the mutated gene, SEC24A, encodes a coat protein complex II vesicle coat subunit involved in endoplasmic reticulum-to-Golgi trafficking in the early secretory pathway. We show that the ectopic giant cells of sec24a-2 are highly endoreduplicated and that their formation requires the activity of giant cell pathway genes LOSS OF GIANT CELLS FROM ORGANS, DEFECTIVE KERNEL1, and Arabidopsis CRINKLY4. In contrast to other trafficking mutants, cytokinesis appears to occur normally in sec24a-2. Our study reveals an unexpected yet specific role of SEC24A in endoreduplication and cell size patterning in the Arabidopsis sepal.
Collapse
Affiliation(s)
- Xian Qu
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Prerana Rao Chatty
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
13
|
Fukuoh A, Cannino G, Gerards M, Buckley S, Kazancioglu S, Scialo F, Lihavainen E, Ribeiro A, Dufour E, Jacobs HT. Screen for mitochondrial DNA copy number maintenance genes reveals essential role for ATP synthase. Mol Syst Biol 2014; 10:734. [PMID: 24952591 PMCID: PMC4265055 DOI: 10.15252/msb.20145117] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The machinery of mitochondrial DNA (mtDNA) maintenance is only partially characterized and is of wide interest due to its involvement in disease. To identify novel components of this machinery, plus other cellular pathways required for mtDNA viability, we implemented a genome-wide RNAi screen in Drosophila S2 cells, assaying for loss of fluorescence of mtDNA nucleoids stained with the DNA-intercalating agent PicoGreen. In addition to previously characterized components of the mtDNA replication and transcription machineries, positives included many proteins of the cytosolic proteasome and ribosome (but not the mitoribosome), three proteins involved in vesicle transport, some other factors involved in mitochondrial biogenesis or nuclear gene expression, > 30 mainly uncharacterized proteins and most subunits of ATP synthase (but no other OXPHOS complex). ATP synthase knockdown precipitated a burst of mitochondrial ROS production, followed by copy number depletion involving increased mitochondrial turnover, not dependent on the canonical autophagy machinery. Our findings will inform future studies of the apparatus and regulation of mtDNA maintenance, and the role of mitochondrial bioenergetics and signaling in modulating mtDNA copy number.
Collapse
Affiliation(s)
- Atsushi Fukuoh
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate school of Medical Sciences, Fukuoka, Japan Department of Medical Laboratory Science, Junshin Gakuen University, Fukuoka, Japan
| | - Giuseppe Cannino
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Mike Gerards
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Suzanne Buckley
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Selena Kazancioglu
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Filippo Scialo
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Eero Lihavainen
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Andre Ribeiro
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Eric Dufour
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Howard T Jacobs
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland Research Program of Molecular Neurology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Nogueira C, Erlmann P, Villeneuve J, Santos AJ, Martínez-Alonso E, Martínez-Menárguez JÁ, Malhotra V. SLY1 and Syntaxin 18 specify a distinct pathway for procollagen VII export from the endoplasmic reticulum. eLife 2014; 3:e02784. [PMID: 24842878 PMCID: PMC4054776 DOI: 10.7554/elife.02784] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
TANGO1 binds and exports Procollagen VII from the endoplasmic reticulum (ER). In this study, we report a connection between the cytoplasmic domain of TANGO1 and SLY1, a protein that is required for membrane fusion. Knockdown of SLY1 by siRNA arrested Procollagen VII in the ER without affecting the recruitment of COPII components, general protein secretion, and retrograde transport of the KDEL-containing protein BIP, and ERGIC53. SLY1 is known to interact with the ER-specific SNARE proteins Syntaxin 17 and 18, however only Syntaxin 18 was required for Procollagen VII export. Neither SLY1 nor Syntaxin 18 was required for the export of the equally bulky Procollagen I from the ER. Altogether, these findings reveal the sorting of bulky collagen family members by TANGO1 at the ER and highlight the existence of different export pathways for secretory cargoes one of which is mediated by the specific SNARE complex containing SLY1 and Syntaxin 18.DOI: http://dx.doi.org/10.7554/eLife.02784.001.
Collapse
Affiliation(s)
- Cristina Nogueira
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Patrik Erlmann
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Julien Villeneuve
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - António Jm Santos
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Emma Martínez-Alonso
- Department of Cellular Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | | | - Vivek Malhotra
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
15
|
Lobingier BT, Nickerson DP, Lo SY, Merz AJ. SM proteins Sly1 and Vps33 co-assemble with Sec17 and SNARE complexes to oppose SNARE disassembly by Sec18. eLife 2014; 3:e02272. [PMID: 24837546 PMCID: PMC4060006 DOI: 10.7554/elife.02272] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Secretory and endolysosomal fusion events are driven by SNAREs and cofactors, including Sec17/α-SNAP, Sec18/NSF, and Sec1/Munc18 (SM) proteins. SMs are essential for fusion in vivo, but the basis of this requirement is enigmatic. We now report that, in addition to their established roles as fusion accelerators, SM proteins Sly1 and Vps33 directly shield SNARE complexes from Sec17- and Sec18-mediated disassembly. In vivo, wild-type Sly1 and Vps33 function are required to withstand overproduction of Sec17. In vitro, Sly1 and Vps33 impede SNARE complex disassembly by Sec18 and ATP. Unexpectedly, Sec17 directly promotes selective loading of Sly1 and Vps33 onto cognate SNARE complexes. A large thermodynamic barrier limits SM binding, implying that significant conformational rearrangements are involved. In a working model, Sec17 and SMs accelerate fusion mediated by cognate SNARE complexes and protect them from NSF-mediated disassembly, while mis-assembled or non-cognate SNARE complexes are eliminated through kinetic proofreading by Sec18. DOI:http://dx.doi.org/10.7554/eLife.02272.001 Eukaryotic organisms, from single-celled yeast to humans, divide their cells into membrane-bound compartments (organelles) of distinct function. To move from one compartment to another, or to enter or exit a cell, large molecules like proteins are packaged into small membrane sacs called vesicles. To release its cargo, the membrane of a vesicle must fuse with the membrane of the correct destination compartment. The SNARE family of proteins plays a key role in this fusion process. As the membranes of a vesicle and target compartment come close, SNARE proteins located on each membrane form a SNARE complex that tethers the vesicle in place and causes the two membranes fuse. SNARE proteins do not act alone in this process: the SM family of proteins also plays an essential role in SNARE-mediated membrane fusion. However, it is still not clear exactly why the SM proteins are needed. Lobingier et al. used the yeast model organism and biochemical studies with purified proteins to show that SM proteins help SNARE complexes form at the right time by regulating the delicate balance between SNARE complex formation and disassembly. This is achieved through the interplay of SM proteins and two other proteins (Sec17 and Sec18). Sec17 is known to load Sec18 onto SNARE complexes to break them apart. Lobingier et al. showed that Sec17 can also load SM proteins on SNARE complexes. This hinders Sec18 action, and so helps to keep the SNARE complexes intact. Because each SM protein tested only binds to the SNARE complex that should function at the membrane where the SM protein resides, these findings suggest SM proteins perform quality control at potential sites of membrane fusion. DOI:http://dx.doi.org/10.7554/eLife.02272.002
Collapse
Affiliation(s)
- Braden T Lobingier
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
| | - Daniel P Nickerson
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
| | - Sheng-Ying Lo
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
| | - Alexey J Merz
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, United States
| |
Collapse
|
16
|
Aksnes H, Osberg C, Arnesen T. N-terminal acetylation by NatC is not a general determinant for substrate subcellular localization in Saccharomyces cerevisiae. PLoS One 2013; 8:e61012. [PMID: 23613772 PMCID: PMC3626706 DOI: 10.1371/journal.pone.0061012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/05/2013] [Indexed: 01/27/2023] Open
Abstract
N-terminal acetylation has been suggested to play a role in the subcellular targeting of proteins, in particular those acetylated by the N-terminal acetyltransferase complex NatC. Based on previous positional proteomics data revealing N-terminal acetylation status and the predicted NAT substrate classes, we selected 13 suitable NatC substrates for subcellular localization studies in Saccharomyces cerevisiae. Fluorescence microscopy analysis of GFP-tagged candidates in the presence or absence of the NatC catalytic subunit Naa30 (Mak3) revealed unaltered localization patterns for all 13 candidates, thus arguing against a general role for the N-terminal acetyl group as a localization determinant. Furthermore, all organelle-localized substrates indicated undisrupted structures, thus suggesting that absence of NatC acetylation does not have a vast effect on organelle morphology in yeast.
Collapse
Affiliation(s)
- Henriette Aksnes
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Camilla Osberg
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Thomas Arnesen
- Department of Molecular Biology, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
- * E-mail:
| |
Collapse
|
17
|
Lobingier BT, Merz AJ. Sec1/Munc18 protein Vps33 binds to SNARE domains and the quaternary SNARE complex. Mol Biol Cell 2012; 23:4611-22. [PMID: 23051737 PMCID: PMC3510022 DOI: 10.1091/mbc.e12-05-0343] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vps33, a member of the Sec1/Munc18 family of soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) chaperones, is a subunit of the homotypic fusion and protein sorting and class C core vacuole/endosome tethering complexes and essential for endolysosomal transport. In this study, Vps33 interactions with SNARE proteins are investigated using genetic and biochemical approaches. Soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) proteins catalyze membrane fusion events in the secretory and endolysosomal systems, and all SNARE-mediated fusion processes require cofactors of the Sec1/Munc18 (SM) family. Vps33 is an SM protein and subunit of the Vps-C complexes HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering), which are central regulators of endocytic traffic. Here we present biochemical studies of interactions between Saccharomyces cerevisiae vacuolar SNAREs and the HOPS holocomplex or Vps33 alone. HOPS binds the N-terminal Habc domain of the Qa-family SNARE Vam3, but Vps33 is not required for this interaction. Instead, Vps33 binds the SNARE domains of Vam3, Vam7, and Nyv1. Vps33 directly binds vacuolar quaternary SNARE complexes, and the affinity of Vps33 for SNARE complexes is greater than for individual SNAREs. Through targeted mutational analyses, we identify missense mutations of Vps33 that produce a novel set of defects, including cargo missorting and the loss of Vps33-HOPS association. Together these data suggest a working model for membrane docking: HOPS associates with N-terminal domains of Vam3 and Vam7 through Vps33-independent interactions, which are followed by binding of Vps33, the HOPS SM protein, to SNARE domains and finally to the quaternary SNARE complex. Our results also strengthen the hypothesis that SNARE complex binding is a core attribute of SM protein function.
Collapse
Affiliation(s)
- Braden T Lobingier
- Department of Biochemistry, University of Washington, Seattle, WA 98195-3750, USA
| | | |
Collapse
|
18
|
El-Kasmi F, Pacher T, Strompen G, Stierhof YD, Müller LM, Koncz C, Mayer U, Jürgens G. Arabidopsis SNARE protein SEC22 is essential for gametophyte development and maintenance of Golgi-stack integrity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:268-79. [PMID: 21205036 DOI: 10.1111/j.1365-313x.2011.04487.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Membrane traffic contributes to plant growth and development. However, the functional significance of SNARE proteins involved in membrane fusion of the early secretory pathway has not been explored with respect to plant development. Here we analyze the Arabidopsis v-SNARE SEC22. Loss of SEC22 function impairs gametophyte development, as indicated by reciprocal crosses between wild-type plants and plants heterozygous for T-DNA insertions in the SEC22 gene. sec22 mutant pollen becomes abnormal during the bicellular stage, eventually giving rise to degenerated pollen grains. Most mutant embryo sacs fail to support embryogenesis and display unfused polar nuclei in their central cell. Immunolocalization by both light and electron microscopy revealed an association of mutant-complementing Myc-tagged SEC22 with the central and peripheral endoplasmic reticulum (ER). Ultrastructural analysis of developing sec22 mutant pollen demonstrated Golgi fragmentation and consumption. As a consequence, the plasma membrane-targeted syntaxin SYP124 was retained in the ER. Our results suggest that SEC22 plays an essential role in early secretory traffic between the ER and the Golgi.
Collapse
Affiliation(s)
- Farid El-Kasmi
- Department of Developmental Genetics, Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 3, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Lorente-Rodríguez A, Barlowe C. Requirement for Golgi-localized PI(4)P in fusion of COPII vesicles with Golgi compartments. Mol Biol Cell 2010; 22:216-29. [PMID: 21119004 PMCID: PMC3020917 DOI: 10.1091/mbc.e10-04-0317] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The role of specific membrane lipids in ER-Golgi transport is unclear. Using cell-free assays that measure stages in ER-Golgi transport, a variety of enzyme inhibitors, lipid-modifying enzymes, and lipid ligands were screened. The results indicate that PI(4)P is required for SNARE-dependent fusion of COPII vesicles with the Golgi complex. The role of specific membrane lipids in transport between endoplasmic reticulum (ER) and Golgi compartments is poorly understood. Using cell-free assays that measure stages in ER-to-Golgi transport, we screened a variety of enzyme inhibitors, lipid-modifying enzymes, and lipid ligands to investigate requirements in yeast. The pleckstrin homology (PH) domain of human Fapp1, which binds phosphatidylinositol-4-phosphate (PI(4)P) specifically, was a strong and specific inhibitor of anterograde transport. Analysis of wild type and mutant PH domain proteins in addition to recombinant versions of the Sac1p phosphoinositide-phosphatase indicated that PI(4)P was required on Golgi membranes for fusion with coat protein complex II (COPII) vesicles. PI(4)P inhibition did not prevent vesicle tethering but significantly reduced formation of soluble n-ethylmaleimide sensitive factor adaptor protein receptor (SNARE) complexes between vesicle and Golgi SNARE proteins. Moreover, semi-intact cell membranes containing elevated levels of the ER-Golgi SNARE proteins and Sly1p were less sensitive to PI(4)P inhibitors. Finally, in vivo analyses of a pik1 mutant strain showed that inhibition of PI(4)P synthesis blocked anterograde transport from the ER to early Golgi compartments. Together, the data presented here indicate that PI(4)P is required for the SNARE-dependent fusion stage of COPII vesicles with the Golgi complex.
Collapse
|
20
|
Wickner W. Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu Rev Cell Dev Biol 2010; 26:115-36. [PMID: 20521906 DOI: 10.1146/annurev-cellbio-100109-104131] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although fusion mechanisms are highly conserved in evolution and among organelles of the exocytic and endocytic pathways, yeast vacuole homotypic fusion offers unique technical advantages: excellent genetics, clear organelle cytology, in vitro colorimetric fusion assays, and reconstitution of fusion from all-pure components, including a Rab GTPase, HOPS (homotypic fusion and vacuole protein sorting complex), four SNAREs [soluble N-ethylmaleimide-sensitive factor (NSF) attachment receptors] that snare (bind) each other, SNARE-complex disassembly chaperones, and vacuolar lipids. Vacuole fusion studies offer paradigms of the interdependence of lipids and fusion proteins to assemble a fusion microdomain, distinct lipid functions, SNARE complex proofreading through the synergy between HOPS and the SNARE disassembly chaperones, and the role of each fusion protein in promoting radical bilayer restructuring for fusion without lysis.
Collapse
Affiliation(s)
- William Wickner
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755-3844, USA.
| |
Collapse
|
21
|
Hashizume K, Cheng YS, Hutton JL, Chiu CH, Carr CM. Yeast Sec1p functions before and after vesicle docking. Mol Biol Cell 2009; 20:4673-85. [PMID: 19776355 DOI: 10.1091/mbc.e09-02-0172] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sec1/Munc18 (SM) proteins bind cognate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes and stimulate vesicle membrane fusion. Before fusion, vesicles are docked to specific target membranes. Regulation of vesicle docking is attributed to some but not all SM proteins, suggesting specialization of this earlier function. Yeast Sec1p seems to function only after vesicles are docked and SNARE complexes are assembled. Here, we show that yeast Sec1p is required before and after SNARE complex assembly, in support of general requirements for SM proteins in both vesicle docking and fusion. Two classes of sec1 mutants were isolated. Class A mutants are tightly blocked in cell growth and secretion at a step before SNARE complex assembly. Class B mutants have a SNARE complex binding defect, with a range in severity of cell growth and secretion defects. Mapping the mutations onto an SM protein structure implicates a peripheral bundle of helices for the early, docking function and a deep groove, opposite the syntaxin-binding cleft on nSec1/Munc-18, for the interaction between Sec1p and the exocytic SNARE complex.
Collapse
Affiliation(s)
- Kristina Hashizume
- Department of Pathology and Laboratory Medicine, University of Medicine and Dentistry, New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
22
|
Laufman O, Kedan A, Hong W, Lev S. Direct interaction between the COG complex and the SM protein, Sly1, is required for Golgi SNARE pairing. EMBO J 2009; 28:2006-17. [PMID: 19536132 DOI: 10.1038/emboj.2009.168] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 05/25/2009] [Indexed: 11/09/2022] Open
Abstract
The crucial roles of Sec1/Munc18 (SM)-like proteins in membrane fusion have been evidenced in genetic and biochemical studies. SM proteins interact directly with SNAREs and contribute to SNARE pairing by a yet unclear mechanism. Here, we show that the SM protein, Sly1, interacts directly with the conserved oligomeric Golgi (COG) tethering complex. The Sly1-COG interaction is mediated by the Cog4 subunit, which also interacts with Syntaxin 5 through a different binding site. We provide evidence that disruption of Cog4-Sly1 interaction impairs pairing of SNAREs involved in intra-Golgi transport thereby markedly attenuating Golgi-to-ER retrograde transport. These results highlight the mechanism by which SM proteins link tethering to SNAREpin assembly.
Collapse
Affiliation(s)
- Orly Laufman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
23
|
Kamena F, Diefenbacher M, Kilchert C, Schwarz H, Spang A. Ypt1p is essential for retrograde Golgi-ER transport and for Golgi maintenance in S. cerevisiae. J Cell Sci 2008; 121:1293-302. [PMID: 18388317 DOI: 10.1242/jcs.016998] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The small GTPase Ypt1p of the Rab family is required for docking of ER-derived transport vesicles with the Golgi prior to fusion. However, the identity of the Rab protein that mediates docking of Golgi-derived COPI vesicles with the ER in retrograde transport remains elusive. Here, we show that in yeast Ypt1p is essential for retrograde transport from the Golgi to the ER. Retrieval of gpalphaF-HDEL (glycolylated pro-alpha-factor with an HDEL tag at the C-terminus) was blocked in Deltaypt1/SLY1-20 membranes at the restrictive temperature in vitro. Moreover, Ypt1p and the ER-resident t-SNARE Ufe1p interact genetically and biochemically, indicating a role for Ypt1p in consumption of COPI vesicles at the ER. Ypt1p is also essential for the maintenance of the morphology and the protein composition of the Golgi. Interestingly, the concentrations of the Golgi enzymes Anp1p and Mnn1p, the cargo protein Emp47p and the v-SNARE Sec22p were all substantially reduced in Golgi from a Deltaypt1/SLY1-20 strain as compared with wild-type Golgi, while the concentration of Arf1p and of coatomer were mildly affected. Finally, COPI vesicles generated from Deltaypt1/SLY1-20 Golgi membranes in vitro were depleted of Emp47p and Sec22p. These data demonstrate that Ypt1p plays an essential role in retrograde transport from the Golgi to the ER.
Collapse
Affiliation(s)
- Faustin Kamena
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse 39, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
24
|
Graham ME, Handley MTW, Barclay JW, Ciufo LF, Barrow SL, Morgan A, Burgoyne RD. A gain-of-function mutant of Munc18-1 stimulates secretory granule recruitment and exocytosis and reveals a direct interaction of Munc18-1 with Rab3. Biochem J 2008; 409:407-16. [PMID: 17919117 DOI: 10.1042/bj20071094] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Munc18-1 plays a crucial role in regulated exocytosis in neurons and neuroendocrine cells through modulation of vesicle docking and membrane fusion. The molecular basis for Munc18 function is still unclear, as are the links with Rabs and SNARE [SNAP (soluble N-ethylmaleimide-sensitive factor-attachment protein) receptor] proteins that are also required. Munc18-1 can bind to SNAREs through at least three modes of interaction, including binding to the closed conformation of syntaxin 1. Using a gain-of-function mutant of Munc18-1 (E466K), which is based on a mutation in the related yeast protein Sly1p, we have identified a direct interaction of Munc18-1 with Rab3A, which is increased by the mutation. Expression of Munc18-1 with the E466K mutation increased exocytosis in adrenal chromaffin cells and PC12 cells (pheochromocytoma cells) and was found to increase the density of secretory granules at the periphery of PC12 cells, suggesting a stimulatory effect on granule recruitment through docking or tethering. Both the increase in exocytosis and changes in granule distribution appear to require Munc18-1 E466K binding to the closed form of syntaxin 1, suggesting a role for this interaction in bridging Rab- and SNARE-mediated events in exocytosis.
Collapse
Affiliation(s)
- Margaret E Graham
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Li Y, Schmitt HD, Gallwitz D, Peng RW. Mutations of the SM protein Sly1 resulting in bypass of GTPase requirement in vesicular transport are confined to a short helical region. FEBS Lett 2007; 581:5698-702. [PMID: 18036347 DOI: 10.1016/j.febslet.2007.11.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 11/12/2007] [Indexed: 10/22/2022]
Abstract
Ypt/Rab GTPases and Sec1/Munc18 (SM) proteins are key components of the membrane fusion machinery. Here, we describe new mutants of the yeast SM protein Sly1 that specifically bypass the need for GTPases Ypt1 and Ypt6 in vesicular transport. All sequence alterations are confined to a short alpha-helix (alpha-20), which is conserved in fungal Sly1 proteins and, when deleted, results in GTPase suppression. Whereas Sly1p of the evolutionarily distant fission yeast Schizosaccharomyces pombe can functionally replace Sly1p in Sacchromyces cerevisiae, mammalian homologues cannot. This indicates that alpha-20 in fungal Sly1p plays an important role in mediating Ypt/Rab-regulated Sly1p function in membrane fusion.
Collapse
Affiliation(s)
- Yujie Li
- Department of Molecular Genetics, Max Planck Institute for Biophysical Chemistry, 37070, Göttingen, Germany
| | | | | | | |
Collapse
|
26
|
Braun S, Jentsch S. SM-protein-controlled ER-associated degradation discriminates between different SNAREs. EMBO Rep 2007; 8:1176-82. [PMID: 18007658 DOI: 10.1038/sj.embor.7401105] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 09/17/2007] [Accepted: 09/21/2007] [Indexed: 11/09/2022] Open
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a specialized activity of the ubiquitin-proteasome system that is involved in clearing the ER of aberrant proteins and regulating the levels of specific ER-resident proteins. Here we show that the yeast ER-SNARE Ufe1, a syntaxin (Qa-SNARE) involved in ER membrane fusion and retrograde transport from the Golgi to the ER, is prone to degradation by an ERAD-like mechanism. Notably, Ufe1 is protected against degradation through binding to Sly1, a known SNARE regulator of the Sec1-Munc18 (SM) protein family. This mechanism is specific for Ufe1, as the stability of another Sly1 partner, the Golgi Qa-SNARE Sed5, is not influenced by Sly1 interaction. Thus, our findings identify Sly1 as a discriminating regulator of SNARE levels and indicate that Sly1-controlled ERAD might regulate the balance between different Qa-SNARE proteins.
Collapse
Affiliation(s)
- Sigurd Braun
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich D-82152, Germany
| | | |
Collapse
|
27
|
Abstract
Carbon fiber amperometry is a popular method for measuring single exocytotic events; however, the functional interpretation of the data can prove hazardous. For example, changes to vesicle transmitter levels can appear to cause changes in the timing and rate of the fusion process itself. Use of an analytical technique based on differentiation revealed that an increase in dense-core granule catecholamine content by exogenous application of l-DOPA did not affect initial release rates. Changes to the timing and amplitude of amperometric spikes from l-DOPA-treated cells are, then, likely a reflection of the increased quantal size rather than any direct effect on exocytosis itself. Applying this new analysis to individual fusion events from cells expressing Munc-18-1 with various specific point mutations demonstrated that Munc-18-1 functions at a late stage involved in the determination of the initial rate of fusion. Furthermore, a mutation of the protein that inhibits its biochemical interaction with the t-SNARE syntaxin-1 in a closed conformation caused premature termination of the fusion event. Through these two late-stage functions, Munc-18-1 could act as a key protein involved in the presynaptic control of signaling strength and duration.
Collapse
|
28
|
Thurmond DC. Regulation of Insulin Action and Insulin Secretion by SNARE-Mediated Vesicle Exocytosis. MECHANISMS OF INSULIN ACTION 2007:52-70. [DOI: 10.1007/978-0-387-72204-7_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
29
|
Behnia R, Barr FA, Flanagan JJ, Barlowe C, Munro S. The yeast orthologue of GRASP65 forms a complex with a coiled-coil protein that contributes to ER to Golgi traffic. J Cell Biol 2007; 176:255-61. [PMID: 17261844 PMCID: PMC2063951 DOI: 10.1083/jcb.200607151] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 12/22/2006] [Indexed: 12/24/2022] Open
Abstract
The mammalian Golgi protein GRASP65 is required in assays that reconstitute cisternal stacking and vesicle tethering. Attached to membranes by an N-terminal myristoyl group, it recruits the coiled-coil protein GM130. The relevance of this system to budding yeasts has been unclear, as they lack an obvious orthologue of GM130, and their only GRASP65 relative (Grh1) lacks a myristoylation site and has even been suggested to act in a mitotic checkpoint. In this study, we show that Grh1 has an N-terminal amphipathic helix that is N-terminally acetylated and mediates association with the cis-Golgi. We find that Grh1 forms a complex with a previously uncharacterized coiled-coil protein, Ydl099w (Bug1). In addition, Grh1 interacts with the Sec23/24 component of the COPII coat. Neither Grh1 nor Bug1 are essential for growth, but biochemical assays and genetic interactions with known mediators of vesicle tethering (Uso1 and Ypt1) suggest that the Grh1-Bug1 complex contributes to a redundant network of interactions that mediates consumption of COPII vesicles and formation of the cis-Golgi.
Collapse
Affiliation(s)
- Rudy Behnia
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 2QH, England, UK
| | | | | | | | | |
Collapse
|
30
|
Gengyo-Ando K, Kuroyanagi H, Kobayashi T, Murate M, Fujimoto K, Okabe S, Mitani S. The SM protein VPS-45 is required for RAB-5-dependent endocytic transport in Caenorhabditis elegans. EMBO Rep 2007; 8:152-7. [PMID: 17235359 PMCID: PMC1796764 DOI: 10.1038/sj.embor.7400882] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 10/17/2006] [Accepted: 11/06/2006] [Indexed: 11/08/2022] Open
Abstract
Rab5, a small guanosine triphosphatase, is known to regulate the tethering and docking reaction leading to SNARE (soluble NSF attachment protein receptors)-mediated fusion between endosomes. However, it is uncertain how the signal of the activated Rab5 protein is transduced by its downstream effectors during endosome fusion. Here, we show that the Sec1/Munc18 gene vps-45 is essential for not only viability and development but also receptor-mediated and fluid-phase endocytosis pathways in Caenorhabditis elegans. We found that VPS-45 interacts with a Rab5 effector, Rabenosyn-5 (RABS-5), and the mutants of both vps-45 and rabs-5 show similar endocytic phenotypes. In the macrophage-like cells of vps-45 and rabs-5 mutants, aberrantly small endosomes were accumulated, and the endosome fusion stimulated by the mutant RAB-5 (Q78L) is suppressed by these mutations. Our results indicate that VPS-45 is a key molecule that functions downstream from RAB-5, cooperating with RABS-5, to regulate the dynamics of the endocytic system in multicellular organisms.
Collapse
Affiliation(s)
- Keiko Gengyo-Ando
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
- CREST, JST, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Hidehito Kuroyanagi
- Department of Cell Biology, School of Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Tetsuo Kobayashi
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
- CREST, JST, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Motohide Murate
- Section of Physiological Anatomy, Faculty of Nursing and Social Welfare Sciences, Fukui Prefectural University, Fukui 910-1195, Japan
| | - Kazushi Fujimoto
- Section of Physiological Anatomy, Faculty of Nursing and Social Welfare Sciences, Fukui Prefectural University, Fukui 910-1195, Japan
| | - Shigeo Okabe
- Department of Cell Biology, School of Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
- CREST, JST, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
- Tel: +81 3 3353 8111 (ext. 22413); Fax: +81 3 5269 7362; E-mail:
| |
Collapse
|
31
|
Abstract
Since the discovery of SNARE proteins in the late 1980s, SNAREs have been recognized as key components of protein complexes that drive membrane fusion. Despite considerable sequence divergence among SNARE proteins, their mechanism seems to be conserved and is adaptable for fusion reactions as diverse as those involved in cell growth, membrane repair, cytokinesis and synaptic transmission. A fascinating picture of these robust nanomachines is emerging.
Collapse
Affiliation(s)
- Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Fassberg, 37077 Göttingen, Germany.
| | | |
Collapse
|
32
|
Schilde C, Wassmer T, Mansfeld J, Plattner H, Kissmehl R. A Multigene Family Encoding R-SNAREs in the Ciliate Paramecium tetraurelia. Traffic 2006; 7:440-55. [PMID: 16536742 DOI: 10.1111/j.1600-0854.2006.00397.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SNARE proteins (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) mediate membrane interactions and are conventionally divided into Q-SNAREs and R-SNAREs according to the possession of a glutamine or arginine residue at the core of their SNARE domain. Here, we describe a set of R-SNAREs from the ciliate Paramecium tetraurelia consisting of seven families encoded by 12 genes that are expressed simultaneously. The complexity of the endomembrane system in Paramecium can explain this high number of genes. All P. tetraurelia synaptobrevins (PtSybs) possess a SNARE domain and show homology to the Longin family of R-SNAREs such as Ykt6, Sec22 and tetanus toxin-insensitive VAMP (TI-VAMP). We localized four exemplary PtSyb subfamilies with GFP constructs and antibodies on the light and electron microscopic level. PtSyb1-1, PtSyb1-2 and PtSyb3-1 were found in the endoplasmic reticulum, whereas PtSyb2 is localized exclusively in the contractile vacuole complex. PtSyb6 was found cytosolic but also resides in regularly arranged structures at the cell cortex (parasomal sacs), the cytoproct and oral apparatus, probably representing endocytotic compartments. With gene silencing, we showed that the R-SNARE of the contractile vacuole complex, PtSyb2, functions to maintain structural integrity as well as functionality of the osmoregulatory system but also affects cell division.
Collapse
Affiliation(s)
- Christina Schilde
- Chair of Cell Biology and Ultrastructure Research, University of Konstanz, PO Box 5560, 78457 Konstanz, Germany. christina.schilde@uni-konstanzde
| | | | | | | | | |
Collapse
|
33
|
Yoda K, Noda Y. Vesicular transport and the Golgi apparatus in yeast. J Biosci Bioeng 2005; 91:1-11. [PMID: 16232937 DOI: 10.1263/jbb.91.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2000] [Accepted: 11/21/2000] [Indexed: 01/26/2023]
Abstract
Eukaryotic cells have developed a complex intracellular membrane system to divide the cell into various compartments where specific biochemical reactions are efficiently conducted locally. They also have developed systems to deliver appropriate materials to each specific compartment. Vesicular transport is a delivery system that also links most of the main organelles in the cell. The Golgi apparatus occupies the central position of the traffic between the endoplasmic reticulum and the endosome/vacuole/plasma membrane by maturating and sorting delivery of materials. Every important feature of vesicular transport has been identified by studying the Golgi apparatus, and the unicellular microorganism Saccharomyces cerevisiae has been an extremely excellent material for this study. Cycles of production and consumption of the transport vesicles by sorting the cargo, budding from the donor, tethering, docking and fusion to the target can now be explained to a large extent at the molecular level. The functional and structural aspects of the Golgi have also been well studied in the last decade.
Collapse
Affiliation(s)
- K Yoda
- Department of Biotechnology, University of Tokyo, Yayoi, Tokyo 113-8657, Japan.
| | | |
Collapse
|
34
|
Suga K, Saito A, Tomiyama T, Mori H, Akagawa K. Syntaxin 5 interacts specifically with presenilin holoproteins and affects processing of betaAPP in neuronal cells. J Neurochem 2005; 94:425-39. [PMID: 15998293 DOI: 10.1111/j.1471-4159.2005.03210.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The specific roles of syntaxin 5 (Syx 5) in the interaction with presenilin (PS) and the accumulation of beta-amyloid precursor protein (betaAPP), as well as the secretion of beta-amyloid peptide (Abeta peptide) were examined in NG108-15 cells. Syx 5, which localizes from the endoplasmic reticulum (ER) to the Golgi, bound to PS holoproteins, while the other Syxs studied did not. Among familial Alzheimer's disease (FAD)-linked PS mutants, PS1deltaE9, which lacks the endoproteolytic cleavage site, showed markedly decreased binding to Syx 5. The interaction domains in Syx 5 were mapped to the transmembrane region and to the cytoplasmic region containing the alpha-helical domains, which are distinct from the H3 (SNARE motif). Among all of the Syxs examined, only overexpression of Syx 5 resulted in the accumulation of betaAPP in the ER to cis-Golgi compartment, an attenuation of the amount of the C-terminal fragment (APP-CTF) of betaAPP, and a reduction in the secretion of Abeta peptides. Furthermore, co-expression of Syx 5 with C99 resulted in an increase in APP-CTF and suppressed Abeta secretion. Taken together, these results indicate that Syx 5 may play a specific role in the modulation of processing and/or trafficking of FAD-related proteins in neuronal cells by interaction with PS holoproteins in the early secretory compartment of neuronal cells.
Collapse
Affiliation(s)
- Kei Suga
- Department of Cell Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
35
|
Li Y, Gallwitz D, Peng R. Structure-based functional analysis reveals a role for the SM protein Sly1p in retrograde transport to the endoplasmic reticulum. Mol Biol Cell 2005; 16:3951-62. [PMID: 15958490 PMCID: PMC1196310 DOI: 10.1091/mbc.e05-02-0114] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sec1p/Munc18 (SM) proteins are essential for membrane fusion events in eukaryotic cells. Here we describe a systematic, structure-based mutational analysis of the yeast SM protein Sly1p, which was previously shown to function in anterograde endoplasmic reticulum (ER)-to-Golgi and intra-Golgi protein transport. Five new temperature-sensitive (ts) mutants, each carrying a single amino acid substitution in Sly1p, were identified. Unexpectedly, not all of the ts mutants exhibited striking anterograde ER-to-Golgi transport defects. For example, in cells of the novel sly1-5 mutant, transport of newly synthesized lysosomal and secreted proteins was still efficient, but the ER-resident Kar2p/BiP was missorted to the outside of the cell, and two proteins, Sed5p and Rer1p, which normally shuttle between the Golgi and the ER, failed to relocate to the ER. We also discovered that in vivo, Sly1p was associated with a SNARE complex formed on the ER, and that in vitro, the SM protein directly interacted with the ER-localized nonsyntaxin SNAREs Use1p/Slt1p and Sec20p. Furthermore, several conditional mutants defective in Golgi-to-ER transport were synthetically lethal with sly1-5. Together, these results indicate a previously unrecognized function of Sly1p in retrograde transport to the endoplasmic reticulum.
Collapse
Affiliation(s)
- Yujie Li
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Genetics, 37077 Göttingen, Germany
| | | | | |
Collapse
|
36
|
Ballew N, Liu Y, Barlowe C. A Rab requirement is not bypassed in SLY1-20 suppression. Mol Biol Cell 2005; 16:1839-49. [PMID: 15689495 PMCID: PMC1073665 DOI: 10.1091/mbc.e04-08-0725] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2004] [Revised: 01/06/2005] [Accepted: 01/18/2005] [Indexed: 11/11/2022] Open
Abstract
The Rab GTPase Ypt1p and the large homodimer Uso1p are both required for tethering endoplasmic reticulum-derived vesicles to early Golgi compartments in yeast. Loss-of-function ypt1 and uso1 mutations are suppressed by SLY1-20, a dominant allele that encodes the Sed5p-associated protein, Sly1p. Here, we investigate the mechanism of SLY1-20 suppression. In wild-type strains, Ypt1p can be coimmunoprecipitated with Uso1p; however, in a ypt1Delta/SLY1-20 strain, which lacks this complex, membrane binding of Uso1p was reduced. In spite of Ypt1p depletion, Uso1p-dependent vesicle tethering was not bypassed under the ypt1Delta/SLY1-20 condition. Moreover, tethering and fusion assays with ypt1Delta/SLY1-20 membranes remained sensitive to Rab GDP dissociation inhibitor. These results indicate that an alternative Rab protein satisfies the Ypt1p requirement in Uso1p-dependent tethering when SLY1-20 is expressed. Further genetic and biochemical tests revealed that a related Rab protein, Ypt6, might substitute for Ypt1p in ypt1Delta/SLY1-20 cells. Additional experimentation to address the mechanism of SLY1-20 suppression in a cog2Delta [sec35Delta] strain indicated that the Cog2p subunit of the conserved oligomeric Golgi complex is either functionally redundant or is not directly required for anterograde transport to the Golgi complex.
Collapse
Affiliation(s)
- Nicole Ballew
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | |
Collapse
|
37
|
Graf CT, Riedel D, Schmitt HD, Jahn R. Identification of functionally interacting SNAREs by using complementary substitutions in the conserved '0' layer. Mol Biol Cell 2005; 16:2263-74. [PMID: 15728725 PMCID: PMC1087233 DOI: 10.1091/mbc.e04-09-0830] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes form bundles of four parallel alpha-helices. The central '0' layer of interacting amino acid side chains is highly conserved and contains one arginine and three glutamines, leading to the classification of SNAREs into R, Qa, Qb, and Qc-SNAREs. Replacing one of the glutamines with arginine in the yeast exocytotic SNARE complex is either lethal or causes a conditional growth defect that is compensated by replacing the R-SNARE arginine with glutamine. Using the yeast SNARE complex mediating traffic from the endoplasmic reticulum to the Golgi apparatus, we now show that functionally interacting SNAREs can be mapped by systematically exchanging glutamines and arginines in the '0' layer. The Q-->R replacement in the Qb-SNARE Bos1p has the strongest effect and can be alleviated by an Q-->R replacement in the R-SNARE Sec22p. Four Q residues in the central layer caused growth defects above 30 degrees C that were rescued by Q-->R substitutions in the Qa and Qc SNAREs Sed5p and Bet1p, respectively. The sec22(Q)/sed5(R) mutant is temperature sensitive and is rescued by a compensating R-->Q replacement in the R-SNARE Ykt6p. This rescue is attributed to the involvement of Sed5p and Ykt6p in a different SNARE complex that functions in intra-Golgi trafficking.
Collapse
Affiliation(s)
- Carmen T Graf
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | |
Collapse
|
38
|
Weber APM, Schwacke R, Flügge UI. Solute transporters of the plastid envelope membrane. ANNUAL REVIEW OF PLANT BIOLOGY 2005; 56:133-64. [PMID: 15862092 DOI: 10.1146/annurev.arplant.56.032604.144228] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plastids are metabolically extraordinarily active and versatile organelles that are found in all plant cells with the exception of angiosperm pollen grains. Many of the plastid-localized biochemical pathways depend on precursors from the cytosol and, in turn, many cytosolic pathways depend on the supply of precursor molecules from the plastid stroma. Hence, a massive traffic of metabolites occurs across the permeability barrier between plastids and cytosol that is called the plastid envelope membrane. Many of the known plastid envelope solute transporters have been identified by biochemical purification and peptide sequencing. This approach is of limited use for less abundant proteins and for proteins of plastid subtypes that are difficult to isolate in preparative amounts. Hence, the majority of plastid envelope membrane transporters are not yet identified at the molecular level. The availability of fully sequenced plant genomes, the progress in bioinformatics to predict membrane transporters localized in plastids, and the development of highly sensitive proteomics techniques open new avenues toward identifying additional, to date unknown, plastid envelope membrane transporters.
Collapse
Affiliation(s)
- Andreas P M Weber
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824-1312, USA.
| | | | | |
Collapse
|
39
|
Ciufo LF, Barclay JW, Burgoyne RD, Morgan A. Munc18-1 regulates early and late stages of exocytosis via syntaxin-independent protein interactions. Mol Biol Cell 2004; 16:470-82. [PMID: 15563604 PMCID: PMC545880 DOI: 10.1091/mbc.e04-08-0685] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sec1/Munc18 (SM) proteins are involved in various intracellular membrane trafficking steps. Many SM proteins bind to appropriate syntaxin homologues involved in these steps, suggesting that SM proteins function as syntaxin chaperones. Organisms with mutations in SM genes, however, exhibit defects in either early (docking) or late (fusion) stages of exocytosis, implying that SM proteins may have multiple functions. To gain insight into the role of SM proteins, we introduced mutations modeled on those identified in Caenorhabditis elegans, Drosophila melanogaster, and Saccharomyces cerevisiae into mammalian Munc18-1. As expected, several mutants exhibited reduced binding to syntaxin1A. However, three mutants displayed wild-type syntaxin binding affinities, indicating syntaxin-independent defects. Expression of these mutants in chromaffin cells either increased the rate and extent of exocytosis or altered the kinetics of individual release events. This latter effect was associated with a reduced Mint binding affinity in one mutant, implying a potential mechanism for the observed alteration in release kinetics. Furthermore, this phenotype persisted when the mutation was combined with a second mutation that greatly reduced syntaxin binding affinity. These results clarify the data on the function of SM proteins in mutant organisms and indicate that Munc18-1 controls multiple stages of exocytosis via both syntaxin-dependent and -independent protein interactions.
Collapse
Affiliation(s)
- Leonora F Ciufo
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | | | | | | |
Collapse
|
40
|
Peng R, Gallwitz D. Multiple SNARE interactions of an SM protein: Sed5p/Sly1p binding is dispensable for transport. EMBO J 2004; 23:3939-49. [PMID: 15372079 PMCID: PMC524344 DOI: 10.1038/sj.emboj.7600410] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 08/19/2004] [Indexed: 11/09/2022] Open
Abstract
Sec1/Munc18 (SM) proteins are central to intracellular transport and neurotransmitter release but their exact role is still elusive. Several SM proteins, like the neuronal N-Sec1 and the yeast Sly1 protein, bind their cognate t-SNAREs with high affinity. This has been thought to be critical for their function. Here, we show that various mutant forms of Sly1p and the Golgi-localized syntaxin Sed5p, which abolish their high-affinity interaction, are fully functional in vivo, indicating that the tight interaction of the two molecules per se is not relevant for proper function. Mutant Sly1p unable to bind Sed5p is excluded from core SNARE complexes, also demonstrating that Sly1p function is not directly coupled to assembled SNARE complexes thought to execute membrane fusion. We also find that wild-type Sly1p and mutant Sly1p unable to bind Sed5p directly interact with selected ER-to-Golgi and intra-Golgi nonsyntaxin SNAREs. The newly identified, direct interactions of the SM protein with nonsytaxin SNAREs might provide a molecular mechanism by which SNAREs can be activated to engage in pairing and assemble into fusogenic SNARE complexes.
Collapse
Affiliation(s)
- Renwang Peng
- Department of Molecular Genetics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dieter Gallwitz
- Department of Molecular Genetics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Abt. Molekulare Genetik, MPI für Biophysikalische Chemie, Am Fassberg 11, 37017 Göttingen, Germany. Tel.: +49 551 201 1496; Fax: +49 551 201 1718; E-mail:
| |
Collapse
|
41
|
Liu Y, Flanagan JJ, Barlowe C. Sec22p Export from the Endoplasmic Reticulum Is Independent of SNARE Pairing. J Biol Chem 2004; 279:27225-32. [PMID: 15123693 DOI: 10.1074/jbc.m312122200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecularly distinct sets of SNARE proteins localize to specific intracellular compartments and catalyze membrane fusion events. Although their central role in membrane fusion is appreciated, little is known about the mechanisms by which individual SNARE proteins are targeted to specific organelles. Here we investigated functional domains in Sec22p that direct this SNARE protein to the endoplasmic reticulum (ER), to Golgi membranes, and into SNARE complexes with Bet1p, Bos1p, and Sed5p. A series of Sec22p deletion mutants were monitored in COPII budding assays, subcellular fractionation gradients, and SNARE complex immunoprecipitations. We found that the N-terminal "profilin-like" domain of Sec22p was required but not sufficient for COPII-dependent export of Sec22p from the ER. Interestingly, versions of Sec22p that lacked the N-terminal domain were assembled into ER/Golgi SNARE complexes. Analyses of Sec22p SNARE domain mutants revealed a second signal within the SNARE motif (between layers -4 and -1) that was required for efficient ER export. Other SNARE domain mutants that contained this signal were efficiently packaged into COPII vesicles but failed to assemble into SNARE complexes. Together these results indicated that SNARE complex formation is neither required nor sufficient for Sec22p packaging into COPII transport vesicles and subsequent targeting to the Golgi complex. We propose that the COPII budding machinery has a preference for unassembled ER/Golgi SNARE proteins.
Collapse
Affiliation(s)
- Yiting Liu
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
42
|
Abstract
One of the most exciting recent discoveries in the area of intracellular protein transport is the finding that many organelles involved in exocytic and endocytic membrane traffic have one or more Ras-like GTP-binding proteins on their cytoplasmic face that are specific for each membranous compartment. These proteins are attractive candidates for regulators of transport vesicle formation and the accurate delivery of transport vesicles to their correct targets.
Collapse
Affiliation(s)
- S R Pfeffer
- Deparment of Biochemistry, Standford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
43
|
Weimer RM, Richmond JE. Synaptic vesicle docking: a putative role for the Munc18/Sec1 protein family. Curr Top Dev Biol 2004; 65:83-113. [PMID: 15642380 DOI: 10.1016/s0070-2153(04)65003-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Robby M Weimer
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
44
|
Abstract
The COPII coat buds transport vesicles from the endoplasmic reticulum that incorporate cargo and SNARE molecules. Here, we show that recognition of the ER-Golgi SNAREs Bet1, Sed5, and Sec22 occurs through three binding sites on the Sec23/24 subcomplex of yeast COPII. The A site binds to the YNNSNPF motif of Sed5. The B site binds to Lxx-L/M-E sequences present in both the Bet1 and Sed5 molecules, as well as to the DxE cargo-sorting signal. A third, spatially distinct site binds to Sec22. COPII selects the free v-SNARE form of Bet1 because the LxxLE sequence is sequestered in the four-helix bundle of the v-/t-SNARE complex. COPII favors Sed5 within the Sed5/Bos1/Sec22 t-SNARE complex because t-SNARE assembly removes autoinhibitory contacts to expose the YNNSNPF motif. The COPII coat seems to be a specific conductor of the fusogenic forms of these SNAREs, suggesting how vesicle fusion specificity may be programmed during budding.
Collapse
Affiliation(s)
- Elena Mossessova
- Howard Hughes Medical Institute and the Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
45
|
Nechiporuk A, Poss KD, Johnson SL, Keating MT. Positional cloning of a temperature-sensitive mutant emmental reveals a role for sly1 during cell proliferation in zebrafish fin regeneration. Dev Biol 2003; 258:291-306. [PMID: 12798289 DOI: 10.1016/s0012-1606(03)00129-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Here, we used classical genetics in zebrafish to identify temperature-sensitive mutants in caudal fin regeneration. Gross morphological, histological, and molecular analyses revealed that one of these strains, emmental (emm), failed to form a functional regeneration blastema. Inhibition of emm function by heat treatment during regenerative outgrowth rapidly blocked regeneration. This block was associated with reduced proliferation in the proximal blastema and expansion of the nonproliferative distal blastemal zone. Positional cloning revealed that the emm phenotype is caused by a mutation in the orthologue of yeast sly1, a gene product involved in protein trafficking. sly1 is upregulated in the newly formed blastema as well as during regenerative outgrowth. Thus, sly1 is essential for blastemal organization and proliferation during two stages of fin regeneration.
Collapse
Affiliation(s)
- Alex Nechiporuk
- Howard Hughes Medical Institute, Department of Cardiology, Children's Hospital, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
Most cells contain a variety of transport vesicles traveling to different destinations. Although many specific transport routes exist, the underlying molecular principles appear to be rather similar and conserved in evolution. It has become evident that formation of protein complexes named SNARE complexes between vesicle and target membrane is a central aspect of the final fusion reaction in many, if not all, routes and that SNARE complexes in different routes and species form in a similar manner. It is also evident that a second gene family, the Sec1/Munc18 genes (SM genes), plays a prominent role in vesicle trafficking. But, in contrast to the consensus and clarity about SNARE proteins, recent data on SM proteins in different systems produce an uncomfortable heterogeneity of ideas about their exact role, their site of action and their relation to SNARE proteins. This review examines whether a universal principle for the molecular function of SM genes exists and whether the divergence in SM gene function can be related to the unique characteristics of different transport routes.
Collapse
Affiliation(s)
- Ruud F G Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam (VUA), De Boelelaan 1087, The Netherlands
| | | |
Collapse
|
47
|
Gallwitz D, Jahn R. The riddle of the Sec1/Munc-18 proteins - new twists added to their interactions with SNAREs. Trends Biochem Sci 2003; 28:113-6. [PMID: 12633987 DOI: 10.1016/s0968-0004(03)00028-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sec1/Munc-18 (SM) proteins are essential for intracellular membrane fusion reactions. Most of them bind to membrane-associated soluble N-ethylmaleimide-sensitive fusion (NSF)-attachment protein receptors (SNAREs) of the syntaxin subfamily but it is unclear whether regulating syntaxins is their primary role. Recent studies now have shown that the mechanism of syntaxin binding is not conserved, even though the structures of both protein families are. Amazing as this might be for those considering the evolution of conserved folds, it leaves the question of how SM proteins operate in membrane fusion unanswered.
Collapse
Affiliation(s)
- Dieter Gallwitz
- Department of Molecular Genetics, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg, 37070, Göttingen, Germany
| | | |
Collapse
|
48
|
Martin-Verdeaux S, Pombo I, Iannascoli B, Roa M, Varin-Blank N, Rivera J, Blank U. Evidence of a role for Munc18-2 and microtubules in mast cell granule exocytosis. J Cell Sci 2003; 116:325-34. [PMID: 12482918 DOI: 10.1242/jcs.00216] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Compound exocytosis of inflammatory mediators from mast cells requires SNARE and a series of accessory proteins. However, the molecular steps that regulate secretory granule movement and membrane fusion as well as the role of the cytoskeleton are still poorly understood. Here, we report on our investigation of the role of syntaxin-binding Munc18 isoforms and the microtubule network in this process. We found that mast cells express Munc18-2, which interacts with target SNAREs syntaxin 2 or 3, as well as Munc18-3, which interacts with syntaxin 4. Munc18-2 was localised to secretory granules, whereas Munc18-3 was found on the plasma membrane. Increased expression of Munc18-2 and derived peptides containing an interfering effector loop inhibited IgE-triggered exocytosis, while increased expression of Munc18-3 showed no effect. Munc18-2 localisation on granules is polarised; however, upon stimulation Munc18-2 redistributed into forming lamellipodia and persisted on granules that were aligned along microtubules, but was excluded from F-actin ruffles. Disruption of the microtubule network with nocodazole provoked Munc18-2 redistribution and affected mediator release. These findings suggest a role for Munc18-2 and the microtubule network in the regulation of secretory granule dynamics in mast cells.
Collapse
|
49
|
Götte M. Screening for suppressors of temperature sensitivity in a yeast mutant defective in vacuolar protein degradation. Genet Mol Biol 2003. [DOI: 10.1590/s1415-47572003000100015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Martin Götte
- Protogeneia, Incorporation, Germany; Max-Planck-Institute for Biophysical Chemistry, Germany
| |
Collapse
|
50
|
Bracher A, Weissenhorn W. Structural basis for the Golgi membrane recruitment of Sly1p by Sed5p. EMBO J 2002; 21:6114-24. [PMID: 12426383 PMCID: PMC137200 DOI: 10.1093/emboj/cdf608] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2002] [Accepted: 09/24/2002] [Indexed: 11/14/2022] Open
Abstract
Cytosolic Sec1/munc18-like proteins (SM proteins) are recruited to membrane fusion sites by interaction with syntaxin-type SNARE proteins, constituting indispensable positive regulators of intracellular membrane fusion. Here we present the crystal structure of the yeast SM protein Sly1p in complex with a short N-terminal peptide derived from the Golgi-resident syntaxin Sed5p. Sly1p folds, similarly to neuronal Sec1, into a three-domain arch-shaped assembly, and Sed5p interacts in a helical conformation predominantly with domain I of Sly1p on the opposite site of the nSec1/syntaxin-1-binding site. Sequence conservation of the major interactions suggests that homologues of Sly1p as well as the paralogous Vps45p group bind their respective syntaxins in the same way. Furthermore, we present indirect evidence that nSec1 might be able to contact syntaxin 1 in a similar fashion. The observed Sly1p-Sed5p interaction mode therefore indicates how SM proteins can stay associated with the assembling fusion machinery in order to participate in late fusion steps.
Collapse
Affiliation(s)
- Andreas Bracher
- European Molecular Biology Laboratory, 6 rue Jules Horowitz, 38042 Grenoble, France.
| | | |
Collapse
|