1
|
An P, Sáenz Robles MT, Pipas JM. Large T antigens of polyomaviruses: amazing molecular machines. Annu Rev Microbiol 2013; 66:213-36. [PMID: 22994493 DOI: 10.1146/annurev-micro-092611-150154] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The large tumor antigen (T antigen) encoded by simian virus 40 is an amazing molecular machine because it orchestrates viral infection by modulating multiple fundamental viral and cellular processes. T antigen is required for viral DNA replication, transcription, and virion assembly. In addition, T antigen targets multiple cellular pathways, including those that regulate cell proliferation, cell death, and the inflammatory response. Ectopic T antigen expression results in the immortalization and transformation of many cell types in culture and T antigen induces neoplasia when expressed in rodents. The analysis of the mechanisms by which T antigen carries out its many functions has proved to be a powerful way of gaining insights into cell biology. The accelerating pace at which new polyomaviruses are being discovered provides a collection of novel T antigens that, like simian virus 40, can be used to discover and study key cellular regulatory systems.
Collapse
Affiliation(s)
- Ping An
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
2
|
Shiama N. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol 2012; 7:230-6. [PMID: 17708951 DOI: 10.1016/s0962-8924(97)01048-9] [Citation(s) in RCA: 388] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Studies on the mechanisms through which the oncogene products of DNA tumour viruses subvert the physiological processes that control cell proliferation have yielded many important insights into the mammalian cell cycle. In the case of the adenovirus E1a oncoprotein, a number of distinct protein domains are required for it to exert its growth-promoting effects. These domains allow E1a to associate physically with and inactivate cellular proteins that normally restrain proliferation. Recently, a group of E1a-interacting proteins discovered in part through studies on viral oncoproteins has become a major focus of research activity. Members of this family, known as p300/CBP, function to regulate transcription and chromatin, and thereby enable diverse signals, particularly those that facilitate differentiation, to be integrated and coordinated with gene expression. Furthermore, accumulating evidence connects genes encoding p300/CBP with diseases such as cancer.
Collapse
|
3
|
Abstract
Over 50 years of polyomavirus research has produced a wealth of insights into not only general biologic processes in mammalian cells, but also, how conditions can be altered and signaling systems tweaked to produce transformation phenotypes. In the past few years three new members (KIV, WUV, and MCV) have joined two previously known (JCV and BKV) human polyomaviruses. In this review, we present updated information on general virologic features of these polyomaviruses in their natural host, concentrating on the association of MCV with human Merkel cell carcinoma. We further present a discussion on advances made in SV40 as the prototypic model, which has and will continue to inform our understanding about viruses and cancer.
Collapse
Affiliation(s)
- Ole Gjoerup
- Cancer Virology Program, Hillman Cancer Research Pavilion, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | |
Collapse
|
4
|
How the Rb tumor suppressor structure and function was revealed by the study of Adenovirus and SV40. Virology 2009; 384:274-84. [PMID: 19150725 DOI: 10.1016/j.virol.2008.12.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 12/08/2008] [Indexed: 12/14/2022]
Abstract
The review recounts the history of how the study of the DNA tumor viruses including polyoma, SV40 and Adenovirus brought key insights into the structure and function of the Retinoblastoma protein (Rb). Knudsen's model of the two-hit hypothesis to explain patterns of hereditary and sporadic retinoblastoma provided the foundation for the tumor suppressor hypothesis that ultimately led to the cloning of the Rb gene. The discovery that SV40 and Adenovirus could cause tumors when inoculated into animals was startling not only because SV40 had contaminated the poliovirus vaccine and Adenovirus was a common cause of viral induced pneumonia but also because they provided an opportunity to study the genetics and biochemistry of cancer. Studies of mutant forms of these viruses led to the identification of the E1A and Large T antigen (LT) oncogenes and their small transforming elements including the Adenovirus Conserved Regions (CR), the SV40 J domain and the LxCxE motif. The immunoprecipitation studies that initially revealed the size and ultimately the identity of cellular proteins that could bind to these transforming elements were enabled by the widespread development of highly specific monoclonal antibodies against E1A and LT. The identification of Rb as an E1A and LT interacting protein quickly led to the cloning of p107, p130, p300, CBP, p400 and TRRAP and the concept that viral transformation was due, at least in part, to the perturbation of the function of normal cellular proteins. In addition, studies on the ability of E1A to transactivate the Adenovirus E2 promoter led to the cloning of the heterodimeric E2F and DP transcription factor and recognition that Rb repressed transcription of cellular genes required for cell cycle entry and progression. More recent studies have revealed how E1A and LT combine the activity of Rb and the other cellular associated proteins to perturb expression of many genes during viral infection and tumor formation.
Collapse
|
5
|
Pipas JM. SV40: Cell transformation and tumorigenesis. Virology 2008; 384:294-303. [PMID: 19070883 DOI: 10.1016/j.virol.2008.11.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
Abstract
The story of SV40-induced tumorigenesis and cellular transformation is intimately entwined with the development of modern molecular biology. Because SV40 and other viruses have small genomes and are relatively easy to manipulate in the laboratory, they offered tractable systems for molecular analysis. Thus, many of the early efforts to understand how eukaryotes replicate their DNA, regulate expression of their genes, and translate mRNA were focused on viral systems. The discovery that SV40 induces tumors in certain laboratory animals and transforms many types of cultured cells offered the first opportunity to explore the molecular basis for cancer. The goal of this article is to highlight some of the experiments that have led to our current view of SV40-induced transformation and to provide some context as to how they contributed to basic research in molecular biology and to our understanding of cancer.
Collapse
Affiliation(s)
- James M Pipas
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA.
| |
Collapse
|
6
|
Khalili K, Sariyer IK, Safak M. Small tumor antigen of polyomaviruses: role in viral life cycle and cell transformation. J Cell Physiol 2008; 215:309-19. [PMID: 18022798 PMCID: PMC2716072 DOI: 10.1002/jcp.21326] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The regulatory proteins of polyomaviruses, including small and large T antigens, play important roles, not only in the viral life cycle but also in virus-induced cell transformation. Unlike many other tumor viruses, the transforming proteins of polyomaviruses have no cellular homologs but rather exert their effects mostly by interacting with cellular proteins that control fundamental processes in the regulation of cell proliferation and the cell cycle. Thus, they have proven to be valuable tools to identify specific signaling pathways involved in tumor progression. Elucidation of these pathways using polyomavirus transforming proteins as tools is critically important in understanding fundamental regulatory mechanisms and hence to develop effective therapeutic strategies against cancer. In this short review, we will focus on the structural and functional features of one polyomavirus transforming protein, that is, the small t-antigen of the human neurotropic JC virus (JCV) and the simian virus, SV40.
Collapse
Affiliation(s)
- Kamel Khalili
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Ilker Kudret Sariyer
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Mahmut Safak
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Wen CC, Cheng SA, Hsuen SP, Huang YL, Kuo ZK, Lee HF, Kuo CH, Du JL, Wang WB. SV40 T/t-common polypeptide specifically induces apoptosis in human cancer cells that overexpress HER2/neu. Cancer Res 2006; 66:5847-57. [PMID: 16740724 DOI: 10.1158/0008-5472.can-05-2109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previously, we reported that SV40 T/t-common polypeptide, which contains the NH(2)-terminal common domain of SV40 large T and small t antigens, can repress HER2/neu (also known as erbB-2) expression and consequently suppress the tumorigenic potential of the HER2/neu-overexpressing ovarian carcinoma cells. Here we report that T/t-common could specifically induce apoptosis in HER2/neu-overexpressing human cancer cell lines but not in nontransformed cell lines and HER2/neu low-expressing human cancer cell lines. The ability of T/t-common to induce apoptosis in HER2/neu-overexpressing cancer cells was derived from its ability to inhibit HER2/neu because reexpression of a large amount of HER2/neu could block apoptosis induced by T/t-common. T/t-common expression in HER2/neu-overexpressing SK-OV-3 cancer cells led to down-regulation of Bcl-2 and Bcl-X(L), and overexpression of Bcl-2 could inhibit the ability of T/t-common to induce apoptosis in these cells. Therefore, the apoptosis-inducing activity of T/t-common is related to its ability to inhibit Bcl-2 expression in HER2/neu-overexpressing cancer cells. Consistent with the apoptosis-inducing activity of T/t-common, we found that T/t-common could specifically inhibit the soft-agarose colony-forming ability of the HER2/neu-overexpressing human cancer cell lines but not that of the HER2/neu low-expressing human cancer cell lines. Finally, we showed that T/t-common could specifically sensitize HER2/neu-overexpressing human cancer cell lines, but not HER2/neu low-expressing human cancer cell lines, to chemotherapeutic agent etoposide. Together, these data suggest that T/t-common alone or in combination with chemotherapy may provide a new approach for treatment of cancers that overexpress HER2/neu.
Collapse
Affiliation(s)
- Chun-Chiang Wen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ahuja D, Sáenz-Robles MT, Pipas JM. SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene 2005; 24:7729-45. [PMID: 16299533 DOI: 10.1038/sj.onc.1209046] [Citation(s) in RCA: 417] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DNA tumor viruses such as simian virus 40 (SV40) express dominant acting oncoproteins that exert their effects by associating with key cellular targets and altering the signaling pathways they govern. Thus, tumor viruses have proved to be invaluable aids in identifying proteins that participate in tumorigenesis, and in understanding the molecular basis for the transformed phenotype. The roles played by the SV40-encoded 708 amino-acid large T antigen (T antigen), and 174 amino acid small T antigen (t antigen), in transformation have been examined extensively. These studies have firmly established that large T antigen's inhibition of the p53 and Rb-family of tumor suppressors and small T antigen's action on the pp2A phosphatase, are important for SV40-induced transformation. It is not yet clear if the Rb, p53 and pp2A proteins are the only targets through which SV40 transforms cells, or whether additional targets await discovery. Finally, expression of SV40 oncoproteins in transgenic mice results in effects ranging from hyperplasia to invasive carcinoma accompanied by metastasis, depending on the tissue in which they are expressed. Thus, the consequences of SV40 action on these targets depend on the cell type being studied. The identification of additional cellular targets important for transformation, and understanding the molecular basis for the cell type-specific action of the viral T antigens are two important areas through which SV40 will continue to contribute to our understanding of cancer.
Collapse
Affiliation(s)
- Deepika Ahuja
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
9
|
Masumi A, Yamakawa Y, Fukazawa H, Ozato K, Komuro K. Interferon regulatory factor-2 regulates cell growth through its acetylation. J Biol Chem 2003; 278:25401-7. [PMID: 12738767 DOI: 10.1074/jbc.m213037200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that interferon regulatory factor-2 (IRF-2) is acetylated by p300 and PCAF in vivo and in vitro. In this study we identified, by mass spectrometry, two lysine residues in the DNA binding domain (DBD), Lys-75 and Lys-78, to be the major acetylation sites in IRF-2. Although acetylation of IRF-2 did not alter DNA binding activity in vitro, mutation of Lys-75 diminished the IRF-2-dependent activation of histone H4 promoter activity. Acetylation of IRF-2 and IRF-2-stimulated H4 promoter activity were inhibited by the adenovirus E1A, indicating the involvement of p300/CBP. Mutation of Lys-78, a residue conserved throughout the IRF family members, led to the abrogation of DNA binding activity independently of acetylation. H4 is transcribed only in rapidly growing cells and its promoter activity is dependent on cell growth. Consistent with a role for acetylated IRF-2 in cell growth control, IRF-2 was acetylated only in growing NIH 3T3 cells, but not in growth-arrested counterparts. Chromatin immunoprecipitation assays showed that IRF-2 interacted with p300 and bound to the endogenous H4 promoter only in growing cells, although the levels of total IRF-2 were comparable in both growing and growth-arrested cells. These results indicate that IRF-2 is acetylated in a cell growth-dependent manner, which enables it to contribute to transcription of cell growth-regulated promoters.
Collapse
Affiliation(s)
- Atsuko Masumi
- Department of Safety Research on Biologics, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
10
|
Redeuilh G, Attia A, Mester J, Sabbah M. Transcriptional activation by the oestrogen receptor alpha is modulated through inhibition of cyclin-dependent kinases. Oncogene 2002; 21:5773-82. [PMID: 12173048 DOI: 10.1038/sj.onc.1205753] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2002] [Revised: 05/16/2002] [Accepted: 06/07/2002] [Indexed: 11/08/2022]
Abstract
We have investigated the interaction between the expression of p21(WAF1/CIP1/SDI1), a stoichiometric inhibitor of Cdk, and the transcriptional activity of the oestrogen receptor alpha (ER(alpha). Transient transfection experiments demonstrated that the expression of p21(WAF1/CIP1/SDI1) amplified the transcriptional activation by ER(alpha). A dominant negative mutant of Cdk2 also enhanced the ER(alpha) transcriptional activity, indicating that the underlying mechanism relies on the inhibition of Cdk2 activity and cell cycle arrest. In agreement with this conclusion, experiments with p21(WAF1/CIP1/SDI1) mutants demonstrated that the domain involved in the binding of p21(WAF1/CIP1/SDI1) to Cdks was indispensable for the modulation of ER(alpha) activity. In addition, we show that expression of p21(WAF1/CIP1/SDI1) alleviates the block on CBP function mediated by Cdk2 and in turn stimulates transcriptional activation by ER(alpha) in a CBP-histone acetyltransferase (HAT)-dependent manner. These results suggest a novel mechanism by which p21(WAF1/CIP1/SDI1) functions as an enhancer of ER(alpha) activity through the modulation of CBP function.
Collapse
Affiliation(s)
- Gérard Redeuilh
- Institut National de la Santé et de la Recherche Médicale U 482, Hôpital Saint-Antoine, 184 Rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
| | | | | | | |
Collapse
|
11
|
Affiliation(s)
- N Vo
- Vollum Institute, Oregon Health Sciences University, Portland 97201, USA
| | | |
Collapse
|
12
|
Affiliation(s)
- D T Simmons
- Department of Biological Sciences, University of Delaware, Newark 19716, USA
| |
Collapse
|
13
|
Ohshima T, Suganuma T, Ikeda M. A novel mutation lacking the bromodomain of the transcriptional coactivator p300 in the SiHa cervical carcinoma cell line. Biochem Biophys Res Commun 2001; 281:569-75. [PMID: 11181085 DOI: 10.1006/bbrc.2001.4389] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcriptional coactivator p300, a histone acetyltransferase (HAT), plays key roles in the regulation of cell proliferation and differentiation. p300 is targeted by viral oncoproteins, and mutations of p300, accompanied by inactivation of the second allele, have been reported in certain types of cancers originating in the epithelium. Here, we identified a homozygous p300 deletion of exons 15--18 in the SiHa cervical carcinoma cell line, which results in an in-frame deletion that causes specific loss of the bromodomain, a conserved domain implicated in the regulation of HAT activity. Furthermore, we show that the mutation severely impaired its ability to activate the p21(WAF1/CIP1) promoter in transient reporter assay. These results suggest a critical role for the bromodomain in p300 functions as a tumor-suppressor gene.
Collapse
Affiliation(s)
- T Ohshima
- Department of Oral Microbiology, Tsurumi University, School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | | | | |
Collapse
|
14
|
Ali SH, DeCaprio JA. Cellular transformation by SV40 large T antigen: interaction with host proteins. Semin Cancer Biol 2001; 11:15-23. [PMID: 11243895 DOI: 10.1006/scbi.2000.0342] [Citation(s) in RCA: 282] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SV40 large T antigen (TAg) is a powerful oncoprotein capable of transforming a variety of cell types. The transforming activity of TAg is due in large part to its perturbation of the retinoblastoma (pRB) and p53 tumor suppressor proteins. In addition, TAg binds to several other cellular factors, including the transcriptional co-activators p300 and CBP, which may contribute to its transformation function. Several other features of TAg that appear to contribute to its full transformation potential are yet to be completely understood. Study of TAg therefore continues to provide new insights into the mechanism of cellular transformation.
Collapse
Affiliation(s)
- S H Ali
- Department of Adult Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
15
|
Polyoma virus middle t-antigen: growth factor receptor mimic. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0168-7069(01)05004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
16
|
Abstract
Productive viral infection requires coordinate regulation of viral and cellular gene expression. Viruses of different classes have evolved different mechanisms to conform to, adapt to and exploit programs of cellular gene expression. Many viral gene products influence and respond to cellular signals that control differentiation and proliferation Transcriptional coactivators are central to the regulation of the expression of genes controlling these events. p300 and CBP are closely related coactivators that regulate the transcription of specific genes, modify chromatin structure and influence cell cycle progression. In this review, the different molecular interactions of proteins encoded by DNA tumor viruses and lentiviruses with these transcriptional coactivators and related cellular proteins are summarized.
Collapse
Affiliation(s)
- M O Hottiger
- Institute of Veterinary Biochemistry, The University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | |
Collapse
|
17
|
Ratineau C, Ronco A, Leiter AB. Role of the amino-terminal domain of simian virus 40 early region in inducing tumors in secretin-expressing cells in transgenic mice. Gastroenterology 2000; 119:1305-11. [PMID: 11054388 DOI: 10.1053/gast.2000.19278] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND & AIMS The early region of simian virus 40 (SV40) encodes 2 transforming proteins, large T (Tag) and small t antigen, that produce neuroendocrine tumors in the intestine and the pancreas when expressed in secretin cells of transgenic mice. METHODS Two SV40 early-region transgenes containing a deletion that eliminated expression of the small t antigen were expressed in transgenic mice under control of the secretin gene. The 2 lines of mice, one expressing the native large T antigen and the other T antigen with a mutation in its N-terminal J domain, were examined to determine which biological activities of the SV40 early region were required for tumorigenesis. RESULTS Most animals expressing wild-type large T antigen developed pancreatic insulinomas and lymphomas and died between 3 and 6 months of age. However, small intestinal neoplasms were extremely rare in the absence of small t antigen expression. Transgenic lines expressing the J domain mutant failed to develop tumors. CONCLUSIONS Transformation of secretin-producing enteroendocrine cells by SV40 requires functional cooperation between intact large T and small t oncoproteins. In contrast, large T antigen alone is sufficient to induce tumors in the endocrine pancreas and thymus.
Collapse
Affiliation(s)
- C Ratineau
- Division of Gastroenterology and GRASP Digestive Disease Center, New England Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
18
|
Lin YC, Peng JM, Wang WB. The N-terminal common domain of simian virus 40 large T and small t antigens acts as a transformation suppressor of the HER-2/neu oncogene. Oncogene 2000; 19:2704-13. [PMID: 10851070 DOI: 10.1038/sj.onc.1203582] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Overexpression of HER-2/neu (also known as c-erbB-2) proto-oncogene frequently occurs in many different types of human cancers, including ovarian carcinoma, and is known to enhance tumor metastasis and chemoresistance. Previous studies showed that inhibition of HER-2/neu expression by various agents, such as adenovirus E1A and simian virus 40 large T, can lead to suppression of tumorigenicity of HER-2/neu-overexpressing cancer cells. Here we report that T/t-common, which contains the N-terminal common domain of simian virus 40 large T and small t antigens, could specifically repress the HER-2/neu promoter. When the coding sequence of T/t-common was stably transfected into the HER-2/neu-overexpressing human ovarian carcinoma SK-OV-3 cells, the expression of HER-2/neu was dramatically reduced by the expression of T/t-common. Accordingly the tumorigenic potential of these T/t-common-expressing clones, including the ability to grow anchorage-independently and the ability to induce tumor in nu/nu mice, was also drastically suppressed. Furthermore, when T/t-common was transiently cotransfected with the activated genomic neu into NIH3T3 cells, the transforming activity of the latter was suppressed by T/t-common in soft-agarose microcolony formation assays. Taken together, these data suggest that T/t-common may act as a transformation suppressor of the HER-2/neu oncogene. Oncogene (2000).
Collapse
Affiliation(s)
- Y C Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
19
|
Lee D, Lee B, Kim J, Kim DW, Choe J. cAMP response element-binding protein-binding protein binds to human papillomavirus E2 protein and activates E2-dependent transcription. J Biol Chem 2000; 275:7045-51. [PMID: 10702269 DOI: 10.1074/jbc.275.10.7045] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
cAMP response element-binding protein-binding protein (CBP) is a eucaryotic transcriptional co-activator that contains multiple protein-protein interaction domains for association with various transcription factors, components of the basal transcriptional apparatus, and other co-activator proteins. Here, we report that CBP is also a co-activator of the human papillomavirus (HPV) E2 protein, which is a sequence-specific transcription/replication factor. We provide biochemical, genetic, and functional evidence that CBP binds directly to HPV E2 in vivo and in vitro and activates E2-dependent transcription. Mutations in an amphipathic helix within HPV-18 E2 abolish its transcriptional activation properties and its ability to bind to CBP. Furthermore, the binding of CBP to E2 was shown to be necessary for E2-dependent transcription. Interestingly, the histone acetyltransferase activity of CBP plays a role in CBP activation of E2-dependent transcription.
Collapse
Affiliation(s)
- D Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea
| | | | | | | | | |
Collapse
|
20
|
Powell AJ, Darmon AJ, Gonos ES, Lam EW, Peden KW, Jat PS. Different functions are required for initiation and maintenance of immortalization of rat embryo fibroblasts by SV40 large T antigen. Oncogene 1999; 18:7343-50. [PMID: 10602490 DOI: 10.1038/sj.onc.1203154] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have used two different, but complementary assays to characterize functions of SV40 T antigen that are necessary for its ability to immortalize rat embryo fibroblasts. In accordance with previous work, we found that several functions were required. These include activities that map to the p53 binding domain and the amino terminal 176 amino acids which contain the J domain as well as the CR1 and CR2 domain required for binding and sequestering the RB family of pocket proteins. Moreover, we found that even though activities dependent only upon the amino terminus were sufficient for immortalization they were unable to maintain it. This suggests that immortalization by these amino terminal functions requires either additional events or immortalization of a subset of cells within the heterogeneous rat embryo fibroblast population. We further found that an activity dependent upon amino acids 17 - 27 which remove a portion of the CR1 domain and the predicted alpha-1 helix of the J domain was not necessary to maintain growth but was required for direct immortalization suggesting that at least one of the functions required initially was not required to maintain the immortal state. This represents the first demonstration that some of the functions required for maintenance of the immortal state differ from those required for initiation of immortalization.
Collapse
Affiliation(s)
- A J Powell
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, Courtauld Building, 91 Riding House Street, London W1P 8BT, UK
| | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- H L Ozer
- Department of Microbiology and Molecular Genetics UMD-New Jersey Medical School 07103-2714, USA
| |
Collapse
|
22
|
Sompayrac L, Jane S, Lörper M, Sies H. A 47-amino-acid fragment of SV40 T antigen represses transcription from human GSTalpha promoters. Virology 1998; 249:275-85. [PMID: 9791019 DOI: 10.1006/viro.1998.9260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SV40 T antigen downregulates the expression of an important detoxification enzyme, glutathione S-transferase alpha (GSTalpha). We show here that the target of this repression is a 14-bp element common to the human GSTA1 and GSTA2 promoters. This element, which we have named TAGR, is also critical for high-level, constitutive expression from these promoters. The TAGR element does not appear to contain a binding site for any transcription factor known to be present in fibroblasts, although the TAGR element does resemble the binding site for the Ikaros transcription factor found in hematopoietic cells. We also have identified a 47-amino-acid fragment of T antigen that includes amino acids 83-100 and 119-147, which is sufficient to repress transcription from the GSTalpha promoter in transient transcription assays. Thus, GSTalpha repression does not require binding of T antigen to pRb, p300, or p53, since the domains of T antigen required for binding these cellular proteins are missing from this T antigen fragment. We show, however, that this fragment does bind to three cellular proteins with approximate molecular weights of 54, 59, and 94 kDa.
Collapse
Affiliation(s)
- L Sompayrac
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, 80309, USA.
| | | | | | | |
Collapse
|
23
|
Powell AJ, Gates PB, Wylie D, Velloso CP, Brockes JP, Jat PS. Immortalization of rat embryo fibroblasts by a 3'-untranslated region. Exp Cell Res 1998; 240:252-62. [PMID: 9596998 DOI: 10.1006/excr.1998.3937] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have exploited a cross-species expression screen to search for cellular immortalizing activities. A newt blastemal cDNA expression library was transfected into rat embryo fibroblasts and immortal cell lines were selected. This identified a 1-kb cDNA fragment which has a low representation in the cDNA library and is derived from the 3'-UTR of an alpha-glucosidase-related mRNA. Expression of this sequence in rat embryo fibroblasts has shown that it is active in promoting colony formation and immortalization. It is also able to cooperate with an immortalization-defective deletion mutant of SV40 T antigen, indicating that it can exert its growth-stimulatory activity in the pathway activated by a viral immortalizing oncogene. This is the first example of an immortalizing activity mediated by an RNA sequence, and further analysis of its mechanism should provide new insights into senescence and immortalization.
Collapse
Affiliation(s)
- A J Powell
- Ludwig Institute for Cancer Research, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Viruses depend on the host's machineries to replicate and express their genome. Actively replicating cells have large pools of deoxynucleotides and high levels of key enzyme activities that viruses exploit to their own needs. Some viruses have developed strategies for driving quiescent cells into the S phase of the cell cycle, e.g. adenovirus, others, such as parvovirus, wait until the host itself begins to replicate. Viruses may also force the host cell to stay in a favourable phase, e.g. Epstein-Barr virus, or, if necessary, they may inhibit apoptotic cell death, e.g. human cytomegalovirus. In this review, we focus on the different strategies that viruses use to create in infected cells an environment favourable to the accomplishment of the viral life cycle through acting on cell cycle regulators.
Collapse
Affiliation(s)
- A Op De Beeck
- Département de Biologie Moléculaire, Université Libre de Bruxelles, Belgium
| | | |
Collapse
|
25
|
Sompayrac L. SV40 and adenovirus may act as cocarcinogens by downregulating glutathione S-transferase expression. Virology 1997; 233:130-5. [PMID: 9201222 DOI: 10.1006/viro.1997.8610] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have discovered a novel function of the SV40 T antigen and the adenovirus E1A proteins: the ability to downregulate the endogenous expression of an important detoxification enzyme, glutathione S-transferase alpha (GST alpha). GST alpha mRNA is much less abundant in rat and human cells that express SV40 T antigen than in the parental cell lines. This GST alpha downregulation does not require expression of SV40 small t antigen or complex formation between large T antigen and p53, p300, or the pRb family of proteins. As might be predicted, cells that express SV40 T antigen are more sensitive than normal cells to alkylating drugs, which GST alpha is known to detoxify. Finally, GST alpha expression is also downregulated in cells that express the adenovirus E1A proteins. We propose that by downregulating GST alpha expression and inactivating p53 function, SV40 and adenovirus may contribute to the initiation of, or the progression toward, malignancy. Thus, in their quest to establish persistent infections, these viruses may inadvertently make the cellular environment more permissive for tumorigenesis.
Collapse
Affiliation(s)
- L Sompayrac
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309, USA.
| |
Collapse
|
26
|
Feddersen RM, Yunis WS, O'Donnell MA, Ebner TJ, Shen L, Iadecola C, Orr HT, Clark HB. Susceptibility to cell death induced by mutant SV40 T-antigen correlates with Purkinje neuron functional development. Mol Cell Neurosci 1997; 9:42-62. [PMID: 9204479 DOI: 10.1006/mcne.1997.0601] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Purkinje cells are uniquely susceptible to a number of physical, chemical, and genetic insults both during development and in the mature state. We have previously shown that when the postmitotic state of murine Purkinje cells is altered by inactivation of the retinoblastoma tumor susceptibility protein (pRb), immature as well as mature Purkinje cells undergo apoptosis. DNA synthesis and neuronal loss are induced in postmitotic Purkinje cells dependent upon the pRb-binding portion of SV40 large T antigen (T-ag). In the present study, Purkinje cell targeting of a mutant T-ag, PVU, which does not bind pRb, reveals disparate cerebellar phenotypes dependent upon temporal differences in transgene expression. Strong embryonic and postnatal transgene expression in three lines alters Purkinje cell development and function during the second postnatal week, causing ataxia without Purkinje cell loss. In contrast, two other transgenic lines reveal that PVU T-ag expression following normal Purkinje cell maturation causes rapid Purkinje cell degeneration. The second and third postnatal weeks of cerebellar development, which include the major period of synaptogenesis, appear to be the defining stage for the two PVU-induced phenotypes. These data indicate that Purkinje cell death susceptibility varies with developmental stage.
Collapse
Affiliation(s)
- R M Feddersen
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis 55455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Porrás A, Bennett J, Howe A, Tokos K, Bouck N, Henglein B, Sathyamangalam S, Thimmapaya B, Rundell K. A novel simian virus 40 early-region domain mediates transactivation of the cyclin A promoter by small-t antigen and is required for transformation in small-t antigen-dependent assays. J Virol 1996; 70:6902-8. [PMID: 8794333 PMCID: PMC190739 DOI: 10.1128/jvi.70.10.6902-6908.1996] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
At least three regions of the simian virus 40 small-t antigen (small-t) contribute to the protein's ability to enhance cellular transformation. As we showed previously for rat F111 cells, one region includes sequences from residues 97 to 103 that are involved in the binding and inhibition of protein phosphatase 2A. In the present study, the role of the protein phosphatase 2A binding region was confirmed in two additional small-t-dependent transformation systems. Second, small-t was found to provide a function previously identified as a large-T transformation domain. Mutations in residues 19 to 28 of large-T affected its transforming ability, but these mutations were complemented by a wild-type small-t. A third region of small-t was also required for efficient transformation. This region, the 42-47 region, is shared by large-T and small-t and contains a conserved HPDKGG hexapeptide. The 42-47 region function could be provided by either small-t or large-T in small-t-dependent systems. Mutations in the 42-47 region reduced the ability of small-t to transactivate the cyclin A promoter, of interest because small-t increased endogenous cyclin A mRNA levels in both human and monkey cells, as well as transactivating the promoter in transient assays.
Collapse
Affiliation(s)
- A Porrás
- Department of Microbiology-Immunology, Northwestern University Medical Center, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zerrahn J, Tiemann F, Deppert W. Simian virus 40 small t antigen activates the carboxyl-terminal transforming p53-binding domain of large T antigen. J Virol 1996; 70:6781-9. [PMID: 8794316 PMCID: PMC190722 DOI: 10.1128/jvi.70.10.6781-6789.1996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Expression of the simian virus 40 large T antigen (large T) in F111 rat fibroblasts generated only minimal transformants (e.g., F5 cells). Interestingly, F111-derived cells expressing only an amino-terminal fragment of large T spanning amino acids 1 to 147 (e.g., FR3 cells), revealed the same minimal transformed phenotype as F111 cells expressing full-length large T. This suggested that in F5 cells the transforming domain of large T contained within the C-terminal half of the large T molecule, and spanning the p53 binding domain, was not active. Progression to a more transformed phenotype by coexpression of small t antigen (small t) could be achieved in F5 cells but not in FR3 cells. Small-t-induced progression of F5 cells correlated with metabolic stabilization of p53 in complex with large T: whereas in F5 cells the half-life of p53 in complex with large T was only slightly elevated compared with that of (uncomplexed) p53 in parental F111 cells or that in FR3 cells, coexpression of small t in F5 cells led to metabolic stabilization and to high-level accumulation of p53 complexed to large T. In contrast, coexpression of small t had no effect on p53 stabilization or accumulation in FR3 cells. This finding strongly supports the assumption that the mere physical interaction of large T with p53, and thus p53 inactivation, in F5 cells expressing large T only does not reflect the main transforming activity of the C-terminal transforming domain of large T. In contrast, we assume that the transforming potential of this domain requires activation by a cellular function(s) which is mediated by small t and correlates with metabolic stabilization of p53.
Collapse
Affiliation(s)
- J Zerrahn
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Germany
| | | | | |
Collapse
|
29
|
Avantaggiati ML, Carbone M, Graessmann A, Nakatani Y, Howard B, Levine AS. The SV40 large T antigen and adenovirus E1a oncoproteins interact with distinct isoforms of the transcriptional co-activator, p300. EMBO J 1996; 15:2236-48. [PMID: 8641289 PMCID: PMC450148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
p300 is a nuclear phosphoprotein likely to be involved in the control of cell growth. Here we show that SV40 large T antigen (Tag) forms a specific complex with p300. In various Tag-expressing cell lines, the affinity of Tag for p300 was restricted to a newly identified unphosphorylated but ubiquitinated form of the protein. Further, Tag did not associate with p300 in an SV40 Tag-producing cell line (REV2) in which the original transformed phenotype (SV52) is reverted. Biochemical studies demonstrate that both the phosphorylation and the ubiquitination profile of p300 are altered in REV2 with respect to the wild-type fully transformed SV52 parental cells, wherein Tag-p300 complexes are readily detected. In contrast to Tag, the adenovirus early expression product E1a interacts with both phosphorylated and unphosphorylated forms of p300. In addition, when REV2 cells were infected with adenovirus, E1a-p300 complexes were detected, suggesting that the p300 expressed in REV2 has lost the affinity for Tag, but not for E1a. We then compared the ability of Tag and E1a to affect the transcription levels of the cAMP-responsive promoter (CRE), which is modulated in vivo by p300, in REV2 cells. We found that Tag repressed the CRE promoter in all of the cell lines in which Tag-p300 complexes were detected, but not in REV2 cells. In contrast, E1a efficiently inhibited CRE-directed transcription in this cell line. The data thus indicate that the different specificities exhibited by Tag and E1a towards the various forms of p300 are reflected in vivo as a difference in the ability of these viral oncoproteins to modulate the expression of CRE-containing genes.
Collapse
Affiliation(s)
- M L Avantaggiati
- Section on DNA Replication, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
30
|
Tedesco D, Caruso M, Fischer-Fantuzzi L, Vesco C. The inhibition of cultured myoblast differentiation by the simian virus 40 large T antigen occurs after myogenin expression and Rb up-regulation and is not exerted by transformation-competent cytoplasmic mutants. J Virol 1995; 69:6947-57. [PMID: 7474113 PMCID: PMC189613 DOI: 10.1128/jvi.69.11.6947-6957.1995] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have investigated the mechanism by which the simian virus 40 large T antigen (SVLT) interferes with the differentiation of C2 myoblasts. SVLT mutants, defective either in the Rb binding site, near the N-terminal end, in a region that affects binding to p53, or in the nuclear transport signal, were also employed to determine whether the interference was especially dependent on these functional domains. It was found that wild-type (wt) SVLT strongly inhibited the terminal differentiation of mouse C2 myoblasts, but this arrest occurred only after the synthesis of myogenin, an initial step in biochemical differentiation. Neither the synthesis nor some basic activities of MyoD appeared to be affected by wt SVLT. In these transformants, mitogen depletion elicited an increase in the Rb level comparable to that in normal C2 cells; wt SVLT, however, promoted the phosphorylation of a large part of the induced Rb. Mutations affecting nuclear transport were far more critical for the ability to interfere with myogenic differentiation than were those affecting the transforming potential; cytoplasmic SVLT expression was fully compatible with the terminal differentiation of C2 cells, despite enabling them to grow in semisolid medium, thus showing that the myogenesis-inhibiting property can be dissociated from transforming competence. The remaining SVLT mutants presented different degrees of ability to inhibit differentiation (as shown by the expression of tissue-specific markers in transformants). The inhibiting mutants, including the Rb binding site mutant, were able to promote a higher state of Rb phosphorylation than that observed in either normal cells or cytoplasmic-SVLT transformants.
Collapse
Affiliation(s)
- D Tedesco
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche, Rome, Italy
| | | | | | | |
Collapse
|
31
|
Collins BS, Pipas JM. T antigens encoded by replication-defective simian virus 40 mutants dl1135 and 5080. J Biol Chem 1995; 270:15377-84. [PMID: 7797527 DOI: 10.1074/jbc.270.25.15377] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We present a preliminary biochemical characterization of two simian virus 40 mutants that affect different T antigen replication functions. SV40 T antigen mutants dl1135 (delta 17-27 amino acids) and 5080 (P-L) have been studied extensively with regard to their ability to transform cells in culture and induce tumors in transgenic mice. Both mutants are defective for viral DNA replication in vivo. In order to assess in more detail the molecular basis for the in vivo replication defects of 5080 and dl1135, we expressed the mutant proteins using the baculovirus system and purified them by immunoaffinity chromatography. With each of the purified proteins, we examined some of the biochemical activities of T antigen required for replication, viz. ATPase, binding to the origin of replication (ori) and assembly on ori, DNA helicase and unwinding, and replication in in vitro assays. Consistent with previous studies, we found that the 5080 protein is defective for multiple biochemical activities including ATPase, helicase, ori-specific unwinding, and ATP-induced hexamerization. However, this mutant retains some sequence-specific DNA binding activity. In contrast, the dl1135 protein exhibited significant levels of activity in all assays, including the ability to drive SV40 DNA replication in vitro. Thus, dl1135 is one of several mutants with an altered amino-terminal domain which can replicate DNA in vitro, but not in vivo. Thus, while the 5080 mutation affects a T antigen enzymatic function directly required for viral DNA synthesis, dl1135 may alter an activity required to prepare the cell for viral replication.
Collapse
Affiliation(s)
- B S Collins
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
32
|
Christensen JB, Imperiale MJ. Inactivation of the retinoblastoma susceptibility protein is not sufficient for the transforming function of the conserved region 2-like domain of simian virus 40 large T antigen. J Virol 1995; 69:3945-8. [PMID: 7745751 PMCID: PMC189123 DOI: 10.1128/jvi.69.6.3945-3948.1995] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Simian virus 40 large T antigen interacts with three cellular proteins, pRb, p107, and p130, through a common binding site on the T antigen protein called the E1A conserved region 2-like (CR2-like) domain. Mutations in this domain inactivate the transforming activity of large T antigen. Since these mutations have been demonstrated to abolish binding to pRb and p107, and presumably therefore affect binding to p130, assessment of the relative roles of these three proteins in transformation of rodent fibroblasts by T antigen has been difficult. We have examined the role of T antigen-pRb interactions in transformation. We have introduced a mutant T antigen, which is unable to bind any of these three proteins, into primary mouse fibroblasts derived from the embryos of mice in which the Rb gene encoding the retinoblastoma protein had been disrupted. This mutant is unable to transform the Rb-negative fibroblasts, indicating that inactivation of pRb is not the sole function of the CR2-like domain in the induction of transformation of mouse fibroblasts by simian virus 40.
Collapse
Affiliation(s)
- J B Christensen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620, USA
| | | |
Collapse
|
33
|
Li HO, Tang X, Kitabayashi I, Gachelin G, Chiu R, Yokoyama K. Induction by adenovirus-5 E1A of the differentiation phenotype of F9 teratocarcinoma cells involves a conserved region (CR1) of E1A. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1266:148-56. [PMID: 7742380 DOI: 10.1016/0167-4889(95)00010-p] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effects of the E1A protein of adenovirus-5 on the differentiation program of F9 teratocarcinoma cells were examined by the stable introduction of plasmids that expressed wild-type or mutated forms of E1A. Constitutive expression of plasmids for most of the mutant E1As induced loss of expression of the cell-surface antigen SSEA-1 and the enhanced expression of genes specific for the differentiated phenotype of F9 cells, such as genes for laminin B1, tissue-type plasminogen activator (tPA) and type IV collagen, as well as the altered cell morphology that is associated with the differentiated state. However, such changes were not observed in the case of genes for mutant proteins from which a conserved region (CR1) of E1A had been deleted. Furthermore, no significant induction of expression of the c-jun gene or transactivation of the c-jun-CAT reporter gene were observed when the sequence that encodes CR1 of E1A had been deleted. A palindromic sequence element (DRE) of the c-jun promoter was essential for the E1A-mediated up-regulation of the c-jun gene. These results imply that CR1 is required for activation of the c-jun gene and that it is implicated in the growth arrest, expression of parietal endoderm-specific functions and the orderly differentiation of F9 cells.
Collapse
Affiliation(s)
- H O Li
- Tsukuba Life Science Center, RIKEN (Institute of Physical and Chemical Research), Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Sladek TL, Fisher SD, Rubenstein BN. Dose-response of two cellular proliferation phenotypes produced by simian virus 40 large T antigen. Cell Prolif 1994. [DOI: 10.1111/j.1365-2184.1994.tb01386.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Dickmanns A, Zeitvogel A, Simmersbach F, Weber R, Arthur AK, Dehde S, Wildeman AG, Fanning E. The kinetics of simian virus 40-induced progression of quiescent cells into S phase depend on four independent functions of large T antigen. J Virol 1994; 68:5496-508. [PMID: 8057432 PMCID: PMC236950 DOI: 10.1128/jvi.68.9.5496-5508.1994] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Microinjection of purified simian virus 40 large-T-antigen protein or DNA encoding T antigen into serum-starved cells stimulates them to re-enter the cell cycle and progress through G1 into the S phase. Genetic analysis of T antigen indicated that neither its Rb/p107-binding activity nor its p53-binding activity is essential to induce DNA synthesis in CV1P cells. However, T antigens bearing missense mutations that inactivate either activity induced slower progression of the cells into the S phase than did wild-type T antigen. Inactivation of both activities resulted in a T antigen essentially unable to induce DNA synthesis. Missense mutations in either the DNA-binding region of the N terminus also impaired the ability of full-length T antigen to stimulate DNA synthesis in CV1P cells. The wild-type kinetics of cell cycle progression were restored by genetic complementation after coinjection of plasmid DNAs encoding different mutant T antigens or coinjection of purified mutant T-antigen proteins, suggesting that the four mitogenic functions of T antigen are independent. The maximal rate of induction of DNA synthesis in secondary primate cells and established rodent cell lines required the same four functions of T antigen. A model to explain how four independent activities could cooperate to stimulate cell cycle progression is presented.
Collapse
|
37
|
Quartin RS, Cole CN, Pipas JM, Levine AJ. The amino-terminal functions of the simian virus 40 large T antigen are required to overcome wild-type p53-mediated growth arrest of cells. J Virol 1994; 68:1334-41. [PMID: 8107198 PMCID: PMC236587 DOI: 10.1128/jvi.68.3.1334-1341.1994] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
High levels of the p53 tumor suppressor protein can block progression through the cell cycle. A model system for the study of the mechanism of action of wild-type p53 is a cell line (T64-7B) derived from rat embryo fibroblasts transformed by activated ras and a temperature-sensitive murine p53 gene. At 37 to 39 degrees C, the murine p53 protein is in a mutant conformation and the cells actively divide, whereas at 32 degrees C, the protein has a wild-type conformation and the cells arrest in the G1 phase of the cell cycle. Wild-type simian virus 40 large T antigen and a variety of T-antigen mutants were assayed for the ability to bypass the cell cycle block effected by the wild-type p53 protein to induce colony formation at 32 degrees C. The results indicate that two functions within the amino terminus of T antigen are essential to induce cell growth: (i) the ability to bind to the retinoblastoma protein, Rb, and (ii) the presence of a domain in the first exon that appears to interact with the cellular protein, p300. Thus, the cell cycle arrest triggered by wild-type p53 may be overcome by formation of a T-antigen complex with Rb, p300, or both that could then function to either remove p53-mediated negative growth regulatory signals or promote a positive cell growth signal. Surprisingly, T antigen-p53 complexes are not required to overcome the temperature-sensitive p53 block to the cell cycle in these cells. These data suggest that simian virus 40 T antigen associated with Rb, p300, or both proteins can communicate in a cell with the functions of the wild-type p53 protein.
Collapse
Affiliation(s)
- R S Quartin
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014
| | | | | | | |
Collapse
|
38
|
Affiliation(s)
- A J Levine
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, New Jersey 08540
| |
Collapse
|
39
|
Peeper DS, Zantema A. Adenovirus-E1A proteins transform cells by sequestering regulatory proteins. Mol Biol Rep 1993; 17:197-207. [PMID: 8326955 DOI: 10.1007/bf00986728] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cell transformation by adenovirus-E1A proteins is mediated by binding to cellular proteins whose functions are thereby inactivated or altered. The various properties of the E1A proteins are reviewed in relation to their binding to cellular proteins. A number of the cellular proteins which associate to E1A have been identified: the retinoblastoma-susceptibility protein (Rb), the p107 protein, cyclin A and the p33cdk2 kinase. Recent data have shown that those proteins are also able to bind to transcription factor E2F. Binding of Rb to E2F represses the transcription-activating potential of E2F. E1A can sequester the regulatory proteins, like Rb, and thereby release free, active E2F. The domains in E1A that are essential for this transcriptional regulation are also required for the transforming properties of E1A.
Collapse
Affiliation(s)
- D S Peeper
- Lab. Molecular Carcinogenesis, Leiden, The Netherlands
| | | |
Collapse
|
40
|
Kang S, Folk WR. Lymphotropic papovavirus transforms hamster cells without altering the amount or stability of p53. Virology 1992; 191:754-64. [PMID: 1333122 DOI: 10.1016/0042-6822(92)90251-j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Expression of the early regions of several primate polyomaviruses (SV40, BKV, JCV, and LPV) in hamster cells induces transformation, manifested by the ability to grow in soft agar. Hamster cells transformed by SV40 contain complexes between the SV40 T antigen and the cellular tumor suppressor protein p53. We detected analogous complexes between p53 and the BKV T antigen in hamster cells transformed by the BKV early region, where the half life of p53 increased 16-fold. However, neither a LPV-transformed hamster fibroblast cell line [LPV-HE (F); K. K. Takemoto and T. Kanda, 1984, J. Virol. 50, 100-105] nor BHK-21 cells transformed by the LPV early region contained detectable complexes between the LPV T antigen and p53, nor was the stability of p53 in LPV transformed BHK-21 cells altered. Association between hamster p53 and the LPV T antigen expressed as glutathione S-transferase fusion protein could not be detected in vitro. These data indicate that alteration of the amount or stability of p53 is not required for transformation of hamster cells by LPV. However, as viruses such as SV40 and BKV whose T antigens bind p53 are oncogenic in hamsters, whereas LPV is not, the alteration of p53 amount or stability may be required for tumorigenesis.
Collapse
Affiliation(s)
- S Kang
- Department of Biochemistry, University of Missouri, Columbia 65212
| | | |
Collapse
|
41
|
Abstract
A monoclonal antibody, PAb 2000, has been derived which recognizes the large T protein of JC virus (JCV), but not the corresponding proteins of the related polyomaviruses BK virus (BKV) and SV40. The epitope bound by PAb 2000 was localized to the amino-terminal 81 amino acids of this multifunctional protein. As observed previously with several monoclonal antibodies that bind a similar region of SV40 large T antigen, PAb 2000 was found to interact with the small t antigen and the denatured form of large T antigen. This monoclonal antibody recognized a subpopulation of T protein, the abundance of which varied in different species of cells transformed by JCV. The availability of PAb 2000, the first JCV T antigen-specific monoclonal antibody, will facilitate the purification and biochemical characterization of the JCV oncoproteins.
Collapse
Affiliation(s)
- B Bollag
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | |
Collapse
|
42
|
Silverstein GH, Kohrman DC, Christensen JB, Brockman WW, Imperiale MJ. An SV40 transformation revertant due to a host mutation: isolation and complementation analysis. Virology 1992; 187:723-33. [PMID: 1312274 DOI: 10.1016/0042-6822(92)90475-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have isolated an SV40 transformation revertant cell line, CL1L, by selection for normal cells whose growth is inhibited under low serum conditions. This line expresses a single, wild-type copy of large T antigen, yet is not transformed. It is not retransformable by transfection of SV40 DNA or infection with a recombinant retrovirus encoding large T antigen. Resistance to transformation therefore appears to be due to a cellular mutation. Fusion of CL1L cells to normal 3T3 cells or SV40-transformed cells results in somatic cell hybrids that are transformed, indicating that resistance is recessive. In addition, fusion of CL1L cells to another SV40 transformation-resistant line, A27, results in transformed hybrids, indicating the existence of discrete complementation groups with respect to SV40 transformation.
Collapse
Affiliation(s)
- G H Silverstein
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor 48109-0620
| | | | | | | | | |
Collapse
|