1
|
Ding Y, Wang Y, Li C, Zhang Y, Hu S, Gao J, Liu R, An H. α-Linolenic acid attenuates pseudo-allergic reactions by inhibiting Lyn kinase activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153391. [PMID: 33113502 DOI: 10.1016/j.phymed.2020.153391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/30/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Pseudo-allergic reactions are potentially fatal hypersensitivity responses caused by mast cell activation. α-linolenic acid (ALA) is known for its anti-allergic properties. However, its potential anti-pseudo-allergic effects were not much investigated. PURPOSE To investigate the inhibitory effects of ALA on IgE-independent allergy in vitro, and in vivo, as well as the mechanism underlying its effects. METHODS/STUDY DESIGNS The anti-anaphylactoid activity of ALA was evaluated in passive cutaneous anaphylaxis reaction (PCA) and systemic anaphylaxis models. Calcium imaging was used to assess intracellular Ca2+ mobilization. The release of cytokines and chemokines was measured using enzyme immunoassay kits. Western blot analysis was conducted to investigate the molecules of Lyn-PLCγ-IP3R-Ca2+ and Lyn-p38/NF-κB signaling pathway. RESULTS ALA (0, 1.0, 2.0, and 4.0 mg/kg) dose-dependently reduced serum histamine, chemokine release, vasodilation, eosinophil infiltration, and the percentage of degranulated mast cells in C57BL/6 mice. In addition, ALA (0, 50, 100, and 200 μM) reduced Compound 48/80 (C48/80) (30 μg/ml)-or Substance P (SP) (4 μg/ml)-induced calcium influx, mast cell degranulation and cytokines and chemokine release in Laboratory of Allergic Disease 2 (LAD2) cells via Lyn-PLCγ-IP3R-Ca2+ and Lyn-p38/NF-κB signaling pathway. Moreover, ALA (0, 50, 100, and 200 μM) inhibited C48/80 (30 μg/ml)- and SP (4 μg/ml)-induced calcium influx in Mas-related G-protein coupled receptor member X2 (MrgX2)-HEK293 cells and in vitro kinase assays confirmed that ALA inhibited the activity of Lyn kinase. In response to 200 μM of ALA, the activity of Lyn kinase by (7.296 ± 0.03751) × 10-5 units/μl and decreased compared with C48/80 (30 μg/ml) by (8.572 ± 0.1365) ×10-5 units/μl. CONCLUSION Our results demonstrate that ALA might be a potential Lyn kinase inhibitor, which could be used to treat pseudo-allergic reaction-related diseases such as urticaria.
Collapse
Affiliation(s)
- Yuanyuan Ding
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061 China; College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061 China
| | - Yuejin Wang
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061 China
| | - Chaomei Li
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061 China
| | - Yongjing Zhang
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061 China
| | - Shiling Hu
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061 China
| | - Jiapan Gao
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061 China
| | - Rui Liu
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061 China
| | - Hongli An
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061 China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
2
|
The Alternate Pathway for BCR Signaling Induced by IL-4 Requires Lyn Tyrosine Kinase. J Mol Biol 2020; 433:166667. [PMID: 33058880 DOI: 10.1016/j.jmb.2020.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
BCR signaling triggers a cascade of intracellular mediators that eventuates in transcription factor activation. Signaling is proximally mediated by Src family tyrosine kinases, the most abundant being Lyn. Key mediators are grouped together as the signalosome, and failure of any single member of this group leads to failure of signaling via this classical pathway. Recent work has revealed an alternate pathway for BCR signaling, in which signalosome elements are bypassed for downstream events such as ERK and PKCδ phosphorylation. This pathway is created by B cell treatment with IL-4 prior to BCR triggering. After IL-4 treatment, the alternate pathway for pERK operates in parallel with the classical pathway for pERK, whereas PKCδ phosphorylation is specific to the alternate pathway. Remarkably, Lyn is not required for B cell activation via the classical pathway; however, Lyn is indispensable and irreplaceable for B cell activation via the alternate pathway. Thus, Lyn operates at a branch point that determines the nature of the B cell response to BCR activation. The mechanism underlying the absolute dependence of alternate pathway signaling on Lyn is unknown. Here, our current understanding of receptor crosstalk between IL-4R and BCR is summarized along with several possible mechanisms for the role of Lyn in alternate pathway signaling. Further dissection of alternate pathway signaling and the role of Lyn is likely to provide important information relating to normal B cell responses, malignant B cell expansion, and generic principles relating to receptor interactions and crosstalk.
Collapse
|
3
|
Brian BF, Jolicoeur AS, Guerrero CR, Nunez MG, Sychev ZE, Hegre SA, Sætrom P, Habib N, Drake JM, Schwertfeger KL, Freedman TS. Unique-region phosphorylation targets LynA for rapid degradation, tuning its expression and signaling in myeloid cells. eLife 2019; 8:e46043. [PMID: 31282857 PMCID: PMC6660195 DOI: 10.7554/elife.46043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/06/2019] [Indexed: 12/23/2022] Open
Abstract
The activity of Src-family kinases (SFKs), which phosphorylate immunoreceptor tyrosine-based activation motifs (ITAMs), is a critical factor regulating myeloid-cell activation. We reported previously that the SFK LynA is uniquely susceptible to rapid ubiquitin-mediated degradation in macrophages, functioning as a rheostat regulating signaling (Freedman et al., 2015). We now report the mechanism by which LynA is preferentially targeted for degradation and how cell specificity is built into the LynA rheostat. Using genetic, biochemical, and quantitative phosphopeptide analyses, we found that the E3 ubiquitin ligase c-Cbl preferentially targets LynA via a phosphorylated tyrosine (Y32) in its unique region. This distinct mode of c-Cbl recognition depresses steady-state expression of LynA in macrophages derived from mice. Mast cells, however, express little c-Cbl and have correspondingly high LynA. Upon activation, mast-cell LynA is not rapidly degraded, and SFK-mediated signaling is amplified relative to macrophages. Cell-specific c-Cbl expression thus builds cell specificity into the LynA checkpoint.
Collapse
Affiliation(s)
- Ben F Brian
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
| | | | - Candace R Guerrero
- College of Biological Sciences Center for Mass Spectrometry and ProteomicsUniversity of MinnesotaMinneapolisUnited States
| | - Myra G Nunez
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
| | - Zoi E Sychev
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
| | - Siv A Hegre
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Pål Sætrom
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
- Department of Computer ScienceNorwegian University of Science and TechnologyTrondheimNorway
| | - Nagy Habib
- Department of Surgery and CancerHammersmith Hospital, Imperial College LondonLondonUnited Kingdom
| | - Justin M Drake
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisUnited States
- Department of UrologyUniversity of MinnesotaMinneapolisUnited States
| | - Kathryn L Schwertfeger
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisUnited States
- Center for ImmunologyUniversity of MinnesotaMinneapolisUnited States
- Department of Laboratory Medicine and PathologyUniversity of MinnesotaMinneapolisUnited States
| | - Tanya S Freedman
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisUnited States
- Center for ImmunologyUniversity of MinnesotaMinneapolisUnited States
- Center for Autoimmune Diseases ResearchUniversity of MinnesotaMinneapolisUnited States
| |
Collapse
|
4
|
Bozickovic O, Skartveit L, Engelsen AST, Helland T, Jonsdottir K, Flågeng MH, Fenne IS, Janssen E, Lorens JB, Bjørkhaug L, Sagen JV, Mellgren G. A novel SRC-2-dependent regulation of epithelial-mesenchymal transition in breast cancer cells. J Steroid Biochem Mol Biol 2019; 185:57-70. [PMID: 30048685 DOI: 10.1016/j.jsbmb.2018.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 07/01/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022]
Abstract
Steroid receptor coactivator 2 (SRC-2) is a nuclear receptor coactivator, important for the regulation of estrogen receptor alpha (ERα)-mediated transcriptional activity in breast cancer cells. However, the transcriptional role of SRC-2 in breast cancer is still ambiguous. Here we aimed to unravel a more precise transcriptional role of SRC-2 and uncover unique target genes in MCF-7 breast cancer cells, as opposed to the known oncogene SRC-3. Gene expression analyses of cells depleted of either SRC-2 or SRC-3 showed that they transcriptionally regulate mostly separate gene sets. However, individual unique gene sets were implicated in some of the same major gene ontology biological processes, such as cellular structure and development. This finding was supported by three-dimensional cell cultures, demonstrating that depletion of SRC-2 and SRC-3 changed the morphology of the cells into epithelial-like hollow acinar structures, indicating that both SRC proteins are involved in maintaining the hybrid E/M phenotype. In clinical ER-positive, HER2-negative breast cancer samples the expression of SRC-2 was negatively correlated with the expression of MCF-7-related luminal, cell cycle and cellular morphogenesis genes. Finally, elucidating SRC-2 unique transcriptional effects, we identified Lyn kinase (an EMT biomarker) to be upregulated exclusively after SRC-2 depletion. In conclusion, we show that both SRC-2 and SRC-3 are essential for the EMT in breast cancer cells, controlling different transcriptional niches.
Collapse
Affiliation(s)
- Olivera Bozickovic
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway; KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway.
| | - Linn Skartveit
- Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway.
| | - Agnete S T Engelsen
- Centre for Cancer Biomarkers (CCBIO), Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway.
| | - Thomas Helland
- Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway.
| | - Kristin Jonsdottir
- Department of Pathology, Stavanger University Hospital, N-4068 Stavanger, Norway.
| | | | - Ingvild S Fenne
- Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway.
| | - Emiel Janssen
- Department of Mathematics and Natural Sciences, University of Stavanger, N-4036 Stavanger, Norway.
| | - James B Lorens
- Centre for Cancer Biomarkers (CCBIO), Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway.
| | - Lise Bjørkhaug
- Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway; KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; Department of Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, N-5020 Bergen, Norway.
| | - Jørn V Sagen
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway; KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway.
| | - Gunnar Mellgren
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway; KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway.
| |
Collapse
|
5
|
Brodie EJ, Infantino S, Low MSY, Tarlinton DM. Lyn, Lupus, and (B) Lymphocytes, a Lesson on the Critical Balance of Kinase Signaling in Immunity. Front Immunol 2018; 9:401. [PMID: 29545808 PMCID: PMC5837976 DOI: 10.3389/fimmu.2018.00401] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/13/2018] [Indexed: 01/23/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a progressive autoimmune disease characterized by increased sensitivity to self-antigens, auto-antibody production, and systemic inflammation. B cells have been implicated in disease progression and as such represent an attractive therapeutic target. Lyn is a Src family tyrosine kinase that plays a major role in regulating signaling pathways within B cells as well as other hematopoietic cells. Its role in initiating negative signaling cascades is especially critical as exemplified by Lyn-/- mice developing an SLE-like disease with plasma cell hyperplasia, underscoring the importance of tightly regulating signaling within B cells. This review highlights recent advances in our understanding of the function of the Src family tyrosine kinase Lyn in B lymphocytes and its contribution to positive and negative signaling pathways that are dysregulated in autoimmunity.
Collapse
Affiliation(s)
- Erica J. Brodie
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Simona Infantino
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Michael S. Y. Low
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville, VIC, Australia
- Department of Haematology, Monash Health, Monash Hospital, Clayton, VIC, Australia
| | - David M. Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Freedman TS, Tan YX, Skrzypczynska KM, Manz BN, Sjaastad FV, Goodridge HS, Lowell CA, Weiss A. LynA regulates an inflammation-sensitive signaling checkpoint in macrophages. eLife 2015; 4. [PMID: 26517880 PMCID: PMC4626889 DOI: 10.7554/elife.09183] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/19/2015] [Indexed: 12/11/2022] Open
Abstract
Clustering of receptors associated with immunoreceptor tyrosine-based activation motifs (ITAMs) initiates the macrophage antimicrobial response. ITAM receptors engage Src-family tyrosine kinases (SFKs) to initiate phagocytosis and macrophage activation. Macrophages also encounter nonpathogenic molecules that cluster receptors weakly and must tune their sensitivity to avoid inappropriate responses. To investigate this response threshold, we compared signaling in the presence and absence of receptor clustering using a small-molecule inhibitor of Csk, which increased SFK activation and produced robust membrane-proximal signaling. Surprisingly, receptor-independent SFK activation led to a downstream signaling blockade associated with rapid degradation of the SFK LynA. Inflammatory priming of macrophages upregulated LynA and promoted receptor-independent signaling. In contrast, clustering the hemi-ITAM receptor Dectin-1 induced signaling that did not require LynA or inflammatory priming. Together, the basal-state signaling checkpoint regulated by LynA expression and degradation and the signaling reorganization initiated by receptor clustering allow cells to discriminate optimally between pathogens and nonpathogens.
Collapse
Affiliation(s)
- Tanya S Freedman
- Russell/Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, United States.,Department of Pharmacology, Center for Immunology, University of Minnesota, Minneapolis, United States
| | - Ying X Tan
- Russell/Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Katarzyna M Skrzypczynska
- Russell/Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Boryana N Manz
- Russell/Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Frances V Sjaastad
- Department of Pharmacology, Center for Immunology, University of Minnesota, Minneapolis, United States
| | - Helen S Goodridge
- Regenerative Medicine Institute and Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, United States
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, United States
| | - Arthur Weiss
- Russell/Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, Chevy Chase, United States
| |
Collapse
|
7
|
Tsantikos E, Gottschalk TA, Maxwell MJ, Hibbs ML. Role of the Lyn tyrosine kinase in the development of autoimmune disease. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/ijr.14.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Suthers AN, Young LJ. Molecular identification and expression of Lyn tyrosine kinase isoforms in marsupials. Mol Immunol 2013; 55:310-8. [PMID: 23522727 DOI: 10.1016/j.molimm.2013.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/04/2013] [Accepted: 03/04/2013] [Indexed: 12/14/2022]
Abstract
Lyn is a tyrosine kinase molecule required for modulation of signalling cascades in cell populations including B lymphocytes of the mammalian immune system. We have characterised the coding domain of the marsupial lyn gene of two macropod marsupials; the Tammar Wallaby (Macropus eugenii) and the Bridled Nailtail Wallaby (Onychogalea fraenata) and show the co-expression of two Lyn isoforms in cells and tissues of these and three other marsupials (Brush-tail Possum, Trichosurus vulpecula; American Grey Short-tailed Opossum, Monodelphis domestica and Red-tailed Phascogale, Phascogale calura). The predicted Lyn proteins (LynA and LynB) were highly conserved across vertebrate species, with amino acid identities of 94% with their human orthologues and conservation of key tyrosine kinase motifs that suggests that marsupial Lyn most likely functions in cell signalling. Comparison of our cDNA data to annotations for Lyn transcripts (available through the Ensembl Genome Browser) for the Tammar Wallaby confirm splice sites for a number of exons in the wallaby transcript that are missing from the current annotation. This is the first report of the expression of kinase signalling molecules that influence immunity in metatherian mammals and provides key information to support ongoing studies of immune regulation in marsupials.
Collapse
Affiliation(s)
- Amy N Suthers
- Central Queensland University, Centre for Environmental Management, Marsupial Immunology Research Laboratory, Bruce Highway, Rockhampton, Queensland 4702, Australia
| | | |
Collapse
|
9
|
Falanga YT, Chaimowitz NS, Charles N, Finkelman FD, Pullen NA, Barbour S, Dholaria K, Faber T, Kolawole M, Huang B, Odom S, Rivera J, Carlyon J, Conrad DH, Spiegel S, Oskeritzian CA, Ryan JJ. Lyn but not Fyn kinase controls IgG-mediated systemic anaphylaxis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:4360-8. [PMID: 22450804 PMCID: PMC3536057 DOI: 10.4049/jimmunol.1003223] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Anaphylaxis is a rapid, life-threatening hypersensitivity reaction. Until recently, it was mainly attributed to histamine released by mast cells activated by allergen crosslinking (XL) of FcεRI-bound allergen-specific IgE. However, recent reports established that anaphylaxis could also be triggered by basophil, macrophage, and neutrophil secretion of platelet-activating factor subsequent to FcγR stimulation by IgG/Ag complexes. We have investigated the contribution of Fyn and Lyn tyrosine kinases to FcγRIIb and FcγRIII signaling in the context of IgG-mediated passive systemic anaphylaxis (PSA). We found that mast cell IgG XL induced Fyn, Lyn, Akt, Erk, p38, and JNK phosphorylation. Additionally, IgG XL of mast cells, basophils, and macrophages resulted in Fyn- and Lyn-regulated mediator release in vitro. FcγR-mediated activation was enhanced in Lyn-deficient (knockout [KO]) cells, but decreased in Fyn KO cells, compared with wild-type cells. More importantly, Lyn KO mice displayed significantly exacerbated PSA features whereas no change was observed for Fyn KO mice, compared with wild-type littermates. Intriguingly, we establish that mast cells account for most serum histamine in IgG-induced PSA. Taken together, our findings establish pivotal roles for Fyn and Lyn in the regulation of PSA and highlight their unsuspected functions in IgG-mediated pathologies.
Collapse
Affiliation(s)
- Yves T. Falanga
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Natalia S. Chaimowitz
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298 USA
| | - Nicolas Charles
- Inserm U699 "Immunopathologie Rénale, Récepteurs et Inflammation", Faculté de Médecine Xavier Bichat - Université Paris VII Denis Diderot, 75870 PARIS cedex 18, France
| | - Fred D. Finkelman
- Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45220, § Division of Immunology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, § Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Nicholas A. Pullen
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Suzanne Barbour
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298 USA
| | - Kevin Dholaria
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Travis Faber
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Motunrayo Kolawole
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Bernice Huang
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298 USA
| | - Sandra Odom
- Laboratory of Molecular Immunogenetics, NIAMS, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Juan Rivera
- Laboratory of Molecular Immunogenetics, NIAMS, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jason Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298 USA
| | - Daniel H. Conrad
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298 USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Carole A. Oskeritzian
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - John J. Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| |
Collapse
|
10
|
Iqbal MS, Tsuyama N, Obata M, Ishikawa H. A novel signaling pathway associated with Lyn, PI 3-kinase and Akt supports the proliferation of myeloma cells. Biochem Biophys Res Commun 2010; 392:415-20. [PMID: 20079716 DOI: 10.1016/j.bbrc.2010.01.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 01/10/2010] [Indexed: 11/25/2022]
Abstract
Interleukin-6 (IL-6) is a growth factor for human myeloma cells. We have recently found that in myeloma cells the activation of both signal transducer and activator of transcription (STAT) 3 and extracellular signal-regulated kinase (ERK) 1/2 is not sufficient for the IL-6-induced proliferation, which further requires the activation of the src family kinases, such as Lyn. Here we showed that the Lyn-overexpressed myeloma cell lines had the higher proliferative rate with IL-6 and the enhanced activation of the phosphatidylinositol (PI) 3-kinase and Akt. The IL-6-induced phosphorylation of STAT3 and ERK1/2 was not up-regulated in the Lyn-overexpressed cells, indicating that the Lyn-PI 3-kinase-Akt pathway is independent of these pathways. The PI 3-kinase was co-precipitated with Lyn in the Lyn-overexpressed cells of which proliferation with IL-6 was abrogated by the specific inhibitors for PI 3-kinase or Akt, suggesting that the activation of the PI 3-kinase-Akt pathway associated with Lyn is indeed related to the concomitant augmentation of myeloma cell growth. Furthermore, the decreased expression of p53 and p21(Cip1) proteins was observed in the Lyn-overexpressed cells, implicating a possible downstream target of Akt. This study identifies a novel IL-6-mediated signaling pathway that certainly plays a role in the proliferation of myeloma cells and this novel mechanism of MM tumor cell growth associated with Lyn would eventually contribute to the development of MM treatment.
Collapse
Affiliation(s)
- Mohd S Iqbal
- Department of Bio-Signal Analysis, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | | | | | | |
Collapse
|
11
|
Barouch-Bentov R, Che J, Lee CC, Yang Y, Herman A, Jia Y, Velentza A, Watson J, Sternberg L, Kim S, Ziaee N, Miller A, Jackson C, Fujimoto M, Young M, Batalov S, Liu Y, Warmuth M, Wiltshire T, Cooke MP, Sauer K. A conserved salt bridge in the G loop of multiple protein kinases is important for catalysis and for in vivo Lyn function. Mol Cell 2009; 33:43-52. [PMID: 19150426 DOI: 10.1016/j.molcel.2008.12.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 06/30/2008] [Accepted: 12/23/2008] [Indexed: 12/12/2022]
Abstract
The glycine-rich G loop controls ATP binding and phosphate transfer in protein kinases. Here we show that the functions of Src family and Abl protein tyrosine kinases require an electrostatic interaction between oppositely charged amino acids within their G loops that is conserved in multiple other phylogenetically distinct protein kinases, from plants to humans. By limiting G loop flexibility, it controls ATP binding, catalysis, and inhibition by ATP-competitive compounds such as Imatinib. In WeeB mice, mutational disruption of the interaction results in expression of a Lyn protein with reduced catalytic activity, and in perturbed B cell receptor signaling. Like Lyn(-/-) mice, WeeB mice show profound defects in B cell development and function and succumb to autoimmune glomerulonephritis. This demonstrates the physiological importance of the conserved G loop salt bridge and at the same time distinguishes the in vivo requirement for the Lyn kinase activity from other potential functions of the protein.
Collapse
Affiliation(s)
- Rina Barouch-Bentov
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Tsuda M, Tozaki-Saitoh H, Masuda T, Toyomitsu E, Tezuka T, Yamamoto T, Inoue K. Lyn tyrosine kinase is required for P2X4 receptor upregulation and neuropathic pain after peripheral nerve injury. Glia 2007; 56:50-8. [DOI: 10.1002/glia.20591] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Xu Y, Harder KW, Huntington ND, Hibbs ML, Tarlinton DM. Lyn tyrosine kinase: accentuating the positive and the negative. Immunity 2005; 22:9-18. [PMID: 15664155 DOI: 10.1016/j.immuni.2004.12.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 12/29/2004] [Accepted: 12/30/2004] [Indexed: 12/21/2022]
Abstract
Lyn, one of several Src-family tyrosine kinases in immune cells, is noted for its ability to negatively regulate signaling pathways through phosphorylation of inhibitory receptors, enzymes, and adaptors. Somewhat paradoxically, it is also a key mediator in several pathways of B cell activation, such as CD19 and CD180. Whether Lyn functions to promote or inhibit immune cell activation depends on the stimulus and the developmental state, meaning that the consequences of Lyn activity are context dependent. The importance of regulating Lyn activity is exemplified by the pathological conditions that develop in both lyn-/- and lyn gain-of-function mice (lynup/up), including lethal antibody-mediated autoimmune diseases and myeloid neoplasia. Here, we review the outcomes of altered Lyn activity within the framework of B cell development and differentiation and the circumstances that appear to dictate the outcome.
Collapse
Affiliation(s)
- Yuekang Xu
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3050, Australia
| | | | | | | | | |
Collapse
|
14
|
Dai Y, Rahmani M, Corey SJ, Dent P, Grant S. A Bcr/Abl-independent, Lyn-dependent form of imatinib mesylate (STI-571) resistance is associated with altered expression of Bcl-2. J Biol Chem 2004; 279:34227-34239. [PMID: 15175350 DOI: 10.1074/jbc.m402290200] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The relationship between the Src kinase Lyn and Bcl-2 expression was examined in chronic myelogenous leukemia cells (K562 and LAMA84) displaying a Bcr/Abl-independent form of imatinib mesylate resistance. K562-R and LAMA-R cells that were markedly resistant to induction of mitochondrial dysfunction (e.g. loss of mitochondrial membrane potential, Bax translocation, cytochrome c, and apoptosis-inducing factor release) and apoptosis by imatinib mesylate exhibited a pronounced reduction in expression of Bcr/Abl, Bcl-x(L), and STAT5 but a striking increase in levels of activated Lyn. Whereas basal expression of Bcl-2 protein was very low in parental cells, imatinib-resistant cells displayed a marked increase in Bcl-2 mRNA and/or protein levels. Treatment of LAMA-R cells with the Src kinase inhibitor PP2 significantly reduced Lyn activation as well as Bcl-2 mRNA and protein levels. Transient or stable transfection of LAMA84 or K562 cells with a constitutively active Lyn (Y508F), but not with a kinase-dead mutant (K275D), significantly increased Bcl-2 protein expression and protected cells from lethality of imatinib mesylate. Ectopic expression of Bcl-2 protected K562 and LAMA84 cells from imatinib mesylate- and PP2-mediated lethality. Conversely, interference with Bcl-2 function by co-administration of the small molecule Bcl-2 inhibitor HA14-1 or down-regulation of Bcl-2 expression by small interfering RNA or antisense strategies significantly increased mitochondrial dysfunction and apoptosis induced by imatinib mesylate and the topoisomerase inhibitor VP-16 in LAMA-R cells. In marked contrast, these interventions had little effect in parental LAMA84 cells that display low basal levels of Bcl-2. Together, these findings indicate that activation of Lyn in leukemia cells displaying a Bcr/Abl-independent form of imatinib mesylate resistance plays a functional role in Bcl-2 up-regulation and provide a theoretical basis for the development of therapeutic strategies targeting Bcl-2 in such a setting.
Collapse
Affiliation(s)
- Yun Dai
- Department of Medicine, Virginia Commonwealth University/Medical College of Virginia, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
15
|
Chong YP, Mulhern TD, Zhu HJ, Fujita DJ, Bjorge JD, Tantiongco JP, Sotirellis N, Lio DSS, Scholz G, Cheng HC. A novel non-catalytic mechanism employed by the C-terminal Src-homologous kinase to inhibit Src-family kinase activity. J Biol Chem 2004; 279:20752-66. [PMID: 14985335 DOI: 10.1074/jbc.m309865200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although C-terminal Src kinase (CSK)-homologous kinase (CHK) is generally believed to inactivate Src-family tyrosine kinases (SFKs) by phosphorylating their consensus C-terminal regulatory tyrosine (Tyr(T)), exactly how CHK inactivates SFKs is not fully understood. Herein, we report that in addition to phosphorylating Tyr(T), CHK can inhibit SFKs by a novel non-catalytic mechanism. First, CHK directly binds to the SFK members Hck, Lyn, and Src to form stable protein complexes. The complex formation is mediated by a non-catalytic Tyr(T)-independent mechanism because it occurs even in the absence of ATP or when Tyr(T) of Hck is replaced by phenylalanine. Second, the non-catalytic CHK-SFK interaction alone is sufficient to inactivate SFKs by inhibiting the catalytic activity of autophosphorylated SFKs. Third, CHK and Src co-localize to specific plasma membrane microdomains of rat brain cells, suggesting that CHK is in close proximity to Src such that it can effectively inactivate Src in vivo. Fourth, native CHK.Src complex exists in rat brain, and recombinant CHK.Hck complex exists in transfected HEK293T cells, implying that CHK forms stable complexes with SFKs in vivo. Taken together, our findings suggest that CHK inactivates SFKs (i) by phosphorylating their Tyr(T) and (ii) by this novel Tyr(T)-independent mechanism involving direct binding of CHK to SFKs. It has been documented that autophosphorylated SFKs can still be active, in some cases even when their Tyr(T) is phosphorylated. Thus, the ability of the Tyr(T)-independent mechanism to suppress the activity of both non-phosphorylated and autophosphorylated SFKs represents a fail-safe measure employed by CHK to down-regulate SFK signaling under all circumstances.
Collapse
Affiliation(s)
- Yuh-Ping Chong
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bozulic LD, Dean WL, Delamere NA. The influence of Lyn kinase on Na,K-ATPase in porcine lens epithelium. Am J Physiol Cell Physiol 2004; 286:C90-6. [PMID: 12967913 DOI: 10.1152/ajpcell.00174.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Na,K-ATPase is essential for the regulation of cytoplasmic Na+ and K+ levels in lens cells. Studies on the intact lens suggest activation of tyrosine kinases may inhibit Na,K-ATPase function. Here, we tested the influence of Lyn kinase, a Src-family member, on tyrosine phosphorylation and Na,K-ATPase activity in membrane material isolated from porcine lens epithelium. Western blot studies indicated the expression of Lyn in lens cells. When membrane material was incubated in ATP-containing solution containing partially purified Lyn kinase, Na,K-ATPase activity was reduced by approximately 38%. Lyn caused tyrosine phosphorylation of multiple protein bands. Immunoprecipitation and Western blot analysis showed Lyn treatment causes an increase in density of a 100-kDa phosphotyrosine band immunopositive for Na,K-ATPase alpha1 polypeptide. Incubation with protein tyrosine phosphatase 1B (PTP-1B) reversed the Lyn-dependent tyrosine phosphorylation increase and the change of Na,K-ATPase activity. The results suggest that Lyn kinase treatment of a lens epithelium membrane preparation is able to bring about partial inhibition of Na,K-ATPase activity associated with tyrosine phosphorylation of multiple membrane proteins, including the Na,K-ATPase alpha1 catalytic subunit.
Collapse
Affiliation(s)
- Larry D Bozulic
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | | |
Collapse
|
17
|
Brand P, Plochmann S, Valk E, Zahn S, Saloga J, Knop J, Becker D. Activation and translocation of p38 mitogen-activated protein kinase after stimulation of monocytes with contact sensitizers. J Invest Dermatol 2002; 119:99-106. [PMID: 12164931 DOI: 10.1046/j.1523-1747.2002.01791.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recently we described the induction of tyrosine phosphorylation by contact sensitizers as an early molecular event during the activation of antigen- presenting cells. In this study, the role of the p38 mitogen-activated protein kinase for the activation of human monocytes after exposure to four structurally unrelated contact sensitizers was analyzed in comparison with the irritant benzalkonium chloride and an inductor of oxidative stress (H2O2) using immunofluorescence, Western blotting, and enzyme-linked immunosorbent assay techniques. Bio chemical analysis revealed a translocation of p38 from the cytoplasm to the detergent-resistant cell fraction only upon stimulation with contact sensitizers. The activity of p38 was studied by quantification of its phosphorylated active form with a specific antibody and by kinase assay. Although all stimulants used in this study led to the activation of p38, a translocation to the detergent-resistant fraction as well phosphorylation of the mitogen-activated protein kinase dependent transcription factor Elk-1 was induced only by contact sensitizers. Evidence for a functional relevance of mitogen-activated protein kinase activation was provided by measurement of the hapten-induced production of the proinflammatory cytokine interleukin-1beta. Its release was inhibited by blocking p38-mediated signaling using the imidazole compounds SB203580 and SB202190. These data show that contact sensitizers are strong activators of the p38 mitogen-activated protein kinase. Although activation of this stress-associated pathway has been reported for many other stimuli, a unique translocation of p38 from the cytoplasm to the detergent-resistant fraction seems to be a specific event during hapten-induced activation of antigen-presenting cells.
Collapse
Affiliation(s)
- Pia Brand
- Department of Dermatology, University of Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Omura T, Sakai H, Murakami H. Acceleration of granulocyte colony-stimulating factor-induced neutrophilic nuclear lobulation by overexpression of Lyn tyrosine kinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:381-9. [PMID: 11784333 DOI: 10.1046/j.0014-2956.2001.02661.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stimulation with granulocyte colony-stimulating factor (G-CSF) induces myeloid precursor cells to differentiate into neutrophils, and tyrosine phosphorylation of certain cellular proteins is crucial to this process. However, the signaling pathways for neutrophil differentiation are still obscure. As the Src-like tyrosine kinase, Lyn, has been reported to play a role in G-CSF-induced proliferation in avian lymphoid cells, we examined its involvement in G-CSF-induced signal transduction in mammalian cells. Expression plasmids for wild-type Lyn (Lyn) and kinase-negative Lyn (LynKN) were introduced into a murine granulocyte precursor cell line, GM-I62M, that can respond to G-CSF with neutrophil differentiation, and cell lines that overexpressed these molecules (GM-Lyn, GM-LynKN) were established. Upon G-CSF stimulation, both the GM-Lyn and GM-LynKN cells began to differentiate into neutrophils, showing early morphological changes within a few days, much more rapidly than did the parental cells, which started to exhibit nuclear lobulation about 10 days after the cells were transferred to G-CSF-containing medium. However, the time course of expression of the myeloperoxidase gene, another neutrophil differentiation marker, was not affected by the overexpression of Lyn or LynKN. Therefore, in normal cells, protein interactions with Lyn, but not its kinase activity, are important for the induction of G-CSF-induced neutrophilic nuclear lobulation in mammalian granulopoiesis.
Collapse
Affiliation(s)
- Tomomi Omura
- Department of Biotechnology, Faculty of Engineering, Okayama University, Japan
| | | | | |
Collapse
|
19
|
Rouer E, Brule F, Benarous R. A single base mutation in the 5' splice site of intron 7 of the lck gene is responsible for the deletion of exon 7 in lck mRNA of the JCaM1 cell line. Oncogene 1999; 18:4262-8. [PMID: 10435639 DOI: 10.1038/sj.onc.1202720] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The failure of signal transduction in the JCaM1 cell line was associated with the presence of an abnormal lck mRNA deleted of the exon 7 encoding for an inactive p56lck kinase. Our study of the lck mRNA from various T cell lines and from peripheral blood lymphocytes of healthy donors has revealed the presence of both complete and exon 7-deleted lck transcripts. Thus the exon 7-deleted lck transcript initially described in the JCaM1 mutant cell line, arises from an alternative splicing event occurring in each cells expressing the lck gene. Genomic DNA sequencing of the lck exons 6-8 portion from both the mutant JCaM1 and its parental Jurkat cell lines revealed as the only difference, the presence of a A to G mutation within the 5' splice site of intron 7 in the JCaM1 cell line DNA. To demonstrate the role of this point mutation in the lck pre-mRNA maturation, COS cells were transfected by lck minigenes from the Jurkat and JCaM1 cell lines. In COS cells transfected with minigene from the Jurkat cell line both lck transcripts (with and without exon 7) were observed whereas only the exon 7-spliced lck transcript was observed in COS cells transfected with minigene from the JCaM1 cell line. Thus the mutation is per se responsible for the deletion of exon 7 and the absence of complete lck mRNA in the JCaM1 cell line. Presence of a restriction site (HphI) in the 5' splice site of lck intron 7 from Jurkat DNA allowed to confirm the presence of the mutation on both alleles in the JCaM1 cell line.
Collapse
Affiliation(s)
- E Rouer
- CJF97-03 Interactions Moléculaires Hôte-Pathogène, ICGM, Bâtiment G. Roussy, CHU Cochin-Port-Royal, Paris, France
| | | | | |
Collapse
|
20
|
Cole LA, Zirngibl R, Craig AW, Jia Z, Greer P. Mutation of a highly conserved aspartate residue in subdomain IX abolishes Fer protein-tyrosine kinase activity. PROTEIN ENGINEERING 1999; 12:155-62. [PMID: 10195287 DOI: 10.1093/protein/12.2.155] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Before the structure of cAMP-dependent protein kinase had been solved, sequence alignments had already suggested that several highly conserved peptide motifs described as kinase subdomains I through XI might play some functional role in catalysis. Crystal structures of several members of the protein kinase superfamily have suggested that the nearly invariant aspartate residue within subdomain IX contributes to the conformational stability of the catalytic loop by forming hydrogen bonds with backbone amides within subdomain VI. However, substitution of this aspartate with alanine or threonine in some protein kinases have indicated that these interactions are not essential for activity. In contrast, we show here that conversion of this aspartate to arginine abolished the catalytic activity of the Fer protein-tyrosine kinase when expressed either in mammalian cells or in bacteria. Structural modeling predicted that the catalytic loop of the FerD743R mutant was disrupted by van der Waal's repulsion between the side chains of the substituted arginine residue in subdomain IX and histidine-683 in subdomain VI. The FerD743R mutant model predicted a shift in the peptide backbone of the catalytic loop, and an outward rotation of histidine-683 and arginine-684 side chains. However, the position and orientation of the presumptive catalytic base, aspartate-685, was not substantially changed. The proposed model explains how substitutions of some, but not all residues could be tolerated at this nearly invariant aspartate in kinase subdomain IX.
Collapse
Affiliation(s)
- L A Cole
- Cancer Research Laboratories, Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
21
|
Kepley CL, Wilson BS, Oliver JM. Identification of the Fc epsilonRI-activated tyrosine kinases Lyn, Syk, and Zap-70 in human basophils. J Allergy Clin Immunol 1998; 102:304-15. [PMID: 9723676 DOI: 10.1016/s0091-6749(98)70100-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In human blood basophils, cross-linking the high-affinity IgE receptor Fc epsilonRI with multivalent antigen activates a signaling pathway leading to Ca2+ mobilization, actin polymerization, shape changes, secretion, and cytokine production. METHODS AND RESULTS The role of tyrosine kinases in human Fc epsilonRI signaling was explored by using human basophils isolated by Percoll gradient centrifugation followed by negative and/or positive selection with antibody-coated magnetic beads. Fc epsilonRI cross-linking of more than 95% pure basophil preparations activates the protein-tyrosine kinases Lyn and Syk, previously linked to Fc epsilonRI-coupled rodent mast cell activation, as well as Zap-70, previously implicated in T-cell receptor signaling, and causes the tyrosine phosphorylation of multiple proteins. The presence of Lyn, Syk, and Zap-70 in basophils was confirmed by Western blotting in lysates of highly purified basophils and independently by confocal fluorescence microscopy in cells labeled simultaneously with kinase-specific antibodies and with the basophil-specific antibody 2D7. Comparable amounts of Lyn and Syk were found in basophils and B cells, whereas T cells appear to have greater amounts of Zap-70 than basophils. The tyrosine kinase inhibitor piceatannol spares IgE-mediated Lyn activation but inhibits IgE-induced Syk and Zap-70 activation as well as overall protein tyrosine phosphorylation and secretion. Overall protein-tyrosine phosphorylation increases steadily over a range of anti-IgE concentrations that are low to optimal for secretion. However, tyrosine phosphorylation continues to increase at high anti-IgE concentrations that elicit very little secretion (the characteristic high-dose inhibition of secretion). CONCLUSIONS Our data demonstrate the association of anti-IgE-stimulated, protein-tyrosine phosphorylation by a cascade of tyrosine kinases, including Zap-70 as well as Lyn and Syk, with the initiation of Fc epsilonRI-mediated signaling in human basophils.
Collapse
Affiliation(s)
- C L Kepley
- University of New Mexico School of Medicine, Department of Pathology, Asthma Research Center, Albuquerque, USA
| | | | | |
Collapse
|
22
|
Abstract
Lyn is a member of the src family of non-receptor protein tyrosine kinases that is predominantly expressed in haematopoietic tissues. Like all members of the src family, lyn is thought to participate in signal transduction from cell surface receptors that lack intrinsic tyrosine kinase activity. It is associated with a number of cell surface receptors including the B cell antigen receptor and Fc epsilon RI. Lyn deficient mice develop autoimmune disease characterised by autoantibodies in serum and the deposition of immune complexes in the kidney, a pathology reminiscent of systemic lupus erythematosus. Lyn deficient mice also have impaired signalling involving Fc epsilon RI in mast cells, resulting in defective allergic responses.
Collapse
Affiliation(s)
- M L Hibbs
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Victoria, Australia
| | | |
Collapse
|
23
|
Allard P, Atfi A, Landry F, Chapdelaine A, Chevalier S. Estradiol activates p60src, p53/56lyn and renatured p50/55 protein tyrosine kinases in the dog prostate. Mol Cell Endocrinol 1997; 126:25-34. [PMID: 9027360 DOI: 10.1016/s0303-7207(96)03966-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Protein tyrosine kinases (PTKs) are key enzymes implicated in signal transduction pathways regulated by growth factors (GFs). We have previously shown by immunohistochemistry that the level of phosphotyrosine (pY) proteins is increased in prostatic basal epithelial cells following estrogen treatment in castrated dogs. In this study, we investigated if this treatment increases the level and distribution of prostatic PTK activity, and more specifically, if it alters the expression and/or activity of the Src family members p60src and p53/56lyn. Prostates from normal and hyperplastic dog prostates, as well as those from castrated dogs treated with androgens, were also examined. Only the glands obtained from estrogen-treated dogs had a significantly increased total and specific PTK activity, observed uniquely in the particulate extract, as compared to the other types of prostates studied. In addition, this increased activity was correlated upon gel filtration chromatography with the presence of an additional peak of activity with an apparent molecular weight of 130 kDa, which was absent in other prostate fractions presenting only 50 kDa peaks. Using antibodies, we demonstrate that active p60src and pp53/56lyn kinases accounted for 81% of the activity in this 130 kDa peak. On the other hand, in situ renaturation also revealed the presence of still uncharacterized 50/55 kDa PTKs in the 130 kDa peak. Altogether, these findings raise the possibility that these PTKs contribute to the transmission of mitogenic signals originating directly or indirectly from estrogen stimulation of the basal cell layer of the prostate.
Collapse
Affiliation(s)
- P Allard
- Department of Biochemistry, University of Montreal, Maisonneuve-Rosemont Hospital, Quebec, Canada
| | | | | | | | | |
Collapse
|
24
|
Achen MG, Gad JM, Stacker SA, Wilks AF. Placenta growth factor and vascular endothelial growth factor are co-expressed during early embryonic development. Growth Factors 1997; 15:69-80. [PMID: 9401819 DOI: 10.3109/08977199709002113] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have used the polymerase chain reaction to identify mouse proteins similar in primary structure to the endothelial cell mitogen Vascular Endothelial Growth Factor (VEGF). One amplified product encoded mouse Placenta Growth Factor (PIGF). The pattern of PIGF gene expression in mouse embryos was studied by in situ hybridization. Transcripts encoding mouse PIGF were abundant in trophoblastic giant cells associated with the parietal yolk sac at early stages of embryogenesis. VEGF transcripts were also detected in trophoblastic giant cells raising the possibility that these cells may secrete heterodimers consisting of one PIGF subunit and one VEGF subunit. The secretion of PIGF and VEGF by trophoblastic giant cells is likely to be the signal which initiates and co-ordinates vascularization in the deciduum and placenta during early embryogenesis.
Collapse
Affiliation(s)
- M G Achen
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Victoria, Australia.
| | | | | | | |
Collapse
|
25
|
Zhang W, Inouye M, Inouye S. Reciprocal regulation of the differentiation of Myxococcus xanthus by Pkn5 and Pkn6, eukaryotic-like Ser/Thr protein kinases. Mol Microbiol 1996; 20:435-47. [PMID: 8733241 DOI: 10.1111/j.1365-2958.1996.tb02630.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Myxococcus xanthus contains a large family of genes encoding eukaryotic-like serine/threonine kinases. Among them, two genes, pkn5 and pkn6, are divergently located on the chromosome and share a 46 bp promoter region between their transcription initiation sites, as determined by RNA protection. Pkn5, consisting of 380 amino acid residues, is a soluble protein in the cytoplasm, while Pkn6, consisting of 710 amino acid residues, is a transmembrane protein. Its membrane topology was determined using the Pkn6-PhoA fusion protein in Escherichia coli, which has a single transmembrane domain with the N-terminal domain in the cytoplasm and the C-terminal domain outside the cytoplasmic membrane. Both proteins, when expressed in E. coli, were autophosphorylated: Pkn5 only at Ser, and Pkn6 at both Ser and Thr. In M. xanthus, both genes are expressed constitutively throughout the life cycle, with slight increases at an early stage of development. Most strikingly, a pkn5-deletion strain forms fruiting bodies much faster than the wild-type strain, while a pkn6-deletion strain develops slower than the wild-type strain. These results, together with the fact that the pkn5-deletion strain is able to form fruiting bodies on semi-rich media, suggest that Pkn5 and Pkn6 have reciprocal roles in M. xanthus growth and development. Furthermore, Pkn6 may be a transmembrane sensor of external signals for development, while Pkn5 is a kinase that negatively regulates M. xanthus development.
Collapse
Affiliation(s)
- W Zhang
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
26
|
Sotirellis N, Johnson TM, Hibbs ML, Stanley IJ, Stanley E, Dunn AR, Cheng HC. Autophosphorylation induces autoactivation and a decrease in the Src homology 2 domain accessibility of the Lyn protein kinase. J Biol Chem 1995; 270:29773-80. [PMID: 8530369 DOI: 10.1074/jbc.270.50.29773] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Lyn is a member of the Src family of protein-tyrosine kinases that can readily undergo autophosphorylation in vitro. The site of autophosphorylation is Tyr397 which corresponds to the consensus autophosphorylation site of other Src family tyrosine kinases. The rate of autophosphorylation is concentration-dependent, indicating that the reaction follows an intermolecular mechanism. Autophosphorylation results in a 17-fold increase in protein-tyrosine kinase activity. Kinetic analysis demonstrates that phosphorylation of a substrate peptide by Lyn following autophosphorylation occurs with a 63-fold decrease in Km but no significant change in Vmax, suggesting that autophosphorylation relieves the conformational constraint that prevents binding of the substrate peptide to the active site of the kinase. Using a phosphotyrosine-containing peptide (pYEEI) that has previously been shown to bind to the Src homology 2 (SH2) domain of Src family tyrosine kinases with high affinity, we found that autophosphorylation results in a significant decrease in accessibility of the Lyn SH2 domain, indicating that conformational changes in the protein kinase domain induced by autophosphorylation can be propagated to the SH2 domain. Our study suggests that autophosphorylation plays an important role in regulating Lyn by modulating both its kinase activity and its interaction with other phosphotyrosine-containing molecules.
Collapse
Affiliation(s)
- N Sotirellis
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
27
|
Nishizumi H, Taniuchi I, Yamanashi Y, Kitamura D, Ilic D, Mori S, Watanabe T, Yamamoto T. Impaired proliferation of peripheral B cells and indication of autoimmune disease in lyn-deficient mice. Immunity 1995; 3:549-60. [PMID: 7584145 DOI: 10.1016/1074-7613(95)90126-4] [Citation(s) in RCA: 369] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Src family protein-tyrosine kinase Lyn associates physically with the BCR and has been suggested to play an important role in BCR-mediated signaling. Studies with lyn-/- mice showed that the number of B cells decreased by half in their peripheral tissues. In addition, these B cells do not respond normally to a number of stimuli, including BCR cross-linking and CD40 ligand. Induction of tyrosine phosphorylation on a variety of cellular proteins, such as Vav, Cbl, and HS1, upon BCR cross-linking was also abolished in these B cells. Despite the impaired BCR-mediated signaling, concentrations of IgM and IgA in sera were remarkably elevated, and production of autoantibodies was detected in lyn-/- mice. Histological study showed splenomegaly and enlargement of lymph nodes that became evident with age in the mutant mice. The spleen contained significant number of plasma cells as well as unusual lymphoblast-like cells carrying Mac1 antigen and cytoplasmic IgM. These cells spontaneously secreted a large amount of IgM in vitro. Finally, significant number of lyn-/- mice show glomerulonephritis, an indication of autoimmune disease. From these data, we conclude that Lyn plays a role in signal transduction for not only clonal expansion and terminal differentiation of peripheral B cells but also elimination of autoreactive B cells.
Collapse
Affiliation(s)
- H Nishizumi
- Department of Oncology, Institute of Medical Science, University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hibbs ML, Tarlinton DM, Armes J, Grail D, Hodgson G, Maglitto R, Stacker SA, Dunn AR. Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell 1995; 83:301-11. [PMID: 7585947 DOI: 10.1016/0092-8674(95)90171-x] [Citation(s) in RCA: 558] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mice homozygous for a disruption at the Lyn locus display abnormalities associated with the B lymphocyte lineage and in mast cell function. Despite reduced numbers of recirculating B lymphocytes, Lyn-/- mice are immunoglobulin M (IgM) hyperglobulinemic. Immune responses to T-independent and T-dependent antigens are affected. Lyn-/- mice fail to mediate an allergic response to IgE cross-linking, indicating that activation of LYN plays an indispensable role in Fc epsilon RI signaling. Lyn-/- mice have circulating autoreactive antibodies, and many show severe glomerulonephritis caused by the deposition of IgG immune complexes in the kidney, a pathology reminiscent of systemic lupus erythematosus. Collectively, these results implicate LYN as having an indispensable role in immunoglobulin-mediated signaling, particularly in establishing B cell tolerance.
Collapse
Affiliation(s)
- M L Hibbs
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Achen MG, Clauss M, Schnürch H, Risau W. The non-receptor tyrosine kinase Lyn is localised in the developing murine blood-brain barrier. Differentiation 1995; 59:15-24. [PMID: 7589891 DOI: 10.1046/j.1432-0436.1995.5910015.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The blood-brain barrier, formed by brain endothelium, is critical for brain function. The development of the blood-brain barrier involves brain angiogenesis and endothelial cell differentiation, processes which require active signal transduction pathways. The differentiation of brain endothelial cells to the "blood-brain-barrier phenotype" involves cytoskeletal changes which modulate the tightness of the barrier. In order to identify signal transduction proteins involved in blood-brain barrier development, cDNA from bovine and murine brain endothelial cells was used in a polymerase chain reaction for cloning of DNA encoding Src homology 3 domains. Src homology 3 domains are structural domains found in many signal transduction proteins. These domains often mediate interaction of signaling proteins with the cytoskeleton and therefore may play a role in the regulation of the cytoskeletal changes which occur during blood-brain-barrier development. Unexpectedly, all bovine and murine clones analyzed from polymerase chain reactions encoded the Src homology 3 domain of one protein, namely the non-receptor tyrosine kinase, Lyn, which is involved in signal transduction in cells of the hemopoietic system. In situ hybridization analyses confirmed the presence of lyn mRNA in developing blood vessels in embryonic and early post-natal mouse brain, but not in endothelium outside the brain. In bovine brain endothelial cells in primary culture, p53lyn is highly abundant and present in two forms which have different patterns of tyrosine phosphorylation. These data suggest that Lyn may be involved in transduction of growth and differentiation signals required for blood-brain-barrier development.
Collapse
Affiliation(s)
- M G Achen
- Max-Planck-Institut für physiologische und klinische Forschung, W.G. Kerckhoff-Institut, Abteilung molekulare Zellbiologie, Bad Nauheim, Germany
| | | | | | | |
Collapse
|
30
|
Kefalas P, Brown TR, Brickell PM. Signalling by the p60c-src family of protein-tyrosine kinases. Int J Biochem Cell Biol 1995; 27:551-63. [PMID: 7545532 DOI: 10.1016/1357-2725(95)00024-j] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The c-src gene family has nine known members (blk, c-fgr, fyn, hck, lck, lyn, c-src, c-yes and yrk), each encoding a cytoplasmic protein-tyrosine kinase (PTK) believed to be involved in signal transduction. The c-src PTKs contain three domains (SH1, SH2 and SH3) that are found in many other signalling proteins. The SH1 domain has PTK activity, whilst the SH2 and SH3 domains are involved in mediating protein-protein interactions by binding to phosphotyrosine-containing and proline-rich motifs, respectively. The expression patterns of the c-src PTKs suggest that they function in a broad range of biological situations, in many cases regulating the behaviour of terminally-differentiated, post-mitotic cell types. Targeted disruption of members of the c-src family in transgenic mice has confirmed important roles for p56lck and p59fym(T) in T-lymphocyte maturation and activation, but has also revealed unexpected roles for p60c-src in bone maintenance and for p59fym(B) in learning and memory. There is increasingly detailed information about the biochemical nature of the signalling pathways in which the c-src PTKs operate and about the other signalling proteins with which they interact. The c-src PTKs can associate with activated receptor PTKs, including the receptors for platelet-derived growth factor and epidermal growth factor, by means of SH2-phosphotyrosine binding. The c-src PTKs also associated with transmembrane proteins that lack PTK activity, frequently by means of interactions involving their unique amino-terminal sequences.
Collapse
Affiliation(s)
- P Kefalas
- Department of Molecular Pathology, University College London Medical School, U.K
| | | | | |
Collapse
|
31
|
Rowley RB, Bolen JB, Fargnoli J. Molecular cloning of rodent p72Syk. Evidence of alternative mRNA splicing. J Biol Chem 1995; 270:12659-64. [PMID: 7759516 DOI: 10.1074/jbc.270.21.12659] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Northern blot analysis of polyadenylated RNA prepared from RBL-2H3 cells revealed the presence of three distinct mRNAs encoding p72Syk, a protein-tyrosine kinase previously shown to be associated with the high affinity IgE receptor present on the surface of these cells (Hutchcroft, J. E., Geahlen, R. L., Deanin, G. G., and Oliver, J. M. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 9107-9111). Here we report the full-length nucleotide sequence of two of these messages, as well as the complete predicted amino acid sequence of the rodent p72Syk protein-tyrosine kinase. In addition, we report evidence indicating alternative splicing of p72Syk mRNAs within RBL-2H3 cells. This splicing event results in the expression of two distinct protein isoforms that differ with respect to the presence of a 23-amino acid insert located within the region of the protein that separates the two SH2 domains from the catalytic domain. Both mRNAs arising from this splicing event appear to encode functional protein-tyrosine kinases, as expression of the corresponding cDNAs in COS cells results in the production of proteins of the expected sizes that possess intrinsic tyrosine specific kinase activity.
Collapse
Affiliation(s)
- R B Rowley
- Department of Molecular Biology, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543-4000, USA
| | | | | |
Collapse
|
32
|
Abstract
The Lyn gene encodes a PTK that is believed to participate in the transduction of signals from a variety of cell membrane receptors. Here we report the genomic organisation of the mouse Lyn gene and show that, while the promoter and exons 11-13 are present in single copy, sequences corresponding to the first coding exon are duplicated and this duplication extends into intron 10. Two sets of genomic clones representing the duplicated regions have been isolated and characterised. Nucleotide sequence analysis of these clones has revealed minimal sequence divergence between the two, suggesting that the duplication is a recent event. This is supported by Southern blot analysis of DNA from other mammalian species showing that the duplication is confined to the mouse. Aside from the duplicated sequences, the overall structure of the mouse Lyn gene is similar to that of other Src family members. These data suggest that the process of duplication which generated the Src family of PTK is an ongoing process and provide an insight into the molecular evolution of this group of genes.
Collapse
Affiliation(s)
- M L Hibbs
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Victoria, Australia
| | | | | | | |
Collapse
|
33
|
Oberg-Welsh C, Welsh M. Cloning of BSK, a murine FRK homologue with a specific pattern of tissue distribution. Gene 1995; 152:239-42. [PMID: 7835707 DOI: 10.1016/0378-1119(94)00718-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A novel protein tyrosine kinase (PTK) was previously identified by us from the rat insulin-producing cell line, RINm5F, by polymerase chain reaction (PCR). By using this PCR fragment to screen a cDNA library from the mouse insulin-producing cell line beta TC-1, a cDNA clone of about 2.0 kb was obtained which encodes the entire amino acid (aa) sequence of the corresponding PTK. The deduced aa sequence reveals strong homology with the members of the SRC family of intracellular PTKs. We have designated the gene as BSK (beta-cell Src-homology tyrosine kinase). Southern blot analysis after PCR with primers specific for BSK confirmed its expression in fetal and adult islets of Langerhans, in RINm5F cells and in mouse kidney. Northern blots using poly(A)+RNA from non-beta-cell tissues showed that the BSK cDNA hybridized to three mRNA transcripts (2.9, 3.1 and 5.0 kb) present in kidney, liver and lung. Extensive homology of BSK with the recently identified human gene FRK was observed. It is concluded that Bsk is a murine Frk homologue with a specific pattern of tissue expression.
Collapse
Affiliation(s)
- C Oberg-Welsh
- Department of Medical Cell Biology, Uppsala University, Sweden
| | | |
Collapse
|
34
|
Minoguchi K, Kihara H, Nishikata H, Hamawy MM, Siraganian RP. Src family tyrosine kinase Lyn binds several proteins including paxillin in rat basophilic leukemia cells. Mol Immunol 1994; 31:519-29. [PMID: 8190127 DOI: 10.1016/0161-5890(94)90039-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Aggregation of the high affinity IgE receptors on rat basophilic leukemia (RBL-2H3) cells results in protein tyrosine phosphorylation although the receptor has no intrinsic enzymatic activity. The Src related protein tyrosine kinase p53/56lyn present in RBL-2H3 cells could play a role in this reaction. Here we have isolated the cDNA for rat Lyn and found it to be very homologous at the amino acid level to both the human and mouse proteins. A bacterially expressed maltose binding protein-Lyn (MBP-Lyn) fusion protein was already tyrosine phosphorylated and had tyrosine kinase activity. In a filter-binding assay, MBP-Lyn fusion protein (at 0.1 microM) specifically bound to several proteins of RBL-2H3 cells. In lysates of IgE receptor-activated cells, there was increased binding of MBP-Lyn to 65, 72, 78 and 110 kDa tyrosine phosphorylated proteins. The 72, 78 and 110 kDa tyrosine phosphorylated proteins were precipitated by a fusion protein containing the Lyn Src Homology 2 (SH2) domain. The 72 kDa Lyn binding protein was different from p72syk. Furthermore, paxillin, a cytoskeletal protein, was identified as one of the Lyn binding proteins. Thus Fc epsilon RI mediated signal transduction in RBL-2H3 cells may result from the interaction of p53/56lyn with paxillin, pp72, pp110 and other proteins.
Collapse
Affiliation(s)
- K Minoguchi
- Laboratory of Immunology, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
35
|
Rider LG, Raben N, Miller L, Jelsema C. The cDNAs encoding two forms of the LYN protein tyrosine kinase are expressed in rat mast cells and human myeloid cells. Gene 1994; 138:219-22. [PMID: 8125304 DOI: 10.1016/0378-1119(94)90811-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two isoforms of lck/yes-related novel (LYN) protein tyrosine kinase (PTK) appear to play a role in B-cell-IgM and FcERI receptor signaling. The cDNAs lynA and lynB encoding these two forms were isolated and sequenced; they were derived from rat mucosal mast cell and human myeloid cell lines. The nucleotide (nt) and deduced amino acid (aa) sequences share 94 and 97% identity between rat and mouse lyn, respectively, and 88 and 96% identity between rat and human lyn. In all three species, a region of 20 aa is uniformly inserted at an identical site and its sequence is highly conserved. This suggests an important regulatory role for this region mediated by this PTK.
Collapse
Affiliation(s)
- L G Rider
- National Institute of Arthritis and Musculoskeletal Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|
36
|
Garnett D, Williams AF. Homotypic adhesion of rat B cells, but not T cells, in response to cross-linking of CD48. Immunology 1994; 81:103-10. [PMID: 8132206 PMCID: PMC1422290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Rat lymphocytes were found to aggregate in response to monoclonal antibodies to the glycosyl phosphatidylinositol (GPI)-anchored surface antigen CD48. This clustering required bivalent antibodies but was not Fc mediated. It was blocked by inhibitors of cellular metabolism and cytoskeletal function but not by antibodies to leucocyte function-associated antigen-1 (LFA-1) or intracellular adhesion molecule-1 (ICAM-1). The clusters were found to be due to homotypic adhesion of B cells, with T cells showing no response despite expressing equal levels of CD48. In addition, thymocytes, which are known to cluster in response to cross-linking of Thy-1, another GPI-anchored molecule, were found not to respond to cross-linking of CD48. These results suggest that specific signalling through CD48 in B cells, but not T cells, and through Thy-1, but not CD48, in thymocytes, lead to cell adhesion events. This differential signalling is interesting as neither CD48 nor Thy-1 have transmembrane or intracellular domains. Levels of CD48-associated protein kinase activity were very low in both B and T cells, and no difference in the susceptibility to cleavage with phosphatidylinositol-specific phospholipase C was detected between B- and T-cell CD48.
Collapse
Affiliation(s)
- D Garnett
- MRC Cellular Immunology Unit, Sir William Dunn School of Pathology, University of Oxford
| | | |
Collapse
|
37
|
Rudd CE, Janssen O, Prasad KV, Raab M, da Silva A, Telfer JC, Yamamoto M. src-related protein tyrosine kinases and their surface receptors. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1155:239-66. [PMID: 8357828 DOI: 10.1016/0304-419x(93)90007-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The CD4-p56lck and CD8-p56lck complexes have served as a paradym for an expanding number of interactions between src-family members (p56lck, p59fyn, p56lyn, p55blk) and surface receptors. These interactions implicate src-related kinases in the regulation of a variety of intracellular events, from lymphokine production and cytotoxicity to the expression of specific nuclear binding proteins. Different molecular mechanisms appear to have evolved to facilitate the receptor-kinase interactions, including the use of N-terminal regions, SH2 regions and kinase domains. Variation exists in stoichiometry, affinity and the nature of signals generated by these complexes in cells. The CD4-p56lck complex differs from receptor-tyrosine kinases in a number of important ways, including mechanisms of kinase domain regulation and recruitment of substrates such as PI 3-kinase. Furthermore, they may have a special affinity for receptor-substrates such as the TcR zeta, MB1/B29 or CD5 receptors, and act to recruit other SH2-carrying proteins, such as ZAP-70 to the receptor complexes. Receptor-src kinase interactions represent the first step in a cascade of intracellular events within the protein-tyrosine kinase/phosphatase cascade.
Collapse
Affiliation(s)
- C E Rudd
- Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, MA 02115
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Antigen is thought to cross-link membrane-bound immunoglobulins (Igs) of B cells, causing proliferation and differentiation or the inhibition of growth. Compelling evidence suggests that protein-tyrosine phosphorylation is involved in signal transduction for cell proliferation and differentiation. Indeed cross-linking of membrane-bound IgM (mIgM) induced a rapid increase in tyrosine phosphorylation of at least 10 distinct proteins in B cells. The Src-family protein tyrosine kinase Lyn (p56lyn and p53lyn) is expressed preferentially in B cells. The Lyn protein and its kinase activity could be coimmunoprecipitated with both IgM and IgD from detergent lysates. Cross-linking of membrane-bound IgM with antibody induced down-regulation of the Lyn protein. From these data we concluded that Lyn is physically associated with mIgs. Further evidence showed that cross-linking of mIgM induced rapid increase in the kinase activity of Lyn and association of Lyn with 85-kDa noncatalytic subunit of phosphatidylinositol 3-kinase. Thus, Lyn is likely to participate in B-cell antigen receptor-mediated signaling. As a novel signaling molecule downstream of Lyn, we identified src homology 3-containing, transcription factor-like molecule p75HS1.
Collapse
Affiliation(s)
- T Yamamoto
- Institute of Medical Science, University of Tokyo, Japan
| | | | | |
Collapse
|
39
|
Yao XR, Scott DW. Expression of protein tyrosine kinases in the Ig complex of anti-mu-sensitive and anti-mu-resistant B-cell lymphomas: role of the p55blk kinase in signaling growth arrest and apoptosis. Immunol Rev 1993; 132:163-86. [PMID: 8349295 DOI: 10.1111/j.1600-065x.1993.tb00842.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The src family of non-receptor protein tyrosine kinases (PTKs), including the blk, fyn, lyn and lck kinases, is expressed in B-lineage cells, may associate with the immunoglobulin receptor complex and, therefore, play a role in signal transduction via membrane IgM. To establish which of these PTKs is involved in growth inhibition of B-cell lymphomas by anti-mu, we examined the expression pattern and state of activation of these kinases in nine B-cell lymphomas. Tyrosine-phosphorylated p55blk was constitutively expressed in all growth-inhibitable lymphomas; furthermore, anti-mu caused a relative increase of tyrosine phosphorylation in p55blk and a 2- to 3-fold increase in its kinase activity in these cells within minutes. In contrast, p55blk was not present in three of five anti-mu-resistant lymphomas and there was no detectable increase of blk activity in one of the resistant cell lines tested. Thus, we proposed that activatable blk kinase in the IgM complex is essential for the growth inhibitory effect of anti-mu. To test this hypothesis, CH31 lymphoma cells were treated with antisense oligos for the blk kinase and found to be resistant to anti-mu-mediated growth inhibition and subsequent apoptosis. These studies implicate the blk kinase as an integral part of the growth inhibitory pathway leading to arrest and apoptosis. Transfectants of blk gene constructs are being generated to further test this hypothesis.
Collapse
Affiliation(s)
- X R Yao
- Division of Immunology, University of Rochester Cancer Center, New York 14642
| | | |
Collapse
|
40
|
Houck K, Leung D, Rowland A, Winer J, Ferrara N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35712-0] [Citation(s) in RCA: 357] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Meier RW, Bielke W, Chen T, Niklaus G, Friis RR, Tobler A. Lyn, a src-like tyrosine-specific protein kinase, is expressed in HL60 cells induced to monocyte-like or granulocyte-like cells. Biochem Biophys Res Commun 1992; 185:91-5. [PMID: 1599493 DOI: 10.1016/s0006-291x(05)80959-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
During the in vitro differentiation of HL60 cells tyrosine-specific kinases are activated. The expression of lyn, a src-related tyrosine kinase, was studied by analysis of the steady-state levels of its transcript during the cell differentiation process induced by retinoic acid, phorbol 12-myristate 13-acetate and 1,25-dihydroxyvitamin D3. In contrast to an earlier report we observe only a small induction of the lyn-RNA levels compared to uninduced control cells. In unstimulated HL60 cells, the level for the lyn-transcript was comparatively high. A second, minor human lyn-transcript with an estimated size of 3.7 kb which has not been previously described, was identified.
Collapse
Affiliation(s)
- R W Meier
- Laboratory of Clinical and Experimental Research, University of Berne, Tiefenau Hospital, Switzerland
| | | | | | | | | | | |
Collapse
|
42
|
A synthetic peptide derived from p34cdc2 is a specific and efficient substrate of src-family tyrosine kinases. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50415-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
43
|
Shaw A, Thomas ML. Coordinate interactions of protein tyrosine kinases and protein tyrosine phosphatases in T-cell receptor-mediated signalling. Curr Opin Cell Biol 1991; 3:862-8. [PMID: 1931087 DOI: 10.1016/0955-0674(91)90061-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
T-cell receptor stimulation leads to a rapid increase in tyrosine phosphorylation which is regulated by both the CD45 transmembrane protein tyrosine phosphatase and by intracellular protein tyrosine kinases. The Src-family members, Fyn and Lck, have been implicated in T-cell receptor signalling and may be regulated by CD45.
Collapse
Affiliation(s)
- A Shaw
- Washington University School of Medicine, St Louis, Missouri
| | | |
Collapse
|