1
|
Lin CH, Wang Z, Duque-Afonso J, Wong SHK, Demeter J, Loktev AV, Somervaille TCP, Jackson PK, Cleary ML. Oligomeric self-association contributes to E2A-PBX1-mediated oncogenesis. Sci Rep 2019; 9:4915. [PMID: 30894657 PMCID: PMC6426973 DOI: 10.1038/s41598-019-41393-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 03/04/2019] [Indexed: 11/16/2022] Open
Abstract
The PBX1 homeodomain transcription factor is converted by t(1;19) chromosomal translocations in acute leukemia into the chimeric E2A-PBX1 oncoprotein. Fusion with E2A confers potent transcriptional activation and constitutive nuclear localization, bypassing the need for dimerization with protein partners that normally stabilize and regulate import of PBX1 into the nucleus, but the mechanisms underlying its oncogenic activation are incompletely defined. We demonstrate here that E2A-PBX1 self-associates through the PBX1 PBC-B domain of the chimeric protein to form higher-order oligomers in t(1;19) human leukemia cells, and that this property is required for oncogenic activity. Structural and functional studies indicate that self-association facilitates the binding of E2A-PBX1 to DNA. Mutants unable to self-associate are transformation defective, however their oncogenic activity is rescued by the synthetic oligomerization domain of FKBP, which confers conditional transformation properties on E2A-PBX1. In contrast to self-association, PBX1 protein domains that mediate interactions with HOX DNA-binding partners are dispensable. These studies suggest that oligomeric self-association may compensate for the inability of monomeric E2A-PBX1 to stably bind DNA and circumvents protein interactions that otherwise modulate PBX1 stability, nuclear localization, DNA binding, and transcriptional activity. The unique dependence on self-association for E2A-PBX1 oncogenic activity suggests potential approaches for mechanism-based targeted therapies.
Collapse
MESH Headings
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Carcinogenesis/genetics
- Cell Line, Tumor
- Chromosomes, Human, Pair 1/chemistry
- Chromosomes, Human, Pair 19/chemistry
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Pre-B-Cell Leukemia Transcription Factor 1/genetics
- Pre-B-Cell Leukemia Transcription Factor 1/metabolism
- Protein Binding
- Protein Multimerization
- Protein Stability
- Tacrolimus Binding Proteins/genetics
- Tacrolimus Binding Proteins/metabolism
- Transcription, Genetic
- Translocation, Genetic
Collapse
Affiliation(s)
- Chiou-Hong Lin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Zhong Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Sun Yat-Sen University, School of Pharmaceutical Sciences, Guangzhou, 510006, China
| | - Jesús Duque-Afonso
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Hematology and Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - Stephen Hon-Kit Wong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Janos Demeter
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alexander V Loktev
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Tim C P Somervaille
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4GJ, UK
| | - Peter K Jackson
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Michael L Cleary
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
2
|
Lin CH, Wong SHK, Kurzer JH, Schneidawind C, Wei MC, Duque-Afonso J, Jeong J, Feng X, Cleary ML. SETDB2 Links E2A-PBX1 to Cell-Cycle Dysregulation in Acute Leukemia through CDKN2C Repression. Cell Rep 2018; 23:1166-1177. [PMID: 29694893 PMCID: PMC5963704 DOI: 10.1016/j.celrep.2018.03.124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/23/2018] [Accepted: 03/27/2018] [Indexed: 11/26/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is associated with significant morbidity and mortality, necessitating further improvements in diagnosis and therapy. Targeted therapies directed against chromatin regulators are emerging as promising approaches in preclinical studies and early clinical trials. Here, we demonstrate an oncogenic role for the protein lysine methyltransferase SETDB2 in leukemia pathogenesis. It is overexpressed in pre-BCR+ ALL and required for their maintenance in vitro and in vivo. SETDB2 expression is maintained as a direct target gene of the chimeric transcription factor E2A-PBX1 in a subset of ALL and suppresses expression of the cell-cycle inhibitor CDKN2C through histone H3K9 tri-methylation, thus establishing an oncogenic pathway subordinate to E2A-PBX1 that silences a major tumor suppressor in ALL. In contrast, SETDB2 was relatively dispensable for normal hematopoietic stem and progenitor cell proliferation. SETDB2 knockdown enhances sensitivity to kinase and chromatin inhibitors, providing a mechanistic rationale for targeting SETDB2 therapeutically in ALL.
Collapse
Affiliation(s)
- Chiou-Hong Lin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephen Hon-Kit Wong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Jason H Kurzer
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Corina Schneidawind
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Hematology and Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Michael C Wei
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jesús Duque-Afonso
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Hematology and Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - Johan Jeong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xuhui Feng
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael L Cleary
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Frasca D, Romero M, Landin AM, Diaz A, Riley RL, Blomberg BB. Protein phosphatase 2A (PP2A) is increased in old murine B cells and mediates p38 MAPK/tristetraprolin dephosphorylation and E47 mRNA instability. Mech Ageing Dev 2010; 131:306-14. [PMID: 20219523 DOI: 10.1016/j.mad.2010.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/09/2010] [Accepted: 02/20/2010] [Indexed: 11/18/2022]
Abstract
The transcription factor E47, which regulates immunoglobulin class switch in murine splenic B cells, is down-regulated in aged B cells due to reduced mRNA stability. Part of the decreased stability of E47 mRNA is mediated by tristetraprolin (TTP), a physiological regulator of mRNA stability. We have previously shown that TTP mRNA and protein expression are higher in old B cells, and the protein is less phosphorylated in old B cells, both of which lead to more binding of TTP to the 3'-UTR of E47 mRNA, thereby decreasing its stability. PP2A is a protein phosphatase that plays an important role in the regulation of a number of major signaling pathways. Herein we show that not only the amount but also the activity of PP2A is increased in old B cells. As a consequence of this higher phosphatase activity in old B cells, p38 MAPK and TTP (either directly or indirectly by PP2A) are less phosphorylated as compared with young B cells. PP2A dephosphorylation of p38 MAPK and/or TTP likely generates more binding of the hypophosphorylated TTP to the E47 mRNA, inducing its degradation. This mechanism may be at least in part responsible for the age-related decrease in class switch.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, P.O. Box 016960 (R-138), Miami, FL 33101, USA
| | | | | | | | | | | |
Collapse
|
4
|
Song S, Cooperman J, Letting DL, Blobel GA, Choi JK. Identification of cyclin D3 as a direct target of E2A using DamID. Mol Cell Biol 2004; 24:8790-802. [PMID: 15367695 PMCID: PMC516727 DOI: 10.1128/mcb.24.19.8790-8802.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor E2A can promote precursor B cell expansion, promote G(1) cell cycle progression, and induce the expressions of multiple G(1)-phase cyclins. To better understand the mechanism by which E2A induces these cyclins, we characterized the relationship between E2A and the cyclin D3 gene promoter. E2A transactivated the 1-kb promoter of cyclin D3, which contains two E boxes. However, deletion of the E boxes did not disrupt the transactivation by E2A, raising the possibility of indirect activation via another transcription factor or binding of E2A to non-E-box DNA elements. To distinguish between these two possibilities, promoter occupancy was examined using the DamID approach. A fusion construct composed of E2A and the Escherichia coli DNA adenosine methyltransferase (E47Dam) was subcloned in lentivirus vectors and used to transduce precursor B-cell and myeloid progenitor cell lines. In both cell types, specific adenosine methylation was identified at the cyclin D3 promoter. Chromatin immunoprecipitation analysis confirmed the DamID findings and localized the binding to within 1 kb of the two E boxes. The methylation by E47Dam was not disrupted by mutations in the E2A portion that block DNA binding. We conclude that E2A can be recruited to the cyclin D3 promoter independently of E boxes or E2A DNA binding activity.
Collapse
Affiliation(s)
- Siyuan Song
- Children's Hospital of Philadelphia, 802F ARC, 3516 Civic Center Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
5
|
Jishage M, Fujino T, Yamazaki Y, Kuroda H, Nakamura T. Identification of target genes for EWS/ATF-1 chimeric transcription factor. Oncogene 2003; 22:41-9. [PMID: 12527906 DOI: 10.1038/sj.onc.1206074] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromatin immunoprecipitation is a useful technique to detect in vivo direct interaction between any transcription factor and its binding site on genomic DNA. We applied this skill to identify the direct target gene for EWS/ATF-1 by coupling with a GFP reporter assay. This novel approach isolated 62 of cloned DNA fragments responding upon EWS/ATF-1 expression and 16 of 62 clones included putative ATF-1 binding sites. Further analysis revealed that six of the cloned fragments included possible regulatory regions of ATM, GPP34, ARNT2, NKX6.1, NYD-SP28 and POSH. Most of these clones upregulated reporter activity by overexpression of EWS/ATF-1, suggesting that putative ATF-1 binding sites in these clones are functional elements for ATF-1 in vivo. Consistently, endogenous expression of these genes was upregulated by EWS/ATF-1. Interestingly, the clone containing the promoter region of POSH, which is known to be a strong inducer of apoptosis, repressed reporter activity by overexpression of EWS/ATF-1. Correspondingly, EWS/ATF-1 expression decreased endogenous POSH expression, suggesting that six isolated genes may be involved in direct regulation by EWS/ATF-1. Moreover, induction of POSH brought apoptotic cell death to KAS, the clear cell sarcoma (CCS) cell line, suggesting that repressed expression of POSH in CCS may be relevant to the normal signaling pathway in apoptosis.
Collapse
Affiliation(s)
- Miki Jishage
- Department of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | | | | | | |
Collapse
|
6
|
Greenbaum S, Zhuang Y. Identification of E2A target genes in B lymphocyte development by using a gene tagging-based chromatin immunoprecipitation system. Proc Natl Acad Sci U S A 2002; 99:15030-5. [PMID: 12415115 PMCID: PMC137539 DOI: 10.1073/pnas.232299999] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The transcription factors encoded by the E2A gene are known to be essential for B lymphocyte development, and ectopic expression or gene inactivation studies have revealed several potential lineage-specific E2A target genes. However, it remains unknown whether these target genes are directly regulated by E2A at the transcriptional level. We therefore generated mice carrying an affinity-tagged E2A knock-in allele to provide a system for the direct elucidation of E2A target genes based on E2A binding to target regulatory regions. Abelson-transformed pre-B cell lines derived from these mice were used in chromatin immunoprecipitation experiments to identify regulatory sequences bound by E2A in the context of an early B lymphocyte environment. Significant E2A binding was detected at the promoters and enhancers of several essential B-lineage genes, including the Igkappa intronic and 3' enhancers, lambda5 and VpreB surrogate light chain promoters, the EBF locus promoter region, and the mb-1 (Igalpha) promoter. Low levels of E2A binding were observed at several other lymphoid-restricted regulatory regions including the Ig heavy chain (IgH) intronic enhancer, the IgH 3' enhancers hs3b/hs4, the RAG-2 enhancer, and the 5' regions of the B29 and TdT loci. An E2A target gene, the predicted butyrophilin-like gene NG9 (BTL-II), was also identified by using a chromatin immunoprecipitation-based cloning strategy. In summary, our studies have provided evidence that E2A is directly involved in the transcriptional regulation of a number of early B-lineage genes.
Collapse
Affiliation(s)
- Stephen Greenbaum
- Department of Immunology, Duke University Medical Center, Box 3010, Durham, NC 27710, USA
| | | |
Collapse
|
7
|
Smith KS, Rhee JW, Cleary ML. Transformation of bone marrow B-cell progenitors by E2a-Hlf requires coexpression of Bcl-2. Mol Cell Biol 2002; 22:7678-87. [PMID: 12370314 PMCID: PMC135651 DOI: 10.1128/mcb.22.21.7678-7688.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2002] [Revised: 05/28/2002] [Accepted: 07/30/2002] [Indexed: 11/20/2022] Open
Abstract
The chimeric transcription factor E2a-Hlf is an oncoprotein associated with a subset of acute lymphoblastic leukemias of early B-lineage derivation. We employed a retroviral transduction-transplantation approach to evaluate the oncogenic effects of E2a-Hlf on murine B-cell progenitors harvested from adult bone marrow. Expression of E2a-Hlf induced short-lived clusters of primary hematopoietic cells but no long-term growth on preformed bone marrow stromal cell layers comprised of the AC6.21 cell line. Coexpression with Bcl-2, however, resulted in the sustained self-renewal of early preB-I cells that required stromal and interleukin-7 (IL-7) support for growth in vitro. Immortalized cells were unable to induce leukemias after transplantation into nonirradiated syngeneic hosts, unlike the leukemic properties and cytokine independence of preB-I cells transformed by p190(Bcr-Abl) under identical in vitro conditions. However, bone marrow cells expressing E2a-Hlf in combination with Bcl-2, but not E2a-Hlf alone, induced leukemias in irradiated recipients with long latencies, demonstrating both a requirement for suppression of apoptosis and the need for further secondary mutations in leukemia pathogenesis. Coexpression of IL-7 substituted for Bcl-2 to induce the in vitro growth of pre-B cells expressing E2a-Hlf, but leukemic conversion required additional abrogation of undefined stromal requirements and was associated with alterations in the Arf/Mdm2/p53 pathway. Thus, E2a-Hlf enhances the self-renewal of bone marrow B-cell progenitors without inciting a p53 tumor surveillance response or abrogating stromal and cytokine requirements for growth, which are nevertheless abrogated during progression to a leukemogenic phenotype.
Collapse
Affiliation(s)
- Kevin S Smith
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
8
|
Herblot S, Aplan PD, Hoang T. Gradient of E2A activity in B-cell development. Mol Cell Biol 2002; 22:886-900. [PMID: 11784864 PMCID: PMC133542 DOI: 10.1128/mcb.22.3.886-900.2002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2001] [Revised: 07/10/2001] [Accepted: 11/06/2001] [Indexed: 11/20/2022] Open
Abstract
The E2A locus is a frequent target of chromosomal translocations in B-cell acute lymphoblastic leukemia (B-ALL). E2A encodes two products, E12 and E47, that are part of the basic helix-loop-helix (bHLH) family of transcription factors and are central in B lineage differentiation. E2A haplo-insufficiency hinders progression through three major checkpoints in B-cell development: commitment into the B lineage, at the pro-B to pre-B transition, and in the induction of immunoglobulin M (IgM) expression required for a functional BCR. These observations underscore the importance of E2A gene dosage in B-cell development. Here we show that a higher proportion of pro-B cells in E2A(+/-) mice is in the cell cycle compared to that in wild-type littermates. This increase correlates with lower p21(waf/cip1) levels, indicating that E2A has an antiproliferative function in B-cell progenitors. Ectopic expression in the B lineage of SCL/Tal1, a tissue-specific bHLH factor that inhibits E2A function, blocks commitment into the B lineage without affecting progression through later stages of differentiation. Furthermore, ectopic SCL expression exacerbates E2A haplo-insufficiency in B-cell differentiation, indicating that SCL genetically interacts with E2A. Taken together, these observations provide evidence for a gradient of E2A activity that increases from the pre-pro-B to the pre-B stage and suggest a model in which low levels of E2A (as in pro-B cells) are sufficient to control cell growth, while high levels (in pre-B cells) are required for cell differentiation. The antiproliferative function of E2A further suggests that in B-ALL associated with t(1;19) and t(17;19), the disruption of one E2A allele contributes to leukemogenesis, in addition to other anomalies induced by E2A fusion proteins.
Collapse
Affiliation(s)
- Sabine Herblot
- The Clinical Research Institute of Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
9
|
Abstract
Helix-loop-helix (HLH) proteins are essential factors for lymphocyte development and function. One class of HLH proteins, the E-proteins, regulate many aspects of lymphocyte maturation, survival, proliferation, and differentiation. E-proteins are negatively regulated by another class of HLH proteins known as the Id proteins. The Id proteins function as dominant negative inhibitors of E-proteins by inhibiting their ability to bind DNA. Here we discuss the function and regulation of the Id proteins in lymphocyte development.
Collapse
Affiliation(s)
- R Rivera
- Division of Biology, 0366, University of California at San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
10
|
Jordan-Sciutto KL, Dragich JM, Rhodes JL, Bowser R. Fetal Alz-50 clone 1, a novel zinc finger protein, binds a specific DNA sequence and acts as a transcriptional regulator. J Biol Chem 1999; 274:35262-8. [PMID: 10575013 PMCID: PMC3670955 DOI: 10.1074/jbc.274.49.35262] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Fetal Alz-50 clone 1 (FAC1) is a novel, developmentally regulated gene that exhibits changes in protein expression and subcellular localization during neuronal development and neurodegeneration. To understand the functional implications of altered subcellular localization, we have established a normal cellular function of FAC1. The FAC1 amino acid sequence contains regional homology to transcriptional regulators. Using the polymerase chain reaction-assisted binding site selection assay, we have identified a DNA sequence recognized by recombinant FAC1. Mutation of any 2 adjacent base pairs in the identified binding site dramatically reduced the binding preference of FAC1, demonstrating that the binding is specific for the identified site. Nuclear extracts from neural and non-neural cell lines contained a DNA-binding activity with similar specificity and nucleotide requirements as the recombinant FAC1 protein. This DNA-binding activity can be attributed to FAC1 since it is dependent upon the presence of FAC1 and behaves identically on a nondenaturing polyacrylamide gel as transiently transfected FAC1. In NIH3T3 cells, luciferase reporter plasmids containing the identified binding site (CACAACAC) were repressed by cotransfected FAC1 whether the binding site was proximal or distal to the transcription initiation site. This study indicates that FAC1 is a DNA-binding protein that functions as a transcription factor when localized to the nucleus.
Collapse
Affiliation(s)
- Kelly L. Jordan-Sciutto
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Joanna M. Dragich
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - James L. Rhodes
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Robert Bowser
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
11
|
Smith KS, Rhee JW, Naumovski L, Cleary ML. Disrupted differentiation and oncogenic transformation of lymphoid progenitors in E2A-HLF transgenic mice. Mol Cell Biol 1999; 19:4443-51. [PMID: 10330184 PMCID: PMC104403 DOI: 10.1128/mcb.19.6.4443] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/1998] [Accepted: 03/10/1999] [Indexed: 11/20/2022] Open
Abstract
The hepatic leukemia factor (HLF) gene codes for a basic region-leucine zipper (bZIP) protein that is disrupted by chromosomal translocations in a subset of pediatric acute lymphoblastic leukemias. HLF undergoes fusions with the E2A gene, resulting in chimeric E2a-Hlf proteins containing the E2a transactivation domains and the Hlf bZIP DNA binding and dimerization motifs. To investigate the in vivo role of this chimeric bZIP protein in oncogenic transformation, its expression was directed to the lymphoid compartments of transgenic mice. Within the thymus, E2a-Hlf induced profound hypoplasia, premature involution, and progressive accumulation of a T-lineage precursor population arrested at an early stage of maturation. In the spleen, mature T cells were present but in reduced numbers, and they lacked expression of the transgene, suggesting further that E2a-Hlf expression was incompatible with T-cell differentiation. In contrast, mature splenic B cells expressed E2a-Hlf but at lower levels and without apparent adverse or beneficial effects on their survival. Approximately 60% of E2A-HLF mice developed lymphoid malignancies with a mean latency of 10 months. Tumors were monoclonal, consistent with a requirement for secondary genetic events, and displayed phenotypes of either mid-thymocytes or, rarely, B-cell progenitors. We conclude that E2a-Hlf disrupts the differentiation of T-lymphoid progenitors in vivo, leading to profound postnatal thymic depletion and rendering B- and T-cell progenitors susceptible to malignant transformation.
Collapse
Affiliation(s)
- K S Smith
- Department of Pathology, Stanford University Medical Center, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
12
|
Rutherford MN, LeBrun DP. Restricted expression of E2A protein in primary human tissues correlates with proliferation and differentiation. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 153:165-73. [PMID: 9665477 PMCID: PMC1852936 DOI: 10.1016/s0002-9440(10)65557-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
E2A is a basic helix-loop-helix (bHLH) transcription factor required for B cell lymphopoiesis and implicated in myogenesis and the regulation of insulin expression. As E2A is expressed widely in tissues, tissue-specific downstream effects are thought to result primarily from dimerization with other bHLH proteins. To investigate the degree to which regulation of E2A protein abundance may serve to regulate E2A function, expression of E2A was evaluated using immunohistochemistry on histological sections of primary human tissues. Somewhat surprisingly, nuclear staining for E2A was restricted in all tissues examined, often to a small subpopulation of cells. In some tissues, such as adult liver, expression was absent or limited to rare infiltrating lymphocytes. E2A-expressing cells were most abundant in lymphoid tissues. In tonsil, lymph node, and spleen, expression appeared most abundant and prevalent among rapidly proliferating centroblasts of the germinal center dark zone. Scattered E2A-expressing thymocytes were more numerous in the thymic cortex than medulla. In developing skeletal muscle, E2A was detectable in striated myotubes but not in more primitive mononucleated progenitors or mature muscle. Differential E2A expression was also noted in proliferating periventricular neuroepithelial cells in the developing brain. These results suggest that regulation of E2A abundance complements protein-protein interactions in modulating E2A function.
Collapse
Affiliation(s)
- M N Rutherford
- Department of Pathology, Richardson Laboratory, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
13
|
Berland R, Wortis HH. An NFAT-Dependent Enhancer Is Necessary for Anti-IgM-Mediated Induction of Murine CD5 Expression in Primary Splenic B Cells. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.1.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
CD5 is a 67-kDa membrane glycoprotein the expression of which in murine splenic B cells is induced by surface IgM cross-linking. To analyze this induction, we transiently transfected primary splenic B cells with luciferase reporter constructs driven by various wild-type and mutated CD5 5′-flanking sequences. The transfected cells were subsequently cultured in medium with or without F(ab′)2 anti-IgM (anti-IgM), and luciferase expression was assayed. Using this approach, we identified a 122-bp enhancer element necessary for anti-IgM-mediated induction of the CD5 promoter. Electrophoretic mobility shift assays indicated that four inducible and four constitutive complexes form on the enhancer fragment in nuclear extracts of primary B cells. Supershift assays revealed that two of the inducible complexes contained NFATc. Point mutations that abolished NFAT binding severely impaired enhancer function. Thus, CD5 is a target of NFAT in B cells. A third inducible complex required an intact H4TF-1 site. One of several constitutive complexes required an intact Ebox site while a second required an intact putative ets binding site. Mutation of the H4TF-1, Ebox, and Ets sites, in the presence of wild-type NFAT sites, significantly reduced the activity of the enhancer. Therefore, the induction of B cell CD5 expression requires NFAT binding and binding to at least one of three additional sites in the CD5 enhancer.
Collapse
Affiliation(s)
- Robert Berland
- Department of Pathology and Program in Immunology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA 02111
| | - Henry H. Wortis
- Department of Pathology and Program in Immunology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA 02111
| |
Collapse
|
14
|
Chang CP, Jacobs Y, Nakamura T, Jenkins NA, Copeland NG, Cleary ML. Meis proteins are major in vivo DNA binding partners for wild-type but not chimeric Pbx proteins. Mol Cell Biol 1997; 17:5679-87. [PMID: 9315626 PMCID: PMC232416 DOI: 10.1128/mcb.17.10.5679] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Pbx1 and Meis1 proto-oncogenes code for divergent homeodomain proteins that are targets for oncogenic mutations in human and murine leukemias, respectively, and implicated by genetic analyses to functionally collaborate with Hox proteins during embryonic development and/or oncogenesis. Although Pbx proteins have been shown to dimerize with Hox proteins and modulate their DNA binding properties in vitro, the biochemical compositions of endogenous Pbx-containing complexes have not been determined. In the present study, we demonstrate that Pbx and Meis proteins form abundant complexes that comprise a major Pbx-containing DNA binding activity in nuclear extracts of cultured cells and mouse embryos. Pbx1 and Meis1 dimerize in solution and cooperatively bind bipartite DNA sequences consisting of directly adjacent Pbx and Meis half sites. Pbx1-Meis1 heterodimers display distinctive DNA binding specificities and cross-bind to a subset of Pbx-Hox sites, including those previously implicated as response elements for the execution of Pbx-dependent Hox programs in vivo. Chimeric oncoprotein E2a-Pbx1 is unable to bind DNA with Meis1, due to the deletion of amino-terminal Pbx1 sequences following fusion with E2a. We conclude that Meis proteins are preferred in vivo DNA binding partners for wild-type Pbx1, a relationship that is circumvented by its oncogenic counterpart E2a-Pbx1.
Collapse
Affiliation(s)
- C P Chang
- Department of Pathology, Stanford University Medical Center, California 94305, USA
| | | | | | | | | | | |
Collapse
|
15
|
Saisanit S, Sun XH. Regulation of the pro-B-cell-specific enhancer of the Id1 gene involves the C/EBP family of proteins. Mol Cell Biol 1997; 17:844-50. [PMID: 9001238 PMCID: PMC231810 DOI: 10.1128/mcb.17.2.844] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Id1 protein acts as a negative regulator in early-B-cell differentiation by antagonizing the function of the basic helix-loop-helix transcription factors. Expression of the Id1 gene during B-cell development is governed at the transcriptional level primarily by a pro-B-cell-specific enhancer (PBE) located 3 kb downstream of the gene. We report here the identification of CAAT/enhancer binding protein beta (C/EBPbeta) as a component of the two major PBE-binding complexes (PBEC1 and PBEC2) found in pro-B cells by gel mobility shift assays. Formation of the PBECs is abolished when a classic C/EBP binding site is used as a competitor, and binding complexes similar to the PBECs are formed when the classic C/EBP site is used as a probe. We show that CHOP, a negative regulator of C/EBPs, specifically inhibits PBE binding in vitro and its enhancer activity in vivo. In pro-B cells, C/EBPbeta binds to the PBE site not as apparent homodimers but possibly in association with at least one other polypeptide, which might determine the pro-B-cell-specific expression of the Id1 gene. Although isoforms of C/EBPbeta are expressed in various B cells, they bind to DNA only in LyD9 and Ba/F3 pro-B cells. We show that CHOP is expressed in 70Z/3 and WEHI-231 cells. We also demonstrate that CHOP is associated with C/EBPbeta in WEHI-231 cells, which may provide an additional mechanism to control the function of C/EBPbeta and the expression of the Id1 gene.
Collapse
Affiliation(s)
- S Saisanit
- Department of Cell Biology, New York University Medical Center, New York, New York 10016, USA
| | | |
Collapse
|
16
|
Chang CP, de Vivo I, Cleary ML. The Hox cooperativity motif of the chimeric oncoprotein E2a-Pbx1 is necessary and sufficient for oncogenesis. Mol Cell Biol 1997; 17:81-8. [PMID: 8972188 PMCID: PMC231732 DOI: 10.1128/mcb.17.1.81] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
E2a-Pbx1 chimeric oncoproteins result from fusion of the E2A and PBX1 genes at the sites of t(1;19) chromosomal translocations in a subset acute lymphoblastic leukemias. Experimentally, E2a-Pbx1 transforms a variety of cell types, including fibroblasts, myeloid progenitors, and lymphoblasts. Structure-function studies have shown that contributions from both E2a and Pbx1 are necessary for oncogenesis, but the Pbx1 homeodomain is dispensable and the required portion of Pbx1 has not been delineated. In this study, we used deletional and site-directed mutagenesis to identify portions of Pbx1 necessary for oncogenic and transcriptional activities of E2a-Pbx1. These studies defined a motif (named the Hox cooperativity motif [HCM]) carboxy terminal to the Pbx homeodomain that is required for cooperative DNA binding, cellular transcriptional activity, and the oncogenic potential of E2a-Pbx1. The HCM is highly conserved throughout the Pbx/exd subfamily of divergent homeodomain proteins and functions in DNA-binding assays as a potential contact site for Hox dimerization. E2a-Pbx1 proteins with interstitial deletion or single-point mutations in the HCM could neither activate transcription in cellular assays nor transform NIH 3T3 cells. An E2a-Pbx1 mutant containing 50 amino acids of Pbx1b spanning the HCM but lacking the homeodomain was capable of inducing fibroblast transformation. Thus, the HCM is a necessary and sufficient contribution of Pbx1 for oncogenesis induced by E2a-Pbx1 and accounts for its homeodomain-independent transforming properties. Since subtle alterations of the Pbx HCM result in complete abrogation of transforming activity whereas the homeodomain is entirely dispensable, we conclude that interactions mediated by the HCM are more important for transformation by E2a-Pbx1 than interactions with cognate Pbx DNA sites.
Collapse
Affiliation(s)
- C P Chang
- Department of Pathology, Stanford University School of Medicine, California 94305, USA
| | | | | |
Collapse
|
17
|
Sloan SR, Shen CP, McCarrick-Walmsley R, Kadesch T. Phosphorylation of E47 as a potential determinant of B-cell-specific activity. Mol Cell Biol 1996; 16:6900-8. [PMID: 8943345 PMCID: PMC231693 DOI: 10.1128/mcb.16.12.6900] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The E2A gene encodes two basic helix-loop-helix proteins designated E12 and E47. Although these proteins are widely expressed, they are required only for the B-lymphocyte lineage where DNA binding is mediated distinctively by E47 homodimers. By studying the properties of deltaE47, an N-terminal truncation of E47, we provide evidence that phosphorylation may contribute to B-cell-specific DNA binding by E47. Two serines N terminal to the deltaE47 basic helix-loop-helix domain were found to be phosphorylated in a variety of cell types but were hypophosphorylated in B cells. Phosphorylating these serines in vitro inhibited DNA binding by deltaE47 homodimers but not by deltaE47-containing heterodimers, such as deltaE47:MyoD. These results argue that hypophosphorylation may be a prerequisite for activity of E47 homodimers in B cells, suggesting the use of an inductive (nonstochastic) step in early B-cell development.
Collapse
Affiliation(s)
- S R Sloan
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
18
|
Serup P, Jensen J, Andersen FG, Jørgensen MC, Blume N, Holst JJ, Madsen OD. Induction of insulin and islet amyloid polypeptide production in pancreatic islet glucagonoma cells by insulin promoter factor 1. Proc Natl Acad Sci U S A 1996; 93:9015-20. [PMID: 8799146 PMCID: PMC38587 DOI: 10.1073/pnas.93.17.9015] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Insulin promoter factor 1 (IPF1), a member of the homeodomain protein family, serves an early role in pancreas formation, as evidenced by the lack of pancreas formation in mice carrying a targeted disruption of the IPF1 gene [Jonsson, J., Carlsson, L., Edlund, T. & Edlund, H. (1994) Nature (London) 371, 606-609]. In adults, IPF1 expression is restricted to the beta-cells in the islets of Langerhans. We report here that IPF1 induces expression of a subset of beta-cell-specific genes (insulin and islet amyloid polypeptide) when ectopically expressed in clones of transformed pancreatic islet alpha-cells. In contrast, expression of IPF1 in rat embryo fibroblasts factor failed to induce insulin and islet amyloid polypeptide expression. This is most likely due to the lack of at least one other essential insulin gene transcription factor, the basic helix-loop-helix protein Beta 2/NeuroD, which is expressed in both alpha- and beta-cells. We conclude that IPF1 is a potent transcriptional activator of endogenous insulin genes in non-beta islet cells, which suggests an important role of IPF1 in beta-cell maturation.
Collapse
Affiliation(s)
- P Serup
- Hagedorn Research Institute, Gentofte, Denmark
| | | | | | | | | | | | | |
Collapse
|
19
|
Vitola SJ, Wang A, Sun XH. Substitution of basic amino acids in the basic region stabilizes DNA binding by E12 homodimers. Nucleic Acids Res 1996; 24:1921-7. [PMID: 8657575 PMCID: PMC145871 DOI: 10.1093/nar/24.10.1921] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The E2A gene encodes two alternatively spliced products, E12 and E47. The two proteins differ in their basic helix-loop-helix motifs (bHLH), responsible for DNA binding and dimerization. Although both E12 and E47 can bind to DNA as heterodimers with tissue-specific bHLH proteins, E12 binds to DNA poorly as homodimers. An inhibitory domain in E12 has previously been found to prevent E12 homodimers from binding to DNA. By measuring the dissociation rates using filter binding and electrophoretic mobility shift assays, we have shown here that the inhibitory domain interferes with DNA binding by destabilizing the DNA-protein complexes. Furthermore, we have demonstrated that substitution of basic amino acids (not other amino acids) in the DNA-binding domain of E12 can increase the intrinsic DNA-binding activity of E12 and stabilize the binding complexes, thus alleviating the repression from the inhibitory domain. This ability of basic amino acids to stabilize DNA-binding complexes may be of biological significance in the case of myogenic bHLH proteins, which all possess two more basic amino acids in their DNA binding domain than E12. To function as heterodimers with E12, the myogenic bHLH proteins may need stronger DNA binding domains.
Collapse
Affiliation(s)
- S J Vitola
- Department of Cell Biology, New York University Medical Center, NY 10016, USA
| | | | | |
Collapse
|
20
|
Miyamoto A, Cui X, Naumovski L, Cleary ML. Helix-loop-helix proteins LYL1 and E2a form heterodimeric complexes with distinctive DNA-binding properties in hematolymphoid cells. Mol Cell Biol 1996; 16:2394-401. [PMID: 8628307 PMCID: PMC231228 DOI: 10.1128/mcb.16.5.2394] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
LYL1 is a basic helix-loop-helix (HLH) protein that was originally discovered because of its translocation into the beta T-cell receptor locus in an acute lymphoblastic leukemia. LYL1 is expressed in many hematolymphoid cells, with the notable exceptions of thymocytes and T cells. Using the yeast two-hybrid system to screen a cDNA library constructed from B cells, we identified the E-box-binding proteins E12 and E47 as potential lymphoid dimerization partners for LYL1. The interaction of LYL1 with E2a proteins was further characterized in vitro and shown to require the HLH motifs of both proteins. Immunoprecipitation analyses showed that in T-ALL and other cell lines, endogenous LYL1 exists in a complex with E2a proteins. A preferred DNA-binding sequence, 5'-AACAGATG(T/g)T-3', for the LYL1-E2a heterodimer was determined by PCR-assisted site selection. Endogenous protein complexes containing both LYL1 and E2a bound this sequence in various LYL1-expressing cell lines and could distinguish between the LYL1 consensus and muE2 sites. These data demonstrate that E2a proteins serve as dimerization partners for the basic HLH protein LYL1 to form complexes with distinctive DNA-binding properties and support the hypothesis that the leukemic properties of the LYL1 and TAL subfamily of HLH proteins could be mediated by recognition of a common set of target genes as heterodimeric complexes with class I HLH proteins.
Collapse
Affiliation(s)
- A Miyamoto
- Laboratory of Experimental Pathology, Stanford University School of Medicine, California 94305, USA
| | | | | | | |
Collapse
|
21
|
Chang CP, Brocchieri L, Shen WF, Largman C, Cleary ML. Pbx modulation of Hox homeodomain amino-terminal arms establishes different DNA-binding specificities across the Hox locus. Mol Cell Biol 1996; 16:1734-45. [PMID: 8657149 PMCID: PMC231160 DOI: 10.1128/mcb.16.4.1734] [Citation(s) in RCA: 241] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pbx cofactors are implicated to play important roles in modulating the DNA-binding properties of heterologous homeodomain proteins, including class I Hox proteins. To assess how Pbx proteins influence Hox DNA-binding specificity, we used a binding-site selection approach to determine high-affinity target sites recognized by various Pbx-Hox homeoprotein complexes. Pbx-Hox heterodimers preferred to bind a bipartite sequence 5'-ATGATTNATNN-3' consisting of two adjacent half sites in which the Pbx component of the heterodimer contacted the 5' half (ATGAT) and the Hox component contacted the more variable 3' half (TNATNN). Binding sites matching the consensus were also obtained for Pbx1 complexed with HoxA10, which lacks a hexapeptide but requires a conserved tryptophan-containing motif for cooperativity with Pbx. Interactions with Pbx were found to play an essential role in modulating Hox homeodomain amino-terminal arm contact with DNA in the core of the Hox half site such that heterodimers of different compositions could distinguish single nucleotide alterations in the Hox half site both in vitro and in cellular assays measuring transactivation. When complexed with Pbx, Hox proteins B1 through B9 and A10 showed stepwise differences in their preferences for nucleotides in the Hox half site core (TTAT to TGAT, 5' to 3') that correlated with the locations of their respective genes in the Hox cluster. These observations demonstrate previously undetected DNA-binding specificity for the amino-terminal arm of the Hox homeodomain and suggest that different binding activities of Pbx-Hox complexes are at least part of the position-specific activities of the Hox genes.
Collapse
Affiliation(s)
- C P Chang
- Department of Pathology, Stanford University, California 94305, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
B cells express a unique E-box-binding activity that contains basic helix-loop-helix (bHLH) proteins encoded by the E2A gene. E2A proteins play a central role in immunoglobulin gene transcription and are also required for the generation of the B-lymphocyte lineage. In muscle, E2A proteins bind DNA as heterodimers with muscle-specific bHLH partners, such as MyoD and myogenin, and these heterodimers are thought to be both necessary and sufficient for muscle determination in cultured cells. Our results indicate that in B cells, the bHLH partners for E2A proteins are not B-cell-restricted proteins, but are the E2A proteins themselves. UV cross-linking, gel purification, and the analysis of "forced heterodimers" indicate that BCF1 is primarily a homodimer of the E2A protein E47. Since E47 is widely expressed, our results argue for a difference in the inherent DNA-binding properties of the E47 protein in B cells and may help explain the restricted B-lineage defect observed in E2A-deficient mice.
Collapse
Affiliation(s)
- C P Shen
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | |
Collapse
|
23
|
Transformation properties of the E2a-Pbx1 chimeric oncoprotein: fusion with E2a is essential, but the Pbx1 homeodomain is dispensable. Mol Cell Biol 1994. [PMID: 7969166 DOI: 10.1128/mcb.14.12.8304] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The t(1;19) chromosomal translocation in acute lymphoblastic leukemias creates chimeric E2a-Pbx1 oncoproteins that can act as DNA-binding activators of transcription. A structural analysis of the functional domains of E2a-Pbx1 showed that portions of both E2a and Pbx1 were essential for transformation of NIH 3T3 cells and transcriptional activation of synthetic reporter genes containing PBX1 consensus binding sites. Hyperexpression of wild-type or experimentally truncated Pbx1 proteins was insufficient for transformation, consistent with their inability to activate transcription. When fused with E2a, the Pbx-related proteins Pbx2 and Pbx3 were also transformation competent, demonstrating that all known members of this highly similar subfamily of homeodomain proteins have latent oncogenic potential. The oncogenic contributions of E2a to the chimeras were localized to transactivation motifs AD1 and AD2, as their mutation significantly impaired transformation. Either the homeodomain or Pbx1 amino acids flanking this region could mediate transformation when fused to E2a. However, the homeodomain was not essential for transformation, since a mutant E2a-Pbx1 protein (E2a-Pbx delta HD) lacking the homeodomain efficiently transformed fibroblasts and induced malignant lymphomas in transgenic mice. Thus, transformation mediated by the chimeric oncoprotein E2a-Pbx1 is absolutely dependent on motifs acquired from E2a but the Pbx1 homeodomain is optional. The latter finding suggests that E2a-Pbx1 may interact with cellular proteins that assist or mediate alterations in gene expression responsible for oncogenesis even in the absence of homeodomain-DNA interactions.
Collapse
|
24
|
Monica K, LeBrun DP, Dedera DA, Brown R, Cleary ML. Transformation properties of the E2a-Pbx1 chimeric oncoprotein: fusion with E2a is essential, but the Pbx1 homeodomain is dispensable. Mol Cell Biol 1994; 14:8304-14. [PMID: 7969166 PMCID: PMC359369 DOI: 10.1128/mcb.14.12.8304-8314.1994] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The t(1;19) chromosomal translocation in acute lymphoblastic leukemias creates chimeric E2a-Pbx1 oncoproteins that can act as DNA-binding activators of transcription. A structural analysis of the functional domains of E2a-Pbx1 showed that portions of both E2a and Pbx1 were essential for transformation of NIH 3T3 cells and transcriptional activation of synthetic reporter genes containing PBX1 consensus binding sites. Hyperexpression of wild-type or experimentally truncated Pbx1 proteins was insufficient for transformation, consistent with their inability to activate transcription. When fused with E2a, the Pbx-related proteins Pbx2 and Pbx3 were also transformation competent, demonstrating that all known members of this highly similar subfamily of homeodomain proteins have latent oncogenic potential. The oncogenic contributions of E2a to the chimeras were localized to transactivation motifs AD1 and AD2, as their mutation significantly impaired transformation. Either the homeodomain or Pbx1 amino acids flanking this region could mediate transformation when fused to E2a. However, the homeodomain was not essential for transformation, since a mutant E2a-Pbx1 protein (E2a-Pbx delta HD) lacking the homeodomain efficiently transformed fibroblasts and induced malignant lymphomas in transgenic mice. Thus, transformation mediated by the chimeric oncoprotein E2a-Pbx1 is absolutely dependent on motifs acquired from E2a but the Pbx1 homeodomain is optional. The latter finding suggests that E2a-Pbx1 may interact with cellular proteins that assist or mediate alterations in gene expression responsible for oncogenesis even in the absence of homeodomain-DNA interactions.
Collapse
Affiliation(s)
- K Monica
- Department of Pathology, Stanford University Medical Center, California 94305
| | | | | | | | | |
Collapse
|
25
|
Displacement of an E-box-binding repressor by basic helix-loop-helix proteins: implications for B-cell specificity of the immunoglobulin heavy-chain enhancer. Mol Cell Biol 1994. [PMID: 8065348 DOI: 10.1128/mcb.14.9.6153] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activity of the immunoglobulin heavy-chain (IgH) enhancer is restricted to B cells, although it binds both B-cell-restricted and ubiquitous transcription factors. Activation of the enhancer in non-B cells upon overexpression of the basic helix-loop-helix (bHLH) protein E2A appears to be mediated not only by the binding of E2A to its cognate E box but also by the resulting displacement of a repressor from that same site. We have identified a "two-handed" zinc finger protein, denoted ZEB, the DNA-binding specificity of which mimics that of the cellular repressor. By employing a derivative E box that binds ZEB but not E2A, we have shown that the repressor is active in B cells and the IgH enhancer is silenced in the absence of binding competition by bHLH proteins. Hence, we propose that a necessary prerequisite of enhancer activity is the B-cell-specific displacement of a ZEB-like repressor by bHLH proteins.
Collapse
|
26
|
Genetta T, Ruezinsky D, Kadesch T. Displacement of an E-box-binding repressor by basic helix-loop-helix proteins: implications for B-cell specificity of the immunoglobulin heavy-chain enhancer. Mol Cell Biol 1994; 14:6153-63. [PMID: 8065348 PMCID: PMC359142 DOI: 10.1128/mcb.14.9.6153-6163.1994] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The activity of the immunoglobulin heavy-chain (IgH) enhancer is restricted to B cells, although it binds both B-cell-restricted and ubiquitous transcription factors. Activation of the enhancer in non-B cells upon overexpression of the basic helix-loop-helix (bHLH) protein E2A appears to be mediated not only by the binding of E2A to its cognate E box but also by the resulting displacement of a repressor from that same site. We have identified a "two-handed" zinc finger protein, denoted ZEB, the DNA-binding specificity of which mimics that of the cellular repressor. By employing a derivative E box that binds ZEB but not E2A, we have shown that the repressor is active in B cells and the IgH enhancer is silenced in the absence of binding competition by bHLH proteins. Hence, we propose that a necessary prerequisite of enhancer activity is the B-cell-specific displacement of a ZEB-like repressor by bHLH proteins.
Collapse
Affiliation(s)
- T Genetta
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19704
| | | | | |
Collapse
|
27
|
Pan/E2A expression precedes immunoglobulin heavy-chain expression during B lymphopoiesis in nontransformed cells, and Pan/E2A proteins are not detected in myeloid cells. Mol Cell Biol 1994. [PMID: 8196647 DOI: 10.1128/mcb.14.6.4087] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A newly developed rat long-term bone marrow culture system was used to study the role of Pan/E2A basic helix-loop-helix transcription factors during B-cell development. In this system, B-lymphocyte progenitors actively differentiate into mature B cells. Monoclonal (Yae) and polyclonal (anti-Pan) antibodies were employed to characterize the expression of Pan proteins by Western blot assay during hematopoiesis and to examine the components of immunoglobulin heavy-chain gene enhancer element-binding species by electrophoretic mobility shift assay. During B-cell development, the appearance of Pan/E2A proteins preceded the expression of immunoglobulin heavy-chain protein. A Pan-containing immunoglobulin heavy-chain enhancer element (mu E5)-binding species (BCF1), composed of immunoreactive Pan-1/E47 but not Pan-2/E12, was observed concomitantly with the detection of Pan/E2A proteins. In addition to BCF1, other mu E5-binding species were detected which were not recognized by the Yae antibody. Two of these species were present in primary B-lymphocyte and myeloid cultures and were recognized by an anti-upstream stimulatory factor antiserum. Although Pan/E2A proteins have been proposed to be ubiquitous, Pan/E2A proteins were not detected in primary myeloid cultures composed mainly of granulocytes and macrophages or in the macrophage cell line J774. The absence of Pan/E2A proteins in differentiated myeloid cells correlated with low steady-state levels of Pan/E2A RNA. However, Pan/E2A proteins were present in a promyeloid cell line, 32DCL3, suggesting that extinction of Pan/E2A expression may play a role in myelopoiesis.
Collapse
|
28
|
Jacobs Y, Xin XQ, Dorshkind K, Nelson C. Pan/E2A expression precedes immunoglobulin heavy-chain expression during B lymphopoiesis in nontransformed cells, and Pan/E2A proteins are not detected in myeloid cells. Mol Cell Biol 1994; 14:4087-96. [PMID: 8196647 PMCID: PMC358774 DOI: 10.1128/mcb.14.6.4087-4096.1994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A newly developed rat long-term bone marrow culture system was used to study the role of Pan/E2A basic helix-loop-helix transcription factors during B-cell development. In this system, B-lymphocyte progenitors actively differentiate into mature B cells. Monoclonal (Yae) and polyclonal (anti-Pan) antibodies were employed to characterize the expression of Pan proteins by Western blot assay during hematopoiesis and to examine the components of immunoglobulin heavy-chain gene enhancer element-binding species by electrophoretic mobility shift assay. During B-cell development, the appearance of Pan/E2A proteins preceded the expression of immunoglobulin heavy-chain protein. A Pan-containing immunoglobulin heavy-chain enhancer element (mu E5)-binding species (BCF1), composed of immunoreactive Pan-1/E47 but not Pan-2/E12, was observed concomitantly with the detection of Pan/E2A proteins. In addition to BCF1, other mu E5-binding species were detected which were not recognized by the Yae antibody. Two of these species were present in primary B-lymphocyte and myeloid cultures and were recognized by an anti-upstream stimulatory factor antiserum. Although Pan/E2A proteins have been proposed to be ubiquitous, Pan/E2A proteins were not detected in primary myeloid cultures composed mainly of granulocytes and macrophages or in the macrophage cell line J774. The absence of Pan/E2A proteins in differentiated myeloid cells correlated with low steady-state levels of Pan/E2A RNA. However, Pan/E2A proteins were present in a promyeloid cell line, 32DCL3, suggesting that extinction of Pan/E2A expression may play a role in myelopoiesis.
Collapse
Affiliation(s)
- Y Jacobs
- Department of Biochemistry, University of California, Riverside 92521
| | | | | | | |
Collapse
|