1
|
Hepowit NL, Macedo JKA, Young LEA, Liu K, Sun RC, MacGurn JA, Dickson RC. Enhancing lifespan of budding yeast by pharmacological lowering of amino acid pools. Aging (Albany NY) 2021; 13:7846-7871. [PMID: 33744865 PMCID: PMC8034917 DOI: 10.18632/aging.202849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/21/2021] [Indexed: 04/20/2023]
Abstract
The increasing prevalence of age-related diseases and resulting healthcare insecurity and emotional burden require novel treatment approaches. Several promising strategies seek to limit nutrients and promote healthy aging. Unfortunately, the human desire to consume food means this strategy is not practical for most people but pharmacological approaches might be a viable alternative. We previously showed that myriocin, which impairs sphingolipid synthesis, increases lifespan in Saccharomyces cerevisiae by modulating signaling pathways including the target of rapamycin complex 1 (TORC1). Since TORC1 senses cellular amino acids, we analyzed amino acid pools and identified 17 that are lowered by myriocin treatment. Studying the methionine transporter, Mup1, we found that newly synthesized Mup1 traffics to the plasma membrane and is stable for several hours but is inactive in drug-treated cells. Activity can be restored by adding phytosphingosine to culture medium thereby bypassing drug inhibition, thus confirming a sphingolipid requirement for Mup1 activity. Importantly, genetic analysis of myriocin-induced longevity revealed a requirement for the Gtr1/2 (mammalian Rags) and Vps34-Pib2 amino acid sensing pathways upstream of TORC1, consistent with a mechanism of action involving decreased amino acid availability. These studies demonstrate the feasibility of pharmacologically inducing a state resembling amino acid restriction to promote healthy aging.
Collapse
Affiliation(s)
- Nathaniel L. Hepowit
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Jessica K. A. Macedo
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Lyndsay E. A. Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Ke Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan University, Chengdu 610000, Sichuan, P. R. China
| | - Ramon C. Sun
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Jason A. MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Robert C. Dickson
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
2
|
Vellanki S, Garcia AE, Lee SC. Interactions of FK506 and Rapamycin With FK506 Binding Protein 12 in Opportunistic Human Fungal Pathogens. Front Mol Biosci 2020; 7:588913. [PMID: 33195437 PMCID: PMC7596385 DOI: 10.3389/fmolb.2020.588913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Over the past few decades advances in modern medicine have resulted in a global increase in the prevalence of fungal infections. Particularly people undergoing organ transplants or cancer treatments with a compromised immune system are at an elevated risk for lethal fungal infections such as invasive candidiasis, aspergillosis, cryptococcosis, etc. The emergence of drug resistance in fungal pathogens poses a serious threat to mankind and it is critical to identify new targets for the development of antifungals. Calcineurin and TOR proteins are conserved across eukaryotes including pathogenic fungi. Two small molecules FK506 and rapamycin bind to FKBP12 immunophilin and the resulting complexes (FK506-FKBP12 and rapamycin-FKBP12) target calcineurin and TOR, respectively in both humans and fungi. However, due to their immunosuppressive nature these drugs in the current form cannot be used as an antifungal. To overcome this, it is important to identify key differences between human and fungal FKBP12, calcineurin, and TOR proteins which will facilitate the development of new small molecules with higher affinity toward fungal components. The current review highlights FK506/rapamycin-FKBP12 interactions with calcineurin/TOR kinase in human and fungi, and development of non-immunosuppressive analogs of FK506, rapamycin, and novel small molecules in inhibition of fungal calcineurin and TOR kinase.
Collapse
Affiliation(s)
- Sandeep Vellanki
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Alexis E Garcia
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Soo Chan Lee
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
3
|
A novel ER membrane protein Ehg1/May24 plays a critical role in maintaining multiple nutrient permeases in yeast under high-pressure perturbation. Sci Rep 2019; 9:18341. [PMID: 31797992 PMCID: PMC6892922 DOI: 10.1038/s41598-019-54925-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
Previously, we isolated 84 deletion mutants in Saccharomyces cerevisiae auxotrophic background that exhibited hypersensitive growth under high hydrostatic pressure and/or low temperature. Here, we observed that 24 deletion mutants were rescued by the introduction of four plasmids (LEU2, HIS3, LYS2, and URA3) together to grow at 25 MPa, thereby suggesting close links between the genes and nutrient uptake. Most of the highly ranked genes were poorly characterized, including MAY24/YPR153W. May24 appeared to be localized in the endoplasmic reticulum (ER) membrane. Therefore, we designated this gene as EHG (ER-associated high-pressure growth gene) 1. Deletion of EHG1 led to reduced nutrient transport rates and decreases in the nutrient permease levels at 25 MPa. These results suggest that Ehg1 is required for the stability and functionality of the permeases under high pressure. Ehg1 physically interacted with nutrient permeases Hip1, Bap2, and Fur4; however, alanine substitutions for Pro17, Phe19, and Pro20, which were highly conserved among Ehg1 homologues in various yeast species, eliminated interactions with the permeases as well as the high-pressure growth ability. By functioning as a novel chaperone that facilitated coping with high-pressure-induced perturbations, Ehg1 could exert a stabilizing effect on nutrient permeases when they are present in the ER.
Collapse
|
4
|
Schroeder L, Ikui AE. Tryptophan confers resistance to SDS-associated cell membrane stress in Saccharomyces cerevisiae. PLoS One 2019; 14:e0199484. [PMID: 30856175 PMCID: PMC6411118 DOI: 10.1371/journal.pone.0199484] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 02/12/2019] [Indexed: 11/18/2022] Open
Abstract
Sodium dodecyl sulfate is a detergent that disrupts cell membranes, activates cell wall integrity signaling and restricts cell growth in Saccharomyces cerevisiae. However, the underlying mechanism of how sodium dodecyl sulfate inhibits cell growth is not fully understood. Previously, we have shown that deletion of the MCK1 gene leads to sensitivity to sodium dodecyl sulfate; thus, we implemented a suppressor gene screening revealing that the overexpression of TAT2 tryptophan permease rescues cell growth in sodium dodecyl sulfate-treated Δmck1 cells. Therefore, we questioned the involvement of tryptophan in the response to sodium dodecyl sulfate treatment. In this work, we show that trp1-1 cells have a disadvantage in the response to sodium dodecyl sulfate compared to auxotrophy for adenine, histidine, leucine or uracil when cells are grown on rich media. While also critical in the response to tea tree oil, TRP1 does not avert growth inhibition due to other cell wall/membrane perturbations that activate cell wall integrity signaling such as Calcofluor White, Congo Red or heat stress. This implicates a distinction from the cell wall integrity pathway and suggests specificity to membrane stress as opposed to cell wall stress. We discovered that tyrosine biosynthesis is also essential upon sodium dodecyl sulfate perturbation whereas phenylalanine biosynthesis appears dispensable. Finally, we observe enhanced tryptophan import within minutes upon exposure to sodium dodecyl sulfate indicating that these cells are not starved for tryptophan. In summary, we conclude that internal concentration of tryptophan and tyrosine makes cells more resistant to detergent such as sodium dodecyl sulfate.
Collapse
Affiliation(s)
- Lea Schroeder
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, The United States of America
| | - Amy E Ikui
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, The United States of America
| |
Collapse
|
5
|
Amano K, Ishii R, Mochizuki T, Takatsu S, Abe F. Hyperactive mutation occurs adjacent to the essential glutamate 286 for transport in the yeast tryptophan permease Tat2. Biochem Biophys Res Commun 2019; 509:1047-1052. [DOI: 10.1016/j.bbrc.2019.01.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 01/08/2019] [Indexed: 01/09/2023]
|
6
|
Huseinovic A, Dekker SJ, Boogaard B, Vermeulen NPE, Kooter JM, Vos JC. Acetaminophen reduces the protein levels of high affinity amino acid permeases and causes tryptophan depletion. Amino Acids 2018; 50:1377-1390. [PMID: 29978260 PMCID: PMC6153950 DOI: 10.1007/s00726-018-2613-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 06/28/2018] [Indexed: 02/05/2023]
Abstract
In yeast, toxicity of acetaminophen (APAP), a frequently used analgesic and antipyretic drug, depends on ubiquitin-controlled processes. Previously, we showed a remarkable overlap in toxicity profiles between APAP and tyrosine, and a similarity with drugs like rapamycin and quinine, which induce degradation of the amino acid permease Tat2. Therefore, we investigated in yeast whether APAP reduced the expression levels of amino acid permeases. The protein levels of Tat2, Tat1, Mup1 and Hip1 were reduced, while the expression of the general permease Gap1 was increased, consistent with a nutrient starvation response. Overexpression of Tat1 and Tat2, but not Mup1, Hip1 and Gap1 conferred resistance to APAP. A tryptophan auxotrophic strain trp1Δ was more sensitive to APAP than wild-type and addition of tryptophan completely restored the growth restriction of trp1∆ upon APAP exposure, while tyrosine had an additive effect on APAP toxicity. Furthermore, intracellular aromatic amino acid concentrations were reduced upon APAP exposure. This effect was less prominent in ubiquitin-deficient yeast strains that were APAP resistant and showed a reduced degradation of high affinity amino acid permeases. APAP-induced changes in intracellular amino acid concentrations were also detected in hepatoma HepG2 cells indicating significance for humans.
Collapse
Affiliation(s)
- Angelina Huseinovic
- AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands
| | - Stefan J Dekker
- AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands
| | - Bob Boogaard
- AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands
| | - Nico P E Vermeulen
- AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands
| | - Jan M Kooter
- AIMMS, Department of Molecular Cell Biology, Section Genetics, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands
| | - J Chris Vos
- AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Torday JS. From cholesterol to consciousness. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 132:52-56. [PMID: 28830682 DOI: 10.1016/j.pbiomolbio.2017.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 11/29/2022]
Abstract
The nature of consciousness has been debated for centuries. It can be understood as part and parcel of the natural progression of life from unicellular to multicellular, calcium fluxes mediating communication within and between cells. Consciousness is the vertical integration of calcium fluxes, mediated by the Target of Rapamycin gene integrated with the cytoskeleton. The premise of this paper is that there is a fundamental physiologic integration of the organism with the environment that constitutes consciousness.
Collapse
Affiliation(s)
- John S Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, 1124 W.Carson Street, Torrance, CA 90502-2006, United States.
| |
Collapse
|
8
|
Two low complexity ultra-high throughput methods to identify diverse chemically bioactive molecules using Saccharomyces cerevisiae. Microbiol Res 2017; 199:10-18. [DOI: 10.1016/j.micres.2017.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/17/2017] [Accepted: 02/19/2017] [Indexed: 11/21/2022]
|
9
|
He C, Tsuchiyama SK, Nguyen QT, Plyusnina EN, Terrill SR, Sahibzada S, Patel B, Faulkner AR, Shaposhnikov MV, Tian R, Tsuchiya M, Kaeberlein M, Moskalev AA, Kennedy BK, Polymenis M. Enhanced longevity by ibuprofen, conserved in multiple species, occurs in yeast through inhibition of tryptophan import. PLoS Genet 2014; 10:e1004860. [PMID: 25521617 PMCID: PMC4270464 DOI: 10.1371/journal.pgen.1004860] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/29/2014] [Indexed: 11/29/2022] Open
Abstract
The common non-steroidal anti-inflammatory drug ibuprofen has been associated with a reduced risk of some age-related pathologies. However, a general pro-longevity role for ibuprofen and its mechanistic basis remains unclear. Here we show that ibuprofen increased the lifespan of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster, indicative of conserved eukaryotic longevity effects. Studies in yeast indicate that ibuprofen destabilizes the Tat2p permease and inhibits tryptophan uptake. Loss of Tat2p increased replicative lifespan (RLS), but ibuprofen did not increase RLS when Tat2p was stabilized or in an already long-lived strain background impaired for aromatic amino acid uptake. Concomitant with lifespan extension, ibuprofen moderately reduced cell size at birth, leading to a delay in the G1 phase of the cell cycle. Similar changes in cell cycle progression were evident in a large dataset of replicatively long-lived yeast deletion strains. These results point to fundamental cell cycle signatures linked with longevity, implicate aromatic amino acid import in aging and identify a largely safe drug that extends lifespan across different kingdoms of life. Aging is the greatest risk factor for many diseases, which together account for the majority of global deaths and healthcare costs. Here we show that the common drug ibuprofen increases the lifespan of yeast, worms and flies, indicative of conserved longevity effects. In budding yeast, an excellent model of cellular longevity mechanisms, ibuprofen's pro-longevity action is independent of its known anti-inflammatory role. We show that the critical function of ibuprofen in longevity is to inhibit the uptake of aromatic amino acids, by destabilizing the high-affinity tryptophan permease. We further show that ibuprofen alters cell cycle progression. Mirroring the effects of ibuprofen, we found that most yeast long-lived mutants were also similarly affected in cell cycle progression. These findings identify a safe drug that extends the lifespan of divergent organisms and reveal fundamental cellular properties associated with longevity.
Collapse
Affiliation(s)
- Chong He
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Scott K. Tsuchiyama
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Quynh T. Nguyen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Ekaterina N. Plyusnina
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
- Syktyvkar State University, Syktyvkar, Russia
| | - Samuel R. Terrill
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Sarah Sahibzada
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Bhumil Patel
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Alena R. Faulkner
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Mikhail V. Shaposhnikov
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
- Syktyvkar State University, Syktyvkar, Russia
| | - Ruilin Tian
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Mitsuhiro Tsuchiya
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Alexey A. Moskalev
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
- Syktyvkar State University, Syktyvkar, Russia
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Brian K. Kennedy
- Buck Institute for Research on Aging, Novato, California, United States of America
- * E-mail: (BKK); (MP)
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (BKK); (MP)
| |
Collapse
|
10
|
Usami Y, Uemura S, Mochizuki T, Morita A, Shishido F, Inokuchi JI, Abe F. Functional mapping and implications of substrate specificity of the yeast high-affinity leucine permease Bap2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1719-29. [PMID: 24699373 DOI: 10.1016/j.bbamem.2014.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 11/29/2022]
Abstract
Leucine is a major amino acid in nutrients and proteins and is also an important precursor of higher alcohols during brewing. In Saccharomyces cerevisiae, leucine uptake is mediated by multiple amino acid permeases, including the high-affinity leucine permease Bap2. Although BAP2 transcription has been extensively analyzed, the mechanisms by which a substrate is recognized and moves through the permease remain unknown. Recently, we determined 15 amino acid residues required for Tat2-mediated tryptophan import. Here we introduced homologous mutations into Bap2 amino acid residues and showed that 7 residues played a role in leucine import. Residues I109/G110/T111 and E305 were located within the putative α-helix break in TMD1 and TMD6, respectively, according to the structurally homologous Escherichia coli arginine/agmatine antiporter AdiC. Upon leucine binding, these α-helix breaks were assumed to mediate a conformational transition in Bap2 from an outward-open to a substrate-binding occluded state. Residues Y336 (TMD7) and Y181 (TMD3) were located near I109 and E305, respectively. Bap2-mediated leucine import was inhibited by some amino acids according to the following order of severity: phenylalanine, leucine>isoleucine>methionine, tyrosine>valine>tryptophan; histidine and asparagine had no effect. Moreover, this order of severity clearly coincided with the logP values (octanol-water partition coefficients) of all amino acids except tryptophan. This result suggests that the substrate partition efficiency to the buried Bap2 binding pocket is the primary determinant of substrate specificity rather than structural amino acid side chain recognition.
Collapse
Affiliation(s)
- Yuki Usami
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Satsohi Uemura
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Takahiro Mochizuki
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Asami Morita
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Fumi Shishido
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
| | - Jin-ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan; Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.
| |
Collapse
|
11
|
Rahman H, Qasim M, Oellerich M, Asif AR. Identification of the novel interacting partners of the mammalian target of rapamycin complex 1 in human CCRF-CEM and HEK293 cells. Int J Mol Sci 2014; 15:4823-36. [PMID: 24646917 PMCID: PMC3975426 DOI: 10.3390/ijms15034823] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 01/21/2023] Open
Abstract
The present study was undertaken to identify proteins that interact with the mammalian target of rapamycin complex 1 (mTORC1) to enable it to carry out its crucial cell signaling functions. Endogenous and myc-tag mTORC1 was purified, in-gel tryptic digested and then identified by nano-LC ESI Q-TOF MS/MS analysis. A total of nine novel interacting proteins were identified in both endogenous and myc-tag mTORC1 purifications. These new mTORC1 interacting partners include heterogeneous nuclear ribonucleoproteins A2/B1, enhancer of mRNA decapping protein 4, 60S acidic ribosomal protein, P0, nucleolin, dynamin 2, glyceraldehyde 3 phosphate dehydrogenase, 2-oxoglutarate dehydrogenase, glycosyl transferase 25 family member 1 and prohibitin 2. Furthermore hnRNP A2/B1 and dynamin 2 interaction with mTORC1 was confirmed on immunoblotting. The present study has for the first time identified novel interacting partners of mTORC1 in human T lymphoblasts (CCRF-CEM) and human embryonic kidney (HEK293) cells. These new interacting proteins may offer new targets for therapeutic interventions in human diseases caused by perturbed mTORC1 signaling.
Collapse
Affiliation(s)
- Hazir Rahman
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical Centre, Robert-Koch-Str. 40, Goettingen 37075, Germany.
| | - Muhammad Qasim
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical Centre, Robert-Koch-Str. 40, Goettingen 37075, Germany.
| | - Michael Oellerich
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical Centre, Robert-Koch-Str. 40, Goettingen 37075, Germany.
| | - Abdul R Asif
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical Centre, Robert-Koch-Str. 40, Goettingen 37075, Germany.
| |
Collapse
|
12
|
Genomic phenotyping by barcode sequencing broadly distinguishes between alkylating agents, oxidizing agents, and non-genotoxic agents, and reveals a role for aromatic amino acids in cellular recovery after quinone exposure. PLoS One 2013; 8:e73736. [PMID: 24040048 PMCID: PMC3767620 DOI: 10.1371/journal.pone.0073736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/21/2013] [Indexed: 12/22/2022] Open
Abstract
Toxicity screening of compounds provides a means to identify compounds harmful for human health and the environment. Here, we further develop the technique of genomic phenotyping to improve throughput while maintaining specificity. We exposed cells to eight different compounds that rely on different modes of action: four genotoxic alkylating (methyl methanesulfonate (MMS), N-Methyl-N-nitrosourea (MNU), N,N′-bis(2-chloroethyl)-N-nitroso-urea (BCNU), N-ethylnitrosourea (ENU)), two oxidizing (2-methylnaphthalene-1,4-dione (menadione, MEN), benzene-1,4-diol (hydroquinone, HYQ)), and two non-genotoxic (methyl carbamate (MC) and dimethyl sulfoxide (DMSO)) compounds. A library of S. cerevisiae 4,852 deletion strains, each identifiable by a unique genetic ‘barcode’, were grown in competition; at different time points the ratio between the strains was assessed by quantitative high throughput ‘barcode’ sequencing. The method was validated by comparison to previous genomic phenotyping studies and 90% of the strains identified as MMS-sensitive here were also identified as MMS-sensitive in a much lower throughput solid agar screen. The data provide profiles of proteins and pathways needed for recovery after both genotoxic and non-genotoxic compounds. In addition, a novel role for aromatic amino acids in the recovery after treatment with oxidizing agents was suggested. The role of aromatic acids was further validated; the quinone subgroup of oxidizing agents were extremely toxic in cells where tryptophan biosynthesis was compromised.
Collapse
|
13
|
Troppens DM, Dmitriev RI, Papkovsky DB, O'Gara F, Morrissey JP. Genome-wide investigation of cellular targets and mode of action of the antifungal bacterial metabolite 2,4-diacetylphloroglucinol in Saccharomyces cerevisiae. FEMS Yeast Res 2013; 13:322-34. [PMID: 23445507 DOI: 10.1111/1567-1364.12037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 02/01/2013] [Accepted: 02/02/2013] [Indexed: 01/18/2023] Open
Abstract
Saccharomyces cerevisiae is a proven model to investigate the effects of small molecules and drugs on fungal and eukaryotic cells. In this study, the mode of action of an antifungal metabolite, 2,4-diacetylphloroglucinol (DAPG), was determined. Applying a combination of genetic and physiological approaches, it was established that this bacterial metabolite acts as a proton ionophore and dissipates the proton gradient across the mitochondrial membrane. The uncoupling of respiration and ATP synthesis ultimately leads to growth inhibition and is the primary toxic effect of DAPG. A genome-wide screen identified 154 DAPG-tolerant mutants and showed that there are many alterations in cellular metabolism that can confer at least some degree of tolerance to this uncoupler. One mutant, ydc1, was studied in some more detail as it displayed increased tolerance to both DAPG and the uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) and appears to be unconnected to other tolerant mutant strains. Deleting YDC1 alters sphingolipid homoeostasis in the cell, and we suggest here that this may be linked to reduced drug sensitivity. Sphingolipids and their derivatives are important eukaryotic signal molecules, and the observation that altering homoeostasis may affect yeast response to metabolic uncoupling agents raises some intriguing questions for future studies.
Collapse
|
14
|
Gaytán BD, Loguinov AV, Lantz SR, Lerot JM, Denslow ND, Vulpe CD. Functional profiling discovers the dieldrin organochlorinated pesticide affects leucine availability in yeast. Toxicol Sci 2013; 132:347-58. [PMID: 23358190 PMCID: PMC3595527 DOI: 10.1093/toxsci/kft018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exposure to organochlorinated pesticides such as dieldrin has been linked to Parkinson’s and Alzheimer’s diseases, endocrine disruption, and cancer, but the cellular and molecular mechanisms of toxicity behind these effects remain largely unknown. Here we demonstrate, using a functional genomics approach in the model eukaryote Saccharomyces cerevisiae, that dieldrin alters leucine availability. This model is supported by multiple lines of congruent evidence: (1) mutants defective in amino acid signaling or transport are sensitive to dieldrin, which is reversed by the addition of exogenous leucine; (2) dieldrin sensitivity of wild-type or mutant strains is dependent upon leucine concentration in the media; (3) overexpression of proteins that increase intracellular leucine confer resistance to dieldrin; (4) leucine uptake is inhibited in the presence of dieldrin; and (5) dieldrin induces the amino acid starvation response. Additionally, we demonstrate that appropriate negative regulation of the Ras/protein kinase A pathway, along with an intact pyruvate dehydrogenase complex, is required for dieldrin tolerance. Many yeast genes described in this study have human orthologs that may modulate dieldrin toxicity in humans.
Collapse
Affiliation(s)
- Brandon D Gaytán
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
15
|
Rodriguez-Hernandez CJ, Guinovart JJ, Murguia JR. Anti-diabetic and anti-obesity agent sodium tungstate enhances GCN pathway activation through Glc7p inhibition. FEBS Lett 2012; 586:270-6. [PMID: 22245679 DOI: 10.1016/j.febslet.2011.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 01/14/2023]
Abstract
Tungstate counteracts diabetes and obesity in animal models, but its molecular mechanisms remain elusive. Our Saccharomyces cerevisiae-based approach has found that tungstate alleviated the growth defect induced by nutrient stress and enhanced the activation of the GCN pathway. Tungstate relieved the sensitivity to starvation of a gcn2-507 yeast hypomorphic mutant, indicating that tungstate modulated the GCN pathway downstream of Gcn2p. Interestingly, tungstate inhibited Glc7p and PP1 phosphatase activity, both negative regulators of the GCN pathway in yeast and humans, respectively. Accordingly, overexpression of a dominant-negative Glc7p mutant in yeast mimicked tungstate effects. Therefore tungstate alleviates nutrient stress in yeast by in vivo inhibition of Glc7p. These data uncover a potential role for tungstate in the treatment of PP1 and GCN related diseases.
Collapse
|
16
|
Individualized monitoring of nuclear factor of activated T cells-regulated gene expression in FK506-treated kidney transplant recipients. Transplantation 2010; 89:1417-23. [PMID: 20463649 DOI: 10.1097/tp.0b013e3181dc13b6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The suggested key mechanism of both cyclosporine A (CsA) and FK506 is the inhibition of calcineurin phosphatase activity, preventing nuclear factor of activated T cells (NFAT)-translocation into the nucleus of T cells, with a subsequent transcriptional block of crucial cytokine genes. However, the two drugs exert different clinical activities as exemplified by the ability of FK506 to treat acute rejections. Inhibition of calcineurin activity by FK506 occurs in vitro at the same or even higher dose as for CsA; however, the magnitude of clinical and experimental immunosuppression is higher, indicating that FK506 may act in a calcineurin-independent way. METHODS To test this hypothesis, we measured the inhibition of NFAT-regulated gene expression in 262 stable kidney transplanted patients after FK506 intake. RESULTS Previously, we showed that the optimal degree of NFAT inhibition in patients treated with CsA is between 15% and 30% residual gene expression. A considerable number of patients treated with FK506 do not achieve this level of immunosuppression despite therapeutic drug concentrations. Importantly, FK506 does inhibit protein translation. This insufficient degree of NFAT inhibition was associated with a higher rate of biopsy-proven acute rejection but also with a lower incidence of recurrent infections. Conversion of CsA to FK506 causes immediately reduced inhibition of NFAT-regulated gene expression. CONCLUSION We could demonstrate that a considerable number of FK506-treated patients benefit from the drug, irrespective of the potency of NFAT inhibition in T cells by a yet unknown mechanism. Nevertheless, residual expression of NFAT-regulated genes seems to be a useful pharmacodynamic method to monitor FK506 therapy in renal transplant patients.
Collapse
|
17
|
Metabolic control of antifungal drug resistance. Fungal Genet Biol 2010; 47:81-93. [DOI: 10.1016/j.fgb.2009.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 07/01/2009] [Accepted: 07/06/2009] [Indexed: 11/16/2022]
|
18
|
Hiraki T, Abe F. Overexpression of Sna3 stabilizes tryptophan permease Tat2, potentially competing for the WW domain of Rsp5 ubiquitin ligase with its binding protein Bul1. FEBS Lett 2010; 584:55-60. [PMID: 19944104 DOI: 10.1016/j.febslet.2009.11.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 11/03/2009] [Accepted: 11/20/2009] [Indexed: 11/26/2022]
Abstract
Tryptophan permease Tat2 in Saccharomyces cerevisiae undergoes Rsp5-dependent degradation upon exposure to high hydrostatic pressure and it limits the growth of tryptophan auxotrophs. Overexpression of SNA3 encoding an endosomal/vacuolar protein possessing the PPAY motif allowed growth at 25 MPa, which was potentiated by marked stabilization of Tat2. This appeared to depend on the PPAY motif, which interacted with the WW domain of Rsp5. Subcellular localization of Rsp5 was unchanged by overexpression of either SNA3 or SNA3-AAAY. While the loss of Bul1, a binding protein of Rsp5, or the rsp5-ww3 mutation allowed high-pressure growth, overexpression of BUL1 abolished the Sna3-mediated growth at 25 MPa. These results suggest that Sna3 and Bul1 compete for the WW domain of Rsp5 upon Tat2 ubiquitination.
Collapse
Affiliation(s)
- Toshiki Hiraki
- Molecular Evolution and Adaptation Research, Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | | |
Collapse
|
19
|
Hendrych T, Kodedová M, Sigler K, Gášková D. Characterization of the kinetics and mechanisms of inhibition of drugs interacting with the S. cerevisiae multidrug resistance pumps Pdr5p and Snq2p. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:717-23. [DOI: 10.1016/j.bbamem.2008.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 11/28/2008] [Accepted: 12/03/2008] [Indexed: 01/29/2023]
|
20
|
Han S, Kim D. Inference of protein complex activities from chemical-genetic profile and its applications: predicting drug-target pathways. PLoS Comput Biol 2008; 4:e1000162. [PMID: 18769708 PMCID: PMC2515108 DOI: 10.1371/journal.pcbi.1000162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 07/18/2008] [Indexed: 11/18/2022] Open
Abstract
The chemical-genetic profile can be defined as quantitative values of deletion strains' growth defects under exposure to chemicals. In yeast, the compendium of chemical-genetic profiles of genomewide deletion strains under many different chemicals has been used for identifying direct target proteins and a common mode-of-action of those chemicals. In the previous study, valuable biological information such as protein–protein and genetic interactions has not been fully utilized. In our study, we integrated this compendium and biological interactions into the comprehensive collection of ∼490 protein complexes of yeast for model-based prediction of a drug's target proteins and similar drugs. We assumed that those protein complexes (PCs) were functional units for yeast cell growth and regarded them as hidden factors and developed the PC-based Bayesian factor model that relates the chemical-genetic profile at the level of organism phenotypes to the hidden activities of PCs at the molecular level. The inferred PC activities provided the predictive power of a common mode-of-action of drugs as well as grouping of PCs with similar functions. In addition, our PC-based model allowed us to develop a new effective method to predict a drug's target pathway, by which we were able to highlight the target-protein, TOR1, of rapamycin. Our study is the first approach to model phenotypes of systematic deletion strains in terms of protein complexes. We believe that our PC-based approach can provide an appropriate framework for combining and modeling several types of chemical-genetic profiles including interspecies. Such efforts will contribute to predicting more precisely relevant pathways including target proteins that interact directly with bioactive compounds. Finding the specific targets of chemicals and deciphering how drugs work in our body is important for the effective development of new drugs. Growth profiles of yeast genomewide deletion strains under many different chemicals have been used for identifying target proteins and a common mode-of-action of drugs. In this study, we integrated those growth profiles with biological information such as protein–protein interactions and genetic interactions to develop a new method to infer the mode-of-action of drugs. We assume that the protein complexes (PCs) are functional units for cell growth regulation, analogous to the transcriptional factors (TFs) for gene regulation. We also assume that the relative cell growth of a specific deletion mutant in the presence of a specific drug is determined by the interactions between the PCs and the deleted gene of the mutant. We then developed a computational model with which we were able to infer the hidden activities of PCs on the cell growth and showed that yeast growth phenotypes could be effectively modeled by PCs in a biologically meaningful way by demonstrating that the inferred activities of PCs contributed to predicting groups of similar drugs as well as proteins and pathways targeted by drugs.
Collapse
Affiliation(s)
- Sangjo Han
- Department of Bio and Brain Engineering, KAIST, Daejeon, South Korea
| | - Dongsup Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon, South Korea
- KAIST Institute for the Biocentury, KAIST, Daejeon, South Korea
- * E-mail:
| |
Collapse
|
21
|
Thevissen K, Ayscough KR, Aerts AM, Du W, De Brucker K, Meert EMK, Ausma J, Borgers M, Cammue BPA, François IEJA. Miconazole Induces Changes in Actin Cytoskeleton prior to Reactive Oxygen Species Induction in Yeast. J Biol Chem 2007; 282:21592-7. [PMID: 17553796 DOI: 10.1074/jbc.m608505200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antifungal compound miconazole inhibits ergosterol biosynthesis and induces reactive oxygen species (ROS) in susceptible yeast species. To further uncover the mechanism of miconazole antifungal action and tolerance mechanisms, we screened the complete set of haploid Saccharomyces cerevisiae gene deletion mutants for mutants with an altered miconazole sensitivity phenotype. We identified 29 S. cerevisiae genes, which when deleted conferred at least 4-fold hypersensitivity to miconazole. Major functional groups encode proteins involved in tryptophan biosynthesis, membrane trafficking including endocytosis, regulation of actin cytoskeleton, and gene expression. With respect to the antifungal activity of miconazole, we demonstrate an antagonism with tryptophan and a synergy with a yeast endocytosis inhibitor. Because actin dynamics and induction of ROS are linked in yeast, we further focused on miconazole-mediated changes in actin cytoskeleton organization. In this respect, we demonstrate that miconazole induces changes in the actin cytoskeleton, indicative of increased filament stability, prior to ROS induction. These data provide novel mechanistic insights in the mode of action of a ROS-inducing azole.
Collapse
Affiliation(s)
- Karin Thevissen
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rassow J, Pfanner N. Molecular chaperones and intracellular protein translocation. Rev Physiol Biochem Pharmacol 2006; 126:199-264. [PMID: 7886379 DOI: 10.1007/bfb0049777] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J Rassow
- Biochemisches Institut, Universität Freiburg, Germany
| | | |
Collapse
|
23
|
Abstract
Cells reprogram gene expression in response to environmental changes by mobilizing transcriptional activators. The activator protein Gcn4 of the yeast Saccharomyces cerevisiae is regulated by an intricate translational control mechanism, which is the primary focus of this review, and also by the modulation of its stability in response to nutrient availability. Translation of GCN4 mRNA is derepressed in amino acid-deprived cells, leading to transcriptional induction of nearly all genes encoding amino acid biosynthetic enzymes. The trans-acting proteins that control GCN4 translation have general functions in the initiation of protein synthesis, or regulate the activities of initiation factors, so that the molecular events that induce GCN4 translation also reduce the rate of general protein synthesis. This dual regulatory response enables cells to limit their consumption of amino acids while diverting resources into amino acid biosynthesis in nutrient-poor environments. Remarkably, mammalian cells use the same strategy to downregulate protein synthesis while inducing transcriptional activators of stress-response genes under various stressful conditions, including amino acid starvation.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA.
| |
Collapse
|
24
|
Okamoto M, Yoko-o T, Umemura M, Nakayama KI, Jigami Y. Glycosylphosphatidylinositol-anchored proteins are required for the transport of detergent-resistant microdomain-associated membrane proteins Tat2p and Fur4p. J Biol Chem 2005; 281:4013-23. [PMID: 16361252 DOI: 10.1074/jbc.m504684200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic cells many cell surface proteins are attached to the membrane via the glycosylphosphatidylinositol (GPI) moiety. In yeast, GPI also plays important roles in the production of mannoprotein in the cell wall. We previously isolated gwt1 mutants and found that GWT1 is required for inositol acylation in the GPI biosynthetic pathway. In this study we isolated a new gwt1 mutant allele, gwt1-10, that shows not only high temperature sensitivity but also low temperature sensitivity. The gwt1-10 cells show impaired acyltransferase activity and attachment of GPI to proteins even at the permissive temperature. We identified TAT2, which encodes a high affinity tryptophan permease, as a multicopy suppressor of cold sensitivity in gwt1-10 cells. The gwt1-10 cells were also defective in the import of tryptophan, and a lack of tryptophan caused low temperature sensitivity. Microscopic observation revealed that Tat2p is not transported to the plasma membrane but is retained in the endoplasmic reticulum in gwt1-10 cells grown under tryptophan-poor conditions. We found that Tat2p was not associated with detergent-resistant membranes (DRMs), which are required for the recruitment of Tat2p to the plasma membrane. A similar result was obtained for Fur4p, a uracil permease localized in the DRMs of the plasma membrane. These results indicate that GPI-anchored proteins are required for the recruitment of membrane proteins Tat2p and Fur4p to the plasma membrane via DRMs, suggesting that some membrane proteins are redistributed in the cell in response to environmental and nutritional conditions due to an association with DRMs that is dependent on GPI-anchored proteins.
Collapse
Affiliation(s)
- Michiyo Okamoto
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
25
|
Pichler H, Riezman H. Where sterols are required for endocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1666:51-61. [PMID: 15519308 DOI: 10.1016/j.bbamem.2004.05.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 05/28/2004] [Indexed: 12/15/2022]
Abstract
Sterols are essential membrane components of eukaryotic cells. Interacting closely with sphingolipids, they provide the membrane surrounding required for membrane sorting and trafficking processes. Altering the amount and/or structure of free sterols leads to defects in endocytic pathways in mammalian cells and yeast. Plasma membrane structures functioning in the internalization step in mammalian cells, caveolae and clathrin-coated pits, are affected by cholesterol depletion. Accumulation of improper plasma membrane sterols prevents hyperphosphorylation of a plasma membrane receptor in yeast. Once internalized, sterols still interact with sphingolipids and are recycled to the plasma membrane to keep an intracellular sterol gradient with the highest amount of free sterols at the cell periphery. Interestingly, cells from patients suffering from sphingolipid storage diseases show high intracellular amounts of free cholesterol. We propose that the balanced interaction of sterols and sphingolipids is responsible for protein recruitment to specialized membrane domains and their functionality in the endocytic pathway.
Collapse
Affiliation(s)
- Harald Pichler
- Institute of Molecular Biotechnology, Sciences II, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|
26
|
Liu M, Brusilow WSA, Needleman R. Activity of the yeast Tat2p tryptophan permease is sensitive to the anti-tumor agent 4-phenylbutyrate. Curr Genet 2004; 46:256-68. [PMID: 15490173 DOI: 10.1007/s00294-004-0531-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
4-Phenylbutyrate (PB) induces differentiation and is being intensively studied as a treatment for brain, prostate, breast, and hematopoietic cancer. While many different primary targets for PB have been proposed, the mechanism by which it causes cellular differentiation remains unknown. To identify the primary cellular target, we investigated its effects on Saccharomyces cerevisiae and showed that it inhibits tryptophan transport. We show here that PB and sorbic acid induce an ubiquitin-dependent turnover of the tryptophan permease Tat2p. However, the inhibition of transport is not a consequence of the loss of Tat2p, since it also occurs when turnover is prevented by deleting the Tat2p ubiquitination sites. When we tested the effects of PB and other growth inhibitory agents on the growth of amino acid auxotrophs, we found that several auxotrophs are hypersensitive to a number of chemically unrelated agents, including PB and some, but not all, weak acids; and this sensitivity is due to the inhibition of amino acid transport. For the inhibitory weak acids, inhibition is not confined to aromatic amino acid auxotrophs, nor is it a general weak acid stress response, since the degree of inhibition is independent of weak acid hydrophobicity and p Ka. Our results show that diverse agents affect the activity of the Tat2p permease rather than its stability and suggest the hypothesis that the anti-neoplastic action of PB is due to a decrease in the activity of surface receptors or other membrane proteins needed to maintain the transformed state.
Collapse
Affiliation(s)
- Ming Liu
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 E. Canfield Ave, Detroit, MI 48201, USA
| | | | | |
Collapse
|
27
|
Narasimhan J, Staschke KA, Wek RC. Dimerization Is Required for Activation of eIF2 Kinase Gcn2 in Response to Diverse Environmental Stress Conditions. J Biol Chem 2004; 279:22820-32. [PMID: 15010461 DOI: 10.1074/jbc.m402228200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, starvation for amino acids induces phosphorylation of the alpha subunit of eukaryotic initiation factor 2alpha by Gcn2 protein kinase, leading to elevated translation of GCN4. Gcn4p is a transcriptional activator of hundreds of genes involved in remedying nutrient deprivation. In addition to a conserved kinase domain, Gcn2p has a regulatory region homologous to histidyl tRNA synthetase enzymes that binds uncharged tRNA that accumulates during amino acid starvation. Flanking the carboxyl terminus of the histidyl-tRNA synthetase-related domain is a region spanning 162 residues that participates in the activation of the protein kinase. Gel filtration and chemical cross-linking analysis of the recombinant carboxyl-terminal Gcn2 protein revealed that this region is a stable homodimer that is highly resistant to high concentrations of salt. Residue alterations in three hydrophobic segments and one segment with a proposed amphipathic alpha-helix in this Gcn2p carboxyl terminus blocked oligomerization, supporting the role of hydrophobic interactions in the dimerization interface of Gcn2p. Introduction of residue substitutions that impaired dimerization into the full-length protein prevented the ability of Gcn2p to phosphorylate its substrate eukaryotic initiation factor-2alpha and induce GCN4 translational expression in yeast cells subjected to a variety of stresses including amino acid limitation or exposure to rapamycin or high levels of NaCl. This latter stress can be overcome by addition of increasing amounts of K+ ions, indicating that the Na+/K+ ion balance is central to this stress induction. We conclude that dimerization involving hydrophobic segments in the carboxyl-terminal region is required for activation of Gcn2p in response to a multitude of stresses.
Collapse
Affiliation(s)
- Jana Narasimhan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
28
|
Rodriguez-Hernandez CJ, Sanchez-Perez I, Gil-Mascarell R, Rodríguez-Afonso A, Torres A, Perona R, Murguia JR. The immunosuppressant FK506 uncovers a positive regulatory cross-talk between the Hog1p and Gcn2p pathways. J Biol Chem 2003; 278:33887-95. [PMID: 12813040 DOI: 10.1074/jbc.m305220200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The immunosuppressant Tacrolimus (FK506) has increased the survival rates of organ transplantation. FK506 exerts its immunosuppressive effect by inhibition of the protein phosphatase calcineurin in activated T-cells. Unfortunately, FK506 therapy is associated with undesired non-therapeutic effects involving targets other than calcineurin. To identify these targets we have addressed FK506 cellular toxicity in budding yeast. We show that FK506 increased cell sensitivity upon osmotic challenge independently of calcineurin and the FK506-binding proteins Fpr1p, -2p, -3p, and -4p. FK506 also induced strong amino acid starvation and activation of the general control (GCN) pathway. Tryptophan prototrophy or excess tryptophan overcame FK506 toxicity, showing that tryptophan deprivation mediated this effect. Mutation of the GCN3 and -4 genes partially alleviated FK506 toxicity, suggesting that activation of the GCN pathway by FK506 was also involved in osmotic tolerance. FK506 enhanced osmotic stress-dependent Hog1p kinase phosphorylation that was not accompanied by induction of a Hog1p-dependent reporter. Interestingly, deletion of the GCN2 gene suppressed FK506-dependent Hog1p hyperphosphorylation and restored Hog1p-dependent reporter activity. Conversely, deletion of the HOG1 gene impaired FK506-dependent activation of Gcn2p kinase and translation of a GCN4-LacZ reporter, highlighting functional cross-talk between the Gcn2p and Hog1p protein kinases. Taken together, these data demonstrate that both FK506-induced amino acid starvation and activation of the GCN pathway contribute to cell sensitivity to osmotic stress and reveal a positive regulatory loop between the Hog1p and Gcn2p pathways. Given the conserved nature of Gcn2p and Hog1p pathways, this mechanism of FK506 toxicity could be relevant to the non-therapeutic effects of FK506 therapy.
Collapse
|
29
|
Welsch CA, Hagiwara S, Goetschy JF, Movva NR. Ubiquitin pathway proteins influence the mechanism of action of the novel immunosuppressive drug FTY720 in Saccharomyces cerevisiae. J Biol Chem 2003; 278:26976-82. [PMID: 12709439 DOI: 10.1074/jbc.m213144200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FTY720 is an immunosuppressive drug in clinical development for transplant graft protection in humans. This agent is of particular interest because, unlike currently available regimes, it acts to sequester lymphocytes without causing cytotoxicity or blocking differentiation and growth potential. In an effort to elucidate the mechanism of action of FTY720, and identify its downstream effectors, we have screened genomic libraries and spontaneous mutants of the model system Saccharomyces cerevisiae for resistance to FTY720. We identified several proteins and pathways as being involved in the mechanism of action of FTY720. We show specifically that the two amino acid transporters TAT1 and TAT2, the two ubiquitin proteases UBP5 and UBP11, and the heat shock protein CAJ1 confer growth resistance to FTY720 when overexpressed. Another amino acid transporter, GNP1, and the ubiquitin structural gene UBI4 as well as the ubiquitin ligase RSP5, and its binding protein BUL1 confer growth resistance in a mutated form. Supporting the importance of amino acid transport in the growth resistance phenotype of S. cerevisiae to the immunosuppressive agent FTY720, a prototrophic strain was more resistant to FTY720 than the isogenic auxotroph. To further explore these results, the effects on amino acid uptake and protein degradation were measured in the presence of FTY720. Due to the high conservation of these proteins and pathways between yeast and humans, these results may provide valuable insights into the mechanism of action of FTY720 in lymphocyte sequestration in humans.
Collapse
Affiliation(s)
- Carole A Welsch
- Transplantation Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | | | | | | |
Collapse
|
30
|
Tsukahara K, Watanabe T, Hata-Sugi N, Yoshimatsu K, Okayama H, Nagasu T. Anticancer agent E7070 inhibits amino acid and uracil transport in fission yeast. Mol Pharmacol 2001; 60:1254-9. [PMID: 11723232 DOI: 10.1124/mol.60.6.1254] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
E7070 is a novel sulfonamide anticancer agent that inhibits cell cycle progression in G1 in mammalian cells, but its action targets are not known. We recently employed the genetically amenable fission yeast Schizosaccharomyces pombe as a model organism to search for its targets. Here, we show that E7070 inhibits imports of amino acid and uracil into S. pombe cells. Unlike their prototrophic counterparts, leucine- and uracil-auxotrophic strains are sensitive to E7070 and are unable to proliferate with a delayed G1-S transition in low-glucose yeast extract-polypeptone medium containing this drug because this chemical markedly inhibits the uptake of leucine and uracil in low glucose medium. Furthermore, addition of leucine or uracil to the culture medium or overexpression of genes encoding an amino acid or uracil transporter suppresses the E7070-imposed growth inhibition of these auxotrophic strains. Thus, some of the molecular targets for E7070 action in S. pombe are likely to be leucine and uracil transporters.
Collapse
Affiliation(s)
- K Tsukahara
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Chung N, Mao C, Heitman J, Hannun YA, Obeid LM. Phytosphingosine as a specific inhibitor of growth and nutrient import in Saccharomyces cerevisiae. J Biol Chem 2001; 276:35614-21. [PMID: 11468289 DOI: 10.1074/jbc.m105653200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, we have demonstrated a necessary role for sphingolipids in the heat stress response through inhibition of nutrient import (Chung, N., Jenkins, G. M., Hannun, Y. A., Heitman, J., and Obeid, L. M. (2000) J. Biol. Chem. 275, 17229-17232). In this study, we used a combination of pharmacological and genetic approaches to determine which endogenous sphingolipid is the likely mediator of growth inhibition. When cells were treated with exogenous phytosphingosine (PHS, 20 microm) or structurally similar or metabolically related molecules, including 3-ketodihydrosphingosine, dihydrosphingosine, C(2)-phytoceramide (PHC), and stearylamine, only PHS inhibited growth. Also, PHS was shown to inhibit uptake of uracil, tryptophan, leucine, and histidine. Again this effect was specific to PHS. Because of the dynamic nature of sphingolipid metabolism, however, it was difficult to conclude that growth inhibition was caused by PHS itself. By using mutant yeast strains defective in various steps in sphingolipid metabolism, we further determined the specificity of PHS. The elo2Delta strain, which is defective in the conversion of PHS to PHC, was shown to have slower biosynthesis of ceramides and to be hypersensitive to PHS (5 microm), suggesting that PHS does not need to be converted to PHC. The lcb4Delta lcb5Delta strain is defective in the conversion of PHS to PHS 1-phosphate, and it was as sensitive to PHS as the wild-type strain. The syr2Delta mutant strain was defective in the conversion of DHS to PHS. Interestingly, this strain was resistant to high concentrations of DHS (40 microm) that inhibited the growth of an isogenic wild-type strain, demonstrating that DHS needs to be converted to PHS to inhibit growth. Together, these data demonstrate that the active sphingolipid species that inhibits yeast growth is PHS or a closely related and yet unidentified metabolite.
Collapse
Affiliation(s)
- N Chung
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
32
|
Aszalos A. Modulation of Multidrug Resistance in Cancer by Immunosuppresive Agents. Preclinical Studies. Pathol Oncol Res 2001; 1:64-70. [PMID: 11173570 DOI: 10.1007/bf02893586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This is a brief summary of the status of known immunosuppressive drugs describing their potential and mode of action to reverse the function of the MDR1 gene product, the P glycoprotein. Different aspects of these immunosuppressors have been reviewed in the recent literature. This summary will focus only on those studies which relate to the effect of these drugs on the P-glycoprotein. In addition, studies which may explain the mode of action, but do not deal directly with P-glycoprotein, are also summarized.
Collapse
|
33
|
Fujimura H. The immunosuppressive drug leflunomide affects mating-pheromone response and sporulation by different mechanisms in Saccharomyces cerevisiae. FEMS Microbiol Lett 2000; 191:57-60. [PMID: 11004400 DOI: 10.1111/j.1574-6968.2000.tb09319.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Leflunomide (LFM) is a novel anti-inflammatory and immunosuppressive drug, and inhibits the growth of cytokine-stimulated lymphoid cells in vitro. The effect of LFM on haploid and diploid cells of Saccharomyces cerevisiae was investigated to elucidate the molecular mechanism of action of the drug. Using a halo assay, LFM was shown to enhance the cell cycle arrest of haploid cells induced by mating pheromone alpha-factor. LFM also inhibited sporulation of diploid cells completely. S. cerevisiae genes which were cloned to suppress the anti-proliferative effect when present in increased copy number were introduced and examined for their activity to suppress the effect of LFM. Out of them, MLF4/SSH4, was found to suppress the sporulation-inhibitory effect of LFM. However, MLF4 failed to suppress the enhancing effect of LFM on pheromone response. Thus, LFM is suggested to act on haploid and diploid cells by different mechanisms.
Collapse
Affiliation(s)
- H Fujimura
- Laboratory of Advanced Technology, Discovery Research Laboratories, Nippon Hoechst Marion Roussel, 1-3-2 Minamidai, 350-1165, Kawagoe, Japan
| |
Collapse
|
34
|
Aramburu J, Rao A, Klee CB. Calcineurin: from structure to function. CURRENT TOPICS IN CELLULAR REGULATION 2000; 36:237-95. [PMID: 10842755 DOI: 10.1016/s0070-2137(01)80011-x] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- J Aramburu
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
35
|
Egner R, Bauer BE, Kuchler K. The transmembrane domain 10 of the yeast Pdr5p ABC antifungal efflux pump determines both substrate specificity and inhibitor susceptibility. Mol Microbiol 2000; 35:1255-63. [PMID: 10712705 DOI: 10.1046/j.1365-2958.2000.01798.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously shown that a S1360F mutation in transmembrane domain 10 (TMD10) of the Pdr5p ABC transporter modulates substrate specificity and simultaneously leads to a loss of FK506 inhibition. In this study, we have constructed and characterized the S1360F/A/T and T1364F/A/S mutations located in the hydrophilic face of the amphipatic Pdr5p TMD10. A T1364F mutation leads to a reduction in Pdr5p-mediated azole and rhodamine 6G resistance. Like S1360F, the T1364F and T1364A mutants were nearly non-responsive to FK506 inhibition. Most remarkably, however, the S1360A mutation increases FK506 inhibitor susceptibility, because Pdr5p-S1360A is hypersensitive to FK506 inhibition when compared with either wild-type Pdr5p or the non-responsive S1360F variant. Hence, the Pdr5p TMD10 determines both azole substrate specificity and susceptibility to reversal agents. This is the first demonstration of a eukaryotic ABC transporter where a single residue change causes either a loss or a gain in inhibitor susceptibility, depending on the nature of the mutational change. These results have important implications for the design of efficient reversal agents that could be used to overcome multidrug resistance mediated by ABC transporter overexpression.
Collapse
Affiliation(s)
- R Egner
- Department of Medical Biochemistry, University and Bio Center of Vienna, A-1030 Vienna, Austria
| | | | | |
Collapse
|
36
|
Beck T, Schmidt A, Hall MN. Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast. J Cell Biol 1999; 146:1227-38. [PMID: 10491387 PMCID: PMC2156124 DOI: 10.1083/jcb.146.6.1227] [Citation(s) in RCA: 248] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In Saccharomyces cerevisiae, amino acid permeases are divided into two classes. One class, represented by the general amino acid permease GAP1, contains permeases regulated in response to the nitrogen source. The other class, including the high affinity tryptophan permease, TAT2, consists of the so-called constitutive permeases. We show that TAT2 is regulated at the level of protein stability. In exponentially growing cells, TAT2 is in the plasma membrane and also accumulates in internal compartments of the secretory pathway. Upon nutrient deprivation or rapamycin treatment, TAT2 is transported to and degraded in the vacuole. The ubiquitination machinery and lysine residues within the NH(2)-terminal 31 amino acids of TAT2 mediate ubiquitination and degradation of the permease. Starvation-induced degradation of internal TAT2 is blocked in sec18, sec23, pep12, and vps27 mutants, but not in sec4, end4, and apg1 mutants, suggesting that, upon nutrient limitation, internal TAT2 is diverted from the late secretory pathway to the vacuolar pathway. Furthermore, our results suggest that TAT2 stability and sorting are controlled by the TOR signaling pathway, and regulated inversely to that of GAP1.
Collapse
Affiliation(s)
- Thomas Beck
- Department of Biochemistry, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Anja Schmidt
- Department of Biochemistry, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Michael N. Hall
- Department of Biochemistry, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
37
|
Schmidt A, Beck T, Koller A, Kunz J, Hall MN. The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease. EMBO J 1998; 17:6924-31. [PMID: 9843498 PMCID: PMC1171040 DOI: 10.1093/emboj/17.23.6924] [Citation(s) in RCA: 263] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Saccharomyces cerevisiae targets of rapamycin, TOR1 and TOR2, signal activation of cell growth in response to nutrient availability. Loss of TOR or rapamycin treatment causes yeast cells to arrest growth in early G1 and to express several other physiological properties of starved (G0) cells. As part of this starvation response, high affinity amino acid permeases such as the tryptophan permease TAT2 are targeted to the vacuole and degraded. Here we show that the TOR signalling pathway phosphorylates the Ser/Thr kinase NPR1 and thereby inhibits the starvation-induced turnover of TAT2. Overexpression of NPR1 inhibits growth and induces the degradation of TAT2, whereas loss of NPR1 confers resistance to rapamycin and to FK506, an inhibitor of amino acid import. NPR1 is controlled by TOR and the type 2A phosphatase-associated protein TAP42. First, overexpression of NPR1 is toxic only when TOR function is reduced. Secondly, NPR1 is rapidly dephosphorylated in the absence of TOR. Thirdly, NPR1 dephosphorylation does not occur in a rapamycin-resistant tap42 mutant. Thus, the TOR nutrient signalling pathway also controls growth by inhibiting a stationary phase (G0) programme. The control of NPR1 by TOR is analogous to the control of p70 s6 kinase and 4E-BP1 by mTOR in mammalian cells.
Collapse
Affiliation(s)
- A Schmidt
- Department of Biochemistry, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
38
|
Marton MJ, DeRisi JL, Bennett HA, Iyer VR, Meyer MR, Roberts CJ, Stoughton R, Burchard J, Slade D, Dai H, Bassett DE, Hartwell LH, Brown PO, Friend SH. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat Med 1998; 4:1293-301. [PMID: 9809554 DOI: 10.1038/3282] [Citation(s) in RCA: 507] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We describe here a method for drug target validation and identification of secondary drug target effects based on genome-wide gene expression patterns. The method is demonstrated by several experiments, including treatment of yeast mutant strains defective in calcineurin, immunophilins or other genes with the immunosuppressants cyclosporin A or FK506. Presence or absence of the characteristic drug 'signature' pattern of altered gene expression in drug-treated cells with a mutation in the gene encoding a putative target established whether that target was required to generate the drug signature. Drug dependent effects were seen in 'targetless' cells, showing that FK506 affects additional pathways independent of calcineurin and the immunophilins. The described method permits the direct confirmation of drug targets and recognition of drug-dependent changes in gene expression that are modulated through pathways distinct from the drug's intended target. Such a method may prove useful in improving the efficiency of drug development programs.
Collapse
Affiliation(s)
- M J Marton
- Rosetta Inpharmatics, Kirkland, Washington 98034, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fujimura H. Molecular cloning of Saccharomyces cerevisiae MLF4/SSH4 gene which confers the immunosuppressant leflunomide resistance. Biochem Biophys Res Commun 1998; 246:378-81. [PMID: 9610367 DOI: 10.1006/bbrc.1998.8630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Immunosuppressant leflunomide inhibits the growth of cytokine-stimulated lymphoid cells in vitro and also inhibits the growth of eukaryotic microorganism Saccharomyces cerevisiae. To elucidate the molecular mechanism of the action of the drug, a yeast gene which suppresses the anti-proliferative effect when in increased copy number was cloned and designated MLF4 for multicopy suppressor of leflunomide sensitivity. DNA sequencing analysis indicates that the MLF4 gene is identical to the SSH4 gene which suppresses the shr3 mutation. Excess of amino acids overcame the anti-proliferative activity of leflunomide. Thus, leflunomide is suggested to affect amino acid transport by interacting with Shr3 chaperon-like protein.
Collapse
Affiliation(s)
- H Fujimura
- Discovery Research Laboratories, Nippon Hoechst Marion Roussel, Kawagoe, Japan
| |
Collapse
|
40
|
Didion T, Regenberg B, Jørgensen MU, Kielland-Brandt MC, Andersen HA. The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae. Mol Microbiol 1998; 27:643-50. [PMID: 9489675 DOI: 10.1046/j.1365-2958.1998.00714.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amino acid transporters of the yeast plasma membrane (permeases) belong to a family of integral membrane proteins with pronounced structural similarity. We present evidence that a member of this family, encoded by the open reading frame (ORF) YDR160w (SSY1), is required for the expression of a set of transporter genes. Thus, deletion of the SSY1 gene causes loss of leucine-inducible transcription of the amino acid permease genes BAP2, TAT1 and BAP3 (ORF YDR046c) and the peptide transporter, PTR2. D-leucine can generate the signal without entering the cell. We propose that Ssy1p is situated in the plasma membrane and is involved in sensing leucine in the medium.
Collapse
Affiliation(s)
- T Didion
- Department of Yeast Genetics, Carlsberg Laboratory, Gamle Carlsberg Vej 10, Copenhagen Valby, Denmark
| | | | | | | | | |
Collapse
|
41
|
Skrzypek MS, Nagiec MM, Lester RL, Dickson RC. Inhibition of amino acid transport by sphingoid long chain bases in Saccharomyces cerevisiae. J Biol Chem 1998; 273:2829-34. [PMID: 9446592 DOI: 10.1074/jbc.273.5.2829] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sphingoid long chain bases have many effects on cells including inhibition or stimulation of growth. The physiological significance of these effects is unknown in most cases. To begin to understand how these compounds inhibit growth, we have studied Saccharomyces cerevisiae cells. Growth of tryptophan (Trp-) auxotrophs was more strongly inhibited by phytosphingosine (PHS) than was growth of Trp+ strains, suggesting that PHS diminishes tryptophan uptake and starves cells for this amino acid. This hypothesis is supported by data showing that growth inhibition is relieved by increasing concentrations of tryptophan in the culture medium and by multiple copies of the TAT2 gene, encoding a high affinity tryptophan transporter. Measurement of tryptophan uptake shows that it is inhibited by PHS. Finally, PHS treatment induces the general control response, indicating starvation for amino acids. Multiple copies of TAT2 do not protect cells against two other cationic lipids, stearylamine, and sphingosine, indicating that the effect of PHS on tryptophan utilization is specific. Other data demonstrate that PHS reduces uptake of leucine, histidine, and proline by specific transporters. Our data suggest that PHS targets proteins in the amino acid transporter family but not other distantly related membrane transporters, including those necessary for uptake of adenine and uracil.
Collapse
Affiliation(s)
- M S Skrzypek
- Department of Biochemistry and the Lucille P. Markey Cancer Center, University of Kentucky Medical Center, Lexington, Kentucky 40536-0084, USA
| | | | | | | |
Collapse
|
42
|
Abstract
A summary of previously defined phenotypes in the yeast Saccharomyces cerevisiae is presented. The purpose of this review is to provide a compendium of phenotypes that can be readily screened to identify pleiotropic phenotypes associated with primary or suppressor mutations. Many of these phenotypes provide a convenient alternative to the primary phenotype for following a gene, or as a marker for cloning a gene by genetic complementation. In many cases a particular phenotype or set of phenotypes can suggest a function for the product of the mutated gene.
Collapse
Affiliation(s)
- M Hampsey
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854, USA
| |
Collapse
|
43
|
Fang B, Eisensmith RC, Wang H, Kay MA, Cross RE, Landen CN, Gordon G, Bellinger DA, Read MS, Hu PC. Gene therapy for hemophilia B: host immunosuppression prolongs the therapeutic effect of adenovirus-mediated factor IX expression. Hum Gene Ther 1995; 6:1039-44. [PMID: 7578416 DOI: 10.1089/hum.1995.6.8-1039] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Hemophilia B is caused by a deficiency of blood clotting factor IX (FIX). Previous studies have shown that the delivery of a recombinant adenoviral vector expressing canine FIX (cFIX) resulted in a complete correction of hemophilia B in FIX-deficient dogs, but that cFIX expression decreased to only about 1-2% of normal levels 3 weeks after treatment. In the present study, therapeutic levels of cFIX expression capable of producing a partial correction of hemophilia B were maintained for at least 6 months after the coadministration of the cFIX-expressing adenovirus and the immunosuppressive agent cyclosporin A (CsA). These findings support a recent report (Yang et al., 1994) that host T-cell-mediated immunity against virally transduced cells is a major contributing factor to the transient nature of adenovirus-mediated gene expression in immunocompetent animals. Although a second administration of the cFIX-expressing adenovirus 6 months after the first infusion had only a minimal effect on plasma FIX levels in a dog that had been continuously treated with CsA, the prolonged expression of the transgene indicates that immunosuppression may be applicable in attaining long-term treatment of clinically relevant disorders.
Collapse
Affiliation(s)
- B Fang
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lorenz MC, Muir RS, Lim E, McElver J, Weber SC, Heitman J. Gene disruption with PCR products in Saccharomyces cerevisiae. Gene 1995; 158:113-7. [PMID: 7789793 DOI: 10.1016/0378-1119(95)00144-u] [Citation(s) in RCA: 243] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We describe here the generation of gene disruption constructs using PCR amplification of selectable markers with primers that provide homology to the target gene of interest. We find that regions of homology as short as 38 to 50 bp suffice to mediate homologous recombination in yeast. We describe applications of this technology to three specific yeast genes that would have been difficult to disrupt with current methods. By dispensing with the need to either clone the gene of interest or engineer a standard disruption construct, this method should facilitate analysis of sequenced genes of unknown function, which will soon include the entire yeast genome.
Collapse
Affiliation(s)
- M C Lorenz
- Department of Genetics, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
45
|
Perrot-Applanat M, Cibert C, Géraud G, Renoir JM, Baulieu EE. The 59 kDa FK506-binding protein, a 90 kDa heat shock protein binding immunophilin (FKBP59-HBI), is associated with the nucleus, the cytoskeleton and mitotic apparatus. J Cell Sci 1995; 108 ( Pt 5):2037-51. [PMID: 7544801 DOI: 10.1242/jcs.108.5.2037] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FKBP59-HBI, a 59 kDa FK506 binding protein which binds the 90 kDa heat shock protein hsp90 and thus is a heat shock protein binding immunophilin (HBI), was originally discovered in association with unliganded steroid receptors in their heat shock protein containing heterooligomer form. It belongs to a growing family including other FKBPs which bind the immunosuppressants FK506 and rapamycin, and cyclophilins which bind cyclosporin A, all having rotamase (peptidyl-prolyl cis-trans isomerase) activity which may be involved in protein folding. Targets for drug-immunophilin complexes have been mostly studied in vivo in T lymphocytes; however, immunophilins are present in all cell types, where their role and distribution are still unknown. Here we report the localization of FKBP59-HBI in various non lymphoid cells (mouse fibroblasts (L-929), monkey kidney cells (Cos-7), Madin-Darby canine kidney epithelial cells (MDCK), and mouse neuronal cells (GT1)). Two polyclonal antipeptide antibodies directed against the C-terminal end (amino acids 441–458) (Ab 173) or the sequence 182–201 (Ab 790) of the FKBP59-HBI were used in light and confocal laser immunofluorescence. FKBP59-HBI was found in the cytoplasm and nucleus of interphase cells. Specific immunofluorescence was much stronger in the cytoplasm than in the nucleus when using Ab 173, and stronger in the nucleus than in the cytoplasm with Ab 790. Detailed observations of L-cells, which have a particularly flat morphology, showed a punctate as well as a fibrous cytoskeletal staining in the cytoplasm using antibody 173, a result which suggests interactions of FKBP59-HBI with an organized network. Colocalization experiments (using antibodies against tubulin, vimentin or actin) and use of cytoskeletal-disrupting drugs revealed partial association of FKBP59-HBI with the microtubules. Western blot experiments confirmed that the protein was present in the subcellular fractions containing either ‘soluble’ proteins released from cells exposed to NP40 detergent, or proteins released from the cytoskeleton exposed to calcium ions (i.e. in microtubule depolymerizing conditions). Exposure of cells to 1 microM FK506 and rapamycin for 1 hour did not modify significantly the staining, although rapamycin treatment rendered the network stained by 173 clearly visible. Interestingly, during mitosis FKBP59-HBI segregated from the region of the chromosomes; it mainly localized with the mitotic apparatus (centrosome, spindle and interzone separating the chromosomes), the cleavage furrow and the midbodies during cytokinesis. It appeared again as a fibrous network in the cytoplasm of the two daughters cells.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M Perrot-Applanat
- INSERM U135 Hormones et Reproduction, Faculté de Médecine de Bicêtre, Kremlin-Bicêtre, France
| | | | | | | | | |
Collapse
|
46
|
Xiao ZX, Fitzgerald-Hayes M. Functional interaction between the CSE2 gene product and centromeres in Saccharomyces cerevisiae. J Mol Biol 1995; 248:255-63. [PMID: 7739039 DOI: 10.1016/s0022-2836(95)80048-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The cse2-1 allele was identified through a genetic screen for mutations affecting chromosome segregation in Saccharomyces cerevisiae. This mutation confers cold and temperature sensitivity and causes increases in mitotic chromosome non-disjunction and loss. The CSE2 gene encodes a 17 kDa protein with a basic region-leucine zipper motif. Disruption of CSE2 is not lethal but results in the accumulation of large-budded cells. Here, we report that disruption of CSE2 results in a significant increase in chromosome missegregation, slower growth and defective meiosis. The combination of the CSE2 disruption and a mutant centromere results in a synergistic effect on both cell growth and cell viability. These data suggest a functional interaction between the CSE2 protein and the yeast centromere.
Collapse
Affiliation(s)
- Z X Xiao
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst 01003, USA
| | | |
Collapse
|
47
|
Galat A, Metcalfe SM. Peptidylproline cis/trans isomerases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1995; 63:67-118. [PMID: 7538221 DOI: 10.1016/0079-6107(94)00009-x] [Citation(s) in RCA: 193] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- A Galat
- Département d'Ingénierie et d'Etudes des Protéines, D.S.V., C.E.A., C.E. Saclay, Gif-sur-Yvette, France
| | | |
Collapse
|
48
|
Sophianopoulou V, Diallinas G. Amino acid transporters of lower eukaryotes: regulation, structure and topogenesis. FEMS Microbiol Rev 1995; 16:53-75. [PMID: 7888172 DOI: 10.1111/j.1574-6976.1995.tb00155.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Lower eukaryotes such as the yeast Saccharomyces cerevisiae and the filamentous fungus Aspergillus nidulans possess a multiplicity of amino acid transporters or permeases which exhibit different properties with respect to substrate affinity, specificity, capacity and regulation. Regulation of amino acid uptake in response to physiological conditions of growth is achieved principally by a dual mechanism; control of gene expression, mediated by a complex interplay of pathway-specific and wide-domain transcription regulatory proteins, and control of transport activities, mediated by a series of protein factors, including a kinase, and possibly, by amino acids. All fungal and a number of bacterial amino acid permeases show significant sequence similarities (33-62% identity scores in binary comparisons), revealing a unique transporter family conserved across the prokaryotic-eukaryotic boundary. Prediction of the topology of this transporter family utilizing a multiple sequence alignment strongly suggests the presence of a common structural motif consisting of 12 alpha-helical putative transmembrane segments and cytoplasmically located N- and C-terminal hydrophilic regions. Interestingly, recent genetic and molecular results strongly suggest that yeast amino acid permeases are integrated into the plasma membrane through a specific intracellular translocation system. Finally, speculating on their predicted structure and on amino acid sequence similarities conserved within this family of permeases reveals regions of putative importance in amino acid transporter structure, function, post-translational regulation or biogenesis.
Collapse
Affiliation(s)
- V Sophianopoulou
- Institut de Génétique et Microbiologie (IGM), Université Paris-Sud, Centre d'Orsay, France
| | | |
Collapse
|
49
|
Eng WK, Faucette L, McLaughlin MM, Cafferkey R, Koltin Y, Morris RA, Young PR, Johnson RK, Livi GP. The yeast FKS1 gene encodes a novel membrane protein, mutations in which confer FK506 and cyclosporin A hypersensitivity and calcineurin-dependent growth. Gene X 1994; 151:61-71. [PMID: 7530227 DOI: 10.1016/0378-1119(94)90633-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
FK506 and cyclosporin A (CsA) are potent immunosuppressive agents that display antifungal activity. They act by blocking a Ca(2+)-dependent signal transduction pathway leading to interleukin-2 transcription. Each drug forms a complex with its cognate cytosolic immunophilin receptor (i.e., FKBP12-FK506 and cyclophilin-CsA) which acts to inhibit the Ca2+/calmodulin-dependent protein phosphatase 2B, or calcineurin (CN). We and others have defined the Saccharomyces cerevisiae FKS1 gene by recessive mutations resulting in 100-1000-fold hypersensitivity to FK506 and CsA (as compared to wild type), but which do not affect sensitivity to a variety of other antifungal drugs. The fks1 mutant also exhibits a slow-growth phenotype that can be partially alleviated by exogenously added Ca2+ [Parent et al., J. Gen. Microbiol. 139 (1993) 2973-2984]. We have cloned FKS1 by complementation of the drug-hypersensitive phenotype. It contains a long open reading frame encoding a novel 1876-amino-acid (215 kDa) protein which shows no similarity to CN or to other protein phosphatases. The FKS1 protein is predicted to contain 10 to 12 transmembrane domains with a structure resembling integral membrane transporter proteins. Genomic disruption experiments indicate that FKS1 encodes a nonessential function; fks1::LEU2 cells exhibit the same growth and recessive drug-hypersensitive phenotypes observed in the original fks1 mutants. Furthermore, the fks1::LEU2 allele is synthetically lethal in combination with disruptions of both of the nonessential genes encoding the alternative forms of the catalytic A subunit of CN (CNA1 and CNA2). These data suggest that FKS1 provides a unique cellular function which, when absent, increases FK506 and CsA sensitivity by making the CNs (or a CN-dependent function) essential.
Collapse
Affiliation(s)
- W K Eng
- Department of Biomolecular Disovery, SmithKline Beecham Pharmaceuticals King of Prussia, PA 19406
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ahern GP, Junankar PR, Dulhunty AF. Single channel activity of the ryanodine receptor calcium release channel is modulated by FK-506. FEBS Lett 1994; 352:369-74. [PMID: 7523191 DOI: 10.1016/0014-5793(94)01001-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The immunosuppressant drug FK-506 (3-20 microM) increased the open probability of ryanodine receptor calcium release channels, formed by incorporation of terminal cisternae vesicles from rabbit skeletal muscle into lipid bilayers, with cis (cytoplasmic) calcium concentrations between 10(-7) M and 10(-3) M. FK-506 increased mean current and channel open time and induced long sojourns at subconductance levels that were between 28% and 38% of the maximum conductance and were distinct from the ryanodine-induced subconductance level at about 45% of the maximum conductance. FK-506 relieved the Ca2+ inactivation of the ryanodine receptor seen at 10(-3) M Ca2+. The results are consistent with FK-506 removal of FK-506 binding protein from the ryanodine receptor.
Collapse
Affiliation(s)
- G P Ahern
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra City
| | | | | |
Collapse
|