1
|
Spike AJ, Rosen JM. C/EBPß Isoform Specific Gene Regulation: It's a Lot more Complicated than you Think! J Mammary Gland Biol Neoplasia 2020; 25:1-12. [PMID: 32078094 PMCID: PMC7694698 DOI: 10.1007/s10911-020-09444-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/06/2020] [Indexed: 11/29/2022] Open
Abstract
It has been almost 30 years since C/EBPß was discovered. Seminal studies have shown that C/EBPß is a master regulator of mammary gland development and has been shown to control and influence proliferation and differentiation through varying mechanisms. The single-exon C/EBPß mRNA yields at least three different protein isoforms which have diverse, specific, context-dependent, and often non-overlapping roles throughout development and breast cancer progression. These roles are dictated by a number of complex factors including: expression levels of other C/EBP family members and their stoichiometry relative to the isoform in question, binding site affinity, post-translational modifications, co-factor expression, and even hormone levels and lactogenic status. Here we summarize the historical work up to the latest findings in the field on C/EBPß in the mammary gland and in breast cancer. With the current emphasis on improving immunotherapy in breast cancer the role of specific C/EBPß isoforms in regulating specific chemokine and cytokine expression and the immune microenvironment will be of increasing interest.
Collapse
Affiliation(s)
- Aaron J Spike
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Kato H, Igarashi K. To be red or white: lineage commitment and maintenance of the hematopoietic system by the "inner myeloid". Haematologica 2019; 104:1919-1927. [PMID: 31515352 PMCID: PMC6886412 DOI: 10.3324/haematol.2019.216861] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
Differentiation of hematopoietic stem and progenitor cells is tightly regulated depending on environmental changes in order to maintain homeostasis. Transcription factors direct the development of hematopoietic cells, such as GATA-1 for erythropoiesis and PU.1 for myelopoiesis. However, recent findings obtained from single-cell analyses raise the question of whether these transcription factors are "initiators" or just "executors" of differentiation, leaving the initiation of hematopoietic stem and progenitor cell differentiation (i.e. lineage commitment) unclear. While a stochastic process is likely involved in commitment, it cannot fully explain the homeostasis of hematopoiesis nor "on-demand" hematopoiesis in response to environmental changes. Transcription factors BACH1 and BACH2 may regulate both commitment and on-demand hematopoiesis because they control erythroid-myeloid and lymphoid-myeloid differentiation by repressing the myeloid program, and their activities are repressed in response to infectious and inflammatory conditions. We summarize possible mechanisms of lineage commitment of hematopoietic stem and progenitor cells suggested by recent findings and discuss the erythroid and lymphoid commitment of hematopoietic stem and progenitor cells, focusing on the gene regulatory network composed of genes encoding key transcription factors. Surprising similarity exists between commitment to erythroid and lymphoid lineages, including repression of the myeloid program by BACH factors. The suggested gene regulatory network of BACH factors sheds light on the myeloid-based model of hematopoiesis. This model will help to understand the tuning of hematopoiesis in higher eukaryotes in the steady-state condition as well as in emergency conditions, the evolutional history of the system, aging and hematopoietic disorders.
Collapse
Affiliation(s)
- Hiroki Kato
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Present address, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Huan CC, Wang HX, Sheng XX, Wang R, Wang X, Liao Y, Liu QF, Tong GZ, Ding C, Fan HJ, Wu JQ, Mao X. Porcine epidemic diarrhea virus nucleoprotein contributes to HMGB1 transcription and release by interacting with C/EBP-β. Oncotarget 2018; 7:75064-75080. [PMID: 27634894 PMCID: PMC5342723 DOI: 10.18632/oncotarget.11991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/02/2016] [Indexed: 01/09/2023] Open
Abstract
Porcine epidemic diarrhea is a devastating swine enteric disease, which is caused by porcine epidemic diarrhea virus (PEDV) infection. Our studies demonstrated that PEDV infection resulted in the up-regulation of proinflammatory cytokines. Meanwhile, PEDV infection and overexpression of viral nucleoprotein resulted in the acetylation and release of high mobility group box 1 proteins in vitro, an important proinflammatory response mediator, which contributes to the pathogenesis of various inflammatory diseases. Our studies also showed that SIRT1, histone acetyltransferase, and NF-κB regulated the acetylation and release of HMGB1. Chromatin immunoprecipitation, dual-luciferase reporter gene assay, and co-immunoprecipitation experiments illustrated that PEDV-N could induce HMGB1 transcription by interacting with C/EBP-β, which could bind to C/EBP motif in HMGB1 promotor region. Collectively, our data indicate PEDV-N contributes to HMGB1 transcription and the subsequent release/acetylation of HMGB1 during PEDV infection.
Collapse
Affiliation(s)
- Chang-Chao Huan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Hua-Xia Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Xiang-Xiang Sheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Rui Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Xin Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China, 200241
| | - Qin-Fang Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China, 200241
| | - Guang-Zhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China, 200241
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China, 200241
| | - Hong-Jie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Jia-Qiang Wu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Province, China, 250100
| | - Xiang Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China, 200241
| |
Collapse
|
4
|
A feed-forward regulation of endothelin receptors by c-Jun in human non-pigmented ciliary epithelial cells and retinal ganglion cells. PLoS One 2017; 12:e0185390. [PMID: 28938016 PMCID: PMC5609771 DOI: 10.1371/journal.pone.0185390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022] Open
Abstract
c-Jun, c-Jun N-terminal kinase(JNK) and endothelin B (ETB) receptor have been shown to contribute to the pathogenesis of glaucoma. Previously, we reported that an increase of c-Jun and CCAAT/enhancer binding protein β (C/EBPβ) immunohistostaining is associated with upregulation of the ETB receptor within the ganglion cell layer of rats with elevated intraocular pressure (IOP). In addition, both transcription factors regulate the expression of the ETB receptor in human non-pigmented ciliary epithelial cells (HNPE). The current study addressed the mechanisms by which ET-1 produced upregulation of ET receptors in primary rat retinal ganglion cells (RGCs) and HNPE cells. Treatment of ET-1 and ET-3 increased the immunocytochemical staining of c-Jun and C/EBPβ in primary rat RGCs and co-localization of both transcription factors was observed. A marked increase in DNA binding activity of AP-1 and C/EBPβ as well as elevated protein levels of c-Jun and c-Jun-N-terminal kinase (JNK) were detected following ET-1 treatment in HNPE cells. Overexpression of ETA or ETB receptor promoted the upregulation of c-Jun and also elevated its promoter activity. In addition, upregulation of C/EBPβ augmented DNA binding and mRNA expression of c-Jun, and furthermore, the interaction of c-Jun and C/EBPβ was confirmed using co-immunoprecipitation. Apoptosis of HNPE cells was identified following ET-1 treatment, and overexpression of the ETA or ETB receptor produced enhanced apoptosis. ET-1 mediated upregulation of c-Jun and C/EBPβ and their interaction may represent a novel mechanism contributing to the regulation of endothelin receptor expression. Reciprocally, c-Jun was also found to regulate the ET receptors and C/EBPβ appeared to play a regulatory role in promoting expression of c-Jun. Taken together, the data suggests that ET-1 triggers the upregulation of c-Jun through both ETA and ETB receptors, and conversely c-Jun also upregulates endothelin receptor expression, thereby generating a positive feed-forward loop of endothelin receptor activation and expression. This feed-forward regulation may contribute to RGC death and astrocyte proliferation following ET-1 treatment.
Collapse
|
5
|
JunD/AP-1 Antagonizes the Induction of DAPK1 To Promote the Survival of v-Src-Transformed Cells. J Virol 2016; 91:JVI.01925-16. [PMID: 27795443 DOI: 10.1128/jvi.01925-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/07/2016] [Indexed: 01/01/2023] Open
Abstract
The increase in AP-1 activity is a hallmark of cell transformation by tyrosine kinases. Previously, we reported that blocking AP-1 using the c-Jun dominant negative mutant TAM67 induced senescence, adipogenesis, or apoptosis in v-Src-transformed chicken embryo fibroblasts (CEFs) whereas inhibition of JunD by short hairpin RNA (shRNA) specifically induced apoptosis. To investigate the role of AP-1 in Src-mediated transformation, we undertook a gene profiling study to characterize the transcriptomes of v-Src-transformed CEFs expressing either TAM67 or the JunD shRNA. Our study revealed a cluster of 18 probe sets upregulated exclusively in response to AP-1/JunD impairment and v-Src transformation. Four of these probe sets correspond to genes involved in the interferon pathway. One gene in particular, death-associated protein kinase 1 (DAPK1), is a C/EBPβ-regulated mediator of apoptosis in gamma interferon (IFN-γ)-induced cell death. Here, we show that inhibition of DAPK1 abrogates cell death in v-Src-transformed cells expressing the JunD shRNA. Chromatin immunoprecipitation data indicated that C/EBPβ was recruited to the DAPK1 promoter while the expression of a dominant negative mutant of C/EBPβ abrogated the induction of DAPK1 in response to the inhibition of AP-1. In contrast, as determined by chromatin immunoprecipitation (ChIP) assays, JunD was not detected on the DAPK1 promoter under any conditions, suggesting that JunD promotes survival by indirectly antagonizing the expression of DAPK1 in v-Src transformed cells. IMPORTANCE Transformation by the v-Src oncoprotein causes extensive changes in gene expression in primary cells such as chicken embryo fibroblasts. These changes, determining the properties of transformed cells, are controlled in part at the transcriptional level. Much attention has been devoted to transcription factors such as AP-1 and NF-κB and the control of genes associated with a more aggressive phenotype. In this report, we describe a novel mechanism of action determined by the JunD component of AP-1, a factor enhancing cell survival in v-Src-transformed cells. We show that the loss of JunD results in the aberrant activation of a genetic program leading to cell death. This program requires the activation of the tumor suppressor death-associated protein kinase 1 (DAPK1). Since DAPK1 is phosphorylated and inhibited by v-Src, these results highlight the importance of this kinase and the multiple mechanisms controlled by v-Src to antagonize the tumor suppressor function of DAPK1.
Collapse
|
6
|
Bertolino E, Reinitz J, Manu. The analysis of novel distal Cebpa enhancers and silencers using a transcriptional model reveals the complex regulatory logic of hematopoietic lineage specification. Dev Biol 2016; 413:128-44. [PMID: 26945717 DOI: 10.1016/j.ydbio.2016.02.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/13/2016] [Accepted: 02/15/2016] [Indexed: 11/25/2022]
Abstract
C/EBPα plays an instructive role in the macrophage-neutrophil cell-fate decision and its expression is necessary for neutrophil development. How Cebpa itself is regulated in the myeloid lineage is not known. We decoded the cis-regulatory logic of Cebpa, and two other myeloid transcription factors, Egr1 and Egr2, using a combined experimental-computational approach. With a reporter design capable of detecting both distal enhancers and silencers, we analyzed 46 putative cis-regulatory modules (CRMs) in cells representing myeloid progenitors, and derived early macrophages or neutrophils. In addition to novel enhancers, this analysis revealed a surprisingly large number of silencers. We determined the regulatory roles of 15 potential transcriptional regulators by testing 32,768 alternative sequence-based transcriptional models against CRM activity data. This comprehensive analysis allowed us to infer the cis-regulatory logic for most of the CRMs. Silencer-mediated repression of Cebpa was found to be effected mainly by TFs expressed in non-myeloid lineages, highlighting a previously unappreciated contribution of long-distance silencing to hematopoietic lineage resolution. The repression of Cebpa by multiple factors expressed in alternative lineages suggests that hematopoietic genes are organized into densely interconnected repressive networks instead of hierarchies of mutually repressive pairs of pivotal TFs. More generally, our results demonstrate that de novo cis-regulatory dissection is feasible on a large scale with the aid of transcriptional modeling. Current address: Department of Biology, University of North Dakota, 10 Cornell Street, Stop 9019, Grand Forks, ND 58202-9019, USA.
Collapse
Affiliation(s)
- Eric Bertolino
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - John Reinitz
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Statistics, The University of Chicago, Chicago, IL 60637, USA; Department of Ecology and Evolution and Institute of Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Manu
- Department of Ecology and Evolution and Institute of Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Biology, University of North Dakota, 10 Cornell Street, Stop 9019, Grand Forks, ND 58202-9019, USA.
| |
Collapse
|
7
|
Aguilar-Morante D, Morales-Garcia JA, Santos A, Perez-Castillo A. CCAAT/enhancer binding protein β induces motility and invasion of glioblastoma cells through transcriptional regulation of the calcium binding protein S100A4. Oncotarget 2015; 6:4369-84. [PMID: 25738360 PMCID: PMC4414196 DOI: 10.18632/oncotarget.2976] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/20/2014] [Indexed: 12/31/2022] Open
Abstract
We have previously shown that decreased expression of CCAAT/enhancer binding protein β (C/EBPβ) inhibits the growth of glioblastoma cells and diminishes their transformation capacity and migration. In agreement with this, we showed that C/EBPβ depletion decreases the mRNA levels of different genes involved in metastasis and invasion. Among these, we found S100 calcium binding protein A4 (S100A4) to be almost undetectable in glioblastoma cells deficient in C/EBPβ. Here, we have evaluated the possible role of S100A4 in the observed effects of C/EBPβ in glioblastoma cells and the mechanism through which S100A4 levels are controlled by C/EBPβ. Our results show that C/EBPβ suppression significantly reduced the levels of S100A4 in murine GL261 and human T98G glioblastoma cells. By employing an S100A4-promoter reporter, we observed a significant induction in the transcriptional activation of the S100A4 gene by C/EBPβ. Furthermore, overexpression of S100A4 in C/EBPβ-depleted glioblastoma cells reverses the enhanced migration and motility induced by this transcription factor. Our data also point to a role of S100A4 in glioblastoma cell invasion and suggest that the C/EBPβ gene controls the invasive potential of GL261 and T98G cells through direct regulation of S100A4. Finally, this study indicates a role of C/EBPβ on the maintenance of the stem cell population present in GL261 glioblastoma cells.
Collapse
Affiliation(s)
- Diana Aguilar-Morante
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Departamento Modelos Experimentales de Enfermedades Humanas, Arturo Duperier, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Instituto de Biomedicina de Sevilla, IBiS, (Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla), Departamento de Fisiología Médica y Biofísica, Sevilla, Spain
| | - Jose A Morales-Garcia
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Departamento Modelos Experimentales de Enfermedades Humanas, Arturo Duperier, Madrid, Spain
| | - Angel Santos
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Perez-Castillo
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Departamento Modelos Experimentales de Enfermedades Humanas, Arturo Duperier, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|
8
|
Yester JW, Bryan L, Waters MR, Mierzenski B, Biswas DD, Gupta AS, Bhardwaj R, Surace MJ, Eltit JM, Milstien S, Spiegel S, Kordula T. Sphingosine-1-phosphate inhibits IL-1-induced expression of C-C motif ligand 5 via c-Fos-dependent suppression of IFN-β amplification loop. FASEB J 2015; 29:4853-65. [PMID: 26246404 DOI: 10.1096/fj.15-275180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/27/2015] [Indexed: 12/15/2022]
Abstract
The neuroinflammation associated with multiple sclerosis involves activation of astrocytes that secrete and respond to inflammatory mediators such as IL-1. IL-1 stimulates expression of many chemokines, including C-C motif ligand (CCL) 5, that recruit immune cells, but it also stimulates sphingosine kinase-1, an enzyme that generates sphingosine-1-phosphate (S1P), a bioactive lipid mediator essential for inflammation. We found that whereas S1P promotes IL-1-induced expression of IL-6, it inhibits IL-1-induced CCL5 expression in astrocytes. This inhibition is mediated by the S1P receptor (S1PR)-2 via an inhibitory G-dependent mechanism. Consistent with this surprising finding, infiltration of macrophages into sites of inflammation increased significantly in S1PR2(-/-) animals. However, activation of NF-κB, IFN regulatory factor-1, and MAPKs, all of which regulate CCL5 expression in response to IL-1, was not diminished by the S1P in astrocytes. Instead, S1PR2 stimulated inositol 1,4,5-trisphosphate-dependent Ca(++) release and Elk-1 phosphorylation and enhanced c-Fos expression. In our study, IL-1 induced the IFNβ production that supports CCL5 expression. An intriguing finding was that S1P induced c-Fos-inhibited CCL5 directly and also indirectly through inhibition of the IFN-β amplification loop. We propose that in addition to S1PR1, which promotes inflammation, S1PR2 mediates opposing inhibitory functions that limit CCL5 expression and diminish the recruitment of immune cells.
Collapse
Affiliation(s)
- Jessie W Yester
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Lauren Bryan
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Michael R Waters
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Bartosz Mierzenski
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Debolina D Biswas
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Angela S Gupta
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Reetika Bhardwaj
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Michael J Surace
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Jose M Eltit
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Sheldon Milstien
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Sarah Spiegel
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Tomasz Kordula
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
9
|
Downregulation of TNIP1 Expression Leads to Increased Proliferation of Human Keratinocytes and Severer Psoriasis-Like Conditions in an Imiquimod-Induced Mouse Model of Dermatitis. PLoS One 2015; 10:e0127957. [PMID: 26046540 PMCID: PMC4457880 DOI: 10.1371/journal.pone.0127957] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 04/22/2015] [Indexed: 02/04/2023] Open
Abstract
Psoriasis is a chronic, inflammatory skin disease involving both environmental and genetic factors. According to genome-wide association studies (GWAS), the TNIP1 gene, which encodes the TNF-α–induced protein 3-interacting protein 1 (TNIP1), is strongly linked to the susceptibility of psoriasis. TNIP1 is a widely expressed ubiquitin sensor that binds to the ubiquitin-editing protein A20 and restricts TNF- and TLR-induced signals. In our study, TNIP1 expression decreased in specimens of epidermis affected by psoriasis. Based on previous studies suggesting a role for TNIP1 in modulating cancer cell growth, we investigated its role in keratinocyte proliferation, which is clearly abnormal in psoriasis. To mimic the downregulation or upregulation of TNIP1 in HaCaT cells and primary human keratinocytes (PHKs), we used a TNIP1 specific small interfering hairpin RNA (TNIP1 shRNA) lentiviral vector or a recombinant TNIP1 (rTNIP1) lentiviral vector, respectively. Blocking TNIP1 expression increased keratinocyte proliferation, while overexpression of TNIP1 decreased keratinocyte proliferation. Furthermore, we showed that TNIP1 signaling might involve extracellular signal-regulated kinase1/2 (Erk1/2) and CCAAT/enhancer-binding protein β (C/EBPβ) activity. Intradermal injection of TNIP1 shRNA in BALB/c mice led to exaggerated psoriatic conditions in imiquimod (IMQ)-induced psoriasis-like dermatitis. These findings indicate that TNIP1 has a protective role in psoriasis and therefore could be a promising therapeutic target.
Collapse
|
10
|
Differential regulation of the rainbow trout (Oncorhynchus mykiss) MT-A gene by nuclear factor interleukin-6 and activator protein-1. BMC Mol Biol 2013; 14:28. [PMID: 24341438 PMCID: PMC3867414 DOI: 10.1186/1471-2199-14-28] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 12/06/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Previously we have identified a distal region of the rainbow trout (Oncorhynchus mykiss) metallothionein-A (rtMT-A) enhancer region, being essential for free radical activation of the rtMT-A gene. The distal promoter region included four activator protein 1 (AP1) cis-acting elements and a single nuclear factor interleukin-6 (NF-IL6) element. In the present study we used the rainbow trout hepatoma (RTH-149) cell line to further examine the involvement of NF-IL6 and AP1 in rtMT-A gene expression following exposure to oxidative stress and tumour promotion. RESULTS Using enhancer deletion studies we observed strong paraquat (PQ)-induced rtMT-A activation via NF-IL6 while the AP1 cis-elements showed a weak but significant activation. In contrast to mammals the metal responsive elements were not activated by oxidative stress. Electrophoretic mobility shift assay (EMSA) mutation analysis revealed that the two most proximal AP1 elements, AP11,2, exhibited strong binding to the AP1 consensus sequence, while the more distal AP1 elements, AP13,4 were ineffective. Phorbol-12-myristate-13-acetate (PMA), a known tumor promoter, resulted in a robust induction of rtMT-A via the AP1 elements alone. To determine the conservation of regulatory functions we transfected human Hep G2 cells with the rtMT-A enhancer constructs and were able to demonstrate that the cis-elements were functionally conserved. The importance of NF-IL6 in regulation of teleost MT is supported by the conservation of these elements in MT genes from different teleosts. In addition, PMA and PQ injection of rainbow trout resulted in increased hepatic rtMT-A mRNA levels. CONCLUSIONS These studies suggest that AP1 primarily is involved in PMA regulation of the rtMT-A gene while NF-IL6 is involved in free radical regulation. Taken together this study demonstrates the functionality of the NF-IL6 and AP-1 elements and suggests an involvement of MT in protection during pathological processes such as inflammation and cancer.
Collapse
|
11
|
Kinase control prevents HIV-1 reactivation in spite of high levels of induced NF-κB activity. J Virol 2012; 86:4548-58. [PMID: 22345467 DOI: 10.1128/jvi.06726-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Despite its clinical importance, the molecular biology of HIV-1 latency control is at best partially understood, and the literature remains conflicting. The most recent description that latent HIV-1 is integrated into actively expressed host genes has further confounded the situation. This lack of molecular understanding complicates our efforts to identify therapeutic compounds or strategies that could reactivate latent HIV-1 infection in patients, a prerequisite for the eradication of HIV-1 infection. Currently, many therapeutic development efforts operate under the assumption that a restrictive histone code could govern latent infection and that either dissipation of the histone-based restrictions or NF-κB activation could be sufficient to trigger HIV-1 reactivation. We here present data that suggest an additional, higher level of molecular control. During a high-content drug screening effort, we identified AS601245 as a potent inhibitor of HIV-1 reactivation in latently infected primary T cells and T cell lines. In either system, AS601245 inhibited HIV-1 reactivation despite high levels of induced NF-κB activation. This finding suggests the presence of a gatekeeper kinase activity that controls latent HIV-1 infection even in the presence of high levels of NF-κB activity. Potential therapeutic stimuli that do not target this gatekeeper kinase will likely fail to trigger efficient system-wide HIV-1 reactivation.
Collapse
|
12
|
Bein K, Leight H, Leikauf GD. JUN-CCAAT/enhancer-binding protein complexes inhibit surfactant-associated protein B promoter activity. Am J Respir Cell Mol Biol 2011; 45:436-44. [PMID: 21148742 PMCID: PMC3175569 DOI: 10.1165/rcmb.2010-0260oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 12/01/2010] [Indexed: 11/24/2022] Open
Abstract
The murine surfactant-associated protein B (Sftpb) gene promoter, spanning nucleotides -653 to +42, is composed of functionally distinct proximal and distal regions. Although both regions contain consensus/putative activator protein 1 (AP-1) sites, the distal, but not the proximal, region mediates the inhibition by jun proto-oncogene (JUN) of Sftpb promoter activity. In transient cotransfection assays, JUN inhibited the luciferase reporter activity of plasmid constructs containing Sftpb promoter fragments that lacked the distal putative AP-1 site, indicating that another regulatory motif mediates JUN-dependent inhibition. Electrophoretic mobility shift assays and in silico analyses identified a DNA target sequence (Sftpb nucleotides -339 to -316) and transcription factors that regulate Sftpb promoter activity. The identified sequence contains a CCAAT/enhancer-binding protein (C/EBP) consensus recognition element. Mutation of the site reduced Sftpb promoter activity and sensitivity to inhibition by JUN. Purified recombinant JUN, which did not recognize the -339 to -316 target sequence when added alone, supershifted the mobility of in vitro translated C/EBP-α and C/EBP-β proteins complexed with the identified cis-regulatory element. These findings support the idea that heterodimerization between JUN and C/EBP-α and/or C/EBP-β targets JUN to the Sftpb promoter, thereby mediating its inhibitory regulatory role.
Collapse
Affiliation(s)
- Kiflai Bein
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, PA 15219-3130, USA.
| | | | | |
Collapse
|
13
|
Hong S, Skaist AM, Wheelan SJ, Friedman AD. AP-1 protein induction during monopoiesis favors C/EBP: AP-1 heterodimers over C/EBP homodimerization and stimulates FosB transcription. J Leukoc Biol 2011; 90:643-51. [PMID: 21543584 DOI: 10.1189/jlb.0111043] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
AP-1 proteins heterodimerize via their LZ domains to bind TGACGTCA or TGACTCA, whereas C/EBPs dimerize to bind ATTGCGCAAT. We demonstrate that intact C/EBPα also heterodimerizes with c-Jun or c-Fos to bind a hybrid DNA element, TGACGCAA, or more weakly to TGATGCAA. A 2:1 ratio of c-Jun:C/EBPα or c-Fos:C/EBPα was sufficient for preferential binding. Semiquantitative Western blot analysis indicates that the summation of c-Jun, JunB, and c-Fos levels in differentiating myeloid cells is similar to or exceeds the entirety of C/EBPα and C/EBPβ, indicating the feasibility of heterodimer formation. Induction of AP-1 proteins during monocytic differentiation favored formation of C/EBP:AP-1 heterodimers, with C/EBPα homodimers more evident during granulopoiesis. Approximately 350 human and 300 murine genes contain the TGACGCAA motif between -2 kb and +1 kb of their transcription start sites. We focused on the murine Fosb promoter, which contains a C/EBP:AP-1 cis element at -56 and -253, with the hFOSB gene containing an identical site at -253 and a 1-bp mismatch at -56. C/EBPα:AP-1 heterodimers bound either site preferentially in a gel-shift assay, C/EBPα:c-Fos ER fusion proteins induced endogenous Fosb mRNA but not in the presence of CHX, C/EBP and AP-1 proteins bound the endogenous Fosb promoter, mutation of the -56 cis element reduced reporter activity fivefold, and endogenous FosB protein was expressed preferentially during monopoiesis versus granulopoiesis. Increased expression of Jun/Fos proteins elevates C/EBP:AP-1 heterodimer formation to potentially activate novel sets of genes during monopoiesis and potentially during other biologic processes.
Collapse
Affiliation(s)
- SunHwa Hong
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | |
Collapse
|
14
|
Abstract
The activation of AP-1 is a hallmark of cell transformation by tyrosine kinases. In this study, we characterize the role of AP-1 proteins in the transformation of chicken embryo fibroblasts (CEF) by v-Src. In normal CEF, the expression of a dominant negative mutant of c-Jun (TAM67) induced senescence. In contrast, three distinct phenotypes were observed when TAM67 was expressed in v-Src-transformed CEF. While senescent cells were also present, the inhibition of AP-1 caused apoptosis in a fraction of the v-Src-transformed cells. In addition, cells containing lipid-rich vesicles accumulated, suggesting that a subpopulation of the v-Src-transformed cells underwent differentiation in response to the inhibition of AP-1. JunD and Fra-2 were the main components of this factor, while c-Jun accounted for a minor fraction of AP-1 in v-Src-transformed CEF. The downregulation of c-Jun expression by short hairpin RNA (shRNA) induced senescence in normal and v-Src-transformed cells. In contrast, a high incidence of apoptosis was caused by the downregulation of JunD, suggesting that it is required for the survival of v-Src-transformed CEF. Levels of the p53 tumor suppressor were elevated under conditions of JunD inhibition. Repression of p53 by shRNA enhanced the survival and anchorage-independent proliferation of v-Src-transformed CEF with JunD/AP-1 inhibition. The inhibition of Fra-2 had no visible phenotype in normal CEF but caused the appearance of lipid-rich vesicles in v-Src-transformed CEF. Therefore, AP-1 facilitated transformation by acting as a survival factor, by inhibiting premature entry into senescence, and by blocking the differentiation of v-Src-transformed CEF.
Collapse
|
15
|
Lee SH, Krisanapun C, Baek SJ. NSAID-activated gene-1 as a molecular target for capsaicin-induced apoptosis through a novel molecular mechanism involving GSK3beta, C/EBPbeta and ATF3. Carcinogenesis 2010; 31:719-28. [PMID: 20110283 DOI: 10.1093/carcin/bgq016] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Capsaicin, a natural product of the Capsicum species of red peppers, is known to induce apoptosis and suppress growth. Non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) is a cytokine associated with pro-apoptotic and antitumorigenic property in colorectal and lung cancer. Our data demonstrate that capsaicin leads to induction of apoptosis and up-regulates NAG-1 gene expression at the transcriptional level. Overexpression of CCAAT/enhancer binding protein beta (C/EBPbeta) caused a significant increase of basal and capsaicin-induced NAG-1 promoter activity. We subsequently identified C/EBPbeta binding sites in the NAG-1 promoter responsible for capsaicin-induced NAG-1 transactivation. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay confirmed binding of C/EBPbeta to the NAG-1 promoter. Capsaicin treatment resulted in an increase of phosphorylated serine/threonine residues on C/EBPbeta, and the immunoprecipitation study showed that capsaicin enhanced binding of C/EBPbeta with glycogen synthase kinase 3beta (GSK3beta) and activating transcription factor 3 (ATF3). The phosphorylation and interaction of C/EBPbeta with GSK3beta and ATF3 are decreased by the inhibition of the GSK3beta and Protein Kinase C pathways. Knockdown of C/EBPbeta, GSK3beta or ATF3 ameliorates NAG-1 expression induced by capsaicin treatment. These data indicate that C/EBPbeta phosphorylation through GSK3beta may mediate capsaicin-induced expression of NAG-1 and apoptosis through cooperation with ATF3 in human colorectal cancer cells.
Collapse
Affiliation(s)
- Seong-Ho Lee
- Laboratory of Environmental Carcinogenesis, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | | |
Collapse
|
16
|
Kilareski EM, Shah S, Nonnemacher MR, Wigdahl B. Regulation of HIV-1 transcription in cells of the monocyte-macrophage lineage. Retrovirology 2009; 6:118. [PMID: 20030845 PMCID: PMC2805609 DOI: 10.1186/1742-4690-6-118] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 12/23/2009] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) has been shown to replicate productively in cells of the monocyte-macrophage lineage, although replication occurs to a lesser extent than in infected T cells. As cells of the monocyte-macrophage lineage become differentiated and activated and subsequently travel to a variety of end organs, they become a source of infectious virus and secreted viral proteins and cellular products that likely initiate pathological consequences in a number of organ systems. During this process, alterations in a number of signaling pathways, including the level and functional properties of many cellular transcription factors, alter the course of HIV-1 long terminal repeat (LTR)-directed gene expression. This process ultimately results in events that contribute to the pathogenesis of HIV-1 infection. First, increased transcription leads to the upregulation of infectious virus production, and the increased production of viral proteins (gp120, Tat, Nef, and Vpr), which have additional activities as extracellular proteins. Increased viral production and the presence of toxic proteins lead to enhanced deregulation of cellular functions increasing the production of toxic cellular proteins and metabolites and the resulting organ-specific pathologic consequences such as neuroAIDS. This article reviews the structural and functional features of the cis-acting elements upstream and downstream of the transcriptional start site in the retroviral LTR. It also includes a discussion of the regulation of the retroviral LTR in the monocyte-macrophage lineage during virus infection of the bone marrow, the peripheral blood, the lymphoid tissues, and end organs such as the brain. The impact of genetic variation on LTR-directed transcription during the course of retrovirus disease is also reviewed.
Collapse
Affiliation(s)
- Evelyn M Kilareski
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | - Sonia Shah
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | - Michael R Nonnemacher
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | - Brian Wigdahl
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| |
Collapse
|
17
|
Kfoury N, Kapatos G. Identification of neuronal target genes for CCAAT/enhancer binding proteins. Mol Cell Neurosci 2009; 40:313-27. [PMID: 19103292 PMCID: PMC2703816 DOI: 10.1016/j.mcn.2008.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Revised: 11/04/2008] [Accepted: 11/05/2008] [Indexed: 01/19/2023] Open
Abstract
CCAAT/Enhancer Binding Proteins (C/EBPs) play pivotal roles in the development and plasticity of the nervous system. Identification of the physiological targets of C/EBPs (C/EBP target genes) should therefore provide insight into the underlying biology of these processes. We used unbiased genome-wide mapping to identify 115 C/EBPbeta target genes in PC12 cells that include transcription factors, neurotransmitter receptors, ion channels, protein kinases and synaptic vesicle proteins. C/EBPbeta binding sites were located primarily within introns, suggesting novel regulatory functions, and were associated with binding sites for other developmentally important transcription factors. Experiments using dominant negatives showed C/EBPbeta to repress transcription of a subset of target genes. Target genes in rat brain were subsequently found to preferentially bind C/EBPalpha, beta and delta. Analysis of the hippocampal transcriptome of C/EBPbeta knockout mice revealed dysregulation of a high percentage of transcripts identified as C/EBP target genes. These results support the hypothesis that C/EBPs play non-redundant roles in the brain.
Collapse
Affiliation(s)
- Najla Kfoury
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | | |
Collapse
|
18
|
Qiu X, Aiken KJ, Chokas AL, Beachy DE, Nick HS. Distinct functions of CCAAT enhancer-binding protein isoforms in the regulation of manganese superoxide dismutase during interleukin-1beta stimulation. J Biol Chem 2008; 283:25774-85. [PMID: 18559338 PMCID: PMC2533776 DOI: 10.1074/jbc.m801178200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 06/03/2008] [Indexed: 01/29/2023] Open
Abstract
The mitochondrial antioxidant enzyme manganese superoxide dismutase (Mn-SOD) is crucial in maintaining cellular and organismal homeostasis. Mn-SOD expression is tightly regulated in a manner that synchronizes its cytoprotective functions during inflammatory challenges. Induction of Mn-SOD gene expression by the proinflammatory cytokine IL-1beta is mediated through a complex intronic enhancer element. To identify and characterize the transcription factors required for Mn-SOD enhancer function, a yeast one-hybrid assay was utilized, and two CCAAT enhancer-binding protein (C/EBP) members, C/EBP beta and C/EBP delta, were identified. These two transcription factors responded to IL-1beta treatment with distinct expression profiles, different temporal yet inducible interactions with the endogenous Mn-SOD enhancer, and also opposite effects on Mn-SOD transcription. C/EBP beta is expressed as three isoforms, LAP* (liver-activating protein), LAP, and LIP (liver-inhibitory protein). Our functional analysis demonstrated that only the full-length C/EBP beta/LAP* served as a true activator for Mn-SOD, whereas LAP, LIP, and C/EBP delta functioned as potential repressors. Finally, our systematic mutagenesis of the unique N-terminal 21 amino acids further solidified the importance of LAP* in the induction of Mn-SOD and emphasized the crucial role of this isoform. Our data demonstrating the physiological relevance of the N-terminal peptide also provide a rationale for revisiting the role of LAP* in the regulation of other genes and in pathways such as lipogenesis and development.
Collapse
Affiliation(s)
- Xiaolei Qiu
- Department of Neuroscience,
McKnight Brian Institute, and
Department of Biochemistry and Molecular
Biology, University of Florida, Gainesville, Florida 32610
| | - Kimberly J. Aiken
- Department of Neuroscience,
McKnight Brian Institute, and
Department of Biochemistry and Molecular
Biology, University of Florida, Gainesville, Florida 32610
| | - Ann L. Chokas
- Department of Neuroscience,
McKnight Brian Institute, and
Department of Biochemistry and Molecular
Biology, University of Florida, Gainesville, Florida 32610
| | - Dawn E. Beachy
- Department of Neuroscience,
McKnight Brian Institute, and
Department of Biochemistry and Molecular
Biology, University of Florida, Gainesville, Florida 32610
| | - Harry S. Nick
- Department of Neuroscience,
McKnight Brian Institute, and
Department of Biochemistry and Molecular
Biology, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
19
|
Cai DH, Wang D, Keefer J, Yeamans C, Hensley K, Friedman AD. C/EBP alpha:AP-1 leucine zipper heterodimers bind novel DNA elements, activate the PU.1 promoter and direct monocyte lineage commitment more potently than C/EBP alpha homodimers or AP-1. Oncogene 2008; 27:2772-9. [PMID: 18026136 PMCID: PMC2696120 DOI: 10.1038/sj.onc.1210940] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 10/01/2007] [Accepted: 10/18/2007] [Indexed: 11/09/2022]
Abstract
The basic-region leucine zipper (BR-LZ or bZIP) transcription factors dimerize via their LZ domains to position the adjacent BRs for DNA binding. Members of the C/EBP, AP-1 and CREB/ATF bZIP subfamilies form homodimeric or heterodimeric complexes with other members of the same subset and bind-specific DNA motifs. Here we demonstrate that C/EBPalpha also zippers with AP-1 proteins and that this interaction allows contact with novel DNA elements and induction of monocyte lineage commitment in myeloid progenitors. A leucine zipper swap:gel shift assay demonstrates that C/EBPalpha zippers with c-Jun, JunB or c-Fos, but not with c-Maf or MafB. To evaluate activities of specific homodimers or heterodimers we utilized LZs with acid (LZE) or basic (LZK) residues in their salt bridge positions. C/EBPalphaLZE:C/EBPalphaLZK preferentially binds a C/EBP site, c-JunLZE:c-FosLZK an AP-1 site and C/EBPalphaLZE:c-JunLZK a hybrid element identified as TTGCGTCAT by oligonucleotide selection. In murine myeloid progenitors, C/EBPalpha:c-Jun or C/EBPalpha:c-Fos LZE:LZK heterodimers induce monocyte lineage commitment with markedly increased potency compared with C/EBPalpha or c-Jun homodimers or c-Jun:c-Fos heterodimers, demonstrating a positive functional consequence of C/EBP:AP-1 bZIP subfamily interaction. C/EBPalpha:cJun binds and activates the endogenous PU.1 promoter, providing one mechanism for induction of monopoiesis by this complex.
Collapse
Affiliation(s)
- D H Cai
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | |
Collapse
|
20
|
Zhou S, DeWille J. Proteasome-mediated CCAAT/enhancer-binding protein delta (C/EBPdelta) degradation is ubiquitin-independent. Biochem J 2007; 405:341-9. [PMID: 17373909 PMCID: PMC1904515 DOI: 10.1042/bj20070082] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
C/EBPdelta (CCAAT/enhancer-binding protein delta) is a member of the C/EBP family of nuclear proteins that function in the control of cell growth, survival, differentiation and apoptosis. We previously demonstrated that C/EBPdelta gene transcription is highly induced in G(0) growth-arrested mammary epithelial cells but the C/EBPdelta protein exhibits a t(1/2) of only approximately 120 min. The goal of the present study was to investigate the role of C/EBPdelta modification by ubiquitin and C/EBPdelta proteasome-mediated degradation. Structural and mutational analyses demonstrate that an intact leucine zipper is required for C/EBPdelta ubiquitination; however, the leucine zipper does not provide lysine residues for ubiquitin conjugation. C/EBPdelta ubiquitination is not required for proteasome-mediated C/EBPdelta degradation and the presence of ubiquitin does not increase C/EBPdelta degradation by the proteasome. Instead, the leucine zipper stabilizes the C/EBPdelta protein by forming homodimers that are poor substrates for proteasome degradation. To investigate the cellular conditions associated with C/EBPdelta ubiquitination we treated G(0) growth-arrested mammary epithelial cells with DNA-damage- and oxidative-stress-inducing agents and found that C/EBPdelta ubiquitination is induced in response to H2O2. However, C/EBPdelta protein stability is not influenced by H2O2 treatment. In conclusion, our results demonstrate that proteasome-mediated protein degradation of C/EBPdelta is ubiquitin-independent.
Collapse
Affiliation(s)
- Shanggen Zhou
- The Ohio State Biochemistry Program, Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210-1093, U.S.A
| | - James W. DeWille
- The Ohio State Biochemistry Program, Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210-1093, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
21
|
Ets-2 and C/EBP-beta are important mediators of ovine trophoblast Kunitz domain protein-1 gene expression in trophoblast. BMC Mol Biol 2007; 8:14. [PMID: 17326832 PMCID: PMC1817651 DOI: 10.1186/1471-2199-8-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 02/27/2007] [Indexed: 11/22/2022] Open
Abstract
Background The trophoblast Kunitz domain proteins (TKDPs) constitute a highly expressed, placenta-specific, multigene family restricted to ruminant ungulates and characterized by a C-terminal "Kunitz" domain, preceded by one or more unique N-terminal domains. TKDP-1 shares an almost identical expression pattern with interferon-tau, the "maternal recognition of pregnancy protein" in ruminants. Our goal here has been to determine whether the ovine (ov) Tkdp-1 and IFNT genes possess a similar transcriptional code. Results The ovTkdp-1 promoter has been cloned and characterized. As with the IFNT promoter, the Tkdp-1 promoter is responsive to Ets-2, and promoter-driven reporter activity can be increased over 700-fold in response to over-expression of Ets-2 and a constitutively active form of protein Kinase A (PKA). Unexpectedly, the promoter element of Tkdp-1 responsible for this up-regulation, unlike that of the IFNT, does not bind Ets-2. However, mutation of a CCAAT/enhancer binding element within this control region not only reduced basal transcriptional activity, but prevented Ets-2 as well as cyclic adenosine 5'-monophosphate (cAMP)/PKA and Ras/mitogen-activated protein kinase (MAPK) responsiveness. In vitro binding experiments and in vivo protein-protein interaction assays implicated CCAAT/enhancer binding protein-beta (C/EBP-β) as involved in up-regulating the Tkdp-1 promoter activity. A combination of Ets-2 and C/EBP-β can up-regulate expression of the minimal Tkdp-1 promoter as much as 930-fold in presence of a cAMP analog. An AP-1-like element adjacent to the CCAAT enhancer, which binds Jun family members, is required for basal and cAMP/ C/EBP-β-dependent activation of the gene, but not for Ets-2-dependent activity. Conclusion This paper demonstrates how Ets-2, a key transcription factor for trophoblast differentiation and function, can control expression of two genes (Tkdp-1 and IFNT) having similar spatial and temporal expression patterns via very different mechanisms.
Collapse
|
22
|
Grondin B, Lefrancois M, Tremblay M, Saint-Denis M, Haman A, Waga K, Bédard A, Tenen DG, Hoang T. c-Jun homodimers can function as a context-specific coactivator. Mol Cell Biol 2007; 27:2919-33. [PMID: 17283046 PMCID: PMC1899927 DOI: 10.1128/mcb.00936-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transcription factors can function as DNA-binding-specific activators or as coactivators. c-Jun drives gene expression via binding to AP-1 sequences or as a cofactor for PU.1 in macrophages. c-Jun heterodimers bind AP-1 sequences with higher affinity than homodimers, but how c-Jun works as a coactivator is unknown. Here, we provide in vitro and in vivo evidence that c-Jun homodimers are recruited to the interleukin-1beta (IL-1beta) promoter in the absence of direct DNA binding via protein-protein interactions with DNA-anchored PU.1 and CCAAT/enhancer-binding protein beta (C/EBPbeta). Unexpectedly, the interaction interface with PU.1 and C/EBPbeta involves four of the residues within the basic domain of c-Jun that contact DNA, indicating that the capacities of c-Jun to function as a coactivator or as a DNA-bound transcription factor are mutually exclusive. Our observations indicate that the IL-1beta locus is occupied by PU.1 and C/EBPbeta and poised for expression and that c-Jun enhances transcription by facilitating a rate-limiting step, the assembly of the RNA polymerase II preinitiation complex, with minimal effect on the local chromatin status. We propose that the basic domain of other transcription factors may also be redirected from a DNA interaction mode to a protein-protein interaction mode and that this switch represents a novel mechanism regulating gene expression profiles.
Collapse
Affiliation(s)
- Benoit Grondin
- Institute of Research in Immunology and Cancer, University of Montreal, P.O. Box 6128, Downtown station, Montréal, Québec
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang D, D'Costa J, Civin CI, Friedman AD. C/EBPalpha directs monocytic commitment of primary myeloid progenitors. Blood 2006; 108:1223-9. [PMID: 16645168 PMCID: PMC1895870 DOI: 10.1182/blood-2005-12-008763] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
C/EBPalpha is required for generation of granulocyte-monocyte progenitors, but the subsequent role of C/EBPalpha in myeloid lineage commitment remains uncertain. We transduced murine marrow cells with C/EBPalpha-estradiol receptor (ER) or empty vector and subjected these to lineage depletion just prior to culture in estradiol with myeloid cytokines. This protocol limits biases due to lineage-specific effects on developmental kinetics, proliferation, and apoptosis. Also, lowering the dose of estradiol reduced activated C/EBPalpha-ER to near the physiologic range. C/EBPalpha-ER increased Mac1(+)/Gr1(-)/MPO(-)/low monocytes 1.9-fold while reducing Mac1(+)/Gr1(+)/MPO(hi) granulocytes 2.5-fold at 48 hours, even in 0.01 microM estradiol. This pattern was confirmed morphologically and by quantitative polymerase chain reaction (PCR) assay of lineage markers. To directly assess effects on immature progenitors, transduced cells were cultured for 1 day with and then in methylcellulose without estradiol. A 2-fold increase in monocytic compared with granulocytic colonies was observed in IL-3/IL-6/SCF or GM-CSF, but not G-CSF, even in 0.01 microM estradiol. C/EBPalpha-ER induced PU.1 mRNA, and PU.1-ER stimulated monocytic development, suggesting that transcriptional induction of PU.1 by C/EBPalpha contributes to monopoiesis. A C/EBPalpha variant incapable of zippering with c-Jun did not induce monopoiesis, and a variant unable to bind NF-kappaB p50 stimulated granulopoiesis, suggesting their cooperation with C/EBPalpha during monocytic commitment.
Collapse
Affiliation(s)
- Dehua Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | | |
Collapse
|
24
|
Wang JM, Tseng JT, Chang WC. Induction of human NF-IL6beta by epidermal growth factor is mediated through the p38 signaling pathway and cAMP response element-binding protein activation in A431 cells. Mol Biol Cell 2005; 16:3365-76. [PMID: 15901830 PMCID: PMC1165418 DOI: 10.1091/mbc.e05-02-0105] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The CCAAT/enhancer binding protein delta (C/EBPdelta, CRP3, CELF, NF-IL6beta) regulates gene expression and plays functional roles in many tissues, such as in acute phase response to inflammatory stimuli, adipocyte differentiation, and mammary epithelial cell growth control. In this study, we examined the expression of human C/EBPdelta (NF-IL6beta) gene by epidermal growth factor (EGF) stimulation in human epidermoid carcinoma A431 cells. NF-IL6beta was an immediate-early gene activated by the EGF-induced signaling pathways in cells. By using 5'-serial deletion reporter analysis, we showed that the region comprising the -347 to +9 base pairs was required for EGF response of the NF-IL6beta promoter. This region contains putative consensus binding sequences of Sp1 and cAMP response element-binding protein (CREB). The NF-IL6beta promoter activity induced by EGF was abolished by mutating the sequence of cAMP response element or Sp1 sites in the -347/+9 base pairs region. Both in vitro and in vivo DNA binding assay revealed that the CREB binding activity was low in EGF-starved cells, whereas it was induced within 30 min after EGF treatment of A431 cells. However, no change in Sp1 binding activity was found by EGF treatment. Moreover, the phosphatidylinositol 3 (PI3)-kinase inhibitor (wortmannin) and p38(MAPK) inhibitor (SB203580) inhibited the EGF-induced CREB phosphorylation and the expression of NF-IL6beta gene in cells. We also demonstrated that CREB was involved in regulating the NF-IL6beta gene transcriptional activity mediated by p38(MAPK). Our results suggested that PI3-kinase/p38(MAPK)/CREB pathway contributed to the EGF activation of NF-IL6beta gene expression.
Collapse
Affiliation(s)
- Ju-Ming Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | | | | |
Collapse
|
25
|
Friedman JR, Larris B, Le PP, Peiris TH, Arsenlis A, Schug J, Tobias JW, Kaestner KH, Greenbaum LE. Orthogonal analysis of C/EBPbeta targets in vivo during liver proliferation. Proc Natl Acad Sci U S A 2004; 101:12986-91. [PMID: 15317935 PMCID: PMC516505 DOI: 10.1073/pnas.0402875101] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
CCAAT enhancer-binding protein beta (C/EBPbeta), a basic-leucine zipper transcription factor, is an important effector of signals in physiologic growth and cancer. The identification of direct C/EBPbeta targets in vivo has been limited by functional compensation by other C/EBP family proteins and the low stringency of the consensus sequence. Here we use the combined power of expression profiling and high-throughput chromatin immunoprecipitation to identify direct and biologically relevant targets of C/EBPbeta. We identified 25 potential C/EBPbeta targets, of which 88% of those tested were confirmed as in vivo C/EBPbeta-binding sites. Six of these genes also displayed differential expression in C/EBPbeta-/- livers. Computational analysis revealed that bona fide C/EBPbeta target genes can be distinguished by the presence of binding motifs for specific additional transcription factors in the vicinity of the C/EBPbeta site. This approach is generally applicable to the discovery of direct, biologically relevant targets of mammalian transcription factors.
Collapse
Affiliation(s)
- Joshua R Friedman
- Department of Genetics, Bioinformatics Core, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Patil CK, Li H, Walter P. Gcn4p and novel upstream activating sequences regulate targets of the unfolded protein response. PLoS Biol 2004; 2:E246. [PMID: 15314660 PMCID: PMC509306 DOI: 10.1371/journal.pbio.0020246] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 05/17/2004] [Indexed: 01/23/2023] Open
Abstract
Eukaryotic cells respond to accumulation of unfolded proteins in the endoplasmic reticulum (ER) by activating the unfolded protein response (UPR), a signal transduction pathway that communicates between the ER and the nucleus. In yeast, a large set of UPR target genes has been experimentally determined, but the previously characterized unfolded protein response element (UPRE), an upstream activating sequence (UAS) found in the promoter of the UPR target gene KAR2, cannot account for the transcriptional regulation of most genes in this set. To address this puzzle, we analyzed the promoters of UPR target genes computationally, identifying as candidate UASs short sequences that are statistically overrepresented. We tested the most promising of these candidate UASs for biological activity, and identified two novel UPREs, which are necessary and sufficient for UPR activation of promoters. A genetic screen for activators of the novel motifs revealed that the transcription factor Gcn4p plays an essential and previously unrecognized role in the UPR: Gcn4p and its activator Gcn2p are required for induction of a majority of UPR target genes during ER stress. Both Hac1p and Gcn4p bind target gene promoters to stimulate transcriptional induction. Regulation of Gcn4p levels in response to changing physiological conditions may function as an additional means to modulate the UPR. The discovery of a role for Gcn4p in the yeast UPR reveals an additional level of complexity and demonstrates a surprising conservation of the signaling circuit between yeast and metazoan cells. The yeast unfolded protein response activates a large set of target genes, but a characterized element found in the promoter of one target, KAR2, cannot account for most targets. Using computational and experimental methods, the authors identify additional elements, as well a role for GCN4p in the response
Collapse
Affiliation(s)
- Christopher K Patil
- 1Howard Hughes Medical Institute, Chevy ChaseMaryland, United States of America
- 2Department of Biochemistry and Biophysics, University of CaliforniaSan Francisco, California, United States of America
| | - Hao Li
- 2Department of Biochemistry and Biophysics, University of CaliforniaSan Francisco, California, United States of America
- 3California Institute for Quantitative Biomedical Research, San FranciscoCaliforniaUnited States of America
| | - Peter Walter
- 1Howard Hughes Medical Institute, Chevy ChaseMaryland, United States of America
- 2Department of Biochemistry and Biophysics, University of CaliforniaSan Francisco, California, United States of America
| |
Collapse
|
27
|
Sen E, Alam S, Meyers C. Genetic and biochemical analysis of cis regulatory elements within the keratinocyte enhancer region of the human papillomavirus type 31 upstream regulatory region during different stages of the viral life cycle. J Virol 2004; 78:612-29. [PMID: 14694093 PMCID: PMC368763 DOI: 10.1128/jvi.78.2.612-629.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using linker scanning mutational analysis, we recently identified potential cis regulatory elements contained within the 5' upstream regulatory region (URR) domain and auxiliary enhancer (AE) region of the human papillomavirus type 31 (HPV31) URR involved in the regulation of E6/E7 promoter activity at different stages of the viral life cycle. For the present study, we extended the linker scanning mutational analysis to identify potential cis elements located in the keratinocyte enhancer (KE) region (nucleotides 7511 to 7762) of the HPV31 URR and to characterize cellular factors that bind to these elements under conditions representing different stages of the viral life cycle. The linker scanning mutational analysis identified viral cis elements located in the KE region that regulate transcription in the presence and absence of any viral gene products or viral DNA replication and determine the role of host tissue differentiation on viral transcriptional regulation. Using electrophoretic mobility shift assays, we illustrated defined reorganization in the composition of cellular transcription factors binding to the same cis regulatory elements at different stages of the HPV differentiation-dependent life cycle. Our studies provide an extensive map of functional elements in the KE region of the HPV31 URR, identify cis regulatory elements that exhibit significant transcription regulatory potential, and illustrate changes in specific protein-DNA interactions at different stages of the viral life cycle. The variable recruitment of transcription factors to the same cis element under different cellular conditions may represent a mechanism underlying the tight link between keratinocyte differentiation and E6/E7 expression.
Collapse
Affiliation(s)
- Ellora Sen
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
28
|
Abstract
In follicular lymphomas with the t(14;18) translocation, there is increased expression of the bcl-2 gene, which is dependent upon regulatory elements within the bcl-2 5' flanking region and the immunoglobulin heavy-chain gene enhancers. We found that t(14;18) lymphomas expressed C/EBPalpha, which is not normally expressed in B lymphocytes. Expression of C/EBPalpha increased bcl-2 expression, and two regions of the bcl-2 P2 promoter that mediated this effect were identified. C/EBPbeta was also able to increase bcl-2 promoter activity through these sites. The 5' site was GC-rich and did not contain a C/EBP consensus sequence; however, C/EBP was observed to interact with this site both in vitro by EMSA and in vivo by chromatin immunoprecipitation assay. The 3' region contained the Cdx site, which mediates the effect of A-Myb on the bcl-2 promoter. In vivo binding studies revealed that C/EBP interacted with this region of the bcl-2 promoter as well. Decreased expression of C/EBP factors due to targeting of their transcripts by siRNA molecules resulted in downregulation of Bcl-2 protein. We conclude that C/EBPalpha and C/EBPbeta contribute to the deregulated expression of Bcl-2 in t(14;18) lymphoma cells.
Collapse
MESH Headings
- B-Lymphocytes/pathology
- B-Lymphocytes/physiology
- Base Composition
- Binding Sites
- CCAAT-Enhancer-Binding Protein-alpha/genetics
- CCAAT-Enhancer-Binding Protein-alpha/metabolism
- CCAAT-Enhancer-Binding Protein-beta/genetics
- CCAAT-Enhancer-Binding Protein-beta/metabolism
- CCAAT-Enhancer-Binding Proteins/genetics
- CCAAT-Enhancer-Binding Proteins/metabolism
- Chromosomes, Human, Pair 14
- Chromosomes, Human, Pair 18
- Gene Expression Regulation, Neoplastic
- Homeodomain Proteins/metabolism
- Humans
- Lymphoma, Follicular/genetics
- Mutation
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA, Small Interfering
- Response Elements
- Transfection
- Translocation, Genetic/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Caroline A Heckman
- Center for Molecular Biology in Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | | | | |
Collapse
|
29
|
Hadaschik D, Hinterkeuser K, Oldak M, Pfister HJ, Smola-Hess S. The Papillomavirus E2 protein binds to and synergizes with C/EBP factors involved in keratinocyte differentiation. J Virol 2003; 77:5253-65. [PMID: 12692227 PMCID: PMC153950 DOI: 10.1128/jvi.77.9.5253-5265.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The papillomavirus life cycle is closely linked to the differentiation program of the host keratinocyte. Thus, late gene expression and viral maturation are restricted to terminally differentiated keratinocytes. A variety of cellular transcription factors including those of the C/EBP family are involved in the regulation of keratinocyte differentiation. In this study we show that the papillomavirus transcription factor E2 cooperates with C/EBPalpha and -beta in transcriptional activation. This synergism was independent of an E2 binding site. E2 and C/EBP factors synergistically transactivated a synthetic promoter construct containing classical C/EBPbeta sites and the C/EBPalpha-responsive proximal promoter of the involucrin gene, which is naturally expressed in differentiating keratinocytes. C/EBPalpha or -beta coprecipitated with E2 proteins derived from human papillomavirus type 8 (HPV8), HPV16, HPV18, and bovine papillomavirus type 1 in vitro and in vivo, indicating complex formation by the cellular and viral factors. The interaction domains could be mapped to the C terminus of E2 and amino acids 261 to 302 located within the bZIP motif of C/EBPbeta. Our data suggest that E2, via its interaction with C/EBP factors, may contribute to enhancing keratinocyte differentiation, which is suppressed by the viral oncoproteins E6 and E7 in HPV-induced lesions.
Collapse
|
30
|
Rangatia J, Vangala RK, Treiber N, Zhang P, Radomska H, Tenen DG, Hiddemann W, Behre G. Downregulation of c-Jun expression by transcription factor C/EBPalpha is critical for granulocytic lineage commitment. Mol Cell Biol 2002; 22:8681-94. [PMID: 12446786 PMCID: PMC139872 DOI: 10.1128/mcb.22.24.8681-8694.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The transcription factor C/EBPalpha is crucial for the differentiation of granulocytes. Conditional expression of C/EBPalpha triggers neutrophilic differentiation, and C/EBPalpha can block 12-O-tetradecanoylphorbol-13-acetate-induced monocytic differentiation of bipotential myeloid cells. In C/EBPalpha knockout mice, no mature granulocytes are present. A dramatic increase of c-Jun mRNA in C/EBPalpha knockout mouse fetal liver was observed. c-Jun, a component of the AP-1 transcription factor complex and a coactivator of the transcription factor PU.1, is important for monocytic differentiation. Here we report that C/EBPalpha downregulates c-Jun expression to drive granulocytic differentiation. An ectopic increase of C/EBPalpha expression decreases the c-Jun mRNA level, and the human c-Jun promoter activity is downregulated eightfold in the presence of C/EBPalpha. C/EBPalpha and c-Jun interact through their leucine zipper domains, and this interaction prevents c-Jun from binding to DNA. This results in downregulation of c-Jun's capacity to autoregulate its own promoter through the proximal AP-1 site. Overexpression of c-Jun prevents C/EBPalpha-induced granulocytic differentiation. Thus, we propose a model in which C/EBPalpha needs to downregulate c-Jun expression and transactivation capacity for promoting granulocytic differentiation.
Collapse
Affiliation(s)
- Janki Rangatia
- Department of Medicine III, Ludwig Maximilians University Munich, and GSF-National Research Center, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu X, Jana M, Dasgupta S, Koka S, He J, Wood C, Pahan K. Human immunodeficiency virus type 1 (HIV-1) tat induces nitric-oxide synthase in human astroglia. J Biol Chem 2002; 277:39312-9. [PMID: 12167619 PMCID: PMC2041896 DOI: 10.1074/jbc.m205107200] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection is known to cause neuronal injury and dementia in a significant proportion of patients. However, the mechanism by which HIV-1 mediates its deleterious effects in the brain is poorly defined. The present study was undertaken to investigate the effect of the HIV-1 tat gene on the expression of inducible nitric-oxide synthase (iNOS) in human U373MG astroglial cells and primary astroglia. Expression of the tat gene as RSV-tat but not that of the CAT gene as RSV-CAT in U373MG astroglial cells led to the induction of NO production and the expression of iNOS protein and mRNA. Induction of NO production by recombinant HIV-1 Tat protein and inhibition of RSV-tat-induced NO production by anti-Tat antibodies suggest that RSV-tat-induced production of NO is dependent on Tat and that Tat is secreted from RSV-tat-transfected astroglia. Similar to U373MG astroglial cells, RSV-tat also induced the production of NO in human primary astroglia. The induction of human iNOS promoter-derived luciferase activity by the expression of RSV-tat suggests that RSV-tat induces the transcription of iNOS. To understand the mechanism of induction of iNOS, we investigated the role of NF-kappaB and C/EBPbeta, transcription factors responsible for the induction of iNOS. Activation of NF-kappaB as well as C/EBPbeta by RSV-tat, stimulation of RSV-tat-induced production of NO by the wild type of p65 and C/EBPbeta, and inhibition of RSV-tat-induced production of NO by deltap65, a dominant-negative mutant of p65, and deltaC/EBPbeta, a dominant-negative mutant of C/EBPbeta, suggest that RSV-tat induces iNOS through the activation of NF-kappaB and C/EBPbeta. In addition, we show that extracellular signal-regulated kinase (ERK) but not that p38 mitogen-activated protein kinase (MAPK) is involved in RSV-tat induced production of NO. Interestingly, PD98059, an inhibitor of the ERK pathway, and deltaERK2, a dominant-negative mutant of ERK2, inhibited RSV-tat-induced production of NO through the inhibition of C/EBPbeta but not that of NF-kappaB. This study illustrates a novel role for HIV-1 tat in inducing the expression of iNOS in human astrocytes that may participate in the pathogenesis of HIV-associated dementia.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| | - Malabendu Jana
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| | - Subhajit Dasgupta
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| | - Sreenivas Koka
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| | - Jun He
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588
| | - Charles Wood
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588
| | - Kalipada Pahan
- To whom correspondence should be addressed: Dept. of Oral Biology, University of Nebraska Medical Center, 40th and Holdrege, Lincoln, NE 68583-0740. Tel.: 402-472 -1324; Fax: 402-472-2551; E-mail:
| |
Collapse
|
32
|
Vinson C, Myakishev M, Acharya A, Mir AA, Moll JR, Bonovich M. Classification of human B-ZIP proteins based on dimerization properties. Mol Cell Biol 2002; 22:6321-35. [PMID: 12192032 PMCID: PMC135624 DOI: 10.1128/mcb.22.18.6321-6335.2002] [Citation(s) in RCA: 343] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Charles Vinson
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Ramji DP, Foka P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 2002; 365:561-75. [PMID: 12006103 PMCID: PMC1222736 DOI: 10.1042/bj20020508] [Citation(s) in RCA: 1087] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2002] [Revised: 05/09/2002] [Accepted: 05/10/2002] [Indexed: 02/07/2023]
Abstract
CCAAT/enhancer binding proteins (C/EBPs) are a family of transcription factors that all contain a highly conserved, basic-leucine zipper domain at the C-terminus that is involved in dimerization and DNA binding. At least six members of the family have been isolated and characterized to date (C/EBP alpha[bond]C/EBP zeta), with further diversity produced by the generation of different sized polypeptides, predominantly by differential use of translation initiation sites, and extensive protein-protein interactions both within the family and with other transcription factors. The function of the C/EBPs has recently been investigated by a number of approaches, including studies on mice that lack specific members, and has identified pivotal roles of the family in the control of cellular proliferation and differentiation, metabolism, inflammation and numerous other responses, particularly in hepatocytes, adipocytes and haematopoietic cells. The expression of the C/EBPs is regulated at multiple levels during several physiological and pathophysiological conditions through the action of a range of factors, including hormones, mitogens, cytokines, nutrients and certain toxins. The mechanisms through which the C/EBP members are regulated during such conditions have also been the focus of several recent studies and have revealed an immense complexity with the potential existence of cell/tissue- and species-specific differences. This review deals with the structure, biological function and the regulation of the C/EBP family.
Collapse
Affiliation(s)
- Dipak P Ramji
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, P.O. Box 911, Cardiff CF10 3US, Wales, U.K.
| | | |
Collapse
|
34
|
Fassler J, Landsman D, Acharya A, Moll JR, Bonovich M, Vinson C. B-ZIP proteins encoded by the Drosophila genome: evaluation of potential dimerization partners. Genome Res 2002; 12:1190-200. [PMID: 12176927 PMCID: PMC186634 DOI: 10.1101/gr.67902] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The basic region-leucine zipper (B-ZIP) (bZIP) protein motif dimerizes to bind specific DNA sequences. We have identified 27 B-ZIP proteins in the recently sequenced Drosophila melanogaster genome. The dimerization specificity of these 27 B-ZIP proteins was evaluated using two structural criteria: (1) the presence of attractive or repulsive interhelical g<-->e' electrostatic interactions and (2) the presence of polar or charged amino acids in the 'a' and 'd' positions of the hydrophobic interface. None of the B-ZIP proteins contain only aliphatic amino acids in the'a' and 'd' position. Only six of the Drosophila B-ZIP proteins contain a "canonical" hydrophobic interface like the yeast GCN4, and the mammalian JUN, ATF2, CREB, C/EBP, and PAR leucine zippers, characterized by asparagine in the second 'a' position. Twelve leucine zippers contain polar amino acids in the first, third, and fourth 'a' positions. Circular dichroism spectroscopy, used to monitor thermal denaturations of a heterodimerizing leucine zipper system containing either valine (V) or asparagine (N) in the 'a' position, indicates that the V-N interaction is 2.3 kcal/mole less stable than an N-N interaction and 5.3 kcal/mole less stable than a V-V interaction. Thus, we propose that the presence of polar amino acids in novel positions of the 'a' position of Drosophila B-ZIP proteins has led to leucine zippers that homodimerize rather than heterodimerize.
Collapse
Affiliation(s)
- Jan Fassler
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20814, USA
| | | | | | | | | | | |
Collapse
|
35
|
Gebhardt C, Breitenbach U, Tuckermann JP, Dittrich BT, Richter KH, Angel P. Calgranulins S100A8 and S100A9 are negatively regulated by glucocorticoids in a c-Fos-dependent manner and overexpressed throughout skin carcinogenesis. Oncogene 2002; 21:4266-76. [PMID: 12082614 DOI: 10.1038/sj.onc.1205521] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2001] [Revised: 03/06/2002] [Accepted: 03/26/2002] [Indexed: 01/01/2023]
Abstract
The two calgranulins S100A8 and S100A9 were found to be differentially expressed at sites of acute and chronic inflammation. Here we have employed the phorbol ester-induced multistage skin carcinogenesis protocol in mice to determine the expression of both genes in inflamed skin and in skin tumors. We show that expression is coordinately induced by the phorbol ester TPA in epithelial cells as well as infiltrating leukocytes. By comparing S100A8 and S100A9 mRNA levels in wild type and c-Fos deficient mice (c-fos(-/-)) we found that expression is negatively regulated by c-Fos/AP-1. Glucocorticoids, which exhibit potent anti-inflammatory and anti-tumor promoting activities repressed TPA-mediated S100A8 and S100A9 induction in wild type, but not in c-fos(-/-) mice, thus identifying both genes as the first examples of AP-1 target genes whose repression of TPA-induced transcription by glucocorticoids depends on c-Fos. Finally, we show that enhanced expression is not restricted to the initial TPA-induced inflammatory response but is observed at all stages of skin carcinogenesis. These data identify S100A8 and S100A9 as novel, tumor-associated genes and may point to an as yet unrecognized function of both genes in the development of epithelial skin tumors.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Antigens, Differentiation/biosynthesis
- Antigens, Differentiation/genetics
- Antineoplastic Agents, Hormonal/pharmacology
- Calcium/physiology
- Calcium-Binding Proteins/biosynthesis
- Calcium-Binding Proteins/genetics
- Calgranulin A
- Calgranulin B
- Carcinogens/pharmacology
- Carcinogens/toxicity
- Carcinoma, Squamous Cell/chemically induced
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Dexamethasone/pharmacology
- Disease Progression
- Drug Eruptions/etiology
- Drug Eruptions/genetics
- Drug Eruptions/metabolism
- Female
- Gene Expression Regulation/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, fos
- Keratinocytes/drug effects
- Keratinocytes/metabolism
- Leukocytes/drug effects
- Leukocytes/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Knockout
- Papilloma/chemically induced
- Papilloma/genetics
- Papilloma/metabolism
- Protein Kinase C/antagonists & inhibitors
- Proto-Oncogene Proteins c-fos/deficiency
- Proto-Oncogene Proteins c-fos/physiology
- S100 Proteins/biosynthesis
- S100 Proteins/genetics
- Skin Neoplasms/chemically induced
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Specific Pathogen-Free Organisms
- Tetradecanoylphorbol Acetate/pharmacology
- Tetradecanoylphorbol Acetate/toxicity
- Transcription Factor AP-1/physiology
Collapse
Affiliation(s)
- Christoffer Gebhardt
- Deutsches Krebsforschungszentrum, Division of Signal Transduction and Growth Control, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Sen E, Bromberg-White JL, Meyers C. Genetic analysis of cis regulatory elements within the 5' region of the human papillomavirus type 31 upstream regulatory region during different stages of the viral life cycle. J Virol 2002; 76:4798-809. [PMID: 11967297 PMCID: PMC136139 DOI: 10.1128/jvi.76.10.4798-4809.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The function of the 5' region of the upstream regulatory region (URR) in regulating E6/E7 expression in cancer-associated papillomaviruses has been largely uncharacterized. In this study we used linker-scanning mutational analysis to identify potential cis regulatory elements contained within a portion of the 5' region of the URR that are involved in regulating transcription of the E6/E7 promoter at different stages of the viral life cycle. The mutational analysis illustrated differences in the transcriptional utilization of specific regions of the URR depending on the stage of the viral life cycle. This study identified (i) viral cis elements that regulate transcription in the presence and absence of any viral gene products or viral DNA replication, (ii) the role of host tissue differentiation in viral transcriptional regulation, and (iii) cis regulatory regions that are effected by induction of the protein kinase C pathway. Our studies have provided an extensive map of functional elements in the 5' region (nuncleotides 7259 to 7510) of the human papillomavirus type 31 URR that are involved in the regulation of p99 promoter activity at different stages of the viral life cycle.
Collapse
Affiliation(s)
- Ellora Sen
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
37
|
Jana M, Liu X, Koka S, Ghosh S, Petro TM, Pahan K. Ligation of CD40 stimulates the induction of nitric-oxide synthase in microglial cells. J Biol Chem 2001; 276:44527-33. [PMID: 11551948 PMCID: PMC2041871 DOI: 10.1074/jbc.m106771200] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The present study was undertaken to investigate the role of CD40 ligation in the expression of inducible nitric-oxide synthase (iNOS) in mouse BV-2 microglial cells and primary microglia. Ligation of CD40 alone by either cross-linking antibodies against CD40 or a recombinant CD40 ligand (CD154) was unable to induce the production of NO in BV-2 microglial cells. The absence of induction of NO production by CD40 ligation alone even in CD40-overexpressed BV-2 microglial cells suggests that a signal transduced by the ligation of CD40 alone is not sufficient to induce NO production. However, CD40 ligation markedly stimulated interferon-gamma (IFN-gamma)-mediated NO production. Ligation of CD40 in CD40-overexpressed cells further stimulated IFN-gamma-induced production of NO. This stimulation of NO production was accompanied by stimulation of the iNOS protein and mRNA. In addition to BV-2 glial cells, CD40 ligation also stimulated IFN-gamma-mediated NO production in mouse primary microglia and peritoneal macrophages. To understand the mechanism of induction/stimulation of iNOS, we investigated the roles of nuclear factor kappaB (NF-kappaB) and CCAAT/enhancer-binding protein beta (C/EBPbeta), transcription factors responsible for the induction of iNOS. IFN-gamma alone was able to induce the activation of NF-kappaB as well as C/EBPbeta. However, CD40 ligation alone induced the activation of only NF-kappaB but not of C/EBPbeta, suggesting that the activation of NF-kappaB alone by CD40 ligation is not sufficient to induce the expression of iNOS and that the activation of C/EBPbeta is also necessary for the expression of iNOS. Consistently, dominant-negative mutants of p65 (Deltap65) and C/EBPbeta (DeltaC/EBPbeta) inhibited the expression of iNOS in BV-2 microglial cells that were stimulated with the combination of IFN-gamma and CD40 ligand. Stimulation of IFN-gamma-mediated activation of NF-kappaB but not of C/EBPbeta by CD40 ligation suggests that CD40 ligation stimulates the expression of iNOS in IFN-gamma-treated BV-2 microglial cells through the stimulation of NF-kappaB activation. This study illustrates a novel role for CD40 ligation in stimulating the expression of iNOS in microglial cells, which may participate in the pathogenesis of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Malabendu Jana
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| | - Xiaojuan Liu
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| | - Sreenivas Koka
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| | - Sankar Ghosh
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Thomas M. Petro
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| | - Kalipada Pahan
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
- ¶ To whom correspondence should be addressed: Dept. of Oral Biology, University of Nebraska Medical Center, 40th and Holdrege, Lincoln, NE 68583-0740. Tel.: 402-472-1324; Fax: 402-472-2551; E-mail:
| |
Collapse
|
38
|
Chinenov Y, Kerppola TK. Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene 2001; 20:2438-52. [PMID: 11402339 DOI: 10.1038/sj.onc.1204385] [Citation(s) in RCA: 536] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fos and Jun family proteins regulate the expression of a myriad of genes in a variety of tissues and cell types. This functional versatility emerges from their interactions with related bZIP proteins and with structurally unrelated transcription factors. These interactions at composite regulatory elements produce nucleoprotein complexes with high sequence-specificity and regulatory selectivity. Several general principles including binding cooperativity and conformational adaptability have emerged from studies of regulatory complexes containing Fos-Jun family proteins. The structural properties of Fos-Jun family proteins including opposite orientations of heterodimer binding and the ability to bend DNA can contribute to the assembly and functions of such complexes. The cooperative recruitment of transcription factors, coactivators and chromatin remodeling factors to promoter and enhancer regions generates multiprotein transcription regulatory complexes with cell- and stimulus-specific transcriptional activities. The gene-specific architecture of these complexes can mediate the selective control of transcriptional activity.
Collapse
Affiliation(s)
- Y Chinenov
- Howard Hughes Medical Institute, University of Michigan Medical School Ann Arbor, Michigan, MI 48109-0650, USA
| | | |
Collapse
|
39
|
Gagliardi M, Maynard S, Bojovic B, Bédard PA. The constitutive activation of the CEF-4/9E3 chemokine gene depends on C/EBPbeta in v-src transformed chicken embryo fibroblasts. Oncogene 2001; 20:2301-13. [PMID: 11402325 DOI: 10.1038/sj.onc.1204354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2000] [Revised: 02/01/2001] [Accepted: 02/05/2001] [Indexed: 01/11/2023]
Abstract
The CEF-4/9E3 chemokine gene is expressed constitutively in chicken embryo fibroblasts (CEF) transformed by the Rous sarcoma virus (RSV). This aberrant induction is controlled at the transcriptional and post-transcriptional levels. Transcriptional activation depends on multiple elements of the CEF-4 promoter composing a Src-responsive-Unit or SRU. The SRU includes a TPA responsive element, a PRDII/kappaB domain and a CAAT box. In this report, we identify C/EBPbeta as a component of the trans-acting factor interacting with the CAAT box of the CEF-4 promoter. In addition, we show that C/EBPbeta binds to a second element located in proximity of the TRE. A mutation of this distal CAAT box impaired the activation of the CEF-4 promoter by pp60(v-src) indicating that this element is also part of the SRU. Using the RCASBP retroviral vector, we expressed a dominant negative mutant of C/EBPbeta (designated Delta184-C/EBPbeta) in RSV-transformed CEF. Delta184-C/EBPbeta decreased the accumulation of the CEF-4 mRNA and activation of the CEF-4 promoter by pp60(v-src). The induction of the Cox-2 gene (CEF-147) was also reduced by Delta184-C/EBPbeta. The effect of the dominant negative mutant was observed within 1 h of the activation of a thermolabile pp60(v-src) suggesting that C/EBPbeta is an early target of v-src transformation. The dominant negative mutant did not inhibit the transformation of CEF by RSV and in fact accentuated the transformed cell phenotype. Therefore, the activation of C/EBPbeta is important for the expression of v-src regulated genes but is not required for the in vitro transformation of CEF by pp60(v-src).
Collapse
Affiliation(s)
- M Gagliardi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | | | | | | |
Collapse
|
40
|
Goswami SK, Shafiq S, Siddiqui MA. Modulation of MLC-2v gene expression by AP-1: complex regulatory role of Jun in cardiac myocytes. Mol Cell Biochem 2001; 217:13-20. [PMID: 11269656 DOI: 10.1023/a:1007296330181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hypertrophic stimulation of cardiac myocytes results in rapid induction of a number of transcription factors, including members of the AP-1 family, which is followed by a programmed alteration in the pattern of gene expression. In the ventricular cardiocytes there is re-expression of the fetal atrial natriuretic factor (ANF) gene and upregulation of its myosin light chain-2 (MLC-2v). The mechanism(s) by which the induction ofAP-1 is coupled to the promoters of these target genes is largely unknown. In this report, we demonstrate that in transient co-transfection assay, c-Jun inhibited while Jun B stimulated the MLC-2v promoter activity. Mutant c-Jun recombinants, in which the activation domains were deleted, still remained inhibitory, but a specific mutation in the leucine zipper, which changes the alignment of Jun with its dimerization partner, caused a reversal of its effect on the target MLC-2v promoter. Based on these findings, we propose that in chicken cardiac myocytes, the regulation of MLC-2v promoter by Jun may occur via its interaction with other proteins, possibly of the leucine zipper family.
Collapse
Affiliation(s)
- S K Goswami
- Center for Cardiovascular and Muscle Research and the Department of Anatomy and Cell Biology, State University of New York Health Science Center at Brooklyn, 11203, USA
| | | | | |
Collapse
|
41
|
Zhu S, Oh HS, Shim M, Sterneck E, Johnson PF, Smart RC. C/EBPbeta modulates the early events of keratinocyte differentiation involving growth arrest and keratin 1 and keratin 10 expression. Mol Cell Biol 1999; 19:7181-90. [PMID: 10490653 PMCID: PMC84711 DOI: 10.1128/mcb.19.10.7181] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The epidermis is a stratified squamous epithelium composed primarily of keratinocytes that become postmitotic and undergo sequential changes in gene expression during terminal differentiation. The expression of the transcription factor CCAAT/enhancer binding protein beta (C/EBPbeta) within mouse epidermis and primary keratinocytes has recently been described; however, the function of C/EBPbeta within the epidermal keratinocyte is unknown. We report here that transient transfection of mouse primary keratinocytes with a C/EBP-responsive promoter-reporter construct resulted in a sevenfold increase in luciferase activity when keratinocytes were switched to culture conditions that induce growth arrest and differentiation. Forced expression of C/EBPbeta in BALB/MK2 keratinocytes inhibited growth, induced morphological changes consistent with a more differentiated phenotype, and upregulated two early markers of differentiation, keratin 1 (K1) and keratin 10 (K10) but had a minimal effect on the expression of late-stage markers, loricrin and involucrin. Analysis of the epidermis of C/EBPbeta-deficient mice revealed a mild epidermal hyperplasia and decreased expression of K1 and K10 but not of involucrin and loricrin. C/EBPbeta-deficient primary keratinocytes were partially resistant to calcium-induced growth arrest. Analysis of terminally differentiated spontaneously detached keratinocytes or those induced to differentiate by suspension culture revealed that C/EBPbeta-deficient keratinocytes displayed striking decreases in K1 and K10, while expression of later-stage markers was only minimally altered. Our results demonstrate that C/EBPbeta plays an important role in the early events of stratified squamous differentiation in keratinocytes involving growth arrest and K1 and K10 expression.
Collapse
Affiliation(s)
- S Zhu
- Molecular and Cellular Toxicology, Department of Toxicology, North Carolina State University, Raleigh, North Carolina 27695-7633, USA
| | | | | | | | | | | |
Collapse
|
42
|
Lai CK, Ting LP. Transcriptional repression of human hepatitis B virus genes by a bZIP family member, E4BP4. J Virol 1999; 73:3197-209. [PMID: 10074173 PMCID: PMC104083 DOI: 10.1128/jvi.73.4.3197-3209.1999] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Box alpha is an essential element of both the upstream regulatory sequence of the core promoter and the second enhancer, which positively regulate the transcription of human hepatitis B virus (HBV) genes. In this paper, we describe the cloning and characterization of a box alpha binding protein, E4BP4. E4BP4 is a bZIP type of transcription factor. Overexpression of E4BP4 represses the stimulating activity of box alpha in the upstream regulatory sequence of the core promoter and the second enhancer in differentiated human hepatoma cell lines. E4BP4 can also suppress the transcription of HBV genes and the production of HBV virions in a transient-transfection system that mimics the viral infection in vivo. Expression of an E4BP4 antisense transcript can, instead, elevate the transcription of the core promoter. A low abundance of E4BP4 protein and mRNA in differentiated human hepatoma cell lines is detected, and E4BP4 is not a major component of box alpha binding proteins in untransfected differentiated human hepatoma cell lines. C/EBPalpha and C/EBPbeta, in contrast, are major components of the box alpha binding activity present in nuclear extracts. E4BP4 has a stronger binding affinity towards box alpha than the endogenous box alpha binding activity present in nuclear extracts. Structure and function analysis of E4BP4 reveals that DNA binding activity is sufficient to confer the negative regulatory function of E4BP4. These results indicate that binding site occlusion is the mechanism whereby E4BP4 suppresses transcription in HBV.
Collapse
Affiliation(s)
- C K Lai
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Shih-Pai, Taipei 11221, Taiwan, Republic of China
| | | |
Collapse
|
43
|
Azzoni L, Zatsepina O, Abebe B, Bennett IM, Kanakaraj P, Perussia B. Differential Transcriptional Regulation of CD161 and a Novel Gene, 197/15a, by IL-2, IL-15, and IL-12 in NK and T Cells. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.7.3493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Cytokine-mediated enhancement of spontaneous cytotoxicity depends, at least in part, on modulation of the expression of surface molecules responsible for recognition of target cell structures and triggering or inhibition of the cytotoxic machinery. We previously demonstrated that expression of transcription factors (e.g., Egr-1, JunB, and c-Fos) is differentially regulated by IL-2 and IL-12. Here we show that expression of CD161/NKR-P1A, a molecule involved in triggering cytotoxicity, is specifically up-regulated by IL-12. CD161 transcription, mRNA accumulation, and surface expression are increased by IL-12. Other cytokines sharing the IL-2R β- and/or common γ-chains (i.e., IL-15, IL-4, and IL-7) do not mediate these effects. In an effort to analyze the mechanisms by which IL-2, IL-12, and IL-15 differentially regulate gene transcription, we have isolated a novel gene, 197/15a, the expression of which in NK and T cells is down-regulated by IL-2 and IL-15, up-regulated by IL-12, and not affected by IL-4 and IL-7. IL-2 and IL-15 act, at least in part, repressing 197/15a transcription; their effect on 197/15a mRNA accumulation is partially independent of novel protein synthesis, likely not mediated by JunB, Bcl-2, or Bax, and requires the activity of rapamycin-sensitive molecule(s). The observation that IL-2 and IL-12 differentially modulate CD161 expression suggests the existence of cytokine-specific mechanisms of modulation of spontaneous cytotoxicity based on the regulation of expression of surface molecules involved in target cell recognition and/or triggering of the cytolytic machinery.
Collapse
Affiliation(s)
- Livio Azzoni
- Department of Microbiology and Immunology, Kimmel Cancer Center, Jefferson Medical College, Philadelphia, PA 19107
| | - Olga Zatsepina
- Department of Microbiology and Immunology, Kimmel Cancer Center, Jefferson Medical College, Philadelphia, PA 19107
| | - Bekele Abebe
- Department of Microbiology and Immunology, Kimmel Cancer Center, Jefferson Medical College, Philadelphia, PA 19107
| | - Ian M. Bennett
- Department of Microbiology and Immunology, Kimmel Cancer Center, Jefferson Medical College, Philadelphia, PA 19107
| | - Palanisamy Kanakaraj
- Department of Microbiology and Immunology, Kimmel Cancer Center, Jefferson Medical College, Philadelphia, PA 19107
| | - Bice Perussia
- Department of Microbiology and Immunology, Kimmel Cancer Center, Jefferson Medical College, Philadelphia, PA 19107
| |
Collapse
|
44
|
Zagariya A, Mungre S, Lovis R, Birrer M, Ness S, Thimmapaya B, Pope R. Tumor necrosis factor alpha gene regulation: enhancement of C/EBPbeta-induced activation by c-Jun. Mol Cell Biol 1998; 18:2815-24. [PMID: 9566900 PMCID: PMC110660 DOI: 10.1128/mcb.18.5.2815] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/1997] [Accepted: 02/12/1998] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor alpha (TNF alpha) is a key regulatory cytokine whose expression is controlled by a complex set of stimuli in a variety of cell types. Previously, we found that the monocyte/macrophage-enriched nuclear transcription factor C/EBPbeta played an important role in the regulation of the TNF alpha gene in myelomonocytic cells. Abundant evidence suggests that other transcription factors participate as well. Here we have analyzed interactions between C/EBPbeta and c-Jun, a component of the ubiquitously expressed AP-1 complex. In phorbol myristate acetate (PMA)-treated Jurkat T cells, which did not possess endogenous C/EBPbeta, expression of c-Jun by itself had relatively little effect on TNF alpha promoter activity. However, the combination of C/EBPbeta and c-Jun was synergistic, resulting in greater than 130-fold activation. This effect required both the leucine zipper and DNA binding domains, but not the transactivation domain, of c-Jun, plus the AP-1 binding site centered 102/103 bp upstream of the transcription start site in the TNF alpha promoter. To determine if C/EBPbeta and c-Jun might cooperate to regulate the cellular TNF alpha gene in myelomonocytic cells, U937 cells that possess endogenous C/EBPbeta and were stably transfected with either wild-type c-Jun or the transactivation domain deletion mutant (TAM-67) were examined. U937 cells expressing ectopic wild-type c-Jun or TAM-67 secreted over threefold more TNF alpha than the control line in response to PMA plus lipopolysaccharide. Transient transfection of the U937 cells expressing TAM-67 suggested that TAM-67 binding to the -106/-99-bp AP-1 binding site cooperated with endogenous C/EBPbeta in the activation of the -120 TNF alpha promoter-reporter. DNA binding assays using oligonucleotides derived from the TNF alpha promoter suggested that C/EBPbeta and c-Jun interact in vitro and that the interaction may be DNA dependent. Our data demonstrate that the TNF alpha gene is regulated by the interaction of the ubiquitous AP-1 complex protein c-Jun and the monocyte/macrophage-enriched transcription factor C/EBPbeta and that this interaction contributes to the expression of the cellular TNF alpha gene in myelomonocytic cells. This interaction was unique in that it did not require the c-Jun transactivation domain, providing new insight into the cell-type-specific regulation of the TNF alpha gene.
Collapse
Affiliation(s)
- A Zagariya
- Department of Medicine, and Veterans Administration Lakeside Medical Center, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Bauknecht T, Shi Y. Overexpression of C/EBPbeta represses human papillomavirus type 18 upstream regulatory region activity in HeLa cells by interfering with the binding of TATA-binding protein. J Virol 1998; 72:2113-24. [PMID: 9499067 PMCID: PMC109506 DOI: 10.1128/jvi.72.3.2113-2124.1998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human papillomavirus type 18 (HPV-18) upstream regulatory region (URR) controls cell type-specific expression of viral oncoproteins E6 and E7. The HPV-18 URR is highly active in HeLa cells, but its activity is virtually undetectable in HepG2 cells. Previous work has shown that YY1 plays an important role in activation of the HPV-18 URR in HeLa cells, and this activating activity is dependent on its physical interaction with C/EBPbeta, which binds to the switch region adjacent to the YY1 site in the URR. Overexpression of C/EBPbeta in HepG2 cells restores C/EBPbeta-YY1 interaction, resulting in strong activation of the HPV-18 URR activity. In this report, we show that, in contrast to the effect in HepG2 cells, overexpression of C/EBPbeta represses the HPV-18 URR in HeLa cells. This C/EBPbeta-induced repression of the HPV-18 URR in HeLa cells is binding site independent. It is also promoter specific, since it activates the albumin promoter under conditions in which it represses the URR in the same cells. Biochemical analysis shows that overexpression of C/EBPbeta in HeLa cells specifically interferes with binding of TATA-binding protein to the TATA box of the HPV-18 URR, but its overexpression in HepG2 cells leads to activation of the HPV-18 URR. These results suggest that a molecular mechanism underlies the ability of C/EBPbeta to regulate transcription in a cell type-specific manner and indicate the potential of using C/EBPbeta to manipulate the activity of the HPV-18 URR in cervical carcinoma cells.
Collapse
Affiliation(s)
- T Bauknecht
- Forschungsschwerpunkt Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum Heidelberg, Germany.
| | | |
Collapse
|
46
|
Lee TC, Li L, Philipson L, Ziff EB. Myc represses transcription of the growth arrest gene gas1. Proc Natl Acad Sci U S A 1997; 94:12886-91. [PMID: 9371770 PMCID: PMC24233 DOI: 10.1073/pnas.94.24.12886] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/1997] [Indexed: 02/05/2023] Open
Abstract
Cell proliferation is regulated by the induction of growth promoting genes and the suppression of growth inhibitory genes. Malignant growth can result from the altered balance of expression of these genes in favor of cell proliferation. Induction of the transcription factor, c-Myc, promotes cell proliferation and transformation by activating growth promoting genes, including the ODC and cdc25A genes. We show that c-Myc transcriptionally represses the expression of a growth arrest gene, gas1. A conserved Myc structure, Myc box 2, is required for repression of gas1, and for Myc induction of proliferation and transformation, but not for activation of ODC. Activation of a Myc-estrogen receptor fusion protein by 4-hydroxytamoxifen was sufficient to repress gas1 gene transcription. These findings suggest that transcriptional repression of growth arrest genes, including gas1, is one step in promotion of cell growth by Myc.
Collapse
Affiliation(s)
- T C Lee
- Howard Hughes Medical Institute, Department of Biochemistry, New York University Medical Center, NY 10016, USA
| | | | | | | |
Collapse
|
47
|
Yamanaka R, Kim GD, Radomska HS, Lekstrom-Himes J, Smith LT, Antonson P, Tenen DG, Xanthopoulos KG. CCAAT/enhancer binding protein epsilon is preferentially up-regulated during granulocytic differentiation and its functional versatility is determined by alternative use of promoters and differential splicing. Proc Natl Acad Sci U S A 1997; 94:6462-7. [PMID: 9177240 PMCID: PMC21072 DOI: 10.1073/pnas.94.12.6462] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/1997] [Accepted: 04/16/1997] [Indexed: 02/04/2023] Open
Abstract
CCAAT/enhancer binding protein (C/EBP) epsilon is a recently cloned member of the C/EBP family of transcription factors and is expressed exclusively in cells of hematopoietic origin. The human C/EBPepsilon gene is transcribed by two alternative promoters, Palpha and Pbeta. A combination of differential splicing and alternative use of promoters generates four mRNA isoforms, of 2.6 kb and 1.3-1.5 kb in size. These transcripts can encode three proteins of calculated molecular mass 32.2 kDa, 27.8 kDa, and 14.3 kDa. Accordingly, Western blots with antibodies specific for the DNA-binding domain, that is common to all forms, identify multiple proteins. C/EBPepsilon mRNA was greatly induced during in vitro granulocytic differentiation of human primary CD34(+) cells. Retinoic acid treatment of HL60 promyelocytic leukemia cells for 24 hr induced C/EBPepsilon mRNA levels by 4-fold, while prolonged treatment gradually reduced mRNA expression to pretreatment levels. Transient transfection experiments with expression vectors for two of the isoforms demonstrated that the 32.2-kDa protein is an activator of transcription of granulocyte colony-stimulating factor receptor promoter, while the 14.3-kDa protein is not. Thus, C/EBPepsilon is regulated in a complex fashion and may play a role in the regulation of genes involved in myeloid differentiation.
Collapse
Affiliation(s)
- R Yamanaka
- Clinical Gene Therapy Branch, National Human Genome Research Institute, Building 10, Room 10C103, National Institutes of Health, Bethesda, MD 20892-1851, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Chumakov AM, Grillier I, Chumakova E, Chih D, Slater J, Koeffler HP. Cloning of the novel human myeloid-cell-specific C/EBP-epsilon transcription factor. Mol Cell Biol 1997; 17:1375-86. [PMID: 9032264 PMCID: PMC231862 DOI: 10.1128/mcb.17.3.1375] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Chicken NF-M transcription factor, in cooperation with either c-Myb or v-Myb, is active in the combinatorial activation of myeloid-cell-specific genes in heterologous cell types, such as embryonic fibroblasts. In humans, similar effects were observed with homologous members of the CCAAT/enhancer-binding protein (C/EBP) family of transcriptional regulators, especially the human homolog of chicken NF-M, C/EBP-beta (NF-IL6). However, the NF-IL6 gene is expressed in a variety of nonmyeloid cell types and is strongly inducible in response to inflammatory stimuli, making it an unlikely candidate to have an exclusive role as a combinatorial differentiation switch during myelopoiesis in human cells. By using a reverse transcription-PCR-based approach and a set of primers specific for the DNA-binding domains of highly homologous members of the C/EBP family of transcriptional regulators, we have cloned a novel human gene encoding a member of the C/EBP gene family, identified as the human homolog of CRP1, C/EBP-epsilon. A 1.2-kb cDNA encoding full-length human C/EBP-epsilon was cloned from a promyelocyte-late myeloblast-derived lambda gt11 library. Molecular analysis of the cDNA and genomic clones indicated the presence of two exons encoding a protein with an apparent molecular mass of 32 kDa and a pI of 9.5. Primer extension analysis of C/EBP-epsilon mRNA detected a single major transcription start site approximately 200 bp upstream of the start codon. The putative promoter area is similar to those of several other myeloid-cell-specific genes in that it contains no TATAAA box but has a number of purine-rich stretches with multiple sites for the factors of the Ets family of transcriptional regulators. Northern blot analyses indicated a highly restricted mRNA expression pattern, with the strongest expression occurring in promyelocyte and late-myeloblast-like cell lines. Western blot and immunoprecipitation studies using rabbit anti-C/EBP-epsilon antibodies raised against the N-terminal portion of C/EBP-epsilon (amino acids 1 to 115) showed that C/EBP-epsilon is a 32-kDa nuclear phosphoprotein. The human C/EBP-epsilon protein exhibited strong and specific binding to double-stranded DNA containing consensus C/EBP sites. Cotransfection of the C/EBP-epsilon sense and antisense expression constructs together with chloramphenicol acetyltransferase reporter vectors containing myeloid-cell-specific c-mim and human myeloperoxidase promoters suggested a role for C/EBP-epsilon transcription factor in the regulation of a subset of myeloid-cell-specific genes. Transient tranfection of a promyelocyte cell line (NB4) with a C/EBP-epsilon expression plasmid increased cell growth by sevenfold, while antisense C/EBP-epsilon caused a fivefold decrease in clonal growth of these cells.
Collapse
Affiliation(s)
- A M Chumakov
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, California 90048, USA
| | | | | | | | | | | |
Collapse
|
49
|
Miau LH, Chang CJ, Tsai WH, Lee SC. Identification and characterization of a nucleolar phosphoprotein, Nopp140, as a transcription factor. Mol Cell Biol 1997; 17:230-9. [PMID: 8972203 PMCID: PMC231747 DOI: 10.1128/mcb.17.1.230] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Expression of the alpha-1 acid glycoprotein (AGP) gene (agp) is activated by a key transcription factor, AGP/enhancer-binding protein (AGP/EBP, commonly called C/EBP beta), in the liver during the acute-phase response. In addition to this positive regulation, agp is negatively regulated by nucleolin (T. H. Yang et al., Mol. Cell. Biol. 14:6068-6074, 1994). Other factors involve in positive regulation of the agp gene are poorly characterized. In a systematic search for factors that may interact with AGP/EBP, we have identified Nopp 140, a phosphoprotein of 140 kDa, by immunoaffinity chromatography. Nopp 140 not only functions as a transcriptional activator per se but also interacts with AGP/EBP to synergistically activate the agp gene in an AGP/EBP-binding motif-dependent manner. In addition to interacting with AGP/EBP, Nopp140 interacts specifically with TFIIB. Distinct regions of Nopp140 that interact with AGP/EBP and TFIIB have been characterized. The sequence of Nopp140 contains several stretches of serine- and acidic amino acid-rich sequences which are also found in ICP4 of herpes simplex virus type 1, a known transcription factor that interacts with TFIIB. The physical interaction between TFIIB and wild-type Nopp140 or several deletion mutants of Nopp140 correlates with the ability of Nopp140 to activate the agp gene synergistically with AGP/EBP. Thus, the molecular mechanism for agp gene activation may involve the interaction of AGP/EBP and TFIIB mediated by coactivator Nopp140.
Collapse
Affiliation(s)
- L H Miau
- Institute of Biochemical Sciences, College of Science, National Taiwan University, Taipei
| | | | | | | |
Collapse
|
50
|
Bauknecht T, See RH, Shi Y. A novel C/EBP beta-YY1 complex controls the cell-type-specific activity of the human papillomavirus type 18 upstream regulatory region. J Virol 1996; 70:7695-705. [PMID: 8892890 PMCID: PMC190839 DOI: 10.1128/jvi.70.11.7695-7705.1996] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The human papillomavirus type 18 (HPV-18) upstream regulatory region (URR) controls viral gene transcription in a cell-type-specific manner. The HPV-18 URR is active in HeLa cells but inactive in HepG2 cells. The activating activity of YY1 in HeLa cells is dependent on its functional interactions with the switch region which is critical for the HPV-18 URR activity in HeLa cells. Here, we show that a protein complex composed of C/EBP beta and YY1 binds the switch region which is detected only in HeLa cells, not in HepG2 cells. Transfection of C/EBP beta into HepG2 cells restored the formation of the C/EBP beta-YY1-switch region complex, accompanied by increased transcription directed by the HPV-18 URR. Mutations in the switch region that abolished the complex formation also abrogated C/EBP beta-induced transcriptional activation. This provides a strong correlation between the binding of the C/EBP beta-YY1 complex to the switch region and cell-type-specific URR activity. Taken together, we have identified a novel C/EBP beta-YY1 complex that binds the switch region and contributes to cell-type-specific HPV-18 URR activity.
Collapse
Affiliation(s)
- T Bauknecht
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|