1
|
Atf3 negatively regulates Ptgs2/Cox2 expression during acute inflammation. Prostaglandins Other Lipid Mediat 2015; 116-117:49-56. [PMID: 25619459 DOI: 10.1016/j.prostaglandins.2015.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 12/19/2022]
Abstract
By generating prostaglandins, cyclooxygenase-2 (Cox-2/Ptgs2) plays a critical role in regulating inflammatory responses. While several inflammatory stimuli have been shown to increase Ptgs2 expression, less is known about how the transcription of this gene is terminated. Here we show that stimulation of macrophages with yeast zymosan, a TLR2/6 and dectin-1 agonist, causes a transient increase in the expression of Ptgs2 accompanied by a simultaneous increase in the expression of the transcriptional repressor, activating transcription factor-3 (Atf3). The expression of Ptgs2 was significantly higher in resident peritoneal macrophages isolated from Atf3(-/-) mice than that from Atf3(+/+) mice and was associated with higher prostaglandin production upon stimulation with zymosan. In activated macrophages, Atf3 accumulated in the nucleus and chromatin-immunoprecipitation analysis showed that Atf3 is recruited to the Ptgs2 promoter region. In acute peritonitis and in cutaneous wounds, there was increased leukocyte accumulation and higher levels of prostaglandins (PGE2/PGD2) in inflammatory exudates of Atf3(-/-) mice compared with WT mice. Collectively, these results demonstrate that during acute inflammation Atf3 negatively regulates Ptgs2 and therefore dysregulation of this axis could potentially contribute to aberrant Ptgs2 expression in chronic inflammatory diseases. Moreover, this axis could be a new therapeutic target for suppressing Ptgs2 expression and the resultant inflammatory responses.
Collapse
|
2
|
Genipin induces cyclooxygenase-2 expression via NADPH oxidase, MAPKs, AP-1, and NF-κB in RAW 264.7 cells. Food Chem Toxicol 2013; 64:126-34. [PMID: 24296130 DOI: 10.1016/j.fct.2013.11.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/19/2013] [Accepted: 11/23/2013] [Indexed: 01/21/2023]
Abstract
Genipin is a compound found in gardenia fruit extract with diverse pharmacological activities. However, the mechanism underlying genipin-induced cyclooxygenase-2 (COX-2) expression remains unknown. In this study, we investigated the effects of genipin on COX-2 expression and determined that exposure to genipin dose-dependently enhanced the production of prostaglandin E2 (PGE2), a major COX-2 metabolite, in RAW 264.7 cells. These effects were mediated by genipin-induced activation of the COX-2 promoter, as well as AP-1 and NF-κB luciferase constructs. Phosphatidylinositol-3-kinase/Akt and MAPKs were also significantly activated by genipin, and Akt and MAPKs inhibitors (PD98059, SB20358, SP600125, and LY294002) inhibited genipin-induced COX-2 expression. Moreover, genipin increased production of the ROS and the ROS-producing NAPDH-oxidase (NOX) family oxidases, NOX2 and NOX3. Inhibition of NADPH with diphenyleneiodonium attenuated ROS production, COX-2 expression and NF-κB and AP-1 activation. These results suggest that the molecular mechanism mediating ROS-dependent COX-2 up-regulation and PGE2 production by genipin involves activation of Akt, MAPKs and AP-1/NF-κB.
Collapse
|
3
|
Wu CL, Tsai HC, Chen ZW, Wu CM, Li TM, Fong YC, Tang CH. Ras activation mediates WISP-1-induced increases in cell motility and matrix metalloproteinase expression in human osteosarcoma. Cell Signal 2013; 25:2812-22. [DOI: 10.1016/j.cellsig.2013.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/02/2013] [Accepted: 09/02/2013] [Indexed: 12/30/2022]
|
4
|
Ibrahim MA, Morsy MA, Hafez HM, Gomaa WM, Abdelrahman AM. Effect of selective and non-selective cyclooxygenase inhibitors on doxorubicin-induced cardiotoxicity and nephrotoxicity in rats. Toxicol Mech Methods 2012; 22:424-431. [PMID: 22394338 DOI: 10.3109/15376516.2012.666658] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Doxorubicin (DX) is a highly effective chemotherapeutic agent used widely in the treatment of solid tumors; however, its optimal use was associated with cardiotoxicity and nephrotoxicity. The exact mechanism of DX-induced cardiotoxicity and nephrotoxicity is not fully explored. Induction of cyclooxygenase-2 (COX-2) activity in either cardiac or renal tissue by DX has been previously reported, indicating a possible role of COX-2 in DX-induced tissue injury. However, the nature of this role in either tissue injury is an issue of controversy. OBJECTIVE This study was the first that simultaneously evaluated the effects of a selective COX-2 inhibitor, nimesulide, and a non-selective COX-inhibitor, indomethacin, on DX-induced cardiotoxicity and nephrotoxicity in male Wistar rats. MATERIALS AND METHODS Rats were allocated into four groups. Control group, DX group (received 15 mg/kg, ip), DX + nimesulide (10 mg/kg/day, po) group, and DX + indomethacin (2 mg/kg/day, po) group. Nimesulide and indomethacin were started at the same day of DX injection and continued for 5 days. RESULTS The results of the present study showed that inhibition of COX-2 either by selective or non-selective COX-2 inhibitor ameliorated DX-induced cardiotoxicity but aggravated DX-induced nephrotoxicity in rats, as evidenced biochemically and histopathologically. DISCUSSION AND CONCLUSION Our study indicates that production of COX-2 is organ specific; consequently, the differential effect of COX-inhibitors should be considered in DX-treated patients. However, a wide scale experiment is needed for further confirmation and testing other members of COX-inhibitors (e.g. celecoxib and diclofenac).
Collapse
Affiliation(s)
- Mohamed A Ibrahim
- Department of Pharmacology, Faculty of Medicine, El-Minia University, El-Minia, Egypt
| | | | | | | | | |
Collapse
|
5
|
Abraham F, Sacerdoti F, De León R, Gentile T, Canellada A. Angiotensin II activates the calcineurin/NFAT signaling pathway and induces cyclooxygenase-2 expression in rat endometrial stromal cells. PLoS One 2012; 7:e37750. [PMID: 22662209 PMCID: PMC3360626 DOI: 10.1371/journal.pone.0037750] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 04/24/2012] [Indexed: 11/19/2022] Open
Abstract
Cyclooxygenase (COX)-2, the inducible isoform of cyclooxygenase, plays a role in the process of uterine decidualization and blastocyst attachment. On the other hand, overexpression of COX-2 is involved in the proliferation of the endometrial tissue during endometriosis. Deregulation of the renin-angiotensin-system plays a role in the pathophysiology of endometriosis and pre-eclampsia. Angiotensin II increases intracellular Ca(2+) concentration by targeting phospholypase C-gamma in endometrial stromal cells (ESC). A key element of the cellular response to Ca(2+) signals is the activity of the Ca(2+)- and calmodulin-dependent phosphatase calcineurin. Our first aim was to study whether angiotensin II stimulated Cox-2 gene expression in rat ESC and to analyze whether calcineurin activity was involved. In cells isolated from non-pregnant uteri, COX-2 expression--both mRNA and protein--was induced by co-stimulation with phorbol ester and calcium ionophore (PIo), as well as by angiotensin II. Pretreatment with the calcineurin inhibitor cyclosporin A inhibited this induction. We further analyzed the role of the calcineurin/NFAT signaling pathway in the induction of Cox-2 gene expression in non-pregnant rat ESC. Cyclosporin A abolished NFATc1 dephosphorylation and translocation to the nucleus. Cyclosporin A also inhibited the transcriptional activity driven by the Cox-2 promoter. Exogenous expression of the peptide VIVIT -specific inhibitor of calcineurin/NFAT binding- blocked the activation of Cox-2 promoter and the up-regulation of COX-2 protein in these cells. Finally we analyzed Cox-2 gene expression in ESC of early-pregnant rats. COX-2 expression--both mRNA and protein--was induced by stimulation with PIo as well as by angiotensin II. This induction appears to be calcineurin independent, since it was not abrogated by cyclosporin A. In conclusion, angiotensin II induced Cox-2 gene expression by activating the calcineurin/NFAT signaling pathway in endometrial stromal cells of non-pregnant but not of early-pregnant rats. These results might be related to differential roles that COX-2 plays in the endometrium.
Collapse
Affiliation(s)
- Florencia Abraham
- Instituto de Estudios de la Inmunidad Humoral “Profesor Ricardo A. Margni” (CONICET-UBA), Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Flavia Sacerdoti
- Instituto de Estudios de la Inmunidad Humoral “Profesor Ricardo A. Margni” (CONICET-UBA), Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Romina De León
- Instituto de Estudios de la Inmunidad Humoral “Profesor Ricardo A. Margni” (CONICET-UBA), Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Teresa Gentile
- Instituto de Estudios de la Inmunidad Humoral “Profesor Ricardo A. Margni” (CONICET-UBA), Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea Canellada
- Instituto de Estudios de la Inmunidad Humoral “Profesor Ricardo A. Margni” (CONICET-UBA), Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
6
|
Involvement of PGE2 and the cAMP signalling pathway in the up-regulation of COX-2 and mPGES-1 expression in LPS-activated macrophages. Biochem J 2012; 443:451-61. [PMID: 22268508 DOI: 10.1042/bj20111052] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PG (prostaglandin) E2 plays an important role in the modulation of the immune response and the inflammatory process. In the present study, we describe a PGE2 positive feedback for COX (cyclo-oxygenase)-2 and mPGES-1 [microsomal PGES (PGE synthase)-1] expression in the macrophage cell line RAW 264.7. Our results show that PGE2 induces COX-2 and mPGES-1 expression, an effect mimicked by dbcAMP (dibutyryl-cAMP) or forskolin. Furthermore, the cAMP signalling pathway co-operates with LPS (lipopolysaccharide) in the induction of COX-2 and mPGES-1 transcriptional activation. Analysis of the involvement of PGE receptors [EPs (E-prostanoids)] showed that incubation with EP2 agonists up-regulated both COX2 and mPGES-1 mRNA levels. Moreover, EP2 receptor overexpression enhanced the transcriptional activation of COX2 and mPGES-1 promoters. This induction was repressed by the PKA (protein kinase A) inhibitor H89. Activation of the PGE2/EP2/PKA signalling pathway induced the phosphorylation of CREB [CRE (cAMP-response element)-binding protein] in macrophages and stimulated the specific binding of this transcription factor to COX2 and mPGES-1 promoters. Deletion or mutation of potential CRE sites in both promoters diminished their transcriptional activity. In summary, the results of the present study demonstrate that activation of PKA/CREB signalling through the EP2 receptor by PGE2 plays a key role in the expression of COX-2 and mPGES-1 in activated macrophages.
Collapse
|
7
|
Tang CH, Tsai CC. CCL2 increases MMP-9 expression and cell motility in human chondrosarcoma cells via the Ras/Raf/MEK/ERK/NF-κB signaling pathway. Biochem Pharmacol 2012; 83:335-44. [DOI: 10.1016/j.bcp.2011.11.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/15/2011] [Accepted: 11/16/2011] [Indexed: 12/24/2022]
|
8
|
Chowdhury AA, Rahman MS, Nishimura K, Jisaka M, Nagaya T, Ishikawa T, Shono F, Yokota K. 15-Deoxy-Δ(12,14)-prostaglandin J(2) interferes inducible synthesis of prostaglandins E(2) and F(2α) that suppress subsequent adipogenesis program in cultured preadipocytes. Prostaglandins Other Lipid Mediat 2011; 95:53-62. [PMID: 21699992 DOI: 10.1016/j.prostaglandins.2011.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 05/23/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
Abstract
Cultured preadipocytes enhance the synthesis of prostaglandin (PG) E(2) and PGF(2α) involving the induction of cyclooxygenase (COX)-2 during the growth phase upon stimulation with a mixture of phorbol 12-myristate 13-acetate, a mitogenic factor, and calcium ionophore A23187. Here, we studied the interactive effect of 15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)) on the inducible synthesis of the endogenous PGs in cultured preadipocytes and its implication in adipogenesis program. 15d-PGJ(2) interfered significantly the endogenous synthesis of those PGs in response to cell stimuli by suppressing the induction of COX-2 following the attenuation of NF-κB activation. In contrast, Δ(12)-PGJ(2) and troglitazone had almost no inhibitory effects, indicating a mechanism independent of the activation of peroxisome proliferator-activated receptor γ for the action of 15-PGJ(2). Pyrrolidinedithiocarbamate (PDTC), an NF-κB inhibitor, effectively inhibited on the inducible synthesis of those PGs in preadipocytes. Endogenous PGs generated by preadipocytes only during the growth phase in response to the cell stimuli autonomously attenuated the subsequent adipogenesis program leading to the differentiation and maturation of adipocytes. These effects were prevented by additional co-incubation of preadipocytes with either 15d-PGJ(2) or PDTC although 15d-PGJ(2) alone has no stimulatory effect. Moreover, 15d-PGJ(2) did not block the inhibitory effects of exogenous PGE(2) and PGF(2α) on the adipogenesis program in preadipocytes. Taken together, 15d-PGJ(2) can interfere the COX pathway leading to the induced synthesis of endogenous PGs that contribute to negative regulation of adipogenesis program in preadipocytes.
Collapse
Affiliation(s)
- Abu Asad Chowdhury
- Department of Life Science and Biotechnology, Shimane University, Nishikawatsu-cho, Matsue, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Chou YH, Woon PY, Huang WC, Shiurba R, Tsai YT, Wang YS, Hsieh TJ, Chang WC, Chuang HY, Chang WC. Divalent lead cations induce cyclooxygenase-2 gene expression by epidermal growth factor receptor/nuclear factor-kappa B signaling in A431carcinoma cells. Toxicol Lett 2011; 203:147-53. [PMID: 21435385 DOI: 10.1016/j.toxlet.2011.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/11/2011] [Accepted: 03/13/2011] [Indexed: 01/10/2023]
Abstract
Divalent lead cations (Pb²+) are toxic metal pollutants that may contribute to inflammatory diseases in people and animals. Human vascular smooth muscle cells in culture respond to low concentrations of Pb²+ ions by activating mediators of inflammation via the plasma membrane epidermal growth factor receptor (EGFR). These include cyclooxygenase-2 (COX-2) and cytosolic phospholipase A₂ as well as the hormone-like lipid compound prostaglandin E₂. To further clarify the mechanism by which Pb²+ induces such mediators of inflammation, we tested human epidermoid carcinoma cell line A431 that expresses high levels of EGFR. Reverse transcription PCR and western blots confirmed A431 cells treated with a low concentration (1 μM) of Pb²+ in the form of lead (II) nitrate increased expression of COX-2 mRNA and its encoded protein in a time-dependent manner. Promoter deletion analysis revealed the transcription factor known as nuclear factor-kappa B (NF-κB) was a necessary component of the COX-2 gene response. NF-κB inhibitor BAY 11-7082 suppressed Pb²+-induced COX-2 mRNA expression, and EGFR inhibitors AG1478 and PD153035 as well as EGFR small interfering RNA reduced the coincident nuclear translocation of NF-κB. Our findings support the hypothesis that low concentrations of Pb²+ ions incite inflammation by inducing COX-2 gene expression via the EGFR/NF-κB signal transduction pathway.
Collapse
MESH Headings
- Cations, Divalent/toxicity
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cells, Cultured
- Cyclooxygenase 2/biosynthesis
- Cyclooxygenase 2/genetics
- Enzyme Activation
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/metabolism
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Knockdown Techniques
- Humans
- Lead/toxicity
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- Promoter Regions, Genetic
- RNA/chemistry
- RNA/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Transfection
Collapse
Affiliation(s)
- Yii-Her Chou
- Department of Urology, Kaohsiung Medical University, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rizzo MT. Cyclooxygenase-2 in oncogenesis. Clin Chim Acta 2010; 412:671-87. [PMID: 21187081 DOI: 10.1016/j.cca.2010.12.026] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 02/07/2023]
Abstract
Compelling experimental and clinical evidence supports the notion that cyclooxygenase-2, the inducible isoform of cyclooxygenase, plays a crucial role in oncogenesis. Clinical and epidemiological data indicate that aberrant regulation of cyclooxygenase-2 in certain solid tumors and hematological malignancies is associated with adverse clinical outcome. Moreover, findings extrapolated from experimental studies in cultured tumor cells and animal tumor models indicate that cyclooxygenase-2 critically influences all stages of tumor development from tumor initiation to tumor progression. Cyclooxygenase-2 elicits cell-autonomous effects on tumor cells resulting in stimulation of growth, increased cell survival, enhanced tumor cell invasiveness, stimulation of neovascularization, and tumor evasion from the host immune system. Additionally, the oncogenic effects of cyclooxygenase-2 stem from its unique ability to impact tumor cell surroundings and create a proinflammatory environment conducive for tumor development, growth and progression. The initial enthusiasm generated by the availability of cyclooxygenase-2 selective inhibitors for cancer prevention and therapy has been lessened by the severe cardiovascular adverse side effects associated with their long-term use, as well as by the mixed results of recent clinical trials evaluating the efficacy of cyclooxygenase-2 inhibitors in adjuvant chemotherapy. Therefore, our ability to efficiently target the oncogenic effects of cyclooxygenase-2 for therapeutic and preventive purposes strictly depends on a better understanding of the spatial and temporal aspects of its activation in tumor cells along with a clearer elucidation of the signaling networks whereby cyclooxygenase-2 affects tumor cells and their interactions with the tumor microenvironment. This knowledge has the potential of leading to the identification of novel cyclooxygenase-2-dependent molecular and signaling networks that can be exploited to improve cancer prevention and therapy.
Collapse
Affiliation(s)
- Maria Teresa Rizzo
- Signal Transduction Laboratory, Methodist Research Institute, Clarian Health and Department of Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
11
|
Coward WR, Saini G, Jenkins G. The pathogenesis of idiopathic pulmonary fibrosis. Ther Adv Respir Dis 2010; 4:367-88. [PMID: 20952439 DOI: 10.1177/1753465810379801] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with an appalling prognosis. The failure of anti-inflammatory therapies coupled with the observation that deranged epithelium overlies proliferative myofibroblasts to form the fibroblastic focus has lead to the emerging concept that IPF is a disease of deregulated epithelial-mesenchymal crosstalk. IPF is triggered by an as yet unidentified alveolar injury that leads to activation of transforming growth factor-β (TGF-β) and alveolar basement membrane disruption. In the presence of persisting injurious pathways, or disrupted repair pathways, activated TGF-β can lead to enhanced epithelial apoptosis and epithelial-to-mesenchymal transition (EMT) as well as fibroblast, and fibrocyte, transformation into myofibroblasts which are resistant to apoptosis. The resulting deposition of excess disrupted matrix by these myofibroblasts leads to the development of IPF.
Collapse
Affiliation(s)
- William R Coward
- Nottingham Respiratory Biomedical Research Unit, Clinical Sciences Building, Nottingham City Campus, Nottingham, UK
| | | | | |
Collapse
|
12
|
Díaz-Muñoz MD, Osma-García IC, Cacheiro-Llaguno C, Fresno M, Íñiguez MA. Coordinated up-regulation of cyclooxygenase-2 and microsomal prostaglandin E synthase 1 transcription by nuclear factor kappa B and early growth response-1 in macrophages. Cell Signal 2010; 22:1427-36. [DOI: 10.1016/j.cellsig.2010.05.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/15/2010] [Accepted: 05/15/2010] [Indexed: 01/19/2023]
|
13
|
Alvarez S, Blanco A, Fresno M, Muñoz-Fernández MA. Nuclear factor-kappaB activation regulates cyclooxygenase-2 induction in human astrocytes in response to CXCL12: role in neuronal toxicity. J Neurochem 2010; 113:772-83. [PMID: 20180883 DOI: 10.1111/j.1471-4159.2010.06646.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neurodegenerative and neuroinflammatory disorders are commonly associated with local chemokine release. In other way, emerging data indicate that the prostaglandin E2 (PGE(2)), one of the major prostaglandins produced in the brain, play a central role in several pathological diseases. In this study, we investigated the relationship between CXCL12, cyclooxygenase (COX)-2 and PGE(2) in human brain cells. CXCL12 induced COX-2 and secretion of PGE(2) in a dose-dependent manner in human astrocytes. This induction was abolished by treatment with pertussis toxin and AMD3100, confirming the role of CXCR4 signaling. The nuclear factor-kappaB involvement was confirmed by using pyrrolidine dithiocarbamate, and with transient transfection assays. Over-expression of inhibitory proteins of nuclear factor-kappaB abrogated COX-2 induction, and CXCL12 induced p65/relA translocation. Culture supernatants from CXCL12-treated astrocytes reduced viability of neuroblastoma cells, and COX inhibitors abrogated this toxicity. Therefore, the relationship between chemokines and PGs could differentially influence the pathogenic network responsible for neurodegeneration.
Collapse
Affiliation(s)
- Susana Alvarez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
14
|
Han EH, Hwang YP, Kim HG, Park JH, Jeong TC, Jeong HG. Upregulation of cyclooxygenase-2 by 4-nonylphenol is mediated through the cyclic amp response element activation pathway. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:1451-1464. [PMID: 20954072 DOI: 10.1080/15287394.2010.511551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The organic compound nonylphenol (NP) belongs to the family of alkylphenols and is a product of industrial synthesis formed during phenol alkylation. Nonylphenol is considered to be an endocrine disruptor due to weak ability to mimic estrogen and subsequently to disrupt the natural balance of hormones in a given organism. Since the endocrine and immune systems share portions of common signaling pathways, it is conceivable that NP may also affect immune system functions. However, the influence of NP on inflammation and macrophages responsiveness to NP is unclear. Thus, the effects of NP were investigated on cyclooxygenase (COX)-2 expression in cultured macrophages. NP induced COX-2 protein and gene expression in murine macrophage RAW264.7 cells and enhanced COX-2 promoter activity and prostaglandin E(2) production. Transfection of RAW264.7 cells with hCOX-2 or various deletion and mutation promoter constructs revealed that the cyclic AMP response element (CRE) was the predominant mediator responsive to NP-induced effects. Moreover, transfection with pCRE-Luc plasmid followed by immunoblotting demonstrated that NP activated CRE sites and CRE binding protein (CREB) phosphorylation. NP also increased nuclear CREB accumulation and CREB binding to the COX-2 promoter. Phosphatidylinositol 3 (PI3)-kinase, Akt, and the mitogen-activated protein kinases (MAP kinases) p38 and JNK were also significantly activated by NP. Our data demonstrate that NP induces COX-2 expression through the PI3-kinase/Akt/MAP kinases/CRE pathway. These findings provide insight into the signal transduction pathways involved in the inflammatory responses induced by NP in macrophages.
Collapse
Affiliation(s)
- Eun Hee Han
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | | | | | | | | | | |
Collapse
|
15
|
Hou CH, Lin J, Huang SC, Hou SM, Tang CH. Ultrasound stimulates NF-κB activation and iNOS expression via the Ras/Raf/MEK/ERK signaling pathway in cultured preosteoblasts. J Cell Physiol 2009; 220:196-203. [DOI: 10.1002/jcp.21751] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Alterations in excitotoxicity and prostaglandin metabolism in a transgenic mouse model of Alzheimer's disease. Neurochem Int 2009; 55:689-96. [PMID: 19560505 DOI: 10.1016/j.neuint.2009.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/17/2009] [Accepted: 06/19/2009] [Indexed: 11/21/2022]
Abstract
To address the potential impact of presenilin mutations on the prostaglandin metabolism in a neurodegenerative model of glutamatergic excitotoxicity, we injected kainic acid intraperitoneally (30mg/kg body weight) into mice over-expressing the human N141I mutation of presenilin-2, which is known to cause an early-onset form of Alzheimer's disease. We compared the seizure activity as well as seizure lethality in 2- and 6-month-old mice, transgenic for the above-mentioned point mutation, and their wildtype littermates and found that mice harboring the hN141I mutation showed a relative resistance to excitotoxic treatment. This was associated with a constituitively reduced expression of the cyclooxygenases COX-1 and COX-2 in the hippocampus of N141I presenilin-2 mice and a reduced induction of COX-2 expression post-kainate injection. In the past, clinical trials have suggested that both non-steroidal anti-inflammatory drugs, which impact upon a cell's prostaglandin metabolism, and glutamatergic antagonists might be of benefit to patients suffering from Alzheimer's-type dementias. Yet, the exact mechanism by which these drugs are beneficial remains unclear, although it seems possible that presenilins might be implicated in the process, at least in the case of early-onset forms. The data presented here strongly support the notion of an implication of presenilins in the alterations in the prostaglandin system, which have been observed in Alzheimer's disease and may contribute to the underlying pathogenesis of the disease.
Collapse
|
17
|
Han EH, Park JH, Kang KW, Jeong TC, Kim HS, Jeong HG. Risk assessment of tetrabromobisphenol A on cyclooxygenase-2 expression via MAP kinase/NF-kappaB/AP-1 signaling pathways in murine macrophages. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:1431-1438. [PMID: 20077215 DOI: 10.1080/15287390903212873] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Tetrabromobisphenol A [2,2-bis-(3,5-dibromo-4-hydroxyphenyl)propane; TBBPA] is used worldwide as a flame retardant in numerous products. In the present study, the effects of TBBPA were examined on the expression of cyclooxygenase-2 (COX-2), inflammation-related cytokines, transcription factors, and signaling pathways responsible for transcriptional activation of the COX-2 gene in murine RAW 264.7 macrophages. Exposure to TBBPA markedly enhanced the production of prostaglandin E(2), a major COX-2 metabolite, in macrophages. TBBPA concentration-dependently increased the levels of COX-2 protein and mRNA. In addition, TBBPA increased the secretion and mRNA levels of proinflammatory cytokines such as tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and IL-1beta. Transfection of a human COX-2 promoter construct demonstrated that TBBPA induced COX-2 promoter activity. Furthermore, transfection with pNF-kappaB-Luc and pAP-1-Luc plasmid revealed that TBBPA activated the NF-kappaB and AP-1 sites. Phosphatidylinositol 3 (PI3) kinase, its downstream signaling molecule, Akt, and mitogen-activated protein kinases (MAPK) were also significantly activated by TBBPA. Our data demonstrate TBBPA-induced COX-2 and proinflammatory cytokine expression occurs through the PI3-kinase/Akt/MAP kinase/NF-kappaB/AP-1 pathways.
Collapse
Affiliation(s)
- Eun Hee Han
- College of Pharmacy, Chosun University, Gwangju, South Korea
| | | | | | | | | | | |
Collapse
|
18
|
p53 and ATF-2 partly mediate the overexpression of COX-2 in H2O2-induced premature senescence of human fibroblasts. Biogerontology 2008; 10:291-8. [DOI: 10.1007/s10522-008-9204-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 11/24/2008] [Indexed: 11/25/2022]
|
19
|
Han EH, Kim JY, Kim HK, Hwang YP, Jeong HG. o,p′-DDT induces cyclooxygenase-2 gene expression in murine macrophages: Role of AP-1 and CRE promoter elements and PI3-kinase/Akt/MAPK signaling pathways. Toxicol Appl Pharmacol 2008; 233:333-42. [DOI: 10.1016/j.taap.2008.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 01/13/2023]
|
20
|
Chang HJ, Lee JH, Hwang KJ, Kim MR, Chang KH, Park DW, Min CK. Transforming growth factor (TGF)-beta1-induced human endometrial stromal cell decidualization through extracellular signal-regulated kinase and Smad activation in vitro: peroxisome proliferator-activated receptor gamma acts as a negative regulator of TGF-beta1. Fertil Steril 2007; 90:1357-65. [PMID: 18082740 DOI: 10.1016/j.fertnstert.2007.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 09/05/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To investigate the effect of transforming growth factor (TGF)-beta1 on the extracellular signal-regulated kinase (ERK) and Smad pathway and the role of peroxisome proliferator-activated receptor (PPAR)-gamma in cultured human endometrial stromal cells. DESIGN Experimental study. SETTING Infertility center of a tertiary university hospital. MATERIAL(S): Human endometrial tissues obtained by hysterectomy from patients with conditions other than endometrial diseases. INTERVENTION(S) Endometrial stromal cells were cultured under normal laboratory conditions. TGF-beta1, rosiglitazone (PPARgamma agonist), and PD98059 (ERK inhibitor) were added to endometrial stromal cell culture according to experimental purposes. MAIN OUTCOME MEASURE(S) Cell count, PRL expression, Smad and ERK phosphorylation, cyclooxygenase (COX)-2 expression, and prostaglandin E(2) (PGE(2)) release. RESULT(S) TGF-beta1 inhibited cellular proliferation and induced the expressions of COX-2, PGE(2), and PRL of cultured human endometrial stromal cells. These effects may be mediated by Smad and ERK phosphorylation. Treatment with rosiglitazone, a PPARgamma agonist, reversed the TGF-beta1 effect by antagonizing the activation of ERK and Smad that was induced by TGF-beta1. CONCLUSION(S) PPARgamma plays a negative role by directly acting on Smad and ERK phosphorylation in human endometrial cell decidualization that is induced by TGF-beta1 in vitro.
Collapse
Affiliation(s)
- Hye Jin Chang
- Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Pham H, Chong B, Vincenti R, Slice LW. Ang II and EGF synergistically induce COX-2 expression via CREB in intestinal epithelial cells. J Cell Physiol 2007; 214:96-109. [PMID: 17559081 DOI: 10.1002/jcp.21167] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cyclooxygenase (COX)-2 derived prostaglandins (PGs) play a major role in intestinal inflammation and colorectal carcinogenesis. Because COX-2 is the rate-limiting step in the production of PGs, mechanisms that regulate COX-2 expression control PG production in the cell. Using the non-tumorigenic, rat intestinal epithelial cell, IEC-18, we demonstrate that co-activation of endogenously expressed AT(1) receptor and EGFR resulted in synergistic expression of COX-2 mRNA and protein involving transcriptional and post-transcriptional mechanisms. Ang II and EGF induced transient phosphorylation of ERK, p38(MAPK) and CREB. Co-stimulation with Ang II and EGF prolonged phosphorylation of ERK, p38(MAPK), and CREB. The p38(MAPK) selective inhibitor, SB202190, but not the MEK selective inhibitor, PD98059, or the EGFR kinase inhibitor, AG1478, inhibited Ang II-dependent COX-2 expression and CREB phosphorylation. EGF-dependent COX-2 expression and CREB phosphorylation were inhibited by SB202190, PD98059, and AG1478. Inhibition of CREB expression using two separate RNAi methods blocked COX-2 expression by Ang II and EGF. Expression of a dominant negative CREB mutant inhibited Ang II- and EGF-dependent induction of the COX-2 promoter. Ang II induced luciferase expression in cells transfected with the CRE-luc reporter vector and cells co-transfected with Gal4-luc reporter vector and a Gal4-CREB expression vector. Chromatin immunoprecipitation assays demonstrated CREB binding to the proximal rat COX-2 promoter region containing a CRE cis-acting element. These results indicate that co-stimulation with Ang II and EGF synergistically induced COX-2 expression in these intestinal epithelial cells through p38(MAPK) mediated signaling cascades that converge onto CREB.
Collapse
Affiliation(s)
- Hung Pham
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1786, USA
| | | | | | | |
Collapse
|
22
|
Madsen L, Pedersen LM, Liaset B, Ma T, Petersen RK, van den Berg S, Pan J, Müller-Decker K, Dülsner ED, Kleemann R, Kooistra T, Døskeland SO, Kristiansen K. cAMP-dependent signaling regulates the adipogenic effect of n-6 polyunsaturated fatty acids. J Biol Chem 2007; 283:7196-205. [PMID: 18070879 DOI: 10.1074/jbc.m707775200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The effect of n-6 polyunsaturated fatty acids (n-6 PUFAs) on adipogenesis and obesity is controversial. Using in vitro cell culture models, we show that n-6 PUFAs was pro-adipogenic under conditions with base-line levels of cAMP, but anti-adipogenic when the levels of cAMP were elevated. The anti-adipogenic action of n-6 PUFAs was dependent on a cAMP-dependent protein kinase-mediated induction of cyclooxygenase expression and activity. We show that n-6 PUFAs were pro-adipogenic when combined with a high carbohydrate diet, but non-adipogenic when combined with a high protein diet in mice. The high protein diet increased the glucagon/insulin ratio, leading to elevated cAMP-dependent signaling and induction of cyclooxygenase-mediated prostaglandin synthesis. Mice fed the high protein diet had a markedly lower feed efficiency than mice fed the high carbohydrate diet. Yet, oxygen consumption and apparent heat production were similar. Mice on a high protein diet had increased hepatic expression of PGC-1alpha (peroxisome proliferator-activated receptor gamma coactivator 1alpha) and genes involved in energy-demanding processes like urea synthesis and gluconeogenesis. We conclude that cAMP signaling is pivotal in regulating the adipogenic effect of n-6 PUFAs and that diet-induced differences in cAMP levels may explain the ability of n-6 PUFAs to either enhance or counteract adipogenesis and obesity.
Collapse
Affiliation(s)
- Lise Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Joo M, Wright JG, Hu NN, Sadikot RT, Park GY, Blackwell TS, Christman JW. Yin Yang 1 enhances cyclooxygenase-2 gene expression in macrophages. Am J Physiol Lung Cell Mol Physiol 2007; 292:L1219-26. [PMID: 17220375 DOI: 10.1152/ajplung.00474.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expression of cyclooxygenase-2 (COX-2) is associated with the pathogenesis of inflammation and various cancers, including lung cancer. Yin Yang 1 (YY1) is a zinc-finger transcription factor that interacts with histone acetyltransferases and deacetylases for its transcriptional activity and also is involved in inflammation and tumorigenesis. We investigated whether YY1 regulates COX-2 expression. We located a possible YY1 binding site proximal to the transcription initiation site of the COX-2 promoter. Electrophoretic mobility shift assays show that YY1 bound to the putative YY1 site in vitro. To show biological relevance, we performed chromatin immunoprecipitation assays showing that lipopolysaccharide (LPS) treatment induced YY1 binding to the cognate site in the endogenous COX-2 promoter. Overexpression of YY1 in macrophages treated with either LPS or live Pseudomonas aeruginosa increased COX-2 transcriptional activity. Furthermore, YY1 enhanced COX-2 protein expression and prostaglandin D2 production elicited by LPS treatment. Mechanistically, we observed that LPS treatment resulted in disruption of an interaction between YY1 and p300, a histone acetyltransferase, but did not affect the interaction between YY1 and histone deacetylase 1/2. These data suggest that in response to LPS, YY1 dissociates from p300 and binds to the COX-2 promoter, contributing to COX-2 expression in an inflammatory milieu.
Collapse
Affiliation(s)
- Myungsoo Joo
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2650, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Jin SH, Kim TI, Yang KM, Kim WH. Thalidomide destabilizes cyclooxygenase-2 mRNA by inhibiting p38 mitogen-activated protein kinase and cytoplasmic shuttling of HuR. Eur J Pharmacol 2007; 558:14-20. [PMID: 17208222 DOI: 10.1016/j.ejphar.2006.11.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 11/16/2006] [Accepted: 11/21/2006] [Indexed: 11/18/2022]
Abstract
We investigated the effect of thalidomide on transcriptional and post-transcriptional cyclooxygenase-2 (COX-2) expression, including a pathway leading to COX-2 mRNA destabilization. We found that thalidomide inhibited the interleukin-1beta (IL-1beta)-mediated induction of COX-2 protein and mRNA in Caco-2 cells. Transient transfection with a COX-2 promoter construct demonstrated that thalidomide did not affect IL-1beta-induced transcriptional activation of COX-2, although it did decrease the stability of COX-2 mRNA and suppress IL-1beta-induced cytoplasmic shuttling of an mRNA stabilizing protein, HuR. Thalidomide also suppressed IL-1beta-induced p38 mitogen-activated protein kinase (MAPK) activation, while a p38 MAPK inhibitor destabilized COX-2 mRNA and the cytoplasmic shuttling of HuR induced by IL-1beta. These data suggest that one of the molecular mechanisms of thalidomide may be destabilization of COX-2 mRNA through inhibition of cytoplasmic shuttling of HuR and p38 MAPK.
Collapse
Affiliation(s)
- Soo Hyun Jin
- Department of Internal Medicine and Institute of Gastroenterology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
25
|
Kang YJ, Mbonye UR, DeLong CJ, Wada M, Smith WL. Regulation of intracellular cyclooxygenase levels by gene transcription and protein degradation. Prog Lipid Res 2007; 46:108-25. [PMID: 17316818 PMCID: PMC3253738 DOI: 10.1016/j.plipres.2007.01.001] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclooxygenases-1 and -2 (COX-1 and -2) catalyze the committed step in prostaglandin formation. Each isozyme subserves different biological functions. This is, at least in part, a consequence of differences in patterns of COX-1 and COX-2 expression. COX-1 is induced during development, and COX-1 mRNA and COX-1 protein are very stable. These latter properties can explain why COX-1 protein levels usually remain constant in those cells that express this isozyme. COX-2 is usually expressed inducibly in association with cell replication or differentiation. Both COX-2 mRNA and COX-2 protein have short half-lives relative to those of COX-1. Therefore, COX-2 protein is typically present for only a few hours after its synthesis. Here we review and develop the concepts that (a) COX-2 gene transcription can involve at least six different cis-acting promoter elements interacting with trans-acting factors generated by multiple, different signaling pathways, (b) the relative contribution of each cis-acting COX-2 promoter element depends on the cell type, the stimulus and the time following the stimulus and (c) a unique 27 amino acid instability element located just upstream of the C-terminus of COX-2 targets this isoform to the ER-associated degradation system and proteolysis by the cytosolic 26S proteasome.
Collapse
Affiliation(s)
- Yeon-Joo Kang
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Uri R. Mbonye
- Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824
| | - Cynthia J. DeLong
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Masayuki Wada
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - William L. Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
26
|
Pham H, Shafer LM, Slice LW. CREB-dependent cyclooxygenase-2 and microsomal prostaglandin E synthase-1 expression is mediated by protein kinase C and calcium. J Cell Biochem 2006; 98:1653-66. [PMID: 16598755 DOI: 10.1002/jcb.20899] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cellular production of prostaglandins (PGs) is controlled by the concerted actions of cyclooxygenases (COX) and terminal PG synthases on arachidonic acid in response to agonist stimulation. Recently, we showed in an ileal epithelial cell line (IEC-18), angiotensin II-induced COX-2-dependent PGI2 production through p38MAPK, and calcium mobilization (J. Biol. Chem. 280: 1582-1593, 2005). Agonist binding to the AT1 receptor results in activation of PKC activity and Ca2+ signaling but it is unclear how each pathway contributes to PG production. IEC-18 cells were stimulated with either phorbol-12,13-dibutyrate (PDB), thapsigargin (TG), or in combination. The PG production and COX-2 and PG synthase expression were measured. Surprisingly, PDB and TG produced PGE2 but not PGI2. This corresponded to induction of COX-2 and mPGES-1 mRNA and protein. PGIS mRNA and protein levels did not change. Activation of PKC by PDB resulted in the activation of ERK1/2, JNK, and CREB whereas activation of Ca2+ signaling by TG resulted in the delayed activation of ERK1/2. The combined effect of PKC and Ca2+ signaling were prolonged COX-2 and mPGES-1 mRNA and protein expression. Inhibition of PKC activity, MEK activity, or Ca2+ signaling blocked agonist induction of COX-2 and mPGES-1. Expression of a dominant negative CREB (S133A) blocked PDB/TG-dependent induction of both COX-2 and mPGES-1 promoters. Decreased CREB expression by siRNA blocked PDB/TG-dependent expression of COX-2 and mPGES-1 mRNA. These findings demonstrate a coordinated induction of COX-2 and mPGES-1 by PDB/TG that proceeds through PKC/ERK and Ca2+ signaling cascades, resulting in increased PGE2 production.
Collapse
Affiliation(s)
- Hung Pham
- Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095-1786, USA
| | | | | |
Collapse
|
27
|
Hewett SJ, Bell SC, Hewett JA. Contributions of cyclooxygenase-2 to neuroplasticity and neuropathology of the central nervous system. Pharmacol Ther 2006; 112:335-57. [PMID: 16750270 DOI: 10.1016/j.pharmthera.2005.04.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/19/2005] [Indexed: 01/08/2023]
Abstract
Cyclooxygenase (COX) enzymes, or prostaglandin-endoperoxide synthases (PTGS), are heme-containing bis-oxygenases that catalyze the first committed reaction in metabolism of arachidonic acid (AA) to the potent lipid mediators, prostanoids and thromboxanes. Two isozymes of COX enzymes (COX-1 and COX-2) have been identified to date. This review will focus specifically on the neurobiological and neuropathological consequences of AA metabolism via the COX-2 pathway and discuss the potential therapeutic benefit of COX-2 inhibition in the setting of neurological disease. However, given the controversy surrounding the use of COX-2 selective inhibitors with respect to cardiovascular health, it will be important to move beyond COX to identify which down-stream effectors are responsible for the deleterious and/or potentially protective effects of COX-2 activation in the setting of neurological disease. Important advances toward this goal are highlighted herein. Identification of unique effectors in AA metabolism could direct the development of new therapeutics holding significant promise for the prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Sandra J Hewett
- Department of Neuroscience MC3401, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA.
| | | | | |
Collapse
|
28
|
Alique M, Moreno V, Kitamura M, Xu Q, Lucio-Cazana FJ. Kinase-dependent, retinoic acid receptor-independent up-regulation of cyclooxygenase-2 by all-trans retinoic acid in human mesangial cells. Br J Pharmacol 2006; 149:215-25. [PMID: 16894348 PMCID: PMC2013793 DOI: 10.1038/sj.bjp.0706842] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Preliminary results in human mesangial cells (MC) suggested that all-trans retinoic acid (ATRA) increased the expression of COX-2 and the production of prostaglandin E2 (PGE2), a PG with anti-inflammatory effects in MC. The aim of this work is to confirm that ATRA increases the expression of COX-2 in MC and to examine the mechanisms involved. EXPERIMENTAL APPROACH Cultured MC were treated with ATRA. COX expression and kinase activity were analyzed by Western blot. Transcriptional mechanisms were analyzed by Northern blot, RT-PCR and promoter assays. KEY RESULTS COX-2 and COX-1 expression and PGE2 production were increased by ATRA. COX-2 played a role in PGE2 production as production was only partially inhibited by COX-1 inhibitor SC-560. COX-2 up-regulation by ATRA was due to transcriptional mechanisms as pre-incubation with actinomycin D abolished it and ATRA increased the expression of COX-2 mRNA and the activity of a human COX-2 promoter construct, whereas post-transcriptional mechanisms were not found. Retinoic acid receptors (RAR) were not involved in the up-regulation of COX-2 by ATRA since it was not inhibited by RAR-pan-antagonists and the RAR-pan-agonist TTNPB did not up-regulate COX-2. Instead ATRA might act through a sustained activation of extracellular signal-regulated kinase 1/2 (ERK1/2) since up-regulation of COX-2 was prevented by inhibition of the activation of ERK1/2 with PD098059. Also ERK1/2, as well as downstream signalling proteins from ERK1/2, remained phosphorylated when COX-2 increased 24 h later. CONCLUSIONS AND IMPLICATIONS These results highlight the relevance of RAR-independent mechanisms to the biological effects of ATRA.
Collapse
Affiliation(s)
- M Alique
- Department of Physiology, Faculty of Medicine, University of Alcala, Alcala de Henares Madrid, Spain
| | - V Moreno
- Department of Physiology, Faculty of Medicine, University of Alcala, Alcala de Henares Madrid, Spain
| | - M Kitamura
- Department of Molecular Signaling, University of Yamanashi, Tamaho Yamanashi, Japan
| | - Q Xu
- Department of Medicine, University College London London, UK
| | - F J Lucio-Cazana
- Department of Physiology, Faculty of Medicine, University of Alcala, Alcala de Henares Madrid, Spain
- Author for correspondence:
| |
Collapse
|
29
|
Duque J, Díaz-Muñoz MD, Fresno M, Iñiguez MA. Up-regulation of cyclooxygenase-2 by interleukin-1β in colon carcinoma cells. Cell Signal 2006; 18:1262-9. [PMID: 16326073 DOI: 10.1016/j.cellsig.2005.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 10/05/2005] [Indexed: 11/26/2022]
Abstract
Growing evidence shows that Interleukin (IL)-1beta and Cyclooxygenase 2 (COX-2) play a crucial role in the pathogenesis of inflammatory diseases and tumor growth, particularly in the gastrointestinal tract. Here, we have analyzed the regulation of COX-2 by IL-1beta in the human colon carcinoma cell line Caco-2, showing that COX-2 induction by this cytokine is due to both nuclear factor (NF)-kappaB-dependent transcriptional and p38 mitogen-activated protein kinase (MAPK)-mediated post-transcriptional mechanisms. Treatment of these cells with IL-1beta increased the levels of COX-2 mRNA and protein and hence the production of PGE2. IL-1beta induced NF-kappaB activation in Caco-2 cells, promoting the binding of this transcription factor to DNA and increasing NF-kappaB-dependent transcription. Inhibition of NF-kappaB activation diminished IL-1beta-mediated transcriptional activation of COX-2. Furthermore, mutation or deletion of a putative NF-kappaB binding site in the human COX-2 promoter greatly diminished its induction by IL-1beta. In addition, this cytokine induced a rapid increase in p38 MAPK activation. Interestingly, inhibition of p38 MAPK by SB203580 severely decreased induction of COX-2 expression by IL-1beta. p38 MAPK signalling was required for IL-1beta-dependent stabilization of COX-2 transcript. Given the importance of COX-2 expression in intestinal inflammation and colon carcinogenesis, these findings contribute to determine the key signalling pathways involved in the regulation of COX-2 expression in colorectal cells by inflammatory stimuli, such as IL-1beta.
Collapse
Affiliation(s)
- Javier Duque
- Centro de Biología Molecular "Severo Ochoa", Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
30
|
Park GY, Christman JW. Involvement of cyclooxygenase-2 and prostaglandins in the molecular pathogenesis of inflammatory lung diseases. Am J Physiol Lung Cell Mol Physiol 2006; 290:L797-805. [PMID: 16603593 PMCID: PMC4358817 DOI: 10.1152/ajplung.00513.2005] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Inducible cyclooxygenase (COX-2) and its metabolites have diverse and potent biological actions that are important for both physiological and disease states of lung. The wide variety of prostaglandin (PG) products are influenced by the level of cellular activation, the exact nature of the stimulus, and the specific cell type involved in their production. In turn, the anti- and proinflammatory response of PG is mediated by a blend of specific surface and intracellular receptors that mediate diverse cellular events. The complexity of this system is being at least partially resolved by the generation of specific molecular biological research tools that include cloning and characterization of the enzymes distal to COX-2 and the corresponding receptors to the final cellular products of arachidonic metabolism. The most informative of these approaches have employed genetically modified animals and specific receptor antagonists to determine the exact role of specific COX-2-derived metabolites on specific cell types of the lung in the context of inflammatory models. These data have suggested a number of cell-specific, pathway-specific, and receptor-specific approaches that could lead to effective therapeutic interventions for most inflammatory lung diseases.
Collapse
Affiliation(s)
- Gye Young Park
- Department of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, University of Illinois, 840 S. Wood St., Chicago, IL 60612, USA
| | | |
Collapse
|
31
|
Narayanan BA, Narayanan NK, Davis L, Nargi D. RNA interference–mediated cyclooxygenase-2 inhibition prevents prostate cancer cell growth and induces differentiation: modulation of neuronal protein synaptophysin, cyclin D1, and androgen receptor. Mol Cancer Ther 2006; 5:1117-25. [PMID: 16731743 DOI: 10.1158/1535-7163.mct-05-0520] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyclooxygenase-2 (COX-2) plays an important role in tumor development and progression. Inconsistent reports on the expression of COX-2 in early versus advanced prostate cancer raised the question on whether COX-2 inhibition affects prostate carcinogenesis. Evidence from recent studies indicates that prostate carcinogenesis depends on the altered expression of several factors including androgen receptor signaling, proinflammatory, and cell cycle regulatory genes. Very often, the outcome of androgen ablation treatment is not effective and, eventually, the cancer becomes androgen independent followed by activation of several survival genes and transcription factors. Most importantly, the extent of the influence of COX-2 on the regulation of the androgen receptor, cyclin D1, and other factors involved in cancer growth is not known. Using RNA interference-mediated COX-2 inhibition in metastatic prostate cancer cells, this study has shown that the silencing of COX-2 at the mRNA level can induce cell growth arrest and down-regulate androgen receptor and cyclin D1. We have further shown for the first time that COX-2 knockdown prostate cancer cells depict morphologic changes associated with enhanced expression of differentiation markers, particularly the neuronal protein synaptophysin along with activation of p21((Waf1/Cip1)) and p27((Kip1)). In summary, our findings determined the role of COX-2 in prostate carcinogenesis and its control on COX-2-independent targets. Second, abrogation of COX-2 and activation of synaptophysin provide evidence for the control of COX-2 on the expression of a neuronal protein. Finally, our findings provide evidence of COX-2-independent targets promoting cell growth arrest and differentiation in cells lacking COX-2 expression at the mRNA level.
Collapse
Affiliation(s)
- Bhagavathi A Narayanan
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| | | | | | | |
Collapse
|
32
|
Shafer LM, Slice LW. Anisomycin induces COX-2 mRNA expression through p38(MAPK) and CREB independent of small GTPases in intestinal epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1745:393-400. [PMID: 16054711 DOI: 10.1016/j.bbamcr.2005.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 07/01/2005] [Accepted: 07/06/2005] [Indexed: 10/25/2022]
Abstract
Cyclooxygenase (COX)-2 expression in intestinal epithelial cells is associated with colorectal carcinogenesis. COX-2 expression is induced by numerous growth factors and gastrointestinal hormones through multiple protein kinase cascades. Here, the role of mitogen activated protein kinases (MAPKs) and small GTPases in COX-2 expression was investigated. Anisomycin and sorbitol induced COX-2 expression in non-transformed, intestinal epithelial IEC-18 cells. Both anisomycin and sorbitol activated p38(MAPK) followed by phosphorylation of CREB. SB202190 and PD169316 but neither PD98059 nor U0126 blocked COX-2 expression and CREB phosphorylation by anisomycin or sorbitol. Clostridium difficile toxin B inhibition of small GTPases did not affect anisomycin-induced COX-2 mRNA expression or phosphorylation of p38MAPK and CREB but did inhibit sorbitol-dependent COX-2 expression and phosphorylation of p38MAPK and CREB. Angiotensin (Ang) II-dependent induction of COX-2 mRNA and induced phosphorylation of p38MAPK and CREB were inhibited by toxin B. Reduction of CREB protein in cells transfected with CREB siRNAs inhibited anisomycin-induced COX-2 expression. These results indicate that activation of p38MAPK signaling is sufficient for COX-2 expression in IEC-18 cells. Ang II and sorbitol require small GTPase activity for COX-2 expression via p38MAPK while anisomycin-induced COX-2 expression by p38MAPK does not require small GTPases. This places small GTPase activity down-stream of the AT1 receptor and hyperosmotic stress and up-stream of p38MAPK and CREB.
Collapse
Affiliation(s)
- Lindsay M Shafer
- Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center, Jonnson Comprehensive Cancer Center and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1786, USA
| | | |
Collapse
|
33
|
Mehrotra M, Saegusa M, Voznesensky O, Pilbeam C. Role of Cbfa1/Runx2 in the fluid shear stress induction of COX-2 in osteoblasts. Biochem Biophys Res Commun 2006; 341:1225-30. [PMID: 16476583 DOI: 10.1016/j.bbrc.2006.01.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 01/20/2006] [Indexed: 10/25/2022]
Abstract
Induction of cyclooxygenase-2 (COX-2) is thought to be important for the anabolic effects of mechanical loading. The transcription factor Cbfa1/Runx2 is essential for osteoblastic differentiation. We examined the role of Cbfa1 in the fluid shear stress (FSS) induction of COX-2 in MC3T3-E1 cells stably transfected with a COX-2 promoter-luciferase reporter. Cells were subjected to FSS for 30 min and returned to static culture (post-FSS). COX-2 mRNA and promoter activity peaked 0.5-1h and 2-3h, respectively, post-FSS. Mutation of the Cbfa1 consensus sequence at -267/-261 bp decreased the FSS fold-induction of luciferase activity by 50%. On electrophoretic mobility shift assay (EMSA), proteins binding to an oligonucleotide spanning the Cbfa1 site were supershifted by specific antibody to Cbfa1. FSS did not increase Cbfa1 binding on EMSA or Cbfa1 mRNA or protein levels. These data suggest that transcriptional activity of Cbfa1, independent of its level of expression, is necessary for maximal FSS induction of COX-2 in osteoblasts.
Collapse
Affiliation(s)
- Meenal Mehrotra
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
34
|
Lee YS, Terzidou V, Lindstrom T, Johnson M, Bennett PR. The role of CCAAT/enhancer-binding protein beta in the transcriptional regulation of COX-2 in human amnion. Mol Hum Reprod 2006; 11:853-8. [PMID: 16399783 DOI: 10.1093/molehr/gah194] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human labour is associated with increased prostaglandin synthesis within the uterus by the action of the inducible type-2 cyclo-oxygenase enzyme (COX-2). A major source of prostaglandin is the fetal membranes, in particular the amnion, in which expression of COX-2 increases in late pregnancy and with labour. The COX-2 gene promoter contains several putative transcription factor binding sites including those for NF-kappaB, AP-1 and C/EBP and therefore has the features of a rapid response gene. We have previously shown that, in amnion, the NF-kappaB DNA-binding sites in the COX-2 promoter are essential for gene expression and that there is an increase in NF-kappaB activity in amnion with the onset of labour. In this study, we demonstrate that in primary human amnion cells, CCAAT/enhancer-binding protein beta (C/EBPbeta) DNA-binding sites are crucial for the function of the COX-2 gene promoter. Three potential C/EBPbeta DNA-binding sites were identified within the COX-2 promoter which were shown to bind to C/EBPbeta but not to C/EBPalpha, C/EBPdelta, CREB (cAMP responsive element modulator) or CREM. Luciferase reporter constructs with site-directed mutagenesis of the three C/EBPbeta sites in the COX-2 promoter showed reduced expression of luciferase in transient transfection studies. However, comparison of C/EBPbeta protein levels and their DNA-binding activity from cells obtained before and after labour showed no significant differences. This suggests that although C/EBPbeta plays an essential constitutive role in the expression of COX-2, C/EBPbeta may not be directly involved in its regulation in association with human labour.
Collapse
Affiliation(s)
- Yun S Lee
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, London, UK.
| | | | | | | | | |
Collapse
|
35
|
Chen JJ, Huang WC, Chen CC. Transcriptional regulation of cyclooxygenase-2 in response to proteasome inhibitors involves reactive oxygen species-mediated signaling pathway and recruitment of CCAAT/enhancer-binding protein delta and CREB-binding protein. Mol Biol Cell 2005; 16:5579-91. [PMID: 16195339 PMCID: PMC1289404 DOI: 10.1091/mbc.e05-08-0778] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inhibition of ubiquitin-proteasome pathway has been shown to be a promising strategy for the treatment of inflammation and cancer. Here, we show that proteasome inhibitors MG132, PSI-1, and lactacystin induce COX-2 expression via enhancing gene transcription rather than preventing protein degradation in the human alveolar NCI-H292 and A549, and gastric AGS epithelial cells. NF-IL6 and CRE, but not NF-kappaB elements on the COX-2 promoter were involved in the gene transcription event. The binding of CCAAT/enhancer binding protein (C/EBP)beta and C/EBPdelta to the CRE and NF-IL6 elements, as well as the recruitment of CBP and the enhancement of histone H3 and H4 acetylation on the COX-2 promoter was enhanced by MG132. However, it did not affect the total protein levels of C/EBPbeta and C/EBPdelta. MG132-induced DNA-binding activity of C/EBPdelta, but not C/EBPbeta was regulated by p38, PI3K, Src, and protein kinase C. Small interfering RNA of C/EBPdelta suppressed COX-2 expression, further strengthening the role of C/EBPdelta in COX-2 gene transcription. In addition, the generation of intracellular reactive oxygen species (ROS) in response to MG132 contributed to the activation of MAPKs and Akt. These findings reveal that the induction of COX-2 transcription induced by proteasome inhibitors requires ROS-dependent protein kinases activation and the subsequent recruitments of C/EBPdelta and CBP.
Collapse
Affiliation(s)
- Jun-Jie Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 10018, Taiwan
| | | | | |
Collapse
|
36
|
Abstract
Nutritional status has been indicated as a contributing factor to age-related dysregulation of the immune response. Vitamin E, a lipid-soluble antioxidant vitamin, is important for normal function of the immune cells. The elderly are at a greater risk for vitamin E intake that is lower than recommended levels. Vitamin E supplementation above currently recommended levels has been shown to improve immune functions in the aged including delayed-type hypersensitivity skin response and antibody production in response to vaccination, which was shown to be mediated through increased production of interleukin (IL)-2, leading to enhanced proliferation of T cells, and through reduced production of prostaglandin E(2), a T-cell suppressive factor, as a result of a decreased peroxynitrite formation. Vitamin E increased both cell-dividing and IL-producing capacities of naive T cells, but not memory T cells. The vitamin E-induced enhancement of immune functions in the aged was associated with significant improvement in resistance to influenza infection in aged mice and a reduced risk of acquiring upper respiratory infections in nursing home residents. Further studies are needed to determine the signaling mechanisms involved in the upregulation of naive T-cell function by vitamin E as well as the specific mechanisms involved in reduction of risk for upper respiratory infections.
Collapse
Affiliation(s)
- Simin Nikbin Meydani
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA.
| | | | | |
Collapse
|
37
|
Madsen L, Petersen RK, Kristiansen K. Regulation of adipocyte differentiation and function by polyunsaturated fatty acids. Biochim Biophys Acta Mol Basis Dis 2005; 1740:266-86. [PMID: 15949694 DOI: 10.1016/j.bbadis.2005.03.001] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 02/23/2005] [Accepted: 03/02/2005] [Indexed: 12/11/2022]
Abstract
A diet enriched in PUFAs, in particular of the n-3 family, decreases adipose tissue mass and suppresses development of obesity in rodents. Although several nuclear hormone receptors are identified as PUFA targets, the precise molecular mechanisms underlying the effects of PUFAs still remain to be elucidated. Here we review research aimed at elucidating molecular mechanisms governing the effects of PUFAs on the differentiation and function of white fat cells. This review focuses on dietary PUFAs as signaling molecules, with special emphasis on agonistic and antagonistic effects on transcription factors currently implicated as key players in adipocyte differentiation and function, including peroxisome proliferator activated receptors (PPARs) (alpha, beta and gamma), sterol regulatory element binding proteins (SREBPs) and liver X receptors (LXRs). We review evidence that dietary n-3 PUFAs decrease adipose tissue mass and suppress the development of obesity in rodents by targeting a set of key regulatory transcription factors involved in both adipogensis and lipid homeostasis in mature adipocytes. The same set of factors are targeted by PUFAs of the n-6 family, but the cellular/physiological responses are dependent on the experimental setting as n-6 PUFAs may exert either an anti- or a proadipogenic effect. Feeding status and hormonal background may therefore be of particular importance in determining the physiological effects of PUFAs of the n-6 family.
Collapse
Affiliation(s)
- Lise Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | | | | |
Collapse
|
38
|
Chang MS, Chen BC, Yu MT, Sheu JR, Chen TF, Lin CH. Phorbol 12-myristate 13-acetate upregulates cyclooxygenase-2 expression in human pulmonary epithelial cells via Ras, Raf-1, ERK, and NF-κB, but not p38 MAPK, pathways. Cell Signal 2005; 17:299-310. [PMID: 15567061 DOI: 10.1016/j.cellsig.2004.07.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 07/23/2004] [Indexed: 12/21/2022]
Abstract
In this study, we investigated the signaling pathway involved in cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) release by phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, in human pulmonary epithelial cells (A549). PMA-induced COX-2 expression was attenuated by PKC inhibitors (Go 6976 and Ro 31-8220), a Ras inhibitor (manumycin A), a Raf-1 inhibitor (GW 5074), a MEK inhibitor (PD 098059), and an NF-kappaB inhibitor (PDTC), but not by a tyrosine kinase inhibitor (genistein) or a p38 MAPK inhibitor (SB 203580). PMA also caused the activation of Ras, Raf-1, and ERK1/2. PMA-induced activation of Ras and Raf-1 was inhibited by Ro 31-8220 and manumycin A. PMA-mediated activation of ERK1/2 was inhibited by Ro 31-8220, manumycin A, GW 5074, and PD 098059. Stimulation of cells with PMA caused IkappaBalpha phosphorylation, IkappaBalpha degradation, and the formation of a NF-kappaB-specific DNA-protein complex. The PMA-mediated increase in kappaB-luciferase activity was inhibited by Ro 31-8220, manumycin A, GW5074, PD 098059, and PDTC. Taken together, these results indicate that PMA might activate PKC to elicit activation of the Ras/Raf-1/ERK1/2 pathway, which in turn initiates NF-kappaB activation, and finally induces COX-2 expression and PGE2 release in A549 cells.
Collapse
Affiliation(s)
- Ming-Shyan Chang
- Graduate Institute of Biomedical Technology, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
39
|
Jimenez JL, Iñiguez MA, Muñoz-Fernández MA, Fresno M. Effect of phosphodiesterase 4 inhibitors on NFAT-dependent cyclooxygenase-2 expression in human T lymphocytes. Cell Signal 2005; 16:1363-73. [PMID: 15381252 DOI: 10.1016/j.cellsig.2004.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 04/02/2004] [Accepted: 04/04/2004] [Indexed: 01/19/2023]
Abstract
Transcriptional induction of cyclooxygenase-2 (COX-2) occurs early after T cell receptor triggering and has functional implications in inflammation. Here, we show that phosphodiesterase (PDE)-4 inhibitors block COX-2 induction and prostaglandin synthesis in activated T cells. COX-2 inhibition by PDE4 inhibitors occurs mainly at the transcriptional level. Two response elements for the nuclear factor of activated T cells (NFAT) in the COX-2 promoter were required for inhibition by these drugs. PDE4 inhibitors did not affect NFAT nuclear translocation upon T cell activation; rather they prevented NFAT binding to DNA and induction of the transactivation function of GAL4-NFAT. These effects seem to be cAMP/PKA independent as they were not mimicked by the permeable analog dBcAMP or by forskolin, neither can be reverted by the PKA inhibitors H89 or KT-5720. These results may explain some of the anti-inflammatory properties of PDE4 inhibitors through the blockade of NFAT-mediated transactivation of pro-inflammatory genes such as COX-2.
Collapse
Affiliation(s)
- José L Jimenez
- Laboratorio de Inmunología, Hospital Universitario Gregorio Marañón, C/ Doctor Esquerdo 46, 28007 Madrid, Spain
| | | | | | | |
Collapse
|
40
|
Chen BC, Yu CC, Lei HC, Chang MS, Hsu MJ, Huang CL, Chen MC, Sheu JR, Chen TF, Chen TL, Inoue H, Lin CH. Bradykinin B2 receptor mediates NF-kappaB activation and cyclooxygenase-2 expression via the Ras/Raf-1/ERK pathway in human airway epithelial cells. THE JOURNAL OF IMMUNOLOGY 2004; 173:5219-28. [PMID: 15470067 DOI: 10.4049/jimmunol.173.8.5219] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this study, we investigated the signaling pathways involved in bradykinin (BK)-induced NF-kappaB activation and cyclooxygenase-2 (COX-2) expression in human airway epithelial cells (A549). BK caused concentration- and time-dependent increase in COX-2 expression, which was attenuated by a selective B2 BK receptor antagonist (HOE140), a Ras inhibitor (manumycin A), a Raf-1 inhibitor (GW 5074), a MEK inhibitor (PD 098059), an NF-kappaB inhibitor (pyrrolidine dithiocarbate), and an IkappaB protease inhibitor (L-1-tosylamido-2-phenylethyl chloromethyl ketone). The B1 BK receptor antagonist (Lys-(Leu8)des-Arg9-BK) had no effect on COX-2 induction by BK. BK-induced increase in COX-2-luciferase activity was inhibited by cells transfected with the kappaB site deletion of COX-2 construct. BK-induced Ras activation was inhibited by manumycin A. Raf-1 phosphorylation at Ser338 by BK was inhibited by manumycin A and GW 5074. BK-induced ERK activation was inhibited by HOE140, manumycin A, GW 5074, and PD 098059. Stimulation of cells with BK activated IkappaB kinase alphabeta (IKKalphabeta), IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 and p50 translocation from the cytosol to the nucleus, the formation of an NF-kappaB-specific DNA-protein complex, and kappaB-luciferase activity. BK-mediated increase in IKKalphabeta activity and formation of the NF-kappaB-specific DNA-protein complex were inhibited by HOE140, a Ras dominant-negative mutant (RasN17), manumycin A, GW 5074, and PD 098059. Our results demonstrated for the first time that BK, acting through B2 BK receptor, induces activation of the Ras/Raf-1/ERK pathway, which in turn initiates IKKalphabeta and NF-kappaB activation, and ultimately induces COX-2 expression in human airway epithelial cell line (A549).
Collapse
Affiliation(s)
- Bing-Chang Chen
- School of Respiratory Therapy, Taipei Medical University, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chun KS, Surh YJ. Signal transduction pathways regulating cyclooxygenase-2 expression: potential molecular targets for chemoprevention. Biochem Pharmacol 2004; 68:1089-100. [PMID: 15313405 DOI: 10.1016/j.bcp.2004.05.031] [Citation(s) in RCA: 302] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 05/24/2004] [Indexed: 01/01/2023]
Abstract
Expression of cyclooxygenase-2 (COX-2) has been reported to be elevated in human colorectal adenocarcinoma and other tumors, including those of breast, cervical, prostate, and lung. Genetic knock-out or pharmacological inhibition of COX-2 has been shown to protect against experimentally-induced carcinogenesis. Results from epidemiological and laboratory studies indicate that regular intake of selective COX-2 inhibitors reduces the risk of several forms of human malignancies. Thus, it is conceivable that targeted inhibition of abnormally or improperly elevated COX-2 provides one of the most effective and promising strategies for cancer chemoprevention. The COX-2 promoter contains a TATA box and binding sites for several transcription factors including nuclear factor-kappaB (NF-kappaB), nuclear factor for interleukin-6/CCAAT enhancer-binding protein (NF-IL6/C/EBP) and cyclic AMP response element (CRE) binding protein. Upregulation of COX-2 is mediated by a variety of stimuli including tumor promoters, oncogenes, and growth factors. Stimulation of either protein kinase C (PKC) or Ras signaling enhances mitogen-activated protein kinase (MAPK) activity, which, in turn, activates transcription of cox-2. Celecoxib, the first US FDA approved selective COX-2 inhibitor, initially developed for the treatment of adult rheumatoid arthritis and osteoarthritis, has been reported to reduce the formation of polyps in patients with familial adenomatous polyposis. This COX-2 specific inhibitor also protects against experimentally-induced carcinogenesis, but the underlying molecular mechanisms are poorly understood. The present review covers the signal transduction pathways responsible for regulating COX-2 expression as novel molecular targets of chemopreventive agents with celecoxib as a specific example.
Collapse
Affiliation(s)
- Kyung-Soo Chun
- Laboratory of Biochemistry and Molecular Toxicology, College of Pharmacy, Seoul National University, 151-742, South Korea
| | | |
Collapse
|
42
|
Chivers JE, Cambridge LM, Catley MC, Mak JC, Donnelly LE, Barnes PJ, Newton R. Differential effects of RU486 reveal distinct mechanisms for glucocorticoid repression of prostaglandin E2 release. ACTA ACUST UNITED AC 2004; 271:4042-52. [PMID: 15479233 DOI: 10.1111/j.1432-1033.2004.04342.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In A549 pulmonary cells, the dexamethasone- and budesonide-dependent repression of interleukin-1beta-induced prostaglandin E2 release was mimicked by the steroid antagonist, RU486. Conversely, whereas dexamethasone and budesonide were highly effective inhibitors of interleukin-1beta-induced cyclooxygenase (COX)/prostaglandin E synthase (PGES) activity and COX-2 expression, RU486 (<1 microm) was a poor inhibitor, but was able to efficiently antagonize the effects of dexamethasone and budesonide. In addition, both dexamethasone and RU486 repressed [3H]arachidonate release, which is consistent with an effect at the level of phospholipase A2 activity. By contrast, glucocorticoid response element-dependent transcription was unaffected by RU486 but induced by dexamethasone and budesonide, whilst dexamethasone- and budesonide-dependent repression of nuclear factor-kappaB-dependent transcription was maximally 30-40% and RU486 (<1 microm) was without significant effect. Thus, two pharmacologically distinct mechanisms of glucocorticoid-dependent repression of prostaglandin E2 release are revealed. First, glucocorticoid-dependent repression of arachidonic acid is mimicked by RU486 and, second, repression of COX/PGES is antagonized by RU486. Finally, whilst all compounds induced glucocorticoid receptor translocation, no role for glucocorticoid response element-dependent transcription is supported in these inhibitory processes and only a limited role for glucocorticoid-dependent inhibition of nuclear factor-kappaB in the repression of COX-2 is indicated.
Collapse
Affiliation(s)
- Joanna E Chivers
- Department of Thoracic Medicine, National Heart and Lung Institute, Imperial College London, Faculty of Medicine, London, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Simmons DL, Botting RM, Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev 2004; 56:387-437. [PMID: 15317910 DOI: 10.1124/pr.56.3.3] [Citation(s) in RCA: 1212] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) represent one of the most highly utilized classes of pharmaceutical agents in medicine. All NSAIDs act through inhibiting prostaglandin synthesis, a catalytic activity possessed by two distinct cyclooxygenase (COX) isozymes encoded by separate genes. The discovery of COX-2 launched a new era in NSAID pharmacology, resulting in the synthesis, marketing, and widespread use of COX-2 selective drugs. These pharmaceutical agents have quickly become established as important therapeutic medications with potentially fewer side effects than traditional NSAIDs. Additionally, characterization of the two COX isozymes is allowing the discrimination of the roles each play in physiological processes such as homeostatic maintenance of the gastrointestinal tract, renal function, blood clotting, embryonic implantation, parturition, pain, and fever. Of particular importance has been the investigation of COX-1 and -2 isozymic functions in cancer, dysregulation of inflammation, and Alzheimer's disease. More recently, additional heterogeneity in COX-related proteins has been described, with the finding of variants of COX-1 and COX-2 enzymes. These variants may function in tissue-specific physiological and pathophysiological processes and may represent important new targets for drug therapy.
Collapse
Affiliation(s)
- Daniel L Simmons
- Department of Chemistry and Biochemistry, E280 BNSN, Brigham Young University, Provo, UT 84604, USA.
| | | | | |
Collapse
|
44
|
Doyle KMH, Russell DL, Sriraman V, Richards JS. Coordinate transcription of the ADAMTS-1 gene by luteinizing hormone and progesterone receptor. Mol Endocrinol 2004; 18:2463-78. [PMID: 15256533 DOI: 10.1210/me.2003-0380] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
ADAMTS-1 (a disintegrin and metalloproteinase with thrombospondin-like motifs) is a multifunctional protease that is expressed in periovulatory follicles. Herein we show that induction of ADAMTS-1 message in vivo and transcription of the ADAMTS-1 promoter in cultured granulosa cells are dependent on separable but coordinate actions of LH and the progesterone receptor (PR). To analyze the molecular mechanisms by which LH and PR regulate this gene, truncations and site-specific mutants of ADAMTS-1 promoter-luciferase reporter constructs (ADAMTS-1-Luc) were generated and transfected into rat granulosa cell cultures. Three regions of the promoter were found to be important for basal activity, two of which were guanine cytosine-rich binding sites for specificity proteins Sp1/Sp3 and the third bound a nuclear factor 1-like factor. Despite the absence of a consensus PR DNA response element in the proximal ADAMTS-1 promoter, cotransfection of a PRA (or PRB) expression vector stimulated ADAMTS-1 promoter activity, a response that was reduced by the PR antagonist ZK98299. Forskolin plus phorbol myristate acetate also increased promoter activity and, when added to cells cotransfected with PRA, ADAMTS-1 promoter activity increased further. Activation of the ADAMTS-1 promoter by PRA involves functional CAAT enhancer binding protein beta, nuclear factor 1-like factor, and three Sp1/Sp3 binding sites as demonstrated by transfection of mutated promoter constructs. In summary, LH and PRA/B exert distinct but coordinate effects on transactivation of the ADAMTS-1 gene in granulosa cells in vivo and in vitro with PR acting as an inducible coregulator of the ADAMTS-1 gene.
Collapse
Affiliation(s)
- Kari M H Doyle
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
45
|
Kranenburg O, Gebbink MFBG, Voest EE. Stimulation of angiogenesis by Ras proteins. Biochim Biophys Acta Rev Cancer 2004; 1654:23-37. [PMID: 14984765 DOI: 10.1016/j.bbcan.2003.09.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Accepted: 09/03/2003] [Indexed: 12/13/2022]
Abstract
Cells that have acquired a proliferative advantage form islets of hyperplasia during the initial stages of tumor development. Like normal cells, they require oxygen and nutrients to survive and proliferate. The centre of the islets is characterized by low oxygen pressure and low pH, conditions that stimulate the sprouting of new capillaries from nearby vascular beds. It is now well established that neovascularisation (angiogenesis) of the hyperplasias is essential for further development of the tumor. The family of ras oncogenes promotes the initiation of tumor growth by stimulating tumor cell proliferation, but also ensures tumor progression by stimulating tumor-associated angiogenesis. Oncogenic Ras proteins stimulate a number of effector pathways that culminate in the transcriptional activation of genes that control angiogenesis. Moreover, Ras signaling leads to stabilization of the produced mRNAs and, possibly, to enhanced initiation of their translation. In this review we describe the mechanisms that underlie Ras regulation of vascular endothelial growth factor (VEGF), cyclooxygenases (COX-1/-2), thrombospondins (TSP-1/-2), urokinase plasminogen activator (uPA) and matrix metalloproteases-2 and -9 (MMP-2/-9). As a result of these Ras-regulated changes in gene expression, the tumor cells cause stimulation of endothelial cells in nearby vascular beds (directly via VEGF, and indirectly via COX-produced prostaglandins) and promote remodeling of the extracellular matrix (by lowering TSP and increasing uPA/MMPs). The latter effect makes growth factors available for endothelial cell activation and migration. In addition, tumor cell-activated stromal cells also contribute to the stimulation of angiogenesis by further enhancing the production and secretion of pro-angiogenic factors into the tumor stroma.
Collapse
Affiliation(s)
- Onno Kranenburg
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | | | |
Collapse
|
46
|
Chen BC, Chang YS, Kang JC, Hsu MJ, Sheu JR, Chen TL, Teng CM, Lin CH. Peptidoglycan Induces Nuclear Factor-κB Activation and Cyclooxygenase-2 Expression via Ras, Raf-1, and ERK in RAW 264.7 Macrophages. J Biol Chem 2004; 279:20889-97. [PMID: 15007072 DOI: 10.1074/jbc.m311279200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In this study, we investigated the signaling pathway involved in cyclooxygenase-2 (COX-2) expression caused by peptidoglycan (PGN), a cell wall component of the Gram-positive bacterium Staphylococcus aureus, in RAW 264.7 macrophages. PGN caused dose- and time-dependent increases in COX-2 expression, which was attenuated by a Ras inhibitor (manumycin A), a Raf-1 inhibitor (GW 5074), and an MEK inhibitor (PD 098059). Treatment of RAW 264.7 macrophages with PGN caused time-dependent activations of Ras, Raf-1, and ERK. The PGN-induced increase in Ras activity was inhibited by manumycin A. Raf-1 phosphorylation at Ser-338 by PGN was inhibited by manumycin A and GW 5074. The PGN-induced increase in ERK activity was inhibited by manumycin A, GW 5074, and PD 098059. Stimulation of cells with PGN activated IkappaB kinase alpha/beta (IKKalpha/beta), IkappaBalpha phosphorylation, IkappaBalpha degradation, and kappaB-luciferase activity. Treatment of macrophages with an NF-kappaB inhibitor (pyrrolidine dithiocarbamate), an IkappaBalpha phosphorylation inhibitor (Bay 117082), and IkappaB protease inhibitors (l-1-tosylamido-2-phenylethyl chloromethyl ketone and calpain inhibitor I) all inhibited PGN-induced COX-2 expression. The PGN-mediated increase in the activities of IKKalpha/beta and kappaB-luciferase were also inhibited by the Ras dominant negative mutant (RasN17), manumycin A, GW 5074, and PD 098059. Further studies revealed that PGN induced the recruitment of p85alpha and Ras to Toll-like receptor 2 in a time-dependent manner. Our data demonstrate for the first time that PGN activates the Ras/Raf-1/ERK pathway, which in turn initiates IKKalpha/beta and NF-kappaB activation, and ultimately induces COX-2 expression in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Bing-Chang Chen
- School of Respiratory Therapy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Lee HJ, Kim S, Pelletier J, Kim J. Stimulation of hTAFII68 (NTD)-mediated transactivation by v-Src. FEBS Lett 2004; 564:188-98. [PMID: 15094065 DOI: 10.1016/s0014-5793(04)00314-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 03/05/2004] [Accepted: 03/11/2004] [Indexed: 12/17/2022]
Abstract
The three genes hTAF(II)68, EWS, and TLS (called the TET family) encode related RNA binding proteins containing an RNA recognition motif and three glycine-, arginine-, and proline-rich regions in the C-terminus and a degenerated repeat containing the consensus sequence Ser-Tyr-Gly-Gln-Ser in the N-terminus. In many human cancers, the N-terminal portion of hTAF(II)68, EWS, or TLS is fused to the DNA binding domain of one of several transcription factors including Fli-1, ERG, ETV1, E1AF, WT1, ATF-1, CHOP, or TEC. We have recognized the presence of several potential tyrosine phosphorylation sites within the amino-terminal domain of hTAF(II)68 and have investigated the potential effects of cytoplasmic signaling on hTAF(II)68 function. Herein, we find that hTAF(II)68 is phosphorylated on tyrosine residue(s) by ectopic expression of v-Src protein tyrosine kinase in vitro and in vivo. The hTAF(II)68 protein can associated with the SH3 domains of several cell signaling proteins, including v-Src protein tyrosine kinase. We also document that full-length v-Src can stimulate hTAF(II)68-mediated transcriptional activation, whereas deletion mutants of v-Src are unable to exert this effect. In addition, cellular Src activity appears important for hTAF(II)68 function since hTAF(II)68-mediated transactivation is reduced in a dose-dependent fashion by ectopic overexpression of a dominant-negative mutant of Src. Taken together, our results suggest that the biological activities of hTAF(II)68 are linked to the cytoplasmic Src signal transduction pathway.
Collapse
Affiliation(s)
- Hye Jin Lee
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul 121-743, South Korea
| | | | | | | |
Collapse
|
48
|
Martineau LC, McVeigh LI, Jasmin BJ, Kennedy CRJ. p38 MAP kinase mediates mechanically induced COX-2 and PG EP4receptor expression in podocytes: implications for the actin cytoskeleton. Am J Physiol Renal Physiol 2004; 286:F693-701. [PMID: 14665434 DOI: 10.1152/ajprenal.00331.2003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A dynamic cytoskeleton allows podocytes to withstand significant mechanical stress on elevation of intraglomerular capillary pressure (Pgc). However, vasoactive hormones, such as prostaglandin E2(PGE2), may challenge the integrity of the actin cytoskeleton, alter podocyte morphology, and compromise glomerular permeability. PGE2synthesis correlates with the onset of proteinuria and increased Pgcfollowing reduced nephron mass. We investigated the interplay among mechanical stress, cyclooxygenase (COX), E-prostanoid (EP) receptor expression, and the actin cytoskeleton, using an in vitro model of cell stretch. Immortalized mouse podocytes grown on flexible silicone membranes were cyclically stretched (5% elongation, 0.5 Hz) for 2 h. EP4and COX-2 mRNA increased three- and sevenfold above nonstretched controls, whereas EP1and COX-1 levels were unchanged. Six hours of stretch resulted in a threefold increase in PGE2-stimulated cAMP accumulation, a measure of EP4receptor function, and an increase in COX-2 protein. The stretch-induced effects on COX-2/EP4expression and EP4-induced cAMP production were attributable to p38 MAP kinase, as blockade of this pathway, but not of ERK or JNK, abrogated the response. These stretch-induced changes in expression were transcriptionally dependent as they were actinomycin D sensitive. Finally, we investigated the influence of enhanced EP4signaling on the actin cytoskeleton. Addition of PGE2resulted in actin filament depolymerization observable only in stretched cells. Our results indicate that key components of the eicosanoid pathway are upregulated by mechanically stimulated p38 MAP kinase in podocytes. Enhanced EP4receptor signaling may undermine podocyte cytoskeletal dynamics and thereby compromise filtration barrier function under conditions of increased Pgc.
Collapse
Affiliation(s)
- Louis C Martineau
- Ottawa Health Research Institute, Division of Nephrology, Ottawa Hospital and Univ. of Ottawa, 451 Smyth Rd., Rm. 1317, Ottawa, Ontario, Canada K1H 8M5.
| | | | | | | |
Collapse
|
49
|
Howng SL, Sy WD, Cheng TS, Lieu AS, Wang C, Tzou WS, Cho CL, Hong YR. Genomic organization, alternative splicing, and promoter analysis of human dynamin-like protein gene. Biochem Biophys Res Commun 2004; 314:766-72. [PMID: 14741701 DOI: 10.1016/j.bbrc.2003.12.172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The human dynamin-like protein, HdynIV, has recently been cloned and shown to be involved in the formation and trafficking of coated vesicles. In particular, one of the HdynIV variant overexpressions has been suggested to contribute to the pathogenesis of brain tumors. In this paper, we report on the genomic organization of the human HdynIV gene. The gene was found to correspond to 20 exons of genomic sequence on human chromosome 12, distributed over 64kb of genomic DNA. The two exons, numbers 15 and 16, are subjected to differential splicing, generating four different transcripts of a perfect match to our recent report on the four different spliced HdynIV variants [DNA Cell Biol. 19 (2000) 189]. We have also characterized the 5(') regulatory region of the HdynIV gene in order to understand the molecular mechanisms regulating its expression. The transcriptional initiation site was identified by 5(')-RACE. The 5(')-flanking sequence of the HdynIV gene contains three GC boxes that concatenate Ap2- and Sp1-binding motifs, but that does not contain either the TATA or CAAT consensus sequence. A region between -140 and +92 contributed to high promoter activity. Deletion analysis demonstrated that the minimal promoter activity required the region of -110 to -100. Electrophoretic mobility shift assay demonstrated that a putative transcriptional factor bound to the region of -119 to -90. Site-directed mutagenesis analysis of this region revealed that nucleotides at -108 to -100 were essential for transactivation mediated by this transcriptional factor. In conclusion, we have characterized the minimal HdynIV promoter and shown that CTCCCAGCA (-108 to -100) sequence may act as a novel transcriptional element for regulating HdynIV gene expression.
Collapse
Affiliation(s)
- Shen-Long Howng
- Neurosurgery Department, Kaohsiung Medical University and Hospital, 80708, ROC, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ho FM, Lai CC, Huang LJ, Kuo TC, Chao CM, Lin WW. The anti-inflammatory carbazole, LCY-2-CHO, inhibits lipopolysaccharide-induced inflammatory mediator expression through inhibition of the p38 mitogen-activated protein kinase signaling pathway in macrophages. Br J Pharmacol 2004; 141:1037-47. [PMID: 14980980 PMCID: PMC1574272 DOI: 10.1038/sj.bjp.0705700] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 11/18/2003] [Accepted: 01/15/2004] [Indexed: 11/09/2022] Open
Abstract
1. The present study was undertaken to investigate the anti-inflammatory effects of a synthetic compound, LCY-2-CHO, on the expression of inducible nitric oxide synthase (iNOS), COX-2, and TNF-alpha in murine RAW264.7 macrophages. 2. Within 1-30 microm, LCY-2-CHO concentration-dependently inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO), prostaglandin E(2) (PGE(2)), and tumor necrosis factor-alpha (TNF-alpha) formation, with IC(50) values of 2.3, 1, and 0.8 microm, respectively. Accompanying inhibition of LPS-induced iNOS, cyclooxygenase-2 (COX-2), and pro-TNF-alpha proteins was observed. 3. Reverse transcription-polymerase chain reaction (RT-PCR) and promoter analyses indicated that iNOS expression was inhibited at the transcriptional level (IC(50)=2.3 microm), that inhibition of COX-2 expression only partially depended on gene transcription (IC(50)=7.6 microm), and that TNF-alpha transcription was unaffected. 4. Transcriptional assays revealed that activation of AP-1, but not NF-kappaB, was concomitantly blocked by LCY-2-CHO. Our results showed that LCY-2-CHO was capable of interfering with post-transcriptional regulation, altering the stability of COX-2 and TNF-alpha mRNAs. 5. Since the 3'-untranslated region (3' UTR) of both COX-2 and TNF-alpha mRNA contains a p38 mitogen-activated protein kinase (MAPK)-regulated element involved in mRNA stability, we assessed the effect of LCY-2-CHO on p38 MAPK. Our data clearly indicated an inhibition (IC(50)=1.7 microm) of LPS-mediated p38 MAPK activity, but not of extracellular signal-regulated kinase (ERK) or c-Jun N-terminal kinase (JNK) activity. However, kinase assays ruled out a direct inhibition of p38 MAPK action. The selective p38 MAPK inhibitor, SB203580, inhibited the promoter activities of iNOS and COX-2 rather than that of TNF-alpha. 6. In conclusion, LCY-2-CHO downregulates inflammatory iNOS, COX-2, and TNF-alpha gene expression in macrophages through interfering with p38 MAPK and AP-1 activation.
Collapse
Affiliation(s)
- Feng-Ming Ho
- Department of Internal Medicine, Tao-Yuan General Hospital, Department of Health, the Executive Yuan, Taiwan
| | - Chih-Chang Lai
- Department of Internal Medicine, Tao-Yuan General Hospital, Department of Health, the Executive Yuan, Taiwan
| | - Li-Jiau Huang
- Graduate Institute of Pharmaceutical Chemistry, China Medical College, Taichung, Taiwan
| | - Tsun Cheng Kuo
- Department of Cosmetic Science, Chia-Nan University of Pharmacy, Tainan, Taiwan
| | - Chien M Chao
- Department of Orthopedics, National Taiwan University College of Medicine, Taipei, Taiwan and
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|