1
|
Robertson AL, Yue L, Choudhuri A, Kubaczka C, Wattrus SJ, Mandelbaum J, Avagyan S, Yang S, Freeman RJ, Chan V, Blair MC, Daley GQ, Zon LI. Hematopoietic stem cell division is governed by distinct RUNX1 binding partners. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.596542. [PMID: 38895208 PMCID: PMC11185638 DOI: 10.1101/2024.06.07.596542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A defined number of hematopoietic stem cell (HSC) clones are born during development and expand to form the pool of adult stem cells. An intricate balance between self-renewal and differentiation of these HSCs supports hematopoiesis for life. HSC fate is determined by complex transcription factor networks that drive cell-type specific gene programs. The transcription factor RUNX1 is required for definitive hematopoiesis, and mutations in Runx1 have been shown to reduce clonal diversity. The RUNX1 cofactor, CBFý, stabilizes RUNX1 binding to DNA, and disruption of their interaction alters downstream gene expression. Chemical screening for modulators of Runx1 and HSC expansion in zebrafish led us to identify a new mechanism for the RUNX1 inhibitor, Ro5-3335. We found that Ro5-3335 increased HSC divisions in zebrafish, and animals transplanted with Ro5-3335 treated cells had enhanced chimerism compared to untreated cells. Using human CD34+ cells, we show that Ro5-3335 remodels the RUNX1 transcription complex by binding to ELF1, independent of CBFý. This allows specific expression of cell cycle and hematopoietic genes that enhance HSC self-renewal and prevent differentiation. Furthermore, we provide the first evidence to show that it is possible to pharmacologically increase the number of stem cell clones in vivo , revealing a previously unknown mechanism for enhancing clonal diversity. Our studies have revealed a mechanism by which binding partners of RUNX1 determine cell fate, with ELF transcription factors guiding cell division. This information could lead to treatments that enhance clonal diversity for blood diseases.
Collapse
|
2
|
Dalle Carbonare L, Antoniazzi F, Gandini A, Orsi S, Bertacco J, Li Vigni V, Minoia A, Griggio F, Perduca M, Mottes M, Valenti MT. Two Novel C-Terminus RUNX2 Mutations in Two Cleidocranial Dysplasia (CCD) Patients Impairing p53 Expression. Int J Mol Sci 2021; 22:ijms221910336. [PMID: 34638677 PMCID: PMC8508986 DOI: 10.3390/ijms221910336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
Cleidocranial dysplasia (CCD), a dominantly inherited skeletal disease, is characterized by a variable phenotype ranging from dental alterations to severe skeletal defects. Either de novo or inherited mutations in the RUNX2 gene have been identified in most CCD patients. Transcription factor RUNX2, the osteogenic master gene, plays a central role in the commitment of mesenchymal stem cells to osteoblast lineage. With the aim to analyse the effects of RUNX2 mutations in CCD patients, we investigated RUNX2 gene expression and the osteogenic potential of two CCD patients' cells. In addition, with the aim to better understand how RUNX2 mutations interfere with osteogenic differentiation, we performed string analyses to identify proteins interacting with RUNX2 and analysed p53 expression levels. Our findings demonstrated for the first time that, in addition to the alteration of downstream gene expression, RUNX2 mutations impair p53 expression affecting osteogenic maturation. In conclusion, the present work provides new insights into the role of RUNX2 mutations in CCD patients and suggests that an in-depth analysis of the RUNX2-associated gene network may contribute to better understand the complex molecular and phenotypic alterations in mutant subjects.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (S.O.); (J.B.); (V.L.V.); (A.M.)
| | - Franco Antoniazzi
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, 37100 Verona, Italy; (F.A.); (A.G.)
| | - Alberto Gandini
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, 37100 Verona, Italy; (F.A.); (A.G.)
| | - Silvia Orsi
- Department of Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (S.O.); (J.B.); (V.L.V.); (A.M.)
| | - Jessica Bertacco
- Department of Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (S.O.); (J.B.); (V.L.V.); (A.M.)
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy;
| | - Veronica Li Vigni
- Department of Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (S.O.); (J.B.); (V.L.V.); (A.M.)
| | - Arianna Minoia
- Department of Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (S.O.); (J.B.); (V.L.V.); (A.M.)
| | - Francesca Griggio
- Centro Piattaforme Tecnologiche, University of Verona, 37100 Verona, Italy;
| | - Massimiliano Perduca
- Biocrystallography Lab, Department of Biotechnology, University of Verona, 37134 Verona, Italy;
| | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy;
| | - Maria Teresa Valenti
- Department of Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (S.O.); (J.B.); (V.L.V.); (A.M.)
- Correspondence: ; Tel.: +39-045-812-8450
| |
Collapse
|
3
|
Chen Y, Zhao X, Wu H. Transcriptional Programming in Arteriosclerotic Disease: A Multifaceted Function of the Runx2 (Runt-Related Transcription Factor 2). Arterioscler Thromb Vasc Biol 2021; 41:20-34. [PMID: 33115268 PMCID: PMC7770073 DOI: 10.1161/atvbaha.120.313791] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite successful therapeutic strategies in the prevention and treatment of arteriosclerosis, the cardiovascular complications remain a major clinical and societal issue worldwide. Increased vascular calcification promotes arterial stiffness and accelerates cardiovascular morbidity and mortality. Upregulation of the Runx2 (Runt-related transcription factor 2), an essential osteogenic transcription factor for bone formation, in the cardiovascular system has emerged as an important regulator for adverse cellular events that drive cardiovascular pathology. This review discusses the regulatory mechanisms that are critical for Runx2 expression and function and highlights the dynamic and complex cross talks of a wide variety of posttranslational modifications, including phosphorylation, acetylation, ubiquitination, and O-linked β-N-acetylglucosamine modification, in regulating Runx2 stability, cellular localization, and osteogenic transcriptional activity. How the activation of an array of signaling cascades by circulating and local microenvironmental factors upregulates Runx2 in vascular cells and promotes Runx2-mediated osteogenic transdifferentiation of vascular smooth muscle cells and expression of inflammatory cytokines that accelerate macrophage infiltration and vascular osteoclast formation is summarized. Furthermore, the increasing appreciation of a new role of Runx2 upregulation in promoting vascular smooth muscle cell phenotypic switch, and Runx2 modulated by O-linked β-N-acetylglucosamine modification and Runx2-dependent repression of smooth muscle cell-specific gene expression are discussed. Further exploring the regulation of this key osteogenic transcription factor and its new perspectives in the vasculature will provide novel insights into the transcriptional regulation of vascular smooth muscle cell phenotype switch, reprograming, and vascular inflammation that promote the pathogenesis of arteriosclerosis.
Collapse
Affiliation(s)
- Yabing Chen
- Department of Pathology, University of Alabama at Birmingham
- Research Department, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35294
| | - Xinyang Zhao
- Department of Biochemistry, University of Alabama at Birmingham
| | - Hui Wu
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, Oregon 97239
| |
Collapse
|
4
|
Guo L, Chen B, Zhang G, Wang Y, Cao L, Ren C, Wen L, Lin J, Wei G, Liao N. The transcription factor CBFB mutations indicate an improved survival in HR+/HER2- breast cancer. Gene 2020; 759:144970. [PMID: 32711101 DOI: 10.1016/j.gene.2020.144970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND As a critical transcription factor, CBFB (core binding factor subunit β) is frequently mutated in breast cancer and considered to be of significance in the pathogenesis of cancer. The objective of this study was to investigate CBFB mutation profiles and the relationship between CBFB mutations and clinicopathologic characteristics in breast cancer. METHODS A total of 671 treatment-naive Chinese patients with invasive breast cancer at Guangdong Provincial People's Hospital (GDPH) were recruited in this study. CBFB mutation status were detected using the method of capture-based targeted sequencing. Correlation between CBFB mutations and clinicopathologic features were analyzed. Then, we compared the results between Chinese and western population by using Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort (n = 1979) and The Cancer Genome Atlas (TCGA) cohort (n = 925). RESULTS The prevalence of CBFB mutation in GDPH cohort, METABRIC cohort, and TCGA cohort was 4.6% (31/671), 4.6% (92/1979), 2.5% (23/925), respectively. A hotspot mutation due to nucleotide thymine duplication or deletion occurring at the exon2/3 junction was detected in the GDPH and METABRIC cohorts. CBFB mutations were found to be significantly associated with the subtype of HR+/HER2- breast cancer (P = 0.008 in GDPH cohort and P<0.001 in METABRIC cohort), lower tumor grade (P = 0.004 in GDPH cohort and P<0.001 in METABRIC cohort), lower expression of Ki-67 protein (P<0.001 in GDPH cohort), but we didn't find similar results in TCGA cohort. In addition, CBFB in GDPH cohort was observed at a rather high mutation rate in invasive lobular carcinomas (4/18, 22.2%). Further, cox multivariate analysis demonstrated that CBFB was of independent prognosis significance in HR+/HER2- subgroup in METABRIC cohort (HR, 0.562; 95% CI, 0.399-0.790; P = 0.001). CONCLUSION This study reveals race diversity of CBFB mutation spectrum in breast cancers. CBFB mutations mainly occur in HR+/HER2- breast cancer, and it may be a promising prognostic biomarker in HR+/HER2- subgroup.
Collapse
Affiliation(s)
- Liping Guo
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China; Breast Disease Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Bo Chen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China; School of Medicine, South China University of Technology, Guangzhou, China
| | - Guochun Zhang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, China
| | - Yulei Wang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Li Cao
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Chongyang Ren
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Lingzhu Wen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jiali Lin
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guangnan Wei
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China; School of Medicine, South China University of Technology, Guangzhou, China
| | - Ning Liao
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
5
|
Augmented osteogenesis of mesenchymal stem cells using a fragmented Runx2 mixed with cell-penetrating, dimeric a-helical peptide. Eur J Pharm Sci 2019; 144:105210. [PMID: 31899341 DOI: 10.1016/j.ejps.2019.105210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/15/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
The intracellular delivery of transcription factor/cofactor using cell penetrating peptide (CPP) can lead to selective osteogenesis. The present work investigates the cell-penetrating potential of the a cyclic, α-helical cell-penetrating peptide based on leucine and lysine residues (cLK) for intracellular delivery in MC3T3 cells and the osteogenic effects of a C-terminal proline‑serine‑threonine-rich (PST) domain of Runx2 using cLK in rat mesenchymal stem cells (MSCs). We confirmed that the combination of cLK and fluorescein 5-isothiocyanate (FITC)-fragmented-Runx2 (fRunx2) showed an enhanced cell-penetrating activity of FITC-fRunx2 compared with FITC-fRunx2 alone. In addition, the fRunx2-cLK group showed strong staining with alizarin red compared with other groups and the degree of alizarin red staining in the fRunx2-cLK group was also 1.2-fold higher than that in the fRunx2-Tat group. The ALP and osteocalcin gene expression levels in the fRunx2-cLK group were higher than those in the other groups. The fRunx2 transferred effectively into the cytoplasm aided by the cLK peptide and augmented the osteogenic differentiation of MSCs.
Collapse
|
6
|
Mevel R, Draper JE, Lie-A-Ling M, Kouskoff V, Lacaud G. RUNX transcription factors: orchestrators of development. Development 2019; 146:dev148296. [PMID: 31488508 DOI: 10.1242/dev.148296] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RUNX transcription factors orchestrate many different aspects of biology, including basic cellular and developmental processes, stem cell biology and tumorigenesis. In this Primer, we introduce the molecular hallmarks of the three mammalian RUNX genes, RUNX1, RUNX2 and RUNX3, and discuss the regulation of their activities and their mechanisms of action. We then review their crucial roles in the specification and maintenance of a wide array of tissues during embryonic development and adult homeostasis.
Collapse
Affiliation(s)
- Renaud Mevel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Julia E Draper
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Michael Lie-A-Ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| |
Collapse
|
7
|
Ghanem LR, Kromer A, Silverman IM, Ji X, Gazzara M, Nguyen N, Aguilar G, Martinelli M, Barash Y, Liebhaber SA. Poly(C)-Binding Protein Pcbp2 Enables Differentiation of Definitive Erythropoiesis by Directing Functional Splicing of the Runx1 Transcript. Mol Cell Biol 2018; 38:e00175-18. [PMID: 29866654 PMCID: PMC6066754 DOI: 10.1128/mcb.00175-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/10/2018] [Accepted: 05/26/2018] [Indexed: 12/14/2022] Open
Abstract
Formation of the mammalian hematopoietic system is under a complex set of developmental controls. Here, we report that mouse embryos lacking the KH domain poly(C) binding protein, Pcbp2, are selectively deficient in the definitive erythroid lineage. Compared to wild-type controls, transcript splicing analysis of the Pcbp2-/- embryonic liver reveals accentuated exclusion of an exon (exon 6) that encodes a highly conserved transcriptional control segment of the hematopoietic master regulator, Runx1. Embryos rendered homozygous for a Runx1 locus lacking this cassette exon (Runx1ΔE6) effectively phenocopy the loss of the definitive erythroid lineage in Pcbp2-/- embryos. These data support a model in which enhancement of Runx1 cassette exon 6 inclusion by Pcbp2 serves a critical role in development of hematopoietic progenitors and constitutes a critical step in the developmental pathway of the definitive erythropoietic lineage.
Collapse
Affiliation(s)
- Louis R Ghanem
- Gastroenterology, Hepatology and Nutrition Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew Kromer
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian M Silverman
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xinjun Ji
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew Gazzara
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nhu Nguyen
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gabrielle Aguilar
- Gastroenterology, Hepatology and Nutrition Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Massimo Martinelli
- Gastroenterology, Hepatology and Nutrition Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen A Liebhaber
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Lee-Thacker S, Choi Y, Taniuchi I, Takarada T, Yoneda Y, Ko C, Jo M. Core Binding Factor β Expression in Ovarian Granulosa Cells Is Essential for Female Fertility. Endocrinology 2018; 159:2094-2109. [PMID: 29554271 PMCID: PMC5905395 DOI: 10.1210/en.2018-00011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/11/2018] [Indexed: 02/06/2023]
Abstract
Core binding factor β (CBFβ) is a non-DNA-binding partner of all RUNX proteins and critical for transcription activity of CBF transcription factors (RUNXs/CBFβ). In the ovary, the expression of Runx1 and Runx2 is highly induced by the luteinizing hormone (LH) surge in ovulatory follicles, whereas Cbfb is constitutively expressed. To investigate the physiological significance of CBFs in the ovary, the current study generated two different conditional mutant mouse models in which granulosa cell expression of Cbfb and Runx2 was reduced by Cre recombinase driven by an Esr2 promoter. Cbfbgc-/- and Cbfbgc-/- × Runx2gc+/- mice exhibited severe subfertility and infertility, respectively. In the ovaries of both mutant mice, follicles develop normally, but the majority of preovulatory follicles failed to ovulate either in response to human chorionic gonadotropin administration in pregnant mare serum gonadotropin-primed immature animals or after the LH surge at 5 months of age. Morphological and physiological changes in the corpus luteum of these mutant mice revealed the reduced size, progesterone production, and vascularization, as well as excessive lipid accumulation. In granulosa cells of periovulatory follicles and corpora lutea of these mice, the expression of Edn2, Ptgs1, Lhcgr, Sfrp4, Wnt4, Ccrl2, Lipg, Saa3, and Ptgfr was also drastically reduced. In conclusion, the current study provided in vivo evidence that CBFβ plays an essential role in female fertility by acting as a critical cofactor of CBF transcription factor complexes, which regulate the expression of specific key ovulatory and luteal genes, thus coordinating the ovulatory process and luteal development/function in mice.
Collapse
Affiliation(s)
- Somang Lee-Thacker
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky
| | - Yohan Choi
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yukio Yoneda
- Section of Prophylactic Pharmacology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - CheMyong Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinoisa
| | - Misung Jo
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky
- Correspondence: Misung Jo, PhD, Department of Obstetrics and Gynecology, University of Kentucky, 800 Rose Street, Room MS 335, Lexington, Kentucky 40536. E-mail:
| |
Collapse
|
9
|
Mutant Runx2 regulates amelogenesis and osteogenesis through a miR-185-5p-Dlx2 axis. Cell Death Dis 2017; 8:3221. [PMID: 29242628 PMCID: PMC5870583 DOI: 10.1038/s41419-017-0078-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 09/27/2017] [Accepted: 10/05/2017] [Indexed: 12/31/2022]
Abstract
Regulation of microRNAs (miRNA) has been extensively investigated in diseases; however, little is known about the roles of miRNAs in cleidocranial dysplasia (CCD). The aim of the present study was to investigate the potential involvement of miRNAs in CCD. In vitro site-directed mutagenesis was performed to construct three mutant Runx2 expression vectors, which were then transfected into LS8 cells and MC3T3-E1 cells, to determine the impact on amelogenesis and osteogenesis, respectively. miRCURY LNA miRNA microarray identify miR-185-5p as a miRNA target commonly induced by all three Runx2 mutants. Real-time quantitative PCR was applied to determine the expression of miR-185-5p and Dlx2 in samples. Dual-luciferase reporter assays were conducted to confirm Dlx2 as a legitimate target of miR-185-5p. The suppressive effect of miR-185-5p on amelogenesis and osteogenesis of miR-185-5p was evaluated by RT-PCR and western blot examination of Amelx, Enam, Klk4, and Mmp20 gene and protein expression, and by Alizarin Red stain. We found that mutant Runx2 suppressed amelogenesis and osteogenesis. miR-185-5p, induced by Runx2, suppressed amelogenesis and osteogenesis. Furthermore, we identified Dlx2 as direct target of miR-185-5p. Consistently, Dlx2 expression was inversely correlated with miR-185-5p levels. This study highlights the molecular etiology and significance of miR-185-5p in CCD, and suggests that targeting miR-185-5p may represent a new therapeutic strategy in prevention or intervention of CCD.
Collapse
|
10
|
Runx transcription factors in the development and function of the definitive hematopoietic system. Blood 2017; 129:2061-2069. [PMID: 28179276 DOI: 10.1182/blood-2016-12-689109] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/29/2017] [Indexed: 01/01/2023] Open
Abstract
The Runx family of transcription factors (Runx1, Runx2, and Runx3) are highly conserved and encode proteins involved in a variety of cell lineages, including blood and blood-related cell lineages, during developmental and adult stages of life. They perform activation and repressive functions in the regulation of gene expression. The requirement for Runx1 in the normal hematopoietic development and its dysregulation through chromosomal translocations and loss-of-function mutations as found in acute myeloid leukemias highlight the importance of this transcription factor in the healthy blood system. Whereas another review will focus on the role of Runx factors in leukemias, this review will provide an overview of the normal regulation and function of Runx factors in hematopoiesis and focus particularly on the biological effects of Runx1 in the generation of hematopoietic stem cells. We will present the current knowledge of the structure and regulatory features directing lineage-specific expression of Runx genes, the models of embryonic and adult hematopoietic development that provide information on their function, and some of the mechanisms by which they affect hematopoietic function.
Collapse
|
11
|
Wilson K, Park J, Curry TE, Mishra B, Gossen J, Taniuchi I, Jo M. Core Binding Factor-β Knockdown Alters Ovarian Gene Expression and Function in the Mouse. Mol Endocrinol 2016; 30:733-47. [PMID: 27176614 DOI: 10.1210/me.2015-1312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Core binding factor (CBF) is a heterodimeric transcription factor complex composed of a DNA-binding subunit, one of three runt-related transcription factor (RUNX) factors, and a non-DNA binding subunit, CBFβ. CBFβ is critical for DNA binding and stability of the CBF transcription factor complex. In the ovary, the LH surge increases the expression of Runx1 and Runx2 in periovulatory follicles, implicating a role for CBFs in the periovulatory process. The present study investigated the functional significance of CBFs (RUNX1/CBFβ and RUNX2/CBFβ) in the ovary by examining the ovarian phenotype of granulosa cell-specific CBFβ knockdown mice; CBFβ f/f * Cyp19 cre. The mutant female mice exhibited significant reductions in fertility, with smaller litter sizes, decreased progesterone during gestation, and fewer cumulus oocyte complexes collected after an induced superovulation. RNA sequencing and transcriptome assembly revealed altered expression of more than 200 mRNA transcripts in the granulosa cells of Cbfb knockdown mice after human chorionic gonadotropin stimulation in vitro. Among the affected transcripts are known regulators of ovulation and luteinization including Sfrp4, Sgk1, Lhcgr, Prlr, Wnt4, and Edn2 as well as many genes not yet characterized in the ovary. Cbfβ knockdown mice also exhibited decreased expression of key genes within the corpora lutea and morphological changes in the ovarian structure, including the presence of large antral follicles well into the luteal phase. Overall, these data suggest a role for CBFs as significant regulators of gene expression, ovulatory processes, and luteal development in the ovary.
Collapse
Affiliation(s)
- Kalin Wilson
- Department of Obstetrics and Gynecology (K.W., J.P., T.E.C., B.M., M.J.), Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536-0298; Women's Health Department (J.G.), Merck Sharp and Dohme Research Laboratories, 5340-BH Oss, The Netherlands; and Laboratory for Transcriptional Regulation (I.T.), Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| | - Jiyeon Park
- Department of Obstetrics and Gynecology (K.W., J.P., T.E.C., B.M., M.J.), Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536-0298; Women's Health Department (J.G.), Merck Sharp and Dohme Research Laboratories, 5340-BH Oss, The Netherlands; and Laboratory for Transcriptional Regulation (I.T.), Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| | - Thomas E Curry
- Department of Obstetrics and Gynecology (K.W., J.P., T.E.C., B.M., M.J.), Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536-0298; Women's Health Department (J.G.), Merck Sharp and Dohme Research Laboratories, 5340-BH Oss, The Netherlands; and Laboratory for Transcriptional Regulation (I.T.), Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| | - Birendra Mishra
- Department of Obstetrics and Gynecology (K.W., J.P., T.E.C., B.M., M.J.), Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536-0298; Women's Health Department (J.G.), Merck Sharp and Dohme Research Laboratories, 5340-BH Oss, The Netherlands; and Laboratory for Transcriptional Regulation (I.T.), Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| | - Jan Gossen
- Department of Obstetrics and Gynecology (K.W., J.P., T.E.C., B.M., M.J.), Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536-0298; Women's Health Department (J.G.), Merck Sharp and Dohme Research Laboratories, 5340-BH Oss, The Netherlands; and Laboratory for Transcriptional Regulation (I.T.), Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| | - Ichiro Taniuchi
- Department of Obstetrics and Gynecology (K.W., J.P., T.E.C., B.M., M.J.), Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536-0298; Women's Health Department (J.G.), Merck Sharp and Dohme Research Laboratories, 5340-BH Oss, The Netherlands; and Laboratory for Transcriptional Regulation (I.T.), Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| | - Misung Jo
- Department of Obstetrics and Gynecology (K.W., J.P., T.E.C., B.M., M.J.), Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536-0298; Women's Health Department (J.G.), Merck Sharp and Dohme Research Laboratories, 5340-BH Oss, The Netherlands; and Laboratory for Transcriptional Regulation (I.T.), Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
12
|
Adhami MD, Rashid H, Chen H, Clarke JC, Yang Y, Javed A. Loss of Runx2 in committed osteoblasts impairs postnatal skeletogenesis. J Bone Miner Res 2015; 30:71-82. [PMID: 25079226 PMCID: PMC4280286 DOI: 10.1002/jbmr.2321] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 06/19/2014] [Accepted: 07/04/2014] [Indexed: 01/09/2023]
Abstract
The Runx2 transcription factor is critical for commitment to the osteoblast lineage. However, its role in committed osteoblasts and its functions during postnatal skeletogenesis remain unclear. We established a Runx2-floxed line with insertion of loxP sites around exon 8 of the Runx2 gene. The Runx2 protein lacking the region encoded by exon 8 is imported into the nucleus and binds target DNA but exhibits diminished transcriptional activity. We specifically deleted the Runx2 gene in committed osteoblasts using 2.3-kb col1a-Cre transgenic mice. Surprisingly, the homozygous Runx2 mutant mice were born alive. The Runx2 heterozygous and homozygous null were grossly indistinguishable from wild-type littermates at birth. Runx2 deficiency did not alter proliferative capacity of osteoblasts during embryonic development (E18). Chondrocyte differentiation and cartilage growth in mutants was similar to wild-type mice from birth to 3 months of age. Analysis of the embryonic skeleton revealed poor calcification in homozygous mutants, which was more evident in bones formed by intramembranous ossification. Runx2 mutants showed progressive retardation in postnatal growth and exhibited significantly low bone mass by 1 month of age. Decreased bone formation was associated with decreased gene expression of osteoblast markers and impaired collagen assembly in the extracellular matrix. Consequently, Runx2 mutant bones exhibited decreased stiffness and structural integrity. By 3 months of age, bone acquisition in mutant mice was roughly half that of wild-type littermates. In addition to impaired osteoblast function, mutant mice showed markedly decreased osteoclast number and postnatal bone resorption. Taken together, functional deficiency of Runx2 in osteoblasts does not result in failed embryonic skeletogenesis but disrupts postnatal bone formation.
Collapse
Affiliation(s)
- Mitra D Adhami
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
13
|
Yao F, Liu Y, Du L, Wang X, Zhang A, Wei H, Zhou H. Molecular identification of transcription factor Runx1 variants in grass carp (Ctenopharyngodon idella) and their responses to immune stimuli. Vet Immunol Immunopathol 2014; 160:201-8. [PMID: 25001908 DOI: 10.1016/j.vetimm.2014.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/03/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
Abstract
The Runt-related transcription factor (Runx) family consists of three members, Runx1, Runx2 and Runx3 in mammals, which are involved in various biological processes. Recent studies have demonstrated that Runx1 plays critical roles in the immunity of higher vertebrates. In fish, zebrafish and fugu Runx family members have been identified, and their chromosome location, promoter usage and expression patterns have been elucidated. However, their expression profiles in immune responses are still unknown. In this study, we identified grass carp five Runx1 (gcRunx1) variants (v1-5) possibly generated through alternative promoter usage and alternative splicing. The gcRunx1 v1-3 encodes the proteins possessing intact structural characteristics of Runx family, but the putative proteins of gcRunx1 v4-5 lack a transactivation domain, an inhibitory domain and a C-terminal pentapeptide motif (VWRPY). Tissue distribution assays revealed that gcRunx1 was preferentially expressed in some immune-related tissues including thymus and spleen, indicating its potential roles in teleost immunity. The changes of gcRunx1 expression to various immune stimuli was examined in periphery blood lymphocytes, showing that gcRunx1 v1-3 mRNA levels were increased after LPS, poly I:C and PHA treatment, whereas gcRunx1 v4-5 mRNA expression were stimulated only by LPS and PHA. Furthermore, in vivo studies confirmed that bacterial challenge enhanced gcRunx1 mRNA levels. In particular, in vitro and in vivo studies revealed that gcRunx1 v4-5 mRNA expression was induced with a delayed kinetics compared with that of gcRunx1 v1-3. These findings not only provide the evidence for the involvement of gcRunx1 in immune response, but also reveal the inducible expression diversity of fish Runx1 splicing variants, thereby facilitating further elucidating the role of Runx1 in piscine immunity.
Collapse
Affiliation(s)
- Fuli Yao
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu 610054, Sichuan, People's Republic of China
| | - Yazhen Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu 610054, Sichuan, People's Republic of China
| | - Linyong Du
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu 610054, Sichuan, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu 610054, Sichuan, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu 610054, Sichuan, People's Republic of China
| | - He Wei
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu 610054, Sichuan, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu 610054, Sichuan, People's Republic of China.
| |
Collapse
|
14
|
Runx1 exon 6-related alternative splicing isoforms differentially regulate hematopoiesis in mice. Blood 2014; 123:3760-9. [PMID: 24771859 DOI: 10.1182/blood-2013-08-521252] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RUNX1 is an important transcription factor for hematopoiesis. There are multiple alternatively spliced isoforms of RUNX1. The best known isoforms are RUNX1a from use of exon 7A and RUNX1b and c from use of exon 7B. RUNX1a has unique functions due to its lack of C-terminal regions common to RUNX1b and c. Here, we report that the ortholog of human RUNX1a was only found in primates. Furthermore, we characterized 3 Runx1 isoforms generated by exon 6 alternative splicing. Runx1bEx6(-) (Runx1b without exon 6) and a unique mouse Runx1bEx6e showed higher colony-forming activity than the full-length Runx1b (Runx1bEx6(+)). They also facilitated the transactivation of Runx1bEx6(+). To gain insight into in vivo functions, we analyzed a knock-in (KI) mouse model that lacks isoforms Runx1b/cEx6(-) and Runx1bEx6e. KI mice had significantly fewer lineage-Sca1(+)c-Kit(+) cells, short-term hematopoietic stem cells (HSCs) and multipotent progenitors than controls. In vivo competitive repopulation assays demonstrated a sevenfold difference of functional HSCs between wild-type and KI mice. Together, our results show that Runx1 isoforms involving exon 6 support high self-renewal capacity in vitro, and their loss results in reduction of the HSC pool in vivo, which underscore the importance of fine-tuning RNA splicing in hematopoiesis.
Collapse
|
15
|
Marsman J, O'Neill AC, Kao BRY, Rhodes JM, Meier M, Antony J, Mönnich M, Horsfield JA. Cohesin and CTCF differentially regulate spatiotemporal runx1 expression during zebrafish development. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:50-61. [PMID: 24321385 DOI: 10.1016/j.bbagrm.2013.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/19/2013] [Accepted: 11/25/2013] [Indexed: 11/23/2022]
Abstract
Runx1 is a transcription factor essential for definitive hematopoiesis. In all vertebrates, the Runx1 gene is transcribed from two promoters: a proximal promoter (P2), and a distal promoter (P1). We previously found that runx1 expression in a specific hematopoietic cell population in zebrafish embryos depends on cohesin. Here we show that zebrafish runx1 is directly bound by cohesin and CCCTC binding factor (CTCF) at the P1 and P2 promoters, and within the intron between P1 and P2. Cohesin initiates expression of runx1 in the posterior lateral mesoderm and influences promoter use, while CTCF represses its expression in the newly emerging cells of the tail bud. The intronic binding sites for cohesin and CTCF coincide with histone modifications that confer enhancer-like properties, and two of the cohesin/CTCF sites behaved as insulators in an in vivo assay. The identified cohesin and CTCF binding sites are likely to be cis-regulatory elements (CREs) for runx1 since they also recruit RNA polymerase II (RNAPII). CTCF depletion excluded RNAPII from two intronic CREs but not the promoters of runx1. We propose that cohesin and CTCF have distinct functions in the regulation of runx1 during zebrafish embryogenesis, and that these regulatory functions are likely to involve runx1 intronic CREs. Cohesin (but not CTCF) depletion enhanced RUNX1 expression in a human leukemia cell line, suggesting conservation of RUNX1 regulation through evolution.
Collapse
Affiliation(s)
- Judith Marsman
- Department of Pathology, Dunedin School of Medicine, The University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Adam C O'Neill
- Department of Pathology, Dunedin School of Medicine, The University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Betty Rui-Yun Kao
- Department of Pathology, Dunedin School of Medicine, The University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Jenny M Rhodes
- Department of Pathology, Dunedin School of Medicine, The University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Michael Meier
- Department of Pathology, Dunedin School of Medicine, The University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Jisha Antony
- Department of Pathology, Dunedin School of Medicine, The University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Maren Mönnich
- Department of Pathology, Dunedin School of Medicine, The University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, The University of Otago, P.O. Box 913, Dunedin, New Zealand.
| |
Collapse
|
16
|
Xu Y, Wang K, Gao W, Zhang C, Huang F, Wen S, Wang B. MicroRNA-106b regulates the tumor suppressor RUNX3 in laryngeal carcinoma cells. FEBS Lett 2013; 587:3166-74. [PMID: 23912048 DOI: 10.1016/j.febslet.2013.05.069] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/10/2013] [Accepted: 05/19/2013] [Indexed: 01/27/2023]
Abstract
Our study focuses on a set of laryngeal tumors that show reduced RUNX3 expression in the absence of transcriptional silencing of tumor suppressor gene RUNX3 by aberrant methylation of CpG islands. We report that the loss of expression of RUNX3 correlates with up-regulation of miR-106b in human laryngeal carcinoma tissue. The downregulation of RUNX3 is mediated by miR-106b through binding of its 3'UTR. Moreover, miR-106b can promote the proliferation and invasion of laryngeal carcinoma cells by directly targeting RUNX3, and RUXN3 knockdown can abolish this phenotype. These results shed a new insight into the mechanism of miRNA regulation in laryngeal carcinoma.
Collapse
Affiliation(s)
- Ying Xu
- Department of Otolaryngology, Head and Neck Surgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Jacobs PT, Cao L, Samon JB, Kane CA, Hedblom EE, Bowcock A, Telfer JC. Runx transcription factors repress human and murine c-Myc expression in a DNA-binding and C-terminally dependent manner. PLoS One 2013; 8:e69083. [PMID: 23874874 PMCID: PMC3715461 DOI: 10.1371/journal.pone.0069083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/12/2013] [Indexed: 01/01/2023] Open
Abstract
The transcription factors Runx1 and c-Myc have individually been shown to regulate important gene targets as well as to collaborate in oncogenesis. However, it is unknown whether there is a regulatory relationship between the two genes. In this study, we investigated the transcriptional regulation of endogenous c-Myc by Runx1 in the human T cell line Jurkat and murine primary hematopoietic cells. Endogenous Runx1 binds to multiple sites in the c-Myc locus upstream of the c-Myc transcriptional start site. Cells transduced with a C-terminally truncated Runx1 (Runx1.d190), which lacks important cofactor interaction sites and can block C-terminal-dependent functions of all Runx transcription factors, showed increased transcription of c-Myc. In order to monitor c-Myc expression in response to early and transiently-acting Runx1.d190, we generated a cell membrane-permeable TAT-Runx1.d190 fusion protein. Murine splenocytes treated with TAT-Runx1.d190 showed an increase in the transcription of c-Myc within 2 hours, peaking at 4 hours post-treatment and declining thereafter. This effect is dependent on the ability of Runx1.d190 to bind to DNA. The increase in c-Myc transcripts is correlated with increased c-Myc protein levels. Collectively, these data show that Runx1 directly regulates c-Myc transcription in a C-terminal- and DNA-binding-dependent manner.
Collapse
Affiliation(s)
- Paejonette T. Jacobs
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Li Cao
- Department of Genetics, Pediatrics and Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jeremy B. Samon
- Quntiles, Medical Education Department, Hawthorne, New York, United States of America
| | - Christyne A. Kane
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Emmett E. Hedblom
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Anne Bowcock
- Department of Genetics, Pediatrics and Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Janice C. Telfer
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
|
19
|
Ko HJ, Kim BY, Jung CH, Chun SW, Mok JO, Kim YJ, Park HK, Kim CH, Kim SJ, Byun DW, Suh KI, Yoo MH, Kang SG. DNA methylation of RUNX3 in papillary thyroid cancer. Korean J Intern Med 2012; 27:407-10. [PMID: 23269881 PMCID: PMC3529239 DOI: 10.3904/kjim.2012.27.4.407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/03/2011] [Accepted: 11/21/2011] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND/AIMS The relationship between Runt-related transcription factor 3 (RUNX3) gene inactivation and various solid tumors has been reported; however, little information is available about RUNX3 in thyroid cancers. METHODS We evaluated the DNA methylation of RUNX3 in 13 papillary thyroid cancer tissues and four thyroid cancer cell lines. Additionally, using reverse transcriptase-polymerase chain reaction, we analyzed RUNX3 gene expression in several thyroid cancer cell lines after treating with the demethylating agent 5-aza-2'-deoxycytidine (DAC). RESULTS RUNX3 was hypermethylated in many thyroid cancer cell lines and in 10 of the 12 papillary thyroid cancer tissues. Treatment with DAC increased the expression of RUNX3 in some thyroid cancer cell lines. CONCLUSIONS We suggest that RUNX3 is associated with thyroid carcinogenesis, and RUNX3 methylation is a potentially useful diagnostic marker for papillary thyroid cancer.
Collapse
Affiliation(s)
- Hee Ja Ko
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Bo Yeon Kim
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Chan Hee Jung
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sung Wan Chun
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Ji Oh Mok
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Yeo Joo Kim
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hyeong Kyu Park
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Chul Hee Kim
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sang Jin Kim
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Dong Won Byun
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Kyo Il Suh
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Myung Hi Yoo
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sung Gu Kang
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
20
|
Lallemend F, Sterzenbach U, Hadjab-Lallemend S, Aquino JB, Castelo-Branco G, Sinha I, Villaescusa JC, Levanon D, Wang Y, Franck MCM, Kharchenko O, Adameyko I, Linnarsson S, Groner Y, Turner E, Ernfors P. Positional differences of axon growth rates between sensory neurons encoded by Runx3. EMBO J 2012; 31:3718-29. [PMID: 22903063 DOI: 10.1038/emboj.2012.228] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/20/2012] [Indexed: 11/09/2022] Open
Abstract
The formation of functional connectivity in the nervous system is governed by axon guidance that instructs nerve growth and branching during development, implying a similarity between neuronal subtypes in terms of nerve extension. We demonstrate the molecular mechanism of another layer of complexity in vertebrates by defining a transcriptional program underlying growth differences between positionally different neurons. The rate of axon extension of the early subset of embryonic dorsal root ganglion sensory neurons is encoded in neurons at different axial levels. This code is determined by a segmental pattern of axial levels of Runx family transcription factor Runx3. Runx3 in turn determines transcription levels of genes encoding cytoskeletal proteins involved in axon extension, including Rock1 and Rock2 which have ongoing activities determining axon growth in early sensory neurons and blocking Rock activity reverses axon extension deficits of Runx3(-/-) neurons. Thus, Runx3 acts to regulate positional differences in axon extension properties apparently without affecting nerve guidance and branching, a principle that could be relevant to other parts of the nervous system.
Collapse
Affiliation(s)
- Francois Lallemend
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Montero-Ruíz O, Alcántara-Ortigoza MA, Betancourt M, Juárez-Velázquez R, González-Márquez H, Pérez-Vera P. Expression of RUNX1 isoforms and its target gene BLK in childhood acute lymphoblastic leukemia. Leuk Res 2012; 36:1105-11. [PMID: 22748822 DOI: 10.1016/j.leukres.2012.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/16/2012] [Accepted: 05/22/2012] [Indexed: 12/11/2022]
Abstract
Bone marrow samples from children with acute lymphoblastic leukemia were analyzed for the expression of RUNX1a/b/c isoforms. Obtained patterns were associated with genetic abnormalities and the expression of the RUNX1 regulated gene BLK. RUNX1c was present in all patients, but the expected over-expression of RUNX1a was not observed. Over-expression of total RUNT domain isoforms was detected in patients with extra RUNX1 copies, and unexpectedly, in those with t(4;11). Only expression of the total RUNT domain-containing isoforms and BLK presented positive correlation. Results suggest a more complex role of RUNX1 in leukemogenesis than the proposed antagonism between the isoforms.
Collapse
Affiliation(s)
- Oreth Montero-Ruíz
- Laboratorio de Cultivo de Tejidos, Instituto Nacional de Pediatría, México, DF, Mexico
| | | | | | | | | | | |
Collapse
|
22
|
Han MS, Kim HJ, Wee HJ, Lim KE, Park NR, Bae SC, van Wijnen AJ, Stein JL, Lian JB, Stein GS, Choi JY. The cleidocranial dysplasia-related R131G mutation in the Runt-related transcription factor RUNX2 disrupts binding to DNA but not CBF-beta. J Cell Biochem 2010; 110:97-103. [PMID: 20225274 DOI: 10.1002/jcb.22516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cleidocranial dysplasia (CCD) is caused by haploinsufficiency in RUNX2 function. We have previously identified a series of RUNX2 mutations in Korean CCD patients, including a novel R131G missense mutation in the Runt-homology domain. Here, we examine the functional consequences of the RUNX2(R131G) mutation, which could potentially affect DNA binding, nuclear localization signal, and/or heterodimerization with core-binding factor-beta (CBF-beta). Immunofluorescence microscopy and western blot analysis with subcellular fractions show that RUNX2(R131G) is localized in the nucleus. Immunoprecipitation analysis reveals that heterodimerization with CBF-beta is retained. However, precipitation assays with biotinylated oligonucleotides and reporter gene assays with RUNX2 responsive promoters together reveal that DNA-binding activity and consequently the transactivation of potential of RUNX2(R131G) is abrogated. We conclude that loss of DNA binding, but not nuclear localization or CBF-beta heterodimerization, causes RUNX2 haploinsufficiency in patients with the RUNX2(R131G) mutation. Retention of specific functions including nuclear localization and binding to CBF-beta of the RUNX2(R131G) mutation may render the mutant protein an effective competitor that interferes with wild-type function.
Collapse
Affiliation(s)
- Min-Su Han
- Department of Biochemistry and Cell Biology, School of Medicine, WCU Program, Cell and Matrix Research Institute, Kyungpook National University, Daegu 700-422, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Puig-Kröger A, Aguilera-Montilla N, Martínez-Nuñez R, Domínguez-Soto A, Sánchez-Cabo F, Martín-Gayo E, Zaballos A, Toribio ML, Groner Y, Ito Y, Dopazo A, Corcuera MT, Alonso Martín MJ, Vega MA, Corbí AL. The novel RUNX3/p33 isoform is induced upon monocyte-derived dendritic cell maturation and downregulates IL-8 expression. Immunobiology 2010; 215:812-20. [PMID: 20615577 DOI: 10.1016/j.imbio.2010.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 05/20/2010] [Indexed: 10/19/2022]
Abstract
RUNX proteins are heterodimeric factors that play crucial roles during development and differentiation of cells of the immune system. The RUNX3 transcription factor controls lineage decisions during thymopoiesis and T-cell differentiation, and modulates myeloid cell effector functions. We now report the characterization of the human RUNX3/p33 isoform, generated by splicing out a Runt DNA-binding domain-encoding exon, and whose transcriptional activities differ from those of the prototypic RUNX3/p44 molecule. Unlike RUNX3/p44, RUNX3/p33 is induced upon maturation of monocyte-derived dendritic cells (MDDC), and is unable to transactivate the regulatory regions of the CD11a, CD11c and CD49e integrin genes. Overexpression of RUNX3/p33 in myeloid cell lines led to diminished expression of genes involved in inflammatory responses. Moreover, overexpression of RUNX3/p33 down-modulated the basal level of IL-8 production from immature monocyte-derived dendritic cells (MDDC). Besides, siRNA-mediated knock-down of RUNX3 led to diminished levels of IL-8 RNA in immature MDDC, and modulated the neutrophil-recruiting capacity of myeloid cell line supernatants. Since IL-8 promotes neutrophil chemotaxis and degranulation during inflammatory responses, and exerts mitogenic and angiogenic actions within tumor microenvironment, our results imply that myeloid RUNX3 expression regulates the recruitment of leukocytes towards inflammatory foci and might also contribute to human cancer progression.
Collapse
|
24
|
Nonredundant roles for Runx1 alternative promoters reflect their activity at discrete stages of developmental hematopoiesis. Blood 2010; 115:3042-50. [PMID: 20139099 DOI: 10.1182/blood-2009-08-238626] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor Runx1 is a pivotal regulator of definitive hematopoiesis in mouse ontogeny. Vertebrate Runx1 is transcribed from 2 promoters, the distal P1 and proximal P2, which provide a paradigm of the complex transcriptional and translational control of Runx1 function. However, very little is known about the biologic relevance of alternative Runx1 promoter usage in definitive hematopoietic cell emergence. Here we report that both promoters are active at the very onset of definitive hematopoiesis, with a skewing toward the P2. Moreover, functional and morphologic analysis of a novel P1-null and an attenuated P2 mouse model revealed that although both promoters play important nonredundant roles in the emergence of definitive hematopoietic cells, the proximal P2 was most critically required for this. The nature of the observed phenotypes is indicative of a differential contribution of the P1 and P2 promoters to the control of overall Runx1 levels, where and when this is most critically required. In addition, the dynamic expression of P1-Runx1 and P2-Runx1 points at a requirement for Runx1 early in development, when the P2 is still the prevalent promoter in the emerging hemogenic endothelium and/or first committed hematopoietic cells.
Collapse
|
25
|
Fazenda C, Simões B, Kelsh RN, Cancela ML, Conceição N. Dual transcriptional regulation by runx2 of matrix Gla protein in Xenopus laevis. Gene 2010; 450:94-102. [PMID: 19896523 DOI: 10.1016/j.gene.2009.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 10/26/2009] [Accepted: 10/28/2009] [Indexed: 11/25/2022]
Abstract
Matrix Gla protein (MGP) is an extracellular mineral-binding protein expressed in several tissues but it only accumulates in bone and calcified cartilage under physiological conditions. Available evidence indicates that it acts as a physiological inhibitor of mineralization. Runx2 is a transcription factor essential for bone formation in mammals, affecting osteoblast and chondrocyte differentiation by regulating key genes crucial for bone and cartilage development. Being an important cartilage-associated gene, MGP is a potential target for Runx2, and thus we have investigated the possible functional interactions between them. In A6 cells, Runx2 was found to modulate MGP transcription and deletion analysis of MGP distal and proximal promoter-luciferase constructs identified cis-regulatory regions. Interestingly, we have also identified a runx2-binding site that mediates transcriptional repression of XlMGP. Mutation of this element, located between -54 and +33 bp, results in 18-fold up-regulation of transcription. Furthermore, and in addition to the previously reported Xlrunx2 types I and II, we have identified three transcripts encoding novel, truncated Xlrunx2 isoforms. Although only type I and type II could transactivate XlMGP, the truncated isoforms identified in this study, which result from alternative splicing, could be involved in negative regulation of MGP expression, as described for other RUNX2 truncated isoforms acting in other target genes. In vivo microinjection of XlMGP promoter constructs and runx2 mRNA confirmed that those promoters are targets for this transcription factor. These data also indicate that MGP is under dual regulation by runx2 through the use of various isoforms and context-dependent formation of transcriptional complexes.
Collapse
Affiliation(s)
- Cindy Fazenda
- University of Algarve, CCMAR, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | | | | | |
Collapse
|
26
|
The differential activities of Runx1 promoters define milestones during embryonic hematopoiesis. Blood 2009; 114:5279-89. [PMID: 19858498 DOI: 10.1182/blood-2009-05-222307] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor RUNX1/AML1 is a master regulator of hematopoietic development. Its spatiotemporal expression is tightly regulated during embryonic development and is under the control of 2 alternative promoters, distal and proximal. Despite the functional significance of Runx1, the relative and specific activities of these 2 promoters remain largely uncharacterized. To investigate these activities, we introduced 2 reporter genes under the control of the proximal and distal promoters in embryonic stem cell and transgenic mouse lines. Our study reveals that both in vitro and in vivo the proximal Runx1 isoform marks a hemogenic endothelium cell population, whereas the subsequent expression of distal Runx1 defines fully committed definitive hematopoietic progenitors. Interestingly, hematopoietic commitment in distal Runx1 knockout embryos appears normal. Altogether, our data demonstrate that the differential activities of the 2 Runx1 promoters define milestones of hematopoietic development and suggest that the proximal isoform plays a critical role in the generation of hematopoietic cells from hemogenic endothelium. Identification and access to the discrete stages of hematopoietic development defined by the activities of the Runx1 promoters will provide the opportunity to further explore the cellular and molecular mechanisms of hematopoietic development.
Collapse
|
27
|
Alternative Runx1 promoter usage in mouse developmental hematopoiesis. Blood Cells Mol Dis 2009; 43:35-42. [PMID: 19464215 DOI: 10.1016/j.bcmd.2009.03.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 11/23/2022]
Abstract
The interest in stem cell based therapies has emphasized the importance of understanding the cellular and molecular mechanisms by which stem cells are generated in ontogeny and maintained throughout adult life. Hematopoietic stem cells (HSCs) are first found in clusters of hematopoietic cells budding from the luminal wall of the major arteries in the developing mammalian embryo. The transcription factor Runx1 is critical for their generation and is specifically expressed at sites of HSC generation, prior to their formation. To understand better the transcriptional hierarchies that converge on Runx1 during HSC emergence, we have initiated studies into its transcriptional regulation. Here we systematically analyzed Runx1 P1 and P2 alternative promoter usage in hematopoietic sites and in sorted cell populations during mouse hematopoietic development. Our results indicate that Runx1 expression in primitive erythrocytes is largely P2-derived, whilst in definitive hematopoietic stem and/or progenitor cells from the yolk sac or AGM and vitelline and umbilical arteries both the distal P1 and proximal P2 promoters are active. After cells have migrated to the fetal liver, the P1 gradually becomes the main hematopoietic promoter and remains this into adulthood. In addition, we identified a novel P2-derived Runx1 isoform.
Collapse
|
28
|
Ito Y. RUNX genes in development and cancer: regulation of viral gene expression and the discovery of RUNX family genes. Adv Cancer Res 2008; 99:33-76. [PMID: 18037406 DOI: 10.1016/s0065-230x(07)99002-8] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mouse embryonal carcinoma (EC) cells, also called teratocarcinoma stem cells, are nonpermissive for polyomavirus growth, whereas differentiated derivatives of the cells are permissive. Mutant viruses capable of growing in EC cells can be isolated. They have genomic alterations within the viral enhancer, which is required for viral gene expression and DNA replication. This viral regulatory region was considered as a potential probe for mouse cell differentiation. The 24-bp-long A element within the enhancer was identified as a minimum element, which also shows a lower activity in EC cells compared with the differentiated cells. Transcription factors PEA1/AP1, PEA2/PEBP2, and PEA3/ETS were identified as A element-binding proteins. All of them are absent in EC cells and induced to be expressed when the cells are differentiated. Although PEBP2 has a weaker transactivation activity compared with other two, it is essential for the enhancer function of the A element. Purification and cDNA cloning revealed that PEBP2 has two subunits, DNA-binding alpha (PEBP2alpha) and non-DNA-binding beta (PEBP2beta). PEBP2alpha was found to be highly homologous to a Drosophila segmentation gene, runt, and a human gene AML1 that was identified as a part of the fusion gene, AML1/ETO (MTG8) generated by t(8;21) chromosome translocation associated with acute myelogenous leukemia (AML). Core-binding factor (CBF), which interacts with a murine retrovirus enhancer, was found to be identical to PEBP2. runt, PEBP2alpha and AML1 are now termed RUNX family, which are involved in cell specification during development. There are three mammalian RUNX genes, RUNX1, RUNX2, and RUNX3. RUNX1 is essential for generation of hematopoietic stem cells and is involved in human leukemia. RUNX2 is essential for skeletal development and has an oncogenic potential. RUNX3 is expressed in wider ranges of tissues and has multiple roles. Among others, RUNX3 is a major tumor suppressor of gastric and many other solid tumors.
Collapse
Affiliation(s)
- Yoshiaki Ito
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
29
|
Jiang Y, Tong D, Lou G, Zhang Y, Geng J. Expression of RUNX3 Gene, Methylation Status and Clinicopathological Significance in Breast Cancer and Breast Cancer Cell Lines. Pathobiology 2008; 75:244-51. [DOI: 10.1159/000132385] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 01/30/2008] [Indexed: 11/19/2022] Open
|
30
|
Ng CEL, Osato M, Tay BH, Venkatesh B, Ito Y. cDNA cloning of Runx family genes from the pufferfish (Fugu rubripes). Gene 2007; 399:162-73. [PMID: 17604919 DOI: 10.1016/j.gene.2007.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 05/15/2007] [Accepted: 05/15/2007] [Indexed: 11/18/2022]
Abstract
The Runx family genes are involved in hematopoiesis, osteogenesis and neuropoiesis, and mutations in these genes have been frequently associated with human hereditary diseases and cancers. Here we report the cDNA cloning of the full Runx gene family of the pufferfish (Fugu rubripes), which comprises frRunx1, frRunx2, frRunx3, frRunt and frCbfb. Fugu is evolutionarily distant from mammals, thus the annotation of the frRunx family genes greatly facilitates comparative genomics approaches. Protein sequence comparison revealed that the fugu genes show high conservation in the Runt domain and PY and VWRPY motifs. frRunx1 had an extra stretch of eight histidine residues, while frRunx2 lacked the poly-glutamine/-alanine stretch that is a hallmark of the mammalian Runx2 genes. Analysis of the promoter regions revealed high conservation of the binding sites for transcription factors, including Runx sites in the P1 promoters. Abundant CpG dinucleotides in the P2 promoter regions were also detected. The expression patterns of the frRunx family genes in various tissues showed high similarity to those of the mammalian Runx genes. The genomic structures of the fugu and mammalian Runx genes are largely conserved except for a split exon 2 in frRunx1 and an extra exon in the C-terminal region of frRunx3 that is missing in mammalian Runx3 genes. The similarities and differences between the Runx family genes of fugu and mammals will improve our understanding of the functions of these proteins.
Collapse
Affiliation(s)
- Cherry Ee Lin Ng
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673, Singapore
| | | | | | | | | |
Collapse
|
31
|
Developmentally regulated promoter-switch transcriptionally controls Runx1 function during embryonic hematopoiesis. BMC DEVELOPMENTAL BIOLOGY 2007; 7:84. [PMID: 17626615 PMCID: PMC1941738 DOI: 10.1186/1471-213x-7-84] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 07/12/2007] [Indexed: 12/31/2022]
Abstract
Background Alternative promoters usage is an important paradigm in transcriptional control of mammalian gene expression. However, despite the growing interest in alternative promoters and their role in genome diversification, very little is known about how and on what occasions those promoters are differentially regulated. Runx1 transcription factor is a key regulator of early hematopoiesis and a frequent target of chromosomal translocations in acute leukemias. Mice deficient in Runx1 lack definitive hematopoiesis and die in mid-gestation. Expression of Runx1 is regulated by two functionally distinct promoters designated P1 and P2. Differential usage of these two promoters creates diversity in distribution and protein-coding potential of the mRNA transcripts. While the alternative usage of P1 and P2 likely plays an important role in Runx1 biology, very little is known about the function of the P1/P2 switch in mediating tissue and stage specific expression of Runx1 during development. Results We employed mice bearing a hypomorphic Runx1 allele, with a largely diminished P2 activity, to investigate the biological role of alternative P1/P2 usage. Mice homozygous for the hypomorphic allele developed to term, but died within a few days after birth. During embryogenesis the P1/P2 activity is spatially and temporally modulated. P2 activity is required in early hematopoiesis and when attenuated, development of liver hematopoietic progenitor cells (HPC) was impaired. Early thymus development and thymopoiesis were also abrogated as reflected by thymic hypocellularity and loss of corticomedullary demarcation. Differentiation of CD4/CD8 thymocytes was impaired and their apoptosis was enhanced due to altered expression of T-cell receptors. Conclusion The data delineate the activity of P1 and P2 in embryogenesis and describe previously unknown functions of Runx1. The findings show unequivocally that the role of P1/P2 during development is non redundant and underscore the significance of alternative promoter usage in Runx1 biology.
Collapse
|
32
|
Nanjundan M, Zhang F, Schmandt R, Smith-McCune K, Mills GB. Identification of a novel splice variant of AML1b in ovarian cancer patients conferring loss of wild-type tumor suppressive functions. Oncogene 2006; 26:2574-84. [PMID: 17072347 DOI: 10.1038/sj.onc.1210067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute myeloid leukemia (AML) 1 is often disrupted by chromosomal translocations generating oncogenic fusions in human leukemias. However, its role in epithelial cancers has not been extensively investigated. Herein, we show a marked accumulation of AML1 transcripts including a high frequency of a novel alternatively spliced AML1b transcript lacking exon 6 (AML1b(Del179-242)) in ovarian cancer patients. The increases in RNA transcripts for total wild-type AML1 and AML1b(Del179-242) are associated with poor patient outcomes. We have shown that although both wild-type AML1b and AML1b(Del179-242) are localized to nuclear speckles, AML1b(Del179-242) was observed to have dramatically reduced transactivation potential with the plasminogen activator inhibitor-1 promoters and behaved as a weak dominant negative of wild-type AML1b. Wild-type AML1b was found to inhibit the growth of immortalized ovarian epithelial cells (T29) decreasing colony-forming ability. Moreover, we have identified a novel function of AML1b where it inhibits ovarian cell migration. In contrast, AML1b(Del179-242) has lost the ability to inhibit both ovarian cell proliferation and migration indicating that the functional effects observed with wild-type AML1b are dependent on amino acids 179-242. Collectively, these studies suggest that deregulated alternative splicing of AML1b transcripts may potentially contribute to the pathophysiology of ovarian cancers.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Base Sequence
- Blotting, Western
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/metabolism
- Cell Movement
- Cell Proliferation
- Cell Transformation, Neoplastic
- Colony-Forming Units Assay
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/metabolism
- Exons/genetics
- Female
- Humans
- Molecular Sequence Data
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/metabolism
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Polymerase Chain Reaction
- Promoter Regions, Genetic/genetics
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Survival Rate
- Transcriptional Activation
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- M Nanjundan
- Department of Molecular Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA.
| | | | | | | | | |
Collapse
|
33
|
Abstract
The Runx2 gene is a master transcription factor of bone and plays a role in all stages of bone formation. It is essential for the initial commitment of mesenchymal cells to the osteoblastic lineage and also controls the proliferation, differentiation, and maintenance of these cells. Control is complex, with involvement of a multitude of factors, thereby regulating the expression and activity of this gene both temporally and spatially. The use of multiple promoters and alternative splicing of exons further extends its diversity of actions. RUNX2 is also essential for the later stages of tooth formation, is intimately involved in the development of calcified tooth tissue, and exerts an influence on proliferation of the dental lamina. Furthermore, RUNX2 regulates the alveolar remodelling process essential for tooth eruption and may play a role in the maintenance of the periodontal ligament. In this article, the structure of Runx2 is described. The control and function of the gene and its product are discussed, with special reference to developing tooth tissues, in an attempt to elucidate the role of this gene in the development of the teeth and supporting structures.
Collapse
Affiliation(s)
- Simon Camilleri
- Department of Orthodontics, Dental Institute of Kings College London, London, UK.
| | | |
Collapse
|
34
|
Liu H, Carlsson L, Grundström T. Identification of an N-terminal Transactivation Domain of Runx1 That Separates Molecular Function from Global Differentiation Function. J Biol Chem 2006; 281:25659-69. [PMID: 16803898 DOI: 10.1074/jbc.m603249200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
RUNX1, or AML1, is a transcription factor that is the most frequent target for chromosomal gene translocations in acute leukemias. RUNX1 is essential for definitive hematopoiesis in embryos and profoundly influences adult steady-state hematopoiesis both positively and negatively. To investigate this wide range of normal activities and the pathological role of RUNX1, it is important to define the functions of different domains of the protein. RUNX1, RUNX2, and RUNX3 are highly conserved in their DNA binding runt homology domain and contain divergent sequences of unknown function N-terminal to this domain. Here we analyzed the role of the N-terminal sequence and the alpha-helix of the runt homology domain of Runx1 in DNA binding, transactivation, and megakaryocytopoiesis. Both the N terminus and the alpha-helix were found to reduce DNA binding of Runx1 and be essential for transactivation of the granulocyte-macrophage colony-stimulating factor and Ialpha1 promoters by Runx1. The N terminus of Runx1, including the alpha-helix, was also required for transactivation of a Gal4 reporter when expressed as fusion proteins with a Gal4 DNA binding domain, and the N terminus alone was capable of stimulating transcription when fused to the Gal4 DNA binding domain. The N terminus and the alpha-helix, however, were not required for megakaryocyte development from embryonic stem cells differentiated in vitro. Thus, our findings define a second transactivation domain of Runx1 that is differentially required for activation of transcription of some Runx1-dependent promoters and megakaryocytopoiesis.
Collapse
Affiliation(s)
- Hebin Liu
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | | | | |
Collapse
|
35
|
Finco TS, Justice-Healy GE, Patel SJ, Hamilton VE. Regulation of the human LAT gene by the Elf-1 transcription factor. BMC Mol Biol 2006; 7:4. [PMID: 16464244 PMCID: PMC1382244 DOI: 10.1186/1471-2199-7-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 02/07/2006] [Indexed: 12/01/2022] Open
Abstract
Background The LAT gene encodes an intracellular adaptor protein that links cell-surface receptor engagement to numerous downstream signalling events, and thereby plays an integral role in the function of cell types that express the gene, including T cells, mast cells, natural killer cells, and platelets. To date, the mechanisms responsible for the transcriptional regulation of this gene have not been investigated. Results In this study we have mapped the transcriptional start sites for the human LAT gene and localized the 5' and 3' boundaries of the proximal promoter. We find that the promoter contains both positive and negative regulatory regions, and that two binding sites for the Ets family of transcription factors have a strong, positive effect on gene expression. Each site binds the Ets family member Elf-1, and overexpression of Elf-1 augments LAT promoter activity. The promoter also contains a Runx binding site adjacent to one of the Ets sites. This site, which is shown to bind Runx-1, has an inhibitory effect on gene expression. Finally, data is also presented indicating that the identified promoter may regulate cell-type specific expression. Conclusion Collectively, these results provide the first insights into the transcriptional regulation of the LAT gene, including the discovery that the Ets transcription factor Elf-1 may play a central role in its expression.
Collapse
Affiliation(s)
- Timothy S Finco
- Department of Biology, Agnes Scott College, Decatur, GA 30030, USA
| | | | - Shivani J Patel
- Department of Biology, Agnes Scott College, Decatur, GA 30030, USA
| | | |
Collapse
|
36
|
Marmigère F, Montelius A, Wegner M, Groner Y, Reichardt LF, Ernfors P. The Runx1/AML1 transcription factor selectively regulates development and survival of TrkA nociceptive sensory neurons. Nat Neurosci 2006; 9:180-7. [PMID: 16429136 PMCID: PMC2703717 DOI: 10.1038/nn1631] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 12/12/2005] [Indexed: 01/27/2023]
Abstract
Neural crest cells (NCCs) can adopt different neuronal fates. In NCCs, neurogenin-2 promotes sensory specification but does not specify different subclasses of sensory neurons. Understanding the gene cascades that direct Trk gene activation may reveal mechanisms generating sensory diversity, because different Trks are expressed in different sensory neuron subpopulations. Here we show in chick and mouse that the Runt transcription factor Runx1 promotes axonal growth, is selectively expressed in neural crest-derived TrkA(+) sensory neurons and mediates TrkA transactivation in migratory NCCs. Inhibition of Runt activity depletes TrkA expression and leads to neuronal death. Moreover, Runx1 overexpression is incompatible with multipotency in the migratory neural crest but does not induce expression of pan-neuronal genes. Instead, Runx1-induced neuronal differentiation depends on an existing neurogenin2 proneural gene program. Our data show that Runx1 directs, in a context-dependent manner, key aspects of the establishment of the TrkA(+) nociceptive subclass of neurons.
Collapse
Affiliation(s)
- Frédéric Marmigère
- Laboratory of Molecular Neurobiology, Karolinska Institute, MBB, Scheeles väg 1, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
37
|
Kagoshima H, Sawa H, Mitani S, Bürglin TR, Shigesada K, Kohara Y. The C. elegans RUNX transcription factor RNT-1/MAB-2 is required for asymmetrical cell division of the T blast cell. Dev Biol 2005; 287:262-73. [PMID: 16226243 DOI: 10.1016/j.ydbio.2005.08.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 08/17/2005] [Accepted: 08/18/2005] [Indexed: 10/25/2022]
Abstract
The RUNX genes encode conserved transcription factors, which play vital roles in the development of various animals and human diseases. Drosophila runt is a secondary pair-rule gene, which regulates embryo segmentation. Human RUNX1, previously known as AML1, is essential for hematopoiesis. C. elegans rnt-1 is co-orthologous to the human RUNX genes. We found that RNT-1Colon, two colonsGFP is expressed in the H0-2, V1-6, and T blast cells in the embryo, and predominantly in the seam cells during larval to adult stages. rnt-1 mutants exhibit a loss of polarity in the asymmetrical T cell division in hermaphrodites and abnormal ray morphology in the male tail. Genetic and molecular analysis revealed that rnt-1 is allelic to mab-2. Mutant analysis suggested that rnt-1/mab-2 is involved in regulating T blast cell polarity in cooperation with the Wnt signaling pathway. Expression studies of GFPColon, two colonsPOP-1 and TLP-1Colon, two colonsGFP reporters in rnt-1/mab-2 mutants indicated that this gene functions upstream of tlp-1 and downstream, or in parallel to, pop-1 in the genetic cascade that controls asymmetry of the T cell division. All our data suggest that RNT-1/MAB-2 functions with POP-1 to control the asymmetry of the T cell division.
Collapse
Affiliation(s)
- Hiroshi Kagoshima
- Genome Biology Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Jackson Behan K, Fair J, Singh S, Bogwitz M, Perry T, Grubor V, Cunningham F, Nichols CD, Cheung TL, Batterham P, Pollock JA. Alternative splicing removes an Ets interaction domain from Lozenge during Drosophila eye development. Dev Genes Evol 2005; 215:423-35. [PMID: 15868204 DOI: 10.1007/s00427-005-0490-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 04/08/2005] [Indexed: 10/25/2022]
Abstract
Physical and functional characteristics of the RUNX family of transcription factors are conserved between vertebrates and the Drosophila protein Lozenge. The runt-homology domain responsible for DNA binding and also the C-terminus are both nearly identical between the two proteins. The mammalian and fly proteins heterodimerize with a non-DNA binding partner protein to form a core binding factor essential for gene regulation during cell differentiation. The mammalian protein RUNX1 (AML1/PEBP2alphaB) interacts with the transcription factor Ets-1 to increase DNA binding and transactivation potential. Alternative splicing of the mammalian RUNX1 removes a domain required for this cooperative transactivation. In this work we determine the structure of the lozenge transcription unit and map 21 mutations. We show that the lozenge transcript is alternatively spliced during eye development to remove an Ets interaction domain. Emphasis is placed on Pointed the Drosophila homolog of the vertebrate Ets-1 protein; both Lozenge and Pointed proteins are needed for the activation of prospero expression. We use site-directed mutagenesis and yeast two-hybrid analysis to show that conserved amino acids within the alternate Lozenge exon are important for interaction with Pointed. Furthermore, the ectopic expression of Lozenge is sufficient to rescue Prospero expression in the presence of the Pointed competitor, Yan(ACT). We show that both lozenge isoforms are expressed during eye development and that the relative ratio of the transcripts for the two isoforms is sensitive to changes in Ras activity. We suggest that during eye development, Lozenge isoforms function in divergent roles, either interacting with Pointed on downstream targets or by functioning independently to establish distinct cell fates.
Collapse
|
39
|
Pinto JP, Conceição NM, Viegas CSB, Leite RB, Hurst LD, Kelsh RN, Cancela ML. Identification of a new pebp2alphaA2 isoform from zebrafish runx2 capable of inducing osteocalcin gene expression in vitro. J Bone Miner Res 2005; 20:1440-53. [PMID: 16007341 DOI: 10.1359/jbmr.050318] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 01/19/2005] [Accepted: 03/16/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED The zebrafish runx2b transcription factor is an ortholog of RUNX2 and is highly conserved at the structural level. The runx2b pebp2alphaA2 isoform induces osteocalcin gene expression by binding to a specific region of the promoter and seems to have been selectively conserved in the teleost lineage. INTRODUCTION RUNX2 (also known as CBFA1/Osf2/AML3/PEBP2alphaA) is a transcription factor essential for bone formation in mammals, as well as for osteoblast and chondrocyte differentiation, through regulation of expression of several bone- and cartilage-related genes. Since its discovery, Runx2 has been the subject of intense studies, mainly focused in unveiling regulatory targets of this transcription factor in high vertebrates. However, no single study has been published addressing the role of Runx2 in bone metabolism of low vertebrates. While analyzing the zebrafish (Danio rerio) runx2 gene, we identified the presence of two orthologs of RUNX2, which we named runx2a and runx2b and cloned a pebp2alphaA-like transcript of the runx2b gene, which we named pebp2alphaA2. MATERIALS AND METHODS Zebrafish runx2b gene and cDNA were isolated by RT-PCR and sequence data mining. The 3D structure of runx2b runt domain was modeled using mouse Runx1 runt as template. The regulatory effect of pebp2alphaA2 on osteocalcin expression was analyzed by transient co-transfection experiments using a luciferase reporter gene. Phylogenetic analysis of available Runx sequences was performed with TREE_PUZZLE 5.2. and MrBayes. RESULTS AND CONCLUSIONS We showed that the runx2b gene structure is highly conserved between mammals and fish. Zebrafish runx2b has two promoter regions separated by a large intron. Sequence analysis suggested that the runx2b gene encodes three distinct isoforms, by a combination of alternative splicing and differential promoter activation, as described for the human gene. We have cloned a pebp2alphaA-like transcript of the runx2b gene, which we named pebp2alphaA2, and showed its high degree of sequence similarity with the mammalian pebp2alphaA. The cloned zebrafish osteocalcin promoter was found to contain three putative runx2-binding elements, and one of them, located at -221 from the ATG, was capable of mediating pebp2alphaA2 transactivation. In addition, cross-species transactivation was also confirmed because the mouse Cbfa1 was able to induce the zebrafish osteocalcin promoter, whereas the zebrafish pebp2alphaA2 activated the murine osteocalcin promoter. These results are consistent with the high degree of evolutionary conservation of these proteins. The 3D structure of the runx2b runt domain was modeled based on the runt domain of mouse Runx1. Results show a high degree of similarity in the 3D configuration of the DNA binding regions from both domains, with significant differences only observed in non-DNA binding regions or in DNA-binding regions known to accommodate considerable structure flexibility. Phylogenetic analysis was used to clarify the relationship between the isoforms of each of the two zebrafish Runx2 orthologs and other Runx proteins. Both zebrafish runx2 genes clustered with other Runx2 sequences. The duplication event seemed, however, to be so old that, whereas Runx2b clearly clusters with the other fish sequences, it is unclear whether Runx2a clusters with Runx2 from higher vertebrates or from other fish.
Collapse
Affiliation(s)
- Jorge P Pinto
- CCMAR, University of Algarve, Campus de Gambelas, Faro, Portugal
| | | | | | | | | | | | | |
Collapse
|
40
|
Kawazu M, Asai T, Ichikawa M, Yamamoto G, Saito T, Goyama S, Mitani K, Miyazono K, Chiba S, Ogawa S, Kurokawa M, Hirai H. Functional domains of Runx1 are differentially required for CD4 repression, TCRbeta expression, and CD4/8 double-negative to CD4/8 double-positive transition in thymocyte development. THE JOURNAL OF IMMUNOLOGY 2005; 174:3526-33. [PMID: 15749889 DOI: 10.4049/jimmunol.174.6.3526] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Runx1 (AML1) has multiple functions in thymocyte development, including CD4 repression in immature thymocytes, expression of TCRbeta, and efficient beta-selection. To determine the functional domains of Runx1 important for thymocyte development, we cultured Runx1-deficient murine fetal liver (FL) cells on OP9-Delta-like 1 murine stromal cells, which express Delta-like 1 and support thymocyte development in vitro, and introduced Runx1 or C-terminal-deletion mutants of Runx1 into the FL cells by retrovirus infection. In this system, Runx1-deficient FL cells failed to follow normal thymocyte development, whereas the introduction of Runx1 into the cells was sufficient to produce thymocyte development that was indistinguishable from that in wild-type FL cells. In contrast, Runx1 mutants that lacked the activation domain necessary for initiating gene transcription did not fully restore thymocyte differentiation, in that it neither repressed CD4 expression nor promoted the CD4/8 double-negative to CD4/8 double-positive transition. Although the C-terminal VWRPY motif-deficient mutant of Runx1, which cannot interact with the transcriptional corepressor Transducin-like enhancer of split (TLE), promoted the double-negative to double-positive transition, it did not efficiently repress CD4 expression. These results suggest that the activation domain is essential for Runx1 to establish thymocyte development and that Runx1 has both TLE-dependent and TLE-independent functions in thymocyte development.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Base Sequence
- CD4 Antigens/metabolism
- CD8 Antigens/metabolism
- Cell Differentiation
- Cells, Cultured
- Coculture Techniques
- Core Binding Factor Alpha 2 Subunit
- DNA, Complementary/genetics
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Female
- Fetus/cytology
- Hepatocytes/cytology
- Hepatocytes/immunology
- Hepatocytes/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mice, Transgenic
- Pregnancy
- Protein Structure, Tertiary
- Proto-Oncogene Proteins/chemistry
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transduction, Genetic
Collapse
Affiliation(s)
- Masahito Kawazu
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Stock M, Otto F. Control of RUNX2 isoform expression: The role of promoters and enhancers. J Cell Biochem 2005; 95:506-17. [PMID: 15838892 DOI: 10.1002/jcb.20471] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The three mammalian RUNX genes constitute the family of runt domain transcription factors that are involved in the regulation of a number of developmental processes such as haematopoiesis, osteogenesis and neuronal differentiation. All three genes show a complex temporo-spatial pattern of expression. Since the three proteins are probably mutually interchangeable with regard to function, most of the specificity of each family member seems to be based on a tightly controlled regulation of expression. While RUNX gene expression is driven by two promoters for each gene, the promoter sequence alone does not seem to suffice for a proper expressional control. This review focuses on the available evidence for the existence of such control mechanisms and studies aiming at discovering cis-acting regulatory sequences of the RUNX2 gene.
Collapse
Affiliation(s)
- Michael Stock
- Division of Hematology/Oncology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | | |
Collapse
|
42
|
Terry A, Kilbey A, Vaillant F, Stewart M, Jenkins A, Cameron E, Neil JC. Conservation and expression of an alternative 3' exon of Runx2 encoding a novel proline-rich C-terminal domain. Gene 2004; 336:115-25. [PMID: 15225881 DOI: 10.1016/j.gene.2004.04.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 03/08/2004] [Accepted: 04/05/2004] [Indexed: 10/26/2022]
Abstract
The Runx2 (Cbfa1, Aml3, PEBP2alphaA) gene plays an essential role in bone development and is one of a three-member family of closely related genes that encode the alpha-chain DNA binding components of the heterodimeric core binding factor complex. While all three mammalian Runx genes share a complex dual promoter structure (P1, P2) and display alternative splicing, a distinctive feature of Runx2 is the potential to encode larger isoforms in which the C-terminal domain encoded by the standard 3' terminal exon (exon 6) is replaced by an extended 200-201 amino acid C-terminal sequence including an extensive proline-rich domain and a C-terminal amphipathic helix. We report that the novel exon that gives rise to these variants (exon 6.1) is located over 100 kb downstream of exon 6 in the mouse, rat and human genomes. Exon 6.1 spans a CpG-rich island, and human/rodent conservation is evident through the coding sequence and the 3' untranslated region (UTR). Reverse transcriptase polymerase chain reaction (RT-PCR) and blot hybridisation analyses reveal that exon 6.1 is utilised at low levels in all mouse tissues and cell lines that express Runx2, regardless of which promoter is active, giving Runx2 the potential to encode more than 12 distinct isoforms. RT-PCR analysis of human RUNX2 exon 6.1 expression shows that utilisation of this exon is also conserved. In vitro transcription/translation of cDNAs encoding several exon 6.1 isoforms reveals that the novel Runx proteins are able to bind specifically to canonical Runx DNA target sequences. Antibodies raised to the unique C-terminal domain were shown to be reactive by immunoprecipitation and immunoblot assay, and were used in confocal immunofluorescence microscopy to reveal low level cytoplasmic staining in osteosarcoma and lymphoma cells that express high levels of Runx2 mRNA. However, reactive protein could not be detected in immunoblots of extracts from either cell type, suggesting that these proteins are unstable in lymphoid and osteosarcoma cells. In conclusion, the conservation and widespread utilisation of Runx2 exon 6.1 suggest that its encoded isoforms play an as yet undetermined role in mammalian development.
Collapse
Affiliation(s)
- Anne Terry
- Molecular Oncology Laboratory, Institute of Comparative Medicine, University of Glasgow Veterinary School, Bearsden, Glasgow G61 1QH, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Ji YJ, Nam S, Jin YH, Cha EJ, Lee KS, Choi KY, Song HO, Lee J, Bae SC, Ahnn J. RNT-1, the C. elegans homologue of mammalian RUNX transcription factors, regulates body size and male tail development. Dev Biol 2004; 274:402-12. [PMID: 15385167 DOI: 10.1016/j.ydbio.2004.07.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 06/18/2004] [Accepted: 07/05/2004] [Indexed: 10/26/2022]
Abstract
The rnt-1 gene is the only Caenorhabditis elegans homologue of the mammalian RUNX genes. Several lines of molecular biological evidence have demonstrated that the RUNX proteins interact and cooperate with Smads, which are transforming growth factor-beta (TGF-beta) signal mediators. However, the involvement of RUNX in TGF-beta signaling has not yet been supported by any genetic evidence. The Sma/Mab TGF-beta signaling pathway in C. elegans is known to regulate body length and male tail development. The rnt-1(ok351) mutants show the characteristic phenotypes observed in mutants of the Sma/Mab pathway, namely, they have a small body size and ray defects. Moreover, RNT-1 can physically interact with SMA-4 which is one of the Smads in C. elegans, and double mutant animals containing both the rnt-1(ok351) mutation and a mutation in a known Sma/Mab pathway gene displayed synergism in the aberrant phenotypes. In addition, lon-1(e185) mutants was epistatic to rnt-1(ok351) mutants in terms of long phenotype, suggesting that lon-1 is indeed downstream target of rnt-1. Our data reveal that RNT-1 functionally cooperates with the SMA-4 proteins to regulate body size and male tail development in C. elegans.
Collapse
Affiliation(s)
- Yon-Ju Ji
- Department of Life Science, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Telfer JC, Hedblom EE, Anderson MK, Laurent MN, Rothenberg EV. Localization of the domains in Runx transcription factors required for the repression of CD4 in thymocytes. THE JOURNAL OF IMMUNOLOGY 2004; 172:4359-70. [PMID: 15034051 DOI: 10.4049/jimmunol.172.7.4359] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The runt family transcription factors Runx1 and Runx3 are expressed in developing murine thymocytes. We show that enforced expression of full-length Runx1 in CD4(-)CD8(-) thymocytes results in a profound suppression of immature CD4/CD8 double-positive thymocytes and mature CD4 single-positive thymocytes compared with controls. This effect arises from Runx1- or Runx3-mediated repression of CD4 expression, and is independent of positively selecting signals. Runx1 is able to repress CD4 in CD4/CD8 double-positive thymocytes, but not in mature splenic T cells. Runx-mediated CD4 repression is independent of association with the corepressors Groucho/TLE or Sin3. Two domains are required for complete Runx-mediated CD4 repression. These are contained within Runx1 aa 212-262 and 263-360. The latter region contains the nuclear matrix targeting sequence, which is highly conserved among runt family transcription factors across species. The presence of the nuclear matrix targeting sequence is required for Runx-mediated CD4 repression, suggesting that Runx transcription factors are stabilized on the CD4 silencer via association with the nuclear matrix.
Collapse
Affiliation(s)
- Janice C Telfer
- Department of Veterinary and Animal Sciences, Paige Laboratory, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Runt-related (RUNX) gene family is composed of three members, RUNX1/AML1, RUNX2 and RUNX3, and encodes the DNA-binding (alpha) subunits of the Runt domain transcription factor polyomavirus enhancer-binding protein 2 (PEBP2)/core-binding factor (CBF), which is a heterodimeric transcription factor. RUNX1 is most frequently involved in human acute leukemia. RUNX2 shows oncogenic potential in mouse experimental system. RUNX3 is a strong candidate as a gastric cancer tumor suppressor. The beta subunit gene of PEBP2/CBF is also frequently involved in chromosome rearrangements associated with human leukemia. In this Overview, I will summarize how this growing field has been formed and what are the challenging new frontiers for better understanding of the oncogenic potential of this gene family.
Collapse
Affiliation(s)
- Yoshiaki Ito
- Institute of Molecular and Cell Biology and Oncology Research Institute, National University of Singapore, 30 Medical Drive, Singapore 117609, Singapore.
| |
Collapse
|
46
|
Miyazono K, Maeda S, Imamura T. Coordinate regulation of cell growth and differentiation by TGF-beta superfamily and Runx proteins. Oncogene 2004; 23:4232-7. [PMID: 15156178 DOI: 10.1038/sj.onc.1207131] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Runx proteins regulate various biological processes, including growth and differentiation of hematopoietic cells, lymphocytes, osteoblasts, and gastric epithelial cells. Some of the biological activities of Runx proteins are reminiscent of those of transforming growth factor (TGF)-beta superfamily cytokines. Consistent with this notion, receptor-regulated Smads (R-Smads), signal mediators of the TGF-beta superfamily cytokines, and Runx proteins have been shown to physically interact with each other. R-Smads activated by TGF-beta and Runx proteins cooperatively induce synthesis of IgA in B lymphocytes, and those activated by bone morphogenetic proteins and Runx2 induce osteoblastic differentiation. Moreover, the R-Smad-Runx signaling pathways are regulated by an E3 ubiquitin ligase Smurf1, as well as a signal transducer of interferons, STAT1. Since Runxl and Runx3 are involved in the development of some cancers including acute leukemia and gastric cancer, it will be of interest to examine in detail whether TGF-beta-specific R-Smads and Runx proteins coordinately regulate growth and differentiation of hematopoietic cells and gastric epithelial cells.
Collapse
Affiliation(s)
- Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
47
|
Abstract
The RUNX are key regulators of lineage-specific gene expression in major developmental pathways. The expression of RUNX genes is tightly regulated, leading to a highly specific spatio/temporal expression pattern and to distinct phenotypes of gene knockouts. This review highlights the extensive structural similarities between the three mammalian RUNX genes and delineates how regulation of their expression at the levels of transcription and translation are orchestrated into the unique RUNX expression pattern.
Collapse
Affiliation(s)
- Ditsa Levanon
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
48
|
Scott GK, Gu F, Crump CM, Thomas L, Wan L, Xiang Y, Thomas G. The phosphorylation state of an autoregulatory domain controls PACS-1-directed protein traffic. EMBO J 2004; 22:6234-44. [PMID: 14633983 PMCID: PMC291837 DOI: 10.1093/emboj/cdg596] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PACS-1 is a cytosolic sorting protein that directs the localization of membrane proteins in the trans-Golgi network (TGN)/endosomal system. PACS-1 connects the clathrin adaptor AP-1 to acidic cluster sorting motifs contained in the cytoplasmic domain of cargo proteins such as furin, the cation-independent mannose-6-phosphate receptor and in viral proteins such as human immunodeficiency virus type 1 Nef. Here we show that an acidic cluster on PACS-1, which is highly similar to acidic cluster sorting motifs on cargo molecules, acts as an autoregulatory domain that controls PACS-1-directed sorting. Biochemical studies show that Ser278 adjacent to the acidic cluster is phosphorylated by CK2 and dephosphorylated by PP2A. Phosphorylation of Ser278 by CK2 or a Ser278-->Asp mutation increased the interaction between PACS-1 and cargo, whereas a Ser278-->Ala substitution decreased this interaction. Moreover, the Ser278-->Ala mutation yields a dominant-negative PACS-1 molecule that selectively blocks retrieval of PACS-1-regulated cargo molecules to the TGN. These results suggest that coordinated signaling events regulate transport within the TGN/endosomal system through the phosphorylation state of both cargo and the sorting machinery.
Collapse
Affiliation(s)
- Gregory K Scott
- Vollum Institute, L-474, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Lacaud G, Kouskoff V, Trumble A, Schwantz S, Keller G. Haploinsufficiency of Runx1 results in the acceleration of mesodermal development and hemangioblast specification upon in vitro differentiation of ES cells. Blood 2004; 103:886-9. [PMID: 14525762 DOI: 10.1182/blood-2003-06-2149] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AbstractThe AML1 gene (recently renamed Runx1), which encodes the DNA-binding subunit of a transcription factor of the core binding factor (CBF) family, is required for the establishment of definitive hematopoiesis. We have previously demonstrated that Runx1 is expressed in yolk sac mesodermal cells prior to the establishment of the blood islands and in the embryoid body (EB)–derived blast-colony–forming cells (BL-CFCs), the in vitro equivalent of the hemangioblast. Analysis of Runx1-deficient embryonic stem (ES) cells demonstrated that this gene is essential for the generation of normal numbers of blast colonies, the progeny of the BL-CFCs. In the present study, we analyzed the potential of Runx1+/– ES cells to determine if heterozygosity at the Runx1 locus impacts early developmental events leading to the commitment of the BL-CFCs. Our results indicate that Runx1 heterozygosity leads to an acceleration of mesodermal commitment and specification to the BL-CFCs and to the hematopoietic lineages in EBs.
Collapse
Affiliation(s)
- Georges Lacaud
- Carl C. Icahn Center for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
50
|
Brown C, Gaspar J, Pettit A, Lee R, Gu X, Wang H, Manning C, Voland C, Goldring SR, Goldring MB, Libermann TA, Gravallese EM, Oettgen P. ESE-1 is a novel transcriptional mediator of angiopoietin-1 expression in the setting of inflammation. J Biol Chem 2004; 279:12794-803. [PMID: 14715662 DOI: 10.1074/jbc.m308593200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Angiogenesis is a critical component of the inflammatory response associated with a number of conditions. Angiopoietin-1 (Ang-1) is an angiogenic growth factor that promotes the chemotaxis of endothelial cells and facilitates the maturation of new blood vessels. Ang-1 expression is up-regulated in response to tumor necrosis factor-alpha (TNF-alpha). To begin to elucidate the underlying molecular mechanisms by which Ang-1 gene expression is regulated during inflammation, we isolated 3.2 kb of the Ang-1 promoter that contain regulatory elements sufficient to mediate induction of the promoter in response to TNF-alpha, interleukin-1beta, and endotoxin. Surprisingly, sequence analysis of this promoter failed to reveal binding sites for transcription factors that are frequently associated with mediating inflammatory responses, such as NF-kappaB, STAT, NFAT, or C/EBP. However, putative binding sites for ETS and AP-1 transcription factor family members were identified. Interestingly, among a panel of ETS factors tested in a transient transfection assay, only the ETS factor ESE-1 was capable of transactivating the Ang-1 promoter. ESE-1 binds to specific ETS sites within the Ang-1 promoter that are functionally important for transactivation by ESE-1. ESE-1 and Ang-1 are induced in synovial fibroblasts in response to inflammatory cytokines, with ESE-1 induction slightly preceding that of Ang-1. Mutation of a high-affinity ESE-1 binding site leads to a marked reduction in Ang-1 transactivation by ESE-1, inducibility by inflammatory cytokines, and DNA binding to the ESE-1 protein. Transcriptional profiling of cells transiently transfected with an ESE-1 expression vector demonstrates that the endogenous Ang-1 gene is directly inducible by ESE-1. Finally, Ang-1 and ESE-1 exhibit a similar and strong expression pattern in the synovium of patients with rheumatoid arthritis. Our results support a novel paradigm for the ETS factor ESE-1 as a transcriptional mediator of angiogenesis in the setting of inflammation.
Collapse
Affiliation(s)
- Courtney Brown
- Beth Israel Deaconess Medical Center, Department of Medicine, New England Baptist Bone and Joint Institute, Harvard Institutes of Medicine, 4 Blackfan Circle, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|