1
|
Wang H, Guo T. Chronic intermittent hypoxia affects the expression of IRS - 2/p - Akt/GSK - 3 in the liver of SD rats and its impact on glucose metabolism. Sleep Breath 2025; 29:180. [PMID: 40342065 PMCID: PMC12062185 DOI: 10.1007/s11325-025-03344-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND Epidemiological studies indicate a strong association between OSA and type 2 diabetes. Currently, the insulin signal transduction pathway and its associated effector proteins have emerged as a focal point in type 2 diabetes research. However, the underlying mechanisms in OSA remain elusive. We have established an experimental model of chronic intermittent hypoxia in SD rats and conducted measurements of their fasting blood glucose, fasting plasma insulin levels, as well as the insulin signaling pathway effector proteins IRS-2, P-Akt, and GSK-3. METHOD In the experiment, the gas path control system connected to a sealed glass container regulated the delivery of oxygen and nitrogen, ensuring a minimum oxygen concentration of 6%-12% within the cabin. Forty male Sprague-Dawley rats were divided into five groups (n = 8) and exposed to chronic intermittent hypoxia or normal air environment for 2, 4, 6, and 8 weeks, respectively. Upon completion of the experiment, the rats were anesthetized and euthanized. Immediately thereafter, their fasting blood glucose was measured, and their fasting insulin levels were determined using radioimmunoassay. Finally, the insulin resistance index (HOMA-IR) was calculated based on the steady-state model evaluation method. HE staining was employed to observe the morpho- logical changes of liver cells in each group of rats. Immunohistochemistry was utilized to detect the expression of insulin signaling pathway-related effector proteins, namely IRS-2, p-Akt, and GSK-3, in the liver, with their expression levels expressed as average grayscale values. RESULT With the extension of intermittent hypoxia exposure duration, compared to the normal control group, the fasting blood glucose, fasting insulin, and insulin resistance index of rats in each experimental group increased (n = 8, P < 0.05). Additionally, the liver cells of rats exhibited damage and morphological changes. The expression of liver pathway proteins IRS-2 and P-Akt decreased (n = 8, P < 0.05), whereas the expression of GSK-3 protein increased (n = 8, P < 0.05). CONCLUSION Chronic intermittent hypoxia activates the proteins IRS-2, P-Akt, and GSK-3 in the hepatic insulin signaling pathway, leading to liver cell damage, insulin resistance, and glucose metabolism disorders.
Collapse
Affiliation(s)
- Hong Wang
- Respiratory and Critical Care Medicine Department, Hunan Normal University Affiliated Aerospace Hospital, No.189 Yuelu District Fenglin Sanlu, ChangSha, 410205, Hunan, China.
| | - Tiantian Guo
- Electronic Information College, Hunan First Normal University, No.1015 Yuelu District Fenglin Sanlu, ChangSha, 410205, Hunan, China.
| |
Collapse
|
2
|
He L, Cho S, Blenis J. mTORC1, the maestro of cell metabolism and growth. Genes Dev 2025; 39:109-131. [PMID: 39572234 PMCID: PMC11789495 DOI: 10.1101/gad.352084.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The mechanistic target of rapamycin (mTOR) pathway senses and integrates various environmental and intracellular cues to regulate cell growth and proliferation. As a key conductor of the balance between anabolic and catabolic processes, mTOR complex 1 (mTORC1) orchestrates the symphonic regulation of glycolysis, nucleic acid and lipid metabolism, protein translation and degradation, and gene expression. Dysregulation of the mTOR pathway is linked to numerous human diseases, including cancer, neurodegenerative disorders, obesity, diabetes, and aging. This review provides an in-depth understanding of how nutrients and growth signals are coordinated to influence mTOR signaling and the extensive metabolic rewiring under its command. Additionally, we discuss the use of mTORC1 inhibitors in various aging-associated metabolic diseases and the current and future potential for targeting mTOR in clinical settings. By deciphering the complex landscape of mTORC1 signaling, this review aims to inform novel therapeutic strategies and provide a road map for future research endeavors in this dynamic and rapidly evolving field.
Collapse
Affiliation(s)
- Long He
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA;
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Sungyun Cho
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA;
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
3
|
Mahtani T, Sheth H, Smith LK, Benedict L, Brecier A, Ghasemlou N, Treanor B. The ion channel TRPV5 regulates B-cell signaling and activation. Front Immunol 2024; 15:1386719. [PMID: 38694510 PMCID: PMC11061418 DOI: 10.3389/fimmu.2024.1386719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/28/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction B-cell activation triggers the release of endoplasmic reticulum calcium stores through the store-operated calcium entry (SOCE) pathway resulting in calcium influx by calcium release-activated calcium (CRAC) channels on the plasma membrane. B-cell-specific murine knockouts of SOCE do not impact humoral immunity suggesting that alternative channels may be important. Methods We identified a member of the calcium-permeable transient receptor potential (TRP) ion channel family, TRPV5, as a candidate channel expressed in B cells by a quantitative polymerase chain reaction (qPCR) screen. To further investigate the role of TRPV5 in B-cell responses, we generated a murine TRPV5 knockout (KO) by CRISPR-Cas9. Results We found TRPV5 polarized to B-cell receptor (BCR) clusters upon stimulation in a PI3K-RhoA-dependent manner. TRPV5 KO mice have normal B-cell development and mature B-cell numbers. Surprisingly, calcium influx upon BCR stimulation in primary TRPV5 KO B cells was not impaired; however, differential expression of other calcium-regulating proteins, such as ORAI1, may contribute to a compensatory mechanism for calcium signaling in these cells. We demonstrate that TRPV5 KO B cells have impaired spreading and contraction in response to membrane-bound antigen. Consistent with this, TRPV5 KO B cells have reduced BCR signaling measured through phospho-tyrosine residues. Lastly, we also found that TRPV5 is important for early T-dependent antigen specific responses post-immunization. Discussion Thus, our findings identify a role for TRPV5 in BCR signaling and B-cell activation.
Collapse
Affiliation(s)
- Trisha Mahtani
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Hena Sheth
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - L. K. Smith
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Leshawn Benedict
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Aurelie Brecier
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Bebhinn Treanor
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Abstract
The insulin receptor (IR) is a type II receptor tyrosine kinase that plays essential roles in metabolism, growth, and proliferation. Dysregulation of IR signaling is linked to many human diseases, such as diabetes and cancers. The resolution revolution in cryo-electron microscopy has led to the determination of several structures of IR with different numbers of bound insulin molecules in recent years, which have tremendously improved our understanding of how IR is activated by insulin. Here, we review the insulin-induced activation mechanism of IR, including (a) the detailed binding modes and functions of insulin at site 1 and site 2 and (b) the insulin-induced structural transitions that are required for IR activation. We highlight several other key aspects of the activation and regulation of IR signaling and discuss the remaining gaps in our understanding of the IR activation mechanism and potential avenues of future research.
Collapse
Affiliation(s)
- Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA;
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
5
|
Folguieri MS, Franco ATB, Vieira AS, Gontijo JAR, Boer PA. Transcriptome and morphological analysis on the heart in gestational protein-restricted aging male rat offspring. Front Cell Dev Biol 2022; 10:892322. [PMID: 36353510 PMCID: PMC9638007 DOI: 10.3389/fcell.2022.892322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/10/2022] [Indexed: 09/08/2024] Open
Abstract
Background: Adverse factors that influence embryo/fetal development are correlated with increased risk of cardiovascular disease (CVD), type-2 diabetes, arterial hypertension, obesity, insulin resistance, impaired kidney development, psychiatric disorders, and enhanced susceptibility to oxidative stress and inflammatory processes in adulthood. Human and experimental studies have demonstrated a reciprocal relationship between birthweight and cardiovascular diseases, implying intrauterine adverse events in the onset of these abnormalities. In this way, it is plausible that confirmed functional and morphological heart changes caused by gestational protein restriction could be related to epigenetic effects anticipating cardiovascular disorders and reducing the survival time of these animals. Methods: Wistar rats were divided into two groups according to the protein diet content offered during the pregnancy: a normal protein diet (NP, 17%) or a Low-protein diet (LP, 6%). The arterial pressure was measured, and the cardiac mass, cardiomyocytes area, gene expression, collagen content, and immunostaining of proteins were performed in the cardiac tissue of male 62-weeks old NP compared to LP offspring. Results: In the current study, we showed a low birthweight followed by catch-up growth phenomena associated with high blood pressure development, increased heart collagen content, and cardiomyocyte area in 62-week-old LP offspring. mRNA sequencing analysis identified changes in the expression level of 137 genes, considering genes with a p-value < 0.05. No gene was. Significantly changed according to the adj-p-value. After gene-to-gene biological evaluation and relevance, the study demonstrated significant differences in genes linked to inflammatory activity, oxidative stress, apoptosis process, autophagy, hypertrophy, and fibrosis pathways resulting in heart function disorders. Conclusion: The present study suggests that gestational protein restriction leads to early cardiac diseases in the LP progeny. It is hypothesized that heart dysfunction is associated with fibrosis, myocyte hypertrophy, and multiple abnormal gene expression. Considering the above findings, it may suppose a close link between maternal protein restriction, specific gene expression, and progressive heart failure.
Collapse
Affiliation(s)
- Marina S. Folguieri
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas, Brazil
| | - Ana Teresa Barufi Franco
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas, Brazil
| | - André Schwambach Vieira
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas (UNICAMP), Campinas, Brazil
| | - José Antonio Rocha Gontijo
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas, Brazil
| | - Patricia Aline Boer
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas, Brazil
| |
Collapse
|
6
|
Abstract
The molecular mechanisms of cellular insulin action have been the focus of much investigation since the discovery of the hormone 100 years ago. Insulin action is impaired in metabolic syndrome, a condition known as insulin resistance. The actions of the hormone are initiated by binding to its receptor on the surface of target cells. The receptor is an α2β2 heterodimer that binds to insulin with high affinity, resulting in the activation of its tyrosine kinase activity. Once activated, the receptor can phosphorylate a number of intracellular substrates that initiate discrete signaling pathways. The tyrosine phosphorylation of some substrates activates phosphatidylinositol-3-kinase (PI3K), which produces polyphosphoinositides that interact with protein kinases, leading to activation of the kinase Akt. Phosphorylation of Shc leads to activation of the Ras/MAP kinase pathway. Phosphorylation of SH2B2 and of Cbl initiates activation of G proteins such as TC10. Activation of Akt and other protein kinases produces phosphorylation of a variety of substrates, including transcription factors, GTPase-activating proteins, and other kinases that control key metabolic events. Among the cellular processes controlled by insulin are vesicle trafficking, activities of metabolic enzymes, transcriptional factors, and degradation of insulin itself. Together these complex processes are coordinated to ensure glucose homeostasis.
Collapse
|
7
|
Cheung RA, Kraft AM, Petty HR. Relocation of phosphofructokinases within epithelial cells is a novel event preceding breast cancer recurrence that accurately predicts patient outcomes. Am J Physiol Cell Physiol 2021; 321:C654-C670. [PMID: 34348486 DOI: 10.1152/ajpcell.00176.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Although recurrent cancers are often aggressive, little is known about the intracellular events required for cancer recurrences. Due to this lack of mechanistic information, there is no test to predict cancer recurrences or non-recurrences during early stages of disease. In this retrospective study, we use ductal carcinoma in situ (DCIS) of the breast as a framework to better understand the mechanism of cancer recurrences using patient outcomes as the physiological observable. Conventional pathology slides were labeled with anti-phosphofructokinase type L (PFKL) and anti-phosphofructokinase/fructose-2,6-bisphosphatase type 4 (PFKFB4) reagents. PFKL and PFKFB4 were found in ductal epithelial cell nucleoli from DCIS samples of women who did not experience a cancer recurrence. In contrast, PFKL and PFKFB4 may be found near the plasma membrane in samples from patients who will develop recurrent cancer. Using machine learning to predict patient outcomes, holdout studies of individual patient micrographs for the three biomarkers PFKL, PFKFB4, and phosphorylated GLUT1 demonstrated 38.6% true negatives, 49.5% true positives, 11.9% false positives and 0% false negatives (N=101). A sub-population of recurrent samples demonstrated PFKL, PFKFB4, and phosphorylated glucose transporter 1 accumulation at the apical surface of epithelial cells, suggesting that carbohydrates can be harvested from the ducts' luminal spaces as an energy source. We suggest that PFK isotype patterns are metabolic switches representing key mechanistic steps of recurrences. Furthermore, PFK enzyme patterns within epithelial cells contribute to an accurate diagnostic test to classify DCIS patients as high or low recurrence risk.
Collapse
Affiliation(s)
- Richard A Cheung
- Dept. of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Alexandra M Kraft
- Dept. of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Howard R Petty
- Dept. of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Love KM, Jahn LA, Hartline LM, Patrie JT, Barrett EJ, Liu Z. Insulin-mediated muscle microvascular perfusion and its phenotypic predictors in humans. Sci Rep 2021; 11:11433. [PMID: 34075130 PMCID: PMC8169863 DOI: 10.1038/s41598-021-90935-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/12/2021] [Indexed: 11/22/2022] Open
Abstract
Insulin increases muscle microvascular perfusion and enhances tissue insulin and nutrient delivery. Our aim was to determine phenotypic traits that foretell human muscle microvascular insulin responses. Hyperinsulinemic euglycemic clamps were performed in 97 adult humans who were lean and healthy, had class 1 obesity without comorbidities, or controlled type 1 diabetes without complications. Insulin-mediated whole-body glucose disposal rates (M-value) and insulin-induced changes in muscle microvascular blood volume (ΔMBV) were determined. Univariate and multivariate analyses were conducted to examine bivariate and multivariate relationships between outcomes, ΔMBV and M-value, and predictor variables, body mass index (BMI), total body weight (WT), percent body fat (BF), lean body mass, blood pressure, maximum consumption of oxygen (VO2max), plasma LDL (LDL-C) and HDL cholesterol, triglycerides (TG), and fasting insulin (INS) levels. Among all factors, only M-value (r = 0.23, p = 0.02) and VO2max (r = 0.20, p = 0.047) correlated with ΔMBV. Conversely, INS (r = - 0.48, p ≤ 0.0001), BF (r = - 0.54, p ≤ 0.001), VO2max (r = 0.5, p ≤ 0.001), BMI (r = - 0.40, p < 0.001), WT (r = - 0.33, p = 0.001), LDL-C (r = - 0.26, p = 0.009), TG (r = - 0.25, p = 0.012) correlated with M-value. While both ΔMBV (p = 0.045) and TG (p = 0.03) provided significant predictive information about M-value in the multivariate regression model, only M-value was uniquely predictive of ΔMBV (p = 0.045). Thus, both M-value and VO2max correlated with ΔMBV but only M-value provided unique predictive information about ΔMBV. This suggests that metabolic and microvascular insulin responses are important predictors of one another, but most metabolic insulin resistance predictors do not predict microvascular insulin responses.
Collapse
Affiliation(s)
- Kaitlin M Love
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Linda A Jahn
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Lee M Hartline
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - James T Patrie
- Department of Public Health Sciences, University of Virginia Health System, Charlottesville, VA, USA
| | - Eugene J Barrett
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.
| |
Collapse
|
9
|
Class IA PI3K regulatory subunits: p110-independent roles and structures. Biochem Soc Trans 2021; 48:1397-1417. [PMID: 32677674 PMCID: PMC7458397 DOI: 10.1042/bst20190845] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
The phosphatidylinositol 3-kinase (PI3K) pathway is a critical regulator of many cellular processes including cell survival, growth, proliferation and motility. Not surprisingly therefore, the PI3K pathway is one of the most frequently mutated pathways in human cancers. In addition to their canonical role as part of the PI3K holoenzyme, the class IA PI3K regulatory subunits undertake critical functions independent of PI3K. The PI3K regulatory subunits exist in excess over the p110 catalytic subunits and therefore free in the cell. p110-independent p85 is unstable and exists in a monomer-dimer equilibrium. Two conformations of dimeric p85 have been reported that are mediated by N-terminal and C-terminal protein domain interactions, respectively. The role of p110-independent p85 is under investigation and it has been found to perform critical adaptor functions, sequestering or influencing compartmentalisation of key signalling proteins. Free p85 has roles in glucose homeostasis, cellular stress pathways, receptor trafficking and cell migration. As a regulator of fundamental pathways, the amount of p110-independent p85 in the cell is critical. Factors that influence the monomer-dimer equilibrium of p110-independent p85 offer additional control over this system, disruption to which likely results in disease. Here we review the current knowledge of the structure and functions of p110-independent class IA PI3K regulatory subunits.
Collapse
|
10
|
Chakraborty C, Sharma AR, Sharma G, Lee SS. Comparative Analysis and Molecular Evolution of Class I PI3K Regulatory Subunit p85α Reveal the Structural Similarity Between nSH2 and cSH2 Domains. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Gregnani MF, Hungaro TG, Martins-Silva L, Bader M, Araujo RC. Bradykinin B2 Receptor Signaling Increases Glucose Uptake and Oxidation: Evidence and Open Questions. Front Pharmacol 2020; 11:1162. [PMID: 32848770 PMCID: PMC7417865 DOI: 10.3389/fphar.2020.01162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/17/2020] [Indexed: 12/21/2022] Open
Abstract
The Kinin B2 receptor (B2R) is classically involved in vasodilation and inflammatory responses. However, through the observation of hypoglycemic effects of Angiotensin-I-Converting Enzyme (ACE) inhibitors, this protein has been related to metabolic glucose modulation in physiological and pathophysiological contexts. Although several studies have evaluated this matter, the different methodologies and models employed, combined with the distinct target organs, results in a challenge to summarize and apply the knowledge in this field. Therefore, this review aims to compile human and animal data in order to provide a big picture about what is already known regarding B2R and glucose metabolism, as well to suggest pending investigation issues aiming at evaluating the role of B2R in relation to glucose metabolism in homeostatic situations and metabolic disturbances. The data indicate that B2R signaling is involved mainly in glucose uptake in skeletal muscle and adipose tissue, acting as a synergic player beside insulin. However, most data indicate that B2R induces increased glucose oxidation, instead of storage, via activation of a broad signaling cascade involving Nitric Oxide (NO) and cyclic-GMP dependent protein kinase (PKG). Additionally, we highlight that this modulation is impaired in metabolic disturbances such as diabetes and obesity, and we provide a hypothetic mechanism to explain this blockade in light of literature data provided for this review, as well as other authors.
Collapse
Affiliation(s)
- Marcos Fernandes Gregnani
- Laboratory of Genetic and Metabolism of Exercise, Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil.,Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Talita G Hungaro
- Laboratory of Genetic and Metabolism of Exercise, Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil.,Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | | | - Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,Institute for Biology, University of Lübeck, Lübeck, Germany.,Charité University Medicine, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Ronaldo C Araujo
- Laboratory of Genetic and Metabolism of Exercise, Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Getmantseva LV, Bakoev SY, Shevtsova VS, Kolosov AY, Bakoev NF, Kolosova MA. Assessing the Effect of SNPs on Litter Traits in Pigs. SCIENTIFICA 2020; 2020:5243689. [PMID: 32802554 PMCID: PMC7414332 DOI: 10.1155/2020/5243689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
The reproductive ability of sows is the principle of continuous and efficient production, based on such traits as the number of piglets, the total number of parities, and the period of economic use. Currently, SNPs associated with the TNB and NBA are presented in the PigQTLdb. The aim of this work was the assessment of the SNP effects on the litter traits in Large White (LW, n = 502) and Landrace (LN, n = 432) sow breeds in a farm in Russia. 9 SNPs (SNP_1: rs80956812; SNP_2: rs81471381; SNP_3: rs80891106; SNP_4: rs81399474; SNP_5: rs81421148; SNP_6: rs81242222; SNP_7: rs81319839; SNP_8: rs81312912; SNP_9: rs80962240) were selected for the study. Associative analysis was performed using the GLM procedure in R version 3.5.1. The analysis of reproductive traits was carried out according to the results of the first parity, the second and subsequent parities, and totals for lifetime of sows. The significant effect on litter traits in LW was determined for SNP rs80956812, SNP rs81471381, SNP rs81421148, and SNP rs81399474. The significant effect on litter traits in LN was determined for SNP rs81421148 and SNP rs81319839. AKT3 gene was identified as perspective candidate gene, whose biological functions, as well as the results obtained in our work and in other studies, indicate its potential role in the reproductive process regulation in pigs. In general, the data obtained help to explain the genetic mechanisms of reproductive traits.
Collapse
Affiliation(s)
- Lyubov V. Getmantseva
- Federal Science Center for Animal Husbandry named after Academy Member L.K. Ernst, Dubrovitsy 142132, Russia
| | - Siroj Yu Bakoev
- Federal Science Center for Animal Husbandry named after Academy Member L.K. Ernst, Dubrovitsy 142132, Russia
| | | | - Anatoly Yu Kolosov
- Federal Science Center for Animal Husbandry named after Academy Member L.K. Ernst, Dubrovitsy 142132, Russia
- Don State Agrarian University, Persianovski 346493, Russia
| | - Neckruz F. Bakoev
- Federal Science Center for Animal Husbandry named after Academy Member L.K. Ernst, Dubrovitsy 142132, Russia
| | - Maria A. Kolosova
- Southern Federal University, Rostov-on-Don 344006, Russia
- Don State Agrarian University, Persianovski 346493, Russia
| |
Collapse
|
13
|
Dual Function of PI(4,5)P2 in Insulin-Regulated Exocytic Trafficking of GLUT4 in Adipocytes. J Mol Biol 2020; 432:4341-4357. [DOI: 10.1016/j.jmb.2020.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 11/17/2022]
|
14
|
Oakie A, Zhou L, Rivers S, Cheung C, Li J, Wang R. Postnatal knockout of beta cell insulin receptor impaired insulin secretion in male mice exposed to high-fat diet stress. Mol Cell Endocrinol 2020; 499:110588. [PMID: 31541682 DOI: 10.1016/j.mce.2019.110588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/28/2019] [Accepted: 09/16/2019] [Indexed: 01/19/2023]
Abstract
The presence of insulin receptor (IR) on insulin-secreting beta cells suggests an autocrine regulatory role for insulin in its own signalling. Congenital beta cell-specific IR knockout (βIRKO) mouse studies have demonstrated the development of age-dependent glucose intolerance. We investigated the role of beta cell IR signalling specifically during postnatal life following undisturbed prenatal pancreatic development and maturation. We utilized a tamoxifen-inducible mouse insulin 1 promoter (MIP) driven Cre recombinase IR knockout mouse model (MIP-βIRKO) to achieve partial knockout of IR in islets and determine the functional role of beta cell IR in adult mice fed a control normal diet (ND) or 60% high-fat diet (HFD). At 24 weeks of age, MIP-βIRKO ND mice maintained glucose tolerance, insulin release, and unchanged beta cell mass when compared to control ND mice. In contrast, 24-week-old MIP-βIRKO mice demonstrated significant glucose intolerance and lower insulin release after 18 weeks of HFD feeding. A reduction in beta cell soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein expression, phosphorylated AktS473 and P70S6K1T389, and glucose transporter 2 (GLUT2) expression were also identified in MIP-βIRKO HFD islets. Overall, the postnatal knockout of beta cell IR in HFD-fed mice resulted in decreased expression of beta cell glucose-sensing and exocytotic proteins and a reduction in intracellular signalling. These findings highlight that IR expression in the adult islet is required to maintain beta cell function under hyperglycemic stress.
Collapse
Affiliation(s)
- Amanda Oakie
- Children's Health Research Institute, University of Western Ontario, London, ON, N6C 2V5, Canada; Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON, N6C 2V5, Canada
| | - Liangyi Zhou
- Children's Health Research Institute, University of Western Ontario, London, ON, N6C 2V5, Canada; Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON, N6C 2V5, Canada
| | - Sydney Rivers
- Children's Health Research Institute, University of Western Ontario, London, ON, N6C 2V5, Canada; Department of Physiology and Pharmacology, and University of Western Ontario, London, ON, N6C 2V5, Canada
| | - Christy Cheung
- Children's Health Research Institute, University of Western Ontario, London, ON, N6C 2V5, Canada; Department of Physiology and Pharmacology, and University of Western Ontario, London, ON, N6C 2V5, Canada
| | - Jinming Li
- Children's Health Research Institute, University of Western Ontario, London, ON, N6C 2V5, Canada; Department of Physiology and Pharmacology, and University of Western Ontario, London, ON, N6C 2V5, Canada
| | - Rennian Wang
- Children's Health Research Institute, University of Western Ontario, London, ON, N6C 2V5, Canada; Department of Physiology and Pharmacology, and University of Western Ontario, London, ON, N6C 2V5, Canada; Department of Medicine, University of Western Ontario, London, ON, N6C 2V5, Canada.
| |
Collapse
|
15
|
|
16
|
Sullivan CR, Mielnik CA, O'Donovan SM, Funk AJ, Bentea E, DePasquale EA, Alganem K, Wen Z, Haroutunian V, Katsel P, Ramsey AJ, Meller J, McCullumsmith RE. Connectivity Analyses of Bioenergetic Changes in Schizophrenia: Identification of Novel Treatments. Mol Neurobiol 2019; 56:4492-4517. [PMID: 30338483 PMCID: PMC7584383 DOI: 10.1007/s12035-018-1390-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/11/2018] [Indexed: 01/21/2023]
Abstract
We utilized a cell-level approach to examine glycolytic pathways in the DLPFC of subjects with schizophrenia (n = 16) and control (n = 16) and found decreased mRNA expression of glycolytic enzymes in pyramidal neurons, but not astrocytes. To replicate these novel bioenergetic findings, we probed independent datasets for bioenergetic targets and found similar abnormalities. Next, we used a novel strategy to build a schizophrenia bioenergetic profile by a tailored application of the Library of Integrated Network-Based Cellular Signatures data portal (iLINCS) and investigated connected cellular pathways, kinases, and transcription factors using Enrichr. Finally, with the goal of identifying drugs capable of "reversing" the bioenergetic schizophrenia signature, we performed a connectivity analysis with iLINCS and identified peroxisome proliferator-activated receptor (PPAR) agonists as promising therapeutic targets. We administered a PPAR agonist to the GluN1 knockdown model of schizophrenia and found it improved long-term memory. Taken together, our findings suggest that tailored bioinformatics approaches, coupled with the LINCS library of transcriptional signatures of chemical and genetic perturbagens, may be employed to identify novel treatment strategies for schizophrenia and related diseases.
Collapse
Affiliation(s)
| | - Catharine A Mielnik
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | | | - Adam J Funk
- Department of Neuroscience, University of Toledo, Toledo, OH, USA
| | - Eduard Bentea
- Neurosciences TA Biology, UCB BioPharma SPRL, Braine-l'Alleud, Belgium
| | - Erica A DePasquale
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Khaled Alganem
- Department of Neuroscience, University of Toledo, Toledo, OH, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Vahram Haroutunian
- Department of Psychiatry and Neuroscience, The Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
| | - Pavel Katsel
- Department of Psychiatry and Neuroscience, The Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
| | - Amy J Ramsey
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jarek Meller
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Informatics, Nicolaus Copernicus University, Torun, Poland
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | |
Collapse
|
17
|
Cheng F, Han L, Xiao Y, Pan C, Li Y, Ge X, Zhang Y, Yan S, Wang M. d- chiro-Inositol Ameliorates High Fat Diet-Induced Hepatic Steatosis and Insulin Resistance via PKCε-PI3K/AKT Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5957-5967. [PMID: 31066268 DOI: 10.1021/acs.jafc.9b01253] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
d- chiro-Inositol (DCI) is a biologically active component found in tartary buckwheat, which can reduce hyperglycemia and ameliorate insulin resistance. However, the mechanism underlying the antidiabetic effects of DCI remains largely unclear. This study investigated the effects and underlying molecular mechanisms of DCI on hepatic gluconeogenesis in mice fed a high fat diet and saturated palmitic acid-treated hepatocytes. DCI attenuated free fatty acid uptake by the liver via lipid trafficking inhibition, reduced diacylglycerol deposition, and hepatic PKCε translocation. Thus, DCI could improve insulin sensitivity by suppressing hepatic gluconeogenesis. Subsequent analyses revealed that DCI decreased hepatic glucose output and the expression levels of PEPCK and G6 Pase in insulin resistant mice through PKCε-IRS/PI3K/AKT signaling pathway. Likewise, such effects of DCI were confirmed in HepG2 cells with palmitate-induced insulin resistance. These findings indicate a novel pathway by which DCI prevents hepatic gluconeogenesis, reduces lipid deposition, and ameliorates insulin resistance via regulation of PKCε-PI3K/AKT axis.
Collapse
Affiliation(s)
- Feier Cheng
- College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Lin Han
- College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Yao Xiao
- College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Chuanying Pan
- College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Yunlong Li
- Institute of Agricultural Products Processing , Shanxi Academy of Agriculture Sciences , Taiyuan 030031 , People's Republic of China
| | - Xinhui Ge
- College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Yao Zhang
- College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Shaoqing Yan
- College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Min Wang
- College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| |
Collapse
|
18
|
Pacheco NCS, de Almeida APC, de Siqueira KC, de Lima FM, Reis SRDL, Latorraca MQ, Stoppiglia LF. Nutritional recovery with a soybean diet impaired the glucagon response but did not alter liver gluconeogenesis in the adult offspring of rats deprived of protein during pregnancy and lactation. Appl Physiol Nutr Metab 2019; 44:13-21. [PMID: 29932877 DOI: 10.1139/apnm-2017-0859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nutritional recovery of early malnutrition with a soybean diet reduces liver glycogen stores in the fed state and produces liver insulin resistance. We investigated whether nutritional recovery on a soybean flour diet alters hepatic gluconeogenesis in the adult offspring of rats deprived of protein during pregnancy and lactation. Male rats from mothers that were fed either 17% (C) or 6% (L) protein during pregnancy and lactation were maintained on a 17% casein (CC, n = 16 and LC, n = 17), 17% soybean flour (CS, n = 10 and LS, n = 10), or 6% casein (LL, n = 10) diet after weaning. The soybean diet reduced basal serum glucose (soybean diet, 5.6 ± 0.6 mmol/L vs. casein diet, 6.2 ± 0.6 mmol/L; p < 0.05) but increased alanine aminotransferase mRNA/GAPDH (soybean diet, 0.062 ± 0.038 vs. casein diet, 0.024 ± 0.011; p < 0.01), phosphoenolpyruvate carboxykinase mRNA/GAPDH (soybean diet, 1.53 ± 0.52 vs. casein diet, 0.95 ± 0.43; p < 0.05), and glycerokinase protein content (soybean diet, 0.86 ± 0.08 vs. casein diet, 0.75 ± 0.11; p < 0.05). The serum glucose concentration (recovered groups, 5.6 ± 0.5 mmol/L vs. control groups, 6.2 ± 0.7 mmol/L; p < 0.05) and phosphoenolpyruvate carboxykinase activity (recovered groups, 2.8 ± 0.6 μU/mg vs. control groups, 3.6 ± 0.6 μU/mg; p < 0.05) were decreased in rats subjected to protein restriction in early life. The glucose area under the curve during the pyruvate tolerance test did not differ among groups, whereas glucose area under the curve after glucagon infusion was reduced by early malnutrition (recovered groups, 4210 ± 572 mg/dL·40 min vs. control groups, 4493 ± 688 mg/dL·40 min; p < 0.001) and by the soybean diet (soybean diet, 3995 ± 500 mg/dL·40 min vs. casein diet, 4686 ± 576 mg/dL·40 min; p < 0.05). Thus, the soybean diet impaired the response to glucagon but did not alter gluconeogenesis.
Collapse
Affiliation(s)
- Nelma Cristina Silva Pacheco
- a Mestrado em Biociências, Faculdade de Nutrição, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil
| | - Ana Paula Carli de Almeida
- a Mestrado em Biociências, Faculdade de Nutrição, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil
| | - Kariny Cássia de Siqueira
- a Mestrado em Biociências, Faculdade de Nutrição, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil
| | - Faena Moura de Lima
- a Mestrado em Biociências, Faculdade de Nutrição, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil
| | - Sílvia Regina de Lima Reis
- b Departamento de Alimentos Nutrição, Faculdade de Nutrição, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil
| | - Márcia Queiroz Latorraca
- b Departamento de Alimentos Nutrição, Faculdade de Nutrição, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil
| | - Luiz Fabrizio Stoppiglia
- c Departamento de Psicologia, Instituto de Educação, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil
| |
Collapse
|
19
|
Cinnamaldehyde ameliorates STZ-induced rat diabetes through modulation of IRS1/PI3K/AKT2 pathway and AGEs/RAGE interaction. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:243-258. [DOI: 10.1007/s00210-018-1583-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022]
|
20
|
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018; 98:2133-2223. [PMID: 30067154 PMCID: PMC6170977 DOI: 10.1152/physrev.00063.2017] [Citation(s) in RCA: 1700] [Impact Index Per Article: 242.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022] Open
Abstract
The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
Collapse
Affiliation(s)
- Max C Petersen
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
21
|
Zieger K, Weiner J, Krause K, Schwarz M, Kohn M, Stumvoll M, Blüher M, Heiker JT. Vaspin suppresses cytokine-induced inflammation in 3T3-L1 adipocytes via inhibition of NFκB pathway. Mol Cell Endocrinol 2018; 460:181-188. [PMID: 28756250 DOI: 10.1016/j.mce.2017.07.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/13/2017] [Accepted: 07/24/2017] [Indexed: 01/06/2023]
Abstract
Vaspin expression is increased in white adipose tissue (WAT) of diet-induced obese mice and rats and is supposed to compensate HFD-induced inflammatory processes and insulin resistance in adipose tissue by counteracting pro-inflammatory gene expression in obesity. Multiple studies have also demonstrated strong anti-inflammatory effects in vascular and skin cells. Here, we used vaspin treated 3T3-L1 murine adipocytes as well as 3T3-L1 cells with stable vaspin expression to investigate the effect of exogenous and endogenous vaspin on inflammatory processes and insulin signaling in adipocytes. Our stably transfected cells secreted significant amounts of vaspin which was in the physiological range of ∼0.5 ng/ml in cell supernatants. Adipocyte differentiation was not affected by vaspin as expression of adipogenic marker genes as well as lipid accumulation after full differentiation was similar to control cells. We found that IL-1β induced expression and secretion of pro-inflammatory cytokines, such as IL-6, MCP1 and TNFα was significantly blunted in vaspin expressing 3T3-L1 cells. Treatment of 3T3-L1 cells with exogenous vaspin resulted in reduced cytokine-induced activation of the intracellular and pro-inflammatory NFκB signaling cascades (IKKα/β, IκB and NFκB). Moreover, endogenous vaspin positively affected insulin signaling by increasing insulin-stimulated phosphorylation of the key mediator protein kinase B (AKT). Together, we demonstrate anti-inflammatory effects of vaspin in 3T3-L1 adipocytes as well as increased insulin signaling by endogenous expression or exogenous treatment. The results provide evidence for potent anti-inflammatory action of vaspin not only in vascular cells but also in adipose tissue.
Collapse
Affiliation(s)
- Konstanze Zieger
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Juliane Weiner
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany; Divisions of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
| | - Kerstin Krause
- Divisions of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
| | - Maximilian Schwarz
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Martin Kohn
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Divisions of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Divisions of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany; IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - John T Heiker
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany; Divisions of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany; IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
22
|
Muñoz VR, Gaspar RC, Kuga GK, da Rocha AL, Crisol BM, Botezelli JD, Baptista IL, Mekary RA, da Silva ASR, Cintra DE, de Moura LP, Ropelle ER, Pauli JR. Exercise increases Rho-kinase activity and insulin signaling in skeletal muscle. J Cell Physiol 2018; 233:4791-4800. [PMID: 29219181 DOI: 10.1002/jcp.26278] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Vitor R. Muñoz
- Laboratory of Molecular Biology of Exercise; University of Campinas (UNICAMP); Limeira São Paulo Brazil
| | - Rafael C. Gaspar
- Laboratory of Molecular Biology of Exercise; University of Campinas (UNICAMP); Limeira São Paulo Brazil
| | - Gabriel K. Kuga
- Laboratory of Molecular Biology of Exercise; University of Campinas (UNICAMP); Limeira São Paulo Brazil
| | - Alisson L. da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance,; Ribeirão Preto Medical School, USP; Ribeirão Preto São Paulo Brazil
- School of Physical Education and Sport of Ribeirão Preto; University of São Paulo (USP); Ribeirão Preto São Paulo Brazil
| | - Barbara M. Crisol
- Laboratory of Molecular Biology of Exercise; University of Campinas (UNICAMP); Limeira São Paulo Brazil
| | - José D. Botezelli
- Laboratory of Molecular Biology of Exercise; University of Campinas (UNICAMP); Limeira São Paulo Brazil
| | - Igor L. Baptista
- Laboratory of Cell and Tissue Biology; University of Campinas (UNICAMP); Limeira São Paulo Brazil
| | - Rania A. Mekary
- Department of Nutrition; Harvard T. Chan School of Public Health; Boston Massachusetts
- Department of Pharmaceutical Business and Administrative Sciences; MCPHS University; Boston Massachusetts
| | - Adelino S. R. da Silva
- Laboratory of Cell and Tissue Biology; University of Campinas (UNICAMP); Limeira São Paulo Brazil
| | - Dennys E. Cintra
- Laboratory of Nutritional Genomics; University of Campinas (UNICAMP); Limeira São Paulo Brazil
- OCRC - Obesity and Comorbidities Research Center; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Leandro P. de Moura
- Laboratory of Molecular Biology of Exercise; University of Campinas (UNICAMP); Limeira São Paulo Brazil
- OCRC - Obesity and Comorbidities Research Center; University of Campinas (UNICAMP); Campinas São Paulo Brazil
- CEPECE - Center of Research in Sport Sciences. School of Applied Sciences; University of Campinas (UNICAMP); Limeira São Paulo Brazil
| | - Eduardo R. Ropelle
- Laboratory of Molecular Biology of Exercise; University of Campinas (UNICAMP); Limeira São Paulo Brazil
- OCRC - Obesity and Comorbidities Research Center; University of Campinas (UNICAMP); Campinas São Paulo Brazil
- CEPECE - Center of Research in Sport Sciences. School of Applied Sciences; University of Campinas (UNICAMP); Limeira São Paulo Brazil
| | - José R. Pauli
- Laboratory of Molecular Biology of Exercise; University of Campinas (UNICAMP); Limeira São Paulo Brazil
- OCRC - Obesity and Comorbidities Research Center; University of Campinas (UNICAMP); Campinas São Paulo Brazil
- CEPECE - Center of Research in Sport Sciences. School of Applied Sciences; University of Campinas (UNICAMP); Limeira São Paulo Brazil
| |
Collapse
|
23
|
Transcriptomics Analysis on Excellent Meat Quality Traits of Skeletal Muscles of the Chinese Indigenous Min Pig Compared with the Large White Breed. Int J Mol Sci 2017; 19:ijms19010021. [PMID: 29271915 PMCID: PMC5795972 DOI: 10.3390/ijms19010021] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/16/2017] [Accepted: 12/16/2017] [Indexed: 11/16/2022] Open
Abstract
The Min pig (Sus scrofa) is a well-known indigenous breed in China. One of its main advantages over European breeds is its high meat quality. Additionally, different cuts of pig also show some different traits of meat quality. To explore the underlying mechanism responsible for the differences of meat quality between different breeds or cuts, the longissimus dorsi muscle (LM) and the biceps femoris muscle (BF) from Min and Large White pigs were investigated using transcriptome analysis. The gene expression profiling identified 1371 differentially expressed genes (DEGs) between LM muscles from Min and Large White pigs, and 114 DEGs between LM and BF muscles from the same Min pigs. Gene Ontology (GO) enrichment of biological functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the gene products were mainly involved in the IRS1/Akt/FoxO1 signaling pathway, adenosine 5′-monophosphate-activated protein kinase (AMPK) cascade effects, lipid metabolism and amino acid metabolism pathway. Such pathways contributed to fatty acid metabolism, intramuscular fat deposition, and skeletal muscle growth in Min pig. These results give an insight into the mechanisms underlying the formation of skeletal muscle and provide candidate genes for improving meat quality. It will contribute to improving meat quality of pigs through molecular breeding.
Collapse
|
24
|
Chaudhary N, Gonzalez E, Chang SH, Geng F, Rafii S, Altorki NK, McGraw TE. Adenovirus Protein E4-ORF1 Activation of PI3 Kinase Reveals Differential Regulation of Downstream Effector Pathways in Adipocytes. Cell Rep 2017; 17:3305-3318. [PMID: 28009298 DOI: 10.1016/j.celrep.2016.11.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 10/05/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022] Open
Abstract
Insulin activation of phosphatidylinositol 3-kinase (PI3K) regulates metabolism, including the translocation of the Glut4 glucose transporter to the plasma membrane and inactivation of the FoxO1 transcription factor. Adenoviral protein E4-ORF1 stimulates cellular glucose metabolism by mimicking growth-factor activation of PI3K. We have used E4-ORF1 as a tool to dissect PI3K-mediated signaling in adipocytes. E4-ORF1 activation of PI3K in adipocytes recapitulates insulin regulation of FoxO1 but not regulation of Glut4. This uncoupling of PI3K effects occurs despite E4-ORF1 activating PI3K and downstream signaling to levels achieved by insulin. Although E4-ORF1 does not fully recapitulate insulin's effects on Glut4, it enhances insulin-stimulated insertion of Glut4-containing vesicles to the plasma membrane independent of Rab10, a key regulator of Glut4 trafficking. E4-ORF1 also stimulates plasma membrane translocation of ubiquitously expressed Glut1 glucose transporter, an effect that is likely essential for E4-ORF1 to promote an anabolic metabolism in a broad range of cell types.
Collapse
Affiliation(s)
- Natasha Chaudhary
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Eva Gonzalez
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sung-Hee Chang
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Fuqiang Geng
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shahin Rafii
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY 10065, USA; Lung Cancer Program, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Timothy E McGraw
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY 10065, USA; Lung Cancer Program, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
25
|
Zheng F, Sheng N, Zhang H, Yan S, Zhang J, Wang J. Perfluorooctanoic acid exposure disturbs glucose metabolism in mouse liver. Toxicol Appl Pharmacol 2017; 335:41-48. [DOI: 10.1016/j.taap.2017.09.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 01/09/2023]
|
26
|
GH/IGF-I/insulin system in centenarians. Mech Ageing Dev 2017; 165:107-114. [DOI: 10.1016/j.mad.2016.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/10/2016] [Accepted: 12/03/2016] [Indexed: 01/21/2023]
|
27
|
Insulin signalling and glucose transport in the ovary and ovarian function during the ovarian cycle. Biochem J 2017; 473:1483-501. [PMID: 27234585 PMCID: PMC4888492 DOI: 10.1042/bcj20160124] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/03/2016] [Indexed: 12/16/2022]
Abstract
Data derived principally from peripheral tissues (fat, muscle and liver) show that insulin signals via diverse interconnecting intracellular pathways and that some of the major intersecting points (known as critical nodes) are the IRSs (insulin receptor substrates), PI3K (phosphoinositide kinase)/Akt and MAPK (mitogen-activated protein kinase). Most of these insulin pathways are probably also active in the ovary and their ability to interact with each other and also with follicle-stimulating hormone (FSH) and luteinizing hormone (LH) signalling pathways enables insulin to exert direct modulating influences on ovarian function. The present paper reviews the intracellular actions of insulin and the uptake of glucose by ovarian tissues (granulosa, theca and oocyte) during the oestrous/menstrual cycle of some rodent, primate and ruminant species. Insulin signals through diverse pathways and these are discussed with specific reference to follicular cell types (granulosa, theca and oocyte). The signalling pathways for FSH in granulosa cells and LH in granulosa and theca cells are summarized. The roles of glucose and of insulin-mediated uptake of glucose in folliculogenesis are discussed. It is suggested that glucose in addition to its well-established role of providing energy for cellular function may also have insulin-mediated signalling functions in ovarian cells, involving AMPK (AMP-dependent protein kinase) and/or hexosamine. Potential interactions of insulin signalling with FSH or LH signalling at critical nodes are identified and the available evidence for such interactions in ovarian cells is discussed. Finally the action of the insulin-sensitizing drugs metformin and the thiazolidinedione rosiglitazone on follicular cells is reviewed.
Collapse
|
28
|
Di Meo S, Iossa S, Venditti P. Skeletal muscle insulin resistance: role of mitochondria and other ROS sources. J Endocrinol 2017; 233:R15-R42. [PMID: 28232636 DOI: 10.1530/joe-16-0598] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/31/2017] [Indexed: 12/12/2022]
Abstract
At present, obesity is one of the most important public health problems in the world because it causes several diseases and reduces life expectancy. Although it is well known that insulin resistance plays a pivotal role in the development of type 2 diabetes mellitus (the more frequent disease in obese people) the link between obesity and insulin resistance is yet a matter of debate. One of the most deleterious effects of obesity is the deposition of lipids in non-adipose tissues when the capacity of adipose tissue is overwhelmed. During the last decade, reduced mitochondrial function has been considered as an important contributor to 'toxic' lipid metabolite accumulation and consequent insulin resistance. More recent reports suggest that mitochondrial dysfunction is not an early event in the development of insulin resistance, but rather a complication of the hyperlipidemia-induced reactive oxygen species (ROS) production in skeletal muscle, which might promote mitochondrial alterations, lipid accumulation and inhibition of insulin action. Here, we review the literature dealing with the mitochondria-centered mechanisms proposed to explain the onset of obesity-linked IR in skeletal muscle. We conclude that the different pathways leading to insulin resistance may act synergistically because ROS production by mitochondria and other sources can result in mitochondrial dysfunction, which in turn can further increase ROS production leading to the establishment of a harmful positive feedback loop.
Collapse
Affiliation(s)
- Sergio Di Meo
- Department of BiologyUniversity of Naples 'Federico II', Naples, Italy
| | - Susanna Iossa
- Department of BiologyUniversity of Naples 'Federico II', Naples, Italy
| | - Paola Venditti
- Department of BiologyUniversity of Naples 'Federico II', Naples, Italy
| |
Collapse
|
29
|
Zhou X, Shentu P, Xu Y. Spatiotemporal Regulators for Insulin-Stimulated GLUT4 Vesicle Exocytosis. J Diabetes Res 2017; 2017:1683678. [PMID: 28529958 PMCID: PMC5424486 DOI: 10.1155/2017/1683678] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/21/2017] [Accepted: 04/03/2017] [Indexed: 11/30/2022] Open
Abstract
Insulin increases glucose uptake and storage in muscle and adipose cells, which is accomplished through the mobilization of intracellular GLUT4 storage vesicles (GSVs) to the cell surface upon stimulation. Importantly, the dysfunction of insulin-regulated GLUT4 trafficking is strongly linked with peripheral insulin resistance and type 2 diabetes in human. The insulin signaling pathway, key signaling molecules involved, and precise trafficking itinerary of GSVs are largely identified. Understanding the interaction between insulin signaling molecules and key regulatory proteins that are involved in spatiotemporal regulation of GLUT4 vesicle exocytosis is of great importance to explain the pathogenesis of diabetes and may provide new potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaoxu Zhou
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Ping Shentu
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Yingke Xu
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
- *Yingke Xu:
| |
Collapse
|
30
|
Elseweidy MM, Amin RS, Atteia HH, Ali MA. Vitamin D3 intake as regulator of insulin degrading enzyme and insulin receptor phosphorylation in diabetic rats. Biomed Pharmacother 2017; 85:155-159. [PMID: 27930980 DOI: 10.1016/j.biopha.2016.11.116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/27/2016] [Indexed: 02/08/2023] Open
Abstract
Insulin-degrading enzyme (IDE, insulysin) is a rate-limiting enzyme in the insulin degradation process. It is an intracellular 110-kDa thiol zinc-metalloendopeptidase located in the cytosol, peroxisomes, endosomes and cell surface. IDE catalyzes degradation of several small proteins including insulin, amylin and β-amyloid protein. In addition, insulin clearance was expressed as a target in the treatment of type 2 diabetes given the role of hyperinsulinemia in the pathogenesis of insulin resistance. In this study, fourtyadult male Wistar albino rats were used, thirty rats received 20% fructose in drinking water (HFW) for six weeks to induce diabetes. Subsequently, these rats developed significantly higher body weights, dyslipidemia, hyperglycemia and insulin resistance compared to their controls. Significant increase in the levels of serum glucagon, IDE in liver tissue along with an inhibition of insulin receptor phosphorylation were also observed. Concurrent oral administration of vitamin D3 along with HFW resulted in significant decrease of serum glucose, total cholesterol, triacylglycerol and LDL-C levels. Vitamin D alleviated also insulin resistance, where both IDE, glucagon levels showed significant decrease along with activation of insulin receptor phosphorylation. Normal rats, received vitamin D3 only demonstrated non significant changes of the studied biomarkers. We concluded that vitamin D3 ameliorated insulin resistance and hyperinsulinemia in diabetic rat model received HFW through reduction of IDE and activation of insulin receptor phosphorylation.
Collapse
Affiliation(s)
| | - Rawia Sarhan Amin
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Sharkia Gov., Egypt
| | | | - Maha Abdo Ali
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Sharkia Gov., Egypt
| |
Collapse
|
31
|
Liu T, Yu B, Kakino M, Fujimoto H, Ando Y, Hakuno F, Takahashi SI. A novel IRS-1-associated protein, DGKζ regulates GLUT4 translocation in 3T3-L1 adipocytes. Sci Rep 2016; 6:35438. [PMID: 27739494 PMCID: PMC5064357 DOI: 10.1038/srep35438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/29/2016] [Indexed: 12/19/2022] Open
Abstract
Insulin receptor substrates (IRSs) are major targets of insulin receptor tyrosine kinases. Here we identified diacylglycerol kinase zeta (DGKζ) as an IRS-1-associated protein, and examined roles of DGKζ in glucose transporter 4 (GLUT4) translocation to the plasma membrane. When DGKζ was knocked-down in 3T3-L1 adipocytes, insulin-induced GLUT4 translocation was inhibited without affecting other mediators of insulin-dependent signaling. Similarly, knockdown of phosphatidylinositol 4-phosphate 5-kinase 1α (PIP5K1α), which had been reported to interact with DGKζ, also inhibited insulin-induced GLUT4 translocation. Moreover, DGKζ interacted with IRS-1 without insulin stimulation, but insulin stimulation decreased this interaction. Over-expression of sDGKζ (short-form DGKζ), which competed out DGKζ from IRS-1, enhanced GLUT4 translocation without insulin stimulation. Taking these results together with the data showing that cellular PIP5K activity was correlated with GLUT4 translocation ability, we concluded that IRS-1-associated DGKζ prevents GLUT4 translocation in the absence of insulin and that the DGKζ dissociated from IRS-1 by insulin stimulation enhances GLUT4 translocation through PIP5K1α activity.
Collapse
Affiliation(s)
- TingYu Liu
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - BuChin Yu
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Mamoru Kakino
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Hitoshi Fujimoto
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Yasutoshi Ando
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Fumihiko Hakuno
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
32
|
Carter-Su C, Schwartz J, Argetsinger LS. Growth hormone signaling pathways. Growth Horm IGF Res 2016; 28:11-15. [PMID: 26421979 PMCID: PMC7644140 DOI: 10.1016/j.ghir.2015.09.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/26/2015] [Accepted: 09/06/2015] [Indexed: 01/12/2023]
Abstract
Over 20years ago, our laboratory showed that growth hormone (GH) signals through the GH receptor-associated tyrosine kinase JAK2. We showed that GH binding to its membrane-bound receptor enhances binding of JAK2 to the GHR, activates JAK2, and stimulates tyrosyl phosphorylation of both JAK2 and GHR. The activated JAK2/GHR complex recruits a variety of signaling proteins, thereby initiating multiple signaling pathways and cellular responses. These proteins and pathways include: 1) Stat transcription factors implicated in the expression of multiple genes, including the gene encoding insulin-like growth factor 1; 2) Shc adapter proteins that lead to activation of the grb2-SOS-Ras-Raf-MEK-ERK1,2 pathway; 3) insulin receptor substrate proteins implicated in the phosphatidylinositol-3-kinase and Akt pathway; 4) signal regulatory protein α, a transmembrane scaffold protein that recruits proteins including the tyrosine phosphatase SHP2; and 5) SH2B1, a scaffold protein that can activate JAK2 and enhance GH regulation of the actin cytoskeleton. Our recent work has focused on the function of SH2B1. We have shown that SH2B1β is recruited to and phosphorylated by JAK2 in response to GH. SH2B1 localizes to the plasma membrane, cytoplasm and focal adhesions; it also cycles through the nucleus. SH2B1 regulates the actin cytoskeleton and promotes GH-dependent motility of RAW264.7 macrophages. Mutations in SH2B1 have been found in humans exhibiting severe early-onset childhood obesity and insulin resistance. These mutations impair SH2B1 enhancement of GH-induced macrophage motility. As SH2B1 is expressed ubiquitously and is also recruited to a variety of receptor tyrosine kinases, our results raise the possibility that effects of SH2B1 on the actin cytoskeleton in various cell types, including neurons, may play a role in regulating body weight.
Collapse
Affiliation(s)
- Christin Carter-Su
- Departments of Molecular and Integrative Physiology and of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| | - Jessica Schwartz
- Departments of Molecular and Integrative Physiology and of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Lawrence S Argetsinger
- Departments of Molecular and Integrative Physiology and of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| |
Collapse
|
33
|
Xu Y, Nan D, Fan J, Bogan JS, Toomre D. Optogenetic activation reveals distinct roles of PIP3 and Akt in adipocyte insulin action. J Cell Sci 2016; 129:2085-95. [PMID: 27076519 DOI: 10.1242/jcs.174805] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 03/31/2016] [Indexed: 12/26/2022] Open
Abstract
Glucose transporter 4 (GLUT4; also known as SLC2A4) resides on intracellular vesicles in muscle and adipose cells, and translocates to the plasma membrane in response to insulin. The phosphoinositide 3-kinase (PI3K)-Akt signaling pathway plays a major role in GLUT4 translocation; however, a challenge has been to unravel the potentially distinct contributions of PI3K and Akt (of which there are three isoforms, Akt1-Akt3) to overall insulin action. Here, we describe new optogenetic tools based on CRY2 and the N-terminus of CIB1 (CIBN). We used these 'Opto' modules to activate PI3K and Akt selectively in time and space in 3T3-L1 adipocytes. We validated these tools using biochemical assays and performed live-cell kinetic analyses of IRAP-pHluorin translocation (IRAP is also known as LNPEP and acts as a surrogate marker for GLUT4 here). Strikingly, Opto-PIP3 largely mimicked the maximal effects of insulin stimulation, whereas Opto-Akt only partially triggered translocation. Conversely, drug-mediated inhibition of Akt only partially dampened the translocation response of Opto-PIP3 In spatial optogenetic studies, focal targeting of Akt to a region of the cell marked the sites where IRAP-pHluorin vesicles fused, supporting the idea that local Akt-mediated signaling regulates exocytosis. Taken together, these results indicate that PI3K and Akt play distinct roles, and that PI3K stimulates Akt-independent pathways that are important for GLUT4 translocation.
Collapse
Affiliation(s)
- Yingke Xu
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China Department of Cell Biology, Yale University School of Medicine, New Haven, 06510, USA
| | - Di Nan
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Jiannan Fan
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Jonathan S Bogan
- Department of Cell Biology, Yale University School of Medicine, New Haven, 06510, USA Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8020, USA
| | - Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, New Haven, 06510, USA
| |
Collapse
|
34
|
Winnay JN, Solheim MH, Dirice E, Sakaguchi M, Noh HL, Kang HJ, Takahashi H, Chudasama KK, Kim JK, Molven A, Kahn CR, Njølstad PR. PI3-kinase mutation linked to insulin and growth factor resistance in vivo. J Clin Invest 2016; 126:1401-12. [PMID: 26974159 DOI: 10.1172/jci84005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/28/2016] [Indexed: 12/29/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is central to the action of insulin and many growth factors. Heterozygous mutations in the gene encoding the p85α regulatory subunit of PI3K (PIK3R1) have been identified in patients with SHORT syndrome - a disorder characterized by short stature, partial lipodystrophy, and insulin resistance. Here, we evaluated whether SHORT syndrome-associated PIK3R1 mutations account for the pathophysiology that underlies the abnormalities by generating knockin mice that are heterozygous for the Pik3r1Arg649Trp mutation, which is homologous to the mutation found in the majority of affected individuals. Similar to the patients, mutant mice exhibited a reduction in body weight and length, partial lipodystrophy, and systemic insulin resistance. These derangements were associated with a reduced capacity of insulin and other growth factors to activate PI3K in liver, muscle, and fat; marked insulin resistance in liver and fat of mutation-harboring animals; and insulin resistance in vitro in cells derived from these mice. In addition, mutant mice displayed defective insulin secretion and GLP-1 action on islets in vivo and in vitro. These data demonstrate the ability of this heterozygous mutation to alter PI3K activity in vivo and the central role of PI3K in insulin/growth factor action, adipocyte function, and glucose metabolism.
Collapse
|
35
|
Abstract
A continuous supply of glucose is necessary to ensure proper function and survival of all organs. Plasma glucose levels are thus maintained in a narrow range around 5 mM, which is considered the physiological set point. Glucose homeostasis is controlled primarily by the liver, fat, and skeletal muscle. Following a meal, most glucose disposals occur in the skeletal muscle, whereas fasting plasma glucose levels are determined primarily by glucose output from the liver. The balance between the utilization and production of glucose is primarily maintained at equilibrium by two opposing hormones, insulin and glucagon. In response to an elevation in plasma glucose and amino acids (after consumption of a meal), insulin is released from the beta cells of the islets of Langerhans in the pancreas. When plasma glucose falls (during fasting or exercise), glucagon is secreted by α cells, which surround the beta cells in the pancreas. Both cell types are extremely sensitive to glucose concentrations, can regulate hormone synthesis, and are released in response to small changes in plasma glucose levels. At the same time, insulin serves as the major physiological anabolic agent, promoting the synthesis and storage of glucose, lipids, and proteins and inhibiting their degradation and release back into the circulation. This chapter will focus mainly on signal transduction mechanisms by which insulin exerts its plethora of effects in liver, muscle, and fat cells, focusing on those pathways that are crucial in the control of glucose and lipid homeostasis.
Collapse
Affiliation(s)
- Alan R Saltiel
- Life Sciences Institute, University of Michigan, AnnArbor, MI, USA.
| |
Collapse
|
36
|
Liu Q, Li X, Li C, Zheng Y, Peng G. 1-Deoxynojirimycin Alleviates Insulin Resistance via Activation of Insulin Signaling PI3K/AKT Pathway in Skeletal Muscle of db/db Mice. Molecules 2015; 20:21700-14. [PMID: 26690098 PMCID: PMC6331926 DOI: 10.3390/molecules201219794] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 11/16/2022] Open
Abstract
1-Deoxynojirimycin (DNJ) is widely used for the treatment of diabetes mellitus as an inhibitor of intestinal α-glucosidase. However, there are few reports about its effect on insulin sensitivity improvement. The aim of the present study was to investigate whether DNJ decreased hyperglycemia by improving insulin sensitivity. An economical method was established to prepare large amounts of DNJ. Then, db/db mice were treated with DNJ intravenously (20, 40 and 80 mg·kg(-1)·day(-1)) for four weeks. Blood glucose and biochemical analyses were conducted to evaluate the therapeutic effects on hyperglycemia and the related molecular mechanisms in skeletal muscle were explored. DNJ significantly reduced body weight, blood glucose and serum insulin levels. DNJ treatment also improved glucose tolerance and insulin tolerance. Moreover, although expressions of total protein kinase B (AKT), phosphatidylinositol 3 kinase (PI3K), insulin receptor beta (IR-β), insulin receptor substrate-1 (IRS1) and glucose transporter 4 (GLUT4) in skeletal muscle were not affected, GLUT4 translocation and phosphorylation of Ser473-AKT, p85-PI3K, Tyr1361-IR-β and Tyr612-IRS1 were significantly increased by DNJ treatment. These results indicate that DNJ significantly improved insulin sensitivity via activating insulin signaling PI3K/AKT pathway in skeletal muscle of db/db mice.
Collapse
Affiliation(s)
- Qingpu Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xuan Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Cunyu Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China.
| | - Yunfeng Zheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China.
| | - Guoping Peng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China.
| |
Collapse
|
37
|
Profiling of phosphatidylinositol 3-kinase (PI3K) proteins in insulin signaling pathway. Appl Biochem Biotechnol 2015; 175:3431-46. [PMID: 25637510 DOI: 10.1007/s12010-015-1515-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 01/21/2015] [Indexed: 01/22/2023]
Abstract
Phosphoinositide 3-kinase (PI3K) enzyme plays a vital role in the insulin signaling pathway as well as in other pathways that are involved in the growth, migration, and survival of cells. In the insulin signaling pathway, PI3K proteins that include p50α, p85α, p85β, p55γ, p110α, p110β, and p110γ are associated with the critical node-2. This study has used bioinformatic tools to understand phylogenetics, conservation patterns, conserved domains, orientation of residues, and interactions among PI3K proteins. The phylogenetic analysis showed p110α and p110γ with a common origin while p50α and p85α sharing an evolutionary history. The sequence alignment showed the highest score (97) between p85α and p50α. Several highly conserved amino acid residues were found high in p110 beta (n = 102). Subsequently, the number of highly conserved amino acid restudies was low in p50alpha and p55γ (n = 15). The PI3K proteins are evidentially linked to other proteins and pathways as well.
Collapse
|
38
|
Mátis G, Kulcsár A, Turowski V, Fébel H, Neogrády Z, Huber K. Effects of oral butyrate application on insulin signaling in various tissues of chickens. Domest Anim Endocrinol 2015; 50:26-31. [PMID: 25240231 DOI: 10.1016/j.domaniend.2014.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/21/2014] [Accepted: 07/27/2014] [Indexed: 11/21/2022]
Abstract
The influence of butyrate on insulin signaling in chickens was studied because butyrate is produced during microbial fermentation in the large intestine of birds, and butyrate is widely used as a feed additive in animal production. Ross 308 broiler chickens received a daily intraingluvial bolus of sodium butyrate (0.25 g/kg body weight) on days 20-24 of life (n = 10). Plasma butyrate concentration increased after receiving oral butyrate treatment (P < 0.001). Oral butyrate application was associated with decreased protein expression of insulin receptor β subunit (IRβ) in liver (P = 0.008) and both abdominal (P = 0.003) and subcutaneous adipose tissue (P < 0.001), but with elevated IRβ expression in muscle (P = 0.045), assessed by Western blotting. The quantity of hepatic phosphatidyl-inositol-3-kinase was reduced in the butyrate-treated group (P = 0.007); further, mammalian target of rapamycin was downregulated by butyrate in liver (P < 0.001) and subcutaneous adipose tissue (P = 0.038). Oral butyrate application provoked reduced systemic insulin sensitivity in chickens, indicated by elevated fasting blood glucose and subsequently, insulin level. However, responses of insulin signaling cascade to butyrate were tissue specific, suggesting that butyrate could act on glucose shifting among tissues by selectively increasing the glucose uptake of skeletal muscle via IRβ upregulation.
Collapse
Affiliation(s)
- G Mátis
- Department of Physiology and Biochemistry, Faculty of Veterinary Science, Szent István University, H-1078 Budapest, Hungary.
| | - A Kulcsár
- Department of Physiology and Biochemistry, Faculty of Veterinary Science, Szent István University, H-1078 Budapest, Hungary
| | - V Turowski
- Department of Physiology, University of Veterinary Medicine, D-30173 Hannover, Germany
| | - H Fébel
- Research Institute for Animal Breeding, Nutrition and Meat Science, National Agricultural Research Center, H-2053 Herceghalom, Hungary
| | - Zs Neogrády
- Department of Physiology and Biochemistry, Faculty of Veterinary Science, Szent István University, H-1078 Budapest, Hungary
| | - K Huber
- Department of Physiology, University of Veterinary Medicine, D-30173 Hannover, Germany
| |
Collapse
|
39
|
WANG QIUYAN, SUN XIAOHUI, LI XIAOBIN, DONG XIANG, LI PENG, ZHAO LI. Resveratrol attenuates intermittent hypoxia-induced insulin resistance in rats: involvement of Sirtuin 1 and the phosphatidylinositol-4,5-bisphosphate 3-kinase/AKT pathway. Mol Med Rep 2015; 11:151-8. [PMID: 25352008 PMCID: PMC4237082 DOI: 10.3892/mmr.2014.2762] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 10/01/2014] [Indexed: 02/03/2023] Open
Abstract
Obstructive sleep apnea can induce chronic intermittent hypoxia (CIH) during sleep and is associated with obesity and diabetes. Resveratrol (RSV), a polyphenolic phytoalexin, can regulate glucose metabolism, thereby reducing insulin resistance. The present study aimed to assess whether RSV attenuates CIH-induced insulin resistance in rats and the underlying mechanisms. A total of 40 rats were randomly assigned into five groups: i) Control; ii) subjected to CIH only; iii) subjected to CIH and treated with 3 mg/kg/day of RSV; iv) subjected to CIH and treated with 30 mg/kg/day of RSV; v) subjected to CIH and treated with 60 mg/kg/day of RSV. All animals were sacrificed following 28 days of treatment. Subsequently, the blood and livers were harvested and blood insulin and glucose levels were measured. Levels of sirtuin (Sirt) 1, insulin receptor (InsR) and glucose transporter 2 (Glut2) in the liver were measured. RSV treatment was demonstrated to suppress weight gain and improve hepatic morphology. RSV treatment also significantly reduced the homeostasis model assessment estimate of insulin resistance of the rats exposed to CIH. This effect occurred in a dose-dependent manner. RSV significantly upregulated liver Sirt1 levels and inhibited InsR and Glut2 expression in the liver. Additionally, RSV activated the phosphorylation of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and AKT. The present study demonstrates that RSV prevents CIH-induced insulin resistance in rats. Upregulation of Sirt1 and activation of PI3K/AKT signaling may be involved in this process.
Collapse
Affiliation(s)
- QIUYAN WANG
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - XIAOHUI SUN
- Emergency Department, First Affiliated Hospital of Dalian Medical University, Dalian 116011, P.R. China
| | - XIAOBIN LI
- Emergency Department, First Affiliated Hospital of Dalian Medical University, Dalian 116011, P.R. China
| | - XIANG DONG
- Emergency Department, First Affiliated Hospital of Dalian Medical University, Dalian 116011, P.R. China
| | - PENG LI
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - LI ZHAO
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Correspondence to: Dr Li Zhao, Department of Respiratory Medicine, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping, Shenyang, Liaoning 110001, P.R. China, E-mail:
| |
Collapse
|
40
|
Kandasamy N, Ashokkumar N. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats. Toxicol Appl Pharmacol 2014; 279:173-85. [DOI: 10.1016/j.taap.2014.05.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 05/11/2014] [Accepted: 05/28/2014] [Indexed: 12/24/2022]
|
41
|
Li Y, Wang J, Gu T, Yamahara J, Li Y. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats. Toxicol Appl Pharmacol 2014; 277:155-63. [DOI: 10.1016/j.taap.2014.03.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/27/2014] [Accepted: 03/25/2014] [Indexed: 12/13/2022]
|
42
|
Knights AJ, Funnell APW, Pearson RCM, Crossley M, Bell-Anderson KS. Adipokines and insulin action: A sensitive issue. Adipocyte 2014; 3:88-96. [PMID: 24719781 PMCID: PMC3979885 DOI: 10.4161/adip.27552] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/11/2013] [Accepted: 12/16/2013] [Indexed: 02/06/2023] Open
Abstract
Obesity is a major public health concern and a strong risk factor for insulin resistance, type 2 diabetes mellitus (T2DM), and cardiovascular disease. The last two decades have seen a reconsideration of the role of white adipose tissue (WAT) in whole body metabolism and insulin action. Adipose tissue-derived cytokines and hormones, or adipokines, are likely mediators of metabolic function and dysfunction. While several adipokines have been associated with obese and insulin-resistant phenotypes, a select group has been linked with insulin sensitivity, namely leptin, adiponectin, and more recently, adipolin. What is known about these insulin-sensitizing molecules and their effects in healthy and insulin resistant states is the subject of this review. There remains a significant amount of research to do to fully elucidate the mechanisms of action of these adipokines for development of therapeutics in metabolic disease.
Collapse
Affiliation(s)
- Alexander J Knights
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney, NSW Australia
| | - Alister PW Funnell
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney, NSW Australia
| | - Richard CM Pearson
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney, NSW Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney, NSW Australia
| | | |
Collapse
|
43
|
Song Z, Levin BE, Stevens W, Sladek CD. Supraoptic oxytocin and vasopressin neurons function as glucose and metabolic sensors. Am J Physiol Regul Integr Comp Physiol 2014; 306:R447-56. [PMID: 24477542 DOI: 10.1152/ajpregu.00520.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurons in the supraoptic nuclei (SON) produce oxytocin and vasopressin and express insulin receptors (InsR) and glucokinase. Since oxytocin is an anorexigenic agent and glucokinase and InsR are hallmarks of cells that function as glucose and/or metabolic sensors, we evaluated the effect of glucose, insulin, and their downstream effector ATP-sensitive potassium (KATP) channels on calcium signaling in SON neurons and on oxytocin and vasopressin release from explants of the rat hypothalamo-neurohypophyseal system. We also evaluated the effect of blocking glucokinase and phosphatidylinositol 3 kinase (PI3K; mediates insulin-induced mobilization of glucose transporter, GLUT4) on responses to glucose and insulin. Glucose and insulin increased intracellular calcium ([Ca(2+)]i). The responses were glucokinase and PI3K dependent, respectively. Insulin and glucose alone increased vasopressin release (P < 0.002). Oxytocin release was increased by glucose in the presence of insulin. The oxytocin (OT) and vasopressin (VP) responses to insulin+glucose were blocked by the glucokinase inhibitor alloxan (4 mM; P ≤ 0.002) and the PI3K inhibitor wortmannin (50 nM; OT: P = 0.03; VP: P ≤ 0.002). Inactivating K ATP channels with 200 nM glibenclamide increased oxytocin and vasopressin release (OT: P < 0.003; VP: P < 0.05). These results suggest that insulin activation of PI3K increases glucokinase-mediated ATP production inducing closure of K ATP channels, opening of voltage-sensitive calcium channels, and stimulation of oxytocin and vasopressin release. The findings are consistent with SON oxytocin and vasopressin neurons functioning as glucose and "metabolic" sensors to participate in appetite regulation.
Collapse
Affiliation(s)
- Zhilin Song
- Department of Physiology, University of Colorado School of Medicine, Aurora, Colorado
| | | | | | | |
Collapse
|
44
|
Crivat G, Lizunov VA, Li CR, Stenkula KG, Zimmerberg J, Cushman SW, Pick L. Insulin stimulates translocation of human GLUT4 to the membrane in fat bodies of transgenic Drosophila melanogaster. PLoS One 2013; 8:e77953. [PMID: 24223128 PMCID: PMC3819322 DOI: 10.1371/journal.pone.0077953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/05/2013] [Indexed: 12/23/2022] Open
Abstract
The fruit fly Drosophila melanogaster is an excellent model system for studies of genes controlling development and disease. However, its applicability to physiological systems is less clear because of metabolic differences between insects and mammals. Insulin signaling has been studied in mammals because of relevance to diabetes and other diseases but there are many parallels between mammalian and insect pathways. For example, deletion of Drosophila Insulin-Like Peptides resulted in 'diabetic' flies with elevated circulating sugar levels. Whether this situation reflects failure of sugar uptake into peripheral tissues as seen in mammals is unclear and depends upon whether flies harbor the machinery to mount mammalian-like insulin-dependent sugar uptake responses. Here we asked whether Drosophila fat cells are competent to respond to insulin with mammalian-like regulated trafficking of sugar transporters. Transgenic Drosophila expressing human glucose transporter-4 (GLUT4), the sugar transporter expressed primarily in insulin-responsive tissues, were generated. After expression in fat bodies, GLUT4 intracellular trafficking and localization were monitored by confocal and total internal reflection fluorescence microscopy (TIRFM). We found that fat body cells responded to insulin with increased GLUT4 trafficking and translocation to the plasma membrane. While the amplitude of these responses was relatively weak in animals reared on a standard diet, it was greatly enhanced in animals reared on sugar-restricted diets, suggesting that flies fed standard diets are insulin resistant. Our findings demonstrate that flies are competent to mobilize translocation of sugar transporters to the cell surface in response to insulin. They suggest that Drosophila fat cells are primed for a response to insulin and that these pathways are down-regulated when animals are exposed to constant, high levels of sugar. Finally, these studies are the first to use TIRFM to monitor insulin-signaling pathways in Drosophila, demonstrating the utility of TIRFM of tagged sugar transporters to monitor signaling pathways in insects.
Collapse
Affiliation(s)
- Georgeta Crivat
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - Vladimir A. Lizunov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Caroline R. Li
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - Karin G. Stenkula
- Experimental Diabetes, Metabolism, and Nutrition Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua Zimmerberg
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Samuel W. Cushman
- Experimental Diabetes, Metabolism, and Nutrition Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Leslie Pick
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
45
|
Kim JH, Kim JW, Kim SC, Lee YJ. Kiwifruit (Actinidia chinensis) extract annuls chronic insulininduced insulin resistance in l6 skeletal muscle cells. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-013-0188-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
46
|
Naringenin inhibits adipogenesis and reduces insulin sensitivity and adiponectin expression in adipocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:549750. [PMID: 23983791 PMCID: PMC3745873 DOI: 10.1155/2013/549750] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/03/2013] [Accepted: 06/05/2013] [Indexed: 01/28/2023]
Abstract
Adipose tissue development and function are widely studied to examine the relationship between obesity and the metabolic syndrome. It is well documented that the inability of adipose tissue to properly increase its lipid storage capacity during the obese state can lead to metabolic dysfunction. In a blind screen of 425 botanicals, we identified naringenin as an inhibitor of adipocyte differentiation. Naringenin is one of the most abundant citrus flavonoids, and recent studies have demonstrated antihyperlipidemic capabilities. These studies have largely focused on the effects of naringenin on the liver. Our biochemical studies clearly demonstrate that naringenin inhibits adipogenesis and impairs mature fat cell function. Naringenin specifically inhibited adipogenesis in a dose-dependent fashion as judged by examining lipid accumulation and induction of adipocyte marker protein expression. In mature 3T3-L1 adipocytes, naringenin reduced the ability of insulin to induce IRS-1 tyrosine phosphorylation and substantially inhibited insulin-stimulated glucose uptake in a dose-dependent manner and over a time frame of 1.5 to 24 hours. Exposure to naringenin also inhibited adiponectin protein expression in mature murine and human adipocytes. Our studies have revealed that naringenin may have a negative impact on adipocyte-related diseases by limiting differentiation of preadipocytes, by significantly inducing insulin resistance, and by decreasing adiponectin expression in mature fat cells.
Collapse
|
47
|
|
48
|
Garrido P, Morán J, Alonso A, González S, González C. 17β-estradiol activates glucose uptake via GLUT4 translocation and PI3K/Akt signaling pathway in MCF-7 cells. Endocrinology 2013; 154:1979-89. [PMID: 23546602 DOI: 10.1210/en.2012-1558] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The relationship between estrogen and some types of breast cancer has been clearly established. However, although several studies have demonstrated the relationship between estrogen and glucose uptake via phosphatidylinositol 3-kinase (PI3K)/Akt in other tissues, not too much is known about the possible cross talk between them for development and maintenance of breast cancer. This study was designed to test the rapid effects of 17β-estradiol (E2) or its membrane-impermeable form conjugated with BSA (E2BSA) on glucose uptake in a positive estrogen receptor (ER) breast cancer cell line, through the possible relationship between key components of the PI3K/Akt signaling pathway and acute steroid treatment. MCF-7 human breast cancer cells were cultured in standard conditions. Then 10 nM E2 or E2BSA conjugated were administered before obtaining the cell lysates. To study the glucose uptake, the glucose fluorescent analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose was used. We report an ER-dependent activation of some of the key steps of the PI3K/Akt signaling pathway cascade that leads cells to improve some mechanisms that finally increase glucose uptake capacity. Our data suggest that both E2 and E2BSA enhance the entrance of the fluorescent glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose, and also activates PI3K/Akt signaling pathway, leading to translocation of glucose transporter 4 to the plasma membrane in an ERα-dependent manner. E2 enhances ER-dependent rapid signaling triggered, partially in the plasma membrane, allowing ERα-positive MCF-7 breast cancer cells to increase glucose uptake, which could be essential to meet the energy demands of the high rate of proliferation.
Collapse
Affiliation(s)
- Pablo Garrido
- Department of Functional Biology, Physiology Area, University of Oviedo, c/ Julian Claveria s/n, 33006, Oviedo, Spain
| | | | | | | | | |
Collapse
|
49
|
Czech MP, Tencerova M, Pedersen DJ, Aouadi M. Insulin signalling mechanisms for triacylglycerol storage. Diabetologia 2013; 56:949-64. [PMID: 23443243 PMCID: PMC3652374 DOI: 10.1007/s00125-013-2869-1] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/22/2013] [Indexed: 02/06/2023]
Abstract
Insulin signalling is uniquely required for storing energy as fat in humans. While de novo synthesis of fatty acids and triacylglycerol occurs mostly in liver, adipose tissue is the primary site for triacylglycerol storage. Insulin signalling mechanisms in adipose tissue that stimulate hydrolysis of circulating triacylglycerol, uptake of the released fatty acids and their conversion to triacylglycerol are poorly understood. New findings include (1) activation of DNA-dependent protein kinase to stimulate upstream stimulatory factor (USF)1/USF2 heterodimers, enhancing the lipogenic transcription factor sterol regulatory element binding protein 1c (SREBP1c); (2) stimulation of fatty acid synthase through AMP kinase modulation; (3) mobilisation of lipid droplet proteins to promote retention of triacylglycerol; and (4) upregulation of a novel carbohydrate response element binding protein β isoform that potently stimulates transcription of lipogenic enzymes. Additionally, insulin signalling through mammalian target of rapamycin to activate transcription and processing of SREBP1c described in liver may apply to adipose tissue. Paradoxically, insulin resistance in obesity and type 2 diabetes is associated with increased triacylglycerol synthesis in liver, while it is decreased in adipose tissue. This and other mysteries about insulin signalling and insulin resistance in adipose tissue make this topic especially fertile for future research.
Collapse
Affiliation(s)
- M P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| | | | | | | |
Collapse
|
50
|
Golbidi S, Laher I. Potential mechanisms of exercise in gestational diabetes. J Nutr Metab 2013; 2013:285948. [PMID: 23691290 PMCID: PMC3649306 DOI: 10.1155/2013/285948] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/31/2013] [Accepted: 02/10/2013] [Indexed: 02/07/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is defined as glucose intolerance first diagnosed during pregnancy. This condition shares same array of underlying abnormalities as occurs in diabetes outside of pregnancy, for example, genetic and environmental causes. However, the role of a sedentary lifestyle and/or excess energy intake is more prominent in GDM. Physically active women are less likely to develop GDM and other pregnancy-related diseases. Weight gain in pregnancy causes increased release of adipokines from adipose tissue; many adipokines increase oxidative stress and insulin resistance. Increased intramyocellular lipids also increase cellular oxidative stress with subsequent generation of reactive oxygen species. A well-planned program of exercise is an important component of a healthy lifestyle and, in spite of old myths, is also recommended during pregnancy. This paper briefly reviews the role of adipokines in gestational diabetes and attempts to shed some light on the mechanisms by which exercise can be beneficial as an adjuvant therapy in GDM. In this regard, we discuss the mechanisms by which exercise increases insulin sensitivity, changes adipokine profile levels, and boosts antioxidant mechanisms.
Collapse
Affiliation(s)
- Saeid Golbidi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|