1
|
Engelhardt M, Hintze S, Wendegatz EC, Lettow J, Schüller HJ. Ino2, activator of yeast phospholipid biosynthetic genes, interacts with basal transcription factors TFIIA and Bdf1. Curr Genet 2023; 69:289-300. [PMID: 37947853 PMCID: PMC10716077 DOI: 10.1007/s00294-023-01277-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Binding of general transcription factors TFIID and TFIIA to basal promoters is rate-limiting for transcriptional initiation of eukaryotic protein-coding genes. Consequently, activator proteins interacting with subunits of TFIID and/or TFIIA can drastically increase the rate of initiation events. Yeast transcriptional activator Ino2 interacts with several Taf subunits of TFIID, among them the multifunctional Taf1 protein. In contrast to mammalian Taf1, yeast Taf1 lacks bromodomains which are instead encoded by separate proteins Bdf1 and Bdf2. In this work, we show that Bdf1 not only binds to acetylated histone H4 but can also be recruited by Ino2 and unrelated activators such as Gal4, Rap1, Leu3 and Flo8. An activator-binding domain was mapped in the N-terminus of Bdf1. Subunits Toa1 and Toa2 of yeast TFIIA directly contact sequences of basal promoters and TFIID subunit TBP but may also mediate the influence of activators. Indeed, Ino2 efficiently binds to two separate structural domains of Toa1, specifically with its N-terminal four-helix bundle structure required for dimerization with Toa2 and its C-terminal β-barrel domain contacting TBP and sequences of the TATA element. These findings complete the functional analysis of yeast general transcription factors Bdf1 and Toa1 and identify them as targets of activator proteins.
Collapse
Affiliation(s)
- Maike Engelhardt
- Center for Functional Genomics of Microbes, Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
- Cheplapharm, Greifswald, Germany
| | - Stefan Hintze
- Center for Functional Genomics of Microbes, Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
- Friedrich-Baur-Institut an der Neurologischen Klinik und Poliklinik, LMU Klinikum, Munich, Germany
| | - Eva-Carina Wendegatz
- Center for Functional Genomics of Microbes, Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
| | - Julia Lettow
- Center for Functional Genomics of Microbes, Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
| | - Hans-Joachim Schüller
- Center for Functional Genomics of Microbes, Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany.
| |
Collapse
|
2
|
Fan D, Wang M, Cheng A, Jia R, Yang Q, Wu Y, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Ou X, Mao S, Gao Q, Sun D, Wen X, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Chen X. The Role of VP16 in the Life Cycle of Alphaherpesviruses. Front Microbiol 2020; 11:1910. [PMID: 33013729 PMCID: PMC7461839 DOI: 10.3389/fmicb.2020.01910] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
The protein encoded by the UL48 gene of alphaherpesviruses is named VP16 or alpha-gene-transactivating factor (α-TIF). In the early stage of viral replication, VP16 is an important transactivator that can activate the transcription of viral immediate-early genes, and in the late stage of viral replication, VP16, as a tegument, is involved in viral assembly. This review will explain the mechanism of VP16 acting as α-TIF to activate the transcription of viral immediate-early genes, its role in the transition from viral latency to reactivation, and its effects on viral assembly and maturation. In addition, this review also provides new insights for further research on the life cycle of alphaherpesviruses and the role of VP16 in the viral life cycle.
Collapse
Affiliation(s)
- Dengjian Fan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Mittal C, Culbertson SJ, Shogren-Knaak MA. Distinct requirements of linker DNA and transcriptional activators in promoting SAGA-mediated nucleosome acetylation. J Biol Chem 2018; 293:13736-13749. [PMID: 30054274 DOI: 10.1074/jbc.ra118.004487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/20/2018] [Indexed: 01/08/2023] Open
Abstract
The Spt-Ada-Gcn5 acetyltransferase (SAGA) family of transcriptional coactivators are prototypical nucleosome acetyltransferase complexes that regulate multiple steps in gene transcription. The size and complexity of both the SAGA enzyme and the chromatin substrate provide numerous opportunities for regulating the acetylation process. To better probe this regulation, here we developed a bead-based nucleosome acetylation assay to characterize the binding interactions and kinetics of acetylation with different nucleosomal substrates and the full SAGA complex purified from budding yeast (Saccharomyces cerevisiae). We found that SAGA-mediated nucleosome acetylation is stimulated up to 9-fold by DNA flanking the nucleosome, both by facilitating the binding of SAGA and by accelerating acetylation turnover. This stimulation required that flanking DNA is present on both sides of the nucleosome and that one side is >15 bp long. The Gal4-VP16 transcriptional activator fusion protein could also augment nucleosome acetylation up to 5-fold. However, contrary to our expectations, this stimulation did not appear to occur by stabilizing the binding of SAGA toward nucleosomes containing an activator-binding site. Instead, increased acetylation turnover by SAGA stimulated nucleosome acetylation. These results suggest that the Gal4-VP16 transcriptional activator directly stimulates acetylation via a dual interaction with both flanking DNA and SAGA. Altogether, these findings uncover several critical mechanisms of SAGA regulation by chromatin substrates.
Collapse
Affiliation(s)
- Chitvan Mittal
- From the Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Sannie J Culbertson
- From the Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Michael A Shogren-Knaak
- From the Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
4
|
Schrenk C, Fetz V, Vallet C, Heiselmayer C, Schröder E, Hensel A, Hahlbrock A, Wünsch D, Goesswein D, Bier C, Habtemichael N, Schneider G, Stauber RH, Knauer SK. TFIIA transcriptional activity is controlled by a 'cleave-and-run' Exportin-1/Taspase 1-switch. J Mol Cell Biol 2018; 10:33-47. [PMID: 28992066 DOI: 10.1093/jmcb/mjx025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/09/2017] [Indexed: 12/24/2022] Open
Abstract
Transcription factor TFIIA is controlled by complex regulatory networks including proteolysis by the protease Taspase 1, though the full impact of cleavage remains elusive. Here, we demonstrate that in contrast to the general assumption, de novo produced TFIIA is rapidly confined to the cytoplasm via an evolutionary conserved nuclear export signal (NES, amino acids 21VINDVRDIFL30), interacting with the nuclear export receptor Exportin-1/chromosomal region maintenance 1 (Crm1). Chemical export inhibition or genetic inactivation of the NES not only promotes TFIIA's nuclear localization but also affects its transcriptional activity. Notably, Taspase 1 processing promotes TFIIA's nuclear accumulation by NES masking, and modulates its transcriptional activity. Moreover, TFIIA complex formation with the TATA box binding protein (TBP) is cooperatively enhanced by inhibition of proteolysis and nuclear export, leading to an increase of the cell cycle inhibitor p16INK, which is counteracted by prevention of TBP binding. We here identified a novel mechanism how proteolysis and nuclear transport cooperatively fine-tune transcriptional programs.
Collapse
Affiliation(s)
- Christian Schrenk
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Verena Fetz
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Cecilia Vallet
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Christina Heiselmayer
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Elisabeth Schröder
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Astrid Hensel
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Angelina Hahlbrock
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Désirée Wünsch
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Dorothee Goesswein
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Carolin Bier
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Negusse Habtemichael
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Günter Schneider
- University Hospital Klinikum rechts der Isar, II. Medizinische Klinik, Technical University München, 81675 Munich, Germany
| | - Roland H Stauber
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Shirley K Knauer
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
5
|
A heterochromatin-dependent transcription machinery drives piRNA expression. Nature 2017; 549:54-59. [PMID: 28847004 PMCID: PMC5590728 DOI: 10.1038/nature23482] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/14/2017] [Indexed: 12/30/2022]
Abstract
Nuclear small RNA pathways safeguard genome integrity by establishing transcription-repressing heterochromatin at transposable elements. This inevitably also targets the transposon-rich source loci of the small RNAs themselves. How small RNA source loci are efficiently transcribed while transposon promoters are potently silenced is not understood. Here we show that, in Drosophila, transcription of PIWI-interacting RNA (piRNA) clusters-small RNA source loci in animal gonads-is enforced through RNA polymerase II pre-initiation complex formation within repressive heterochromatin. This is accomplished through Moonshiner, a paralogue of a basal transcription factor IIA (TFIIA) subunit, which is recruited to piRNA clusters via the heterochromatin protein-1 variant Rhino. Moonshiner triggers transcription initiation within piRNA clusters by recruiting the TATA-box binding protein (TBP)-related factor TRF2, an animal TFIID core variant. Thus, transcription of heterochromatic small RNA source loci relies on direct recruitment of the core transcriptional machinery to DNA via histone marks rather than sequence motifs, a concept that we argue is a recurring theme in evolution.
Collapse
|
6
|
p53 Dynamically Directs TFIID Assembly on Target Gene Promoters. Mol Cell Biol 2017; 37:MCB.00085-17. [PMID: 28416636 DOI: 10.1128/mcb.00085-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/11/2017] [Indexed: 12/24/2022] Open
Abstract
p53 is a central regulator that turns on vast gene networks to maintain cellular integrity in the presence of various stimuli. p53 activates transcription initiation in part by aiding recruitment of TFIID to the promoter. However, the precise means by which p53 dynamically interacts with TFIID to facilitate assembly on target gene promoters remains elusive. To address this key issue, we have undertaken an integrated approach involving single-molecule fluorescence microscopy, single-particle cryo-electron microscopy, and biochemistry. Our real-time single-molecule imaging data demonstrate that TFIID alone binds poorly to native p53 target promoters. p53 unlocks TFIID's ability to bind DNA by stabilizing TFIID contacts with both the core promoter and a region within p53's response element. Analysis of single-molecule dissociation kinetics reveals that TFIID interacts with promoters via transient and prolonged DNA binding modes that are each regulated by p53. Importantly, our structural work reveals that TFIID's conversion to a rearranged DNA binding conformation is enhanced in the presence of DNA and p53. Notably, TFIID's interaction with DNA induces p53 to rapidly dissociate, which likely leads to additional rounds of p53-mediated recruitment of other basal factors. Collectively, these findings indicate that p53 dynamically escorts and loads TFIID onto its target promoters.
Collapse
|
7
|
Wang J, Zhao S, He W, Wei Y, Zhang Y, Pegg H, Shore P, Roberts SGE, Deng W. A transcription factor IIA-binding site differentially regulates RNA polymerase II-mediated transcription in a promoter context-dependent manner. J Biol Chem 2017; 292:11873-11885. [PMID: 28539359 DOI: 10.1074/jbc.m116.770412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/23/2017] [Indexed: 12/11/2022] Open
Abstract
RNA polymerase II (pol II) is required for the transcription of all protein-coding genes and as such represents a major enzyme whose activity is tightly regulated. Transcriptional initiation therefore requires numerous general transcriptional factors and cofactors that associate with pol II at the core promoter to form a pre-initiation complex. Transcription factor IIA (TFIIA) is a general cofactor that binds TFIID and stabilizes the TFIID-DNA complex during transcription initiation. Previous studies showed that TFIIA can make contact with the DNA sequence upstream or downstream of the TATA box, and that the region bound by TFIIA could overlap with the elements recognized by another factor, TFIIB, at adenovirus major late core promoter. Whether core promoters contain a DNA motif recognized by TFIIA remains unknown. Here we have identified a core promoter element upstream of the TATA box that is recognized by TFIIA. A search of the human promoter database revealed that many natural promoters contain a TFIIA recognition element (IIARE). We show that the IIARE enhances TFIIA-promoter binding and enhances the activity of TATA-containing promoters, but represses or activates promoters that lack a TATA box. Chromatin immunoprecipitation assays revealed that the IIARE activates transcription by increasing the recruitment of pol II, TFIIA, TAF4, and P300 at TATA-dependent promoters. These findings extend our understanding of the role of TFIIA in transcription, and provide new insights into the regulatory mechanism of core promoter elements in gene transcription by pol II.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan City, Hubei Province 430065, China
| | - Shasha Zhao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan City, Hubei Province 430065, China
| | - Wei He
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan City, Hubei Province 430065, China
| | - Yun Wei
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan City, Hubei Province 430065, China
| | - Yang Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan City, Hubei Province 430065, China
| | - Henry Pegg
- School of Biological Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Paul Shore
- School of Biological Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Stefan G E Roberts
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom.
| | - Wensheng Deng
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan City, Hubei Province 430065, China.
| |
Collapse
|
8
|
Streubel J, Baum H, Grau J, Stuttman J, Boch J. Dissection of TALE-dependent gene activation reveals that they induce transcription cooperatively and in both orientations. PLoS One 2017; 12:e0173580. [PMID: 28301511 PMCID: PMC5354296 DOI: 10.1371/journal.pone.0173580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/22/2017] [Indexed: 11/19/2022] Open
Abstract
Plant-pathogenic Xanthomonas bacteria inject transcription activator-like effector proteins (TALEs) into host cells to specifically induce transcription of plant genes and enhance susceptibility. Although the DNA-binding mode is well-understood it is still ambiguous how TALEs initiate transcription and whether additional promoter elements are needed to support this. To systematically dissect prerequisites for transcriptional initiation the activity of one TALE was compared on different synthetic Bs4 promoter fragments. In addition, a large collection of artificial TALEs spanning the OsSWEET14 promoter was compared. We show that the presence of a TALE alone is not sufficient to initiate transcription suggesting the requirement of additional supporting promoter elements. At the OsSWEET14 promoter TALEs can initiate transcription from various positions, in a synergistic manner of multiple TALEs binding in parallel to the promoter, and even by binding in reverse orientation. TALEs are known to shift the transcriptional start site, but our data show that this shift depends on the individual position of a TALE within a promoter context. Our results implicate that TALEs function like classical enhancer-binding proteins and initiate transcription in both orientations which has consequences for in planta target gene prediction and design of artificial activators.
Collapse
Affiliation(s)
- Jana Streubel
- Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
- Department of Plant Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Heidi Baum
- Department of Plant Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Jan Grau
- Institute of Computer Science, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Johannes Stuttman
- Department of Plant Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Jens Boch
- Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
- Department of Plant Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
9
|
Gruffat H, Marchione R, Manet E. Herpesvirus Late Gene Expression: A Viral-Specific Pre-initiation Complex Is Key. Front Microbiol 2016; 7:869. [PMID: 27375590 PMCID: PMC4893493 DOI: 10.3389/fmicb.2016.00869] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022] Open
Abstract
During their productive cycle, herpesviruses exhibit a strictly regulated temporal cascade of gene expression that can be divided into three general stages: immediate-early (IE), early (E), and late (L). This expression program is the result of a complex interplay between viral and cellular factors at both the transcriptional and post-transcriptional levels, as well as structural differences within the promoter architecture for each of the three gene classes. Since the cellular enzyme RNA polymerase II (RNAP-II) is responsible for the transcription of herpesvirus genes, most viral promoters contain DNA motifs that are common with those of cellular genes, although promoter complexity decreases from immediate-early to late genes. Immediate-early and early promoters contain numerous cellular and viral cis-regulating sequences upstream of a TATA box, whereas late promoters differ significantly in that they lack cis-acting sequences upstream of the transcription start site (TSS). Moreover, in the case of the β- and γ-herpesviruses, a TATT box motif is frequently found in the position where the consensus TATA box of eukaryotic promoters usually localizes. The mechanisms of transcriptional regulation of the late viral gene promoters appear to be different between α-herpesviruses and the two other herpesvirus subfamilies (β and γ). In this review, we will compare the mechanisms of late gene transcriptional regulation between HSV-1, for which the viral IE transcription factors – especially ICP4 – play an essential role, and the two other subfamilies of herpesviruses, with a particular emphasis on EBV, which has recently been found to code for its own specific TATT-binding protein.
Collapse
Affiliation(s)
- Henri Gruffat
- International Center for Infectiology Research, Oncogenic Herpesviruses Team, Université de Lyon, LyonFrance; Inserm, U1111, LyonFrance.; Ecole Normale Supérieure de Lyon, LyonFrance; CNRS, UMR5308, LyonFrance; Université Lyon 1, LyonFrance
| | - Roberta Marchione
- International Center for Infectiology Research, Oncogenic Herpesviruses Team, Université de Lyon, LyonFrance; Inserm, U1111, LyonFrance.; Ecole Normale Supérieure de Lyon, LyonFrance; CNRS, UMR5308, LyonFrance; Université Lyon 1, LyonFrance
| | - Evelyne Manet
- International Center for Infectiology Research, Oncogenic Herpesviruses Team, Université de Lyon, LyonFrance; Inserm, U1111, LyonFrance.; Ecole Normale Supérieure de Lyon, LyonFrance; CNRS, UMR5308, LyonFrance; Université Lyon 1, LyonFrance
| |
Collapse
|
10
|
Yuan J, Sun C, Dou T, Yi G, Qu L, Qu L, Wang K, Yang N. Identification of Promising Mutants Associated with Egg Production Traits Revealed by Genome-Wide Association Study. PLoS One 2015; 10:e0140615. [PMID: 26496084 PMCID: PMC4619706 DOI: 10.1371/journal.pone.0140615] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/27/2015] [Indexed: 12/21/2022] Open
Abstract
Egg number (EN), egg laying rate (LR) and age at first egg (AFE) are important production traits related to egg production in poultry industry. To better understand the knowledge of genetic architecture of dynamic EN during the whole laying cycle and provide the precise positions of associated variants for EN, LR and AFE, laying records from 21 to 72 weeks of age were collected individually for 1,534 F2 hens produced by reciprocal crosses between White Leghorn and Dongxiang Blue-shelled chicken, and their genotypes were assayed by chicken 600 K Affymetrix high density genotyping arrays. Subsequently, pedigree and SNP-based genetic parameters were estimated and a genome-wide association study (GWAS) was conducted on EN, LR and AFE. The heritability estimates were similar between pedigree and SNP-based estimates varying from 0.17 to 0.36. In the GWA analysis, we identified nine genome-wide significant loci associated with EN of the laying periods from 21 to 26 weeks, 27 to 36 weeks and 37 to 72 weeks. Analysis of GTF2A1 and CLSPN suggested that they influenced the function of ovary and uterus, and may be considered as relevant candidates. The identified SNP rs314448799 for accumulative EN from 21 to 40 weeks on chromosome 5 created phenotypic differences of 6.86 eggs between two homozygous genotypes, which could be potentially applied to the molecular breeding for EN selection. Moreover, our finding showed that LR was a moderate polygenic trait. The suggestive significant region on chromosome 16 for AFE suggested the relationship between sex maturity and immune in the current population. The present study comprehensively evaluates the role of genetic variants in the development of egg laying. The findings will be helpful to investigation of causative genes function and future marker-assisted selection and genomic selection in chickens.
Collapse
Affiliation(s)
- Jingwei Yuan
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P.R. China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P.R. China
| | - Taocun Dou
- Jiangsu Institute of Poultry Science, Yangzhou, 225125, P.R. China
| | - Guoqiang Yi
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P.R. China
| | - LuJiang Qu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P.R. China
| | - Liang Qu
- Jiangsu Institute of Poultry Science, Yangzhou, 225125, P.R. China
| | - Kehua Wang
- Jiangsu Institute of Poultry Science, Yangzhou, 225125, P.R. China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P.R. China
| |
Collapse
|
11
|
Fimiani C, Goina E, Mallamaci A. Upregulating endogenous genes by an RNA-programmable artificial transactivator. Nucleic Acids Res 2015; 43:7850-64. [PMID: 26152305 PMCID: PMC4652751 DOI: 10.1093/nar/gkv682] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/22/2015] [Indexed: 11/12/2022] Open
Abstract
To promote expression of endogenous genes ad libitum, we developed a novel, programmable transcription factor prototype. Kept together via an MS2 coat protein/RNA interface, it includes a fixed, polypeptidic transactivating domain and a variable RNA domain that recognizes the desired gene. Thanks to this device, we specifically upregulated five genes, in cell lines and primary cultures of murine pallial precursors. Gene upregulation was small, however sufficient to robustly inhibit neuronal differentiation. The transactivator interacted with target gene chromatin via its RNA cofactor. Its activity was restricted to cells in which the target gene is normally transcribed. Our device might be useful for specific applications. However for this purpose, it will require an improvement of its transactivation power as well as a better characterization of its target specificity and mechanism of action.
Collapse
Affiliation(s)
- Cristina Fimiani
- Laboratory of Cerebral Cortex Development, SISSA, Trieste, 34136, Italy
| | - Elisa Goina
- Laboratory of Cerebral Cortex Development, SISSA, Trieste, 34136, Italy
| | | |
Collapse
|
12
|
Barrier-to-Autointegration Factor 1 (BAF/BANF1) Promotes Association of the SETD1A Histone Methyltransferase with Herpes Simplex Virus Immediate-Early Gene Promoters. mBio 2015; 6:e00345-15. [PMID: 26015494 PMCID: PMC4447252 DOI: 10.1128/mbio.00345-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We have shown previously that A-type lamins and intranuclear localization of the herpes simplex virus (HSV) genome are critical for the formation of the VP16 activator complex on HSV immediate-early (IE) gene promoters in murine cells, which implies a critical role for lamin A and its associated proteins in HSV gene expression. Because barrier-to-autointegration factor 1 (BAF/BANF1) has been thought to bridge chromosomes to the nuclear lamina, we hypothesized that BAF might mediate viral genome targeting to the nuclear lamina. We found that overexpression of BAF enhances HSV-1 replication and knockdown of BAF decreases HSV gene expression, delays the kinetics of viral early replication compartment formation, and reduces viral yield compared to those in control small interfering RNA-transfected cells. However, BAF depletion did not affect genome complex targeting to the nuclear periphery. Instead, we found that the levels of a histone-modifying enzyme, SETD1A methyltransferase, and histone H3 lysine 4 trimethylation were reduced on IE and early (E) gene promoters in BAF-depleted cells during HSV lytic infection. Our results demonstrate a novel function of BAF as an epigenetic regulator of HSV lytic infection. We hypothesize that BAF facilitates IE and E gene expression by recruiting the SETD1A methyltransferase to viral IE and E gene promoters. The nuclear lamina is composed of lamin proteins and numerous lamina-associated proteins. Previously, the chromatin structure of DNA localized proximally to the lamina was thought to be characterized by heterochromatin marks associated with silenced genes. However, recent studies indicate that both heterochromatin- and euchromatin-rich areas coexist on the lamina. This paradigm suggests that lamins and lamina-associated proteins dynamically regulate epigenetic modifications of specific genes in different locations. Our goal is to understand how the lamina and its associated proteins regulate the epigenetics of genes through the study of HSV infection of human cells. We have shown previously that A-type lamins are critical for HSV genome targeting to the nuclear lamina and epigenetic regulation in viral replication. In this study, we found that another lamina-associated protein, BAF, regulates HSV gene expression through an epigenetic mechanism, which provides basic insights into the nuclear lamina and its associated proteins’ roles in epigenetic regulation.
Collapse
|
13
|
Qiu Y, Li M, Pasoreck EK, Long L, Shi Y, Galvão RM, Chou CL, Wang H, Sun AY, Zhang YC, Jiang A, Chen M. HEMERA Couples the Proteolysis and Transcriptional Activity of PHYTOCHROME INTERACTING FACTORs in Arabidopsis Photomorphogenesis. THE PLANT CELL 2015; 27:1409-27. [PMID: 25944101 PMCID: PMC4456642 DOI: 10.1105/tpc.114.136093] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/25/2015] [Accepted: 04/10/2015] [Indexed: 05/20/2023]
Abstract
Phytochromes (phys) are red and far-red photoreceptors that control plant development and growth by promoting the proteolysis of a family of antagonistically acting basic helix-loop-helix transcription factors, the PHYTOCHROME-INTERACTING FACTORs (PIFs). We have previously shown that the degradation of PIF1 and PIF3 requires HEMERA (HMR). However, the biochemical function of HMR and the mechanism by which it mediates PIF degradation remain unclear. Here, we provide genetic evidence that HMR acts upstream of PIFs in regulating hypocotyl growth. Surprisingly, genome-wide analysis of HMR- and PIF-dependent genes reveals that HMR is also required for the transactivation of a subset of PIF direct-target genes. We show that HMR interacts with all PIFs. The HMR-PIF interaction is mediated mainly by HMR's N-terminal half and PIFs' conserved active-phytochrome B binding motif. In addition, HMR possesses an acidic nine-amino-acid transcriptional activation domain (9aaTAD) and a loss-of-function mutation in this 9aaTAD impairs the expression of PIF target genes and the destruction of PIF1 and PIF3. Together, these in vivo results support a regulatory mechanism for PIFs in which HMR is a transcriptional coactivator binding directly to PIFs and the 9aaTAD of HMR couples the degradation of PIF1 and PIF3 with the transactivation of PIF target genes.
Collapse
Affiliation(s)
- Yongjian Qiu
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Meina Li
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Elise K Pasoreck
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Lingyun Long
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Yiting Shi
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Rafaelo M Galvão
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Conrad L Chou
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - He Wang
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Amanda Y Sun
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Yiyin C Zhang
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Anna Jiang
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Meng Chen
- Department of Biology, Duke University, Durham, North Carolina 27708
| |
Collapse
|
14
|
Suk H, Knipe DM. Proteomic analysis of the herpes simplex virus 1 virion protein 16 transactivator protein in infected cells. Proteomics 2015; 15:1957-67. [PMID: 25809282 DOI: 10.1002/pmic.201500020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/13/2015] [Accepted: 03/18/2015] [Indexed: 01/06/2023]
Abstract
The herpes simplex virus 1 virion protein 16 (VP16) tegument protein forms a transactivation complex with the cellular proteins host cell factor 1 (HCF-1) and octamer-binding transcription factor 1 (Oct-1) upon entry into the host cell. VP16 has also been shown to interact with a number of virion tegument proteins and viral glycoprotein H to promote viral assembly, but no comprehensive study of the VP16 proteome has been performed at early times postinfection. We therefore performed a proteomic analysis of VP16-interacting proteins at 3 h postinfection. We confirmed the interaction of VP16 with HCF-1 and a large number of cellular Mediator complex proteins, but most surprisingly, we found that the major viral protein associating with VP16 is the infected cell protein 4 (ICP4) immediate-early (IE) transactivator protein. These results raise the potential for a new function for VP16 in associating with the IE ICP4 and playing a role in transactivation of early and late gene expression, in addition to its well-documented function in transactivation of IE gene expression.
Collapse
Affiliation(s)
- Hyung Suk
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - David M Knipe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Aguilar X, Blomberg J, Brännström K, Olofsson A, Schleucher J, Björklund S. Interaction studies of the human and Arabidopsis thaliana Med25-ACID proteins with the herpes simplex virus VP16- and plant-specific Dreb2a transcription factors. PLoS One 2014; 9:e98575. [PMID: 24874105 PMCID: PMC4038590 DOI: 10.1371/journal.pone.0098575] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/05/2014] [Indexed: 12/17/2022] Open
Abstract
Mediator is an evolutionary conserved multi-protein complex present in all eukaryotes. It functions as a transcriptional co-regulator by conveying signals from activators and repressors to the RNA polymerase II transcription machinery. The Arabidopsis thaliana Med25 (aMed25) ACtivation Interaction Domain (ACID) interacts with the Dreb2a activator which is involved in plant stress response pathways, while Human Med25-ACID (hMed25) interacts with the herpes simplex virus VP16 activator. Despite low sequence similarity, hMed25-ACID also interacts with the plant-specific Dreb2a transcriptional activator protein. We have used GST pull-down-, surface plasmon resonance-, isothermal titration calorimetry and NMR chemical shift experiments to characterize interactions between Dreb2a and VP16, with the hMed25 and aMed25-ACIDs. We found that VP16 interacts with aMed25-ACID with similar affinity as with hMed25-ACID and that the binding surface on aMed25-ACID overlaps with the binding site for Dreb2a. We also show that the Dreb2a interaction region in hMed25-ACID overlaps with the earlier reported VP16 binding site. In addition, we show that hMed25-ACID/Dreb2a and aMed25-ACID/Dreb2a display similar binding affinities but different binding energetics. Our results therefore indicate that interaction between transcriptional regulators and their target proteins in Mediator are less dependent on the primary sequences in the interaction domains but that these domains fold into similar structures upon interaction.
Collapse
Affiliation(s)
| | - Jeanette Blomberg
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | | | - Anders Olofsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Jürgen Schleucher
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| |
Collapse
|
16
|
Chen WY, Zhang J, Geng H, Du Z, Nakadai T, Roeder RG. A TAF4 coactivator function for E proteins that involves enhanced TFIID binding. Genes Dev 2013; 27:1596-609. [PMID: 23873942 DOI: 10.1101/gad.216192.113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The multisubunit TFIID plays a direct role in transcription initiation by binding to core promoter elements and directing preinitiation complex assembly. Although TFIID may also function as a coactivator through direct interactions with promoter-bound activators, mechanistic aspects of this poorly defined function remain unclear. Here, biochemical studies show a direct TFIID-E-protein interaction that (1) is mediated through interaction of a novel E-protein activation domain (activation domain 3 [AD3]) with the TAF homology (TAFH) domain of TAF4, (2) is critical for activation of a natural target gene by an E protein, and (3) mechanistically acts by enhancing TFIID binding to the core promoter. Complementary assays establish a gene-specific role for the TAFH domain in TFIID recruitment and activation of a large subset of genes in vivo. These results firmly establish TAF4 as a bona fide E-protein coactivator as well as a mechanism involving facilitated TFIID binding through direct interaction with an E-protein activation domain.
Collapse
Affiliation(s)
- Wei-Yi Chen
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
17
|
Yang YC, Chang LK. Role of TAF4 in transcriptional activation by Rta of Epstein-Barr Virus. PLoS One 2013; 8:e54075. [PMID: 23326574 PMCID: PMC3542328 DOI: 10.1371/journal.pone.0054075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 12/06/2012] [Indexed: 11/23/2022] Open
Abstract
Epstein-Barr virus (EBV) expresses an immediate-early protein, Rta, to activate the transcription of EBV lytic genes. This protein usually binds to Rta-response elements or interacts with Sp1 or Zta via a mediator protein, MCAF1, to activate transcription. Rta is also known to interact with TBP and TFIIB to activate transcription. This study finds that Rta interacts with TAF4, a component of TFIID complex, in vitro and in vivo, and on the TATA sequence in the BcLF1 promoter. Rta also interacts with TAF4 and Sp1 on Sp1-binding sequences on TATA-less promoters, including those of BNLF1, BALF5, and the human androgen receptor. These interactions are important to the transcriptional activation of these genes by Rta since introducing TAF4 shRNA substantially reduces the ability of Rta to activate these promoters. This investigation reveals how Rta interacts with TFIID to stimulate transcription.
Collapse
Affiliation(s)
- Ya-Chun Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
18
|
Hirai H, Tani T, Kikyo N. Structure and functions of powerful transactivators: VP16, MyoD and FoxA. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2011; 54:1589-96. [PMID: 21404180 DOI: 10.1387/ijdb.103194hh] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Induced pluripotent stem cell (iPSC) technology is a promising approach for converting one type of a differentiated cell into another type of differentiated cell through a pluripotent state as an intermediate step. Recent studies, however, indicate the possibility of directly converting one cell type to another without going through a pluripotent state. This direct reprogramming approach is dependent on a combination of highly potent transcription factors for cell-type conversion, presumably skipping more physiological and multi-step differentiation processes. A trial-and-error strategy is commonly used to screen many candidate transcription factors to identify the correct combination of factors. We speculate, however, that a better understanding of the functional mechanisms of exemplary transcriptional activators will facilitate the identification of novel factor combinations capable of direct reprogramming. The purpose of this review is to critically examine the literature on three highly potent transcriptional activators: the herpes virus protein, VP16; the master regulator of skeletal muscle differentiation, MyoD and the "pioneer" factor for hepatogenesis, FoxA. We discuss the roles of their functional protein domains, interacting partners and chromatin remodeling mechanisms during gene activation to understand how these factors open the chromatin of inactive genes and reset the transcriptional pattern during cell type conversion.
Collapse
|
19
|
Vojnic E, Mourão A, Seizl M, Simon B, Wenzeck L, Larivière L, Baumli S, Baumgart K, Meisterernst M, Sattler M, Cramer P. Structure and VP16 binding of the Mediator Med25 activator interaction domain. Nat Struct Mol Biol 2011; 18:404-9. [PMID: 21378965 DOI: 10.1038/nsmb.1997] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 12/03/2010] [Indexed: 12/22/2022]
Abstract
Eukaryotic transcription is regulated by interactions between gene-specific activators and the coactivator complex Mediator. Here we report the NMR structure of the Mediator subunit Med25 (also called Arc92) activator interaction domain (ACID) and analyze the structural and functional interaction of ACID with the archetypical acidic transcription activator VP16. Unlike other known activator targets, ACID forms a seven-stranded β-barrel framed by three helices. The VP16 subdomains H1 and H2 bind to opposite faces of ACID and cooperate during promoter-dependent activated transcription in a in vitro system. The activator-binding ACID faces are functionally required and conserved among higher eukaryotes. Comparison with published activator structures reveals that the VP16 activation domain uses distinct interaction modes to adapt to unrelated target surfaces and folds that evolved for activator binding.
Collapse
Affiliation(s)
- Erika Vojnic
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Effective formation of the segregation-competent complex determines successful partitioning of the bovine papillomavirus genome during cell division. J Virol 2010; 84:11175-88. [PMID: 20810736 DOI: 10.1128/jvi.01366-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Effective segregation of the bovine papillomavirus type 1 (BPV1), Epstein-Barr virus (EBV), and Kaposi's sarcoma-associated human herpesvirus type 8 (KSHV) genomes into daughter cells is mediated by a single viral protein that tethers viral genomes to host mitotic chromosomes. The linker proteins that mediate BPV1, EBV, and KSHV segregation are E2, LANA1, and EBNA1, respectively. The N-terminal transactivation domain of BPV1 E2 is responsible for chromatin attachment and subsequent viral genome segregation. Because E2 transcriptional activation and chromatin attachment functions are not mutually exclusive, we aimed to determine the requirement of these activities during segregation by analyzing chimeric E2 proteins. This approach allowed us to separate the two activities. Our data showed that attachment of the segregation protein to chromatin is not sufficient for proper segregation. Rather, formation of a segregation-competent complex which carries multiple copies of the segregation protein is required. Complementation studies of E2 functional domains indicated that chromatin attachment and transactivation functions must act in concert to ensure proper plasmid segregation. These data indicate that there are specific interactions between linker molecules and transcription factors/complexes that greatly increase segregation-competent complex formation. We also showed, using hybrid E2 molecules, that restored segregation function does not involve interactions with Brd4.
Collapse
|
21
|
Gu K, Tian D, Qiu C, Yin Z. Transcription activator-like type III effector AvrXa27 depends on OsTFIIAgamma5 for the activation of Xa27 transcription in rice that triggers disease resistance to Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT PATHOLOGY 2009; 10:829-35. [PMID: 19849788 PMCID: PMC6640403 DOI: 10.1111/j.1364-3703.2009.00567.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The transcription activator-like (TAL) type III effector AvrXa27 from Xanthomonas oryzae pv. oryzae (Xoo) strain PXO99(A) activates the transcription of the host resistance gene Xa27, which results in disease resistance to bacterial blight (BB) in rice. In this study, we show that AvrXa27-activated Xa27 transcription requires host general transcription factor OsTFIIAgamma5. The V39E substitution in OsTFIIAgamma5, encoded by the recessive resistance gene xa5 in rice, greatly attenuates this activation in xa5 and Xa27 double homozygotes on inoculation with Xa27-incompatible strains. The xa5 gene also causes attenuation in the induction of Xa27 by AvrXa27 expressed in rice. The xa5-mediated attenuation of Xa27-mediated resistance to PXO99(A) is recessive. Intriguingly, xa5-mediated resistance to xa5-incompatible strains is also down-regulated in the xa5 and Xa27 double homozygotes. In addition, AvrXa27 expressed in planta shows weak virulence activity in the xa5 genetic background and causes enhanced susceptibility of the plants to BB inoculation. The results suggest that TAL effectors target host general transcription factors to directly manipulate the host transcriptional machinery for virulence and/or avirulence. The identification of xa5-mediated attenuation of Xa27-mediated resistance to Xoo provides a guideline for breeding resistance to BB when pyramiding xa5 with other resistance genes.
Collapse
Affiliation(s)
- Keyu Gu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore
| | | | | | | |
Collapse
|
22
|
Huang YW, Jansen RA, Fabbri E, Potter D, Liyanarachchi S, Chan MWY, Liu JC, Crijns APG, Brown R, Nephew KP, van der Zee AGJ, Cohn DE, Yan PS, Huang THM, Lin HJL. Identification of candidate epigenetic biomarkers for ovarian cancer detection. Oncol Rep 2009; 22:853-861. [PMID: 19724865 PMCID: PMC2829240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
Ovarian cancer ranks the most lethal among gynecologic neoplasms in women. To develop potential biomarkers for diagnosis, we have identified five novel genes (CYP39A1, GTF2A1, FOXD4L4, EBP, and HAAO) that are hypermethylated in ovarian tumors, compared with the non-malignant normal ovarian surface epithelia, using the quantitative methylation-specific polymerase chain reactions. Interestingly enough, multivariate Cox regression analysis has identified hypermethylation of CYP39A1 correlated with an increase rate of relapsing (P=0.032, hazard ratio >1). Concordant hypermethylation in at least three loci was observed in 50 out of 55 (91%) of ovarian tumors examined. The test sensitivity and specificity were assessed to be 96 and 67% for CYP39A1; 95 and 88% for GTF2A1; 93 and 67% for FOXD4L4; 81 and 67% for EBP; 89 and 82% for HAAO, respectively. Our data have identified, for the first time, GTF2A1 alone, or GTF2A1 plus HAAO are excellent candidate biomarkers for detecting this disease. Moreover, the known functions of these gene products further implicate dysregulated transcriptional control, cholesterol metabolism, or synthesis of quinolinic acids, may play important roles in attributing to ovarian neoplasm. Molecular therapies, by reversing the aberrant epigenomes using inhibitory agents or by abrogating the upstream signaling pathways that convey the epigenomic perturbations, may be developed into promising treatment regimens.
Collapse
Affiliation(s)
- Yi-Wen Huang
- Molecular Biology and Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
TFIIB recognition elements control the TFIIA-NC2 axis in transcriptional regulation. Mol Cell Biol 2008; 29:1389-400. [PMID: 19114554 DOI: 10.1128/mcb.01346-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
TFIIB recognizes DNA sequence-specific motifs that can flank the TATA elements of the promoters of protein-encoding genes. The TFIIB recognition elements (BRE(u) and BRE(d)) can have positive or negative effects on transcription in a promoter context-dependent manner. Here we show that the BREs direct the selective recruitment of TFIIA and NC2 to the promoter. We find that TFIIA preferentially associates with BRE-containing promoters while NC2 is recruited to promoters that lack consensus BREs. The functional relevance of the BRE-dependent recruitment of TFIIA and NC2 was determined by small interfering RNA-mediated knockdown of TFIIA and NC2, both of which elicited BRE-dependent effects on transcription. Our results confirm the established functional reciprocity of TFIIA and NC2. However, our findings show that TFIIA assembly at BRE-containing promoters results in reduced transcriptional activity, while NC2 acts as a positive factor at promoters that lack functional BREs. Taken together, our results provide a basis for the selective recruitment of TFIIA and NC2 to the promoter and give new insights into the functional relationship between core promoter elements and general transcription factor activity.
Collapse
|
24
|
Zabierowski SE, Deluca NA. Stabilized binding of TBP to the TATA box of herpes simplex virus type 1 early (tk) and late (gC) promoters by TFIIA and ICP4. J Virol 2008; 82:3546-54. [PMID: 18216093 PMCID: PMC2268492 DOI: 10.1128/jvi.02560-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 01/10/2008] [Indexed: 11/20/2022] Open
Abstract
We have recently shown that ICP4 has a differential requirement for the general transcription factor TFIIA in vitro (S. Zabierowski and N. DeLuca, J. Virol. 78:6162-6170, 2004). TFIIA was dispensable for ICP4 activation of a late promoter (gC) but was required for the efficient activation of an early promoter (tk). An intact INR element was required for proficient ICP4 activation of the late promoter in the absence of TFIIA. Because TFIIA is known to stabilize the binding of both TATA binding protein (TBP) and TFIID to the TATA box of core promoters and ICP4 has been shown to interact with TFIID, we tested the ability of ICP4 to stabilize the binding of either TBP or TFIID to the TATA box of representative early, late, and INR-mutated late promoters (tk, gC, and gC8, respectively). Utilizing DNase I footprinting analysis, we found that ICP4 was able to facilitate TFIIA stabilized binding of TBP to the TATA box of the early tk promoter. Using mutant ICP4 proteins, the ability to stabilize the binding of TBP to both the wild-type and the INR-mutated gC promoters was located in the amino-terminal region of ICP4. When TFIID was substituted for TBP, ICP4 could stabilize the binding of TFIID to the TATA box of the wild-type gC promoter. ICP4, however, could not effectively stabilize TFIID binding to the TATA box of the INR-mutated late promoter. The additional activities of TFIIA were required to stabilize the binding of TFIID to the INR-mutated late promoter. Collectively, these data suggest that TFIIA may be dispensable for ICP4 activation of the wild-type late promoter because ICP4 can substitute for TFIIA's ability to stabilize the binding of TFIID to the TATA box. In the absence of a functional INR, ICP4 can no longer stabilize TFIID binding to the TATA box of the late promoter and requires the additional activities of TFIIA. The stabilized binding of TFIID by TFIIA may in turn allow ICP4 to more efficiently activate transcription from non-INR containing promoters.
Collapse
Affiliation(s)
- Susan E Zabierowski
- Biomedical Science Tower, Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
25
|
Structural changes in TAF4b-TFIID correlate with promoter selectivity. Mol Cell 2008; 29:81-91. [PMID: 18206971 PMCID: PMC2486835 DOI: 10.1016/j.molcel.2007.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 09/15/2007] [Accepted: 11/05/2007] [Indexed: 11/22/2022]
Abstract
Proper ovarian development requires the cell type-specific transcription factor TAF4b, a subunit of the core promoter recognition complex TFIID. We present the 35 A structure of a cell type-specific core promoter recognition complex containing TAF4b and TAF4 (4b/4-IID), which is responsible for directing transcriptional synergy between c-Jun and Sp1 at a TAF4b target promoter. As a first step toward correlating potential structure/function relationships of the prototypic TFIID versus 4b/4-IID, we have compared their 3D structures by electron microscopy and single-particle reconstruction. These studies reveal that TAF4b incorporation into TFIID induces an open conformation at the lobe involved in TFIIA and putative activator interactions. Importantly, this open conformation correlates with differential activator-dependent transcription and promoter recognition by 4b/4-IID. By combining functional and structural analysis, we find that distinct localized structural changes in a megadalton macromolecular assembly can significantly alter its activity and lead to a TAF4b-induced reprogramming of promoter specificity.
Collapse
|
26
|
Mabuchi T, Wakamatsu T, Nakadai T, Shimada M, Yamada K, Matsuda Y, Tamura TA. Chromosomal position, structure, expression, and requirement of genes for chicken transcription factor IIA. Gene 2007; 397:94-100. [PMID: 17544229 DOI: 10.1016/j.gene.2007.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 03/14/2007] [Accepted: 04/13/2007] [Indexed: 11/18/2022]
Abstract
Transcription factor IIA (TFIIA) is one of the general transcription factors for RNA polymerase II and composed of three subunits, TFIIAalpha, TFIIAbeta and TFIIAgamma. TFIIAalpha and TFIIAbeta are encoded by a single gene (TFIIAalphabeta) and mature through internal cleavage of TFIIAalphabeta. In this study, we found that structures of TFIIAalphabeta and TFIIAgamma are highly homologous with each mammalian counterpart. Exon-intron organizations of the human and chicken TFIIA genes were also homologous. The sequence of the cleavage region of the chicken TFIIAalphabeta precursor protein was fitted to the consensus cleavage recognition site. It was thus demonstrated that TFIIA is conserved in vertebrates. TFIIA proteins are present ubiquitously in chicken tissues. Fluorescent in situ hybridization revealed that TFIIAalphabeta and TFIIAgamma genes are located in chromosome 5 and a mini-chromosome, respectively. We generated semi-knockout chicken DT40 cells for TFIIAalphabeta and TFIIAgamma genes with high homologous recombination efficiencies, whereas we failed to establish double-knockout cells for each gene. It is thought that both genes for TFIIA are required in vertebrates. TFIIA siRNA resulted in deceleration of cell growth rate, suggesting that, consistent with those of knockout assays, TFIIA is associated with cell growth regulation.
Collapse
Affiliation(s)
- Tomoko Mabuchi
- Department of Biology, Faculty of Science, Chiba University, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Iyer-Pascuzzi AS, McCouch SR. Recessive resistance genes and the Oryza sativa-Xanthomonas oryzae pv. oryzae pathosystem. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:731-9. [PMID: 17601161 DOI: 10.1094/mpmi-20-7-0731] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Though recessive resistance is well-studied in viral systems, little is understood regarding the phenomenon in plant-bacterial interactions. The Oryza sativa-Xanthomonas oryzae pv. orzyae pathosystem provides an excellent opportunity to examine recessive resistance in plant-bacterial interactions, in which nine of 30 documented resistance (R) genes are recessively inherited. Infestations of X. oryzae pv. oryzae, the causal agent of bacterial blight, result in significant crop loss and damage throughout South and Southeast Asia. Two recently cloned novel recessive R genes, xa5 and xa13, have yielded insights to this system. Like their viral counterparts, these bacterial recessive R gene products do not conform to the five commonly described classes of R proteins. New findings suggest that such genes may more aptly be viewed as mutations in dominant susceptibility alleles and may also function in a gene-for-gene manner. In this review, we discuss recent accomplishments in the understanding of recessively inherited R genes in the rice-bacterial blight pathosystem and suggest a new model for the function of recessive resistance in plant-bacterial interactions.
Collapse
|
28
|
Sugio A, Yang B, Zhu T, White FF. Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIAgamma1 and OsTFX1 during bacterial blight of rice. Proc Natl Acad Sci U S A 2007; 104:10720-5. [PMID: 17563377 PMCID: PMC1965579 DOI: 10.1073/pnas.0701742104] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Xanthomonas oryzae pv. oryzae strain PXO99(A) induces the expression of the host gene Os8N3, which results in increased host susceptibility to bacterial blight of rice. Here, we show that PXO99(A) affects the expression of two additional genes in a type III secretion system-dependent manner, one encoding a bZIP transcription factor (OsTFX1) and the other the small subunit of the transcription factor IIA located on chromosome 1 (OsTFIIAgamma1). Induction of OsTFX1 and OsTFIIAgamma1 depended on the type III effector genes pthXo6 and pthXo7, respectively, both encoding two previously undescribed members of the transcription activator-like (TAL) effector family. pthXo7 is strain-specific and may reflect adaptation to the resistance mediated by xa5, an allele of OsTFIIAgamma5 encoding a second form of the TFIIA small subunit on chromosome 5 of rice. The loss of pthXo6 resulted in reduced pathogen virulence, and ectopic expression of OsTFX1 abrogated the requirement for pthXo6 for full virulence. X. oryzae pv. oryzae therefore modulates the expression of multiple host genes using multiple TAL effectors from a single strain, and evidence supports the hypothesis that expression of the associated host genes contributes to host susceptibility to disease.
Collapse
Affiliation(s)
- Akiko Sugio
- *Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
- Department of Disease and Stress Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, United Kingdom; and
| | - Bing Yang
- *Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Tong Zhu
- Syngenta Biotechnology, Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709
| | - Frank F. White
- *Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
Høiby T, Zhou H, Mitsiou DJ, Stunnenberg HG. A facelift for the general transcription factor TFIIA. ACTA ACUST UNITED AC 2007; 1769:429-36. [PMID: 17560669 DOI: 10.1016/j.bbaexp.2007.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 04/20/2007] [Accepted: 04/24/2007] [Indexed: 10/23/2022]
Abstract
TFIIA was classified as a general transcription factor when it was first identified. Since then it has been debated to what extent it can actually be regarded as "general". The most notable feature of TFIIA is the proteolytical cleavage of the TFIIAalphabeta into a TFIIAalpha and TFIIAbeta moiety which has long remained a mystery. Recent studies have showed that TFIIA is cleaved by Taspase1 which was initially identified as the protease for the proto-oncogene MLL. Cleavage of TFIIA does not appear to serve as a step required for its activation as the uncleaved TFIIA in the Taspase1 knock-outs adequately support bulk transcription. Instead, cleavage of TFIIA seems to affect its turn-over and may be a part of an intricate degradation mechanism that allows fine-tuning of cellular levels of TFIIA. Cleavage might also be responsible for switching transcription program as the uncleaved and cleaved TFIIA might have distinct promoter specificity during development and differentiation. This review will focus on functional characteristics of TFIIA and discuss novel insights in the role of this elusive transcription factor.
Collapse
Affiliation(s)
- Torill Høiby
- NCMLS, Department of Molecular Biology, 191, Radboud University of Nijmegen, PO Box 91001, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
30
|
Uhlmann T, Boeing S, Lehmbacher M, Meisterernst M. The VP16 activation domain establishes an active mediator lacking CDK8 in vivo. J Biol Chem 2006; 282:2163-73. [PMID: 17135252 DOI: 10.1074/jbc.m608451200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
VP16 has been widely used to unravel the mechanisms underlying gene transcription. Much of the previous work has been conducted in reconstituted in vitro systems. Here we study the formation of transcription complexes at stable reporters under the control of an inducible Tet-VP16 activator in living cells. In this simplified model for gene activation VP16 recruits the general factors and the cofactors Mediator, GCN5, CBP, and PC4, within minutes to the promoter region. Activation is accompanied by only minor changes in histone acetylation and H3K4 methylation but induces a marked promoter-specific increase in H3K79 methylation. Mediated through contacts with VP16 several subunits of the cleavage and polyadenylation factor (CPSF/CstF) are concentrated at the promoter region. We provide in vitro and in vivo evidence that VP16 activates transcription through a specific MED25-associated Mediator, which is deficient in CDK8.
Collapse
Affiliation(s)
- Thomas Uhlmann
- Gene Expression, National Research Center for Environment and Health, Marchionini-Strasse 25, D-81377 Munich, Germany
| | | | | | | |
Collapse
|
31
|
Kraemer SM, Goldstrohm DA, Berger A, Hankey S, Rovinsky SA, Scott Moye-Rowley W, Stargell LA. TFIIA plays a role in the response to oxidative stress. EUKARYOTIC CELL 2006; 5:1081-90. [PMID: 16835452 PMCID: PMC1489289 DOI: 10.1128/ec.00071-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To characterize the role of the general transcription factor TFIIA in the regulation of gene expression by RNA polymerase II, we examined the transcriptional profiles of TFIIA mutants of Saccharomyces cerevisiae using DNA microarrays. Whole-genome expression profiles were determined for three different mutants with mutations in the gene coding for the small subunit of TFIIA, TOA2. Depending on the particular mutant strain, approximately 11 to 27% of the expressed genes exhibit altered message levels. A search for common motifs in the upstream regions of the pool of genes decreased in all three mutants yielded the binding site for Yap1, the transcription factor that regulates the response to oxidative stress. Consistent with a TFIIA-Yap1 connection, the TFIIA mutants are unable to grow under conditions that require the oxidative stress response. Underexpression of Yap1-regulated genes in the TFIIA mutant strains is not the result of decreased expression of Yap1 protein, since immunoblot analysis indicates similar amounts of Yap1 in the wild-type and mutant strains. In addition, intracellular localization studies indicate that both the wild-type and mutant strains localize Yap1 indistinguishably in response to oxidative stress. As such, the decrease in transcription of Yap1-dependent genes in the TFIIA mutant strains appears to reflect a compromised interaction between Yap1 and TFIIA. This hypothesis is supported by the observations that Yap1 and TFIIA interact both in vivo and in vitro. Taken together, these studies demonstrate a dependence of Yap1 on TFIIA function and highlight a new role for TFIIA in the cellular mechanism of defense against reactive oxygen species.
Collapse
Affiliation(s)
- Susan M Kraemer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
33
|
Mikhaylova LM, Boutanaev AM, Nurminsky DI. Transcriptional regulation by Modulo integrates meiosis and spermatid differentiation in male germ line. Proc Natl Acad Sci U S A 2006; 103:11975-80. [PMID: 16877538 PMCID: PMC1567683 DOI: 10.1073/pnas.0605087103] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcriptional activation in early spermatocytes involves hundreds of genes, many of which are required for meiosis and spermatid differentiation. A number of the meiotic-arrest genes have been identified as general regulators of transcription; however, the gene-specific transcription factors have remained elusive. To identify such factors, we purified the protein that specifically binds to the promoter of spermatid-differentiation gene Sdic and identified it as Modulo, the Drosophila homologue of nucleolin. Analysis of gene-expression patterns in the male sterile modulo mutant indicates that Modulo supports high expression of the meiotic-arrest genes and is essential for transcription of spermatid-differentiation genes. Expression of Modulo itself is under the control of meiotic-arrest genes and requires the DAZ/DAZL homologue Boule that is involved in the control of G(2)/M transition. Thus, regulatory interactions among Modulo, Boule, and the meiotic-arrest genes integrate meiosis and spermatid differentiation in the male germ line.
Collapse
Affiliation(s)
- Lyudmila M. Mikhaylova
- *Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111; and
| | - Alexander M. Boutanaev
- *Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111; and
- Institute of Basic Problems in Biology, Puschino 142292, Russia
| | - Dmitry I. Nurminsky
- *Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Zhou H, Spicuglia S, Hsieh JJD, Mitsiou DJ, Høiby T, Veenstra GJC, Korsmeyer SJ, Stunnenberg HG. Uncleaved TFIIA is a substrate for taspase 1 and active in transcription. Mol Cell Biol 2006; 26:2728-35. [PMID: 16537915 PMCID: PMC1430320 DOI: 10.1128/mcb.26.7.2728-2735.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In higher eukaryotes, the large subunit of the general transcription factor TFIIA is encoded by the single TFIIAalphabeta gene and posttranslationally cleaved into alpha and beta subunits. The molecular mechanisms and biological significance of this proteolytic process have remained obscure. Here, we show that TFIIA is a substrate of taspase 1 as reported for the trithorax group mixed-lineage leukemia protein. We demonstrate that recombinant taspase 1 cleaves TFIIA in vitro. Transfected taspase 1 enhances cleavage of TFIIA, and RNA interference knockdown of endogenous taspase 1 diminishes cleavage of TFIIA in vivo. In taspase 1-/- MEF cells, only uncleaved TFIIA is detected. In Xenopus laevis embryos, knockdown of TFIIA results in phenotype and expression defects. Both defects can be rescued by expression of an uncleavable TFIIA mutant. Our study shows that uncleaved TFIIA is transcriptionally active and that cleavage of TFIIA does not serve to render TFIIA competent for transcription. We propose that cleavage fine tunes the transcription regulation of a subset of genes during differentiation and development.
Collapse
Affiliation(s)
- Huiqing Zhou
- NCMLS, Department of Molecular Biology, 191, Radboud University of Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Savard M, Gosselin J. Epstein-Barr virus immunossuppression of innate immunity mediated by phagocytes. Virus Res 2006; 119:134-45. [PMID: 16545476 DOI: 10.1016/j.virusres.2006.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 02/10/2006] [Accepted: 02/10/2006] [Indexed: 01/31/2023]
Abstract
Epstein-Barr virus (EBV) is an oncogenic human herpesvirus that persistently infects approximately 90% of the world's population. Such a remarkably sustained of viral infectivity relies on EBV's ability to evade the host immune defenses. A crucial part of this anti-EBV response is mediated by cytotoxic CD8+ T lymphocytes, which maintain a life-long control over proliferating latently-infected B cells in order to prevent these from giving rise to lymphomatous diseases. On the other hand, little has been done to assess the role of phagocytes-mediated innate immunity in the pathogenesis of EBV infection. In the course of primary EBV infection, episodes of neutropenia and monocytopenia can be observed during the acute phase of infection. According to the role of those cells in the non specific and specific immunity, such a decrease in circulating phagocytes may then temporarily affect the immune defense and potentially influence the outcome of EBV infection. Recent studies have demonstrated that EBV infects both neutrophils and monocytes and modulates several of their biological functions. This review covers the current state of our knowledge relative to the role of neutrophils and monocytes in EBV pathogenesis and describes the nature of countermeasures deployed by EBV against these cells.
Collapse
Affiliation(s)
- Martin Savard
- Viral Immunology Laboratory, CHUL Research Center (CHUQ), Université Laval, Québec, Canada
| | | |
Collapse
|
36
|
Jiang GH, Xia ZH, Zhou YL, Wan J, Li DY, Chen RS, Zhai WX, Zhu LH. Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5 (Xa5) in comparison with its homolog TFIIAgamma1. Mol Genet Genomics 2006; 275:354-66. [PMID: 16614777 DOI: 10.1007/s00438-005-0091-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 12/10/2005] [Indexed: 10/25/2022]
Abstract
The recessive gene xa5 for resistance to bacterial blight resistance of rice is located on chromosome 5, and evidence based on genetic recombination has been shown to encode a small subunit of the basal transcription factor IIA (Iyer and McCouch in MPMI 17(12):1348-1354, 2004). However, xa5 has not been demonstrated by a complementation test. In this study, we introduced the dominant allele Xa5 into a homozygous xa5-line, which was developed from a cross between IRBB5 (an indica variety with xa5) and Nipponbare (a japonica variety with Xa5). Transformation of Xa5 and subsequent segregation analysis confirmed that xa5 is a V39E substitution variant of the gene for TFIIAgamma on chromosome 5 (TFIIAgamma5 or Xa5). The rice has an addition gene for TFIIAgamma exists on chromosome 1 (TFIIAgamma1). Analysis of the expression patterns of Xa5 (TFIIAgamma5)/xa5 and TFIIAgamma1 revealed that both the genes are constitutively expressed in different rice organs. However, no expression of TFIIAgamma1 could be detected in the panicle by reverse transcriptase-polymerase chain reaction. To compare the structural difference between the Xa5/xa5 and TFIIAgamma1 proteins, 3-D structures were predicted using computer-aided modeling techniques. The modeled structures of Xa5 (xa5) and TFIIAgamma1 fit well with the structure of TFIIA small subunit from human, suggesting that they may all act as a small subunit of TFIIA. The E39V substitution in the xa5 protein occurs in the alpha-helix domain, a supposed conservative substitutable site, which should not affect the basal transcription function of TFIIAgamma. The structural analysis indicates that xa5 and Xa5 potentially retain their basic transcription factor function, which, in turn, may mediate the novel pathway for bacterial blight resistance and susceptibility, respectively.
Collapse
Affiliation(s)
- Guang-Huai Jiang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Catena R, Argentini M, Martianov I, Parello C, Brancorsini S, Parvinen M, Sassone-Corsi P, Davidson I. Proteolytic cleavage of ALF into alpha- and beta-subunits that form homologous and heterologous complexes with somatic TFIIA and TRF2 in male germ cells. FEBS Lett 2005; 579:3401-10. [PMID: 15927180 DOI: 10.1016/j.febslet.2005.04.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 04/26/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
Male germ cells specifically express paralogues of components of the general transcription apparatus including ALF a paralogue of TFIIAalpha/beta. We show that endogenous ALF is proteolytically cleaved to give alpha- and beta-subunits and we map the proteolytic cleavage site by mass spectrometry. Immunoprecipitations show that ALFalpha- and beta-subunits form a series of homologous and heterologous complexes with somatic TFIIA which is coexpressed in male germ cells. In addition, we show that ALF is coexpressed in late pachytene spermatocytes and in haploid round spermatids with transcription factor TRF2, and that these proteins form stable complexes in testis extracts. Our observations highlight how cleavage of ALF and coexpression with TFIIA and TRF2 increases the combinatorial possibilities for gene regulation at different developmental stages of spermatogenesis.
Collapse
Affiliation(s)
- Raffaella Catena
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, 67404 Illkirch Cédex, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Somboonthum P, Ohta H, Yamada S, Onishi M, Ike A, Nishimune Y, Nozaki M. cAMP-responsive element in TATA-less core promoter is essential for haploid-specific gene expression in mouse testis. Nucleic Acids Res 2005; 33:3401-11. [PMID: 15951513 PMCID: PMC1150221 DOI: 10.1093/nar/gki652] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 05/23/2005] [Accepted: 05/23/2005] [Indexed: 01/22/2023] Open
Abstract
Promoters, including neither TATA box nor initiator, have been frequently found in testicular germ cell-specific genes in mice. These investigations imply that unique forms of the polymerase II transcription initiation machinery play a role in selective activation of germ cell-specific gene expression programs during spermatogenesis. However, there is little information about testis-specific core promoters, because useful germ cell culture system is not available. In this study, we characterize the regulatory region of the haploid-specific Oxct2b gene in detail by using in vivo transient transfection assay in combination with a transgenic approach, with electrophoretic mobility shift and chromatin immunoprecipitation assays. Expression studies using mutant constructs demonstrate that a 34 bp region, which extends from -49 to -16, acts as a core promoter in an orientation-dependent manner. This promoter region includes the cAMP-responsive element (CRE)-like sequence TGACGCAG, but contains no other motifs, such as a TATA box or initiator. The CRE-like element is indispensable for the core promoter activity, but not for activator in testicular germ cells, through the binding of a testis-specific CRE modulator transcription factor. These results indicate the presence of alternative transcriptional initiation machinery for cell-type-specific gene expression in testicular germ cells.
Collapse
Affiliation(s)
- Pranee Somboonthum
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Diseases, Osaka UniversitySuita, Osaka 565-0871, Japan
- Department of Cell Biology, Institute for Virus Research, Kyoto UniversityKyoto 606-8507, Japan
| | - Hiroshi Ohta
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Diseases, Osaka UniversitySuita, Osaka 565-0871, Japan
- Department of Cell Biology, Institute for Virus Research, Kyoto UniversityKyoto 606-8507, Japan
| | - Shuichi Yamada
- Department of Cell Biology, Institute for Virus Research, Kyoto UniversityKyoto 606-8507, Japan
| | - Masayoshi Onishi
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Diseases, Osaka UniversitySuita, Osaka 565-0871, Japan
- Department of Cell Biology, Institute for Virus Research, Kyoto UniversityKyoto 606-8507, Japan
| | - Akiko Ike
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Diseases, Osaka UniversitySuita, Osaka 565-0871, Japan
- Department of Cell Biology, Institute for Virus Research, Kyoto UniversityKyoto 606-8507, Japan
| | - Yoshitake Nishimune
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Diseases, Osaka UniversitySuita, Osaka 565-0871, Japan
- Department of Cell Biology, Institute for Virus Research, Kyoto UniversityKyoto 606-8507, Japan
| | - Masami Nozaki
- To whom correspondence should be addressed. Tel/Fax: +816 6879 8339;
| |
Collapse
|
39
|
Carpenter AE, Memedula S, Plutz MJ, Belmont AS. Common effects of acidic activators on large-scale chromatin structure and transcription. Mol Cell Biol 2005; 25:958-68. [PMID: 15657424 PMCID: PMC544008 DOI: 10.1128/mcb.25.3.958-968.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Large-scale chromatin decondensation has been observed after the targeting of certain acidic activators to heterochromatic chromatin domains. Acidic activators are often modular, with two or more separable transcriptional activation domains. Whether these smaller regions are sufficient for all functions of the activators has not been demonstrated. We adapted an inducible heterodimerization system to allow systematic dissection of the function of acidic activators, individual subdomains within these activators, and short acidic-hydrophobic peptide motifs within these subdomains. Here, we demonstrate that large-scale chromatin decondensation activity is a general property of acidic activators. Moreover, this activity maps to the same acidic activator subdomains and acidic-hydrophobic peptide motifs that are responsible for transcriptional activation. Two copies of a mutant peptide motif of VP16 (viral protein 16) possess large-scale chromatin decondensation activity but minimal transcriptional activity, and a synthetic acidic-hydrophobic peptide motif had large-scale chromatin decondensation activity comparable to the strongest full-length acidic activator but no transcriptional activity. Therefore, the general property of large-scale chromatin decondensation shared by most acidic activators is not simply a direct result of transcription per se but is most likely the result of the concerted action of coactivator proteins recruited by the activators' short acidic-hydrophobic peptide motifs.
Collapse
Affiliation(s)
- Anne E Carpenter
- Department of Cell and Structural Biology, B107 CLSL, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
40
|
Robinson MM, Yatherajam G, Ranallo RT, Bric A, Paule MR, Stargell LA. Mapping and functional characterization of the TAF11 interaction with TFIIA. Mol Cell Biol 2005; 25:945-57. [PMID: 15657423 PMCID: PMC543996 DOI: 10.1128/mcb.25.3.945-957.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TFIIA interacts with TFIID via association with TATA binding protein (TBP) and TBP-associated factor 11 (TAF11). We previously identified a mutation in the small subunit of TFIIA (toa2-I27K) that is defective for interaction with TAF11. To further explore the functional link between TFIIA and TAF11, the toa2-I27K allele was utilized in a genetic screen to isolate compensatory mutants in TAF11. Analysis of these compensatory mutants revealed that the interaction between TAF11 and TFIIA involves two distinct regions of TAF11: the highly conserved histone fold domain and the N-terminal region. Cells expressing a TAF11 allele defective for interaction with TFIIA exhibit conditional growth phenotypes and defects in transcription. Moreover, TAF11 imparts changes to both TFIIA-DNA and TBP-DNA contacts in the context of promoter DNA. These alterations appear to enhance the formation and stabilization of the TFIIA-TBP-DNA complex. Taken together, these studies provide essential information regarding the molecular organization of the TAF11-TFIIA interaction and define a mechanistic role for this association in the regulation of gene expression in vivo.
Collapse
Affiliation(s)
- M M Robinson
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | | | | | | | | | | |
Collapse
|
41
|
Gilfillan S, Stelzer G, Piaia E, Hofmann MG, Meisterernst M. Efficient Binding of NC2·TATA-binding Protein to DNA in the Absence of TATA. J Biol Chem 2005; 280:6222-30. [PMID: 15574413 DOI: 10.1074/jbc.m406343200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Negative cofactor 2 (NC2) forms a stable complex with TATA-binding protein (TBP) on promoters. This prevents the assembly of transcription factor (TF) IIA and TFIIB and leads to repression of RNA polymerase II transcription. Here we have revisited the interactions of NC2.TBP with DNA. We show that NC2.TBP complexes exhibit a significantly reduced preference for TATA box sequences compared with TBP and TBP.TFIIA complexes. In chromatin immunoprecipitations, NC2 is found on a variety of human TATA-containing and TATA-less promoters. Substantial amounts of NC2 are present in a complex with TBP in bulk chromatin. A complex of NC2.TBP displays a K(D) for DNA of approximately 2 x 10(-9) m for a 35-bp major late promoter oligonucleotide. While preferentially recognizing promoter-bound TBP, NC2 also accelerates TBP binding to promoters and stabilizes TBP.DNA complexes. Our data suggest that NC2 controls TBP binding and maintenance on DNA that is largely independent of a canonical TATA sequence.
Collapse
Affiliation(s)
- Siv Gilfillan
- Gene Expression, Institute of Molecular Immunology, GSF-National Research Center for Environment and Health, Marchionini-Strasse 25, D-81377 Munich, Germany
| | | | | | | | | |
Collapse
|
42
|
van Roon-Mom WMC, Reid SJ, Faull RLM, Snell RG. TATA-binding protein in neurodegenerative disease. Neuroscience 2005; 133:863-72. [PMID: 15916858 DOI: 10.1016/j.neuroscience.2005.03.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 03/17/2005] [Accepted: 03/19/2005] [Indexed: 11/29/2022]
Abstract
TATA binding protein (TBP) is a general transcription factor that plays an important role in initiation of transcription. In recent years evidence has emerged implicating TPB in the molecular mechanism of a number of neurodegenerative diseases. Wild type TBP in humans contains a long polyglutamine stretch ranging in size from 29 to 42. It has been found associated with aggregated proteins in several of the polyglutamine disorders. Expansion in the CAA/CAG composite repeat beyond 42 has been shown to cause a cerebellar ataxia, SCA17. The involvement of such an important housekeeping protein in the disease mechanism suggests a major impact on the functioning of cells. The question remains, does TBP contribute to these diseases through a loss of normal function, likely to be catastrophic to a cell, or the gain of an aberrant function? This review deals with the function of TBP in transcription and cell function. The distribution of the polyglutamine coding allele lengths in TBP of the normal population and in SCA17 is reviewed and an outline is given on the reported cases of SCA17. The role of TBP in other polyglutamine disorders will be addressed as well as its possible role in other neurodegenerative diseases.
Collapse
Affiliation(s)
- W M C van Roon-Mom
- Division of Anatomy with Radiology, Faculty of Medicine and Health Sciences, University of Auckland, 85 Park Road, 1003 Auckland, New Zealand
| | | | | | | |
Collapse
|
43
|
Iyer AS, McCouch SR. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:1348-54. [PMID: 15597740 DOI: 10.1094/mpmi.2004.17.12.1348] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The rice xa5 gene for disease resistance to Xanthomonas oryzae pv. oryzae has been positionally cloned and encodes the gamma subunit of transcription factor IIA (TFIIAgamma). TFIIAgamma is a general eukaryotic transcription factor with no previously known role in disease resistance. xa5 is unusual in that it is recessive and does not conform to one of the typical resistance gene structural classes. Sequencing of TFIIAgamma in resistant and susceptible isolines revealed two nucleotide substitutions resulting in an amino acid change between resistant and susceptible cultivars. This association was conserved across 27 resistant and nine susceptible rice lines in the Aus-Boro group.
Collapse
Affiliation(s)
- Anjali S Iyer
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
44
|
Fukuda A, Nakadai T, Shimada M, Tsukui T, Matsumoto M, Nogi Y, Meisterernst M, Hisatake K. Transcriptional coactivator PC4 stimulates promoter escape and facilitates transcriptional synergy by GAL4-VP16. Mol Cell Biol 2004; 24:6525-35. [PMID: 15226451 PMCID: PMC434263 DOI: 10.1128/mcb.24.14.6525-6535.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Positive cofactor 4 (PC4) is a coactivator that strongly augments transcription by various activators, presumably by facilitating the assembly of the preinitiation complex (PIC). However, our previous observation of stimulation of promoter escape in GAL4-VP16-dependent transcription in the presence of PC4 suggested a possible role for PC4 in this step. Here, we performed quantitative analyses of the stimulatory effects of PC4 on initiation, promoter escape, and elongation in GAL4-VP16-dependent transcription and found that PC4 possesses the ability to stimulate promoter escape in response to GAL4-VP16 in addition to its previously demonstrated effect on PIC assembly. This stimulatory effect of PC4 on promoter escape required TFIIA and the TATA box binding protein-associated factor subunits of TFIID. Furthermore, PC4 displayed physical interactions with both TFIIH and GAL4-VP16 through its coactivator domain, and these interactions were regulated distinctly by PC4 phosphorylation. Finally, GAL4-VP16 and PC4 stimulated both initiation and promoter escape to similar extents on the promoters with three and five GAL4 sites; however, they stimulated promoter escape preferentially on the promoter with a single GAL4 site. These results provide insight into the mechanism by which PC4 permits multiply bound GAL4-VP16 to attain synergy to achieve robust transcriptional activation.
Collapse
Affiliation(s)
- Aya Fukuda
- Department of Molecular Biology, Saitama Medical School, 38 Morohongo, Moroyama, Iruma-gun, Saitama 350-0495, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Hori RT, Xu S, Hu X, Pyo S. TFIIB-facilitated recruitment of preinitiation complexes by a TAF-independent mechanism. Nucleic Acids Res 2004; 32:3856-63. [PMID: 15272087 PMCID: PMC506799 DOI: 10.1093/nar/gkh711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gene activators contain activation domains that are thought to recruit limiting components of the transcription machinery to a core promoter. VP16, a viral gene activator, has served as a model for studying the mechanistic aspects of transcriptional activation from yeast to human. The VP16 activation domain can be divided into two modules--an N-terminal subdomain (VPN) and a C-terminal subdomain (VPC). This study demonstrates that VPC stimulates core promoters that are either independent or dependent on TAFs (TATA-box Binding Protein-Associated Factors). In contrast, VPN only activates the TAF-independent core promoter and this activity increases in a synergistic fashion when VPN is dimerized (VPN2). Compared to one copy of VPN (VPN1), VPN2 also displays a highly cooperative increase in binding hTFIIB. The increased TFIIB binding correlates with VPN2's increased ability to recruit a complex containing TFIID, TFIIA and TFIIB. However, VPN1 and VPN2 do not increase the assembly of a complex containing only TFIID and TFIIA. The VPN subdomain also facilitates assembly of a complex containing TBP:TFIIA:TFIIB, which lacks TAFs, and provides a mechanism that could function at TAF-independent promoters. Taken together, these results suggest the interaction between VPN and TFIIB potentially initiate a network of contacts allowing the activator to indirectly tether TFIID or TBP to DNA.
Collapse
Affiliation(s)
- Roderick T Hori
- Department of Molecular Sciences, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
46
|
Zabierowski S, DeLuca NA. Differential cellular requirements for activation of herpes simplex virus type 1 early (tk) and late (gC) promoters by ICP4. J Virol 2004; 78:6162-70. [PMID: 15163709 PMCID: PMC416540 DOI: 10.1128/jvi.78.12.6162-6170.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 02/10/2004] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus type 1 immediate-early protein, ICP4, activates the transcription of viral early and late genes and is essential for viral growth. It has been shown to bind DNA and interact with components of the general transcription machinery to activate or repress viral transcription, depending upon promoter context. Since early and late gene promoters have different architectures and cellular metabolism may be very different at early and late times after infection, the cellular requirements for ICP4-mediated activation of early and late genes may differ. This hypothesis was tested using tk and gC as representative early and late promoters, respectively. Nuclear extracts and phosphocellulose column fractions derived from nuclear extracts were able to reconstitute basal and ICP4-activated transcription of both promoters in vitro. When examining the contribution of the general transcription factors on the ability of ICP4 to activate transcription, the fraction containing the general transcription factor TFIIA was not essential for ICP4 activation of the gC promoter, but it was required for efficient activation of the tk promoter. The addition of recombinant TFIIA restored the ability of ICP4 to efficiently activate the tk promoter, but it had no net effect on activation of the gC promoter. The dispensability of TFIIA for ICP4 activation of the gC promoter required an intact INR element. In addition, microarray and Northern blot analysis indicated that TFIIA abundance may be reduced at late times of infection. This decrease in TFIIA expression during infection and its dispensability for activation of late but not early genes suggest one of possibly many mechanisms for the transition from viral early to late gene expression.
Collapse
Affiliation(s)
- Susan Zabierowski
- E1257 Biomedical Science Tower, Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | | |
Collapse
|
47
|
Nedialkov YA, Triezenberg SJ. Quantitative assessment of in vitro interactions implicates TATA-binding protein as a target of the VP16C transcriptional activation region. Arch Biochem Biophys 2004; 425:77-86. [PMID: 15081896 DOI: 10.1016/j.abb.2004.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2004] [Revised: 03/02/2004] [Indexed: 11/18/2022]
Abstract
Models of mechanisms of transcriptional activation in eukaryotes frequently invoke direct interactions of transcriptional activation domains with target proteins including general transcription factors or coactivators such as chromatin modifying complexes. The potent transcriptional activation domain (AD) of the VP16 protein of herpes simplex virus has previously been shown to interact with several general transcription factors including the TATA-binding protein (TBP), TBP-associated factor 9 (TAF9), TFIIA, and TFIIB. In surface plasmon resonance assays, a module of the VP16 AD designated VP16C (residues 452-490) bound to TBP with an affinity notably stronger than to TAF9, TFIIA or TFIIB. Moreover, the interaction of VP16C with TBP correlated well with transcriptional activity for a panel of VP16C substitution variants. These results support models in which the interactions of ADs with TBP play an important role in transcriptional activation.
Collapse
Affiliation(s)
- Yuri A Nedialkov
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | | |
Collapse
|
48
|
Albrecht RA, Jang HK, Kim SK, O'Callaghan DJ. Direct interaction of TFIIB and the IE protein of equine herpesvirus 1 is required for maximal trans-activation function. Virology 2004; 316:302-12. [PMID: 14644612 DOI: 10.1016/j.virol.2003.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, we reported that the immediate-early (IE) protein of equine herpesvirus 1 (EHV-1) associates with transcription factor TFIIB [J. Virol. 75 (2001), 10219]. In the current study, the IE protein purified as a glutathione-S-transferase (GST) fusion protein was shown to interact directly with purified TFIIB in GST-pulldown assays. A panel of TFIIB mutants employed in protein-binding assays revealed that residues 125 to 174 within the first direct repeat of TFIIB mediate its interaction with the IE protein. This interaction is physiologically relevant as transient transfection assays demonstrated that (1). exogenous native TFIIB did not perturb IE protein function, and (2). ectopic expression of a TFIIB mutant that lacked the IE protein interactive domain significantly diminished the ability of the IE protein to trans-activate EHV-1 promoters. These results suggest that an interaction of the IE protein with TFIIB is an important aspect of the regulatory role of the IE protein in the trans-activation of EHV-1 promoters.
Collapse
Affiliation(s)
- Randy A Albrecht
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | |
Collapse
|
49
|
Nakadai T, Shimada M, Shima D, Handa H, Tamura TA. Specific interaction with transcription factor IIA and localization of the mammalian TATA-binding protein-like protein (TLP/TRF2/TLF). J Biol Chem 2003; 279:7447-55. [PMID: 14570910 DOI: 10.1074/jbc.m305412200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TBP-like protein (TLP) is structurally similar to the TATA-binding protein (TBP) and is thought to have a transcriptional regulation function. Although TLP has been found to form a complex with transcription factor IIA (TFIIA), the in vivo functions of TFIIA for TLP are not clear. In this study, we analyzed the interaction between TLP and TFIIA. We determined the biophysical properties for the interaction of TLP with TFIIA. Dissociation constants of TFIIA versus TLP and TFIIA versus TBP were 1.5 and 10 nm, respectively. Moreover, the dissociation rate constant of TLP and TFIIA (1.2 x 10(-4)/m.s was significantly lower than that of TBP (2.1 x 10(-3)/m.s). These results indicate that TLP has a higher affinity to TFIIA than does TBP and that the TLP-TFIIA complex is much more stable than is the TBP-TFIIA complex. We found that TLP forms a dimer and a trimer and that these multimerizations are inhibited by TFIIA. Moreover, TLP mutimers were more stable than a TBP dimer. We determined the amounts of TLPs in the nucleus and cytoplasm of NIH3T3 cells and found that the molecular number of TLP in the nucleus was only 4% of that in the cytoplasm. Immunostaining of cells also revealed cytoplasmic localization of TLP. We established cells that stably express mutant TLP lacking TFIIA binding ability and identified the amino acids of TLP required for TFIIA binding (Ala-32, Leu-33, Asn-37, Arg-52, Lys-53, Lys-78, and Arg-86). Interestingly, the level of TFIIA binding defective mutant TLPs in the nucleus was much higher than that of the wild-type TLP and TFIIA-interactable mutant TLPs. Immunostaining analyses showed consistent results. These results suggest that the TFIIA binding ability of TLP is required for characteristic cytoplasmic localization of TLP. TFIIA may regulate the intracellular molecular state and the function of TLP through its property of binding to TLP.
Collapse
Affiliation(s)
- Tomoyoshi Nakadai
- Department of Biology, Faculty of Science, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522, Japan
| | | | | | | | | |
Collapse
|
50
|
Bleichenbacher M, Tan S, Richmond TJ. Novel interactions between the components of human and yeast TFIIA/TBP/DNA complexes. J Mol Biol 2003; 332:783-93. [PMID: 12972251 DOI: 10.1016/s0022-2836(03)00887-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
RNA polymerase II-dependent transcription requires the assembly of a multi-protein, preinitiation complex on core promoter elements. Transcription factor IID (TFIID) comprising the TATA box-binding protein (TBP) and TBP-associated factors (TAFs) is responsible for promoter recognition in this complex. Subsequent association of TFIIA and TFIIB provides enhanced complex stability. TFIIA is required for transcriptional stimulation by certain viral and cellular activators, and favors formation of the preinitiation complex in the presence of repressor NC2. The X-ray structures of human and yeast TBP/TFIIA/DNA complexes at 2.1A and 1.9A resolution, respectively, are presented here and seen to resemble each other closely. The interactions made by human TFIIA with TBP and DNA within and upstream of the TATA box, including those involving water molecules, are described and compared to the yeast structure. Of particular interest is a previously unobserved region of TFIIA that extends the binding interface with TBP in the yeast, but not in the human complex, and that further elucidates biochemical and genetic results.
Collapse
Affiliation(s)
- Michael Bleichenbacher
- ETH Zürich, Institute for Molecular Biology and Biophysics, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|