1
|
Wang Q, Tao C, Hannan A, Yoon S, Min X, Peregrin J, Qu X, Li H, Yu H, Zhao J, Zhang X. Lacrimal gland budding requires PI3K-dependent suppression of EGF signaling. SCIENCE ADVANCES 2021; 7:7/27/eabf1068. [PMID: 34193412 PMCID: PMC8245041 DOI: 10.1126/sciadv.abf1068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
The patterning of epithelial buds is determined by the underlying signaling network. Here, we study the cross-talk between phosphoinositide 3-kinase (PI3K) and Ras signaling during lacrimal gland budding morphogenesis. Our results show that PI3K is activated by both the p85-mediated insulin-like growth factor (IGF) and Ras-mediated fibroblast growth factor (FGF) signaling. On the other hand, PI3K also promotes extracellular signal-regulated kinase (ERK) signaling via a direct interaction with Ras. Both PI3K and ERK are upstream regulators of mammalian target of rapamycin (mTOR), and, together, they prevent expansion of epidermal growth factor (EGF) receptor expression from the lacrimal gland stalk to the bud region. We further show that this suppression of EGF signaling is necessary for induction of lacrimal gland buds. These results reveal that the interplay between PI3K, mitogen-activated protein kinase, and mTOR mediates the cross-talk among FGF, IGF, and EGF signaling in support of lacrimal gland development.
Collapse
Affiliation(s)
- Qian Wang
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
| | - Chenqi Tao
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
| | - Abdul Hannan
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
| | - Sungtae Yoon
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
| | - Xuanyu Min
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
| | - John Peregrin
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
| | - Xiuxia Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hongge Li
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
| | - Honglian Yu
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
- Department of Biochemistry, School of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Jean Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xin Zhang
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Preite S, Huang B, Cannons JL, McGavern DB, Schwartzberg PL. PI3K Orchestrates T Follicular Helper Cell Differentiation in a Context Dependent Manner: Implications for Autoimmunity. Front Immunol 2019; 9:3079. [PMID: 30666254 PMCID: PMC6330320 DOI: 10.3389/fimmu.2018.03079] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/12/2018] [Indexed: 11/25/2022] Open
Abstract
T follicular helper (Tfh) cells are a specialized population of CD4+ T cells that provide help to B cells for the formation and maintenance germinal centers, and the production of high affinity class-switched antibodies, long-lived plasma cells, and memory B cells. As such, Tfh cells are essential for the generation of successful long-term humoral immunity and memory responses to vaccination and infection. Conversely, overproduction of Tfh cells has been associated with the generation of autoantibodies and autoimmunity. Data from gene-targeted mice, pharmacological inhibitors, as well as studies of human and mice expressing activating mutants have revealed that PI3Kδ is a key regulator of Tfh cell differentiation, acting downstream of ICOS to facilitate inactivation of FOXO1, repression of Klf2 and induction of Bcl6. Nonetheless, here we show that after acute LCMV infection, WT and activated-PI3Kδ mice (Pik3cdE1020K/+) show comparable ratios of Tfh:Th1 viral specific CD4+ T cells, despite higher polyclonal Tfh cells in Pik3cdE1020K/+ mice. Thus, the idea that PI3K activity primarily drives Tfh cell differentiation may be an oversimplification and PI3K-mediated pathways are likely to integrate multiple signals to promote distinct effector T cell lineages. The consequences of dysregulated Tfh cell generation will be discussed in the context of the human primary immunodeficiency “Activated PI3K-delta Syndrome” (APDS), also known as “p110 delta-activating mutation causing senescent T cells, lymphadenopathy and immunodeficiency” (PASLI). Overall, these data underscore a major role for PI3K signaling in the orchestration of T lymphocyte responses.
Collapse
Affiliation(s)
- Silvia Preite
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Bonnie Huang
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jennifer L Cannons
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Dorian B McGavern
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Pamela L Schwartzberg
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Tyrinova T, Leplina O, Mishinov S, Tikhonova M, Kalinovskiy A, Chernov S, Dolgova E, Stupak V, Voronina E, Bogachev S, Shevela E, Ostanin A, Chernykh E. Defective Dendritic Cell Cytotoxic Activity of High-Grade Glioma Patients' Results from the Low Expression of Membrane TNFα and Can Be Corrected In Vitro by Treatment with Recombinant IL-2 or Exogenic Double-Stranded DNA. J Interferon Cytokine Res 2018; 38:298-310. [PMID: 29932796 DOI: 10.1089/jir.2017.0084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Besides initiation of tumor-specific T cell immunity, dendritic cells (DCs) are endowed with tumoricidal activity. Previously, we showed that monocyte-derived DCs of high-grade glioma patients generated in the presence of interferon alpha (IFNα) (IFN-DCs) have impaired cytotoxic activity against tumor necrosis factor alpha (TNFα)-sensitive HEp-2 tumor cells. Herein, we demonstrate that decreased transmembrane TNFα (tmTNFα) expression, but not soluble TNFα (sTNFα) production by high-grade glioma patient IFN-DCs, determines the defective tumoricidal activity against TNFα-sensitive HEp-2 cells. Blocking TNFα-converting enzyme or stimulation of patient IFN-DCs with rIL-2 or dsDNA enhances tmTNFα expression on IFN-DCs and significantly increases their cytotoxicity. Decreased tmTNFα expression on patient IFN-DCs is not caused by downregulation of pNFκB. Neither rIL-2 nor dsDNA upregulates tmTNFα expression on patient IFN-DCs via an increase of pNFκB. The current study shows an important role of tmTNFα as mediator of IFN-DC tumoricidal activity and as molecular target for the restoration of defective DC killer activity in high-grade glioma patients.
Collapse
Affiliation(s)
- Tamara Tyrinova
- 1 Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology , Novosibirsk, Russia
| | - Olga Leplina
- 1 Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology , Novosibirsk, Russia
| | - Sergey Mishinov
- 2 Department of Neurosurgery, Novosibirsk Research Institute of Traumatology and Orthopedics named after Ya.L. Zivian , Novosibirsk, Russia
| | - Marina Tikhonova
- 1 Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology , Novosibirsk, Russia
| | - Anton Kalinovskiy
- 3 Department of Neurosurgery, Federal Neurosurgical Center , Novosibirsk, Russia
| | - Sergey Chernov
- 3 Department of Neurosurgery, Federal Neurosurgical Center , Novosibirsk, Russia
| | - Evgeniya Dolgova
- 4 Laboratory of Induced Cellular Processes, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences , Novosibirsk, Russia
| | - Vyacheslav Stupak
- 2 Department of Neurosurgery, Novosibirsk Research Institute of Traumatology and Orthopedics named after Ya.L. Zivian , Novosibirsk, Russia
| | - Evgeniya Voronina
- 5 Laboratory of Morphological and Molecular Biology Techniques, Regional Center of High Medical Technologies , Novosibirsk, Russia
| | - Sergey Bogachev
- 4 Laboratory of Induced Cellular Processes, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences , Novosibirsk, Russia
| | - Ekaterina Shevela
- 1 Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology , Novosibirsk, Russia
| | - Alexander Ostanin
- 1 Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology , Novosibirsk, Russia
| | - Elena Chernykh
- 1 Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology , Novosibirsk, Russia
| |
Collapse
|
4
|
Oh T, Ivan ME, Sun MZ, Safaee M, Fakurnejad S, Clark AJ, Sayegh ET, Bloch O, Parsa AT. PI3K pathway inhibitors: potential prospects as adjuncts to vaccine immunotherapy for glioblastoma. Immunotherapy 2015; 6:737-53. [PMID: 25186604 DOI: 10.2217/imt.14.35] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Constitutive activation of the PI3K pathway has been implicated in glioblastoma (GBM) pathogenesis. Pharmacologic inhibition can both inhibit tumor survival and downregulate expression of programmed death ligand-1, a protein highly expressed on glioma cells that strongly contributes to cancer immunosuppression. In that manner, PI3K pathway inhibitors can help optimize GBM vaccine immunotherapy. In this review, we describe and assess the potential integration of various classes of PI3K pathway inhibitors into GBM immunotherapy. While early-generation inhibitors have a wide range of immunosuppressive effects that could negate their antitumor potency, further work should better characterize how contemporary inhibitors affect the immune response. This will help determine if these inhibitors are truly a therapeutic avenue with a strong future in GBM immunotherapy.
Collapse
Affiliation(s)
- Taemin Oh
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Feinberg School of Medicine, 676 N St Clair Street, Suite 2210, Chicago, IL 60611-2911, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ren J, Song D, Bai Q, Verkhratsky A, Peng L. Fluoxetine induces alkalinization of astroglial cytosol through stimulation of sodium-hydrogen exchanger 1: dissection of intracellular signaling pathways. Front Cell Neurosci 2015; 9:61. [PMID: 25784857 PMCID: PMC4347488 DOI: 10.3389/fncel.2015.00061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 02/10/2015] [Indexed: 01/08/2023] Open
Abstract
Clinical evidence suggest astrocytic abnormality in major depression (MD) while treatment with anti-psychotic drugs affects astroglial functions. Astroglial cells are involved in pH homeostasis of the brain by transporting protons (through sodium-proton transporter 1, NHE1, glutamate transporters EAAT1/2 and proton-lactate co-transporter MCT1) and bicarbonate (through the sodium-bicarbonate co-transporter NBC or the chloride-bicarbonate exchanger AE). Here we show that chronic treatment with fluoxetine increases astroglial pHi by stimulating NHE1-mediated proton extrusion. At a clinically relevant concentration of 1 μM, fluoxetine significantly increased astroglial pHi from 7.05 to 7.34 after 3 weeks and from 7.18 to 7.58 after 4 weeks of drug treatment. Stimulation of NHE1 is a result of transporter phosphorylation mediated by several intracellular signaling cascades that include MAPK/ERK1/2, PI3K/AKT and ribosomal S6 kinase (RSK). Fluoxetine stimulated phosphorylation of ERK1/2, AKT and RSK in a concentration dependent manner. Positive crosstalk exists between two signal pathways, MAPK/ERK1/2 and PI3K/AKT activated by fluoxetine since ERK1/2 phosphrylation could be abolished by inhibitors of PI3K, LY294002 and AKT, triciribine, and AKT phosphorylation by inhibitor of MAPK, U0126. As a result, RSK phosphorylation was not only inhibited by U0126 but also by inhibitor of LY294002. The NHE1 phoshorylation resulted in stimulation of NHE1 activity as revealed by the NH4Cl-prepulse technique; the increase of NHE1 activity was dependent on fluoxetine concentration, and could be inhibited by both U0126 and LY294002. Our findings suggest that regulation of astrocytic pHi and brain pH may be one of the mechanisms underlying fluoxetine action.
Collapse
Affiliation(s)
- Jienan Ren
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Dan Song
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Qiufang Bai
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Alexei Verkhratsky
- Faculty of Life Science, The University of Manchester Manchester, UK ; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science Bilbao, Spain ; University of Nizhny Novgorod Nizhny Novgorod, Russia
| | - Liang Peng
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| |
Collapse
|
6
|
Fonseca CP, Gama S, Saavedra A, Baltazar G. H2O2- or l-DOPA-injured dopaminergic neurons trigger the release of soluble mediators that up-regulate striatal GDNF through different signalling pathways. Biochim Biophys Acta Mol Basis Dis 2014; 1842:927-34. [DOI: 10.1016/j.bbadis.2014.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/21/2014] [Accepted: 03/04/2014] [Indexed: 11/26/2022]
|
7
|
Crivat G, Lizunov VA, Li CR, Stenkula KG, Zimmerberg J, Cushman SW, Pick L. Insulin stimulates translocation of human GLUT4 to the membrane in fat bodies of transgenic Drosophila melanogaster. PLoS One 2013; 8:e77953. [PMID: 24223128 PMCID: PMC3819322 DOI: 10.1371/journal.pone.0077953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/05/2013] [Indexed: 12/23/2022] Open
Abstract
The fruit fly Drosophila melanogaster is an excellent model system for studies of genes controlling development and disease. However, its applicability to physiological systems is less clear because of metabolic differences between insects and mammals. Insulin signaling has been studied in mammals because of relevance to diabetes and other diseases but there are many parallels between mammalian and insect pathways. For example, deletion of Drosophila Insulin-Like Peptides resulted in 'diabetic' flies with elevated circulating sugar levels. Whether this situation reflects failure of sugar uptake into peripheral tissues as seen in mammals is unclear and depends upon whether flies harbor the machinery to mount mammalian-like insulin-dependent sugar uptake responses. Here we asked whether Drosophila fat cells are competent to respond to insulin with mammalian-like regulated trafficking of sugar transporters. Transgenic Drosophila expressing human glucose transporter-4 (GLUT4), the sugar transporter expressed primarily in insulin-responsive tissues, were generated. After expression in fat bodies, GLUT4 intracellular trafficking and localization were monitored by confocal and total internal reflection fluorescence microscopy (TIRFM). We found that fat body cells responded to insulin with increased GLUT4 trafficking and translocation to the plasma membrane. While the amplitude of these responses was relatively weak in animals reared on a standard diet, it was greatly enhanced in animals reared on sugar-restricted diets, suggesting that flies fed standard diets are insulin resistant. Our findings demonstrate that flies are competent to mobilize translocation of sugar transporters to the cell surface in response to insulin. They suggest that Drosophila fat cells are primed for a response to insulin and that these pathways are down-regulated when animals are exposed to constant, high levels of sugar. Finally, these studies are the first to use TIRFM to monitor insulin-signaling pathways in Drosophila, demonstrating the utility of TIRFM of tagged sugar transporters to monitor signaling pathways in insects.
Collapse
Affiliation(s)
- Georgeta Crivat
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - Vladimir A. Lizunov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Caroline R. Li
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - Karin G. Stenkula
- Experimental Diabetes, Metabolism, and Nutrition Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua Zimmerberg
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Samuel W. Cushman
- Experimental Diabetes, Metabolism, and Nutrition Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Leslie Pick
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
8
|
Dai H, Song D, Xu J, Li B, Hertz L, Peng L. Ammonia-induced Na,K-ATPase/ouabain-mediated EGF receptor transactivation, MAPK/ERK and PI3K/AKT signaling and ROS formation cause astrocyte swelling. Neurochem Int 2013; 63:610-25. [PMID: 24044899 DOI: 10.1016/j.neuint.2013.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 12/13/2022]
Abstract
Ammonia toxicity is clinically important and biologically poorly understood. We reported previously that 3mM ammonia chloride (ammonia), a relevant concentration for hepatic encephalopathy studies, increases production of endogenous ouabain and activity of Na,K-ATPase in astrocytes. In addition, ammonia-induced upregulation of gene expression of α2 isoform of Na,K-ATPase in astrocytes could be inhibited by AG1478, an inhibitor of the EGF receptor (EGFR), and by PP1, an inhibitor of Src, but not by GM6001, an inhibitor of metalloproteinase and shedding of growth factor, suggesting the involvement of endogenous ouabain-induced EGF receptor transactivation. In the present cell culture study, we investigated ammonia effects on phosphorylation of EGF receptor and its intracellular signal pathway towards MAPK/ERK1/2 and PI3K/AKT; interaction between EGF receptor, α1, and α2 isoforms of Na,K-ATPase, Src, ERK1/2, AKT and caveolin-1; and relevance of these signal pathways for ammonia-induced cell swelling, leading to brain edema, an often fatal complication of ammonia toxicity. We found that (i) ammonia increases EGF receptor phosphorylation at EGFR(845) and EGFR(1068); (ii) ammonia-induced ERK1/2 and AKT phosphorylation depends on the activity of EGF receptor and Src, but not on metalloproteinase; (iii) AKT phosphorylation occurs upstream of ERK1/2 phosphorylation; (iv) ammonia stimulates association between the α1 Na,K-ATPase isoform, Src, EGF receptor, ERK1/2, AKT and caveolin-1; (v) ammonia-induced ROS production might occur later than EGFR transactivation; (vi) both ammonia induced ERK phosphorylation and ROS production can be abolished by canrenone, an inhibitor of ouabain, and (vii) ammonia-induced cell swelling depends on signaling via the Na,K-ATPase/ouabain/Src/EGF receptor/PI3K-AKT/ERK1/2, but in response to 3mM ammonia it does not appear until after 12h. Based on literature data it is suggested that the delayed appearance of the ammonia-induced swelling at this concentration reflects required ouabain-induced oxidative damage of the ion and water cotransporter NKCC1. This information may provide new therapeutic targets for treatment of hyperammonic brain disorders.
Collapse
Affiliation(s)
- Hongliang Dai
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | - Dan Song
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | - Junnan Xu
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | - Baoman Li
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | - Leif Hertz
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | - Liang Peng
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China.
| |
Collapse
|
9
|
Beyer T, Busse M, Hristov K, Gurbiel S, Smida M, Haus UU, Ballerstein K, Pfeuffer F, Weismantel R, Schraven B, Lindquist JA. Integrating signals from the T-cell receptor and the interleukin-2 receptor. PLoS Comput Biol 2011; 7:e1002121. [PMID: 21829342 PMCID: PMC3150289 DOI: 10.1371/journal.pcbi.1002121] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 05/30/2011] [Indexed: 01/28/2023] Open
Abstract
T cells orchestrate the adaptive immune response, making them targets for immunotherapy. Although immunosuppressive therapies prevent disease progression, they also leave patients susceptible to opportunistic infections. To identify novel drug targets, we established a logical model describing T-cell receptor (TCR) signaling. However, to have a model that is able to predict new therapeutic approaches, the current drug targets must be included. Therefore, as a next step we generated the interleukin-2 receptor (IL-2R) signaling network and developed a tool to merge logical models. For IL-2R signaling, we show that STAT activation is independent of both Src- and PI3-kinases, while ERK activation depends upon both kinases and additionally requires novel PKCs. In addition, our merged model correctly predicted TCR-induced STAT activation. The combined network also allows information transfer from one receptor to add detail to another, thereby predicting that LAT mediates JNK activation in IL-2R signaling. In summary, the merged model not only enables us to unravel potential cross-talk, but it also suggests new experimental designs and provides a critical step towards designing strategies to reprogram T cells.
Collapse
Affiliation(s)
- Tilo Beyer
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Mandy Busse
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Kroum Hristov
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Slavyana Gurbiel
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Michal Smida
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Utz-Uwe Haus
- Institute of Mathematical Optimization, Otto-von-Guericke University, Magdeburg, Germany
| | - Kathrin Ballerstein
- Institute of Mathematical Optimization, Otto-von-Guericke University, Magdeburg, Germany
| | - Frank Pfeuffer
- Institute of Mathematical Optimization, Otto-von-Guericke University, Magdeburg, Germany
| | - Robert Weismantel
- Institute of Mathematical Optimization, Otto-von-Guericke University, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
- Department of Immune Control, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jonathan A. Lindquist
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
10
|
Ross JA, Cheng H, Nagy ZS, Frost JA, Kirken RA. Protein phosphatase 2A regulates interleukin-2 receptor complex formation and JAK3/STAT5 activation. J Biol Chem 2009; 285:3582-3591. [PMID: 19923221 DOI: 10.1074/jbc.m109.053843] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reversible protein phosphorylation plays a key role in interleukin-2 (IL-2) receptor-mediated activation of Janus tyrosine kinase 3 (JAK3) and signal transducer and activator of transcription 5 (STAT5) in lymphocytes. Although the mechanisms governing IL-2-induced tyrosine phosphorylation and activation of JAK3/STAT5 have been extensively studied, the role of serine/threonine phosphorylation in controlling these effectors remains to be elucidated. Using phosphoamino acid analysis, JAK3 and STAT5 were determined to be serine and tyrosine-phosphorylated in response to IL-2 stimulation of the human natural killer-like cell line, YT. IL-2 stimulation also induced serine/threonine phosphorylation of IL-2Rbeta, but not IL-2Rgamma. To investigate the regulation of serine/threonine phosphorylation in IL-2 signaling, the roles of protein phosphatase 1 (PP1) and 2A (PP2A) were examined. Inhibition of phosphatase activity by calyculin A treatment of YT cells resulted in a significant induction of serine phosphorylation of JAK3 and STAT5, and serine/threonine phosphorylation of IL-2Rbeta. Moreover, inhibition of PP2A, but not PP1, diminished IL-2-induced tyrosine phosphorylation of IL-2Rbeta, JAK3, and STAT5, and abolished STAT5 DNA binding activity. Serine/threonine phosphorylation of IL-2Rbeta by a staurosporine-sensitive kinase also blocked its association with JAK3 and IL-2Rgamma in YT cells. Taken together, these data indicate that serine/threonine phosphorylation negatively regulates IL-2 signaling at multiple levels, including receptor complex formation and JAK3/STAT5 activation, and that this regulation is counteracted by PP2A. These findings also suggest that PP2A may serve as a therapeutic target for modulating JAK3/STAT5 activation in human disease.
Collapse
Affiliation(s)
- Jeremy A Ross
- From the Department of Biological Sciences, University of Texas, El Paso, Texas 79968
| | - Hanyin Cheng
- From the Department of Biological Sciences, University of Texas, El Paso, Texas 79968; the Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, and
| | - Zsuzsanna S Nagy
- From the Department of Biological Sciences, University of Texas, El Paso, Texas 79968
| | - Jeffrey A Frost
- the Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas 77030
| | - Robert A Kirken
- From the Department of Biological Sciences, University of Texas, El Paso, Texas 79968.
| |
Collapse
|
11
|
PI3K-dependent cross-talk interactions converge with Ras as quantifiable inputs integrated by Erk. Mol Syst Biol 2009; 5:246. [PMID: 19225459 PMCID: PMC2657535 DOI: 10.1038/msb.2009.4] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 01/05/2009] [Indexed: 01/08/2023] Open
Abstract
Although it is appreciated that canonical signal-transduction pathways represent dominant modes of regulation embedded in larger interaction networks, relatively little has been done to quantify pathway cross-talk in such networks. Through quantitative measurements that systematically canvas an array of stimulation and molecular perturbation conditions, together with computational modeling and analysis, we have elucidated cross-talk mechanisms in the platelet-derived growth factor (PDGF) receptor signaling network, in which phosphoinositide 3-kinase (PI3K) and Ras/extracellular signal-regulated kinase (Erk) pathways are prominently activated. We show that, while PI3K signaling is insulated from cross-talk, PI3K enhances Erk activation at points both upstream and downstream of Ras. The magnitudes of these effects depend strongly on the stimulation conditions, subject to saturation effects in the respective pathways and negative feedback loops. Motivated by those dynamics, a kinetic model of the network was formulated and used to precisely quantify the relative contributions of PI3K-dependent and -independent modes of Ras/Erk activation.
Collapse
|
12
|
Lindemann MJ, Hu Z, Benczik M, Liu KD, Gaffen SL. Differential regulation of the IL-17 receptor by gammac cytokines: inhibitory signaling by the phosphatidylinositol 3-kinase pathway. J Biol Chem 2008; 283:14100-8. [PMID: 18348982 PMCID: PMC2376247 DOI: 10.1074/jbc.m801357200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Indexed: 11/06/2022] Open
Abstract
The gammac-family cytokine IL-2 activates signaling events that contribute to cell survival and proliferation, the best-studied of which are the STAT-5 and phosphatidylinositol 3-kinase (PI3K) pathways. The starting point of this study was to define genes regulated by the IL-2R-mediated PI3K pathway in T cells. Accordingly, we used an erythropoietin (EPO) receptor chimeric receptor system in which IL-2-dependent HT-2 T cells expressed a mutant EPO-IL-2Rbeta construct where Tyr-338 is mutated to Phe. Cells expressing this mutant IL-2Rbeta chain fail to induce phosphorylation of PI3K-p85alpha/beta or activate Akt, but mediate normal IL-2-dependent proliferation and activation of JAK1 and STAT-5A/B. Microarray analyses revealed differential regulation of numerous genes compared with cells expressing a wild-type IL-2Rbeta, including up-regulation of the IL-17 receptor subunit IL-17RA. Blockade of the PI3K pathway but not p70S6K led to up-regulation of IL-17RA, and constitutive Akt activation was associated with suppressed IL-17RA expression. Moreover, similar to the mutant EPO-IL-2Rbeta chimera, IL-15 and IL-21 induced IL-17RA preferentially compared with IL-2, and IL-2 but not IL-15 or IL-21 mediated prolonged activation of the PI3K p85 regulatory subunit. Thus, there are intrinsic signaling differences between IL-2 and IL-15 that can be attributed to differences in activation of the PI3K pathway.
Collapse
Affiliation(s)
- Matthew J Lindemann
- Department of Oral Biology, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | | | | | | | | |
Collapse
|
13
|
PIP3 pathway in regulatory T cells and autoimmunity. Immunol Res 2008; 39:194-224. [PMID: 17917066 DOI: 10.1007/s12026-007-0075-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/07/2023]
Abstract
Regulatory T cells (Tregs) play an important role in preventing both autoimmune and inflammatory diseases. Many recent studies have focused on defining the signal transduction pathways essential for the development and the function of Tregs. Increasing evidence suggest that T-cell receptor (TCR), interleukin-2 (IL-2) receptor (IL-2R), and co-stimulatory receptor signaling are important in the early development, peripheral homeostasis, and function of Tregs. The phosphoinositide-3 kinase (PI3K)-regulated pathway (PIP3 pathway) is one of the major signaling pathways activated upon TCR, IL-2R, and CD28 stimulation, leading to T-cell activation, proliferation, and cell survival. Activation of the PIP3 pathway is also negatively regulated by two phosphatidylinositol phosphatases SHIP and PTEN. Several mouse models deficient for the molecules involved in PIP3 pathway suggest that impairment of PIP3 signaling leads to dysregulation of immune responses and, in some cases, autoimmunity. This review will summarize the current understanding of the importance of the PIP3 pathway in T-cell signaling and the possible roles this pathway performs in the development and the function of Tregs.
Collapse
|
14
|
Ostiguy V, Allard EL, Marquis M, Leignadier J, Labrecque N. IL-21 promotes T lymphocyte survival by activating the phosphatidylinositol-3 kinase signaling cascade. J Leukoc Biol 2007; 82:645-56. [PMID: 17554014 DOI: 10.1189/jlb.0806494] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
IL-21 is a Type I cytokine, which uses the common gamma chain (gamma(c)) in its receptor. As members of the gamma(c) cytokine/cytokine receptors family play crucial role in the differentiation, activation, and survival of lymphocytes, we have investigated if IL-21 could promote T cell survival and thus, contribute to T cell homeostasis and expansion. Unlike most gamma(c) cytokine receptors, we report that IL-21R is constitutively expressed by all mature T lymphocytes and that stromal cells of lymphoid organs are a constitutive source of IL-21. These observations are reminiscent of what is observed for IL-7/IL-7R, which control T cell survival and homeostasis and suggest a role for IL-21 in T cell homeostasis. Indeed, our results show that IL-21 is a survival factor for resting and activated T cells. Moreover, the ability of IL-21 to costimulate T cell proliferation is mediated by enhancing T cell viability. Further investigation of how IL-21R signaling induces T cell survival shows for the first time that IL-21 binding to its receptor activates the PI-3K signaling pathway and induces Bcl-2 expression. Moreover, the activation of the PI-3K signaling pathway is essential for IL-21-mediated T cell survival. Our data provide a new role for IL-21 in the immune system, which might be used to improve T cell homeostasis in immunocompromised patients.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Size
- Cell Survival/drug effects
- Enzyme Activation
- Flow Cytometry
- Interleukin-21 Receptor alpha Subunit/genetics
- Interleukin-21 Receptor alpha Subunit/metabolism
- Interleukins/pharmacology
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- T-Lymphocytes/cytology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Valérie Ostiguy
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Center, 5415 boul. de l'Assomption, University of Montreal, Montreal, Quebec, Canada HIT 2M4
| | | | | | | | | |
Collapse
|
15
|
Kleiner S, Faisal A, Nagamine Y. Induction of uPA gene expression by the blockage of E-cadherin via Src- and Shc-dependent Erk signaling. FEBS J 2007; 274:227-40. [PMID: 17222183 DOI: 10.1111/j.1742-4658.2006.05578.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Loss of E-cadherin-mediated cell-cell adhesion and expression of proteolytic enzymes characterize the transition from benign lesions to invasive, metastatic tumor, a rate-limiting step in the progression from adenoma to carcinoma in vivo. A soluble E-cadherin fragment found recently in the serum and urine of cancer patients has been shown to disrupt cell-cell adhesion and to drive cell invasion in a dominant-interfering manner. Physical disruption of cell-cell adhesion can be mimicked by the function-blocking antibody Decma. We have shown previously in MCF7 and T47D cells that urokinase-type plasminogen activator (uPA) activity is up-regulated upon disruption of E-cadherin-dependent cell-cell adhesion. We explored the underlying molecular mechanisms and found that blockage of E-cadherin by Decma elicits a signaling pathway downstream of E-cadherin that leads to Src-dependent Shc and extracellular regulated kinase (Erk) activation and results in uPAgene activation. siRNA-mediated knockdown of endogenous Src-homology collagen protein (Shc) and subsequent expression of single Shc isoforms revealed that p46(Shc) and p52(Shc) but not p66(Shc) were able to mediate Erk activation. A parallel pathway involving PI3K contributed partially to Decma-induced Erk activation. This report describes that disruption of E-cadherin-dependent cell-cell adhesion induces intracellular signaling with the potential to enhance tumorigenesis and, thus, offers new insights into the pathophysiological mechanisms of tumor development.
Collapse
Affiliation(s)
- Sandra Kleiner
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | |
Collapse
|
16
|
Jin P, Wang E, Provenzano M, Deola S, Selleri S, Ren J, Voiculescu S, Stroncek D, Panelli MC, Marincola FM. Molecular signatures induced by interleukin-2 on peripheral blood mononuclear cells and T cell subsets. J Transl Med 2006; 4:26. [PMID: 16805915 PMCID: PMC1557669 DOI: 10.1186/1479-5876-4-26] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 06/28/2006] [Indexed: 12/03/2022] Open
Abstract
Experimentally, interleukin-2 (IL-2) exerts complex immunological functions promoting the proliferation, survival and activation of T cells on one hand and inducing immune regulatory mechanisms on the other. This complexity results from a cross talk among immune cells which sways the effects of IL-2 according to the experimental or clinical condition tested. Recombinant IL-2 (rIL-2) stimulation of peripheral blood mononuclear cells (PBMC) from 47 donors of different genetic background induced generalized T cell activation and anti-apoptotic effects. Most effects were dependent upon interactions among immune cells. Specialized functions of CD4 and CD8 T cells were less dependent upon and often dampened by the presence of other PBMC populations. In particular, cytotoxic T cell effector function was variably affected with a component strictly dependent upon the direct stimulation of CD8 T cells in the absence of other PBMC. This observation may provide a roadmap for the interpretation of the discrepant biological activities of rIL-2 observed in distinct pathological conditions or treatment modalities.
Collapse
Affiliation(s)
- Ping Jin
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Ena Wang
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Maurizio Provenzano
- Immune Oncology Section, Department of Surgery, University Hospital ZLF, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Sara Deola
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Silvia Selleri
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Jiaqiang Ren
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Sonia Voiculescu
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - David Stroncek
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Monica C Panelli
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Francesco M Marincola
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| |
Collapse
|
17
|
Irarrazabal CE, Burg MB, Ward SG, Ferraris JD. Phosphatidylinositol 3-kinase mediates activation of ATM by high NaCl and by ionizing radiation: Role in osmoprotective transcriptional regulation. Proc Natl Acad Sci U S A 2006; 103:8882-7. [PMID: 16728507 PMCID: PMC1482672 DOI: 10.1073/pnas.0602911103] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
High NaCl causes DNA double-strand breaks and activates the transcription factor, TonEBP/OREBP, resulting in increased transcription of several protective genes, including those involved in accumulation of compatible organic osmolytes. Several kinases are known to contribute to signaling activation of TonEBP/OREBP, including ATM, which is a member of the phosphatidylinositol 3-kinase (PI3K)-like kinase family and is activated by DNA double-strand breaks. The purpose of the present studies was to investigate a possible role of PI3K Class IA (PI3K-IA). We found that high NaCl increases PI3K-IA lipid kinase activity. Inhibiting PI3K-IA either by expressing a dominant negative of its regulatory subunit, p85, or by small interfering RNA-mediated knockdown of its catalytic subunit, p110alpha, reduces high NaCl-induced increases in TonEBP/OREBP transcriptional activity and transactivation, but not nuclear translocation of TonEBP/OREBP, or increases in its abundance. Further, suppression of PI3K-IA inhibits the activation of ATM that is caused by either ionizing radiation or high NaCl. High NaCl-induced increase in TonEBP/OREBP activity is reduced equally by inhibition of ATM or PI3K-IA, and the effects are not additive. The conclusions are as follows: (i) PI3K-IA activity is necessary for both high NaCl- and ionizing radiation-induced activation of ATM and (ii) high NaCl activates PI3K-IA, which, in turn, contributes to full activation of TonEBP/OREBP via ATM.
Collapse
Affiliation(s)
- Carlos E. Irarrazabal
- *National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-1603; and
- To whom correspondence may be addressed. E-mail:
or
| | - Maurice B. Burg
- *National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-1603; and
- To whom correspondence may be addressed. E-mail:
or
| | - Stephen G. Ward
- Department of Pharmacy and Pharmacology, Bath University, Claverton Down, Bath, Avon BA2 7AY, United Kingdom
| | - Joan D. Ferraris
- *National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-1603; and
| |
Collapse
|
18
|
Chiu D, Ma K, Scott A, Duronio V. Acute activation of Erk1/Erk2 and protein kinase B/akt proceed by independent pathways in multiple cell types. FEBS J 2005; 272:4372-84. [PMID: 16128807 DOI: 10.1111/j.1742-4658.2005.04850.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We used two inhibitors of the signaling enzyme phosphatidylinositol 3-kinase (PtdIns3K), wortmannin and LY294002, to evaluate the potential involvement of PtdIns3K in the activation of the MAP kinases (MAPK), Erk1 and Erk2. In dose-response studies carried out on six different cell lines and a primary cell culture, we analyzed the ability of the inhibitors to block phosphorylation of protein kinase B/akt (PKB/akt) at Ser473 as a measure of PtdIns3K activity, or the phosphorylation of Erk1/2 at activating Thr/Tyr sites as a measure of the extent of activation of MAPK/Erk kinase (MEK/Erk). In three different hemopoietic cell lines stimulated with cytokines, and in HEK293 cells, stimulated with serum, either wortmannin or LY294002, but never both, could partially block phosphorylation of Erks. The same observations were made in a B-cell line and in primary fibroblasts. In only one cell type, the A20 B cells, was there a closer correlation between the PtdIns3K inhibition by both inhibitors, and their corresponding effects on Erk phosphorylation. However, this stands out as an exception that gives clues to the mechanism by which cross-talk might occur. In all other cells, acute activation of the pathway leading to Erk phosphorylation could proceed independently of PtdIns3K activation. In a biological assay comparing these two pathways, the ability of LY294002 and the MEK inhibitor, U0126, to induce apoptosis were tested. Whereas LY294002 caused death of cytokine-dependent hemopoietic cells, U0126 had little effect, but both inhibitors together had a synergistic effect. The data show that these two pathways are regulating very different downstream events involved in cell survival.
Collapse
Affiliation(s)
- Doris Chiu
- Department of Medicine, University of British Columbia and Vancouver Coastal Health Research Institute, Jack Bell Research Centre, Vancouver, Canada
| | | | | | | |
Collapse
|
19
|
Fung MM, Chu YL, Fink JL, Wallace A, McGuire KL. IL-2- and STAT5-regulated cytokine gene expression in cells expressing the Tax protein of HTLV-1. Oncogene 2005; 24:4624-33. [PMID: 15735688 DOI: 10.1038/sj.onc.1208507] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interleukin-2 (IL-2) mediates cell cycle progression and antiapoptosis in human T cells via several signal transduction pathways. The Tax protein of the human T-cell leukemia virus type I (HTLV-1) deregulates cell growth and alters the role of IL-2 in infected cells. However, Tax-immortalized cells stay dependent on IL-2, suggesting that events besides HTLV-1 gene expression are required for leukemia to develop. Here, IL-2-dependent and -independent events were analysed in a human T cell line immortalized by Tax. These studies show that, of the signaling pathways evaluated, only STAT5 remains dependent. Microarray analyses revealed several genes, including il-5, il-9 and il-13, are uniquely upregulated by IL-2 in the presence of Tax. Bioinformatics and supporting molecular biology show that some of these genes are STAT5 targets, explaining their IL-2 upregulation. These results suggest that IL-2 and viral proteins work together to induce gene expression, promoting the hypothesis that deregulation via the constitutive activation of STAT5 may lead to the IL-2-independent phenotype of HTLV-1-transformed cells.
Collapse
Affiliation(s)
- Michelle M Fung
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA
| | | | | | | | | |
Collapse
|
20
|
Wing LYC, Chen HM, Chuang PC, Wu MH, Tsai SJ. The mammalian target of rapamycin-p70 ribosomal S6 kinase but not phosphatidylinositol 3-kinase-Akt signaling is responsible for fibroblast growth factor-9-induced cell proliferation. J Biol Chem 2005; 280:19937-47. [PMID: 15760907 DOI: 10.1074/jbc.m411865200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor-9 (FGF9) is a potent mitogen that stimulates normal and cancer cell proliferation though the signaling mechanism is not fully understood. In this study, we aimed to unravel the signaling cascades mediate FGF9 actions in human uterine endometrial stromal cell. Our results demonstrate that the mitogenic effect of FGF9 is transduced via two parallel but additive signaling pathways involving mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase. Activation of mTOR by FGF9 induces p70 ribosomal S6 kinase (S6K1) phosphorylation, cyclin expression, and cell proliferation, which are independent of phosphatidylinositol 3-kinase and Akt. Coimmunoprecipitation analysis demonstrates that mTOR physically associates with S6K1 upon FGF9 treatment, whereas ablation of mTOR activity using RNA interference or pharmacological inhibitor blocks S6K1 phosphorylation and cell proliferation induced by FGF9. Further study demonstrates that activation of mTOR is regulated by a phospholipase Cgamma-controlled calcium signaling pathway. These studies provide evidence to demonstrate, for the first time, that a novel signaling cascade involving phospholipase Cgamma, calcium, mTOR, and S6K1 is activated by FGF9 in a receptor-specific manner.
Collapse
Affiliation(s)
- Lih-Yuh C Wing
- Department of Physiology, National Cheung Kung University, Tainan, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
21
|
Stains JP, Civitelli R. Gap junctions regulate extracellular signal-regulated kinase signaling to affect gene transcription. Mol Biol Cell 2004; 16:64-72. [PMID: 15525679 PMCID: PMC539152 DOI: 10.1091/mbc.e04-04-0339] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Osteoblasts are highly coupled by gap junctions formed by connexin43. Overexpression of connexin45 in osteoblasts results in decreased chemical and electrical coupling and reduces gene transcription from connexin response elements (CxREs) in the osteocalcin and collagen Ialpha1 promoters. Here, we demonstrate that transcription from the gap junction-dependent osteocalcin CxRE is regulated by extracellular signal-regulated protein kinase (ERK) and phosphatidylinositol 3-kinase (PI3K) cascades. Overexpression of a constitutively active mitogen-activated protein kinase kinase (MEK), Raf, or Ras can increase transcription more than twofold of the CxRE, whereas inhibition of MEK or PI3K can decrease transcription threefold from the osteocalcin CxRE. Importantly, disruption of gap junctional communication by overexpression of connexin45 or treatment with pharmacological inhibitors of gap junctions results in reduced Raf, ERK, and Akt activation. The consequence of attenuated gap junction-dependent signal cascade activation is a decrease in Sp1 phosphorylation by ERK, resulting in decreased Sp1 recruitment to the CxRE and inhibited gene transcription. These data establish that ERK/PI3K signaling is required for the optimal elaboration of transcription from the osteocalcin CxRE, and that disruption of gap junctional communication attenuates the ability of cells to respond to an extracellular cue, presumably by limiting the propagation of second messengers among adjacent cells by connexin43-gap junctions.
Collapse
Affiliation(s)
- Joseph P Stains
- Division of Bone and Mineral Diseases, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO 63110, USA
| | | |
Collapse
|
22
|
Bensinger SJ, Walsh PT, Zhang J, Carroll M, Parsons R, Rathmell JC, Thompson CB, Burchill MA, Farrar MA, Turka LA. Distinct IL-2 receptor signaling pattern in CD4+CD25+ regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2004; 172:5287-96. [PMID: 15100267 PMCID: PMC2842445 DOI: 10.4049/jimmunol.172.9.5287] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite expression of the high-affinity IL-2R, CD4(+)CD25(+) regulatory T cells (Tregs) are hypoproliferative upon IL-2R stimulation in vitro. However the mechanisms by which CD4(+)CD25(+) T cells respond to IL-2 signals are undefined. In this report, we examine the cellular and molecular responses of CD4(+)CD25(+) Tregs to IL-2. IL-2R stimulation results in a G(1) cell cycle arrest, cellular enlargement and increased cellular survival of CD4(+)CD25(+) T cells. We find a distinct pattern of IL-2R signaling in which the Janus kinase/STAT pathway remains intact, whereas IL-2 does not activate downstream targets of phosphatidylinositol 3-kinase. Negative regulation of phosphatidylinositol 3-kinase signaling and IL-2-mediated proliferation of CD4(+)CD25(+) T cells is inversely associated with expression of the phosphatase and tensin homologue deleted on chromosome 10, PTEN.
Collapse
MESH Headings
- Animals
- Cell Division/immunology
- Cell Survival/immunology
- Cells, Cultured
- Down-Regulation/immunology
- Growth Inhibitors/physiology
- Interleukin-2/antagonists & inhibitors
- Interleukin-2/physiology
- Mice
- Mice, Inbred BALB C
- Oligonucleotide Array Sequence Analysis
- PTEN Phosphohydrolase
- Phosphatidylinositol 3-Kinases/physiology
- Phosphoinositide-3 Kinase Inhibitors
- Phosphorylation
- Protein Serine-Threonine Kinases/metabolism
- Protein Tyrosine Phosphatases/antagonists & inhibitors
- Protein Tyrosine Phosphatases/biosynthesis
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Receptors, Antigen, T-Cell/immunology
- Receptors, Interleukin-2/biosynthesis
- Receptors, Interleukin-2/physiology
- Signal Transduction/immunology
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/enzymology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Tumor Suppressor Proteins/antagonists & inhibitors
- Tumor Suppressor Proteins/biosynthesis
Collapse
Affiliation(s)
| | - Patrick T. Walsh
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jidong Zhang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Martin Carroll
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ramon Parsons
- Department of Pathology and Medicine, Columbia University, New York, NY 10032
| | - Jeffrey C. Rathmell
- Abramson Family Cancer Research Institute, Departments of Cancer Biology and Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Craig B. Thompson
- Abramson Family Cancer Research Institute, Departments of Cancer Biology and Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Matthew A. Burchill
- Center for Immunology, Cancer Center, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Michael A. Farrar
- Center for Immunology, Cancer Center, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Laurence A. Turka
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
23
|
Irarrazabal CE, Liu JC, Burg MB, Ferraris JD. ATM, a DNA damage-inducible kinase, contributes to activation by high NaCl of the transcription factor TonEBP/OREBP. Proc Natl Acad Sci U S A 2004; 101:8809-14. [PMID: 15173573 PMCID: PMC423277 DOI: 10.1073/pnas.0403062101] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
High NaCl activates the transcription factor tonicity-responsive enhancer/osmotic response element-binding protein (TonEBP/OREBP), resulting in increased transcription of several protective genes, including the glycine betaine/gamma-aminobutyric acid transporter (BGT1). High NaCl damages DNA, and DNA damage activates ataxia telangiectasia mutated (ATM) kinase through autophosphorylation on Ser-1981. TonEBP/OREBP contains ATM consensus phosphorylation sites at Ser-1197, Ser-1247, and Ser-1367. The present studies test whether ATM is involved in activation of TonEBP/OREBP by high NaCl. We find that raising osmolality from 300 to 500 mosmol/kg by adding NaCl activates ATM, as indicated by phosphorylation at Ser-1981. High urea and radiation also activate ATM, but they do not increase TonEBP/OREBP transcriptional activity like high NaCl does. Wortmannin, which inhibits ATM, reduces NaCl-induced TonEBP/OREBP transcriptional activation and BGT1 mRNA increase. Overexpression of wild-type TonEBP/OREBP increases ORE/TonE reporter activity much more than does overexpression of TonEBP/OREBP S1197A, S1247A, or S1367A. In AT cells (which express nonfunctional ATM), TonEBP/OREBP transcriptional and transactivating activity are further increased by expression of wild-type ATM but not of S1981A ATM. TonEBP/OREBP reciprocally coimmunoprecipitates with ATM kinase, demonstrating physical association. Additionally, antibody to ATM kinase supershifts TonEBP/OREBP bound to its cognate ORE/TonE DNA element. In AT cells, wortmannin further decreases high NaCl-induced increase in transcriptional activity, consistent with participation of signaling kinase(s) in addition to ATM. In conclusion, signaling via ATM is necessary for full activation of TonEBP/OREBP by high NaCl, but it is not sufficient.
Collapse
Affiliation(s)
- Carlos E Irarrazabal
- National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-1603, USA.
| | | | | | | |
Collapse
|
24
|
Gao N, Flynn DC, Zhang Z, Zhong XS, Walker V, Liu KJ, Shi X, Jiang BH. G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. Am J Physiol Cell Physiol 2004; 287:C281-91. [PMID: 15028555 DOI: 10.1152/ajpcell.00422.2003] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ovarian cancer is one of the most common cancers among women. Recent studies demonstrated that the gene encoding the p110alpha catalytic subunit of phosphatidylinositol 3-kinase (PI3K) is frequently amplified in ovarian cancer cells. PI3K is involved in multiple cellular functions, including proliferation, differentiation, antiapoptosis, tumorigenesis, and angiogenesis. In this study, we demonstrate that the inhibition of PI3K activity by LY-294002 inhibited ovarian cancer cell proliferation and induced G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins, including cyclin D1, cyclin-dependent kinase (CDK) 4, CDC25A, and retinoblastoma phosphorylation at Ser(780), Ser(795), and Ser(807/811). Expression of CDK6 and beta-actin was not affected by LY-294002. Expression of the cyclin kinase inhibitor p16(INK4a) was induced by the PI3K inhibitor, whereas steady-state levels of p21(CIP1/WAF1) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation of AKT and p70S6K1, but not extracellular regulated kinase 1/2. The G(1) cell cycle arrest induced by LY-294002 was restored by the expression of active forms of AKT and p70S6K1 in the cells. Our study shows that PI3K transmits a mitogenic signal through AKT and mammalian target of rapamycin (mTOR) to p70S6K1. The mTOR inhibitor rapamycin had similar inhibitory effects on G(1) cell cycle progression and on the expression of cyclin D1, CDK4, CDC25A, and retinoblastoma phosphorylation. These results indicate that PI3K mediates G(1) progression and cyclin expression through activation of an AKT/mTOR/p70S6K1 signaling pathway in the ovarian cancer cells.
Collapse
Affiliation(s)
- Ning Gao
- 1820 MBR Cancer Center and Dept. of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506-9300, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Illario M, Cavallo AL, Bayer KU, Di Matola T, Fenzi G, Rossi G, Vitale M. Calcium/calmodulin-dependent protein kinase II binds to Raf-1 and modulates integrin-stimulated ERK activation. J Biol Chem 2003; 278:45101-8. [PMID: 12954639 DOI: 10.1074/jbc.m305355200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin activation generates different signalings in a cell type-dependent manner and stimulates cell proliferation through the Ras/Raf-1/Mek/Erk pathway. In this study, we demonstrate that integrin stimulation by fibronectin (FN), besides activating the Ras/Erk pathway, generates an auxiliary calcium signal that activates calmodulin and the Ca2+/calmodulin-dependent protein kinase II (CaMKII). This signal regulates Raf-1 activation by Ras and modulates the FN-stimulated extracellular signal-regulated kinase (Erk-1/2). The binding of soluble FN to integrins induced increase of intracellular calcium concentration associated with phosphorylation and activation of CaMKII. In two different cell lines, inhibition of CaMKII activity by specific inhibitors inhibited Erk-1/2 phosphorylation. Whereas CaMK inhibition affected neither integrin-stimulated Akt phosphorylation nor p21Ras or Mek-1 activity, it was necessary for Raf-1 activity. FN-induced Raf-1 activity was abrogated by the CaMKII specific inhibitory peptide ant-CaNtide. Integrin activation by FN induced the formation of a Raf-1/CaMKII complex, abrogated by inhibition of CaMKII. Active CaMKII phosphorylated Raf-1 in vitro. This is the first demonstration that CaMKII interplays with Raf-1 and regulates Erk activation induced by Ras-stimulated Raf-1. These findings also provide evidence supporting the possible existence of cross-talk between other intracellular pathways involving CaMKII and Raf-1.
Collapse
Affiliation(s)
- Maddalena Illario
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II, Napoli, 80131 Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Grey A, Chen Q, Xu X, Callon K, Cornish J. Parallel phosphatidylinositol-3 kinase and p42/44 mitogen-activated protein kinase signaling pathways subserve the mitogenic and antiapoptotic actions of insulin-like growth factor I in osteoblastic cells. Endocrinology 2003; 144:4886-93. [PMID: 12960100 DOI: 10.1210/en.2003-0350] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IGF-I is an endocrine and paracrine regulator of skeletal homeostasis, principally by virtue of its anabolic effects on osteoblastic cells. In the current study, we examined the intracellular signaling pathways by which IGF-I promotes proliferation and survival in SaOS-2 human osteoblastic cells. Inhibition of each of the phosphatidylinositol-3 kinase (PI-3 kinase), p42/44 MAPK, and p70s6 kinase pathways partially inhibited the ability of IGF-I to stimulate osteoblast proliferation and survival. Because activation of p70s6 kinase is downstream of both PI-3 kinase and p42/44 MAPK activation in osteoblasts treated with IGF-I, this ribosomal kinase represents a convergence point for IGF-I-induced PI-3 kinase and p42/44 MAPK signaling in osteoblastic cells. In addition, abrogation of PI-3 kinase-dependent Akt signaling, which does not inhibit IGF-I-induced p70s6 kinase phosphorylation, also inhibited the antiapoptotic effects of IGF-I in osteoblasts. Finally, interruption of G beta gamma signaling partially abrogated the ability of IGF-I to promote osteoblast survival, without inhibiting signaling through PI-3 kinase/Akt, p42/44 MAPKs, or p70s6 kinase. These data suggest that IGF-I signals osteoblast mitogenesis and survival through parallel, partly overlapping intracellular pathways involving PI-3 kinase, p42/44 MAPKs, and G beta gamma subunits.
Collapse
Affiliation(s)
- Andrew Grey
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
28
|
Gala S, Schibeci SD, Marreiros A, Calvo V, Merida I, Williamson P. Expression of an active p110 catalytic subunit of phosphatidylinositol 3-kinase alters the proliferative capacity of interleukin-2 receptor signals. Immunol Cell Biol 2003; 81:343-9. [PMID: 12969321 DOI: 10.1046/j.1440-1711.2003.t01-2-01179.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Activation of phosphatidylinositol 3-kinase (PI3K) is an early and essential step in interleukin-2 receptor (IL-2R) signalling, and plays an important role in regulating both cell survival and cellular proliferation. In the present study, we utilized Baf-B03 cells expressing mutated IL-2R to examine the contribution of PI3K to proliferative capacity. In this model IL-2-mediated induction of the downstream PI3K-dependent signalling molecule p70 S6 kinase was detected, but there was no proliferative response. Increasing the level of PI3K activity by transfection of an active form of the catalytic subunit, p110*, enabled the proliferative capacity of the mutated receptor. Whereas, in cells without p110*, IL-2 lacked the capacity to induce c-myc and to overcome an S-phase checkpoint, S-phase transition was restored by transfection of p110*, and this was accompanied by an increase in the c-myc response. Despite the presence of p110*, activity cells still required IL-2R-derived signals for proliferation, and IL-2Rbeta truncated at amino acid 350 were sufficient to provide this signalling activity. The data support a model in which the level of available PI3K can determine the cellular response to IL-2.
Collapse
Affiliation(s)
- Salvador Gala
- Institute for Immunology and Allergy Research, Westmead Millennium Institute, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
29
|
Gao N, Zhang Z, Jiang BH, Shi X. Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer. Biochem Biophys Res Commun 2003; 310:1124-32. [PMID: 14559232 DOI: 10.1016/j.bbrc.2003.09.132] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Prostate cancer is one of the most common cancers among men. Recent studies demonstrated that PI3K signaling is an important intracellular mediator which is involved in multiple cellular functions including proliferation, differentiation, anti-apoptosis, tumorigenesis, and angiogenesis. In the present study, we demonstrate that the inhibition of PI3K activity by LY294002, inhibited prostate cancer cell proliferation and induced the G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins including cyclin D1, CDK4, and Rb phosphorylation at Ser780, Ser795, and Ser807/811, whereas expression of CDK6 and beta-actin was not affected by LY294002. The expression of cyclin kinase inhibitor, p21(CIP1/WAF1), was induced by LY294002, while levels of p16(INK4) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation and p70(S6K), but not MAPK. PI3K regulates cell cycle through AKT, mTOR to p70(S6K). The mTOR inhibitor rapamycin has similar inhibitory effects on G(1) cell cycle progression and expression of cyclin D1, CDK4, and Rb phosphorylation. These results suggest that PI3K mediates G(1) cell cycle progression and cyclin expression through the activation of AKT/mTOR/p70(S6K) signaling pathway in the prostate cancer cells.
Collapse
Affiliation(s)
- Ning Gao
- Institute for Nutritional Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China
| | | | | | | |
Collapse
|
30
|
Abstract
Calcium-modulating cyclophilin ligand (CAML) is a ubiquitous protein that has been implicated in signaling from the cell surface receptor TACI in lymphocytes, although its role and mechanism of action are unknown. To study its function in the mouse, we disrupted the CAML gene and found it to be required for early embryonic development, but not for cellular viability. CAML-deficient cells have severely impaired proliferative responses to the epidermal growth factor (EGF). Although EGF-induced activation of signaling intermediates and internalization of the EGF receptor (EGFR) are normal in the absence of CAML, the recycling of internalized receptors to the plasma membrane is defective, leading to its reduced surface accumulation. We demonstrate that CAML normally associates directly with the kinase domain of the EGFR in a ligand-dependent manner. These data implicate CAML in EGFR signaling and suggest that it may play a role in receptor recycling during long-term proliferative responses to EGF.
Collapse
Affiliation(s)
- David D Tran
- Department of Immunology, Mayo Medical and Graduate Schools, Mayo Clinic, Mayo Foundation, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
31
|
Dreiem A, Myhre O, Fonnum F. Involvement of the extracellular signal regulated kinase pathway in hydrocarbon-induced reactive oxygen species formation in human neutrophil granulocytes. Toxicol Appl Pharmacol 2003; 190:102-10. [PMID: 12878040 DOI: 10.1016/s0041-008x(03)00158-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the present study we have examined the effects of hydrocarbons on the formation of reactive oxygen species (ROS) in human neutrophil granulocytes in vitro. We found that hydrocarbons induce ROS formation in a concentration-dependent manner and that the ROS-inducing potency increases with increasing number of carbon atoms in the structure. In general, aromatic hydrocarbons were less potent inducers of ROS than aliphatic and cyclic hydrocarbons. The most potent compound in each group, t-butylcyclohexane, n-decane, and n-butylbenzene, were chosen for mechanistic studies. ROS formation was inhibited by the MEK1/2 inhibitor U0126, the tyrosine kinase inhibitor erbstatin-A, and the phosphatidylinositol-3 kinase inhibitor wortmannin. The involvement of the ERK1/2 pathway was confirmed by Western blot analysis of phosphorylated ERK1/2. The study revealed only small differences in the mechanisms involved for the three compounds. The responses were not affected by Pertussis toxin, indicating that Gi-protein coupled receptors are not involved in neutrophil activation after hydrocarbon exposure. Based on these findings we propose a mechanism involving tyrosine kinases, PI3 kinase, and the ERK1/2 pathway, leading to activation of the NADPH oxidase and production of ROS in neutrophils stimulated by organic solvents.
Collapse
Affiliation(s)
- Anne Dreiem
- Norwegian Defence Research Establishment, Division for Protection and Materiel, Kjeller, Norway.
| | | | | |
Collapse
|
32
|
Fung MM, Rohwer F, McGuire KL. IL-2 activation of a PI3K-dependent STAT3 serine phosphorylation pathway in primary human T cells. Cell Signal 2003; 15:625-36. [PMID: 12681450 DOI: 10.1016/s0898-6568(03)00003-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Interleukin-2 (IL-2) is the major growth factor of activated T lymphocytes. By inducing cell cycle progression and protection from apoptosis in these cells, IL-2 is involved in the successful execution of an immune response. Upon binding its receptor, IL-2 activates a variety of signal transduction pathways, including the Ras/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) and Janus kinase (JAK)/STAT cascades. In addition, activation of phosphatidylinositol 3-kinase (PI3K) and several of its downstream targets has also been shown. However, the coupling of STAT3 serine phosphorylation to PI3K in response to IL-2 has yet to be shown in either T cell lines or primary human T cells. This report shows that the PI3K inhibitors LY294002 and wortmannin block activation of MEK and ERK by IL-2 in primary human T cells. Moreover, these inhibitors significantly reduce IL-2-triggered STAT3 serine phosphorylation without affecting STAT5 serine phosphorylation. Analysis of the effects of these inhibitors on cell cycle progression and apoptosis strongly suggests that PI3K-mediated events, which includes STAT3 activation, are involved in IL-2-mediated cell proliferation but not cell survival. Finally, results presented illustrate that in primary human T cells, activation of Akt is insufficient for IL-2-induced anti-apoptosis. Thus, these results demonstrate that IL-2 stimulates PI3K-dependent events that correlate with cell cycle progression, but not anti-apoptosis, in activated primary human T cells.
Collapse
Affiliation(s)
- Michelle M Fung
- Department of Biology and Molecular Biology Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA
| | | | | |
Collapse
|
33
|
Lindemann MJ, Benczik M, Gaffen SL. Anti-apoptotic signaling by the interleukin-2 receptor reveals a function for cytoplasmic tyrosine residues within the common gamma (gamma c) receptor subunit. J Biol Chem 2003; 278:10239-49. [PMID: 12525482 DOI: 10.1074/jbc.m209471200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The interleukin-2 receptor (IL-2R) is composed of one affinity-modulating subunit (IL-2Ralpha) and two essential signaling subunits (IL-2Rbeta and gammac). Although most known signaling events are mediated through tyrosine residues located within IL-2Rbeta, no functions have yet been ascribed to gammac tyrosine residues. In this study, we describe a role for gammac tyrosines in anti-apoptotic signal transduction. We have shown previously that a tyrosine-deficient IL-2Rbeta chain paired with wild type gammac stimulated enhancement of bcl-2 mRNA in IL-2-dependent T cells, but it was not determined which region of the IL-2R or which pathway was activated to direct this signaling response. Here we show that up-regulation of Bcl-2 by an IL-2R lacking IL-2Rbeta tyrosine residues leads to increased cell survival after cytokine deprivation; strikingly, this survival signal does not occur in the absence of gammac tyrosine residues. These gammac-dependent signals are revealed only in the absence of IL-2Rbeta tyrosines, indicating that the IL-2R engages at least two distinct signaling pathways to regulate apoptosis and Bcl-2 expression. Mechanistically, the gammac-dependent signal requires activation of Janus kinases 1 and 3 and is sensitive to wortmannin, implicating phosphatidylinositol 3-kinase. Consistent with involvement of phosphatidylinositol 3-kinase, Akt can be activated via tyrosine residues on gammac. Thus, gammac mediates an anti-apoptotic signaling pathway through Akt which cooperates with signals from its partner chain, IL-2Rbeta.
Collapse
Affiliation(s)
- Matthew J Lindemann
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | |
Collapse
|
34
|
Jiang K, Zhong B, Ritchey C, Gilvary DL, Hong-Geller E, Wei S, Djeu JY. Regulation of Akt-dependent cell survival by Syk and Rac. Blood 2003; 101:236-44. [PMID: 12393431 DOI: 10.1182/blood-2002-04-1251] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Interleukin-2 (IL-2) prevents cell apoptosis and promotes survival, but the involved mechanisms have not been completely defined. Although phosphatidylinositide 3-kinase (PI 3-kinase) has been implicated in IL-2-mediated survival mechanisms, none of the 3 chains of the IL-2 receptor (IL-2R) expresses a binding site for PI 3-kinase. However, IL-2Rbeta does express a Syk-binding motif. By using an IL-2-dependent natural killer (NK) cell line, followed by validation of the results in fresh human NK cells, we identified Syk as a critical effector essential for IL-2-mediated prosurvival signaling in NK cells. Down-regulation of Syk by piceatannol treatment impaired NK cellular viability and induced prominent apoptosis as effectively as suppression of PI 3-kinase function by LY294002. Expression of kinase-deficient Syk or pretreatment with piceatannol markedly suppressed IL-2-stimulated activation of PI 3-kinase and Akt, demonstrating that Syk is upstream of PI 3-kinase and Akt. However, constitutively active PI 3-kinase reversed this loss of Akt function caused by kinase-deficient Syk or piceatannol. Thus, Syk appears to regulate PI 3-kinase, which controls Akt activity during IL-2 stimulation. More important, we observed Rac1 activation by IL-2 and found that it mediated PI 3-kinase activation of Akt. This conclusion came from experiments in which dominant-negative Rac1 significantly decreased IL-2-induced Akt activation, whereas constitutively active Rac1 reelevated Akt activity not only in Syk-impaired but also in PI 3-kinase-impaired NK cells. These results constitute the first report of a Syk --> PI3K --> Rac1 --> Akt signal cascade controlled by IL-2 that mediates NK cell survival.
Collapse
Affiliation(s)
- Kun Jiang
- Immunology Program, H. Lee Moffitt Cancer Center, Department of Interdisciplinary Oncology, University of South Florida College of Medicine, Tampa 33612, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Ponti C, Gibellini D, Boin F, Melloni E, Manzoli FA, Cocco L, Zauli G, Vitale M. Role of CREB transcription factor in c-fos activation in natural killer cells. Eur J Immunol 2002. [DOI: 10.1002/1521-4141(200212)32:12%3c3358::aid-immu3358%3e3.0.co;2-q] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Ponti C, Gibellini D, Boin F, Melloni E, Manzoli FA, Cocco L, Zauli G, Vitale M. Role of CREB transcription factor in c-fos activation in natural killer cells. Eur J Immunol 2002; 32:3358-65. [PMID: 12432566 DOI: 10.1002/1521-4141(200212)32:12<3358::aid-immu3358>3.0.co;2-q] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In natural killer (NK) cells, interleukin-2 (IL-2) differentially regulates the expression of several transcription factors, including JunB and c-fos. The cAMP response element binding protein, CREB, is a key transcriptional regulator of a large number of genes containing the octanucleotide CRE consensus sequence in their upstream regulatory regions. We studied here the functional role of CREB in the IL-2-mediated transcriptional regulation of c-fos in human NK cells. Our results show that IL-2 activates CREB in human NK cells and that CREB activation hasa prominent regulatory role on the IL-2-induced expression of functional c-fos and AP-1 in NK cells. We identify two domains of the c-fos promoter, containing three CRE sites, which are critical for the transcriptional activity induced by IL-2. The first domain is located within the first 220 nucleotides of the c-fos promoter, while the second encompasses the nucleotides - 440 and - 220. Our results show that CREB has a relevant role in the cytokine-mediated activation of NK cells, and are particularly remarkable in the light of the several genes that are positively regulated by c-fos and AP-1, such as IFN-gamma, IL-2 and GM-CSF genes.
Collapse
Affiliation(s)
- Cristina Ponti
- Department of Anatomical Sciences, Cellular Signalling Laboratory, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lindholm CK. IL-2 receptor signaling through the Shb adapter protein in T and NK cells. Biochem Biophys Res Commun 2002; 296:929-36. [PMID: 12200137 DOI: 10.1016/s0006-291x(02)02016-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Interleukin-2 induces heterodimerization of the IL-2 receptor beta and gamma subunits. This study addresses a role of the Shb adapter protein in IL-2 receptor signaling in T and NK cells. The IL-2Rbeta and gamma chains were found to co-immunoprecipitate with Shb, when each alone was co-expressed with Shb in COS cells. Using fusion proteins, the Shb SH2 domain was found to associate in a phosphotyrosine-dependent manner with the IL-2 receptor beta and gamma subunits upon IL-2 stimulation in primary T cells and the NK cell line NK-92. The main binding site of the Shb SH2 domain was phosphorylated Tyr-510 in the IL-2Rbeta chain. Shb was also phosphorylated upon IL-2 stimulation when overexpressed together with IL-2Rbeta (in pre-B cells, which express the gamma chain constitutively). These cells were also less apoptotic in the presence of IL-2 than cells overexpressing a mutant Shb (with a defect SH2 domain) or cells expressing a mutant IL-2Rbeta, with the Shb binding sites mutated to phenylalanine (Y392F, Y510F). JAK1 and JAK3 were also found to associate with Shb, but in contrast to the Shb-IL-2 receptor association, JAK1 and 3 appear to associate with the proline-rich regions of Shb. In conclusion, Shb links the IL-2 receptor to other signaling proteins and mediates the regulation of apoptosis in the presence of IL-2.
Collapse
Affiliation(s)
- Cecilia K Lindholm
- Department of Medical Cell Biology, Uppsala University, Biomedicum, Box 571, S-75123 Uppsala, Sweden.
| |
Collapse
|
38
|
Sakuma H, Yamamoto M, Okumura M, Kojima T, Maruyama T, Yasuda K. High glucose inhibits apoptosis in human coronary artery smooth muscle cells by increasing bcl-xL and bfl-1/A1. Am J Physiol Cell Physiol 2002; 283:C422-8. [PMID: 12107051 DOI: 10.1152/ajpcell.00577.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is a serious complication in diabetic patients. To elucidate the precise mechanisms of atherosclerosis in diabetic patients, the effects of high glucose concentration (25 mM) on apoptosis regulation and bcl-2 family protein expression in human coronary artery smooth muscle cells (CASMC) were examined. Treatment with a high level of glucose (25 mM) caused a significant decrease in apoptosis in CASMC compared with the same cells treated with a physiologically normal glucose concentration (5.5 mM) (23.9 +/- 2.4% vs. 16.5 +/- 1.8%; P < 0.01). With respect to apoptosis regulation, treatment of CASMC with high glucose concentration markedly increased mRNA expressions of bcl-xL and bfl-1/A1 compared with cells treated with normal glucose. High glucose induced phosphorylation of phosphatidylinositol 3-kinase (PI 3-K) and extracellular signal-regulated kinase (ERK)1/2 along with bcl-xL and bfl-1/A1 upregulation. These results suggest that high glucose suppresses apoptosis via upregulation of bcl-xL and bfl-1/A1 levels through PI 3-K and ERK1/2 pathways in CASMC. High glucose-induced increase in the expression of antiapoptotic proteins may be important in the development of atherosclerosis in diabetic patients.
Collapse
Affiliation(s)
- Hiroya Sakuma
- Third Department of Internal Medicine, Gifu University School of Medicine, Gifu 500-8705, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Gonzalez J, Harris T, Childs G, Prystowsky MB. Rapamycin blocks IL-2-driven T cell cycle progression while preserving T cell survival. Blood Cells Mol Dis 2002; 27:572-85. [PMID: 11355896 DOI: 10.1006/bcmd.2001.0420] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effective cellular immune responses require increases in antigen-specific T lymphocytes; IL-2 drives antigen-stimulated T cell proliferation and is largely responsible for the increases observed. We used microarrays containing approximately 9000 mouse cDNAs to study IL-2-induced gene expression. IL-2 induces the expression of genes that regulate cell cycle progression, control cell survival, and increase synthetic and metabolic processes during proliferation. IL-2 also suppresses expression of genes that block cell cycle progression and promote cell death. Rapamycin inhibits IL-2-driven proliferation by downregulating the expression of genes required for key processes required for cell cycle progression. Rapamycin also preserves cell survival by keeping intact the IL-2-induced cell survival programs. These complex multifaceted programs of gene expression permit a dynamic regulation of cellular proliferation and cellular survival.
Collapse
Affiliation(s)
- J Gonzalez
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
40
|
Sutherland CL, Chalupny NJ, Schooley K, VandenBos T, Kubin M, Cosman D. UL16-binding proteins, novel MHC class I-related proteins, bind to NKG2D and activate multiple signaling pathways in primary NK cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:671-9. [PMID: 11777960 DOI: 10.4049/jimmunol.168.2.671] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The UL16-binding proteins (ULBPs) are a novel family of MHC class I-related molecules that were identified as targets of the human CMV glycoprotein, UL16. We have previously shown that ULBP expression renders a relatively resistant target cell sensitive to NK cytotoxicity, presumably by engaging NKG2D, an activating receptor expressed by NK and other immune effector cells. In this study we show that NKG2D is the ULBP counterstructure on primary NK cells and that its expression is up-regulated by IL-15 stimulation. Soluble forms of ULBPs induce marked protein tyrosine phosphorylation, and activation of the Janus kinase 2, STAT5, extracellular signal-regulated kinase, mitogen-activated protein kinase, and phosphatidylinositol 3-kinase (PI 3-kinase)/Akt signal transduction pathways. ULBP-induced activation of Akt and extracellular signal-regulated kinase and ULBP-induced IFN-gamma production are blocked by inhibitors of PI 3-kinase, consistent with the known binding of PI 3-kinase to DAP10, the membrane-bound signal-transducing subunit of the NKG2D receptor. While all three ULBPs activate the same signaling pathways, ULBP3 was found to bind weakly and to induce the weakest signal. In summary, we have shown that NKG2D is the ULBP counterstructure on primary NK cells and for the first time have identified signaling pathways that are activated by NKG2D ligands. These results increase our understanding of the mechanisms by which NKG2D activates immune effector cells and may have implications for immune surveillance against pathogens and tumors.
Collapse
|
41
|
Abstract
Interleukin (IL-)2 and its receptor (IL-2R) constitute one of the most extensively studied cytokine receptor systems. IL-2 is produced primarily by activated T cells and is involved in early T cell activation as well as in maintaining homeostatic immune responses that prevent autoimmunity. This review focuses on molecular signaling pathways triggered by the IL-2/IL-2R complex, with an emphasis on how the IL-2R physically translates its interaction with IL-2 into a coherent biological outcome. The IL-2R is composed of three subunits, IL-2Ralpha, IL-2Rbeta and gammac. Although IL-2Ralpha is an important affinity modulator that is essential for proper responses in vivo, it does not contribute to signaling due a short cytoplasmic tail. In contrast, IL-2Rbeta and gammac together are necessary and sufficient for effective signal transduction, and they serve physically to connect the receptor complex to cytoplasmic signaling intermediates. Despite an absolute requirement for gammac in signaling, the majority of known pathways physically link to the receptor via IL-2Rbeta, generally through phosphorylated cytoplasmic tyrosine residues. This review highlights work performed both in cultured cells and in vivo that defines the functional contributions of specific receptor subdomains-and, by inference, the specific signaling pathways that they activate-to IL-2-dependent biological activities.
Collapse
Affiliation(s)
- S L Gaffen
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY14214, USA.
| |
Collapse
|
42
|
Vitale M, Matteucci A, Manzoli L, Rodella L, Mariani AR, Zauli G, Falconi M, Billi AM, Martelli AM, Gilmour RS, Cocco L. Interleukin 2 activates nuclear phospholipase Cbeta by mitogen-activated protein kinase-dependent phosphorylation in human natural killer cells. FASEB J 2001; 15:1789-91. [PMID: 11481231 DOI: 10.1096/fj.01-0008fje] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- M Vitale
- Institute of Human Anatomy, University of Parma, Ospedale Maggiore, 14 43100 Parma, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
In conclusion, multiple receptors and signal transduction cascades influence T-cell function and fate. During the past few years many of these important aspects of T-cell biology were identified. The complexity of the various signaling pathways has made appreciation of their clinical significance difficult. One way of studying the function of these molecules is to create mice deficient of these components. However, frequently the murine phenotype is far from reflecting the homologous human deficiency. It is therefore beneficial to define the human immunodeficiencies in order to understand the role of a certain signaling molecule in humans. Further, mutations that result in partial deficiencies may result in a different phenotype from null mutations. This information may aid in improving structure/function analysis of these signaling components.
Collapse
Affiliation(s)
- E Grunebaum
- IIIR Program, Research Institute, Hospital for Sick Children and The University of Toronto, Canada
| | | |
Collapse
|
44
|
Kawashima K, Yamakawa K, Arita J. Involvement of phosphoinositide-3-kinase and p70 S6 kinase in regulation of proliferation of rat lactotrophs in culture. Endocrine 2000; 13:385-92. [PMID: 11216652 DOI: 10.1385/endo:13:3:385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2000] [Revised: 07/31/2000] [Accepted: 08/07/2000] [Indexed: 01/02/2023]
Abstract
Phosphoinositide-3-kinase (PI-3K) and p70 S6 kinase (p70S6k) are suggested as important molecules for mediating mitogenic actions of growth factors and cytokines in a variety of cell types. The purpose of the present study was to investigate whether these kinases were involved in mediation of the mitogenic actions of not only the growth factor insulin but also cyclic adenosine monophosphate (cAMP) and estrogen on rat cultured lactotrophs. Treatment with wortmannin or LY294002, a PI-3K inhibitor, or rapamycin, a p70S6k inhibitor, decreased basal levels of 5-bromo-2-deoxyuridine (BrdU)-labeling indices of lactotrophs in a dose-dependent manner. These inhibitors were effective in blocking an increase in BrdU-labeling indices induced by insulin. LY294002 and rapamycin also suppressed an increase in BrdU-labeling indices induced by forskolin, an adenylate cyclase activator, or dibutyryl cAMP, a membrane-permeable cAMP analog, as well as that induced by estradiol, a physiologic extracellular activator of lactotroph proliferation. However, the dibutyryl cAMP-, but not insulin-induced proliferation, acquired a resistance to LY294002 and rapamycin by pretreatment with bromocriptine, a dopaminergic agonist that is able to suppress lactotroph proliferation. These results suggest that the mitogenic actions of cAMP and estradiol on rat lactotrophs are mediated by PI-3K and p70S6k, and that dopaminergic inhibition modifies the PI-3K and p70S6k dependence of the regulation of lactotroph proliferation.
Collapse
Affiliation(s)
- K Kawashima
- Department of Physiology, Yamanashi Medical University, Tamaho, Japan
| | | | | |
Collapse
|
45
|
Weinstein-Oppenheimer CR, Blalock WL, Steelman LS, Chang F, McCubrey JA. The Raf signal transduction cascade as a target for chemotherapeutic intervention in growth factor-responsive tumors. Pharmacol Ther 2000; 88:229-79. [PMID: 11337027 DOI: 10.1016/s0163-7258(00)00085-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This review focuses on the Ras-Raf-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) signal transduction pathway and the consequences of its unregulation in the development of cancer. The roles of some of the cell membrane receptors involved in the activation of this pathway, the G-protein Ras, the Raf, MEK and ERK kinases, the phosphatases that regulate these kinases, as well as the downstream transcription factors that become activated, are discussed. The roles of the Ras-Raf-MEK-ERK pathway in the regulation of apoptosis and cell cycle progression are also analyzed. In addition, potential targets for pharmacological intervention in growth factor-responsive cells are evaluated.
Collapse
Affiliation(s)
- C R Weinstein-Oppenheimer
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Brody Building of Medical Sciences 5N98C, Greenville, NC 27858, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
The mitogen-activated protein kinase (MAPK) p38 modulates a variety of cellular functions, including proliferation, differentiation and cell death. However, we report here a novel function for p38, i.e. the regulation of cytotoxic lymphocyte-mediated cytotoxicity. Stimulation of NK cells by either cross-linking of their FcgammaRIII receptors or by binding to NK-sensitive target cells induces the phosphorylation and activation of p38, and also of its upstream regulators MKK3/MKK6. Pharmacologic analyses suggest that Src-family and Syk-family protein tyrosine kinases couple the NK cell surface receptors to p38 activation. The role of p38 in the cytotoxic function of NK cells was tested by treatment of NK cells with the cell-permeable, p38-specific inhibitor SB203580. Interestingly, exposure to the drug reduced both antibody-dependent cellular cytotoxicity and natural cytotoxicity, but maximal inhibitory concentrations resulted in only partial inhibition. Collectively, these results suggest that the p38 MAPK pathway is stimulated during the development of NK cell-mediated cytotoxicity and that efficient killing is influenced by both p38-dependent and p38-independent pathways. More broadly, this study identifies the regulation of cell-mediated killing as a novel role for p38 in cytotoxic lymphocytes.
Collapse
Affiliation(s)
- C C Chini
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester 55905, USA
| | | | | | | | | |
Collapse
|
47
|
Wei S, Gilvary DL, Corliss BC, Sebti S, Sun J, Straus DB, Leibson PJ, Trapani JA, Hamilton AD, Weber MJ, Djeu JY. Direct tumor lysis by NK cells uses a Ras-independent mitogen-activated protein kinase signal pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:3811-9. [PMID: 11034387 DOI: 10.4049/jimmunol.165.7.3811] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Destruction of tumor cells is a key function of lymphocytes, but the molecular processes driving it are unclear. Analysis of signal molecules indicated that mitogen-activated protein kinase (MAPK)/extracellular regulated kinase 2 critically controlled lytic function in human NK cells. We now have evidence to indicate that target ligation triggers a Ras-independent MAPK pathway that is required for lysis of the ligated tumor cell. Target engagement caused NK cells to rapidly activate MAPK within 5 min, and PD098059 effectively blocked both MAPK activation and tumoricidal function in NK cells. Target engagement also rapidly activated Ras, detected as active Ras-GTP bound to GST-Raf-RBD, a GST fusion protein linked to the Raf protein fragment containing the Ras-GTP binding domain. However, Ras inactivation by pharmacological disruption with the farnesyl transferase inhibitor, FTI-277, had no adverse effect on the ability of NK cells to lyse tumor cells or to express MAPK activation upon target conjugation. Notably, MAPK inactivation with PD098059, but not Ras inactivation with FTI-277, could interfere with perforin and granzyme B polarization within NK cells toward the contacted target cell. Using vaccinia delivery of N17 Ras into NK cells, we demonstrated that IL-2 activated a Ras-dependent MAPK pathway, while target ligation used a Ras-independent MAPK pathway to trigger lysis in NK cells.
Collapse
Affiliation(s)
- S Wei
- H. Lee Moffitt Cancer Center, Department of Biochemistry and Molecular Biology, University of South Florida College of Medicine, Tampa 33612, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gadina M, Sudarshan C, Visconti R, Zhou YJ, Gu H, Neel BG, O'Shea JJ. The Docking Molecule Gab2 Is Induced by Lymphocyte Activation and Is Involved in Signaling by Interleukin-2 and Interleukin-15 but Not Other Common γ Chain-using Cytokines. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61466-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Yamboliev IA, Wiesmann KM, Singer CA, Hedges JC, Gerthoffer WT. Phosphatidylinositol 3-kinases regulate ERK and p38 MAP kinases in canine colonic smooth muscle. Am J Physiol Cell Physiol 2000; 279:C352-60. [PMID: 10913001 DOI: 10.1152/ajpcell.2000.279.2.c352] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In canine colon, M2/M3 muscarinic receptors are coupled to extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinases. We tested the hypothesis that this coupling is mediated by enzymes of the phosphatidylinositol (PI) 3-kinase family. RT-PCR and Western blotting demonstrated expression of two isoforms, PI 3-kinase-alpha and PI 3-kinase-gamma. Muscarinic stimulation of intact muscle strips (10 microM ACh) activated PI 3-kinase-gamma, ERK and p38 MAP kinases, and MAP kinase-activated protein kinase-2, whereas PI 3-kinase-alpha activation was not detected. Wortmannin (25 microM) abolished the activation of PI 3-kinase-gamma, ERK, and p38 MAP kinases. MAP kinase inhibition was a PI 3-kinase-gamma-specific effect, since wortmannin did not inhibit recombinant activated murine ERK2 MAP kinase, protein kinase C, Raf-1, or MAP kinase kinase. In cultured muscle cells, newborn calf serum (3%) activated PI 3-kinase-alpha and PI 3-kinase-gamma isoforms, ERK and p38 MAP kinases, and stimulated chemotactic cell migration. Using wortmannin and LY-294002 to inhibit PI 3-kinase activity and PD-098059 and SB-203580 to inhibit ERK and p38 MAP kinases, we established that these enzymes are functionally important for regulation of chemotactic migration of colonic myocytes.
Collapse
Affiliation(s)
- I A Yamboliev
- Department of Pharmacology, University of Nevada School of Medicine, Reno 89557-0046, USA.
| | | | | | | | | |
Collapse
|
50
|
Baumgartner M, Chaussepied M, Moreau MF, Werling D, Davis WC, Garcia A, Langsley G. Constitutive PI3-K activity is essential for proliferation, but not survival, of Theileria parva-transformed B cells. Cell Microbiol 2000; 2:329-39. [PMID: 11207589 DOI: 10.1046/j.1462-5822.2000.00062.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Theileria is an intracellular parasite that causes lymphoproliferative disorders in cattle, and infection of leucocytes induces a transformed phenotype similar to tumour cells, but the mechanisms by which the parasite induces this phenotype are not understood. Here, we show that infected B lymphocytes display constitutive phosphoinositide 3-kinase (PI3-K) activity, which appears to be necessary for proliferation, but not survival. Importantly, we demonstrate that one mechanism by which PI3-K mediates the proliferation of infected B lymphocytes is through the induction of a granulocyte-monocyte colony-stimulating factor (GM-CSF)-dependent autocrine loop. PI3-K induction of GM-CSF appears to be at the transcriptional level and, consistently, we demonstrate that PI3-K is also involved in the constitutive induction of AP-1 and NF-kappaB, which characterizes Theileria-infected leucocytes. Taken together, our results highlight a novel strategy exploited by the intracellular parasite Theileria to induce continued proliferation of its host leucocyte.
Collapse
Affiliation(s)
- M Baumgartner
- Département d'Immunologie, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|