1
|
Okamoto K, Sako Y. Two Closed Conformations of CRAF Require the 14-3-3 Binding Motifs and Cysteine-Rich Domain to be Intact in Live Cells. J Mol Biol 2023; 435:167989. [PMID: 36736888 DOI: 10.1016/j.jmb.2023.167989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
The protein rapidly accelerated fibrosarcoma (RAF) is a kinase downstream of the membrane protein RAS in the cellular signal transduction system. In the structure of RAF, the N- and C-terminus domains are connected with a flexible linker. The open/close dynamics and dimerization of RAF are thought to regulate its activity, although the details of these conformations are unknown, especially in live cells. In this work, we used alternating laser excitation to measure cytosolic CRAF in live HeLa cells and obtained single-molecule Förster resonance energy transfer (smFRET) distributions of the structural states. We compared the results for wild-type (WT)-CRAF before and after epidermal growth factor (EGF) stimulation, with mutations of the 14-3-3 binding sites and cysteine-rich domain, and an N-terminus truncation. The smFRET distributions of full-length CRAFs were analyzed by global fitting with three beta distributions. Our results suggested that a 14-3-3 dimer bound to two sites on a single CRAF molecule and induced the formation of the autoinhibitory closed conformation. There were two closed conformations, which the majority of WT-CRAF adopted. These two conformations showed different responsiveness to EGF stimulation.
Collapse
Affiliation(s)
- Kenji Okamoto
- Cellular Informatics Laboratory, Cluster for Pioneering Research, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Yasushi Sako
- Cellular Informatics Laboratory, Cluster for Pioneering Research, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
2
|
Dent P. Cell Signaling and Translational Developmental Therapeutics. COMPREHENSIVE PHARMACOLOGY 2022. [PMCID: PMC7538147 DOI: 10.1016/b978-0-12-820472-6.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The relationships between drug pharmacodynamics and subsequent changes in cellular signaling processes are complex. Many in vitro cell signaling studies often use drug concentrations above physiologically safe drug levels achievable in a patient's plasma. Drug companies develop agents to inhibit or modify the activities of specific target enzymes, often without a full consideration that their compounds have additional unknown targets. These two negative sequelae, when published together, become impediments against successful developmental therapeutics and translation because this data distorts our understanding of signaling mechanisms and reduces the probability of successfully translating drug-based concepts from the bench to the bedside. This article will discuss cellular signaling in isolation and as it relates to extant single and combined therapeutic drug interventions. This will lead to a hypothetical series standardized sequential approaches describing a rigorous concept to drug development and clinical translation.
Collapse
|
3
|
Jiang G, Wang H, Huang D, Wu Y, Ding W, Zhou Q, Ding Q, Zhang N, Na R, Xu K. The Clinical Implications and Molecular Mechanism of CX3CL1 Expression in Urothelial Bladder Cancer. Front Oncol 2021; 11:752860. [PMID: 34671562 PMCID: PMC8521074 DOI: 10.3389/fonc.2021.752860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023] Open
Abstract
Background CX3CL1 is a chemokine that may play important roles in cancer immune regulation. Its mechanism in bladder cancer (BCa) is poorly understood. The objective of the current study was to evaluate the association between CX3CL1 and BCa and the related biological mechanisms. Methods A total of 277 patients with BCa were enrolled in the present study. The association between CX3CL1 expression and disease outcome was evaluated. In vitro and in vivo experiments were performed using the TCCSUP cell line to investigate the function of CX3CL1 in BCa. Results Compared with low expression, high expression of CX3CL1 was significantly associated with poorer progression-free survival (hazard ratio [HR]=2.03, 95% confidence interval [95% CI]: 1.26-3.27, P=0.006), cancer-specific survival (HR=2.16, 95% CI: 1.59-2.93, P<0.001), and overall survival (HR=1.55, 95% CI: 1.08-2.24, P=0.039). Multivariable Cox regression analysis suggested that CX3CL1 was an independent prognostic factor for BCa outcomes. In vitro and in vivo experiments indicated that high expression of CX3CL1 was significantly associated with cell proliferation (P<0.001) and invasion (P<0.001). Gene expression profiling results showed that after CX3CL1 knockdown, CDH1 was significantly upregulated, while ETS1, RAF1, and EIF4E were significantly downregulated. Pathway enrichment analysis suggested that the ERK/MAPK signaling pathway was significantly inhibited (P<0.001). Conclusions CX3CL1 is an independent predictor of a poor prognosis in BCa and can promote the proliferation and invasion of BCa cells.
Collapse
Affiliation(s)
- Guangliang Jiang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Da Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yishuo Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weihong Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qidong Zhou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ning Zhang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Na
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Dent P, Booth L, Roberts JL, Poklepovic A, Cridebring D, Reiman EM. Inhibition of heat shock proteins increases autophagosome formation, and reduces the expression of APP, Tau, SOD1 G93A and TDP-43. Aging (Albany NY) 2021; 13:17097-17117. [PMID: 34252884 PMCID: PMC8312464 DOI: 10.18632/aging.203297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022]
Abstract
Aberrant expression and denaturation of Tau, amyloid-beta and TDP-43 can lead to cell death and is a major component of pathologies such as Alzheimer’s Disease (AD). AD neurons exhibit a reduced ability to form autophagosomes and degrade proteins via autophagy. Using genetically manipulated colon cancer cells we determined whether drugs that directly inhibit the chaperone ATPase activity or cause chaperone degradation and endoplasmic reticulum stress signaling leading to macroautophagy could reduce the levels of these proteins. The antiviral chaperone ATPase inhibitor AR12 reduced the ATPase activities and total expression of GRP78, HSP90, and HSP70, and of Tau, Tau 301L, APP, APP692, APP715, SOD1 G93A and TDP-43. In parallel, it increased the phosphorylation of ATG13 S318 and eIF2A S51 and caused eIF2A-dependent autophagosome formation and autophagic flux. Knock down of Beclin1 or ATG5 prevented chaperone, APP and Tau degradation. Neratinib, used to treat HER2+ breast cancer, reduced chaperone levels and expression of Tau and APP via macroautophagy, and neratinib interacted with AR12 to cause further reductions in protein levels. The autophagy-regulatory protein ATG16L1 is expressed as two isoforms, T300 or A300: Africans trend to express T300 and Europeans A300. We observed higher basal expression of Tau in T300 cells when compared to isogenic A300 cells. ATG16L1 isoform expression did not alter basal levels of HSP90, HSP70 or HSP27, however, basal levels of GRP78 were reduced in A300 cells. The abilities of both AR12 and neratinib to stimulate ATG13 S318 and eIF2A S51 phosphorylation and autophagic flux was also reduced in A300 cells. Our data support further evaluation of AR12 and neratinib in neuronal cells as repurposed treatments for AD.
Collapse
Affiliation(s)
- Paul Dent
- Department of Biochemistry and Molecular Biology, Richmond, VA 23298, USA
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Richmond, VA 23298, USA
| | - Jane L Roberts
- Department of Pharmacology and Toxicology, Richmond, VA 23298, USA
| | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Derek Cridebring
- Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, USA
| | - Eric M Reiman
- Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, USA.,Banner Alzheimer's Institute, Phoenix, AZ 85006, USA
| |
Collapse
|
5
|
Degirmenci U, Wang M, Hu J. Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Cells 2020; 9:E198. [PMID: 31941155 PMCID: PMC7017232 DOI: 10.3390/cells9010198] [Citation(s) in RCA: 367] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/29/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
The RAS/RAF/MEK/ERK (MAPK) signaling cascade is essential for cell inter- and intra-cellular communication, which regulates fundamental cell functions such as growth, survival, and differentiation. The MAPK pathway also integrates signals from complex intracellular networks in performing cellular functions. Despite the initial discovery of the core elements of the MAPK pathways nearly four decades ago, additional findings continue to make a thorough understanding of the molecular mechanisms involved in the regulation of this pathway challenging. Considerable effort has been focused on the regulation of RAF, especially after the discovery of drug resistance and paradoxical activation upon inhibitor binding to the kinase. RAF activity is regulated by phosphorylation and conformation-dependent regulation, including auto-inhibition and dimerization. In this review, we summarize the recent major findings in the study of the RAS/RAF/MEK/ERK signaling cascade, particularly with respect to the impact on clinical cancer therapy.
Collapse
Affiliation(s)
- Ufuk Degirmenci
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Mei Wang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiancheng Hu
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
6
|
The HDAC inhibitor AR42 interacts with pazopanib to kill trametinib/dabrafenib-resistant melanoma cells in vitro and in vivo. Oncotarget 2017; 8:16367-16386. [PMID: 28146421 PMCID: PMC5369969 DOI: 10.18632/oncotarget.14829] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/19/2017] [Indexed: 12/11/2022] Open
Abstract
Studies focused on the killing of activated B-RAF melanoma cells by the histone deacetylase (HDAC) inhibitor AR42. Compared to other tumor cell lines, PDX melanoma isolates were significantly more sensitive to AR42-induced killing. AR42 and the multi-kinase inhibitor pazopanib interacted to activate: an eIF2α–Beclin1 pathway causing autophagosome formation; an eIF2α–DR4/DR5/CD95 pathway; and an eIF2α-dependent reduction in the expression of c-FLIP-s, MCL-1 and BCL-XL. AR42 did not alter basal chaperone activity but increased the ability of pazopanib to inhibit HSP90, HSP70 and GRP78. AR42 and pazopanib caused HSP90/HSP70 dissociation from RAF-1 and B-RAF that resulted in reduced ‘RAF’ expression. The drug combination activated a DNA-damage-ATM-AMPK pathway that was associated with: NFκB activation; reduced mTOR S2448 and ULK-1 S757 phosphorylation; and increased ULK-1 S317 and ATG13 S318 phosphorylation. Knock down of PERK, eIF2α, Beclin1, ATG5 or AMPKα, or expression of IκB S32A S36A, ca-mTOR or TRX, reduced cell killing. AR42, via lysosomal degradation, reduced the protein expression of HDACs 2/5/6/10/11. In vivo, a 3-day exposure of dabrafenib/trametinib resistant melanoma cells to the AR42 pazopanib combination reduced tumor growth and enhanced survival from ∼25 to ∼40 days. Tumor cells that had adapted through therapy exhibited elevated HGF expression and the c-MET inhibitor crizotinib enhanced AR42 pazopanib lethality in this evolved drug-resistant population.
Collapse
|
7
|
Abstract
RAF family kinases were among the first oncoproteins to be described more than 30 years ago. They primarily act as signalling relays downstream of RAS, and their close ties to cancer have fuelled a large number of studies. However, we still lack a systems-level understanding of their regulation and mode of action. The recent discovery that the catalytic activity of RAF depends on an allosteric mechanism driven by kinase domain dimerization is providing a vital new piece of information towards a comprehensive model of RAF function. The fact that current RAF inhibitors unexpectedly induce ERK signalling by stimulating RAF dimerization also calls for a deeper structural characterization of this family of kinases.
Collapse
|
8
|
Activation of RAF1 (c-RAF) by the Marine Alkaloid Lasonolide A Induces Rapid Premature Chromosome Condensation. Mar Drugs 2015; 13:3625-39. [PMID: 26058013 PMCID: PMC4483648 DOI: 10.3390/md13063625] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 01/12/2023] Open
Abstract
Lasonolide A (LSA), a potent antitumor polyketide from the marine sponge, Forcepia sp., induces rapid and reversible protein hyperphosphorylation and premature chromosome condensation (PCC) at nanomolar concentrations independent of cyclin-dependent kinases. To identify cellular targets of LSA, we screened 2951 shRNAs targeting a pool of human kinases and phosphatases (1140 RefSeqs) to identify genes that modulate PCC in response to LSA. This led to the identification of RAF1 (C-RAF) as a mediator of LSA-induced PCC, as shRNAs against RAF1 conferred resistance to LSA. We found that LSA induced RAF1 phosphorylation on Serine 338 within minutes in human colorectal carcinoma HCT-116, ovarian carcinoma OVCAR-8, and Burkitt’s lymphoma CA46 cell lines. RAF1 depletion by siRNAs attenuated LSA-induced PCC in HCT-116 and OVCAR-8 cells. Furthermore, mouse embryonic fibroblasts (MEF) with homozygous deletion in Raf1, but not deletion in the related kinase Braf, were resistant to LSA-induced PCC. Complementation of Raf1−/− MEFs with wild-type human RAF1, but not with kinase-dead RAF1 mutant, restored LSA-induced PCC. Finally, the Raf inhibitor sorafenib, but not the MEK inhibitor AZD6244, effectively suppressed LSA-induced PCC. Our findings implicate a previously unknown, MAPK-independent role of RAF1 in chromatin condensation and potent activation of this pathway by LSA.
Collapse
|
9
|
Yu L, Daniels JP, Wu H, Wolf MJ. Cardiac hypertrophy induced by active Raf depends on Yorkie-mediated transcription. Sci Signal 2015; 8:ra13. [PMID: 25650441 DOI: 10.1126/scisignal.2005719] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Organ hypertrophy can result from enlargement of individual cells or from cell proliferation or both. Activating mutations in the serine-threonine kinase Raf cause cardiac hypertrophy and contribute to Noonan syndrome in humans. Cardiac-specific expression of activated Raf also causes hypertrophy in Drosophila melanogaster. We found that Yorkie (Yki), a transcriptional coactivator in the Hippo pathway that regulates organ size, is required for Raf-induced cardiac hypertrophy in flies. Although aberrant activation of Yki orthologs stimulates cardiac hyperplasia in mice, cardiac-specific expression of an activated mutant form of Yki in fruit flies caused cardiac hypertrophy without hyperplasia. Knockdown of Yki caused cardiac dilation without loss of cardiomyocytes and prevented Raf-induced cardiac hypertrophy. In flies, Yki-induced cardiac hypertrophy required the TEA domain-containing transcription factor Scalloped, and, in mammalian cells, expression of mouse Raf(L613V), an activated form of Raf with a Noonan syndrome mutation, increased Yki-induced Scalloped activity. Furthermore, overexpression of Tgi (a Tondu domain-containing Scalloped-binding corepressor) in the fly heart abrogated Yki- or Raf-induced cardiac hypertrophy. Thus, crosstalk between Raf and Yki occurs in the heart and can influence Raf-mediated cardiac hypertrophy.
Collapse
Affiliation(s)
- Lin Yu
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Joseph P Daniels
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Huihui Wu
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Matthew J Wolf
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
10
|
Lee HJ, Kim JM, Kim KH, Heo JI, Kwak SJ, Han JA. Genotoxic stress/p53-induced DNAJB9 inhibits the pro-apoptotic function of p53. Cell Death Differ 2014; 22:86-95. [PMID: 25146923 DOI: 10.1038/cdd.2014.116] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 06/11/2014] [Accepted: 07/08/2014] [Indexed: 02/07/2023] Open
Abstract
DNAJB9 is a recently isolated member of the molecular chaperone gene family, whose precise function is largely unknown. In the present study, we have identified DNAJB9 as an inducible gene of the tumor suppressor p53. DNAJB9 expression was induced by p53 or genotoxic stress in a p53-dependent manner, which was mediated by the Ras/Raf/ERK pathway. In addition, depletion of DNAJB9 by using siRNAs greatly increased genotoxic stress/p53-induced apoptosis, suggesting that DNAJB9 inhibits the pro-apoptotic function of p53. We also found that DNAJB9 physically interacts with p53 through its J domain, through which it inhibits the pro-apoptotic function of p53. Moreover, DNAJB9 colocalized with p53 in both cytoplasm and nucleus under genotoxic conditions. Together, these results demonstrate that DNAJB9 is a downstream target of p53 that belongs to the group of negative feedback regulators of p53.
Collapse
Affiliation(s)
- H J Lee
- Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - J M Kim
- Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - K H Kim
- Institute for Systems Biology, Seattle, WA, USA
| | - J I Heo
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, South Korea
| | - S J Kwak
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan, South Korea
| | - J A Han
- Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
11
|
Romano D, Nguyen LK, Matallanas D, Halasz M, Doherty C, Kholodenko BN, Kolch W. Protein interaction switches coordinate Raf-1 and MST2/Hippo signalling. Nat Cell Biol 2014; 16:673-84. [DOI: 10.1038/ncb2986] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/08/2014] [Indexed: 12/19/2022]
|
12
|
WANG XUENING, STUDZINSKI GEORGEP. Oncoprotein Cot1 represses kinase suppressors of Ras1/2 and 1,25-dihydroxyvitamin D3-induced differentiation of human acute myeloid leukemia cells. J Cell Physiol 2011; 226:1232-40. [PMID: 20945381 PMCID: PMC3440184 DOI: 10.1002/jcp.22449] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Metabolites and derivatives of vitamin D are well-known inducers of monocytic differentiation, but the mechanistic basis for their action is not fully elucidated. Here we show that the product of protooncogene Cot1 represses the monocytic phenotype in human acute myeloid leukemia (AML) cells induced to differentiate by 1,25-dihydroxyvitamin D(3) (1,25D), even though the expression of cellular Cot1 increases early in the process of 1,25D-induced differentiation. Interestingly, the expression of the two members of the Kinase Suppressor of Ras (KSR) family of molecular scaffolds, known to be positive regulators of Ras signaling and of 1,25D-induced differentiation, increases in parallel with Cot1 in 1,25D-treated cells. However, KSR1/2 are negatively regulated by Cot1, as determined by transfection of siCot1, and confirmed by a reverse effect of ectopic expression of Cot1. The effect of Cot1 in AML cells appears to be cell-type specific, as previous reports in other cell types found KSR-2 to be a negative regulator of Cot1, a reverse relationship. Also in contrast to findings in other cells, in AML cells Cot1 exerts negative control on the MAP kinase pathways, since siCot1 increases the levels of activated Raf1, p90RSK, JNK1, c-jun, and p38, though not of MEK/ERK. These findings have implications for therapy of AML, since in AML cells active MAPKs hasten cell differentiation, and specific pharmacological inhibitors of Cot1 kinase activity have recently became available, thus making Cot1 a "druggable" target.
Collapse
Affiliation(s)
- XUENING WANG
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, New Jersey
| | - GEORGE P. STUDZINSKI
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
13
|
Halaban R, Zhang W, Bacchiocchi A, Cheng E, Parisi F, Ariyan S, Krauthammer M, McCusker JP, Kluger Y, Sznol M. PLX4032, a selective BRAF(V600E) kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAF melanoma cells. Pigment Cell Melanoma Res 2010; 23:190-200. [PMID: 20149136 PMCID: PMC2848976 DOI: 10.1111/j.1755-148x.2010.00685.x] [Citation(s) in RCA: 271] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BRAFV600E/K is a frequent mutationally active tumor-specific kinase in melanomas that is currently targeted for therapy by the specific inhibitor PLX4032. Our studies with melanoma tumor cells that are BRAFV600E/K and BRAFWT showed that, paradoxically, while PLX4032 inhibited ERK1/2 in the highly sensitive BRAFV600E/K, it activated the pathway in the resistant BRAFWT cells, via RAF1 activation, regardless of the status of mutations in NRAS or PTEN. The persistently active ERK1/2 triggered downstream effectors in BRAFWT melanoma cells and induced changes in the expression of a wide-spectrum of genes associated with cell cycle control. Furthermore, PLX4032 increased the rate of proliferation of growth factor-dependent NRAS Q61L mutant primary melanoma cells, reduced cell adherence and increased mobility of cells from advanced lesions. The results suggest that the drug can confer an advantage to BRAFWT primary and metastatic tumor cells in vivo and provide markers for monitoring clinical responses.
Collapse
Affiliation(s)
- Ruth Halaban
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fecher LA, Amaravadi RK, Schuchter LM, Flaherty KT. Drug targeting of oncogenic pathways in melanoma. Hematol Oncol Clin North Am 2009; 23:599-618, x. [PMID: 19464605 DOI: 10.1016/j.hoc.2009.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Melanoma continues to be one of the most aggressive and morbid malignancies once metastatic. Overall survival for advanced unresectable melanoma has not changed over the past several decades. However, the presence of some long-term survivors of metastatic melanoma highlights the heterogeneity of this disease and the potential for improved outcomes. Current research is uncovering the molecular and genetic scaffolding of normal and aberrant cell function. The known oncogenic pathways in melanoma and the attempts to develop therapy for them are discussed. The targeting of certain cellular processes, downstream of the common genetic alterations, for which the issues of target and drug validation are somewhat distinct, are also highlighted.
Collapse
Affiliation(s)
- Leslie A Fecher
- Department of Medicine, Division of Hematology and Oncology, Abramson Cancer Center, University of Pennsylvania, 3400 Spruce Street, 16 Penn Tower, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
15
|
Burks PJ, Isaacs HV, Pownall ME. FGF signalling modulates transcriptional repression by Xenopus groucho-related-4. Biol Cell 2009; 101:301-8. [PMID: 18983265 DOI: 10.1042/bc20080136] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
BACKGROUND INFORMATION Developmental cell signals co-operate in the processes of cell specification and tissue patterning during embryogenesis. Interactions between the FGF (fibroblast growth factor) and Wnt signalling pathways have been demonstrated in a number of developmental processes, including mesoderm formation in amphibian embryos. However, the mechanism underlying the interactions between these key signalling pathways remains unclear. RESULTS In the present study, we find that the ability of TLE4/Xgrg4 (transducin-like enhancer of split 4/Xenopus groucho-related gene 4) to inhibit a transcriptional target of canonical Wnt signalling is reduced in the presence of FGF and that this is partially dependent on a consensus site for MAPK (mitogen-activated protein kinase) phosphorylation in TLE4/Xgrg4. CONCLUSIONS These data suggest to us a novel molecular mechanism where FGF and Wnt signalling pathways interact at the level of the co-repressor TLE4/Xgrg4: the weakening of TLE4/Xgrg4 repression by FGF signalling, combined with the stabilization of beta-catenin by Wnt signals, enhances expression of Wnt target genes.
Collapse
|
16
|
Abstract
Epitope tagging is a method of expressing proteins whereby an epitope for a specific monoclonal antibody is fused to a target protein using recombinant DNA techniques. The fusion gene is cloned into an appropriate expression vector for the experimental cell type and host cells are transfected. The fusion protein can then be detected and/or purified using a monoclonal antibody specific for the epitope tag. This unit presents protocols for detection and purification of proteins tagged with a particular epitope, the FLAG tag, although the same general approach can be applied to other epitope tags. The protocols in this unit employ the anti-FLAG M2 antibody to detect and purify FLAG-tagged proteins. The methods presented are immunoprecipitation of FLAG fusion proteins from cells using an anti-FLAG M2 affinity gel, detection of FLAG fusion proteins by western blotting, and purification of FLAG fusion proteins by anti-FLAG M2 affinity chromatography.
Collapse
Affiliation(s)
- B Brizzard
- Eastman Kodak Company, New Haven, Connecticut, USA
| | | |
Collapse
|
17
|
Approaches for monitoring signal transduction changes in normal and cancer cells. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008. [PMID: 18217691 DOI: 10.1007/978-1-59745-335-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
This chapter will describe methods to assess the activities of protein kinases. Initial studies in the 1950s and 1960s in the field of glucose metabolism examined the activities of several highly specific protein and carbohydrate kinases in cell lysates or isolated cell fractions. As more protein kinases were discovered in the 1980s and 1990s, coupled with the development of immunoprecipitating antibodies, in vitro kinase assays of isolated kinase proteins using gamma-32P ATP became a standard procedure. In the 1990s, antibodies were developed that recognize specific sites of regulatory phosphorylation on a variety of protein kinases (phospho-specific antibodies), which have been used to assess kinase activity indirectly through immunoblotting. In this chapter, Methodologies to perform immune complex protein kinase assays and immunoblotting using phospho-specific antibodies against regulatory sites of phosphorylation in protein kinases will be described. The strengths and weaknesses of each approach in determining protein kinase activity will also be discussed.
Collapse
|
18
|
Keenan ID, Sharrard RM, Isaacs HV. FGF signal transduction and the regulation of Cdx gene expression. Dev Biol 2006; 299:478-88. [PMID: 16982047 DOI: 10.1016/j.ydbio.2006.08.040] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 08/07/2006] [Accepted: 08/21/2006] [Indexed: 10/24/2022]
Abstract
Cdx homeodomain transcription factors play important roles in the development of the vertebrate body axis and gut epithelium. Signaling involving FGF, wnt and retinoic acid ligands has been implicated in the regulation of individual Cdx genes. In this study we examine the requirement for FGF-dependent signal transduction pathways in the regulation of Cdx gene expression. In the amphibian Xenopus laevis the earliest expression of Cdx1, Cdx2 and Cdx4 is within the developing mesoderm. We show that a functional FGF signaling pathway is required for the normal expression of all three amphibian Cdx genes during gastrula stages. We show that FGF stimulation activates signaling through both the MAP kinase pathway and the PI-3 kinase pathway in Xenopus tissue explants. However, our analysis of these pathways in gastrula stage embryos indicates that the MAP kinase pathway is required for Cdx gene expression, whereas the PI-3 kinase pathway is not. We show that FGF and wnt signaling can interact in the regulation of Cdx genes and during gastrula stages the normal expression of the Cdx genes requires the activity of both pathways. Furthermore, we show that wnt mediated Cdx regulation is independent of the MAP kinase pathway.
Collapse
Affiliation(s)
- Iain D Keenan
- Department of Biology, University of York, York, YO10 5YW, UK
| | | | | |
Collapse
|
19
|
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathway is activated in response to a variety of extracellular stimuli such as growth factor stimulation. The best-characterized MAPK pathway involves the sequential activation of Raf, MEK and ERK proteins, capable of regulating the gene expression required for cell proliferation. Binding to specific lipids can regulate both the subcellular localization of these MAPK signaling proteins as well as their kinase activities. More recently it has become increasingly clear that the majority of MAPK signaling takes place intracellularly on endosomes and that the perturbation of endocytic pathways has dramatic effects on the MAPK pathway. This review highlights the direct effects of lipids on the localization and regulation of MAPK pathway proteins. In addition, the indirect effects lipids have on MAPK signaling via their regulation of endocytosis and the biophysical properties of different membrane lipids as a result of growth factor stimulation are discussed. The ability of a protein to bind to both lipids and proteins at the same time may act like a "ZIP code" to target that protein to a highly specific microlocation and could also allow a protein to be "handed off" to maintain tight control over its binding partners and location.
Collapse
Affiliation(s)
- Deborah H Anderson
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, 20 Campus Drive, Saskatoon, Sask., Canada S7N 4H4.
| |
Collapse
|
20
|
Gloeckner CJ, Kinkl N, Schumacher A, Braun RJ, O'Neill E, Meitinger T, Kolch W, Prokisch H, Ueffing M. The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet 2005; 15:223-32. [PMID: 16321986 DOI: 10.1093/hmg/ddi439] [Citation(s) in RCA: 387] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) have been recently identified in families with autosomal dominant late-onset Parkinson disease (PD). The LRRK2 protein consists of multiple domains and belongs to the Roco family, a novel group of the Ras/GTPase superfamily. Besides the GTPase (Roc) domain, it contains a predicted kinase domain, with homology to MAP kinase kinase kinases. Using cell fractionation and immunofluorescence microscopy, we show that LRRK2 is localized in the cytoplasm and is associated with cellular membrane structures. The purified LRRK2 protein demonstrates autokinase activity. The disease-associated I2020T mutant shows a significant increase in autophosphorylation of approximately 40% in comparison to wild-type protein in vitro. This suggests that the pathology of PD caused by the I2020T mutation is associated with an increase rather than a loss in LRRK2 kinase activity.
Collapse
Affiliation(s)
- Christian Johannes Gloeckner
- GSF-National Research Center for Environment and Health, Institute of Human Genetics, Munich-Neuherberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chen C, Sytkowski AJ. Apoptosis-linked gene-2 connects the Raf-1 and ASK1 signalings. Biochem Biophys Res Commun 2005; 333:51-7. [PMID: 15925322 DOI: 10.1016/j.bbrc.2005.05.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 05/10/2005] [Indexed: 11/17/2022]
Abstract
Raf-1 plays important roles in cell proliferation, differentiation, and survival. However, the unique and essential function of Raf-1 is anti-apoptotic. The molecules that mediate Raf-1's anti-apoptotic function are not known. In the course of identifying new substrates of Raf-1, we found that the Raf-1 kinase domain interacted with apoptosis-linked gene-2 (ALG-2) in yeast two-hybrid system. Our further studies showed that Raf-1 phosphorylated ALG-2 in an in vitro kinase assay. We also found that apoptosis signal-regulating kinase 1 (ASK1) strongly phosphorylated ALG-2. Importantly, Raf-1 blocks the ASK1-dependent ALG-2 phosphorylation. Since ALG-2 associates with ASK1, and both ASK1 and ALG-2 are involved in apoptosis, our observations indicate that Raf-1 may mediate its anti-apoptotic function by interrupting ASK1-dependent phosphorylation of ALG-2.
Collapse
Affiliation(s)
- Changmin Chen
- Laboratory for Cell and Molecular Biology, Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, USA.
| | | |
Collapse
|
22
|
Carón RW, Yacoub A, Li M, Zhu X, Mitchell C, Hong Y, Hawkins W, Sasazuki T, Shirasawa S, Kozikowski AP, Dennis PA, Hagan MP, Grant S, Dent P. Activated forms of H-RAS and K-RAS differentially regulate membrane association of PI3K, PDK-1, and AKT and the effect of therapeutic kinase inhibitors on cell survival. Mol Cancer Ther 2005. [DOI: 10.1158/1535-7163.257.4.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The abilities of mutated active RAS proteins to modulate cell survival following exposure to ionizing radiation and small molecule kinase inhibitors were examined. Homologous recombination in HCT116 cells to delete the single allele of K-RAS D13 resulted in a cell line that exhibited an ∼75% reduction in basal extracellular signal-regulated kinase 1/2, AKT, and c-jun-NH2-kinase 1/2 activity. Transfection of cells lacking K-RAS D13 with H-RAS V12 restored extracellular signal-regulated kinase 1/2 and AKT activity to basal levels but did not restore c-jun-NH2-kinase 1/2 phosphorylation. In cells expressing H-RAS V12, radiation caused prolonged intense activation of AKT. Inhibition of H-RAS V12 function, blockade of phosphatidylinositol 3-kinase (PI3K) function using small interfering RNA/small-molecule inhibitors, or expression of dominant-negative AKT abolished radiation-induced AKT activation, and radiosensitized these cells. Inhibition of PI3K function did not significantly radiosensitize parental HCT116 cells. Inhibitors of the AKT PH domain including perifosine, SH-(5, 23-25) and ml-(14-16) reduced the plating efficiency of H-RAS V12 cells in a dose-dependent fashion. Inhibition of AKT function using perifosine enhanced radiosensitivity in H-RAS V12 cells, whereas the SH and ml series of AKT PH domain inhibitors failed to promote radiation toxicity. In HCT116 H-RAS V12 cells, PI3K, PDK-1, and AKT were membrane associated, whereas in parental cells expressing K-RAS D13, only PDK-1 was membrane bound. In H-RAS V12 cells, membrane associated PDK-1 was phosphorylated at Y373/376, which was abolished by the Src family kinase inhibitor PP2. Inhibition of PDK-1 function using the PH domain inhibitor OSU-03012 or using PP2 reduced the plating efficiency of H-RAS V12 cells and profoundly increased radiosensitivity. OSU-03012 and PP2 did not radiosensitize and had modest inhibitory effects on plating efficiency in parental cells. A small interfering RNA generated against PDK1 also radiosensitized HCT116 cells expressing H-RAS V12. Collectively, our data argue that molecular inhibition of AKT and PDK-1 signaling enhances the radiosensitivity of HCT116 cells expressing H-RAS V12 but not K-RAS D13. Small-molecule inhibitory agents that blocked stimulated and/or basal PDK-1 and AKT function profoundly reduced HCT116 cell survival but had variable effects at enhancing tumor cell radiosensitivity.
Collapse
Affiliation(s)
- Rubén W. Carón
- 1Radiation Oncology and Departments of
- 6Instituto de Medicina y Biología Experimental de Cuyo-CONICET, Mendoza, Argentina
| | | | - Min Li
- 5Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois; and
| | | | | | | | | | - Takehiko Sasazuki
- 3Department of Pathology, International Medical Center of Japan, Tokyo, Japan
| | - Senji Shirasawa
- 3Department of Pathology, International Medical Center of Japan, Tokyo, Japan
| | - Alan P. Kozikowski
- 5Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois; and
| | | | | | - Steven Grant
- 2Hematology/Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Paul Dent
- 1Radiation Oncology and Departments of
| |
Collapse
|
23
|
Carón RW, Yacoub A, Zhu X, Mitchell C, Han SI, Sasazuki T, Shirasawa S, Hagan MP, Grant S, Dent P. H-RAS V12–induced radioresistance in HCT116 colon carcinoma cells is heregulin dependent. Mol Cancer Ther 2005. [DOI: 10.1158/1535-7163.243.4.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The abilities of mutated active K-RAS and H-RAS proteins, in an isogenic human carcinoma cell system, to modulate the activity of signaling pathways following exposure to ionizing radiation is unknown. Loss of K-RAS D13 expression in HCT116 colorectal carcinoma cells blunted basal extracellular signal-regulated kinase 1/2 (ERK1/2), AKT, and c-Jun NH2-terminal kinase 1/2 activity. Deletion of the allele to express K-RAS D13 also enhanced expression of ERBB1, ERBB3, and heregulin but nearly abolished radiation-induced activation of all signaling pathways. Expression of H-RAS V12 in HCT116 cells lacking an activated RAS molecule (H-RAS V12 cells) restored basal ERK1/2 and AKT activity to that observed in parental cells but did not restore or alter basal c-jun NH2-terminal kinase 1/2 activity. In parental cells, radiation caused stronger ERK1/2 pathway activation compared with that of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, which correlated with constitutive translocation of Raf-1 into the plasma membrane of parental cells. Inhibition of mitogen-activated protein kinase/ERK1/2, but not PI3K, radiosensitized parental cells. In H-RAS V12 cells, radiation caused stronger PI3K/AKT pathway activation compared with that of the ERK1/2 pathway, which correlated with H-RAS V12–dependent translocation of PI3K into the plasma membrane. Inhibition of PI3K, but not mitogen-activated protein kinase/ERK1/2, radiosensitized H-RAS V12 cells. Radiation-induced activation of the PI3K/AKT pathway in H-RAS V12 cells 2 to 24 hours after exposure was dependent on heregulin-stimulated ERBB3 association with membrane-localized PI3K. Neutralization of heregulin function abolished radiation-induced AKT activation and reverted the radiosensitivity of H-RAS V12 cells to those levels found in cells lacking expression of any active RAS protein. These findings show that H-RAS V12 and K-RAS D13 differentially regulate radiation-induced signaling pathway function. In HCT116 cells expressing H-RAS V12, PI3K-dependent radioresistance is mediated by both H-RAS-dependent translocation of PI3K into the plasma membrane and heregulin-induced activation of membrane-localized PI3K via ERBB3.
Collapse
Affiliation(s)
- Rubén W. Carón
- 1Radiation Oncology and Departments of
- 4Instituto de Medicina y Biología Experimental de Cuyo-CONICET, Mendoza, Argentina
| | | | | | | | | | - Takehiko Sasazuki
- 3Department of Pathology, International Medical Center of Japan, Tokyo, Japan; and
| | - Senji Shirasawa
- 3Department of Pathology, International Medical Center of Japan, Tokyo, Japan; and
| | | | - Steven Grant
- 2Hematology/Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Paul Dent
- 1Radiation Oncology and Departments of
| |
Collapse
|
24
|
Mahon ES, Hawrysh AD, Chagpar RB, Johnson LM, Anderson DH. A-Raf associates with and regulates platelet-derived growth factor receptor signalling. Cell Signal 2004; 17:857-68. [PMID: 15763428 DOI: 10.1016/j.cellsig.2004.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 11/03/2004] [Accepted: 11/03/2004] [Indexed: 11/25/2022]
Abstract
Raf kinases are important intermediates in epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) mediated activation of the mitogen-activated protein kinase (MAPK) pathway. In this report, we show that the A-Raf kinase is associated with activated EGF receptor complexes and with PDGF receptor (PDGFR) complexes independent of prior PDGF treatment. The ability of A-Raf to associate with receptor tyrosine kinases could provide a Ras-GTP-independent mechanism for the membrane localization of A-Raf. Expression of a partially activated A-Raf mutant resulted in decreased tyrosine phosphorylation of the PDGFR, specifically on Y857 (autophosphorylation site) and Y1021 (phospholipase Cgamma1 (PLCgamma1) binding site), but not the binding sites for other signalling proteins (Nck, phosphatidylinositol 3'-kinase (PI3K), RasGAP, Grb2, SHP). Activated A-Raf expression also altered the activation of PLCgamma1, and p85-associated PI3K. Thus, A-Raf can regulate PLCgamma1 signalling via a PDGFR-dependent mechanism and may also regulate PI3K signalling via a PDGFR-independent mechanism.
Collapse
Affiliation(s)
- Elizabeth S Mahon
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Ave., Saskatoon, Saskatchewan, Canada S7N 5E5
| | | | | | | | | |
Collapse
|
25
|
Abstract
Stimulation of the erythropoietin (EPO) receptor triggers a cascade of signaling events. We reported that EPO upregulates c-myc expression through 2 pathways in BaF3-EpoR cells--a phosphatidylinositol 3-kinase (PI3K) pathway operating on transcriptional initiation and a Raf-1-mitogen-activated protein kinase (MAPK) pathway affecting elongation. We now show that EPO induces phosphorylation of Raf-1 at serine 338 and within the carboxy-terminal domain, resulting in an electrophoretic mobility change (hyperphosphorylation). Importantly, MEK 1 inhibitor PD98059 blocked only the hyperphosphorylation of Raf-1 but not the phosphorylation at serine 338. This inhibition of Raf-1 hyperphosphorylation resulted in increased kinase activity of Raf-1 and increased phosphorylation of MEK, suggesting that the hyperphosphorylation of Raf-1 inhibits its MEK kinase activity. Deletion of the first 184 amino acids of Raf-1, which are involved in its interaction with Ras, had no effect on EPO-induced phosphorylation. Introducing the dominant-negative N17Ras or GAP had no effect on EPO-induced kinase activity of Raf-1 and ELK activation. N17Ras failed to inhibit ELK activation in another cell line-Rauscher murine erythroleukemia- which expresses the EPO receptor endogenously and differentiates in response to the hormone. These results indicate the presence of a Ras-independent mechanism for Raf-1 and MEK activation in these cells.
Collapse
Affiliation(s)
- Changmin Chen
- Laboratory for Cell and Molecular Biology, Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
26
|
Monoclonal and Bispecific Antibodies in Combination with Radiotherapy for Cancer Treatment. Antibodies (Basel) 2004. [DOI: 10.1007/978-1-4419-8877-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
27
|
Kawakami A, Tanaka A, Chiba T, Nakajima K, Shimokado K, Yoshida M. Remnant Lipoprotein-Induced Smooth Muscle Cell Proliferation Involves Epidermal Growth Factor Receptor Transactivation. Circulation 2003; 108:2679-88. [PMID: 14623816 DOI: 10.1161/01.cir.0000093278.75565.87] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Remnant lipoproteins (RLPs) have been shown to play a causative role during atherosclerosis. Furthermore, it is known that vascular smooth muscle cell (SMC) proliferation is crucial for the development of atherosclerosis and restenosis after percutaneous coronary intervention. We examined the direct effect of RLPs on the proliferation and signal transduction of SMCs.
Methods and Results—
Incubation in the presence of RLPs (20 mg cholesterol per dL) for 48 hours induced rat aortic SMC proliferation (2.3-fold over medium alone). RLPs also induced the phosphorylation of epidermal growth factor (EGF) receptor in SMCs, which was followed by the activation of mitogen-activated protein kinases. Moreover, the activation of protein kinase C (PKC) as well as the shedding of membrane-bound soluble heparin-binding EGF-like growth factor (HB-EGF) was observed after RLP treatment of SMCs, whereas PKC inhibitors and metalloprotease inhibitors inhibited RLP-induced EGF receptor transactivation and HB-EGF shedding in SMCs. Furthermore, anti-HB-EGF neutralizing antibody inhibited RLP-induced EGF receptor transactivation. Phosphorylation of EGF receptor and HB-EGF shedding were also observed in the aortas of apolipoprotein E–knockout mice but not in those of C57BL6 mice.
Conclusions—
These results suggest that RLPs transactivate EGF receptor via PKC and HB-EGF shedding from SMCs, resulting in SMC proliferation.
Collapse
MESH Headings
- Animals
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Arteriosclerosis/etiology
- Bromodeoxyuridine
- Cell Division/drug effects
- Cells, Cultured
- Cholesterol/isolation & purification
- Cholesterol/pharmacology
- Epidermal Growth Factor/metabolism
- ErbB Receptors/drug effects
- ErbB Receptors/metabolism
- Genes, Dominant
- Heparin-binding EGF-like Growth Factor
- Humans
- Intercellular Signaling Peptides and Proteins
- Lipoproteins/isolation & purification
- Lipoproteins/pharmacology
- Lipoproteins, VLDL/isolation & purification
- Lipoproteins, VLDL/pharmacology
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phosphorylation/drug effects
- Proto-Oncogene Proteins c-raf/biosynthesis
- Proto-Oncogene Proteins c-raf/genetics
- Rats
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
- Transcriptional Activation/drug effects
- Triglycerides/isolation & purification
- Triglycerides/pharmacology
Collapse
Affiliation(s)
- Akio Kawakami
- Department of Medical Biochemistry, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Building D-256, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Kietzmann T, Samoylenko A, Immenschuh S. Transcriptional regulation of heme oxygenase-1 gene expression by MAP kinases of the JNK and p38 pathways in primary cultures of rat hepatocytes. J Biol Chem 2003; 278:17927-36. [PMID: 12637567 DOI: 10.1074/jbc.m203929200] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heme oxygenase-1 (HO-1) gene expression is induced by various oxidative stress stimuli including sodium arsenite. Since mitogen-activated protein kinases (MAPKs) are involved in stress signaling we investigated the role of arsenite and MAPKs for HO-1 gene regulation in primary rat hepatocytes. The Jun N-terminal kinase (JNK) inhibitor SP600125 decreased sodium arsenite-mediated induction of HO-1 mRNA expression. HO-1 protein and luciferase activity of reporter gene constructs with -754 bp of the HO-1 promoter were induced by overexpression of kinases of the JNK pathway and MKK3. By contrast, overexpression of Raf-1 and ERK2 did not affect expression whereas overexpression of p38alpha, beta, and delta decreased and p38gamma increased HO-1 expression. Electrophoretic mobility shift assays (EMSA) revealed that a CRE/AP-1 element (-668/-654) bound c-Jun, a target of the JNK pathway. Deletion or mutation of the CRE/AP-1 obliterated the JNK- and c-Jun-dependent up-regulation of luciferase activity. EMSA also showed that an E-box (-47/-42) was bound by a putative p38 target c-Max. Mutation of the E-box strongly reduced MKK3, p38 isoform-, and c-Max-dependent effects on luciferase activity. Thus, the HO-1 CRE/AP-1 element mediates HO-1 gene induction via activation of JNK/c-Jun whereas p38 isoforms act through a different mechanism via the E-box.
Collapse
Affiliation(s)
- Thomas Kietzmann
- Institut für Biochemie und Molekulare Zellbiologie, Georg-August-Universität Göttingen, D-37073 Göttingen, Germany.
| | | | | |
Collapse
|
29
|
Ongusaha PP, Kim JI, Fang L, Wong TW, Yancopoulos GD, Aaronson SA, Lee SW. p53 induction and activation of DDR1 kinase counteract p53-mediated apoptosis and influence p53 regulation through a positive feedback loop. EMBO J 2003; 22:1289-301. [PMID: 12628922 PMCID: PMC151063 DOI: 10.1093/emboj/cdg129] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DDR1, discoidin domain receptor 1, belongs to a subfamily of tyrosine kinase receptors with an extracellular domain homologous to Dictyostellium discoideum protein discoidin 1. We showed that DDR1 is a direct p53 transcriptional target, and that DNA damage induced a p53-dependent DDR1 response associated with activation of its tyrosine kinase. We further demonstrated that DDR1 activated the MAPK cascade in a Ras-dependent manner. Whereas levels of p53, phosphoserine-15 p53, p21, ARF and Bcl-X(L) were increased in response to exogenous overexpression of activated DDR1, dominant-negative DDR1 inhibited irradiation-induced MAPK activation and p53, phosphoserine-15 p53, as well as induced p21 and DDR1 levels, suggesting that DDR1 functions in a feedforward loop to increase p53 levels and at least some of its effectors. Nonetheless, inhibition of DDR1 function resulted in strikingly increased apoptosis of wild-type p53-containing cells in response to genotoxic stress through a caspase-dependent pathway. These results strongly imply that this p53 response gene must predominately act to alleviate the adverse effects of stress induced by p53 on its target cell.
Collapse
Affiliation(s)
| | - Jong-il Kim
- Cancer Biology Program, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine and Harvard Medical School, Boston, MA 02115,
Derald H. Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, NY 10029, Oncology Drug Discovery Group, Bristol-Meyer Squibb Pharmaceutical Research Institutes, Princeton, NJ 08543 and Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA Present address: Department of Biochemistry, College of Medicine, Hallym University, Chunchon, 200-702, Korea Corresponding author e-mail:
| | - Li Fang
- Cancer Biology Program, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine and Harvard Medical School, Boston, MA 02115,
Derald H. Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, NY 10029, Oncology Drug Discovery Group, Bristol-Meyer Squibb Pharmaceutical Research Institutes, Princeton, NJ 08543 and Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA Present address: Department of Biochemistry, College of Medicine, Hallym University, Chunchon, 200-702, Korea Corresponding author e-mail:
| | - Tai W. Wong
- Cancer Biology Program, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine and Harvard Medical School, Boston, MA 02115,
Derald H. Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, NY 10029, Oncology Drug Discovery Group, Bristol-Meyer Squibb Pharmaceutical Research Institutes, Princeton, NJ 08543 and Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA Present address: Department of Biochemistry, College of Medicine, Hallym University, Chunchon, 200-702, Korea Corresponding author e-mail:
| | - George D. Yancopoulos
- Cancer Biology Program, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine and Harvard Medical School, Boston, MA 02115,
Derald H. Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, NY 10029, Oncology Drug Discovery Group, Bristol-Meyer Squibb Pharmaceutical Research Institutes, Princeton, NJ 08543 and Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA Present address: Department of Biochemistry, College of Medicine, Hallym University, Chunchon, 200-702, Korea Corresponding author e-mail:
| | - Stuart A. Aaronson
- Cancer Biology Program, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine and Harvard Medical School, Boston, MA 02115,
Derald H. Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, NY 10029, Oncology Drug Discovery Group, Bristol-Meyer Squibb Pharmaceutical Research Institutes, Princeton, NJ 08543 and Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA Present address: Department of Biochemistry, College of Medicine, Hallym University, Chunchon, 200-702, Korea Corresponding author e-mail:
| | - Sam W. Lee
- Cancer Biology Program, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine and Harvard Medical School, Boston, MA 02115,
Derald H. Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, NY 10029, Oncology Drug Discovery Group, Bristol-Meyer Squibb Pharmaceutical Research Institutes, Princeton, NJ 08543 and Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA Present address: Department of Biochemistry, College of Medicine, Hallym University, Chunchon, 200-702, Korea Corresponding author e-mail:
| |
Collapse
|
30
|
Chen DB, Davis JS. Epidermal growth factor induces c-fos and c-jun mRNA via Raf-1/MEK1/ERK-dependent and -independent pathways in bovine luteal cells. Mol Cell Endocrinol 2003; 200:141-54. [PMID: 12644307 DOI: 10.1016/s0303-7207(02)00379-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epidermal growth factor (EGF) modulates the actions of gonadotropins in the corpus luteum. The membrane-associated EGF receptors undergo rapid tyrosine phosphorylation and internalization upon ligand binding in ovarian cells, including luteal cells. However, little is known about the post-receptor signaling events induced by EGF that lead to the transcriptional regulation of EGF-responsive genes in the ovary. The present study was designed to examine in bovine luteal cells (1) activation of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling cascade (Raf/MEK/ERK) by EGF; (2) mRNA expression of AP-1 transcription factors, i.e. c-fos and c-jun, in response to EGF; and (3) the role of ERK in EGF-induced expression of c-fos and c-jun mRNA. Raf-1 and B-Raf, but not A-Raf, were activated by EGF (10 ng/ml) and the pharmacological protein kinase C (PKC) activator phorbol myristate acetate (PMA, 20 nM). Activation of Raf resulted in the phosphorylation and activation of MAPK kinase (MEK1) which subsequently activated ERKs. Treatment with EGF-induced the phosphorylation of both ERK2 and ERK1 in a time and concentration dependent manner. Additionally, activated ERK was found in the nucleus of the cells following treatment with EGF (10 ng/ml) and PMA (PMA, 20 nM) for 5 min. Depletion of PKC by chronic PMA treatment (2.5 microM, 24 h) only partially inhibited the stimulatory effects of EGF on Raf-1, ERK2 and ERK1. These data demonstrate that PKC-dependent and independent-mechanisms are involved in EGF activation of the Raf/MEK/ERK signaling cascade in bovine luteal cells. EGF rapidly and transiently stimulated the expression of c-fos and c-jun mRNA in bovine luteal cells. Maximal induction of c-fos and c-jun mRNA by EGF occurred within 30 min of treatment with 10 ng/ml EGF. Treatment with the MEK1 inhibitor PD098059 (50 microM) abolished EGF-induced ERK activation. However, blocking EGF-induced ERK activation by pretreatment with PD098059 only partially attenuated EGF-induced c-fos and c-jun mRNA expression. Thus, additional pathways are implicated in the regulation of c-fos and c-jun mRNA expression by EGF in bovine luteal cells.
Collapse
Affiliation(s)
- Dong-bao Chen
- The Women's Research Institute, Department of Obstetrics and Gynecology, University of Kansas School of Medicine-Wichita, 1010 North Kansas, Wichita 67214, USA.
| | | |
Collapse
|
31
|
Perkins D, Pereira EFR, Aurelian L. The herpes simplex virus type 2 R1 protein kinase (ICP10 PK) functions as a dominant regulator of apoptosis in hippocampal neurons involving activation of the ERK survival pathway and upregulation of the antiapoptotic protein Bag-1. J Virol 2003; 77:1292-305. [PMID: 12502846 PMCID: PMC140789 DOI: 10.1128/jvi.77.2.1292-1305.2003] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) can trigger or block apoptosis in a cell type-dependent manner. We have recently shown that the protein kinase activity of the large subunit of the HSV-2 ribonucleotide reductase (R1) protein (ICP10 PK) blocks apoptosis in cultured hippocampal neurons by activating the extracellular signal-regulated kinase (ERK) survival pathway (Perkins et al., J. Virol. 76:1435-1449, 2002). The present studies were designed to better elucidate the mechanism of ICP10 PK-induced neuroprotection and determine whether HSV-1 has similar activity. The data indicate that apoptosis inhibition by ICP10 PK involves a c-Raf-1-dependent mechanism and induction of the antiapoptotic protein Bag-1 by the activated ERK survival pathway. Also associated with neuroprotection by ICP10 PK are increased activation/stability of the transcription factor CREB and stabilization of the antiapoptotic protein Bcl-2. HSV-1 and the ICP10 PK-deleted HSV-2 mutant ICP10DeltaPK activate JNK, c-Jun, and ATF-2, induce the proapoptotic protein BAD, and trigger apoptosis in hippocampal neurons. c-Jun activation and apoptosis are inhibited in hippocampal cultures infected with HSV-1 in the presence of the JNK inhibitor SP600125, suggesting that JNK/c-Jun activation is required for HSV-1-induced apoptosis. Ectopically delivered ICP10 PK (but not its PK-negative mutant p139) inhibits apoptosis triggered by HSV-1 or ICP10DeltaPK. Collectively, the data indicate that ICP10 PK-induced activation of the ERK survival pathway results in Bag-1 upregulation and overrides the proapoptotic JNK/c-Jun signal induced by other viral proteins.
Collapse
Affiliation(s)
- D Perkins
- Departments of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | |
Collapse
|
32
|
Lents NH, Keenan SM, Bellone C, Baldassare JJ. Stimulation of the Raf/MEK/ERK cascade is necessary and sufficient for activation and Thr-160 phosphorylation of a nuclear-targeted CDK2. J Biol Chem 2002; 277:47469-75. [PMID: 12359725 DOI: 10.1074/jbc.m207425200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of cyclin-dependent kinase 2 is required for G(1)-S-phase progression of the eukaryotic cell cycle. In this study, we examine the activation of CDK2-cyclin E by constructing a CDK2 that is constitutively targeted to the nucleus. Activation of CDK2 requires the removal of two inhibitory phosphates (Thr-14 and Tyr-15) and the addition of one activating phosphate (Thr-160) by a nuclear localized CDK-activating kinase, which is thought to be constitutively active. Surprisingly, nuclear localized CDK2-NLS and CDK2-NLS(A14,F15), which lacks the inhibitory phosphorylation sites, require serum to become active, despite complexing with expressed cyclin E. We show that inhibition of mitogen-mediated ERK activation by treatment with U0126, a selective MEK inhibitor, or expression of dominant-negative ERK markedly reduces the phosphorylation of Thr-160 and enzymatic activity of both CDK2-NLS constructs. Consistent with a role for ERK in Thr-160 phosphorylation, expression of constitutively active Raf-1 induces Thr-160 phosphorylation of CDK2-NLS in serum-arrested cells, an effect that is blocked by treatment with U0126. Taken together, these data show a new role for ERK in G1 cell cycle progression: In addition to its role in stimulating cyclin D1 expression and nuclear translocation of CDK2, ERK regulates Thr-160 phosphorylation of CDK2-cyclin E.
Collapse
Affiliation(s)
- Nathan H Lents
- Department of Pharmacological and Physiological Sciences, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, USA
| | | | | | | |
Collapse
|
33
|
Park WY, Hwang CI, Im CN, Kang MJ, Woo JH, Kim JH, Kim YS, Kim JH, Kim H, Kim KA, Yu HJ, Lee SJ, Lee YS, Seo JS. Identification of radiation-specific responses from gene expression profile. Oncogene 2002; 21:8521-8. [PMID: 12466973 DOI: 10.1038/sj.onc.1205977] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2002] [Revised: 08/12/2002] [Accepted: 08/13/2002] [Indexed: 12/31/2022]
Abstract
The responses to ionizing radiation (IR) in tumors are dependent on cellular context. We investigated radiation-related expression patterns in Jurkat T cells with nonsense mutation in p53 using cDNA microarray. Expression of 2400 genes in gamma-irradiated cells was distinct from other stimulations like anti-CD3, phetohemagglutinin (PHA) and concanavalin A (ConA) in unsupervised clustering analysis. Among them, 384 genes were selected for their IR-specific changes to make 'RadChip'. In spite of p53 status, every type of cells showed similar patterns in expression of these genes upon gamma-radiation. Moreover, radiation-induced responses were clearly separated from the responses to other genotoxic stress like UV radiation, cisplatin and doxorubicin. We focused on two IR-related genes, phospholipase Cgamma2 (PLCG2) and cytosolic epoxide hydrolase (EPHX2), which were increased at 12 h after gamma-radiation in RT-PCR. TPCK could suppress the induction of these two genes in either of Jurkat T cells and PBMCs, which might suggest the transcriptional regulation of PLCG2 and EPHX2 by NF-kappaB upon gamma-radiation. From these results, we could identify the IR-specific genes from expression profiling, which can be used as radiation biomarkers to screen radiation exposure as well as probing the mechanism of cellular responses to ionizing radiation.
Collapse
Affiliation(s)
- Woong-Yang Park
- Ilchun Molecular Medicine Institute, Seoul National University, Chongnogu, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dhillon AS, Pollock C, Steen H, Shaw PE, Mischak H, Kolch W. Cyclic AMP-dependent kinase regulates Raf-1 kinase mainly by phosphorylation of serine 259. Mol Cell Biol 2002; 22:3237-46. [PMID: 11971957 PMCID: PMC133783 DOI: 10.1128/mcb.22.10.3237-3246.2002] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Raf-1 kinase activates the ERK (extracellular-signal-regulated kinase) pathway. The cyclic AMP (cAMP)-dependent protein kinase (PKA) can inhibit Raf-1 by direct phosphorylation. We have mapped all cAMP-induced phosphorylation sites in Raf-1, showing that serines 43, 259, and 621 are phosphorylated by PKA in vitro and induced by cAMP in vivo. Serine 43 phosphorylation decreased the binding to Ras in serum-starved but not in mitogen-stimulated cells. However, the kinase activity of a RafS43A mutant was fully inhibited by PKA. Mutation of serine 259 increased the basal Raf-1 activity and rendered it largely resistant to inhibition by PKA. cAMP increased Raf-1 serine 259 phosphorylation in a PKA-dependent manner with kinetics that correlated with ERK deactivation. PKA also decreased Raf-1 serine 338 phosphorylation of Raf-1, previously shown to be required for Raf-1 activation. Serine 338 phosphorylation of a RafS259A mutant was unaffected by PKA. Using RafS259 mutants we also demonstrate that Raf-1 is the sole target for PKA inhibition of ERK and ERK-induced gene expression, and that Raf-1 inhibition is mediated mainly through serine 259 phosphorylation.
Collapse
Affiliation(s)
- Amardeep S Dhillon
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom
| | | | | | | | | | | |
Collapse
|
35
|
Zang M, Hayne C, Luo Z. Interaction between active Pak1 and Raf-1 is necessary for phosphorylation and activation of Raf-1. J Biol Chem 2002; 277:4395-405. [PMID: 11733498 DOI: 10.1074/jbc.m110000200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Activation of Raf-1 is a complex process in which phosphorylation of Ser(338)-Tyr(341) is a critical step. Previous studies have shown that Pak1/2 is implicated in both Ras-dependent and -independent activation of Raf-1 by phosphorylating Raf Ser(338). The present study explores the structural basis of Raf-1 phosphorylation by Pak1. We found that Pak directly associates with Raf-1 under both physiological and overexpressed conditions. The association is greatly stimulated by 4beta-12-O-tetradecanoylphorbol-13-acetate and nocodazole and by expression of the active mutants of Rac and Ras. The active forms of Pak generated by mutation of Thr(423) to Glu or truncation of the amino-terminal moiety exhibit a greater binding to Raf than the wild type, whereas the kinase-dead mutant Pak barely binds Raf. The extent of binding to Raf-1 is correlated with the ability of Pak to phosphorylate Raf and induce mitogen-activated protein kinase activation. Furthermore, the Raf-1 binding site is defined to the carboxyl terminus of the Pak catalytic domain. In addition, our results suggest that the amino-terminal regulatory region of Raf inhibits the interaction. Taken together, the results indicate that the interaction depends on the active conformations of Pak and Raf. They also argue that Pak1 is a physiological candidate for phosphorylation of Raf Ser(338) during the course of Raf activation.
Collapse
Affiliation(s)
- Mengwei Zang
- Diabetes and Metabolism Research Unit, Endocrinology Section, Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
36
|
Broustas CG, Grammatikakis N, Eto M, Dent P, Brautigan DL, Kasid U. Phosphorylation of the myosin-binding subunit of myosin phosphatase by Raf-1 and inhibition of phosphatase activity. J Biol Chem 2002; 277:3053-9. [PMID: 11719507 DOI: 10.1074/jbc.m106343200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Raf-1 serine/threonine protein kinase plays an important role in cell survival, proliferation, and migration; however, the specific targets of Raf-1 in diverse cellular processes are not clearly defined. Myosin phosphatase activity is critical to the regulation of cytoskeletal reorganization, cytokinesis, and cell motility. Here, we describe the association of Raf-1 with myosin phosphatase and phosphorylation of the regulatory myosin-binding subunit (MBS) of myosin phosphatase by Raf-1. Treatment of cells with phorbol 12-myristate 13-acetate has been shown to stimulate Raf-1 protein kinase. To determine the effect of enzymatic activation of Raf-1 on MBS phosphorylation, COS-1 cells were transiently transfected with FLAG-tagged full-length Raf-1. A significantly higher phosphorylation of purified glutathione S-transferase-tagged truncated MBS protein (amino acids 654-880) occurred in the presence of FLAG-Raf-1 immunoprecipitated from phorbol 12-myristate 13-acetate-treated cells compared with untreated cells ( approximately 3.0-fold). Using a sequential kinase-phosphatase assay and phosphorylated myosin light chain as substrate in the phosphatase reaction, we showed that Raf-1-associated protein phosphatase-specific activity was inhibited (relative phosphatase activity without and with adenosine 5'-O-(3-thiotriphosphate): 100 and approximately 30%, respectively). Previously, ionizing radiation has been shown to activate Raf-1 (Kasid, U., Suy, S., Dent, P., Ray, S., Whiteside, T. L., and Sturgill, T. W. (1996) Nature 382, 813-816). Exposure of cells to ionizing radiation resulted in the increased association of Raf-1 with MBS (3-6-fold versus unirradiated control) and inhibition of Raf-1-associated protein phosphatase-specific activity (relative phosphatase activity without and with ionizing radiation: 100 and approximately 54%, respectively). Our studies identify MBS as a new substrate of Raf-1 and implicate a role for Raf-1 in the regulation of pathways involving myosin phosphatase activity.
Collapse
Affiliation(s)
- Constantinos G Broustas
- Department of Radiation Medicine, Lombardi Cancer Center, Georgetown University, Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
37
|
Chen Z, Gibson TB, Robinson F, Silvestro L, Pearson G, Xu B, Wright A, Vanderbilt C, Cobb MH. MAP kinases. Chem Rev 2001; 101:2449-76. [PMID: 11749383 DOI: 10.1021/cr000241p] [Citation(s) in RCA: 704] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Z Chen
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Blalock WL, Pearce M, Chang F, Lee JT, Pohnert SC, Burrows C, Steelman LS, Franklin RA, McMahon M, McCubrey JA. Effects of inducible MEK1 activation on the cytokine dependency of lymphoid cells. Leukemia 2001; 15:794-807. [PMID: 11368441 DOI: 10.1038/sj.leu.2402109] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Raf/MEK/MAP kinase cascade plays a critical role in transducing growth signals from activated cell surface receptors. Using deltaMEK1:ER, a conditionally active form of MEK1, we demonstrate the ability of this dual specificity protein kinase to abrogate the cytokine dependency of the murine lymphoid hematopoietic cell line FL5.12. Cytokine-independent cells were obtained from FL5.12 cells at a frequency of 1 x 10(-7), indicating that a low frequency of cells expressing deltaMEK1:ER were factor-independent. In general, cells that were converted to a cytokine-independent phenotype displayed a higher level of MAP kinase activity in response to deltaMEK1:ER activation than those that remained cytokine-dependent. deltaMEK1:ER-responsive cells could be maintained long-term in the presence of beta-estradiol, as well as the estrogen-receptor antagonist 4-hydroxy-tamoxifen. Removal of hormone led to the rapid cessation of cell growth in a manner similar to that observed when cytokine is withdrawn from the parental cells. GM-CSF mRNA transcripts were detected in the MEK1-responsive cells indicating that activated deltaMEK1:ER may induce a pathway leading to autocrine proliferation. Cytokine-dependent deltaMEK1:ER cells were found to increase the expression of GM-CSF receptor alpha (GM-CSFRalpha) in response to beta-estradiol. In contrast, MEK1-responsive cells were found to express constitutively lower levels of GM-CSFRalpha and beta common (betac) chains indicating that constitutive GM-CSF expression resulted in a decrease in GM-CSFR expression. Treatment of parental cells with supernatant from MEK1-responsive FL5.12 cells was sufficient to promote [3H]-thymidine incorporation. GM-CSF was found to enhance the viability of FL5.12 cells. The cell lines described here will be useful for elaborating the ability of the MAP kinase pathway to regulate cell proliferation in hematopoietic cells.
Collapse
Affiliation(s)
- W L Blalock
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kim J, Yoon MY, Choi SL, Kang I, Kim SS, Kim YS, Choi YK, Ha J. Effects of stimulation of AMP-activated protein kinase on insulin-like growth factor 1- and epidermal growth factor-dependent extracellular signal-regulated kinase pathway. J Biol Chem 2001; 276:19102-10. [PMID: 11262401 DOI: 10.1074/jbc.m011579200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is tightly regulated by the cellular AMP:ATP ratio and plays a central role in the regulation of energy homeostasis. Previously, AMPK was reported to phosphorylate serine 621 of Raf-1 in vitro. In the present study, we investigated a possible role of AMPK in extracellular signal-regulated kinase (Erk) cascades, using 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), a cell-permeable activator of AMPK and antisense RNA experiments. Activation of AMPK by AICAR in NIH-3T3 cells resulted in drastic inhibitions of Ras, Raf-1, and Erk activation induced by insulin-like growth factor 1 (IGF-1). Expression of an antisense RNA for the AMPK catalytic subunit decreased the AMPK activity and significantly diminished the AICAR effect on IGF-1-induced Ras activation and the subsequent Erk activation, indicating that its effect is indeed mediated by AMPK. Phosphorylation of Raf-1 serine 621, however, was not involved in AMPK-mediated inhibition of Erk cascades. In contrast to IGF-1, AICAR did not block epidermal growth factor (EGF)-dependent Raf-1 and Erk activation, but our results demonstrated that multiple Raf-1 upstream pathways induced by EGF were differentially affected by AICAR: inhibition of Ras activation and simultaneous induction of Ras-independent Raf activation. The activities of IGF-1 and EGF receptor were not affected by AICAR. Taken together, our results suggest that AMPK differentially regulate Erk cascades by inhibiting Ras activation or stimulating the Ras-independent pathway in response to the varying energy status of the cell.
Collapse
Affiliation(s)
- J Kim
- Department of Chemistry, Hanyang University, Seoul 133-791, Korea
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Pascoe D, Oursler MJ. The Src signaling pathway regulates osteoclast lysosomal enzyme secretion and is rapidly modulated by estrogen. J Bone Miner Res 2001; 16:1028-36. [PMID: 11393779 DOI: 10.1359/jbmr.2001.16.6.1028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To investigate the role of the pp60src signaling pathway in osteoclast activity, we have used dominant negative pp60src, c-ras, and c-raf expression vectors to individually disrupt their functions in osteoclasts. Osteoclasts were transiently transfected and secretions of cathepsin B/K and tartrate-resistant acid phosphatase (TRAP) were monitored. Expression of these constructs increased secretion of lysosomal enzymes. In contrast, constitutively active pp60src expression caused decreased lysosomal enzyme secretion. Osteoclasts respond to 17-beta estradiol (17betaE2) treatment with decreased lysosomal enzyme secretion. Therefore, we investigated the effects of E2 on pp60src kinase activity and observed an E2 time- and dose-dependent decrease in cytoskeletal membrane-associated pp60src tyrosine kinase activity. We have shown that estrogen decreases lysosomal enzyme gene expression and secretion; so we have examined the effects of the expression constructs on estrogen regulation of enzyme secretion. Constitutively active pp60src blocked E2 effects on secretion whereas expression of dominant negative pp60src, c-Ras, or c-Raf enhanced E2 effects. These data support that the kinase domain of cytoskeletal-associated pp60src is likely to be involved in the regulation of lysosomal enzyme secretion.
Collapse
Affiliation(s)
- D Pascoe
- Department of Biology, University of Minnesota, Duluth 55812, USA
| | | |
Collapse
|
41
|
Fang L, Li G, Liu G, Lee SW, Aaronson SA. p53 induction of heparin-binding EGF-like growth factor counteracts p53 growth suppression through activation of MAPK and PI3K/Akt signaling cascades. EMBO J 2001; 20:1931-9. [PMID: 11296226 PMCID: PMC125417 DOI: 10.1093/emboj/20.8.1931] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Tumor suppressor p53 induction in response to cellular stresses activates the mitogen-activated protein kinase (MAPK) cascade through pathways involving Ras and RAF: p53's ability to activate this pathway is dependent on p53-mediated transcription. In order to investigate potential p53 target gene(s) involved, we utilized expression array analysis and identified heparin-binding epidermal growth factor-like growth factor (HB-EGF) as being markedly up-regulated by p53. In response to DNA damage, HB-EGF was induced in wild-type, but not in mutant p53-containing cells, implying its p53 dependence. HB-EGF neutralizing antibody and inhibitors of EGF receptor signaling abrogated p53-induced MAPK activation. Expression of HB-EGF was shown to protect cells from H(2)O(2)-induced apoptosis through MAPK activation. Additionally, the PI3K/Akt pathway was activated in response to p53 signaling through HB-EGF induction, and inhibition of MAPK and Akt activation after DNA damage decreased cell survival in wild-type p53-containing cells. All these findings point to a novel aspect of p53 function. Namely, p53-induced growth factors such as HB-EGF, which activate MAPK and Akt signaling, may be involved in a compensatory mechanism to alleviate adverse effects of cellular stresses.
Collapse
Affiliation(s)
| | - Guangnan Li
- Derald H.Ruttenberg Cancer Center and
Department of Pharmacology, Mount Sinai School of Medicine, New York, NY 10029 and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine and Harvard Medical School, Boston, MA 02115, USA Corresponding authors e-mail: or
| | | | - Sam W. Lee
- Derald H.Ruttenberg Cancer Center and
Department of Pharmacology, Mount Sinai School of Medicine, New York, NY 10029 and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine and Harvard Medical School, Boston, MA 02115, USA Corresponding authors e-mail: or
| | - Stuart A. Aaronson
- Derald H.Ruttenberg Cancer Center and
Department of Pharmacology, Mount Sinai School of Medicine, New York, NY 10029 and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine and Harvard Medical School, Boston, MA 02115, USA Corresponding authors e-mail: or
| |
Collapse
|
42
|
Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001; 22:153-83. [PMID: 11294822 DOI: 10.1210/edrv.22.2.0428] [Citation(s) in RCA: 1349] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitogen-activated protein (MAP) kinases comprise a family of ubiquitous proline-directed, protein-serine/threonine kinases, which participate in signal transduction pathways that control intracellular events including acute responses to hormones and major developmental changes in organisms. MAP kinases lie in protein kinase cascades. This review discusses the regulation and functions of mammalian MAP kinases. Nonenzymatic mechanisms that impact MAP kinase functions and findings from gene disruption studies are highlighted. Particular emphasis is on ERK1/2.
Collapse
Affiliation(s)
- G Pearson
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Chiloeches A, Mason CS, Marais R. S338 phosphorylation of Raf-1 is independent of phosphatidylinositol 3-kinase and Pak3. Mol Cell Biol 2001; 21:2423-34. [PMID: 11259591 PMCID: PMC86875 DOI: 10.1128/mcb.21.7.2423-2434.2001] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2000] [Accepted: 01/10/2001] [Indexed: 11/20/2022] Open
Abstract
The Raf-1 serine/threonine protein kinase requires phosphorylation of the serine at position 338 (S338) for activation. Ras is required to recruit Raf-1 to the plasma membrane, which is where S338 phosphorylation occurs. The recent suggestion that Pak3 could stimulate Raf-1 activity by directly phosphorylating S338 through a Ras/phosphatidylinositol 3-kinase (Pl3-K)/-Cdc42-dependent pathway has attracted much attention. Using a phospho-specific antibody to S338, we have reexamined this model. Using LY294002 and wortmannin, inhibitors of Pl3-K, we find that growth factor-mediated S338 phosphorylation still occurs, even when Pl3-K activity is completely blocked. Although high concentrations of LY294002 and wortmannin did suppress S338 phosphorylation, they also suppressed Ras activation. Additionally, we show that Pak3 is not activated under conditions where S338 is phosphorylated, but when Pak3 is strongly activated, by coexpression with V12Cdc42 or by mutations that make it independent of Cdc42, it did stimulate S338 phosphorylation. However, this occurred in the cytosol and did not stimulate Raf-1 kinase activity. The inability of Pak3 to activate Raf-1 was not due to an inability to stimulate phosphorylation of the tyrosine at position 341 but may be due to its inability to recruit Raf-1 to the plasma membrane. Taken together, our data show that growth factor-stimulated Raf-1 activity is independent of Pl3-K activity and argue against Pak3 being a physiological mediator of S338 phosphorylation in growth factor-stimulated cells.
Collapse
Affiliation(s)
- A Chiloeches
- CRC Centre for Cell and Molecular Biology, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | | | | |
Collapse
|
44
|
Abstract
We recently established a two-stage in vitro assay for KSR kinase activity in which KSR never comes in contact with any recombinant kinase other than c-Raf-1 and defined the epidermal growth factor (EGF) as a potent activator of KSR kinase activity (Xing, H. R., Lozano, J., and Kolesnick, R. (2000) J. Biol. Chem. 275, 17276-17280). That study, however, did not address the mechanism of c-Raf-1 stimulation by activated KSR. Here we show that phosphorylation of c-Raf-1 on Thr(269) by KSR is necessary for optimal activation in response to EGF stimulation. In vitro, KSR specifically phosphorylated c-Raf-1 on threonine residues during the first stage of the two-stage kinase assay. Using purified wild-type and mutant c-Raf-1 proteins, we demonstrate that Thr(269) is the major c-Raf-1 site phosphorylated by KSR in vitro and that phosphorylation of this site is essential for c-Raf-1 activation by KSR. KSR acts via transphosphorylation, not by increasing c-Raf-1 autophosphorylation, as kinase-inactive c-Raf-1(K375M) served as an equally effective KSR substrate. In vivo, low physiologic doses of EGF (0.001-0.1 ng/ml) stimulated KSR activation and induced Thr(269) phosphorylation and activation of c-Raf-1. Low dose EGF did not induce serine or tyrosine phosphorylation of c-Raf-1. High dose EGF (10-100 ng/ml) induced no additional Thr(269) phosphorylation, but rather increased c-Raf-1 phosphorylation on serine residues and Tyr(340)/Tyr(341). A Raf-1 mutant with valine substituted for Thr(269) was unresponsive to low dose EGF, but was serine- and Tyr(340)/Tyr(341)-phosphorylated and partially activated at high dose EGF. This study shows that Thr(269) is the major c-Raf-1 site phosphorylated by KSR. Furthermore, phosphorylation of this site is essential for c-Raf-1 activation by KSR in vitro and for optimal c-Raf-1 activation in response to physiologic EGF stimulation in vivo.
Collapse
Affiliation(s)
- H R Xing
- Laboratory of Signal Transduction, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | |
Collapse
|
45
|
Huang Y, Hamada M, Patel J, Maraia RJ. Construction of FLAG and histidine tagging vectors for Schizosaccharomyces pombe. Yeast 2001; 18:463-8. [PMID: 11255254 DOI: 10.1002/yea.692] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Schizosaccharomyces pombe is becoming an increasingly popular model system for investigating important cellular processes. To facilitate detection, purification and functional studies of Sz. pombe gene products, we constructed two tagging expression vectors for use in Sz. pombe. These vectors allow proteins to be expressed ectopically as fusion proteins with a FLAG epitope and six histidine residue tags attached to their N-terminus or C-terminus. The function and applicability of these vectors were examined and the results are shown using the N-terminal tagging vector encoding Sfc6p, a subunit of the Sz. pombe RNA polymerase III general transcription factor, TFIIIC.
Collapse
Affiliation(s)
- Y Huang
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development/NIH, Building 6, Room 3403, 6 Center Drive MSC 2753, Bethesda, MD 20892-2753, USA.
| | | | | | | |
Collapse
|
46
|
Morelli S, Buitrago C, Boland R, de Boland AR. The stimulation of MAP kinase by 1,25(OH)(2)-vitamin D(3) in skeletal muscle cells is mediated by protein kinase C and calcium. Mol Cell Endocrinol 2001; 173:41-52. [PMID: 11223176 DOI: 10.1016/s0303-7207(00)00435-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In previous work we have demonstrated that the steroid hormone 1,25(OH)(2)-vitamin D(3) [1,25(OH)(2)D(3)] stimulates in skeletal muscle cells the phosphorylation and activity of the extracellular signal-regulated mitogen-activated protein (MAP) kinase isoforms ERK1 and ERK2. In the present study we evaluated the involvement of Ca(2+) and protein kinase C (PKC) on 1,25(OH)(2)D(3)-induced activation of MAP kinase. The hormone response was found to depend on PKC stimulation since it was attenuated by the PKC inhibitors calphostin C (100 nM) and bisindolylmaleimide I (30 nM) and PKC downregulation by prolonged treatment with the phorbol ester TPA (1 microM). Removal of external Ca(2+), chelation of intracellular Ca(2+) with BAPTA (5 microM), inhibition of phosphoinositide-phospholipase C (PLC) by neomycin, the calmodulin antagonist fluphenazine (50 microM) and the specific inhibitor of calmodulin kinase II, KN-62 (10 microM), significantly decreased 1,25(OH)(2)D(3)-activation of MAP kinase. In addition, the Ca(2+)-channel blocker verapamil (5 microM) suppressed hormone-induced MAP kinase activity in these cells. Furthermore, the Ca(2+)-mobilizing agent thapsigargin and the Ca(2+)-inophore A23187 paralleled the phosphorylation of MAP kinase observed with 1,25(OH)(2)D(3). Taken together, these results indicate that PKC and Ca(2+) are two upstream activators mediating the effects of 1,25(OH)(2)D(3) on MAP kinase in skeletal muscle cells.
Collapse
Affiliation(s)
- S Morelli
- Departamento de Biologia, Bioquímica and Farmacia, Universidad Nacional del Sur, San Juan 670, 8000, Bahia Blanca, Argentina
| | | | | | | |
Collapse
|
47
|
Chen D, Fong HW, Davis JS. Induction of c-fos and c-jun messenger ribonucleic acid expression by prostaglandin F2alpha is mediated by a protein kinase C-dependent extracellular signal-regulated kinase mitogen-activated protein kinase pathway in bovine luteal cells. Endocrinology 2001; 142:887-95. [PMID: 11159862 DOI: 10.1210/endo.142.2.7938] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PGF2alpha triggers the demise of the corpus luteum whereby progesterone synthesis is inhibited, the luteal structure regresses, and the estrus cycle resumes. Upon binding to its heterotrimeric G-protein-coupled receptors, PGF2alpha initiates the phospholipase C/diacylglycerol and inositol-1,4,5-trisphosphate/Ca(2+)-protein kinase C (PKC) signaling pathway. More recently, we have demonstrated that PGF2alpha activates extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase signaling through a Raf-dependent mechanism in bovine luteal cells. However, the relationship between PKC and ERK activation in PGF2alpha signaling has not been clearly defined. Moreover, the signaling pathway that PGF2alpha uses to regulate gene expression is unknown. In this report, primary cultures of bovine luteal cells were used to address the role of PKC in ERK activation and the signaling pathway for induction of c-fos and c-jun messenger RNA (mRNA) expression in response to PGF2alpha. By using a PKC inhibitor and a PKC-deficient luteal cell model, we observed that phorbol ester-responsive isoforms of PKC were required for ERK phosphorylation and activation by PGF2alpha (1 microM) or phorbol 12-myristate 13-acetate (PMA) (20 nM). In PGF2alpha- and PMA-treated cells, active ERK MAP kinase was localized in the nucleus. PGF2alpha-induced ERK phosphorylation was dose-dependently inhibited by the MEK1 inhibitor PD098059 (1-50 microM). The expression of c-fos and c-jun mRNA in luteal cells was markedly increased by treatment with PGF2alpha (1 microM) or PMA (20 nM) for 30 min. We also observed that activation of ERK MAP kinase was required for the expression of c-fos and c-jun mRNA in response to PGF2alpha and PMA because it was abrogated by blocking the ERK pathway with PD098059. In addition, PGF2alpha and PMA-induced c-fos and c-jun mRNA expression was abolished in the PKC-deficient cells. Taken together, our data demonstrate that a PKC-dependent ERK MAP kinase pathway mediates the expression of c-fos and c-jun mRNA in PGF2alpha-treated bovine luteal cells.
Collapse
Affiliation(s)
- D Chen
- The Women's Research Institute, Department of Obstetrics and Gynecology, University of Kansas School of Medicine-Wichita, Kansas 67214, USA
| | | | | |
Collapse
|
48
|
Houslay MD, Kolch W. Cell-Type Specific Integration of Cross-Talk between Extracellular Signal-Regulated Kinase and cAMP Signaling. Mol Pharmacol 2000. [DOI: 10.1124/mol.58.4.659] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
49
|
Janosch P, Kieser A, Eulitz M, Lovric J, Sauer G, Reichert M, Gounari F, Büscher D, Baccarini M, Mischak H, Kolch W. The Raf-1 kinase associates with vimentin kinases and regulates the structure of vimentin filaments. FASEB J 2000; 14:2008-21. [PMID: 11023985 DOI: 10.1096/fj.99-0883com] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Using immobilized GST-Raf-1 as bait, we have isolated the intermediate filament protein vimentin as a Raf-1-associated protein. Vimentin coimmunoprecipitated and colocalized with Raf-1 in fibroblasts. Vimentin was not a Raf-1 substrate, but was phosphorylated by Raf-1-associated vimentin kinases. We provide evidence for at least two Raf-1-associated vimentin kinases and identified one as casein kinase 2. They are regulated by Raf-1, since the activation status of Raf-1 correlated with the phosphorylation of vimentin. Vimentin phosphorylation by Raf-1 preparations interfered with its polymerization in vitro. A subset of tryptic vimentin phosphopeptides induced by Raf-1 in vitro matched the vimentin phosphopeptides isolated from v-raf-transfected cells labeled with orthophosphoric acid, indicating that Raf-1 also induces vimentin phosphorylation in intact cells. In NIH 3T3 fibroblasts, the selective activation of an estrogen-regulated Raf-1 mutant induced a rearrangement and depolymerization of the reticular vimentin scaffold similar to the changes elicited by serum treatment. The rearrangement of the vimentin network occurred independently of the MEK/ERK pathway. These data identify a new branch point in Raf-1 signaling, which links Raf-1 to changes in the cytoskeletal architecture.
Collapse
Affiliation(s)
- P Janosch
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, U.K.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rizzo MA, Shome K, Watkins SC, Romero G. The recruitment of Raf-1 to membranes is mediated by direct interaction with phosphatidic acid and is independent of association with Ras. J Biol Chem 2000; 275:23911-8. [PMID: 10801816 DOI: 10.1074/jbc.m001553200] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The serine/threonine kinase Raf-1 is an essential component of the MAPK cascade. Activation of Raf-1 by extracellular signals is initiated by association with intracellular membranes. Recruitment of Raf-1 to membranes has been reported to be mediated by direct association with Ras and by the phospholipase D product phosphatidic acid (PA). Here we report that insulin stimulation of HIRcB fibroblasts leads to accumulation of Ras, Raf-1, phosphorylated MEK, phosphorylated MAPK, and PA on endosomal membranes. Mutations that disrupt Raf-PA interactions prevented recruitment of Raf-1 to membranes, whereas disruption of Ras-Raf interactions did not affect agonist-dependent translocation. Expression of a dominant-negative Ras mutant did not prevent insulin-dependent Raf-1 translocation, but inhibited phosphorylation of MAPK. Finally, the PA-binding region of Raf-1 was sufficient to target green fluorescent protein to membranes, and its overexpression blocked recruitment of Raf-1 to membranes and disrupted insulin-dependent MAPK phosphorylation. These results indicate that agonist-dependent Raf-1 translocation is primarily mediated by a direct interaction with PA and is independent of association with Ras.
Collapse
Affiliation(s)
- Megan A Rizzo
- Departments of Pharmacology and Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|