1
|
Kim M, Choi H, Jang DJ, Kim HJ, Sub Y, Gee HY, Choi C. Exploring the clinical transition of engineered exosomes designed for intracellular delivery of therapeutic proteins. Stem Cells Transl Med 2024; 13:637-647. [PMID: 38838263 PMCID: PMC11227971 DOI: 10.1093/stcltm/szae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/18/2024] [Indexed: 06/07/2024] Open
Abstract
Extracellular vesicles, particularly exosomes, have emerged as promising drug delivery systems owing to their unique advantages, such as biocompatibility, immune tolerability, and target specificity. Various engineering strategies have been implemented to harness these innate qualities, with a focus on enhancing the pharmacokinetic and pharmacodynamic properties of exosomes via payload loading and surface engineering for active targeting. This concise review outlines the challenges in the development of exosomes as drug carriers and offers insights into strategies for their effective clinical translation. We also highlight preclinical studies that have successfully employed anti-inflammatory exosomes and suggest future directions for exosome therapeutics. These advancements underscore the potential for integrating exosome-based therapies into clinical practice, heralding promise for future medical interventions.
Collapse
Affiliation(s)
| | - Hojun Choi
- ILIAS Biologics Inc., Daejeon 34014, Korea
| | - Deok-Jin Jang
- ILIAS Biologics Inc., Daejeon 34014, Korea
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju 37224, Korea
| | | | - Yujin Sub
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | | |
Collapse
|
2
|
Christin JR, Wang C, Chung CY, Liu Y, Dravis C, Tang W, Oktay MH, Wahl GM, Guo W. Stem Cell Determinant SOX9 Promotes Lineage Plasticity and Progression in Basal-like Breast Cancer. Cell Rep 2020; 31:107742. [PMID: 32521267 PMCID: PMC7658810 DOI: 10.1016/j.celrep.2020.107742] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/08/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022] Open
Abstract
Lineage plasticity is important for the development of basal-like breast cancer (BLBC), an aggressive cancer subtype. While BLBC is likely to originate from luminal progenitor cells, it acquires substantial basal cell features and contains a heterogenous collection of cells exhibiting basal, luminal, and hybrid phenotypes. Why luminal progenitors are prone to BLBC transformation and what drives luminal-to-basal reprogramming remain unclear. Here, we show that the transcription factor SOX9 acts as a determinant for estrogen-receptor-negative (ER-) luminal stem/progenitor cells (LSPCs). SOX9 controls LSPC activity in part by activating both canonical and non-canonical nuclear factor κB (NF-κB) signaling. Inactivation of TP53 and RB via expression of SV40 TAg in a BLBC mouse tumor model leads to upregulation of SOX9, which drives luminal-to-basal reprogramming in vivo. Furthermore, SOX9 deletion inhibits the progression of ductal carcinoma in situ (DCIS)-like lesions to invasive carcinoma. These data show that ER- LSPC determinant SOX9 acts as a lineage plasticity driver for BLBC progression.
Collapse
Affiliation(s)
- John R Christin
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chunhui Wang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chi-Yeh Chung
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Yu Liu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Christopher Dravis
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Wei Tang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Breast Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Maja H Oktay
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10467, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gruss-Lipper Biophotonic Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Geoffrey M Wahl
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Wenjun Guo
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
3
|
Choi H, Kim Y, Mirzaaghasi A, Heo J, Kim YN, Shin JH, Kim S, Kim NH, Cho ES, In Yook J, Yoo TH, Song E, Kim P, Shin EC, Chung K, Choi K, Choi C. Exosome-based delivery of super-repressor IκBα relieves sepsis-associated organ damage and mortality. SCIENCE ADVANCES 2020; 6:eaaz6980. [PMID: 32285005 PMCID: PMC7141819 DOI: 10.1126/sciadv.aaz6980] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/13/2020] [Indexed: 05/18/2023]
Abstract
As extracellular vesicles that play an active role in intercellular communication by transferring cellular materials to recipient cells, exosomes offer great potential as a natural therapeutic drug delivery vehicle. The inflammatory responses in various disease models can be attenuated through introduction of super-repressor IκB (srIκB), which is the dominant active form of IκBα and can inhibit translocation of nuclear factor κB into the nucleus. An optogenetically engineered exosome system (EXPLOR) that we previously developed was implemented for loading a large amount of srIκB into exosomes. We showed that intraperitoneal injection of purified srIκB-loaded exosomes (Exo-srIκBs) attenuates mortality and systemic inflammation in septic mouse models. In a biodistribution study, Exo-srIκBs were observed mainly in the neutrophils, and in monocytes to a lesser extent, in the spleens and livers of mice. Moreover, we found that Exo-srIκB alleviates inflammatory responses in monocytic THP-1 cells and human umbilical vein endothelial cells.
Collapse
Affiliation(s)
- Hojun Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Youngeun Kim
- ILIAS Biologics Inc., Daejeon 34014, Republic of Korea
| | - Amin Mirzaaghasi
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Jaenyoung Heo
- ILIAS Biologics Inc., Daejeon 34014, Republic of Korea
| | - Yu Na Kim
- ILIAS Biologics Inc., Daejeon 34014, Republic of Korea
| | - Ju Hye Shin
- Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seonghun Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Nam Hee Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Eunae Sandra Cho
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Jong In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Eunjoo Song
- IVIM Technology, Daejeon 34051, Republic of Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
- IVIM Technology, Daejeon 34051, Republic of Korea
- Graduate School of Nanoscience and Technology, KAIST, Daejeon 34141, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
- Corresponding author. (K.Cho.); (E.-C.S.); (K.Chu.)
| | - Kyungsoo Chung
- Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Corresponding author. (K.Cho.); (E.-C.S.); (K.Chu.)
| | - Kyungsun Choi
- ILIAS Biologics Inc., Daejeon 34014, Republic of Korea
- Corresponding author. (K.Cho.); (E.-C.S.); (K.Chu.)
| | - Chulhee Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
- ILIAS Biologics Inc., Daejeon 34014, Republic of Korea
| |
Collapse
|
4
|
Li C, Yu J, Ai K, Li H, Zhang Y, Zhao T, Wei X, Yang J. IκBα phosphorylation and associated NF-κB activation are essential events in lymphocyte activation, proliferation, and anti-bacterial adaptive immune response of Nile tilapia. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103526. [PMID: 31655126 DOI: 10.1016/j.dci.2019.103526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
Inhibitory protein IκBα plays a crucial role in the inflammatory process and immune response by regulating the activity of transcription factor NF-κB. In teleost, great progress has been achieved regarding NF-κB signaling for innate immunity, but whether this pathway modulates adaptive immunity, and how, remains largely unclear. In this study, after characterizing the sequence, structure, and phylogeny of Nile tilapia Oreochromis niloticus IκBα (defined as On-IκBα), we investigated the association between IκBα-regulated NF-κB activation and the lymphocyte-mediated adaptive immune response in Nile tilapia. We found that On-IκBα was evolutionarily conserved, and its mRNA was expressed widely in various tissues, with most abundance in the trunk kidney. mRNA expression of On-IκBα was significantly upregulated in spleen at both innate and adaptive immune stages after Aeromonas hydrophila infection. Moreover, phosphorylation of On-IκBα and the downstream On-NF-κB p65 was obviously elevated in spleen leukocytes at 3, 5, or 8 days after A. hydrophila infection, indicating the activation of NF-κB signaling. Correlating with the augmented protein phosphorylation, leukocyte proliferation was enhanced during the same immune stage, suggesting the potential association of IκBα and IκBα-regulated NF-κB signaling in the primary adaptive immune response. Although lymphocyte activation by the T cell-specific mitogen PHA did not alter On-IκBα mRNA expression significantly, lymphocyte activation by the agonist PMA obviously elevated On-IκBα and OnNF-κB p65 phosphorylation in spleen leukocytes. Together, the results suggest that IκBα phosphorylation and its regulated NF-κB activation are essential events associated with lymphocyte activation, proliferation, and anti-bacterial adaptive immune response in Nile tilapia. Our study aids to understand the regulatory mechanism of adaptive immunity in teleost.
Collapse
Affiliation(s)
- Cheng Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Junkun Yu
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Huiying Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yu Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Tianyu Zhao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
5
|
Fowler AM, Salem K, DeGrave M, Ong IM, Rassman S, Powers GL, Kumar M, Michel CJ, Mahajan AM. Progesterone Receptor Gene Variants in Metastatic Estrogen Receptor Positive Breast Cancer. Discov Oncol 2020; 11:63-75. [PMID: 31942683 DOI: 10.1007/s12672-020-00377-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/07/2020] [Indexed: 01/20/2023] Open
Abstract
Tumor mutations in the gene encoding estrogen receptor alpha (ESR1) have been identified in metastatic breast cancer patients with endocrine therapy resistance. However, relatively little is known about the occurrence of mutations in the progesterone receptor (PGR) gene in this population. The study objective was to determine the frequency and prognostic significance of tumor PGR mutations for patients with estrogen receptor (ER)-positive metastatic breast cancer. Thirty-five women with metastatic or locally recurrent ER+ breast cancer were included in this IRB-approved, retrospective study. Targeted next-generation sequencing of the PGR gene was performed on isolated tumor DNA. Associations between mutation status and clinicopathologic factors were analyzed as well as overall survival (OS) from time of metastatic diagnosis. The effect of the PGR variant Y890C (c.2669A>G) identified in this cohort on PR transactivation function was tested using ER-PR- (MDA-MB-231), ER+PR+ (T47D), and ER+PR- (T47D PR KO) breast cancer cell lines. There were 71 occurrences of protein-coding PGR variants in 67% (24/36; 95% CI 49-81%) of lesions. Of the 49 unique variants, 14 are single nucleotide polymorphisms (SNPs). Excluding SNPs, the median OS of patients with PGR variants was 32 months compared to 79 months with wild-type PGR (p = 0.42). The most frequently occurring (4/36 lesions) non-SNP variant was Y890C. Cells expressing Y890C had reduced progestin-stimulated PR transactivation compared to cells expressing wild-type PR. PGR variants occur frequently in ER+ metastatic breast cancer. Although some variants are SNPs, others are predicted to be functionally deleterious as demonstrated with Y890C PR.
Collapse
Affiliation(s)
- Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53792, USA.
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA.
| | - Kelley Salem
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Michael DeGrave
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Irene M Ong
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53792, USA
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Shane Rassman
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Ginny L Powers
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Manoj Kumar
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Ciara J Michel
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Aparna M Mahajan
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| |
Collapse
|
6
|
Rahimova N, Babazada H, Higuchi Y, Yamashita F, Hashida M. Development of mKO2 fusion proteins for real-time imaging and mechanistic investigation of the degradation kinetics of human IκBα in living cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:190-198. [PMID: 30391277 DOI: 10.1016/j.bbamcr.2018.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/03/2018] [Accepted: 10/28/2018] [Indexed: 12/11/2022]
Abstract
In resting cells, the nuclear factor kappa B (NF-κB) family of transcription factors is stabilized by complexation with the cytoplasmic inhibitor of kappa B alpha (IκBα). Extracellular stimuli, such as tumor necrosis factor alpha (TNFα) or bacterial lipopolysaccharide activate NF-κB through IκBα phosphorylation and ubiquitin-proteasomal degradation. Herein, we developed a novel biosensor, by fusing the monomeric fluorescent protein Kusabira-Orange 2 to IκBα (mKO2-IκBα), to study the dynamics and structure-activity relationship of IκBα degradation. Site-specific deletion studies on the IκBα sequence revealed that the C-terminal PEST domain is required in signal-induced proteasomal degradation of IκBα and functions independently from ankyrin repeats. Using deletion mutants, we show that IκBα ankyrin repeats do not affect IκBα degradability but affect its degradation rate. We demonstrate, by both real-time confocal microscopy and western blot analysis, that the half-life of mKO2-IκBα in response to TNFα is approximately 35 min, which is similar to the half-life of endogenous IκBα. Using this biosensor we also show that selective proteasome inhibitors, such as lactacystin and MG132, inhibit degradation and affect the kinetics of IκBα in a dose-dependent manner. The techniques described here can have a range of possible applications, such as facilitating studies associated with IκBα dynamics and biochemical characteristics, as well as the screening of potential proteasome inhibitors.
Collapse
Affiliation(s)
- Nilufar Rahimova
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hasan Babazada
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 312 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Yuriko Higuchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshidaushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
7
|
Salem K, Kumar M, Yan Y, Jeffery JJ, Kloepping KC, Michel CJ, Powers GL, Mahajan AM, Fowler AM. Sensitivity and Isoform Specificity of 18F-Fluorofuranylnorprogesterone for Measuring Progesterone Receptor Protein Response to Estradiol Challenge in Breast Cancer. J Nucl Med 2019; 60:220-226. [PMID: 30030339 PMCID: PMC8833853 DOI: 10.2967/jnumed.118.211516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/13/2018] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to evaluate the ability of 21-18F-fluoro-16α,17α-[(R)-(1'-α-furylmethylidene)dioxy]-19-norpregn-4-ene-3,20-dione (18F-FFNP) to measure alterations in progesterone receptor (PR) protein level and isoform expression in response to estradiol challenge. Methods: T47D human breast cancer cells and female mice-bearing T47D tumor xenografts were treated with 17β-estradiol (E2) to increase PR expression. 18F-FFNP uptake was measured using cell uptake and tissue biodistribution assays. MDA-MB-231 breast cancer clonal cell lines were generated that express the A or B isoforms of human PR. PR protein levels, transcriptional function, and subcellular localization were determined. In vitro 18F-FFNP binding was measured via saturation and competitive binding curves. In vivo 18F-FFNP uptake was measured using tumor xenografts and positron emission tomography. Statistical significance was determined using analysis of variance and t-tests. Results: After 48 and 72 h of E2, 18F-FFNP uptake in T47D cells was maximally increased compared to both vehicle and 24 h E2 treatment (p<0.0001 vs ethanol; P = 0.02 and P = 0.0002 vs 24 h for 48 and 72 h, respectively). T47D tumor xenografts in mice treated with 72 h E2 had maximal 18F-FFNP uptake compared to ethanol-treated mice (11.3±1.4 vs 5.2±0.81 %ID/g; P = 0.002). Corresponding tumor-to-muscle uptake ratios were 4.1±0.6, 3.9±0.5, and 2.3±0.4 for 48 h E2, 72 h E2, and ethanol-treated mice, respectively. There was no significant preferential 18F-FFNP binding or uptake by PR-A versus PR-B in the PR isoform-specific cell lines and tumor xenografts. Conclusion:18F-FFNP is capable of measuring estrogen-induced shifts in total PR expression in human breast cancer cells and tumor xenografts with equivalent isoform binding.
Collapse
Affiliation(s)
- Kelley Salem
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Manoj Kumar
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Yongjun Yan
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin,Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Justin J. Jeffery
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin; and
| | - Kyle C. Kloepping
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ciara J. Michel
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ginny L. Powers
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Aparna M. Mahajan
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Amy M. Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin,Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin; and
| |
Collapse
|
8
|
The Phosphorylated Estrogen Receptor α (ER) Cistrome Identifies a Subset of Active Enhancers Enriched for Direct ER-DNA Binding and the Transcription Factor GRHL2. Mol Cell Biol 2019; 39:MCB.00417-18. [PMID: 30455249 DOI: 10.1128/mcb.00417-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023] Open
Abstract
Posttranslational modifications are key regulators of protein function, providing cues that can alter protein interactions and cellular location. Phosphorylation of estrogen receptor α (ER) at serine 118 (pS118-ER) occurs in response to multiple stimuli and is involved in modulating ER-dependent gene transcription. While the cistrome of ER is well established, surprisingly little is understood about how phosphorylation impacts ER-DNA binding activity. To define the pS118-ER cistrome, chromatin immunoprecipitation sequencing was performed on pS118-ER and ER in MCF-7 cells treated with estrogen. pS118-ER occupied a subset of ER binding sites which were associated with an active enhancer mark, acetylated H3K27. Unlike ER, pS118-ER sites were enriched in GRHL2 DNA binding motifs, and estrogen treatment increased GRHL2 recruitment to sites occupied by pS118-ER. Additionally, pS118-ER occupancy sites showed greater enrichment of full-length estrogen response elements relative to ER sites. In an in vitro DNA binding array of genomic binding sites, pS118-ER was more commonly associated with direct DNA binding events than indirect binding events. These results indicate that phosphorylation of ER at serine 118 promotes direct DNA binding at active enhancers and is a distinguishing mark for associated transcription factor complexes on chromatin.
Collapse
|
9
|
Yu M, Chen J, Bao Y, Li J. Genomic analysis of NF-κB signaling pathway reveals its complexity in Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2018; 72:510-518. [PMID: 29162540 DOI: 10.1016/j.fsi.2017.11.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/09/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
NF-κB signaling pathway is an evolutionarily conserved pathway that plays highly important roles in several developmental, cellular and immune response processes. With the recent release of the draft Pacific oyster (Crassostra gigas) genome sequence, we have sought to identify the various components of the NF-κB signaling pathway in these mollusks and investigate their gene structure. We further constructed phylogenetic trees to establish the evolutionary relationship of the oyster proteins with their homologues in vertebrates and invertebrates using BLASTX and neighbor-joining method. We report the presence of two classic NF-κB/Rel homologues in the pacific oyster namely Cgp100 and CgRel, which possess characteristic RHD domain and a consensus nuclear localization signal, similar to mammalian homologues and an additional CgRel-like protein, unique to C. gigas. Further, in addition to two classical IκB homologues, CgIκB1 and CgIκB2, we have identified three atypical IκB family members namely CgIκB3, CgIκB4 and CgBCL3 which lack the IκB degradation motif and consist of only one exon that might have arisen by retrotransposition from CgIκB1. Finally, we report the presence of three IKKs and one NEMO genes in oyster genome, named CgIKK1, CgIKK2, CgIKK3 and CgNEMO, respectively. While CgIKK1 and CgIKK3 domain structure is similar to their mammalian homologues, CgIKK2 was found to lack the HLH and NBD domains. Overall, the high conservation of the NF-κB/Rel, IκB and IKK family components in the pacific oyster and their structural similarity to the vertebrate and invertebrate homologues underline the functional importance of this pathway in regulation of critical cellular processes across species.
Collapse
Affiliation(s)
- Mingjia Yu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
| | - Jianming Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, China.
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
10
|
Yang M, Li C, Cai Z, Hu Y, Nolan T, Yu F, Yin Y, Xie Q, Tang G, Wang X. SINAT E3 Ligases Control the Light-Mediated Stability of the Brassinosteroid-Activated Transcription Factor BES1 in Arabidopsis. Dev Cell 2017; 41:47-58.e4. [PMID: 28399399 DOI: 10.1016/j.devcel.2017.03.014] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 01/11/2017] [Accepted: 03/14/2017] [Indexed: 01/19/2023]
Abstract
The plant hormones brassinosteroids (BRs) participate in light-mediated regulation of plant growth, although the underlying mechanisms are far from being fully understood. In addition, the function of the core transcription factor in the BR signaling pathway, BRI1-EMS-SUPPRESSOR 1 (BES1), largely depends on its phosphorylation status and its protein stability, but the regulation of BES1 is not well understood. Here, we report that SINA of Arabidopsis thaliana (SINATs) specifically interact with dephosphorylated BES1 and mediate its ubiquitination and degradation. Our genetic data demonstrated that SINATs inhibit BR signaling in a BES1-dependent manner. Interestingly, we found that the protein levels of SINATs were decreased in the dark and increased in the light, which changed BES1 protein levels accordingly. Thus, our study not only uncovered a new mechanism of BES1 degradation but also provides significant insights into how light conditionally regulates plant growth through controlling accumulation of different forms of BES1.
Collapse
Affiliation(s)
- Mengran Yang
- State Key Laboratory of Genetic Engineering, Department of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengxiang Li
- State Key Laboratory of Genetic Engineering, Department of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhenying Cai
- State Key Laboratory of Genetic Engineering, Department of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yinmeng Hu
- Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Trevor Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Feifei Yu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guiliang Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Xuelu Wang
- Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
11
|
Bravo Cruz AG, Shisler JL. Vaccinia virus K1 ankyrin repeat protein inhibits NF-κB activation by preventing RelA acetylation. J Gen Virol 2016; 97:2691-2702. [DOI: 10.1099/jgv.0.000576] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Ariana G. Bravo Cruz
- Department of Microbiology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| | - Joanna L. Shisler
- Department of Microbiology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Song Y, Hong S, Iizuka Y, Kim CY, Seong GJ. The neuroprotective effect of maltol against oxidative stress on rat retinal neuronal cells. KOREAN JOURNAL OF OPHTHALMOLOGY 2015; 29:58-65. [PMID: 25646062 PMCID: PMC4309870 DOI: 10.3341/kjo.2015.29.1.58] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Maltol (3-hydroxy-2-methyl-4-pyrone), formed by the thermal degradation of starch, is found in coffee, caramelized foods, and Korean ginseng root. This study investigated whether maltol could rescue neuroretinal cells from oxidative injury in vitro. METHODS R28 cells, which are rat embryonic precursor neuroretinal cells, were exposed to hydrogen peroxide (H2O2, 0.0 to 1.5 mM) as an oxidative stress with or without maltol (0.0 to 1.0 mM). Cell viability was monitored with the lactate dehydrogenase assay and apoptosis was examined by the terminal deoxynucleotide transferase-mediated terminal uridine deoxynucleotidyl transferase nick end-labeling (TUNEL) method. To investigate the neuroprotective mechanism of maltol, the expression and phosphorylation of nuclear factor-kappa B (NF-κB), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 were evaluated by Western immunoblot analysis. RESULTS R28 cells exposed to H2O2 were found to have decreased viability in a dose- and time-dependent manner. However, H2O2-induced cytotoxicity was decreased with the addition of maltol. When R28 cells were exposed to 1.0 mM H2O2 for 24 hours, the cytotoxicity was 60.69 ± 5.71%. However, the cytotoxicity was reduced in the presence of 1.0 mM maltol. This H2O2-induced cytotoxicity caused apoptosis of R28 cells, characterized by DNA fragmentation. Apoptosis of oxidatively-stressed R28 cells with 1.0 mM H2O2 was decreased with 1.0 mM maltol, as determined by the TUNEL method. Western blot analysis showed that treatment with maltol reduced phosphorylation of NF-κB, ERK, and JNK, but not p38. The neuroprotective effects of maltol seemed to be related to attenuated expression of NF-κB, ERK, and JNK. CONCLUSIONS Maltol not only increased cell viability but also attenuated DNA fragmentation. The results obtained here show that maltol has neuroprotective effects against hypoxia-induced neuroretinal cell damage in R28 cells, and its effects may act through the NF-κB and mitogen-activated protein kinase signaling pathways.
Collapse
Affiliation(s)
- Yookyung Song
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Samin Hong
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Yoko Iizuka
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Chan Yun Kim
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Gong Je Seong
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Abstract
The vast majority of research on nuclear factor κB (NF-κB) signaling in the past 25 years has focused on its roles in normal and disease-related processes in vertebrates, especially mice and humans. Recent genome and transcriptome sequencing efforts have shown that homologs of NF-κB transcription factors, inhibitor of NF-κB (IκB) proteins, and IκB kinases are present in a variety of invertebrates, including several in phyla simpler than Arthropoda, the phylum containing insects such Drosophila. Moreover, many invertebrates also contain genes encoding homologs of upstream signaling proteins in the Toll-like receptor signaling pathway, which is well-known for its downstream activation of NF-κB for innate immunity. This review describes what we now know or can infer and speculate about the evolution of the core elements of NF-κB signaling as well as the biological processes controlled by NF-κB in invertebrates. Further research on NF-κB in invertebrates is likely to uncover information about the evolutionary origins of this key human signaling pathway and may have relevance to our management of the responses of ecologically and economically important organisms to environmental and adaptive pressures.
Collapse
Affiliation(s)
- Thomas D Gilmore
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
14
|
Dichotomous Actions of NF-κB Signaling Pathways in Heart. J Cardiovasc Transl Res 2010; 3:344-54. [DOI: 10.1007/s12265-010-9195-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 05/04/2010] [Indexed: 12/28/2022]
|
15
|
Bauerle KT, Schweppe RE, Haugen BR. Inhibition of nuclear factor-kappa B differentially affects thyroid cancer cell growth, apoptosis, and invasion. Mol Cancer 2010; 9:117. [PMID: 20492683 PMCID: PMC2887796 DOI: 10.1186/1476-4598-9-117] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 05/21/2010] [Indexed: 01/28/2023] Open
Abstract
Background Nuclear factor-κB (NF-κB) is constitutively activated in many cancers and plays a key role in promoting cell proliferation, survival, and invasion. Our understanding of NF-κB signaling in thyroid cancer, however, is limited. In this study, we have investigated the role of NF-κB signaling in thyroid cancer cell proliferation, invasion, and apoptosis using selective genetic inhibition of NF-κB in advanced thyroid cancer cell lines. Results Three pharmacologic inhibitors of NF-κB differentially inhibited growth in a panel of advanced thyroid cancer cell lines, suggesting that these NF-κB inhibitors may have off-target effects. We therefore used a selective genetic approach to inhibit NF-κB signaling by overexpression of a dominant-negative IκBα (mIκBα). These studies revealed decreased cell growth in only one of five thyroid cancer cell lines (8505C), which occurred through a block in the S-G2/M transition. Resistance to TNFα-induced apoptosis was observed in all cell lines, likely through an NF-κB-dependent mechanism. Inhibition of NF-κB by mIκBα sensitized a subset of cell lines to TNFα-induced apoptosis. Sensitive cell lines displayed sustained activation of the stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) pathway, defining a potential mechanism of response. Finally, NF-κB inhibition by mIκBα expression differentially reduced thyroid cancer cell invasion in these thyroid cancer cell lines. Sensitive cell lines demonstrated approximately a two-fold decrease in invasion, which was associated with differential expression of MMP-13. MMP-9 was reduced by mIκBα expression in all cell lines tested. Conclusions These data indicate that selective inhibition of NF-κB represents an attractive therapeutic target for the treatment of advanced thyroid. However, it is apparent that global regulation of thyroid cancer cell growth and invasion is not achieved by NF-κB signaling alone. Instead, our findings suggest that other important molecular processes play a critical role in defining the extent of NF-κB function within cancer cells.
Collapse
Affiliation(s)
- Kevin T Bauerle
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado, Research Complex I, South Tower, Mail Stop 8106, 12801 East 17th Avenue, PO Box 6511, Aurora, CO 80045, USA
| | | | | |
Collapse
|
16
|
Gupta SC, Sundaram C, Reuter S, Aggarwal BB. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:775-87. [PMID: 20493977 DOI: 10.1016/j.bbagrm.2010.05.004] [Citation(s) in RCA: 590] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 05/08/2010] [Indexed: 12/21/2022]
Abstract
Because nuclear factor-κB (NF-κB) is a ubiquitously expressed proinflammatory transcription factor that regulates the expression of over 500 genes involved in cellular transformation, survival, proliferation, invasion, angiogenesis, metastasis, and inflammation, the NF-κB signaling pathway has become a potential target for pharmacological intervention. A wide variety of agents can activate NF-κB through canonical and noncanonical pathways. Canonical pathway involves various steps including the phosphorylation, ubiquitination, and degradation of the inhibitor of NF-κB (IκBα), which leads to the nuclear translocation of the p50-p65 subunits of NF-κB followed by p65 phosphorylation, acetylation and methylation, DNA binding, and gene transcription. Thus, agents that can inhibit protein kinases, protein phosphatases, proteasomes, ubiquitination, acetylation, methylation, and DNA binding steps have been identified as NF-κB inhibitors. Because of the critical role of NF-κB in cancer and various chronic diseases, numerous inhibitors of NF-κB have been identified. In this review, however, we describe only small molecules that suppress NF-κB activation, and the mechanism by which they block this pathway.
Collapse
Affiliation(s)
- Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
17
|
Kazłowska K, Hsu T, Hou CC, Yang WC, Tsai GJ. Anti-inflammatory properties of phenolic compounds and crude extract from Porphyra dentata. JOURNAL OF ETHNOPHARMACOLOGY 2010; 128:123-30. [PMID: 20051261 DOI: 10.1016/j.jep.2009.12.037] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 09/27/2009] [Accepted: 12/28/2009] [Indexed: 05/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Porphyra dentata, a red edible seaweed, has long been used worldwide in folk medicine for the treatment of inflammatory diseases such as hypersensitivity, lymphadenitis, bronchitis. AIMS OF STUDY To clarify the anti-inflammatory role of Porphyra dentata crude extract and its identified phenolic compounds by investigating their effect on the nitric oxide (NO)/inducible nitric oxide synthase (iNOS) transcription pathway in macrophage RAW 264.7 cells. MATERIALS AND METHODS Porphyra dentata crude extract was prepared with methanol. High performance liquid chromatography (HPLC) hyphenated to electrospray ionization mass spectrometry (ESI-MS) and UV detection were utilized to analyze the extract fingerprints. Nitrite measurement, iNOS promoter activity and nuclear factor-kappaB (NF-kappaB) enhancer activity were used to assess the anti-inflammatory effect in lipopolysaccharide (LPS) challenged mouse RAW 264.7 cell line. RESULTS Phenolic compounds (catechol, rutin and hesperidin) were identified in the crude extract of Porphyra dentata. The crude extract and the phenolic compounds inhibited the production of NO in LPS-stimulated RAW 264.7 cells. Catechol was a more potent suppressor of the up-regulation of iNOS promoter and NF-kappaB enhancer than rutin and yet, hesperidin alone failed to inhibit either activity. CONCLUSION Our results indicate that catechol and rutin, but not hesperidin, are primary bioactive phenolic compounds in the crude extract to suppress NO production in LPS-stimulated macrophages via NF-kappaB-dependent iNOS gene transcription. The data also explain the anti-inflammatory use and possible mechanism of Porphyra dentata in iNOS implicated diseases.
Collapse
Affiliation(s)
- Katarzyna Kazłowska
- Department of Food Science, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan, ROC
| | | | | | | | | |
Collapse
|
18
|
Pepper C, Hewamana S, Brennan P, Fegan C. NF-kappaB as a prognostic marker and therapeutic target in chronic lymphocytic leukemia. Future Oncol 2009; 5:1027-37. [PMID: 19792971 DOI: 10.2217/fon.09.72] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chronic lymphocytic leukemia is the most common adult leukemia and is currently incurable with conventional chemotherapeutic agents. Over the last few years, significant discoveries have been made regarding the biology that underpins this disease. These new insights have allowed us to develop more rational prognostic tools and identify promising novel therapeutic targets. In this review, we highlight the importance of both constitutive and inducible DNA binding of the transcription factor NF-kappaB in chronic lymphocytic leukemia. We describe the current knowledge regarding the activity and function of specific NF-kappaB subunits in this disease, and discuss the complex mechanisms that regulate NF-kappaB activation in vivo. In addition, we provide compelling evidence for the utility of the NF-kappaB subunit, Rel A, as a prognostic marker and as a therapeutic target in this disease, and we also describe how this protein may contribute to the drug resistance commonly encountered with this condition.
Collapse
Affiliation(s)
- Chris Pepper
- School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| | | | | | | |
Collapse
|
19
|
Fontenele M, Carneiro K, Agrellos R, Oliveira D, Oliveira-Silva A, Vieira V, Negreiros E, Machado E, Araujo H. The Ca2+-dependent protease Calpain A regulates Cactus/I kappaB levels during Drosophila development in response to maternal Dpp signals. Mech Dev 2009; 126:737-51. [PMID: 19442719 DOI: 10.1016/j.mod.2009.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/24/2009] [Accepted: 04/27/2009] [Indexed: 11/15/2022]
Abstract
Regulation of NF kappaB activity is central to many processes during development and disease. Activation of NF kappaB family members depends on degradation of inhibitory I kappaB proteins. In Drosophila, a nuclear gradient of the NF kappaB/c-rel protein Dorsal subdivides the embryonic dorsal-ventral axis, defining the extent and location of mesodermal and ectodermal territories. Activation of the Toll pathway directs Dorsal nuclear translocation by inducing proteosomal degradation of the I kappaB homologue Cactus. Another mechanism that impacts on Dorsal activation involves the Toll-independent pathway, which regulates constitutive Cactus degradation. We have shown that the BMP protein Decapentaplegic (Dpp) inhibits Cactus degradation independent of Toll. Here we report on a novel element of this pathway: the calcium-dependent protease Calpain A. Calpain A knockdowns increase Cactus levels, shifting the Dorsal gradient and dorsal-ventral patterning. As shown for mammalian I kappaB, this effect requires PEST sequences in the Cactus C-terminus, implying a conserved role for calpains. Alteration of Calpain A or dpp results in similar effects on Dorsal target genes. Epistatic analysis confirms Calpain A activity is regulated by Dpp, indicating that Dpp signals increase Cactus levels through Calpain A inhibition, thereby interfering with Dorsal activation. This mechanism may allow coordination of Toll, BMP and Ca(2+) signals, conferring precision to Dorsal-target expression domains.
Collapse
Affiliation(s)
- M Fontenele
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Melisi D, Niu J, Chang Z, Xia Q, Peng B, Ishiyama S, Evans DB, Chiao PJ. Secreted interleukin-1alpha induces a metastatic phenotype in pancreatic cancer by sustaining a constitutive activation of nuclear factor-kappaB. Mol Cancer Res 2009; 7:624-33. [PMID: 19435817 DOI: 10.1158/1541-7786.mcr-08-0201] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transcription factor nuclear factor-kappaB (NF-kappaB) is constitutively activated in most pancreatic cancer tissues and cell lines but not in normal pancreas nor in immortalized/nontumorigenic human pancreatic ductal epithelial cells. Inhibition of constitutive NF-kappaB activation in pancreatic cancer cell lines suppresses tumorigenesis and tumor metastasis. Recently, we identified autocrine secretion of proinflammatory cytokine interleukin (IL)-1alpha as the mechanism of constitutive NF-kappaB activation in metastatic pancreatic cancer cell lines. However, the role of IL-1alpha in determining the metastatic potential of pancreatic tumor remains to be further investigated. In the current study, we stably expressed IL-1alpha in the nonmetastatic, IL-1alpha-negative MiaPaCa-2 cell lines. Our results showed that the secretion of IL-1alpha in MiaPaCa-2 cells constitutively activated NF-kappaB and increased the expression of NF-kappaB downstream genes involved in the different steps of the metastatic cascade, such as urokinase-type plasminogen activator, vascular endothelial growth factor, and IL-8. MiaPaCa-2/IL-1alpha cells showed an enhanced cell invasion in vitro compared with parental MiaPaCa-2 cells and induced liver metastasis in an orthotopic mouse model. The metastatic phenotype induced by IL-1alpha was inhibited by the expression of phosphorylation-defective IkappaB (IkappaB S32, 36A), which blocked NF-kappaB activation. Consistently, silencing the expression of IL-1alpha by short hairpin RNA in the highly metastatic L3.6pl pancreatic cancer cells completely suppressed their metastatic spread. In summary, these findings showed that IL-1alpha plays key roles in pancreatic cancer metastatic behavior through the constitutive activation of NF-kappaB. Our findings further support the possible link between inflammation and cancer and suggest that IL-1alpha may be a potential therapeutic target for treating pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Davide Melisi
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Mathes E, O'Dea EL, Hoffmann A, Ghosh G. NF-kappaB dictates the degradation pathway of IkappaBalpha. EMBO J 2008; 27:1357-67. [PMID: 18401342 DOI: 10.1038/emboj.2008.73] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 03/12/2008] [Indexed: 11/09/2022] Open
Abstract
IkappaB proteins are known as the regulators of NF-kappaB activity. They bind tightly to NF-kappaB dimers, until stimulus-responsive N-terminal phosphorylation by IKK triggers their ubiquitination and proteasomal degradation. It is known that IkappaBalpha is an unstable protein whose rapid degradation is slowed upon binding to NF-kappaB, but it is not known what dynamic mechanisms control the steady-state level of total IkappaBalpha. Here, we show clearly that two degradation pathways control the level of IkappaBalpha. Free IkappaBalpha degradation is not controlled by IKK or ubiquitination but intrinsically, by the C-terminal sequence known as the PEST domain. NF-kappaB binding to IkappaBalpha masks the PEST domain from proteasomal recognition, precluding ubiquitin-independent degradation; bound IkappaBalpha then requires IKK phosphorylation and ubiquitination for slow basal degradation. We show the biological requirement for the fast degradation of the free IkappaBalpha protein; alteration of free IkappaBalpha degradation dampens NF-kappaB activation. In addition, we find that both free and bound IkappaBalpha are similar substrates for IKK, and the preferential phosphorylation of NF-kappaB-bound IkappaBalpha is due to stabilization of IkappaBalpha by NF-kappaB.
Collapse
Affiliation(s)
- Erika Mathes
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0375, USA
| | | | | | | |
Collapse
|
22
|
Le Gall T, Romero PR, Cortese MS, Uversky VN, Dunker AK. Intrinsic disorder in the Protein Data Bank. J Biomol Struct Dyn 2007; 24:325-42. [PMID: 17206849 DOI: 10.1080/07391102.2007.10507123] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The Protein Data Bank (PDB) is the preeminent source of protein structural information. PDB contains over 32,500 experimentally determined 3-D structures solved using X-ray crystallography or nuclear magnetic resonance spectroscopy. Intrinsically disordered regions fail to form a fixed 3-D structure under physiological conditions. In this study, we compare the amino-acid sequences of proteins whose structures are determined by X-ray crystallography with the corresponding sequences from the Swiss-Prot database. The analyzed dataset includes 16,370 structures, which represent 18,101 PDB chains and 5,434 different proteins from 910 different organisms (2,793 eukaryotic, 2,109 bacterial, 288 viral, and 244 archaeal). In this dataset, on average, each Swiss-Prot protein is represented by 7 PDB chains with 76% of the crystallized regions being represented by more than one structure. Intriguingly, the complete sequences of only approximately 7% of proteins are observed in the corresponding PDB structures, and only approximately 25% of the total dataset have >95% of their lengths observed in the corresponding PDB structures. This suggests that the vast majority of PDB proteins is shorter than their corresponding Swiss-Prot sequences and/or contain numerous residues, which are not observed in maps of electron density. To determine the prevalence of disordered regions in PDB, the residues in the Swiss-Prot sequences were grouped into four general categories, "Observed" (which correspond to structured regions), "Not observed" (regions with missing electron density, potentially disordered), "Uncharacterized," and "Ambiguous," depending on their appearance in the corresponding PDB entries. This non-redundant set of residues can be viewed as a 'fragment' or empirical domain database that contains a set of experimentally determined structured regions or domains and a set of experimentally verified disordered regions or domains. We studied the propensities and properties of residues in these four categories and analyzed their relations to the predictions of disorder using several algorithms. "Non-observed," "Ambiguous," and "Uncharacterized" regions were shown to possess the amino acid compositional biases typical of intrinsically disordered proteins. The application of four different disorder predictors (PONDR(R) VL-XT, VL3-BA, VSL1P, and IUPred) revealed that the vast majority of residues in the "Observed" dataset are ordered, and that the "Not observed" regions are mostly disordered. The "Uncharacterized" regions possess some tendency toward order, whereas the predictions for the short "Ambiguous" regions are really ambiguous. Long "Ambiguous" regions (>70 amino acid residues) are mostly predicted to be ordered, suggesting that they are likely to be "wobbly" domains. Overall, we showed that completely ordered proteins are not highly abundant in PDB and many PDB sequences have disordered regions. In fact, in the analyzed dataset approximately 10% of the PDB proteins contain regions of consecutive missing or ambiguous residues longer than 30 amino-acids and approximately 40% of the proteins possess short regions (> or =10 and < 30 amino-acid long) of missing and ambiguous residues.
Collapse
Affiliation(s)
- Tanguy Le Gall
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
23
|
Harari-Steinberg O, Cantera R, Denti S, Bianchi E, Oron E, Segal D, Chamovitz DA. COP9 signalosome subunit 5 (CSN5/Jab1) regulates the development of the Drosophila immune system: effects on Cactus, Dorsal and hematopoiesis. Genes Cells 2007; 12:183-95. [PMID: 17295838 DOI: 10.1111/j.1365-2443.2007.01049.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The COP9 signalosome is a multifunctional regulator essential for Drosophila development. A loss-of-function mutant in Drosophila COP9 signalosome subunit 5 (CSN5) develops melanotic bodies, a phenotype common to mutants in immune signaling. csn5(null) larvae accumulated high levels of Cactus that co-localizes with Dorsal to the nucleus. However, Dorsal-dependent transcriptional activity remained repressed in the absence of an inducing signal, despite its nuclear localization. Dorsal activity in mutant larvae and NFkappaB activity in CSN5 down-regulated mammalian cells can be induced following activation of the Toll/IL-1 pathway. csn5(null) larvae contained more hemocytes than wild-type (wt) larvae. A large portion of these cells have differentiated to lamellocytes (LM), a hemocyte cell type rarely seen in normal larvae. The results presented here indicate that CSN5 is a negative regulator of Dorsal subcellular localization, and of hemocyte proliferation and differentiation. These results further indicate that nuclear localization of Dorsal can be uncoupled from its activation. Surprisingly, CSN5 is not necessary for immune-induced degradation of Cactus.
Collapse
|
24
|
Abstract
Nuclear factor kappaB (NF-kappaB), a transcription factor, plays an important role in carcinogenesis as well as in the regulation of immune and inflammatory responses. NF-kappaB induces the expression of diverse target genes that promote cell proliferation, regulate apoptosis, facilitate angiogenesis and stimulate invasion and metastasis. Furthermore, many cancer cells show aberrant or constitutive NF-kappaB activation which mediates resistance to chemo- and radio-therapy. Therefore, the inhibition of NF-kappaB activation and its signaling pathway offers a potential cancer therapy strategy. In addition, recent studies have shown that NF-kappaB can also play a tumor suppressor role in certain settings. In this review, we focus on the role of NF-kappaB in carcinogenesis and the therapeutic potential of targeting NF-kappaB in cancer therapy.
Collapse
Affiliation(s)
- Chae Hyeong Lee
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|
25
|
Sandhu KS, Dash D. Conformational flexibility may explain multiple cellular roles of PEST motifs. Proteins 2006; 63:727-32. [PMID: 16493650 DOI: 10.1002/prot.20918] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PEST sequences are one of the major motifs that serve as signal for the protein degradation and are also involved in various cellular processes such as phosphorylation and protein-protein interaction. In our earlier study, we found that these motifs contribute largely to eukaryotic protein disorder. This observation led us to evaluate their conformational variability in the nonredundant Protein Data Bank (PDB) structures. For this purpose, crystallographic temperature factors, structural alignment of multiple NMR models, and dihedral angle order parameters have been used in this study. The study has revealed the hypermobility of PEST motifs as compared to other regions of the protein. Conformational flexibility may allow them to participate in number of molecular interactions under different conditions. This analysis may explain the role of protein backbone flexibility in bringing about multiple cellular roles of PEST motifs.
Collapse
Affiliation(s)
- Kuljeet Singh Sandhu
- G. N. Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology, CSIR, Delhi, India
| | | |
Collapse
|
26
|
Singh GP, Ganapathi M, Sandhu KS, Dash D. Intrinsic unstructuredness and abundance of PEST motifs in eukaryotic proteomes. Proteins 2006; 62:309-15. [PMID: 16299712 DOI: 10.1002/prot.20746] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The study of unfolded protein regions has gained importance because of their prevalence and important roles in various cellular functions. These regions have characteristically high net charge and low hydrophobicity. The amino acid sequence determines the intrinsic unstructuredness of a region and, therefore, efforts are ongoing to delineate the sequence motifs, which might contribute to protein disorder. We find that PEST motifs are enriched in the characterized disordered regions as compared with globular ones. Analysis of representative PDB chains revealed very few structures containing PEST sequences and the majority of them lacked regular secondary structure. A proteome-wide study in completely sequenced eukaryotes with predicted unfolded and folded proteins shows that PEST proteins make up a large fraction of unfolded dataset as compared with the folded proteins. Our data also reveal the prevalence of PEST proteins in eukaryotic proteomes (approximately 25%). Functional classification of the PEST-containing proteins shows an over- and under-representation in proteins involved in regulation and metabolism, respectively. Furthermore, our analysis shows that predicted PEST regions do not exhibit any preference to be localized in the C terminals of proteins, as reported earlier.
Collapse
Affiliation(s)
- Gajinder Pal Singh
- Institute of Genomics and Integrative Biology (CSIR), Delhi University Campus, Delhi, India
| | | | | | | |
Collapse
|
27
|
Ai W, Takaishi S, Wang TC, Fleming JV. Regulation of l‐Histidine Decarboxylase and Its Role in Carcinogenesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:231-70. [PMID: 16891173 DOI: 10.1016/s0079-6603(06)81006-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Wandong Ai
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, Irving Cancer Research Center, New York, New York 10032, USA
| | | | | | | |
Collapse
|
28
|
Dessauge F, Lizundia R, Langsley G. Constitutively activated CK2 potentially plays a pivotal role in Theileria-induced lymphocyte transformation. Parasitology 2005; 130 Suppl:S37-44. [PMID: 16281991 DOI: 10.1017/s0031182005008140] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Activation of casein kinase II (CK2) was one of the first observations made on how Theileria parasites manipulate host cell signal transduction pathways and we argue that CK2 induction may in fact contribute to many of the different activation events that have been described since 1993 for Theileria-infected lymphocytes such as sustained activation of transcription factors c-Myc and NF-κB. CK2 also contributes to infected lymphocyte survival by inhibiting caspase activation and is probably behind constitutive PI3-K activation by phosphorylating PTEN. Finally, we also discuss how CK2A may act not only as a kinase, but also as a stimulatory subunit for the protein phosphatase PP2A, so dampening down the MEK/ERK and Akt/PKB pathways and for all these reasons we propose CK2 as a central player in Theileria-induced lymphocyte transformation.
Collapse
Affiliation(s)
- F Dessauge
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, UMR 8104 CNRS/U567 INSERM, Département Maladies Infectieuses, Hôpital Cochin-Bâtiment Gustave Roussy, Institut Cochin, Paris, France
| | | | | |
Collapse
|
29
|
Wuerzberger-Davis SM, Chang PY, Berchtold C, Miyamoto S. Enhanced G2-M arrest by nuclear factor-{kappa}B-dependent p21waf1/cip1 induction. Mol Cancer Res 2005; 3:345-53. [PMID: 15972853 DOI: 10.1158/1541-7786.mcr-05-0028] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transcription factor nuclear factor-kappaB (NF-kappaB) regulates cell survival pathways, but the molecular mechanisms involved are not completely understood. Here, we developed a NF-kappaB reporter cell system derived from CEM T leukemic cells to monitor the consequences of NF-kappaB activation following DNA damage insults. Cells that activated NF-kappaB in response to ionizing radiation or etoposide arrested in the G2-M phase for a prolonged time, which was followed by increased cell cycle reentry and survival. In contrast, those that failed to activate NF-kappaB underwent transient G2-M arrest and extensive cell death. Importantly, p21waf1/cip1 was induced in S-G2-M phases in a NF-kappaB-dependent manner, and RNA interference of this cell cycle regulator reduced the observed NF-kappaB-dependent phenotypes. Thus, cell cycle-coupled induction of p21waf1/cip1 by NF-kappaB represents a resistance mechanism in certain cancer cells.
Collapse
Affiliation(s)
- Shelly M Wuerzberger-Davis
- Department of Pharmacology, University of Wisconsin, 301 Service Memorial Institute, 1300 University Avenue, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
30
|
Fowler AM, Solodin NM, Valley CC, Alarid ET. Altered target gene regulation controlled by estrogen receptor-alpha concentration. Mol Endocrinol 2005; 20:291-301. [PMID: 16179380 DOI: 10.1210/me.2005-0288] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Estrogen receptor-alpha (ERalpha) is a transcriptional activator whose concentration is tightly regulated by the cellular environment. In breast tumors of postmenopausal women, elevated receptor concentrations can be associated with negative clinical outcomes, yet it remains poorly understood how such high levels impact ERalpha function. We previously demonstrated that high nuclear concentrations of ERalpha in breast cancer cells bypass the requirement for ligand and are sufficient to activate transcription and accelerate proliferation. Here, we extended those studies and asked whether the transcriptional targets and activation mechanism are similar or different from that of estrogen-stimulated ERalpha. We found that at elevated levels, ERalpha activated, but could not repress, known estrogen-responsive genes. Moreover, the set of activated genes was expanded to include the uterine-restricted target gene, complement component 3. The activation mechanism of ERalpha under these conditions depends both on activation function-1 and residues in the proximal region of the ligand-binding domain. Mutations of aspartate 351 and leucine 372 can inhibit ERalpha transcriptional activity gained at high concentrations and discriminate concentration-inducible ERalpha function from that induced by estrogen. Moreover, we demonstrate that at high levels, ERalpha stimulates transcription without recruiting steroid receptor coactivator-3 and without interference by a Gal4-receptor interaction domain box fusion protein containing LxxLL motifs, further distinguishing this mode of regulation from known activation mechanisms. Together these results demonstrate that the concentration of receptor in breast cancer cells can influence the pattern of target gene expression through a noncanonical activation mechanism.
Collapse
Affiliation(s)
- Amy M Fowler
- Department of Physiology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
31
|
Baetz D, Shaw J, Kirshenbaum LA. Nuclear factor-kappaB decoys suppress endotoxin-induced lung injury. Mol Pharmacol 2005; 67:977-9. [PMID: 15673601 DOI: 10.1124/mol.105.011296] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Delphine Baetz
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre Rm. 3016, 351 Taché Avenue, Winnipeg, Manitoba, Canada, R2H 2A6
| | | | | |
Collapse
|
32
|
O'Connor S, Shumway S, Miyamoto S. Inhibition of IκBα Nuclear Export as an Approach to Abrogate Nuclear Factor-κB–Dependent Cancer Cell Survival. Mol Cancer Res 2005. [DOI: 10.1158/1541-7786.42.3.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Deregulation of the transcription factor nuclear factor-κB (NF-κB) leading to its constitutive activation is frequently observed in human cancer. Because altered NF-κB activities often promote the survival of malignant cells, its inhibition is regarded as a promising anticancer strategy. Because activation of the latent cytoplasmic NF-κB complex can be induced by a wide variety of different stimuli, its deregulation may occur by an equally large number of distinct mechanisms. This diversity raises a conundrum in conceptualizing general approaches to attenuate NF-κB activity in cancer. Here, we provide evidence that inhibition of IκBα nuclear export is a viable target to generally abrogate constitutive NF-κB activity in different cancer cell types. We show that inhibition of IκBα nuclear export has an important course of events in cancer cells harboring constitutive NF-κB activity—an initial increase in the pool of stable nuclear NF-κB/IκBα complexes that leads to a reduction of constitutive NF-κB activity and subsequent induction of apoptosis. Importantly, similar effects on multiple different cancer cell types indicate that inhibition of nuclear export of IκBα leads to broad inhibition of constitutive NF-κB activation regardless of various deregulated, upstream events involved.
Collapse
Affiliation(s)
- Shelby O'Connor
- Program in Cellular and Molecular Biology, Department of Pharmacology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Stuart Shumway
- Program in Cellular and Molecular Biology, Department of Pharmacology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Shigeki Miyamoto
- Program in Cellular and Molecular Biology, Department of Pharmacology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
33
|
Lee J, Kim YS, Choi DH, Bang MS, Han TR, Joh TH, Kim SY. Transglutaminase 2 Induces Nuclear Factor-κB Activation via a Novel Pathway in BV-2 Microglia. J Biol Chem 2004; 279:53725-35. [PMID: 15471861 DOI: 10.1074/jbc.m407627200] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transglutaminase 2 (TGase 2) expression is increased in inflammatory diseases. We demonstrated previously that inhibitors of TGase 2 reduce nitric oxide (NO) generation in a lipopolysaccharide (LPS)-treated microglial cell line. However, the precise mechanism by which TGase 2 promotes inflammation remains unclear. We found that TGase 2 activates the transcriptional activator nuclear factor (NF)-kappaB and thereby enhances LPS-induced expression of inducible nitric-oxide synthase. TGase 2 activates NF-kappaB via a novel pathway. Rather than stimulating phosphorylation and degradation of the inhibitory subunit alpha of NF-kappaB (I-kappaBalpha), TGase2 induces its polymerization. This polymerization results in dissociation of NF-kappaB and its translocation to the nucleus, where it is capable of up-regulating a host of inflammatory genes, including inducible nitric-oxide synthase and tumor necrosis factor alpha (TNF-alpha). Indeed, TGase inhibitors prevent depletion of monomeric I-kappaBalpha in the cytosol of cells overexpressing TGase 2. In an LPS-induced rat brain injury model, TGase inhibitors significantly reduced TNF-alpha synthesis. The findings are consistent with a model in which LPS-induced NF-kappaB activation is the result of phosphorylation of I-kappaBalpha by I-kappaB kinase as well as I-kappaBalpha polymerization by TGase 2. Safe and stable TGase2 inhibitors may be effective agents in diseases associated with inflammation.
Collapse
Affiliation(s)
- Jongmin Lee
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University and Burke Medical Research Institute, White Plains, NY 10605, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Shumway SD, Miyamoto S. A mechanistic insight into a proteasome-independent constitutive inhibitor kappaBalpha (IkappaBalpha) degradation and nuclear factor kappaB (NF-kappaB) activation pathway in WEHI-231 B-cells. Biochem J 2004; 380:173-80. [PMID: 14763901 PMCID: PMC1224141 DOI: 10.1042/bj20031796] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2003] [Revised: 02/03/2004] [Accepted: 02/06/2004] [Indexed: 11/17/2022]
Abstract
Inducible activation of the transcription factor NF-kappaB (nuclear factor kappaB) is classically mediated by proteasomal degradation of its associated inhibitors, IkappaBalpha (inhibitory kappaBalpha) and IkappaBbeta. However, certain B-lymphocytes maintain constitutively nuclear NF-kappaB activity (a p50-c-Rel heterodimer) which is resistant to inhibition by proteasome inhibitors. This activity in the WEHI-231 B-cell line is associated with continual and preferential degradation of IkappaBalpha, which is also unaffected by proteasome inhibitors. Pharmacological studies indicated that there was a correlation between inhibition of IkappaBalpha degradation and constitutive p50-c-Rel activity. Domain analysis of IkappaBalpha by deletion mutagenesis demonstrated that an N-terminal 36-amino-acid sequence of IkappaBalpha represented an instability determinant for constitutive degradation. Moreover, domain grafting studies indicated that this sequence was sufficient to cause IkappaBbeta, but not chloramphenicol acetyltransferase, to be rapidly degraded in WEHI-231 B-cells. However, this sequence was insufficient to target IkappaBbeta to the non-proteasome degradation pathway, suggesting that there was an additional cis-element(s) in IkappaBalpha that was required for complete targeting. Nevertheless, the NF-kappaB pool associated with IkappaBbeta now became constitutively active by virtue of IkappaBbeta instability in these cells. These findings further support the notion that IkappaB instability governs the maintenance of constitutive p50-c-Rel activity in certain B-cells via a unique degradation pathway.
Collapse
Affiliation(s)
- Stuart D Shumway
- Program in Cellular and Molecular Biology, Department of Pharmacology, University of Wisconsin, 3795 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706, USA
| | | |
Collapse
|
35
|
Zhang Z, Wu JY, Hait WN, Yang JM. Regulation of the stability of P-glycoprotein by ubiquitination. Mol Pharmacol 2004; 66:395-403. [PMID: 15322230 DOI: 10.1124/mol.104.001966] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ubiquitination plays a crucial role in regulating protein turnover. Here we show that ubiquitination regulates the stability of the MDR1 gene product, P-glycoprotein, thereby affecting the functions of this membrane transporter that mediates multidrug resistance. We found that P-glycoprotein was constitutively ubiquitinated in drug-resistant cancer cells. Transfection of multidrug-resistant cells with wild-type ubiquitin or treatment with an N-glycosylation inhibitor increased the ubiquitination of P-glycoprotein and increased P-glycoprotein degradation. Carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG-132), a proteasome inhibitor, induced accumulation of ubiquitinated P-glycoprotein, suggesting the involvement of the proteasome in the turnover of the transporter. Treatment of multidrug-resistant cells with 12-O-tetradecanoylphorbol-13-acetate, a phorbol ester that increases the phosphorylation of P-glycoprotein through activation of protein kinase C, or substituting phosphorylation sites of P-glycoprotein by nonphosphorylatable residues did not affect the ubiquitination of the transporter. Enhanced ubiquitination of P-glycoprotein resulted in a decrease of the function of the transporter, as demonstrated by increased intracellular drug accumulation and increased cellular sensitivity to drugs transported by P-glycoprotein. Our results indicate that the stability and function of P-glycoprotein can be regulated by the ubiquitin-proteasome pathway and suggest that modulating the ubiquitination of P-glycoprotein might be a novel approach to the reversal of drug resistance.
Collapse
Affiliation(s)
- Zhigang Zhang
- The Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey/Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | | | | | | |
Collapse
|
36
|
Bross PF, Kane R, Farrell AT, Abraham S, Benson K, Brower ME, Bradley S, Gobburu JV, Goheer A, Lee SL, Leighton J, Liang CY, Lostritto RT, McGuinn WD, Morse DE, Rahman A, Rosario LA, Verbois SL, Williams G, Wang YC, Pazdur R. Approval Summary for Bortezomib for Injection in the Treatment of Multiple Myeloma. Clin Cancer Res 2004; 10:3954-64. [PMID: 15217925 DOI: 10.1158/1078-0432.ccr-03-0781] [Citation(s) in RCA: 274] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Peter F Bross
- Division of Oncology Drug Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Rockville, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
O'Connor S, Shumway SD, Amanna IJ, Hayes CE, Miyamoto S. Regulation of constitutive p50/c-Rel activity via proteasome inhibitor-resistant IkappaBalpha degradation in B cells. Mol Cell Biol 2004; 24:4895-908. [PMID: 15143182 PMCID: PMC416427 DOI: 10.1128/mcb.24.11.4895-4908.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Constitutive NF-kappaB activity has emerged as an important cell survival component of physiological and pathological processes, including B-cell development. In B cells, constitutive NF-kappaB activity includes p50/c-Rel and p52/RelB heterodimers, both of which are critical for proper B-cell development. We previously reported that WEHI-231 B cells maintain constitutive p50/c-Rel activity via selective degradation of IkappaBalpha that is mediated by a proteasome inhibitor-resistant, now termed PIR, pathway. Here, we examined the mechanisms of PIR degradation by comparing it to the canonical pathway that involves IkappaB kinase-dependent phosphorylation and beta-TrCP-dependent ubiquitylation of the N-terminal signal response domain of IkappaBalpha. We found a distinct consensus sequence within this domain of IkappaBalpha for PIR degradation. Chimeric analyses of IkappaBalpha and IkappaBbeta further revealed that the ankyrin repeats of IkappaBalpha, but not IkappaBbeta, contained information necessary for PIR degradation, thereby explaining IkappaBalpha selectivity for the PIR pathway. Moreover, we found that PIR degradation of IkappaBalpha and constitutive p50/c-Rel activity in primary murine B cells were maintained in a manner different from B-cell-activating-factor-dependent p52/RelB regulation. Thus, our findings suggest that nonconventional PIR degradation of IkappaBalpha may play a physiological role in the development of B cells in vivo.
Collapse
Affiliation(s)
- Shelby O'Connor
- Department of Pharmacology, University of Wisconsin, 301 SMI, 1300 University Ave., Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
38
|
Yang L, Ross K, Qwarnstrom EE. RelA control of IkappaBalpha phosphorylation: a positive feedback loop for high affinity NF-kappaB complexes. J Biol Chem 2003; 278:30881-8. [PMID: 12663663 DOI: 10.1074/jbc.m212216200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NF-kappaB-IkappaB complex formation regulates the level and specificity of NF-kappaB activity. Quantitative analyses showed that RelA-NF-kappaB-induced IkappaBalpha binding is regulated through inhibitor retention and phosphorylation. RelA caused an increase in IkappaBalpha phosphorylation and in degradation, which was enhanced monotonically with inhibitor concentration. In vivo analysis demonstrated the RelA-induced IkappaBalpha/RelA interactions to be specific, saturable, and phosphorylation-dependent. In addition, it showed that phosphorylation regulates both the level and affinity of the complexes and demonstrated an increased average affinity to coincide with reduction in the level of complexes during cytokine-induced pathway activation. The data show that RelA regulation of NF-kappaB-IkappaBalpha complex formation is IkappaBalpha phosphorylation-dependent and that IkappaBalpha/NF-kappaB binding is dynamic and determined by concentration of the subunits. In addition, they suggest that regulation of both complex levels and affinities through phosphorylation, with effects on the system steady state, participate in selective activation of the NF-kappaB pathway.
Collapse
Affiliation(s)
- Lin Yang
- Cell Biology Unit, Functional Genomics, Division of Genomic Medicine, The Medical School, University of Sheffield, Sheffield S10 2JF, United Kingdom
| | | | | |
Collapse
|
39
|
Place RF, Haspeslagh D, Giardina C. Induced stabilization of IkappaBalpha can facilitate its re-synthesis and prevent sequential degradation. J Cell Physiol 2003; 195:470-8. [PMID: 12704657 DOI: 10.1002/jcp.10262] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The transcription factor NF-kappaB is responsible for regulating genes that can profoundly impact cell proliferation, apoptosis, inflammation, and immune responses. The NF-kappaB inhibitor IkappaBalpha is rapidly degraded and then re-synthesized after an NF-kappaB stimulus. We have found that the re-synthesis of IkappaBalpha in a human colon-derived cell line (HT-29) includes the post-translational stabilization of newly synthesized IkappaBalpha. The TNF-alpha-induced stabilization of newly synthesized IkappaBalpha involves the C-terminal PEST region of the protein: N-terminal deletion mutants (lacking the IkappaB kinase phosphorylation sites) were readily stabilized by TNF-alpha, whereas deletion of the C-terminus resulted in a constitutively stable protein. The role of the C-terminus in stabilization was further supported by the finding that fusion of the IkappaBalpha C-terminus to GFP generated a protein that could also be stabilized by TNF-alpha. The p38 mitogen-activated protein (MAP) kinase inhibitor SB203580 prevented stabilization of IkappaBalpha and delayed the re-emergence of IkappaBalpha following TNF-alpha-induced degradation. The IkappaBalpha stabilization pathway could prevent sequential rounds of IkappaBalpha degradation without preventing IkappaBalpha phosphorylation. Analysis of two other cell lines (SW480 and THP-1) revealed similarities and cell-specific differences in the regulation of IkappaBalpha stabilization. We propose that cytokine stabilization of newly synthesized IkappaBalpha in some cell types is a critical homeostatic mechanism that limits inflammatory gene expression.
Collapse
Affiliation(s)
- Robert F Place
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269, USA
| | | | | |
Collapse
|
40
|
Regula KM, Ens K, Kirshenbaum LA. IKK beta is required for Bcl-2-mediated NF-kappa B activation in ventricular myocytes. J Biol Chem 2002; 277:38676-82. [PMID: 12167626 DOI: 10.1074/jbc.m206175200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor nuclear factor kappa B (NF-kappa B) is regulated by cytoplasmic inhibitor I kappa B alpha. An integral step in the activation of NF-kappa B involves the phosphorylation and degradation of I kappa B alpha. We have previously reported that I kappa B alpha activity is diminished in ventricular myocytes expressing Bcl-2 (de Moissac, D., Zheng, H., and Kirshenbaum, L. A. (1999) J. Biol. Chem. 274, 29505-29509). The underlying mechanism by which Bcl-2 activates NF-kappa B is undefined. In view of growing evidence that the I kappa B kinases (IKKs), notably IKK beta, are involved in signal induced phosphorylation of I kappa B alpha, we ascertained whether IKK beta is necessary and sufficient for Bcl-2 mediated NF-kappa B activation. Here we demonstrate that expression of Bcl-2 in ventricular myocytes resulted in an increase in NF-kappa B-dependent DNA binding, NF-kappa B gene transcription and reduced I kappa B alpha levels. An increase in the IKK beta kinase activity was observed in cells expressing full-length Bcl-2 but not in cells expressing the BH4 deletion mutant of Bcl-2 (Delta BH4; residues 10-30). Catalytically inactive mutants of IKK beta, but not IKK alpha, suppressed Bcl-2-mediated I kappa B alpha phosphorylation and NF-kappa B activation. Transfection of human embryonic 293 cells with a kinase-defective Raf-1 or a kinase-defective mitogen-activated protein kinase/extracellular signal-regulated kinase kinase-1 (MEKK-1) suppressed Bcl-2-mediated IKK beta activity and NF-kappa B activation. Further, Bcl-2-mediated NF-kappa B activity was impaired in nullizygous mouse embryonic fibroblasts deficient for IKK beta. In this report, we provide the first direct evidence that Bcl-2 activates NF-kappa B by a signaling mechanism that involves Raf-1/MEKK-1 mediated activation of IKK beta.
Collapse
Affiliation(s)
- Kelly M Regula
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, and the Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | | | | |
Collapse
|
41
|
Garg A, Aggarwal BB. Nuclear transcription factor-kappaB as a target for cancer drug development. Leukemia 2002; 16:1053-68. [PMID: 12040437 DOI: 10.1038/sj.leu.2402482] [Citation(s) in RCA: 352] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2001] [Accepted: 01/21/2002] [Indexed: 11/09/2022]
Abstract
Nuclear factor kappa B (NF-kappaB) is a family of inducible transcription factors found virtually ubiquitously in all cells. Since its discovery by Sen and Baltimore in 1986, much has been discovered about its mechanisms of activation, its target genes, and its function in a variety of human diseases including those related to inflammation, asthma, atherosclerosis, AIDS, septic shock, arthritis, and cancer. Due to its role in a wide variety of diseases, NF-kappaB has become one of the major targets for drug development. Here, we review our current knowledge of NF-kappaB, the possible mechanisms of its activation, its potential role in cancer, and various strategies being employed to target the NF-kappaB signaling pathway for cancer drug development.
Collapse
Affiliation(s)
- A Garg
- Cytokine Research Laboratory, Department of Bioimmunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
42
|
Dhawan P, Richmond A. A novel NF-kappa B-inducing kinase-MAPK signaling pathway up-regulates NF-kappa B activity in melanoma cells. J Biol Chem 2002; 277:7920-8. [PMID: 11773061 PMCID: PMC2668260 DOI: 10.1074/jbc.m112210200] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Constitutive activation of NF-kappa B is an emerging hallmark of various types of tumors including breast, colon, pancreatic, ovarian, and melanoma. In melanoma cells, the basal expression of the CXC chemokine, CXCL1, is constitutively up-regulated. This up-regulation can be attributed in part to constitutive activation of NF-kappa B. Previous studies have shown an elevated basal I kappa B kinase (IKK) activity in Hs294T melanoma cells, which leads to an increased rate of I kappa B phosphorylation and degradation. This increase in I kappa B-alpha phosphorylation and degradation leads to an approximately 19-fold higher nuclear localization of NF-kappa B. However, the upstream IKK kinase activity is up-regulated by only about 2-fold and cannot account for the observed increase in NF-kappa B activity. We now demonstrate that NF-kappa B-inducing kinase (NIK) is highly expressed in melanoma cells, and IKK-associated NIK activity is enhanced in these cells compared with the normal cells. Kinase-dead NIK blocked constitutive NF-kappa B or CXCL1 promoter activity in Hs294T melanoma cells, but not in control normal human epidermal melanocytes. Transient overexpression of wild type NIK results in increased phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), which is inhibited in a concentration-dependent manner by PD98059, an inhibitor of p42/44 MAPK. Moreover, the NF-kappa B promoter activity decreased with overexpression of dominant negative ERK expression constructs, and EMSA analyses further support the hypothesis that ERK acts upstream of NF-kappa B and regulates the NF-kappa B DNA binding activity. Taken together, our data implicate involvement of I kappa B kinase and MAPK signaling cascades in NIK-induced constitutive activation of NF-kappa B.
Collapse
Affiliation(s)
- Punita Dhawan
- Department of Veterans Affairs, Nashville, Tennessee 37212
| | - Ann Richmond
- Department of Veterans Affairs, Nashville, Tennessee 37212
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
- To whom correspondence should be addressed: Dept. of Cancer Biology, Vanderbilt University School of Medicine, MCN T-2212, Nashville, TN 37232. Tel.: 615-343-7777; Fax: 615-343-4539; E-mail:
| |
Collapse
|
43
|
Wallace AD, Cidlowski JA. Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids. J Biol Chem 2001; 276:42714-21. [PMID: 11555652 DOI: 10.1074/jbc.m106033200] [Citation(s) in RCA: 278] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligand-dependent down-regulation of the glucocorticoid receptor (GR) has been shown to limit hormone responsiveness, but the mechanisms involved in this process are poorly understood. The glucocorticoid receptor is a phosphoprotein that upon ligand binding becomes hyperphosphorylated, and recent evidence indicates that phosphorylation status of the glucocorticoid receptor plays a prominent role in receptor protein turnover. Because phosphorylation is a key signal for ubiquitination and proteasomal catabolism of many proteins, we evaluated whether the ubiquitin-proteasomal pathway had a role in glucocorticoid receptor down-regulation and the subsequent transcriptional response to glucocorticoids. Pretreatment of COS-1 cells expressing mouse glucocorticoid receptor with the proteasome inhibitor MG-132 effectively blocks glucocorticoid receptor protein down-regulation by the glucocorticoid dexamethasone. Interestingly, both MG-132 and a second proteasome inhibitor beta-lactone significantly enhanced hormone response of transfected mouse glucocorticoid receptor toward transcriptional activation of glucocorticoid receptor-mediated reporter gene expression. The transcriptional activity of the endogenous human glucocorticoid receptor in HeLa cells was also enhanced by MG-132. Direct evidence for ubiquitination of the glucocorticoid receptor was obtained by immunoprecipitation of cellular extracts from proteasome-impaired cells. Examination of the primary sequence of mouse, human, and rat glucocorticoid receptor has identified a candidate PEST degradation motif. Mutation of Lys-426 within this PEST element both abrogated ligand-dependent down-regulation of glucocorticoid receptor protein and simultaneously enhanced glucocorticoid receptor-induced transcriptional activation of gene expression. Unlike wild type GR, proteasomal inhibition failed to enhance significantly transcriptional activity of K426A mutant GR. Together these findings suggest a major role of the ubiquitin-proteasome pathway in regulating glucocorticoid receptor protein turnover, thereby providing a mechanism to terminate glucocorticoid responses.
Collapse
Affiliation(s)
- A D Wallace
- Molecular Endocrinology Group, Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
44
|
Craig R, Wagner M, McCardle T, Craig AG, Glembotski CC. The cytoprotective effects of the glycoprotein 130 receptor-coupled cytokine, cardiotrophin-1, require activation of NF-kappa B. J Biol Chem 2001; 276:37621-9. [PMID: 11448959 DOI: 10.1074/jbc.m103276200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many cell types mount elaborate, compensatory responses to stress that enhance survival; however, the intracellular signals that govern these responses are poorly understood. Cardiotrophin-1 (CT-1), a stress-induced cytokine, belongs to the interleukin-6/glycoprotein 130 receptor-coupled cytokine family. CT-1 is released from the heart in response to hypoxic stress, and it protects cardiac myocytes from hypoxia-induced apoptosis, thus establishing a central role for this cytokine in the cardiac stress response. In the present study, CT-1 activated p38 and ERK MAPKs as well as Akt in cultured cardiac myocytes; these three pathways were activated in a parallel manner. CT-1 also induced the degradation of the NF-kappa B cytosolic anchor, I kappa B, as well as the translocation of the p65 subunit of NF-kappa B to the nucleus and increased expression of an NF-kappa B-dependent reporter gene. Inhibitors of the p38, ERK, or Akt pathways each partially reduced CT-1-mediated NF-kappa B activation, as well as the cytoprotective effects of CT-1 against hypoxic stress. Together, the inhibitors completely blocked CT-1-dependent NF-kappa B activation and cytoprotection. A cell-permeable peptide that selectively disrupted NF-kappa B activation also completely inhibited the cytoprotective effects of CT-1. These results indicate that CT-1 signals through p38, ERK, and Akt in a parallel manner to activate NF-kappa B and that NF-kappa B is required for CT-1 to mediate its full cytoprotective effects in cardiac myocytes.
Collapse
Affiliation(s)
- R Craig
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, California 92182, USA
| | | | | | | | | |
Collapse
|
45
|
Alcamo E, Mizgerd JP, Horwitz BH, Bronson R, Beg AA, Scott M, Doerschuk CM, Hynes RO, Baltimore D. Targeted mutation of TNF receptor I rescues the RelA-deficient mouse and reveals a critical role for NF-kappa B in leukocyte recruitment. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:1592-600. [PMID: 11466381 DOI: 10.4049/jimmunol.167.3.1592] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
NF-kappaB binding sites are present in the promoter regions of many acute phase and inflammatory response genes, suggesting that NF-kappaB plays an important role in the initiation of innate immune responses. However, targeted mutations of the various NF-kappaB family members have yet to identify members responsible for this critical role. RelA-deficient mice die on embryonic day 15 from TNF-alpha-induced liver degeneration. To investigate the importance of RelA in innate immunity, we genetically suppressed this embryonic lethality by breeding the RelA deficiency onto a TNFR type 1 (TNFR1)-deficient background. TNFR1/RelA-deficient mice were born healthy, but were susceptible to bacterial infections and bacteremia and died within a few weeks after birth. Hemopoiesis was intact in TNFR1/RelA-deficient newborns, but neutrophil emigration to alveoli during LPS-induced pneumonia was severely reduced relative to that in wild-type or TNFR1-deficient mice. In contrast, radiation chimeras reconstituted with RelA or TNFR1/RelA-deficient hemopoietic cells were healthy and demonstrated no defect in neutrophil emigration during LPS-induced pneumonia. Analysis of RNA harvested from the lungs of mice 4 h after LPS insufflation revealed that the induction of several genes important for neutrophil recruitment to the lung was significantly reduced in TNFR1/RelA-deficient mice relative to that in wild-type or TNFR1-deficient mice. These results suggest that TNFR1-independent activation of RelA is essential in cells of nonhemopoietic origin during the initiation of an innate immune response.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/physiology
- Female
- Fetal Death/genetics
- Fetal Death/immunology
- Fetal Death/pathology
- Fetal Death/prevention & control
- Gene Deletion
- Gene Expression Regulation/genetics
- Gene Expression Regulation/immunology
- Gene Targeting
- Hematopoiesis/genetics
- Hematopoiesis/immunology
- Lipopolysaccharides/toxicity
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NF-kappa B/biosynthesis
- NF-kappa B/deficiency
- NF-kappa B/genetics
- NF-kappa B/physiology
- Neutrophil Infiltration/genetics
- Peritonitis/chemically induced
- Peritonitis/pathology
- Pneumonia, Bacterial/genetics
- Pneumonia, Bacterial/immunology
- Pneumonia, Bacterial/pathology
- Radiation Chimera/immunology
- Receptors, Tumor Necrosis Factor/deficiency
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Type I
- Survival Analysis
- Thioglycolates/toxicity
- Transcription Factor RelA
Collapse
Affiliation(s)
- E Alcamo
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Place RF, Haspeslagh D, Hubbard AK, Giardina C. Cytokine-induced stabilization of newly synthesized I(kappa)B-alpha. Biochem Biophys Res Commun 2001; 283:813-20. [PMID: 11350057 DOI: 10.1006/bbrc.2001.4883] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
NF-kappaB activation is triggered by the degradation of inhibitory proteins, such as I(kappa)B-alpha. I(kappa)B-alpha levels are only transiently lowered since one gene activated by NF-kappaB is I(kappa)B-alpha. We found that I(kappa)B-alpha was replenished rapidly in a human colon cell line (HT-29), even in the presence of degradation-inducing phosphorylation (at serine-32). This finding lead us to hypothesize that posttranscriptional mechanisms were also in place to facilitate I(kappa)B-alpha replenishment. Expression of I(kappa)B-alpha from the constitutive, non-NF-kappaB regulated cytomegalovirus promoter in HT-29 cells showed that TNF-alpha or IL-1beta treatment increased I(kappa)B-alpha levels in the absence of transcriptional activation. The TNF-alpha-induced increase in transgenic I(kappa)B-alpha appeared to result from the stabilization of newly synthesized I(kappa)B-alpha, since this increase was effectively preempted by a proteasome inhibitor (MG132) or by I(kappa)B-alpha stabilization through the deletion C-terminal destabilizing elements (without additive or synergistic effects). Analysis of a hepatoma cell line (Hepa 1-4C7) indicated that the I(kappa)B-alpha stabilization may be constitutive in these cells. NF-kappaB stimuli therefore appear to trigger negative feedback pathways in some cells that terminate a NF-kappaB response by increasing the stability of newly synthesized I(kappa)B-alpha.
Collapse
Affiliation(s)
- R F Place
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | | | |
Collapse
|
47
|
Pennington KN, Taylor JA, Bren GD, Paya CV. IkappaB kinase-dependent chronic activation of NF-kappaB is necessary for p21(WAF1/Cip1) inhibition of differentiation-induced apoptosis of monocytes. Mol Cell Biol 2001; 21:1930-41. [PMID: 11238929 PMCID: PMC86780 DOI: 10.1128/mcb.21.6.1930-1941.2001] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2000] [Accepted: 12/11/2000] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms regulating monocyte differentiation to macrophages remain unknown. Although the transcription factor NF-kappaB participates in multiple cell functions, its role in cell differentiation is ill defined. Since differentiated macrophages, in contrast to cycling monocytes, contain significant levels of NF-kappaB in the nuclei, we questioned whether this transcription factor is involved in macrophage differentiation. Phorbol 12-myristate 13-acetate (PMA)-induced differentiation of the promonocytic cell line U937 leads to persistent NF-kappaB nuclear translocation. We demonstrate here that an increased and persistent IKK activity correlates with monocyte differentiation leading to persistent NF-kappaB activation secondary to increased IkappaBalpha degradation via the IkappaB signal response domain (SRD). Promonocytic cells stably overexpressing an IkappaBalpha transgene containing SRD mutations fail to activate NF-kappaB and subsequently fail to survive the PMA-induced macrophage differentiation program. The differentiation-induced apoptosis was found to be dependent on tumor necrosis factor alpha. The protective effect of NF-kappaB is mediated through p21(WAF1/Cip1), since this protein was found to be regulated in an NF-kappaB-dependent manner and to confer survival features during macrophage differentiation. Therefore, NF-kappaB plays a key role in cell differentiation by conferring cell survival that in the case of macrophages is mediated through p21(WAF1/Cip1).
Collapse
Affiliation(s)
- K N Pennington
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
48
|
Deng L, Lin-Lee YC, Claret FX, Kuo MT. 2-acetylaminofluorene up-regulates rat mdr1b expression through generating reactive oxygen species that activate NF-kappa B pathway. J Biol Chem 2001; 276:413-20. [PMID: 11020383 DOI: 10.1074/jbc.m004551200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of multidrug resistance genes and their encoded P-glycoproteins is a major mechanism for the development of multidrug resistance in cancer cells. The hepatocarcinogen 2-acetylaminofluorene (2-AAF) efficiently activates rat mdr1b expression. However, the underlying mechanisms are largely unknown. In this study, we demonstrated that a NF-kappa B site on the mdr1b promoter was required for this induction. Overexpression of antisense p65 and I kappa B alpha partially abolished the induction. We then delineated the pathway through which 2-AAF activates NF-kappa B. 2-AAF treatment led to the increase of intracellular reactive oxygen species (ROS) which causes activation of IKK kinases, degradation of I kappa B beta (but not I kappa B alpha), and increase in NF-kappa B DNA binding activity. Consistent with the idea that ROS may participate in mdr1b regulation, antioxidant N-acetylcysteine inhibited the induction of mdr1b by 2-AAF. Overproduction of a physiological antioxidant glutathione (GSH) blocked the activation of IKK kinase complex and NF-kappa B DNA binding. Based on these results, we conclude that 2-AAF up-regulates mdr1b through the generation of ROS, activation of IKK kinase, degradation of I kappa B beta, and subsequent activation of NF-kappa B. This is the first report that reveals the specific cis-elements and signaling pathway responsible for the induction of mdr1b by the chemical carcinogen 2-AAF.
Collapse
Affiliation(s)
- L Deng
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
49
|
Bourke E, Kennedy EJ, Moynagh PN. Loss of Ikappa B-beta is associated with prolonged NF-kappa B activity in human glial cells. J Biol Chem 2000; 275:39996-40002. [PMID: 10998424 DOI: 10.1074/jbc.m007693200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear factor-kappaB (NF-kappaB) is an inducible transcription factor central in the regulation of expression of a wide variety of genes and synthesis of several proteins involved in the generation of the immune response and inflammatory processes. In resting cells, NF-kappaB is maintained in an inactive state through cytoplasmic retention by IkappaB inhibitors. Stimulation of cells with a wide variety of inducers results in proteolytic degradation of these IkappaB proteins, leading to activation of NF-kappaB. The present study shows that interleukin-1 (IL-1) causes persistent activation of NF-kappaB in glial cells. Stimulation with IL-1 also causes rapid but transient degradation of IkappaB-alpha and IkappaB-epsilon. However, NF-kappaB remains active even after these IkappaB isoforms have returned to control levels. In contrast, the IkappaB-beta isoform fails to reappear following its initial degradation by IL-1, coincident with sustained activation of NF-kappaB. In addition, in vivo overexpression of the various IkappaB isoforms revealed that IkappaB-beta is the only isoform that has the ability to inhibit IL-1-induced NF-kappaB-driven transcription. The findings also suggest that the inability of IkappaB-alpha and IkappaB-epsilon to modulate NF-kappaB activity is due to their modification in vivo. These findings indicate that IkappaB-beta is the key regulator of the activity of NF-kappaB in human glial cells.
Collapse
Affiliation(s)
- E Bourke
- Department of Pharmacology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Foster's Avenue, Blackrock, County Dublin, Ireland
| | | | | |
Collapse
|
50
|
Pando MP, Verma IM. Signal-dependent and -independent degradation of free and NF-kappa B-bound IkappaBalpha. J Biol Chem 2000; 275:21278-86. [PMID: 10801847 DOI: 10.1074/jbc.m002532200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A family of inhibitory IkappaB molecules regulates the activation of the transcription factor NF-kappaB. One member of the IkappaB family, IkappaBalpha, plays a major role in the rapid signal-induced activation of NF-kappaB. IkappaBalpha itself is transcriptionally regulated by NF-kappaB allowing for a tight autoregulatory loop that is both sensitive to and rapidly influenced by NF-kappaB activating stimuli. For this pathway to remain primed both for rapid activation of NF-kappaB in the presence of signal and then to suppress NF-kappaB activation once that signal is removed, IkappaBalpha must be exquisitely regulated. The regulation of IkappaBalpha is mainly accomplished through phosphorylation, ubiquitination, and subsequent degradation. The mechanism(s) that regulate IkappaBalpha degradation needs to be able to target IkappaBalpha for degradation in both its NF-kappaB bound and free states in the cell. In this study, we utilize a full-length IkappaBalpha mutant that is unable to associate to RelA/p65. We show that the signal-induced IkappaB kinase (IKK) phosphorylation sites on IkappaBalpha can only significantly influence the regulation of signal-dependent but not signal-independent turnover of IkappaBalpha. We also demonstrate that the constitutive carboxyl-terminal casein kinase II phosphorylation sites are necessary for the proper regulation of both signal-dependent and -independent turnover of IkappaBalpha. These findings further elucidate how the phosphorylation of IkappaBalpha influences the complex regulatory mechanisms involved in maintaining a sensitive NF-kappaB pathway.
Collapse
Affiliation(s)
- M P Pando
- Laboratory of Genetics, The Salk Institute, La Jolla, California 92037, USA
| | | |
Collapse
|