1
|
Navin AK, Aruldhas MM, Mani KK, Navaneethabalakrishnan S, Venkatachalam S, Banu SK. Unraveling Hypothalamus-Pituitary dysregulation: Hypergonadotropism in F 1 progeny due to prenatal exposure to hexavalent chromium. J Biochem Mol Toxicol 2024; 38:e23699. [PMID: 38532648 DOI: 10.1002/jbt.23699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/18/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
The endocrine disruptor hexavalent chromium [Cr(VI)] is a proven reproductive toxicant. We recently demonstrated that prenatal Cr(VI) exposure causes testicular resistance to gonadotropins, resulting in hypergonadotropic hypoandrogenism in F1 rats. However, the mechanism driving hypergonadotropism in F1 rats exposed to Cr(VI) prenatally remains an enigma. Therefore, we hypothesized that 'Prenatal Cr(VI) exposure may disrupt steroid hormones-mediated negative feedback regulation of the hypothalamic GnRH, and its receptor in the pituitary of F1 rats, leading to hypergonadotropism.' We administered potassium dichromate (50, 100, or 200 mg/L) to pregnant rats through drinking water between days 9 and 14, and their male F1 offspring were euthanized at 60 days of age. Prenatal Cr(VI) exposure in F1 rats resulted in the accumulation of Cr in the hypothalamus and pituitary. Western blot detected decreased hypothalamic GnRH, Kisspeptin1, and its receptor GPR54, along with diminished ERα, AR, aromatase, and 5α reductase, and GnRH regulatory transcription factors Pit-1 and GATA-4 proteins. Immunohistochemical studies revealed increased immunopositivity of GnRH receptor, AR, 5α reductase, ERα, ERβ, and aromatase proteins in the pituitary, whereas decreased Kisspeptin1, GPR54, and inhibin β. Our findings imply that Cr(VI) exposure during the prenatal period disrupts the hypothalamic Kisspeptin-GPR54-Pit-1/GATA4-GnRH network, boosting the pituitary GnRH receptor. We conclude that prenatal exposure to Cr(VI) alters GnRH expression in the hypothalamus and its receptor in the pituitary of F1 progeny through interfering with the negative feedback effect of androgens and estrogens.
Collapse
Affiliation(s)
- Ajit Kumar Navin
- Department of Endocrinology, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Taramani-Velachery Link Road, Chennai, Tamil Nadu, India
| | - Mariajoseph Michael Aruldhas
- Department of Endocrinology, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Taramani-Velachery Link Road, Chennai, Tamil Nadu, India
| | - Kathiresh Kumar Mani
- Department of Endocrinology, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Taramani-Velachery Link Road, Chennai, Tamil Nadu, India
| | - Shobana Navaneethabalakrishnan
- Department of Endocrinology, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Taramani-Velachery Link Road, Chennai, Tamil Nadu, India
| | - Sankar Venkatachalam
- Department of Anatomy, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Taramani-Velachery Link Road, Chennai, Tamil Nadu, India
| | - Sakhila K Banu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, TAMU-4458, Texas A&M University, College Station, TX, USA
| |
Collapse
|
2
|
Nkechika V, Zhang N, Belsham DD. The Involvement of the microRNAs miR-466c and miR-340 in the Palmitate-Mediated Dysregulation of Gonadotropin-Releasing Hormone Gene Expression. Genes (Basel) 2024; 15:397. [PMID: 38674332 PMCID: PMC11048885 DOI: 10.3390/genes15040397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Diets high in saturated fatty acids are associated with obesity and infertility. Palmitate, the most prevalent circulating saturated fatty acid, is sensed by hypothalamic neurons, contributing to homeostatic dysregulation. Notably, palmitate elevates the mRNA levels of gonadotropin-releasing hormone (Gnrh) mRNA and its activating transcription factor, GATA binding protein 4 (Gata4). GATA4 is essential for basal Gnrh expression by binding to its enhancer region, with Oct-1 (Oct1) and CEBP-β (Cebpb) playing regulatory roles. The pre- and post-transcriptional control of Gnrh by palmitate have not been investigated. Given the ability of palmitate to alter microRNAs (miRNAs), we hypothesized that palmitate-mediated dysregulation of Gnrh mRNA involves specific miRNAs. In the mHypoA-GnRH/GFP neurons, palmitate significantly downregulated six miRNAs (miR-125a, miR-181b, miR-340, miR-351, miR-466c and miR-503), and the repression was attenuated by co-treatment with 100 μM of oleate. Subsequent mimic transfections revealed that miR-466c significantly downregulates Gnrh, Gata4, and Chop mRNA and increases Per2, whereas miR-340 upregulates Gnrh, Gata4, Oct1, Cebpb, and Per2 mRNA. Our findings suggest that palmitate may indirectly regulate Gnrh at both the pre- and post-transcriptional levels by altering miR-466c and miR-340, which in turn regulate transcription factor expression levels. In summary, palmitate-mediated dysregulation of Gnrh and, consequently, reproductive function involves parallel transcriptional mechanisms.
Collapse
Affiliation(s)
- Vanessa Nkechika
- Department of Physiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (V.N.); (N.Z.)
| | - Ningtong Zhang
- Department of Physiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (V.N.); (N.Z.)
| | - Denise D. Belsham
- Department of Physiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (V.N.); (N.Z.)
- Department of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
3
|
Cantley W, Du C, Lomoio S, DePalma T, Peirent E, Kleinknecht D, Hunter M, Tang-Schomer M, Tesco G, Kaplan DL. Functional and Sustainable 3D Human Neural Network Models from Pluripotent Stem Cells. ACS Biomater Sci Eng 2018; 4:4278-4288. [PMID: 33304995 PMCID: PMC7725274 DOI: 10.1021/acsbiomaterials.8b00622] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three-dimensional in vitro cell culture models, particularly for the central nervous system, allow for the exploration of mechanisms of organ development, cellular interactions, and disease progression within defined environments. Here we describe the development and characterization of three-dimensional tissue models that promote the differentiation and long-term survival of functional neural networks. These tissue cultures show diverse cell populations including neurons and glial cells (astrocytes) interacting in 3D with spontaneous neural activity confirmed through electrophysiological recordings and calcium imaging over at least 8 months. This approach allows for the direct integration of pluripotent stem cells into the 3D construct bypassing early neural differentiation steps (embryoid bodies and neural rosettes), which streamlines the process while also providing a system that can be manipulated to support a variety of experimental applications. This tissue model has been tested in stem cells derived from healthy individuals as well as Alzheimer's and Parkinson's disease patients, with similar growth and gene expression responses indicating potential use in the modeling of disease states related to neurodegenerative diseases.
Collapse
Affiliation(s)
- William Cantley
- Department of Cell, Molecular and Developmental Biology, Sackler School, Tufts University, Boston, MA
| | - Chuang Du
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Selene Lomoio
- Department of Neuroscience, Sackler School, Tufts University, Boston, MA
| | - Thomas DePalma
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Emily Peirent
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | | | - Martin Hunter
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Min Tang-Schomer
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Giuseppina Tesco
- Department of Neuroscience, Sackler School, Tufts University, Boston, MA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA
| |
Collapse
|
4
|
Schiele MA, Costa B, Abelli M, Martini C, Baldwin DS, Domschke K, Pini S. Oxytocin receptor gene variation, behavioural inhibition, and adult separation anxiety: Role in complicated grief. World J Biol Psychiatry 2018; 19:471-479. [PMID: 29353531 DOI: 10.1080/15622975.2018.1430374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Complicated grief (CG) following bereavement significantly increases the risk for mood and anxiety disorders. The severity of grief reactions may be interactively influenced by temperamental and psychological factors such as behavioural inhibition (BI) and separation anxiety (SA) as well as biological factors. Given its central role in attachment and stress processing, a genetic variant in the oxytocin receptor (OXTR) gene was thus investigated in order to elucidate the direction of association as well as its interaction with BI and SA in the moderation of CG severity. METHODS Ninety-three patients with mood and anxiety disorders were evaluated for CG by means of the Inventory of Complicated Grief (ICG), for BI using the Retrospective Self-Report of Inhibition (RSRI), and for symptoms of SA during adulthood using the Adult Separation Anxiety Scale (ASA-27). All patients were genotyped for OXTR rs2254298. RESULTS OXTR genotype interacted with BI and, on a trend-level, with adult SA, to increase CG. Specifically, higher levels on the RSRI and ASA-27 scales, respectively, were related to higher ICG scores in GG genotype carriers. CONCLUSIONS The present study for the first time suggests a gene-environment interaction effect of an OXTR gene variant with BI and possibly also symptoms of adult SA in the moderation of vulnerability for CG.
Collapse
Affiliation(s)
- Miriam A Schiele
- a Department of Psychiatry and Psychotherapy, Medical Center -- University of Freiburg, Faculty of Medicine , University of Freiburg , Freiburg , Germany.,b Department of Clinical and Experimental Medicine, Section of Psychiatry , University of Pisa , Pisa , Italy
| | - Barbara Costa
- c Department of Pharmacy , University of Pisa , Pisa , Italy
| | - Marianna Abelli
- b Department of Clinical and Experimental Medicine, Section of Psychiatry , University of Pisa , Pisa , Italy
| | - Claudia Martini
- c Department of Pharmacy , University of Pisa , Pisa , Italy
| | - David S Baldwin
- d Clinical and Experimental Sciences , University of Southampton Faculty of Medicine , Southampton , UK.,e University Department of Psychiatry , University of Cape Town , Cape Town , South Africa
| | - Katharina Domschke
- a Department of Psychiatry and Psychotherapy, Medical Center -- University of Freiburg, Faculty of Medicine , University of Freiburg , Freiburg , Germany
| | - Stefano Pini
- b Department of Clinical and Experimental Medicine, Section of Psychiatry , University of Pisa , Pisa , Italy
| |
Collapse
|
5
|
Tam KT, Chan PK, Zhang W, Law PP, Tian Z, Fung Chan GC, Philipsen S, Festenstein R, Tan-Un KC. Identification of a novel distal regulatory element of the human Neuroglobin gene by the chromosome conformation capture approach. Nucleic Acids Res 2017; 45:115-126. [PMID: 27651453 PMCID: PMC5224503 DOI: 10.1093/nar/gkw820] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 12/24/2022] Open
Abstract
Neuroglobin (NGB) is predominantly expressed in the brain and retina. Studies suggest that NGB exerts protective effects to neuronal cells and is implicated in reducing the severity of stroke and Alzheimer's disease. However, little is known about the mechanisms which regulate the cell type-specific expression of the gene. In this study, we hypothesized that distal regulatory elements (DREs) are involved in optimal expression of the NGB gene. By chromosome conformation capture we identified two novel DREs located -70 kb upstream and +100 kb downstream from the NGB gene. ENCODE database showed the presence of DNaseI hypersensitive and transcription factors binding sites in these regions. Further analyses using luciferase reporters and chromatin immunoprecipitation suggested that the -70 kb region upstream of the NGB gene contained a neuronal-specific enhancer and GATA transcription factor binding sites. Knockdown of GATA-2 caused NGB expression to drop dramatically, indicating GATA-2 as an essential transcription factor for the activation of NGB expression. The crucial role of the DRE in NGB expression activation was further confirmed by the drop in NGB level after CRISPR-mediated deletion of the DRE. Taken together, we show that the NGB gene is regulated by a cell type-specific loop formed between its promoter and the novel DRE.
Collapse
MESH Headings
- Binding Sites
- CRISPR-Cas Systems
- Cell Line, Tumor
- Chromosomes, Human, Pair 14/chemistry
- Deoxyribonuclease I/genetics
- Deoxyribonuclease I/metabolism
- GATA2 Transcription Factor/genetics
- GATA2 Transcription Factor/metabolism
- Gene Editing
- Gene Expression Regulation
- Genes, Reporter
- Globins/antagonists & inhibitors
- Globins/genetics
- Globins/metabolism
- HeLa Cells
- Humans
- K562 Cells
- Luciferases/genetics
- Luciferases/metabolism
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neuroglobin
- Neurons/cytology
- Neurons/metabolism
- Organ Specificity
- Protein Binding
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Regulatory Elements, Transcriptional
- Signal Transduction
Collapse
Affiliation(s)
- Kin Tung Tam
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
| | - Ping Kei Chan
- Gene Control Mechanisms and Disease Group, Department of Medicine, Division of Brain Sciences and MRC Clinical Sciences Centre, Imperial College School of Medicine, London W12 0NN, United Kingdom
| | - Wei Zhang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
| | - Pui Pik Law
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
- Gene Control Mechanisms and Disease Group, Department of Medicine, Division of Brain Sciences and MRC Clinical Sciences Centre, Imperial College School of Medicine, London W12 0NN, United Kingdom
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
| | - Zhipeng Tian
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
- School of Professional and Continuing Education (HKU SPACE), The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
| | - Godfrey Chi Fung Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Richard Festenstein
- Gene Control Mechanisms and Disease Group, Department of Medicine, Division of Brain Sciences and MRC Clinical Sciences Centre, Imperial College School of Medicine, London W12 0NN, United Kingdom
| | - Kian Cheng Tan-Un
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
- School of Professional and Continuing Education (HKU SPACE), The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
| |
Collapse
|
6
|
Nesan D, Kurrasch DM. Genetic programs of the developing tuberal hypothalamus and potential mechanisms of their disruption by environmental factors. Mol Cell Endocrinol 2016; 438:3-17. [PMID: 27720896 DOI: 10.1016/j.mce.2016.09.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/22/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022]
Abstract
The hypothalamus is a critical regulator of body homeostasis, influencing the autonomic nervous system and releasing trophic hormones to modulate the endocrine system. The developmental mechanisms that govern formation of the mature hypothalamus are becoming increasingly understood as research in this area grows, leading us to gain appreciation for how these developmental programs are susceptible to disruption by maternal exposure to endocrine disrupting chemicals or other environmental factors in utero. These vulnerabilities, combined with the prominent roles of the various hypothalamic nuclei in regulating appetite, reproductive behaviour, mood, and other physiologies, create a window whereby early developmental disruption can have potent long-term effects. Here we broadly outline our current understanding of hypothalamic development, with a particular focus on the tuberal hypothalamus, including what is know about nuclear coalescing and maturation. We finish by discussing how exposure to environmental or maternally-derived factors can perhaps disrupt these hypothalamic developmental programs, and potentially lead to neuroendocrine disease states.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
7
|
Abstract
GATA transcription factors are emerging as critical players in mammalian reproductive development and function. GATA-4 contributes to fetal male gonadal development by regulating genes mediating Müllerian duct regression and the onset of testosterone production. GATA-2 expression appears to be sexually dimorphic being transiently expressed in the germ cell lineage of the fetal ovary but not the fetal testis. In the reproductive system, GATA-1 is exclusively expressed in Sertoli cells at specific seminiferous tubule stages. In addition, GATA-4 and GATA-6 are localized primary to ovarian and testicular somatic cells. The majority of cell transfection studies demonstrate that GATA-1 and GATA-4 can stimulate inhibin subunit gene promoter constructs. Other studies provide strong evidence that GATA-4 and GATA-6 can activate genes mediating gonadal cell steroidogenesis. GATA-2 and GATA-3 are found in pituitary and placental cells and can regulate alpha-glycoprotein subunit gene expression. Gonadal expression and activation of GATAs appear to be regulated in part by gonadotropin signaling via the cyclic AMP-protein kinase A pathway. This review will cover the current knowledge regarding GATA expression and function at all levels of the reproductive axis.
Collapse
Affiliation(s)
- Holly A LaVoie
- Department of Cell and Developmental Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina 29208, USA.
| |
Collapse
|
8
|
A Novel Gonadotropin-Releasing Hormone 1 (Gnrh1) Enhancer-Derived Noncoding RNA Regulates Gnrh1 Gene Expression in GnRH Neuronal Cell Models. PLoS One 2016; 11:e0158597. [PMID: 27389022 PMCID: PMC4936741 DOI: 10.1371/journal.pone.0158597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/18/2016] [Indexed: 12/22/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH), a neuropeptide released from a small population of neurons in the hypothalamus, is the central mediator of the hypothalamic-pituitary-gonadal axis, and is required for normal reproductive development and function. Evolutionarily conserved regulatory elements in the mouse, rat, and human Gnrh1 gene include three enhancers and the proximal promoter, which confer Gnrh1 gene expression specifically in GnRH neurons. In immortalized mouse hypothalamic GnRH (GT1-7) neurons, which show pulsatile GnRH release in culture, RNA sequencing and RT-qPCR revealed that expression of a novel long noncoding RNA at Gnrh1 enhancer 1 correlates with high levels of GnRH mRNA expression. In GT1-7 neurons, which contain a transgene carrying 3 kb of the rat Gnrh1 regulatory region, both the mouse and rat Gnrh1 enhancer-derived noncoding RNAs (GnRH-E1 RNAs) are expressed. We investigated the characteristics and function of the endogenous mouse GnRH-E1 RNA. Strand-specific RT-PCR analysis of GnRH-E1 RNA in GT1-7 cells revealed GnRH-E1 RNAs that are transcribed in the sense and antisense directions from distinct 5’ start sites, are 3’ polyadenylated, and are over 2 kb in length. These RNAs are localized in the nucleus and have a half-life of over 8 hours. In GT1-7 neurons, siRNA knockdown of mouse GnRH-E1 RNA resulted in a significant decrease in the expression of the Gnrh1 primary transcript and Gnrh1 mRNA. Over-expression of either the sense or antisense mouse GnRH-E1 RNA in immature, migratory GnRH (GN11) neurons, which do not express either GnRH-E1 RNA or GnRH mRNA, induced the transcriptional activity of co-transfected rat Gnrh1 gene regulatory elements, where the induction requires the presence of the rat Gnrh1 promoter. Together, these data indicate that GnRH-E1 RNA is an inducer of Gnrh1 gene expression. GnRH-E1 RNA may play an important role in the development and maturation of GnRH neurons.
Collapse
|
9
|
McDonald EA, Smith JE, Cederberg RA, White BR. Divergent activity of the gonadotropin-releasing hormone receptor gene promoter among genetic lines of pigs is partially conferred by nuclear factor (NF)-B, specificity protein (SP)1-like and GATA-4 binding sites. Reprod Biol Endocrinol 2016; 14:36. [PMID: 27356969 PMCID: PMC4928339 DOI: 10.1186/s12958-016-0170-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 06/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Binding of gonadotropin-releasing hormone (GnRH) to its receptor (GnRHR) on gonadotropes within the anterior pituitary gland is essential to reproduction. In pigs, the GnRHR gene is also located near a genetic marker for ovulation rate, a primary determinant of prolificacy. We hypothesized that pituitary expression of the GnRHR gene is alternatively regulated in genetic strains with elevated ovulation rates (Chinese Meishan and Nebraska Index) vs. standard white crossbred swine (Control). METHODS Luciferase reporter vectors containing 5118 bp of GnRHR gene promoter from either the Control, Index or Meishan swine lines were generated. Transient transfection of line-specific, full length, deletion and mutation constructs into gonadotrope-derived αT3-1 cells were performed to compare promoter activity and identify regions necessary for divergent regulation of the porcine GnRHR gene. Additionally, transcription factors that bind the GnRHR promoter from each line were identified with electrophoretic mobility shift assays (EMSA). RESULTS Dramatic differences in luciferase activity among Control, Index and Meishan promoters (19-, 27- and 49-fold over promoterless control, respectively; P < 0.05) were established. A single bp substitution (-1690) within a previously identified upstream enhancer (-1779/-1667) bound GATA-4 in the Meishan promoter and the p52/p65 subunits of nuclear factor (NF)-κB in the homologous Control/Index promoters. Transient transfection of vectors containing block replacement mutations of either the GATA-4 or NF-κB binding sites within the context of their native promoters resulted in a 50 and 60 % reduction of luciferase activity, respectively (P < 0.05). Furthermore, two single-bp substitutions in the Meishan compared to Control/Index promoters resulted in binding of the p52 and p65 subunits of NF-κB and a specificity protein 1 (SP1)-like factor (-1235) as well as GATA-4 (-845). Vectors containing the full-length Meishan promoter harboring individual mutations spanning these regions reduced luciferase activity by 25 and 20 %, respectively, compared to native sequence (P < 0.05). CONCLUSIONS Elevated activity of the Meishan GnRHR gene promoter over Control/Index promoters in αT3-1 cells is partially due to three single nucleotide polymorphisms resulting in the unique binding of GATA-4 (-1690), the p52/p65 subunits of NF-kB in combination with a SP1-like factor (-1235), and GATA-4 (-845).
Collapse
Affiliation(s)
- Emily A. McDonald
- Laboratory of Reproductive Biology, Department of Animal Science, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE USA
- Present address: Center for International Health Research, Rhode Island Hospital, Providence, RI USA
| | - Jacqueline E. Smith
- Laboratory of Reproductive Biology, Department of Animal Science, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE USA
- Present address: Stowers Institute for Medical Research, Kansas City, MO USA
| | - Rebecca A. Cederberg
- Laboratory of Reproductive Biology, Department of Animal Science, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE USA
| | - Brett R. White
- Laboratory of Reproductive Biology, Department of Animal Science, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE USA
| |
Collapse
|
10
|
Bedont JL, Newman EA, Blackshaw S. Patterning, specification, and differentiation in the developing hypothalamus. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:445-68. [PMID: 25820448 DOI: 10.1002/wdev.187] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 12/21/2022]
Abstract
Owing to its complex structure and highly diverse cell populations, the study of hypothalamic development has historically lagged behind that of other brain regions. However, in recent years, a greatly expanded understanding of hypothalamic gene expression during development has opened up new avenues of investigation. In this review, we synthesize existing work to present a holistic picture of hypothalamic development from early induction and patterning through nuclear specification and differentiation, with a particular emphasis on determination of cell fate. We will also touch on special topics in the field including the prosomere model, adult neurogenesis, and integration of migratory cells originating outside the hypothalamic neuroepithelium, and how these topics relate to our broader theme.
Collapse
Affiliation(s)
- Joseph L Bedont
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth A Newman
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,High-Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Jin JM, Yang WX. Molecular regulation of hypothalamus-pituitary-gonads axis in males. Gene 2014; 551:15-25. [PMID: 25168889 DOI: 10.1016/j.gene.2014.08.048] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/24/2014] [Accepted: 08/24/2014] [Indexed: 10/24/2022]
Abstract
The hypothalamic-pituitary-gonadal axis (HPG) plays vital roles in reproduction and steroid hormone production in both sexes. The focus of this review is upon gene structures, receptor structures and the signaling pathways of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH) and follicle-stimulating hormone (FSH). The hormones' functions in reproduction as well as consequences resulting from mutations are also summarized. Specific characteristics of hormones such as the pulsatile secretions of GnRH are also covered. The different regulators of the HPG axis are introduced including kisspeptin, activin, inhibin, follistatin, androgens and estrogen. This review includes not only their basic information, but also their unique function in the HPG axis. Here we view the HPG axis as a whole, so relations between ligands and receptors are well described crossing different levels of the HPG axis. Hormone interactions and transformations are also considered. The major information of this article is depicted in three figures summarizing the current discoveries on the HPG axis. This article systematically introduces the basic knowledge of the HPG axis and provides information of the current advances relating to reproductive hormones.
Collapse
Affiliation(s)
- Jia-Min Jin
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Brayman MJ, Pepa PA, Mellon PL. Androgen receptor repression of gonadotropin-releasing hormone gene transcription via enhancer 1. Mol Cell Endocrinol 2012; 363:92-9. [PMID: 22877652 PMCID: PMC3447085 DOI: 10.1016/j.mce.2012.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 01/27/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) plays a major role in the hypothalamic-pituitary-gonadal (HPG) axis, and synthesis and secretion of GnRH are regulated by gonadal steroid hormones. Disruptions in androgen levels are involved in a number of reproductive defects, including hypogonadotropic hypogonadism and polycystic ovarian syndrome. Androgens down-regulate GnRH mRNA synthesis in vivo and in vitro via an androgen receptor (AR)-dependent mechanism. Methyltrienolone (R1881), a synthetic AR agonist, represses GnRH expression through multiple sites in the proximal promoter. In this study, we show AR also represses GnRH transcription via the major enhancer (GnRH-E1). A multimer of the -1800/-1766 region was repressed by R1881 treatment. Mutation of two bases, -1792 and -1791, resulted in decreased basal activity and a loss of AR-mediated repression. AR bound to the -1796/-1791 sequence in electrophoretic mobility shift assays, indicating a direct interaction with DNA or other transcription factors in this region. We conclude that AR repression of GnRH-E1 acts via multiple AR-responsive regions, including the site at -1792/-1791.
Collapse
Affiliation(s)
- Melissa J Brayman
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093-0674, USA
| | | | | |
Collapse
|
13
|
Lim ST, Miller NLG, Chen XL, Tancioni I, Walsh CT, Lawson C, Uryu S, Weis SM, Cheresh DA, Schlaepfer DD. Nuclear-localized focal adhesion kinase regulates inflammatory VCAM-1 expression. ACTA ACUST UNITED AC 2012; 197:907-19. [PMID: 22734001 PMCID: PMC3384409 DOI: 10.1083/jcb.201109067] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Kinase-inhibited FAK limits VCAM-1 production via nuclear localization and promotion of GATA4 turnover. Vascular cell adhesion molecule–1 (VCAM-1) plays important roles in development and inflammation. Tumor necrosis factor–α (TNF-α) and focal adhesion kinase (FAK) are key regulators of inflammatory and integrin–matrix signaling, respectively. Integrin costimulatory signals modulate inflammatory gene expression, but the important control points between these pathways remain unresolved. We report that pharmacological FAK inhibition prevented TNF-α–induced VCAM-1 expression within heart vessel–associated endothelial cells in vivo, and genetic or pharmacological FAK inhibition blocked VCAM-1 expression during development. FAK signaling facilitated TNF-α–induced, mitogen-activated protein kinase activation, and, surprisingly, FAK inhibition resulted in the loss of the GATA4 transcription factor required for TNF-α–induced VCAM-1 production. FAK inhibition also triggered FAK nuclear localization. In the nucleus, the FAK-FERM (band 4.1, ezrin, radixin, moesin homology) domain bound directly to GATA4 and enhanced its CHIP (C terminus of Hsp70-interacting protein) E3 ligase–dependent polyubiquitination and degradation. These studies reveal new developmental and anti-inflammatory roles for kinase-inhibited FAK in limiting VCAM-1 production via nuclear localization and promotion of GATA4 turnover.
Collapse
Affiliation(s)
- Ssang-Taek Lim
- Department of Reproductive Medicine, University of California-San Diego, Moores Cancer Center, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang Y, Bi L, Wang H, Li Y, Di Q, Xu W, Qian Y. NEDD9 rs760678 polymorphism and the risk of Alzheimer's disease: a meta-analysis. Neurosci Lett 2012; 527:121-5. [PMID: 22963925 DOI: 10.1016/j.neulet.2012.08.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/16/2012] [Accepted: 08/24/2012] [Indexed: 01/22/2023]
Abstract
The NEDD9 rs760678 polymorphism has been extensively investigated for association to Alzheimer's disease (AD), however, results of different studies have been inconsistent. The objective of this study is to assess the relationship of NEDD9 rs760678 polymorphism and AD risk by using meta-analysis. Systematic searches of electronic databases Pubmed and Embase, as well as hand searching of the references of identified articles were performed. Statistical analyses were performed using software Revman 4.2 and STATA 11.0. A total of 4436 cases and 4420 controls in 11 case-control studies were included. The results indicated that the homozygote GG had a 13% decreased risk of AD, when compared with the C allele carriers (CC+CG) (OR=0.87, 95%CI=0.77-0.99, P=0.04 for GG vs. CG+CC). In the subgroup analysis by ethnicity, significant decreased risk was associated with homozygote GG or G allele carriers in Caucasians (OR=0.84, 95%CI=0.74-0.96, P=0.008 for GG vs. CG+CC; OR=0.79, 95%CI=0.69-0.91, P=0.001 for GG vs. CC; OR=0.90, 95%CI=0.84-0.96, P=0.002 for G vs. C), but not in Asians. This meta-analysis suggests that the GG genotype of NEDD9 rs760678 polymorphism would be a protective factor for AD in Caucasians but not in Asians. To further evaluate the effect of gene-gene and gene-environmental interactions between NEDD9 rs760678 polymorphism and the risk of AD, more studies with larger number of subjects are required.
Collapse
Affiliation(s)
- Yucheng Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, Jiangsu Province 210029, PR China
| | | | | | | | | | | | | |
Collapse
|
15
|
Sabado V, Barraud P, Baker CVH, Streit A. Specification of GnRH-1 neurons by antagonistic FGF and retinoic acid signaling. Dev Biol 2012; 362:254-62. [PMID: 22200593 PMCID: PMC4561506 DOI: 10.1016/j.ydbio.2011.12.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 11/25/2022]
Abstract
A small population of neuroendocrine cells in the rostral hypothalamus and basal forebrain is the key regulator of vertebrate reproduction. They secrete gonadotropin-releasing hormone (GnRH-1), communicate with many areas of the brain and integrate multiple inputs to control gonad maturation, puberty and sexual behavior. In humans, disruption of the GnRH-1 system leads to hypogonadotropic gonadism and Kallmann syndrome. Unlike other neurons in the central nervous system, GnRH-1 neurons arise in the periphery, however their embryonic origin is controversial, and the molecular mechanisms that control their initial specification are not clear. Here, we provide evidence that in chick GnRH-1 neurons originate in the olfactory placode, where they are specified shortly after olfactory sensory neurons. FGF signaling is required and sufficient to induce GnRH-1 neurons, while retinoic acid represses their formation. Both pathways regulate and antagonize each other and our results suggest that the timing of signaling is critical for normal GnRH-1 neuron formation. While Kallmann's syndrome has generally been attributed to a failure of GnRH-1 neuron migration due to impaired FGF signaling, our findings suggest that in at least some Kallmann patients these neurons may never be specified. In addition, this study highlights the intimate embryonic relationship between GnRH-1 neurons and their targets and modulators in the adult.
Collapse
Affiliation(s)
- Virginie Sabado
- Department of Craniofacial Development, King’s College London, Guy’s Campus, London, SE1 9RT, UK
| | - Perrine Barraud
- Department of Physiology, Development & Neuroscience, Anatomy Building, Downing Street, Cambridge, CB2 3DY, UK
| | - Clare V. H. Baker
- Department of Physiology, Development & Neuroscience, Anatomy Building, Downing Street, Cambridge, CB2 3DY, UK
| | - Andrea Streit
- Department of Craniofacial Development, King’s College London, Guy’s Campus, London, SE1 9RT, UK
| |
Collapse
|
16
|
Brayman MJ, Pepa PA, Berdy SE, Mellon PL. Androgen receptor repression of GnRH gene transcription. Mol Endocrinol 2012; 26:2-13. [PMID: 22074952 PMCID: PMC3248321 DOI: 10.1210/me.2011-1015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 10/13/2011] [Indexed: 11/19/2022] Open
Abstract
Alterations in androgen levels lead to reproductive defects in both males and females, including hypogonadotropic hypogonadism, anovulation, and infertility. Androgens have been shown to down-regulate GnRH mRNA levels through an androgen receptor (AR)-dependent mechanism. Here, we investigate how androgen regulates expression from the GnRH regulatory region in the GT1-7 cell line, a model of GnRH neurons. A synthetic androgen, R1881, repressed transcription from the GnRH promoter (GnRH-P) in an AR-dependent manner, and liganded AR associated with the chromatin at the GnRH-P in live GT1-7 cells. The three known octamer-binding transcription factor-1 (Oct-1) binding sites in GnRH-P were required for AR-mediated repression, although other sequences were also involved. Although a multimer of the consensus Oct-1 binding site was not repressed, a multimer of the cluster of Oct-1, Pre-B cell leukemia transcription factor (Pbx)/Prep, and NK2 homeobox 1 (Nkx2.1) binding sites, found at -106/-91 in GnRH-P, was sufficient for repression. In fact, overexpression of any of these factors disrupted the androgen response, indicating that a balance of factors in this tripartite complex is required for AR repression. AR bound to this region in EMSA, indicating a direct interaction of AR with DNA or with other transcription factors bound to GnRH-P at this sequence. Collectively, our data demonstrate that GnRH transcription is repressed by AR via multiple sequences in GnRH-P, including three Oct-1 binding sites, and that this repression requires the complex interaction of several transcription factors.
Collapse
Affiliation(s)
- Melissa J Brayman
- Department of Reproductive Medicine and The Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093-0674, USA
| | | | | | | |
Collapse
|
17
|
The gonadotropin-releasing hormone cell-specific element is required for normal puberty and estrous cyclicity. J Neurosci 2011; 31:3336-43. [PMID: 21368045 DOI: 10.1523/jneurosci.5419-10.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Appropriate tissue-specific gene expression of gonadotropin-releasing hormone (GnRH) is critical for pubertal development and maintenance of reproductive competence. In these studies, a common element in the mouse GnRH (mGnRH) promoter, between -2806 and -2078 bp, is shown to mediate differential regulation of hypothalamic and ovarian mGnRH expression. To further characterize this region, we generated a knock-out mouse (GREKO(-/-)) with a deletion of the mGnRH promoter fragment between -2806 and -2078 bp. GnRH mRNA expression in the brain of GREKO(-/-) was less than the expression in wild-type mice; however, immunohistochemical analysis revealed no difference between the numbers of GnRH neurons among groups. GnRH mRNA expression in the ovary was fivefold higher in GREKO(-/-). The immunohistochemical staining for GnRH in the ovary increased in surface epithelial and granulosa cells and also in the corpora lutea of GREKO(-/-) mice. The reproductive phenotype revealed that the mean day of vaginal opening was delayed, and additionally, there was a significant decrease in the length of proestrus and diestrus-metestrus phases of the estrous cycle, resulting in a shortened estrous cycle in GREKO(-/-) mice. This work supports the hypothesis that the region of the GnRH promoter contained between -2806 and -2078 bp acts as a cell-specific enhancer in the GnRH neuron and as a repressor in the ovary. Deletion of this region in vivo implicates the GnRH promoter in mediating pubertal development and periodic reproductive cycling, and forms the foundation to define the nuclear proteins important for puberty and estrous cycling in mammals.
Collapse
|
18
|
Kim HD, Choe HK, Chung S, Kim M, Seong JY, Son GH, Kim K. Class-C SOX transcription factors control GnRH gene expression via the intronic transcriptional enhancer. Mol Endocrinol 2011; 25:1184-96. [PMID: 21527504 DOI: 10.1210/me.2010-0332] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
GnRH is a pivotal hypothalamic neurohormone governing reproduction and sexual development. Because transcriptional regulation is crucial for the spatial and temporal expression of the GnRH gene, a region approximately 3.0 kb upstream of the mammalian GnRH promoter has been extensive studied. In the present study, we demonstrate a transcription-enhancer located in the first intron (intron A) region of the GnRH gene. This transcriptional enhancer harbors putative sex-determining region Y-related high-mobility-group box (SOX) family transcription factor-binding sites, which are well conserved across many mammalian species. The class-C SOX member proteins (SOX-C) (SOX4 and SOX11) specifically augment this transcriptional activation by binding to these SOX-binding sites. In accordance, SOX11 is highly enriched in immortalized GnRH-producing GT1-1 cells, and suppression of its expression significantly decreases GnRH gene expression as well as GnRH secretion. Chromatin immunoprecipitation shows that endogenous SOX-C factors recognize and bind to the intronic enhancer in GT1-1 cells and the hypothalamus. Accompanying immunohistochemical analysis demonstrates that SOX4 or SOX11 are highly expressed in the majority of hypothalamic GnRH neurons in adult mice. Taken together, these findings demonstrate that SOX-C transcription factors function as important transcriptional regulators of cell type-specific GnRH gene expression by acting on the intronic transcriptional enhancer.
Collapse
Affiliation(s)
- Hee-Dae Kim
- Department of Biological Sciences, Seoul National University, Brain Research Center for the 21st Century Frontier Program in Neuroscience, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The hypothalamus, pituitary, and gonads coordinate to direct the development and regulation of reproductive function in mammals. Control of the hypothalamic-pituitary-gonadal axis is dependent on correct migration of gonadotropin-releasing hormone (GnRH) neurons from the nasal placode to the hypothalamus, followed by proper synthesis and pulsatile secretion of GnRH, functions absent in patients with hypogonadal hypogonadism. In this study, we identify sine oculis-related homeobox 6 (Six6) as a novel factor necessary for proper targeting of GnRH expression to the limited population of GnRH neurons within the adult mouse hypothalamus and demonstrate that it is required for proper reproductive function in both male and female mice. Female Six6-null mice exhibit a striking decrease in fertility, failing to progress through the estrous cycle normally, show any signs of successful ovulation, or produce litters. Although basal gonadotropin production in these mice is relatively normal, analysis of GnRH expression reveals a dramatic decrease in total GnRH neuron numbers. We show that expression of Six6 is dramatically increased during GnRH neuronal maturation and that overexpression of Six6 induces GnRH transcription in neuronal cells. Finally, we demonstrate that this induction in GnRH expression is mediated via binding of Six6 to evolutionarily conserved ATTA sites located within the GnRH proximal promoter. Together, these data indicate that Six6 plays an important role in the regulation of GnRH expression and hypothalamic control of fertility.
Collapse
|
20
|
Xing YY, Yu JT, Yan WJ, Chen W, Zhong XL, Jiang H, Wang P, Tan L. NEDD9 is genetically associated with Alzheimer's disease in a Han Chinese population. Brain Res 2010; 1369:230-4. [PMID: 21059344 DOI: 10.1016/j.brainres.2010.10.113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 10/27/2010] [Accepted: 10/30/2010] [Indexed: 10/18/2022]
Abstract
Neural precursor cell-expressed, developmentally downregulated 9 (NEDD9) has been suspected to be associated with Alzheimer's disease (AD) through participating in the formation of neurite-like membrane extensions and neurite outgrowth to affect the number of neuronal cells/synapses in the brain under stressful conditions. A recent large-scale, multi-tiered association study has identified significant association of a common single nucleotide polymorphism (SNP) rs760678 in the NEDD9 gene with predisposition to late-onset Alzheimer's disease (LOAD) in Caucasians. In order to evaluate the involvement of the NEDD9 polymorphism in the risk of sporadic LOAD, we performed an independent case-control association study to analyze the genotype and allele distributions of the NEDD9 rs760678 polymorphism in a Han Chinese population (383 LOAD cases and 369 healthy controls). There were significant differences in genotype and allele frequencies between LOAD cases and controls (genotype P=0.003, allele P=0.002). After stratification by APOE ε4-carrying status, the C allele of rs760678 was only significantly associated with LOAD in non-APOE ε4 allele carriers (OR=1.43, 95%, CI=1.06-1.94, P=0.024). In addition, a logistic regression analysis also conferred positive association between the SNP rs760678 and LOAD (dominant model: OR=2.10, 95% CI=1.23-3.58, P=0.007; additive model: OR=1.37, 95% CI=1.09-1.74, P=0.008) after adjustment for age, gender, and the APOE ε4 carrier status. The study demonstrated a significant association between the tested SNP and LOAD, indicating that NEDD9 polymorphism has a possible role in changing the genetic susceptibility to LOAD in a Han Chinese population.
Collapse
Affiliation(s)
- Yao-Yao Xing
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, Shandong Province 266071, PR China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Cellular and molecular mechanisms underlying pulsatile GnRH release are not well understood. In the present study, we examined the developmental changes in intracellular calcium dynamics, peptide release, gene expression, and DNA methylation in cultured GnRH neurons derived from the nasal placode of rhesus monkeys. We found that GnRH neurons were functionally immature, exhibiting little fluctuation in intracellular calcium ([Ca(2+)](i)) and sparse pulses of GnRH peptide release in the first 12 d in vitro (div). By 14-18 div, GnRH neurons exhibited periodic [Ca(2+)](i) oscillations, synchronizing at approximately 60-min intervals and GnRH pulses occurred at approximately 60-min intervals. Interestingly, the total GnRH peptide release further increased after 18 div. Measurement of GnRH mRNA and gene CpG methylation status at 0, 14, and 20 div indicated that mRNA levels significantly (P < 0.05) increased between 14 and 20 div, just as maximal decapeptide release was observed. By bisulfite sequencing across a 5' CpG island of the GnRH gene, we further found that methylation at eight of 14 CpG sites significantly (P < 0.05) decreased between 0 and 20 div. These data indicate that epigenetic differentiation occurs during GnRH neuronal development and suggest that increased GnRH gene expression and decreased CpG methylation status are molecular phenotypes of mature GnRH neurons. To our knowledge, this is the first report that developmental DNA demethylation occurs in postmitotic neurons toward a stable neuronal phenotype.
Collapse
Affiliation(s)
- Joseph R Kurian
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Court, Madison, Wisconsin 53715, USA
| | | | | |
Collapse
|
22
|
Szarek E, Cheah PS, Schwartz J, Thomas P. Molecular genetics of the developing neuroendocrine hypothalamus. Mol Cell Endocrinol 2010; 323:115-23. [PMID: 20385202 DOI: 10.1016/j.mce.2010.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Formation of the mammalian endocrine system and neuroendocrine organs involves complex regulatory networks resulting in a highly specialized cell system able to secrete a diverse array of peptide hormones. The hypothalamus is located in the mediobasal region of the brain and acts as a gateway between the endocrine and nervous systems. From an endocrinology perspective, the parvicellular neurons of the hypothalamus are of particular interest as they function as a control centre for several critical physiological processes including growth, metabolism and reproduction by regulating hormonal signaling from target cognate cell types in the anterior pituitary. Delineating the genetic program that controls hypothalamic development is essential for complete understanding of parvicellular neuronal function and the etiology of congenital disorders that result from hypothalamic-pituitary axis dysfunction. In recent years, studies have shed light on the interactions between signaling molecules and activation of transcription factors that regulate hypothalamic cell fate commitment and terminal differentiation. The aim of this review is to summarize the recent molecular and genetic findings that have advanced our understanding of the emergence of the known important hypophysiotropic signaling molecules in the hypothalamus. We have focused on reviewing the literature that provides evidence of the dependence on expression of specific genes for the normal development and function of the cells that secrete these neuroendocrine factors, as well as studies of the elaboration of the spatial or temporal patterns of changes in gene expression that drive this development.
Collapse
Affiliation(s)
- Eva Szarek
- Discipline of Physiology, School of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, Australia
| | | | | | | |
Collapse
|
23
|
Zhao S, Kelm RJ, Fernald RD. Regulation of gonadotropin-releasing hormone-1 gene transcription by members of the purine-rich element-binding protein family. Am J Physiol Endocrinol Metab 2010; 298:E524-33. [PMID: 19996387 PMCID: PMC2838525 DOI: 10.1152/ajpendo.00597.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gonadotropin-releasing hormone-1 (GnRH1) controls reproduction by stimulating the release of gonadotropins from the pituitary. To characterize regulatory factors governing GnRH1 gene expression, we employed biochemical and bioinformatics techniques to identify novel GnRH1 promoter-binding proteins from the brain of the cichlid fish, Astatotilapia burtoni (A. burtoni). Using an in vitro DNA-binding assay followed by mass spectrometric peptide mapping, we identified two members of the purine-rich element-binding (Pur) protein family, Puralpha and Purbeta, as candidates for GnRH1 promoter binding and regulation. We found that transcripts for both Puralpha and Purbeta colocalize in GnRH1-expressing neurons in the preoptic area of the hypothalamus in A. burtoni brain. Furthermore, we confirmed in vivo binding of endogenous Puralpha and Purbeta to the upstream region of the GnRH1 gene in A. burtoni brain and mouse neuronal GT1-7 cells. Consistent with the relative promoter occupancy exhibited by endogenous Pur proteins, overexpression of Purbeta, but not Puralpha, significantly downregulated GnRH1 mRNA levels in transiently transfected GT1-7 cells, suggesting that Purbeta acts as a repressor of GnRH1 gene transcription.
Collapse
Affiliation(s)
- Sheng Zhao
- Dept. of Biology, Stanford University, California, 94305-5020, USA
| | | | | |
Collapse
|
24
|
Larder R, Mellon PL. Otx2 induction of the gonadotropin-releasing hormone promoter is modulated by direct interactions with Grg co-repressors. J Biol Chem 2009; 284:16966-16978. [PMID: 19401468 PMCID: PMC2719334 DOI: 10.1074/jbc.m109.002485] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hormonal communication between the hypothalamus, pituitary, and gonads orchestrates the development and regulation of mammalian reproductive function. In mice, gonadotropin-releasing hormone (GnRH) expression is limited to approximately 1000 neurons that originate in the olfactory placode then migrate to specific positions scattered throughout the hypothalamus. Coordination of the hypothalamic-pituitary-gonadal axis is dependent upon correct migration of GnRH neurons into the hypothalamus followed by the appropriate synthesis and pulsatile secretion of GnRH. Defects in any one of these processes can cause infertility. Recently, substantial progress has been made in identifying transcription factors, and their cofactors, that regulate not only adult expression of GnRH, but also the maturation of GnRH neurons. Here, we show that expression of Otx2, a homeodomain protein required for the formation of the forebrain, is dramatically up-regulated during GnRH neuronal maturation and that overexpression of Otx2 increases GnRH promoter activity in GnRH neuronal cell lines. Furthermore, Otx2 transcriptional activity is modulated by Grg4, a member of the Groucho-related-gene (Grg) family. Using mutational analysis, we show that a WRPW peptide motif within the Otx2 protein is required for physical interaction between Otx2 and Grg4. Without this physical interaction, Grg4 cannot repress Otx2-dependent activation of GnRH gene transcription. Taken together, these data show that Otx2 is important for GnRH expression and that direct interaction between Otx2 and Grg co-repressors regulates GnRH gene expression in hypothalamic neurons.
Collapse
Affiliation(s)
- Rachel Larder
- From the Department of Reproductive Medicine and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093-0674
| | - Pamela L Mellon
- From the Department of Reproductive Medicine and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093-0674.
| |
Collapse
|
25
|
Signaling by G-protein-coupled receptor (GPCR): studies on the GnRH receptor. Front Neuroendocrinol 2009; 30:10-29. [PMID: 18708085 DOI: 10.1016/j.yfrne.2008.07.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 04/28/2008] [Accepted: 07/21/2008] [Indexed: 01/22/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) is the first key hormone of reproduction. GnRH analogs are extensively used in in vitro fertilization, and treatment of sex hormone-dependent cancers, due to their ability to bring about 'chemical castration'. The interaction of GnRH with its cognate type I receptor (GnRHR) in pituitary gonadotropes results in the activation of Gq/G(11), phospholipase Cbeta (PLCbetaI), PLA(2), and PLD. Sequential activation of the phospholipases generates the second messengers inositol 1, 4, 5-trisphosphate (IP(3)), diacylglycerol (DAG), and arachidonic acid (AA), which are required for Ca(2+) mobilization, the activation of various protein kinase C isoforms (PKCs), and the production of prostaglandin (PG) and other metabolites of AA, respectively. PKC isoforms are the major mediators of the downstream activation of a number of mitogen-activated protein kinase (MAPK) cascades by GnRH, namely: extracellular signal-regulated kinase (ERK), jun-N-terminal kinase (JNK), and p38MAPK. The activated MAPKs phosphorylate both cytosolic and nuclear proteins to initiate the transcriptional activation of the gonadotropin subunit genes and the GnRHR. While Ca(2+) mobilization has been found to initiate rapid gonadotropin secretion, Ca(2+), together with various PKC isoforms, MAPKs and AA metabolites also serve as key nodes, in the GnRH-stimulated signaling network that enables the gonadotropes to decode GnRH pulse frequencies and translating that into differential gonadotropin synthesis and release. Even though pulsatility of GnRH is recognized as a major determinant for differential gonadotropin subunit gene expression and gonadotropin secretion very little is yet known about the signaling circuits governing GnRH action at the 'Systems Biology' level. Direct apoptotic and metastatic effects of GnRH analogs in gonadal steroid-dependent cancers expressing the GnRHR also seem to be mediated by the activation of the PKC/MAPK pathways. However, the mechanisms dictating life (pituitary) vs. death (cancer) decisions made by the same GnRHR remain elusive. Understanding these molecular mechanisms triggered by the GnRHR through biochemical and 'Systems Biology' approaches would provide the basis for the construction of the dynamic connectivity maps, which operate in the various cell types (endocrine, cancer, and immune system) targeted by GnRH. The connectivity maps will open a new vista for exploring the direct effects of GnRH analogs in tumors and the design of novel combined therapies for fertility control, reproductive disorders and cancers.
Collapse
|
26
|
|
27
|
Hormonal regulation of clonal, immortalized hypothalamic neurons expressing neuropeptides involved in reproduction and feeding. Mol Neurobiol 2008; 35:182-94. [PMID: 17917107 DOI: 10.1007/s12035-007-0010-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 10/03/2006] [Accepted: 11/09/2006] [Indexed: 12/27/2022]
Abstract
The hypothalamus has been particularly difficult to study at the molecular level because of the inherent cellular heterogeneity and complexity of neuronal circuits within. We have generated a large number of immortalized, clonal cell lines through retroviral gene transfer of the oncogene SV40 T-Ag into primary murine hypothalamic neuronal cell cultures. A number of these neuronal cell lines express neuropeptides linked to the control of feeding behavior and reproduction, including neuropeptide Y (NPY) and neurotensin (NT). We review recent studies on the direct regulation of NPY gene expression by estrogen, and the leptin-mediated control of signal transduction pathways and NT transcription. These studies provide new insights into the direct control of neuropeptide synthesis by hormones and nutrients at a mechanistic level in the individual neuron, not yet possible in the whole brain. Using these novel cell models, we expect to contribute substantially to the understanding of how individual neuronal cell types control overall endocrine function, especially with regard to two of the most well-known roles of distinct peptidergic neurons; these being the control of reproduction and energy homeostasis.
Collapse
|
28
|
Li Y, Grupe A, Rowland C, Holmans P, Segurado R, Abraham R, Jones L, Catanese J, Ross D, Mayo K, Martinez M, Hollingworth P, Goate A, Cairns NJ, Racette BA, Perlmutter JS, O'Donovan MC, Morris JC, Brayne C, Rubinsztein DC, Lovestone S, Thal LJ, Owen MJ, Williams J. Evidence that common variation in NEDD9 is associated with susceptibility to late-onset Alzheimer's and Parkinson's disease. Hum Mol Genet 2008; 17:759-67. [PMID: 18063669 DOI: 10.1093/hmg/ddm348] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Late-onset Alzheimer's disease (LOAD) and Parkinson's disease (PD) are the most common neurodegenerative disorders and in both diseases susceptibility is known to be influenced by genes. We set out to identify novel susceptibility genes for LOAD by performing a large scale, multi-tiered association study testing 4692 single nucleotide polymorphism (SNPs). We identified a SNP within a putative transcription factor binding site in the NEDD9 gene (neural precursor cell expressed, developmentally down-regulated), that shows good evidence of association with disease risk in four out of five LOAD samples [N = 3521, P = 5.38x10(-6), odds ratio (OR) = 1.38 (1.20-1.59)] and in addition, we observed a similar pattern of association in two PD sample sets [N = 1464, P = 0.0145, OR =1.31 (1.05-1.62)]. In exploring a potential mechanism for the association, we observed that expression of NEDD9 and APOE show a strong inverse correlation in the hippocampus of Alzheimer's cases. These data implicate NEDD9 as a novel susceptibility gene for LOAD and possibly PD.
Collapse
Affiliation(s)
- Yonghong Li
- Celera, 1401 Harbor Bay Parkway, Alameda, CA 94502, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tiong J, Locastro T, Wray S. Gonadotropin-releasing hormone-1 (GnRH-1) is involved in tooth maturation and biomineralization. Dev Dyn 2008; 236:2980-92. [PMID: 17948256 DOI: 10.1002/dvdy.21332] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Gonadotropin releasing-hormone-1 (GnRH-1) is expressed in mouse incisors during development. In this report, we identify (1) cell type(s) that express GnRH-1 throughout tooth development, (2) the GnRH-1 receptor, and (3) the role of GnRH-1/GnRH-1 receptor signaling in tooth maturation. Results show that GnRH-1-positive cells in dental epithelium differentiate and populate multiple tooth structures including ameloblast and papillary layers that are involved in enamel formation and mineralization. The GnRH-1 receptor was present, and in vitro a GnRH-1 antagonist attenuated incisor GnRH-1 cell expression. In vivo, in mice lacking GnRH-1 (-/-), the incisors were discolored, longer, and more curved compared to wildtype. Elemental analysis of calcium, phosphorus, and iron revealed changes in -/- incisors consistent with GnRH-1 affecting movement of minerals into the dental matrix. In sum, in tooth development a signal transduction pathway exists for GnRH-1 via the GnRH-1 receptor and disruption of such signaling affects incisor growth and biomineralization.
Collapse
Affiliation(s)
- Jean Tiong
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
30
|
Heterogeneous nuclear ribonucleoprotein A/B and G inhibits the transcription of gonadotropin-releasing-hormone 1. Mol Cell Neurosci 2007; 37:69-84. [PMID: 17920292 DOI: 10.1016/j.mcn.2007.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 08/14/2007] [Accepted: 08/21/2007] [Indexed: 12/16/2022] Open
Abstract
Gonadotropin-releasing hormone 1 (GnRH1) causes the release of gonadotropins from the pituitary to control reproduction. Here we report that two heterogeneous nuclear ribonucleoproteins (hnRNP-A/B and hnRNP-G) bind to the GnRH-I upstream promoter region in a cichlid fish Astatotilapia burtoni. We identified these binding proteins using a newly developed homology based method of mass spectrometric peptide mapping. We show that both hnRNP-A/B and hnRNP-G co-localize with GnRH1 in the pre-optic area of the hypothalamus in the brain. We also demonstrated that these ribonucleoproteins exhibit similar binding capacity in vivo, using immortalized mouse GT1-7 cells where overexpression of either hnRNP-A/B or hnRNP-G significantly down-regulates GnRH1 mRNA levels in GT1-7 cells, suggesting that both act as repressors in GnRH1 transcriptional regulation.
Collapse
|
31
|
Abstract
Comprehensive studies have provided a clear understanding of the effects of gonadal steroids on the secretion of gonadotropin releasing hormone (GnRH), but some inconsistent results exist with regard to effects on synthesis. It is clear that regulation of both synthesis and the secretion of GnRH are effected by neurotransmitter systems in the brain. Thus, steroid regulation of GnRH synthesis and secretion can be direct, but the predominant effects are transmitted through steroid-responsive neuronal systems in various parts of the brain. There is also emerging evidence of direct effects on GnRH cells. Overriding effects on synthesis and secretion of GnRH can be observed during aging, in undernutrition and under stressful situations; these involve various neuronal systems, which may have serial or parallel effects on GnRH cells. The effect of aging is accompanied by changes in GnRH synthesis, but comprehensive studies of synthesis during undernutrition and stress are less well documented. Altered GnRH and gonadotropin secretion that occurs in seasonal breeding animals and during the pubertal transition is not generally accompanied by changes in GnRH synthesis. Secretion of GnRH from the brain is a reflection of the inherent function of GnRH cells and the inputs that integrate all of the central regulatory elements. Ultimately, the pattern of secretion dictates the reproductive status of the organism. In order to fully understand the central mechanisms that control reproduction, more extensive studies are required on the neuronal circuitry that provides input to GnRH cells.
Collapse
Affiliation(s)
- Iain J Clarke
- Prince Henry's Institute of Medical Research, P.O. Box 5152, Clayton 3168, Australia.
| | | |
Collapse
|
32
|
Kitahashi T, Sato H, Sakuma Y, Parhar IS. Cloning and functional analysis of promoters of three GnRH genes in a cichlid. Biochem Biophys Res Commun 2005; 336:536-43. [PMID: 16139796 DOI: 10.1016/j.bbrc.2005.08.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 08/08/2005] [Indexed: 11/26/2022]
Abstract
Mechanisms regulating gonadotropin-releasing hormone (GnRH) types, a key molecule for reproductive physiology, remain unclear. In the present study, we cloned the promoters of GnRH1, GnRH2, and GnRH3 genes in the tilapia, Oreochromis niloticus; and found putative binding sites for glucocorticoid receptors, Sp1, C/EBP, GATA, and Oct-1, but not for androgen receptors in all three GnRH promoters using computer analysis. The presence of binding sites for progesterone receptors in GnRH1, estrogen receptors in GnRH1 and GnRH2, and thyroid hormone receptors in GnRH1 and GnRH3 suggests direct action of steroid hormones on GnRH types. Our observation of SOX and LINE-like sequences exclusively in GnRH1, COUP in GnRH2, and retinoid X receptors in GnRH3 suggests their role in sexual differentiation, midbrain segmentation, and visual cue integration, respectively. Thus, the characteristic binding sites for nuclear receptors and transcription factors support the notion that each GnRH type is regulated differently and has distinct physiological roles.
Collapse
Affiliation(s)
- Takashi Kitahashi
- Department of Physiology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | | | | | | |
Collapse
|
33
|
Oren T, Torregroza I, Evans T. An Oct-1 binding site mediates activation of the gata2 promoter by BMP signaling. Nucleic Acids Res 2005; 33:4357-67. [PMID: 16061939 PMCID: PMC1182169 DOI: 10.1093/nar/gki746] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The gata2 gene encodes a transcription factor implicated in regulating early patterning of ectoderm and mesoderm, and later in numerous cell-specific gene expression programs. Activation of the gata2 gene during embryogenesis is dependent on the bone morphogenetic protein (BMP) signaling pathway, but the mechanism for how signaling controls gene activity has not been defined. We developed an assay in Xenopus embryos to analyze regulatory sequences of the zebrafish gata2 promoter that are necessary to mediate the response to BMP signaling during embryogenesis. We show that activation is Smad dependent, since it is blocked by expression of the inhibitory Smad6. Deletion analysis identified an octamer binding site that is necessary for BMP-mediated induction, and that interacts with the POU homeodomain protein Oct-1. However, this element is not sufficient to transfer a BMP response to a heterologous promoter, requiring an additional more proximal cooperating element. Based on recent studies with other BMP-dependent promoters (Drosophila vestigial and Xenopus Xvent-2), our studies of the gata2 gene suggest that POU-domain proteins comprise a common component of the BMP signaling pathway, cooperating with Smad proteins and other transcriptional activators.
Collapse
Affiliation(s)
| | | | - Todd Evans
- To whom correspondence should be addressed at Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Chanin Building, Room 501, Bronx NY 10461, USA. Tel: +1 718 430 3506; Fax: +1 718 430 8988;
| |
Collapse
|
34
|
Rave-Harel N, Miller NLG, Givens ML, Mellon PL. The Groucho-related gene family regulates the gonadotropin-releasing hormone gene through interaction with the homeodomain proteins MSX1 and OCT1. J Biol Chem 2005; 280:30975-83. [PMID: 16002402 PMCID: PMC2773698 DOI: 10.1074/jbc.m502315200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is exclusively expressed in a unique population of hypothalamic neurons that controls reproductive function. GnRH gene expression is highly dynamic. Its transcriptional activity is regulated in a complex spatiotemporal manner during embryonic development and postnatal life. Although a variety of transcription factors have been identified as regulators of GnRH transcription, most are promiscuous in their DNA-binding requirements, and none are solely expressed in GnRH neurons. Their specific activity is probably determined by interactions with distinct cofactors. Here we find that the Groucho-related gene (GRG) family of co-repressors is expressed in a model cell line for the GnRH neuron and co-expresses with GnRH during prenatal development. GRG proteins associate in vivo with the GnRH promoter. Furthermore, GRG proteins interact with two regulators of GnRH transcription, the homeodomain proteins MSX1 and OCT1. Co-transfection experiments indicate that GRG proteins regulate GnRH promoter activity. The long GRG forms enhance MSX1 repression and counteract OCT1 activation of the GnRH gene. In contrast, the short form, GRG5, has a dominant-negative effect on MSX1-dependent repression. Taken together, these data suggest that the dynamic switch between activation and repression of GnRH transcription is mediated by recruitment of the GRG co-regulators.
Collapse
Affiliation(s)
- Naama Rave-Harel
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California, 92093-0674
| | - Nichol L. G. Miller
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California, 92093-0674
| | - Marjory L. Givens
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California, 92093-0674
| | - Pamela L. Mellon
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California, 92093-0674
- Department of Neurosciences, University of California, San Diego, La Jolla, California, 92093-0674
- To whom correspondence should be addressed: Dept. of Reproductive Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0674. Tel.: 858-534-1312; Fax: 858-534-1438;
| |
Collapse
|
35
|
Tang Q, Mazur M, Mellon PL. The protein kinase C pathway acts through multiple transcription factors to repress gonadotropin-releasing hormone gene expression in hypothalamic GT1-7 neuronal cells. Mol Endocrinol 2005; 19:2769-79. [PMID: 15994198 PMCID: PMC2935804 DOI: 10.1210/me.2004-0463] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The GnRH gene uses two well-defined regions to target expression to a small population of hypothalamic GnRH neurons: a 173-bp proximal promoter and a 300-bp enhancer localized at approximately -1800 to -1500 bp from the start site. Interaction of multiple factors with the GnRH enhancer and promoter is required to confer neuron-specific expression in vivo and in cells in culture. In addition, the expression of the GnRH gene is regulated by numerous neurotransmitters and hormones. Several of these effectors act through membrane receptors to trigger the protein kinase C pathway, and 12-O-tetradecanoyl phorbol-13-acetate (TPA), a modulator of this pathway, has been shown to suppress GnRH gene expression through the promoter. We find that TPA suppresses expression through the GnRH enhancer as well as the promoter. In the enhancer, an Oct-1 binding site, a Pbx/Prep binding site, Msx/Dlx binding sites, and a previously unidentified protein-binding element at -1793, all contribute to TPA suppression. TPA treatment leads to decreased binding of Oct-1 and Pbx1a/Prep to their sites. However, a complex formed by GT1-7 nuclear extracts on the -1793 site is not affected by TPA treatment. It is known that cooperative interaction among multiple factors is necessary for GnRH gene expression; thus, one mechanism by which TPA suppresses GnRH gene expression is to disengage some of these factors from their cis-regulatory elements.
Collapse
Affiliation(s)
- Qingbo Tang
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
36
|
Belsham DD, Lovejoy DA. Gonadotropin‐Releasing Hormone: Gene Evolution, Expression, and Regulation. VITAMINS & HORMONES 2005; 71:59-94. [PMID: 16112265 DOI: 10.1016/s0083-6729(05)71003-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The gonadotropin-releasing hormone (GnRH) gene is a superb example of the diverse regulation that is required to maintain the function of an evolutionarily conserved and fundamental gene. Because reproductive capacity is critical to the survival of the species, physiological homeostasis dictates optimal conditions for reproductive success, and any perturbation from this balance may affect GnRH expression. These disturbances may include alterations in signals dictated by stress, nutritional imbalance, body weight, and neurological problems; therefore, changes in other neuroendocrine systems may directly influence the hypothalamic-pituitary-gonadal axis through direct regulation of GnRH. Thus, to maintain optimal reproductive capacity, the regulation of the GnRH gene is tightly constrained by a number of diverse signaling pathways and neuromodulators. In this review, we summarize what is currently known of GnRH gene structure, the location and function of the two isoforms of the GnRH gene, some of the many hormones and neuromodulators found to affect GnRH expression, and the molecular mechanisms responsible for the regulation of the GnRH gene. We also discuss the latest models used to study the transcriptional regulation of the GnRH gene, from cell models to evolving in vivo technologies. Although we have come a long way in the last two decades toward uncovering the intricacies behind the control of the GnRH neuron, there remain vast distances to cover before direct therapeutic manipulation of the GnRH gene to control reproductive competence is possible.
Collapse
Affiliation(s)
- Denise D Belsham
- Department of Physiology, University of Toronto, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
37
|
Givens ML, Kurotani R, Rave-Harel N, Miller NLG, Mellon PL. Phylogenetic footprinting reveals evolutionarily conserved regions of the gonadotropin-releasing hormone gene that enhance cell-specific expression. Mol Endocrinol 2004; 18:2950-66. [PMID: 15319450 PMCID: PMC2932476 DOI: 10.1210/me.2003-0437] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Reproductive function is controlled by the hypothalamic neuropeptide, GnRH, which serves as the central regulator of the hypothalamic-pituitary-gonadal axis. GnRH expression is limited to a small population of neurons in the hypothalamus. Targeting this minute population of neurons (as few as 800 in the mouse) requires regulatory elements upstream of the GnRH gene that remain to be fully characterized. Previously, we have identified an evolutionarily conserved promoter region (-173 to +1) and an enhancer (-1863 to -1571) in the rat gene that targets a subset of the GnRH neurons in vivo. In the present study, we used phylogenetic sequence comparison between human and rodents and analysis of the transcription factor clusters within conserved regions in an attempt to identify additional upstream regulatory elements. This approach led to the characterization of a new upstream enhancer that regulates expression of GnRH in a cell-specific manner. Within this upstream enhancer are nine binding sites for Octamer-binding transcription factor 1 (OCT1), known to be an important transcriptional regulator of GnRH gene expression. In addition, we have identified nuclear factor I (NF1) binding to multiple elements in the GnRH-regulatory regions, each in close proximity to OCT1. We show that OCT1 and NF1 physically and functionally interact. Moreover, the OCT1 and NF1 binding sites in the regulatory regions appear to be essential for appropriate GnRH gene expression. These findings indicate a role for this upstream enhancer and novel OCT1/NF1 complexes in neuron-restricted expression of the GnRH gene.
Collapse
Affiliation(s)
- Marjory L Givens
- Department of Reproductive Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0674, USA
| | | | | | | | | |
Collapse
|
38
|
Rave-Harel N, Givens ML, Nelson SB, Duong HA, Coss D, Clark ME, Hall SB, Kamps MP, Mellon PL. TALE homeodomain proteins regulate gonadotropin-releasing hormone gene expression independently and via interactions with Oct-1. J Biol Chem 2004; 279:30287-97. [PMID: 15138251 PMCID: PMC2935805 DOI: 10.1074/jbc.m402960200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is the central regulator of reproductive function. Expression of the GnRH gene is confined to a rare population of neurons scattered throughout the hypothalamus. Restricted expression of the rat GnRH gene is driven by a multicomponent enhancer and an evolutionarily conserved promoter. Oct-1, a ubiquitous POU homeodomain transcription factor, was identified as an essential factor regulating GnRH transcription in the GT1-7 hypothalamic neuronal cell line. In this study, we conducted a two-hybrid interaction screen in yeast using a GT1-7 cDNA library to search for specific Oct-1 cofactors. Using this approach, we isolated Pbx1b, a TALE homeodomain transcription factor that specifically associates with Oct-1. We show that heterodimers containing Pbx/Prep1 or Pbx/Meis1 TALE homeodomain proteins bind to four functional elements within the GnRH regulatory region, each in close proximity to an Oct-1-binding site. Cotransfection experiments indicate that TALE proteins are essential for GnRH promoter activity in the GT1-7 cells. Moreover, Pbx1 and Oct-1, as well as Prep1 and Oct-1, form functional complexes that enhance GnRH gene expression. Finally, Pbx1 is expressed in GnRH neurons in embryonic as well as mature mice, suggesting that the associations between TALE homeodomain proteins and Oct-1 regulate neuron-specific expression of the GnRH gene in vivo.
Collapse
Affiliation(s)
- Naama Rave-Harel
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92903
| | - Marjory L. Givens
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92903
| | - Shelley B. Nelson
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92903
| | - Hao A. Duong
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92903
| | - Djurdjica Coss
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92903
| | - Melody E. Clark
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92903
| | - Sara Barth Hall
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92903
| | - Mark P. Kamps
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, California 92903
| | - Pamela L. Mellon
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92903
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California 92903
- To whom correspondence should be addressed: Dept. of Reproductive Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0674; Tel.: 858-534-1312; Fax: 858-534-1438;
| |
Collapse
|
39
|
van den Bemd GJCM, Jhamai M, Brinkmann AO, Chang GTG. The atypical GATA protein TRPS1 represses androgen-induced prostate-specific antigen expression in LNCaP prostate cancer cells. Biochem Biophys Res Commun 2004; 312:578-84. [PMID: 14680804 DOI: 10.1016/j.bbrc.2003.10.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Indexed: 11/26/2022]
Abstract
Prostate-specific antigen (PSA) is considered as an important marker for prostate cancer. Regulation of PSA gene expression is mediated by androgens bound to androgen receptors via androgen response elements (AREs) in its promoter and far upstream enhancer regions. In addition, GATA proteins contribute to PSA gene transcription by interacting with GATA motifs present in the PSA enhancer sequence. The TRPS1 gene contains a single GATA zinc finger domain and not only binds to forward consensus GATA motifs but also to an inverse GATA motif overlapping the ARE III in the far upstream enhancer of the PSA gene. Overexpression of TRPS1 in androgen-dependent human LNCaP prostate cancer cells inhibited the transcription of a transiently transfected PSA enhancer/promoter-driven luciferase reporter construct. Furthermore, overexpression of TRPS1 reduced the androgen-induced endogenous PSA levels secreted in culture medium of LNCaP cells. Our results suggest a role of TRPS1 in androgen regulation of PSA gene expression.
Collapse
|
40
|
Jepeal LI, Boylan MO, Wolfe MM. Cell-specific expression of the glucose-dependent insulinotropic polypeptide gene functions through a GATA and an ISL-1 motif in a mouse neuroendocrine tumor cell line. REGULATORY PEPTIDES 2003; 113:139-47. [PMID: 12686473 DOI: 10.1016/s0167-0115(03)00046-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND/AIMS Glucose-dependent insulinotropic polypeptide (GIP) is a 42-amino acid gastrointestinal regulatory peptide that, in the presence of glucose, stimulates insulin secretion from beta-cells. GIP is expressed in gastrointestinal K-cells. Prior analysis of the GIP promoter demonstrated that 193 bases of the promoter are required to direct cell specific expression. Here we sought to identify and characterize the transcription factors involved. RESULTS By mutational analysis of the GIP promoter in a neuroendocrine cell line (STC-1), we identified two regions located between bases -193 and -182 and bases -156 and -151 that, when independently altered, were responsible for a 90% and 85% reduction in transcription, respectively. When we compared these two regions with known motifs from transcription factor databases, we identified the cis elements as potential GATA and ISL-1 binding sites. With subsequent electrophoretic mobility shift analysis (EMSA) using STC-1 nuclear extracts, we demonstrated the ability of these regions to form specific DNA protein complexes. Furthermore, we utilized antisera to confirm the specific binding of GATA-4 to the upstream site and ISL-1 to the downstream element. CONCLUSION These findings provide evidence for the involvement of the transcription factors GATA-4 and ISL-1 in the cell-specific expression of the GIP gene.
Collapse
Affiliation(s)
- Lisa I Jepeal
- Section of Gastroenterology, Boston University School of Medicine and Boston Medical Center, 650 Albany Street, Boston, MA 02118, USA
| | | | | |
Collapse
|
41
|
Kelley CG, Givens ML, Rave-Harel N, Nelson SB, Anderson S, Mellon PL. Neuron-restricted expression of the rat gonadotropin-releasing hormone gene is conferred by a cell-specific protein complex that binds repeated CAATT elements. Mol Endocrinol 2002; 16:2413-25. [PMID: 12403831 PMCID: PMC2930614 DOI: 10.1210/me.2002-0189] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
GnRH gene expression is restricted to a tiny population of neurons scattered throughout the mediobasal hypothalamus. The combination of a 300-bp enhancer and the 173-bp promoter from the rat GnRH gene can confer this narrow specificity in transgenic mice and in transfections of hypothalamic GT1-7 cells. In the present study, we identify repeated CAATT elements in the 3' region of the rat GnRH enhancer that bind a tissue-restricted protein complex and play a significant role in cell-restricted expression of the GnRH gene. Deletions of multiple repeats demonstrate their importance in transcriptional activity. In fact, even mutation of a single repeat reduces expression. This reduction can be compensated by the conserved GnRH promoter, which also contains such elements and binds this protein complex. In Southwestern analysis, three proteins from GT1-7 nuclear extract bind to the CAATT element, and these proteins are not found in NIH3T3 cells. This cell-specific protein complex has properties of the Q50 homeodomain family of transcription factors and binds to as many as seven binding sites in the enhancer and promoter to play a key role in GnRH gene expression in the hypothalamus.
Collapse
Affiliation(s)
- Carolyn G Kelley
- Department of Reproductive Medicine, Center for the Study of Reproductive Biology and Disease, University of California, San Diego, La Jolla, California 92093-0674, USA
| | | | | | | | | | | |
Collapse
|
42
|
Vasilyev VV, Lawson MA, Dipaolo D, Webster NJG, Mellon PL. Different signaling pathways control acute induction versus long-term repression of LHbeta transcription by GnRH. Endocrinology 2002; 143:3414-26. [PMID: 12193554 PMCID: PMC2932485 DOI: 10.1210/en.2001-211215] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GnRH regulates pituitary gonadotropin gene expression through GnRH receptor activation of the protein kinase C (PKC) and calcium signaling cascades. The pulsatile pattern of GnRH release is crucial for induction of LHbeta-subunit (LHbeta) gene expression; however, continuous prolonged GnRH exposure leads to repression of LHbeta gene transcription. Although in part, long-term repression may be due to receptor down-regulation, the molecular mechanisms of this differential regulation of LHbeta transcription are unknown. Using transfection into the LH-secreting immortalized mouse gonadotrope cell line (LbetaT4), we have demonstrated that LHbeta gene transcription is increased by acute activation (6 h) of GnRH receptor or PKC but not calcium influx; in contrast long-term activation (24 h) of GnRH receptor, PKC, or calcium influx each repress LHbeta transcription. Whereas blockade of PKC prevented the acute action of GnRH and unmasked an acute repression of LHbeta transcription by calcium, it did not prevent long-term repression by GnRH or calcium. Removal of calcium resulted in potentiation of acute GnRH and PKC induction of LHbeta gene expression but prevented long-term repression by GnRH and reduced long-term repression by either calcium or 12-O-tetradecanoyl-phorbol-13-acetate (TPA). We conclude that GnRH uses PKC for acute induction, and calcium signaling is responsible for long-term repression of LHbeta gene expression by GnRH. Furthermore, analysis of the responsiveness of truncated and mutated LHbeta promoter regions demonstrated that not only do acute induction and long-term repression use different signaling systems, but they also use different target sequences for regulating the LHbeta gene.
Collapse
Affiliation(s)
- Vyacheslav V Vasilyev
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093-0674, USA
| | | | | | | | | |
Collapse
|
43
|
Vazquez-Martinez R, Leclerc GM, Wierman ME, Boockfor FR. Episodic activation of the rat GnRH promoter: role of the homeoprotein oct-1. Mol Endocrinol 2002; 16:2093-100. [PMID: 12198245 DOI: 10.1210/me.2002-0139] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent reports demonstrate that the rat GnRH promoter is activated in an episodic fashion in immortalized GnRH neurons, but little information is available on molecular processes that contribute to this phenomenon. In this study, we dissected the regions of the rat GnRH promoter that mediate these effects by testing a series of 5' deletion luciferase reporter constructs on the pattern of photonic emissions from single, living GT1-7 GnRH neuronal cells. Deletion analysis revealed that the region -2012/-1597 that contains the neuron-specific enhancer (NSE) was required for the elaboration of pulses of GnRH promoter activity. The importance of this region was supported by observations that episodic reporter activity could be transferred to a neutral nonpulsatile promoter (Rous sarcoma virus, RSV(180)). Immunoneutralization of Oct-1 as well as mutation of an octamer binding site located at -1787/-1783 (AT-a site) blocked the pulsatile GnRH promoter activity in GT1-7 neuronal cells. Taken together, our findings indicate that episodic GnRH gene expression is a promoter-dependent phenomenon, which is mediated by Oct-1 interaction with regulatory elements in the NSE region.
Collapse
Affiliation(s)
- Rafael Vazquez-Martinez
- Laboratory of Molecular Dynamics (F.R.B.), Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
44
|
Torgersen J, Nourizadeh-Lillabadi R, Husebye H, Aleström P. In silico and in situ characterization of the zebrafish (Danio rerio) gnrh3 (sGnRH) gene. BMC Genomics 2002; 3:25. [PMID: 12188930 PMCID: PMC126252 DOI: 10.1186/1471-2164-3-25] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2002] [Accepted: 08/21/2002] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gonadotropin releasing hormone (GnRH) is responsible for stimulation of gonadotropic hormone (GtH) in the hypothalamus-pituitary-gonadal axis (HPG). The regulatory mechanisms responsible for brain specificity make the promoter attractive for in silico analysis and reporter gene studies in zebrafish (Danio rerio). RESULTS We have characterized a zebrafish [Trp7, Leu8] or salmon (s) GnRH variant, gnrh3. The gene includes a 1.6 Kb upstream regulatory region and displays the conserved structure of 4 exons and 3 introns, as seen in other species. An in silico defined enhancer at -976 in the zebrafish promoter, containing adjacent binding sites for Oct-1, CREB and Sp1, was predicted in 2 mammalian and 5 teleost GnRH promoters. Reporter gene studies confirmed the importance of this enhancer for cell specific expression in zebrafish. Interestingly the promoter of human GnRH-I, known as mammalian GnRH (mGnRH), was shown capable of driving cell specific reporter gene expression in transgenic zebrafish. CONCLUSIONS The characterized zebrafish Gnrh3 decapeptide exhibits complete homology to the Atlantic salmon (Salmo salar) GnRH-III variant. In silico analysis of mammalian and teleost GnRH promoters revealed a conserved enhancer possessing binding sites for Oct-1, CREB and Sp1. Transgenic and transient reporter gene expression in zebrafish larvae, confirmed the importance of the in silico defined zebrafish enhancer at -976. The capability of the human GnRH-I promoter of directing cell specific reporter gene expression in zebrafish supports orthology between GnRH-I and GnRH-III.
Collapse
Affiliation(s)
- Jacob Torgersen
- Department of Biochemistry, Physiology and Nutrition, Norwegian School of Veterinary Science, PO Box 8146 Dep., N-0033 Oslo, Norway
| | - Rasoul Nourizadeh-Lillabadi
- Department of Biochemistry, Physiology and Nutrition, Norwegian School of Veterinary Science, PO Box 8146 Dep., N-0033 Oslo, Norway
| | - Harald Husebye
- Department of Botany, NTNU/ Realfagbygget, N-7491 Trondheim, Norway
| | - Peter Aleström
- Department of Biochemistry, Physiology and Nutrition, Norwegian School of Veterinary Science, PO Box 8146 Dep., N-0033 Oslo, Norway
| |
Collapse
|
45
|
Kim HH, Wolfe A, Smith GR, Tobet SA, Radovick S. Promoter sequences targeting tissue-specific gene expression of hypothalamic and ovarian gonadotropin-releasing hormone in vivo. J Biol Chem 2002; 277:5194-202. [PMID: 11733536 DOI: 10.1074/jbc.m110535200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular mechanisms directing tissue-specific expression of gonadotropin-releasing hormone (GnRH) are difficult to study due to the paucity and scattered distribution of GnRH neurons. To identify regions of the mouse GnRH (mGnRH) promoter that are critical for appropriate tissue-specific gene expression, we generated transgenic mice with fragments (-3446/+23 bp, -2078/+23 bp, and -1005/+28 bp) of mGnRH promoter fused to the luciferase reporter gene. The pattern of mGnRH promoter activity was assessed by measuring luciferase activity in tissue homogenates. All three 5'-fragments of mGnRH promoter targeted hypothalamic expression of the luciferase transgene, but with the exception of the ovary, luciferase expression was absent in non-neural tissues. High levels of ovarian luciferase activity were observed in mice generated with both -2078 and -1005 bp of promoter. Our study is the first to define a region of the GnRH gene promoter that directs expression to both neural and non-neural tissues in vivo. We demonstrate that DNA sequences contained within the proximal -1005 bp of the mGnRH promoter are sufficient to direct mGnRH gene expression to both the ovary and hypothalamus. Our results also suggest that DNA sequences distal to -2078 bp mediate the repression of ovarian GnRH.
Collapse
Affiliation(s)
- Helen H Kim
- Section of Reproductive Endocrinology and Infertility, the Department of Obstetrics and Gynecology, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | |
Collapse
|
46
|
Roy D, Angelini NL, Fujieda H, Brown GM, Belsham DD. Cyclical regulation of GnRH gene expression in GT1-7 GnRH-secreting neurons by melatonin. Endocrinology 2001; 142:4711-20. [PMID: 11606436 DOI: 10.1210/endo.142.11.8464] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pineal hormone melatonin plays an important role in the neuroendocrine control of reproductive physiology, but its effects on hypothalamic GnRH neurons are not yet known. We have found that GT1-7 GnRH-secreting neurons express membrane-bound G protein-coupled melatonin receptors, mt1 (Mel-1a) and MT2 (Mel-1b) as well as the orphan nuclear receptors ROR alpha and RZR beta. Melatonin (1 nM) significantly downregulates GnRH mRNA levels in a 24-h cyclical manner, an effect that is specifically inhibited by the melatonin receptor antagonist luzindole (10 microM). Repression of GnRH gene expression by melatonin appears to occur at the transcriptional level and can be mapped to the GnRH neuron-specific enhancer located within the 5' regulatory region of the GnRH gene. Using transient transfection of GT1-7 cells, downregulation of GnRH gene expression by melatonin was further localized to five specific regions within the GnRH enhancer including -1827/-1819, -1780/-1772, -1746/-1738, -1736/-1728, and -1697/-1689. Interestingly, the region located at -1736/-1728 includes sequences that correspond to two direct repeats of hexameric consensus binding sites for members of the ROR/RZR orphan nuclear receptor family. To begin to dissect the mechanisms involved in the 24-h cyclical regulation of GnRH transcription, we have found that melatonin (10 nM) induces rapid internalization of membrane-bound mt1 receptors through a beta-arrestin 1-mediated mechanism. These results provide the first evidence that melatonin may mediate its neuroendocrine control on reproductive physiology through direct actions on the GnRH neurons of the hypothalamus, both at the level of GnRH gene expression and through the regulation of G protein-coupled melatonin receptors.
Collapse
Affiliation(s)
- D Roy
- Institute for Medical Sciences, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
47
|
Gesemann M, Litwack ED, Yee KT, Christen U, O'Leary DD. Identification of candidate genes for controlling development of the basilar pons by differential display PCR. Mol Cell Neurosci 2001; 18:1-12. [PMID: 11461149 DOI: 10.1006/mcne.2001.0996] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The basilar pons, a major hindbrain nucleus involved in sensory-motor integration, has become a model system for studying long-distance neuronal migration, axon-target recognition by collateral branching, and the formation of patterned axonal projections. To identify genes potentially involved in these developmental events, we have performed a differential display PCR screen comparing RNA isolated from the developing basilar pons with RNA obtained from developing cerebellum and olfactory bulb, as well as the mature basilar pons. Using 400 different combinations of primers, we screened more than 11,000 labeled DNA fragments and identified 201 that exhibited higher expression in the basilar pons than in the control tissues. From these, 138 distinct gene fragments were cloned. The differential expression of a large subset of these fragments was confirmed using RNase protection assays. In situ hybridization analysis revealed that the expression of many of these genes is limited to the basilar pons and only a few other brain regions, suggesting that they may play specific roles in pontine development.
Collapse
Affiliation(s)
- M Gesemann
- Molecular Neurobiology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, San Diego, California 92037, USA
| | | | | | | | | |
Collapse
|
48
|
Perez-Stable CM, Pozas A, Roos BA. A role for GATA transcription factors in the androgen regulation of the prostate-specific antigen gene enhancer. Mol Cell Endocrinol 2000; 167:43-53. [PMID: 11000519 DOI: 10.1016/s0303-7207(00)00300-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The transgenic mouse line Ggamma/T-15 containing the fetal globin promoter linked to SV40 T antigen unexpectedly results in androgen-independent prostate carcinomas. Given the key role of GATA-1 transcription factor in fetal globin gene promoter activity, we investigated whether specific GATA family members are expressed in the prostate and whether they can regulate prostate-specific genes. We found that GATA-2 and -3 are the predominant GATA family members expressed in human and mouse prostate and that GATA mRNA levels are not regulated by androgen. We identified six GATA sites flanking an androgen-response element located in the far-upstream enhancer of the prostate-specific antigen (PSA) gene. These GATA sites are targets for GATA factors and are essential for optimal androgen induction of transfected PSA enhancer/promoter plasmids in LNCaP, a PSA and androgen receptor expressing human prostate cancer cell line. Our results suggest that prostatic GATA-2 and -3 are involved in the androgen regulation of the PSA gene.
Collapse
Affiliation(s)
- C M Perez-Stable
- Geriatric Research, Education, and Clinical Center and Research Service, Veterans Affairs Medical Center, Miami, FL 33125, USA.
| | | | | |
Collapse
|
49
|
Kelley CG, Lavorgna G, Clark ME, Boncinelli E, Mellon PL. The Otx2 homeoprotein regulates expression from the gonadotropin-releasing hormone proximal promoter. Mol Endocrinol 2000; 14:1246-56. [PMID: 10935548 DOI: 10.1210/mend.14.8.0509] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The GnRH gene is expressed exclusively in a highly restricted population of approximately 800 neurons in the mediobasal hypothalamus in the mouse. The Otx2 homeoprotein has been shown to colocalize with GnRH in embryonic mouse brain. We have identified a highly conserved bicoid-related Otx target sequence within the proximal promoter region of the GnRH gene from several species. This element from the rat GnRH promoter binds baculovirus-expressed Otx2 protein and Otx2 protein in nuclear extracts of a hypothalamic GnRH-expressing neuronal cell line, GT1-7. Transient transfection assays indicate that the GnRH promoter Otx/bicoid site is required for specific expression of the GnRH gene in GT1-7 cells and that it can confer specificity to a neutral Rous sarcoma virus (RSV) promoter in GT1-7 cells but not in NIH3T3 cells. Overexpression of mouse Otx2 in GT1-7 cells induces expression of a GnRH promoter plasmid, an effect that is dependent upon the Otx binding site. Thus, the GnRH proximal promoter is regulated by the Otx2 homeoprotein. Finally, we have now demonstrated the presence of Otx2 protein in the GnRH neurons of the adult mouse hypothalamus. These data suggest that Otx2 is important in the development of the GnRH neuron and/or in the maintenance of GnRH expression in the adult mouse hypothalamus.
Collapse
Affiliation(s)
- C G Kelley
- Department of Reproductive Medicine and Neuroscience and the Center for Molecular Genetics, University of California, San Diego, La Jolla 92093-0674, USA
| | | | | | | | | |
Collapse
|
50
|
Wang L, Wang X, Adamo ML. Two putative GATA motifs in the proximal exon 1 promoter of the rat insulin-like growth factor I gene regulate basal promoter activity. Endocrinology 2000; 141:1118-26. [PMID: 10698188 DOI: 10.1210/endo.141.3.7344] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The insulin-like growth factor I gene is transcribed from two promoters, which direct synthesis of alternative first exons (exon 1 and exon 2) in insulin-like growth factor I messenger RNAs (mRNAs). An exon 1 promoter construct extending from +75 to +192 (the most upstream exon 1 start site was designated as +1) showed significant promoter activity in C6, OVCAR-3, and SK-N-MC cells. Within the +75 to +192 region, there are two perfect matches to the consensus binding site for GATA transcription factor, at +108 (GATA-A) and at +183 (GATA-B). Mutations of the GATA-A or GATA-B sequences resulted in slight (or no) effect on exon 1 promoter activity in both C6 and OVCAR-3 cells. However, mutation of the GATA-A sequence stimulated exon 1 promoter activity by 68% in SK-N-MC cells. Mutation of the GATA-B sequence inhibited exon 1 promoter activity by 4.4-fold in SK-N-MC cells. Electrophoretic mobility shift assays showed that there were nuclear proteins in SK-N-MC cells capable of specifically binding to the GATA-A and GATA-B elements and that this binding was GATA-sequence specific. GATA-2, GATA-3, and GATA-4 are the only GATA proteins that have been reported to be expressed in neurons. None of the antibodies against these three GATA proteins were capable of inhibiting or supershifting the bands formed by the nuclear proteins and oligonucleotides containing GATA-A or GATA-B elements. A GATA-1 expression vector was used to perform cotransfection experiments. The GATA-A mutation abolished the stimulatory effect of the GATA-1 factor on promoter activity. In contrast, the GATA-B mutation enhanced the stimulatory effect of GATA-1 protein. Anti-GATA-1 antibody was also incapable of inhibiting or supershifting the bands formed by the nuclear proteins and oligonucleotides containing the GATA-A or GATA-B elements. In conclusion, the GATA-A element seems to bind an inhibitory endogenous factor(s) in SK-N-MC cells, whereas the GATA-B element may bind a stimulatory factor(s). These factors seem to be related to GATA transcription factors but are immunologically distinct from GATA-2, GATA-3, or GATA-4. GATA-1 has the potential to transactivate the exon 1 promoter through the GATA-A element but is unlikely to be the endogenous protein binding to the GATA-A or the GATA-B motifs in SK-N-MC cells.
Collapse
Affiliation(s)
- L Wang
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, 78284-7760, USA
| | | | | |
Collapse
|