1
|
Comprehensive Profiling of Lysine Acetylome in Baculovirus Infected Silkworm (Bombyx mori) Cells. Proteomics 2018; 18. [DOI: 10.1002/pmic.201700133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/01/2017] [Indexed: 12/12/2022]
|
2
|
Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ, Stender JD, Chun HB, Garner H, Geissmann F, Glass CK. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 2014; 159:1327-40. [PMID: 25480297 PMCID: PMC4364385 DOI: 10.1016/j.cell.2014.11.023] [Citation(s) in RCA: 1011] [Impact Index Per Article: 91.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 11/16/2014] [Accepted: 11/17/2014] [Indexed: 12/20/2022]
Abstract
Macrophages reside in essentially all tissues of the body and play key roles in innate and adaptive immune responses. Distinct populations of tissue macrophages also acquire context-specific functions that are important for normal tissue homeostasis. To investigate mechanisms responsible for tissue-specific functions, we analyzed the transcriptomes and enhancer landscapes of brain microglia and resident macrophages of the peritoneal cavity. In addition, we exploited natural genetic variation as a genome-wide "mutagenesis" strategy to identify DNA recognition motifs for transcription factors that promote common or subset-specific binding of the macrophage lineage-determining factor PU.1. We find that distinct tissue environments drive divergent programs of gene expression by differentially activating a common enhancer repertoire and by inducing the expression of divergent secondary transcription factors that collaborate with PU.1 to establish tissue-specific enhancers. These findings provide insights into molecular mechanisms by which tissue environment influences macrophage phenotypes that are likely to be broadly applicable to other cell types.
Collapse
Affiliation(s)
- David Gosselin
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Verena M Link
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA; Faculty of Biology, Department II, Ludwig-Maximilians Universität München, Planegg-Martinsried 82152, Germany
| | - Casey E Romanoski
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Gregory J Fonseca
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Dawn Z Eichenfield
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Nathanael J Spann
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Joshua D Stender
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Hyun B Chun
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Hannah Garner
- Centre for Molecular and Cellular Biology of Inflammation, King's College London, London SE1 1UL, UK; Peter Gorer Department of Immunobiology, King's College London, London SE1 1UL, UK
| | - Frederic Geissmann
- Centre for Molecular and Cellular Biology of Inflammation, King's College London, London SE1 1UL, UK; Peter Gorer Department of Immunobiology, King's College London, London SE1 1UL, UK
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA; Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA.
| |
Collapse
|
3
|
Brüschweiler S, Konrat R, Tollinger M. Allosteric communication in the KIX domain proceeds through dynamic repacking of the hydrophobic core. ACS Chem Biol 2013; 8:1600-10. [PMID: 23651431 PMCID: PMC3719477 DOI: 10.1021/cb4002188] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
The KIX domain of the transcriptional
coactivator CREB binding
protein (CBP) co-operatively mediates interactions between transcription
factors. Binding of the transcription factor mixed-lineage leukemia
(MLL) induces the formation of a low-populated conformer of KIX that
resembles the conformation of the KIX domain in the presence of a
second transcription factor molecule. NMR spin relaxation studies
have previously shown that allosteric coupling proceeds through a
network of hydrophobic core residues that bridge the two binding sites.
Here we describe high-resolution NMR solution structures of the binary
complex of KIX with MLL and the ternary complex of KIX formed with
MLL and phosphorylated kinase inducible domain of CREB (pKID) as a
second ligand. We show that binding of pKID to the binary complex
of KIX with MLL is accompanied by a defined repacking of the allosteric
network in the hydrophobic core of the protein. Rotamer populations
derived from methyl group 13C chemical shifts reveal a
dynamic contribution to the repacking process that is not captured
by the structural coordinates and exemplify the dynamic nature of
allosteric communication in the KIX domain.
Collapse
Affiliation(s)
- Sven Brüschweiler
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
- Structural and Computational Biology, Max F. Perutz Laboratories, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Robert Konrat
- Structural and Computational Biology, Max F. Perutz Laboratories, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Martin Tollinger
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| |
Collapse
|
4
|
Kashif M, Hellwig A, Hashemolhosseini S, Kumar V, Bock F, Wang H, Shahzad K, Ranjan S, Wolter J, Madhusudhan T, Bierhaus A, Nawroth P, Isermann B. Nuclear factor erythroid-derived 2 (Nfe2) regulates JunD DNA-binding activity via acetylation: a novel mechanism regulating trophoblast differentiation. J Biol Chem 2011; 287:5400-11. [PMID: 22174410 DOI: 10.1074/jbc.m111.289801] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently demonstrated that the bZip transcription factor nuclear factor erythroid-derived 2 (Nfe2) represses protein acetylation and expression of the transcription factor glial cell missing 1 (Gcm1) in trophoblast cells, preventing excess syncytiotrophoblast formation and permitting normal placental vascularization and embryonic growth. However, the Gcm1 promoter lacks a Nfe2-binding site and hence the mechanisms linking Nfe2 and Gcm1 expression remained unknown. Here we show that Nfe2 represses JunD DNA-binding activity to the Gcm1 promoter during syncytiotrophoblast differentiation. Interventional studies using knockdown and knockin approaches show that enhanced JunD DNA-binding activity is required for increased expression of Gcm1 and syncytiotrophoblast formation as well as impaired placental vascularization and reduced growth of Nfe2(-/-) embryos. Induction of Gcm1 expression requires binding of JunD to the -1441 site within the Gcm1 promoter, which is distinct from the -1314 site previously shown to induce Gcm1 expression by other bZip transcription factors. Nfe2 modulates JunD binding to the Gcm1 promoter via acetylation, as reducing JunD acetylation using the histone acetyltransferase inhibitor curcumin reverses the increased JunD DNA-binding activity observed in the absence of Nfe2. This identifies a novel mechanism through which bZip transcription factors interact. Within the placenta this interaction regulates Gcm1 expression, syncytiotrophoblast formation, placental vascularization, and embryonic growth.
Collapse
Affiliation(s)
- Muhammed Kashif
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ramakrishnan V, Pace BS. Regulation of γ-globin gene expression involves signaling through the p38 MAPK/CREB1 pathway. Blood Cells Mol Dis 2011; 47:12-22. [PMID: 21497119 DOI: 10.1016/j.bcmd.2011.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 03/11/2011] [Indexed: 10/18/2022]
Abstract
In response to sodium butyrate and trichostatin A treatment in erythroid cells, p38 mitogen activated protein kinase (MAPK) mediates fetal hemoglobin (HbF) induction by activating cAMP response element binding protein 1 (CREB1). To expand on this observation, we completed studies to determine the role of p38 MAPK in steady-state γ-globin regulation. We propose that p38 signaling regulates Gγ-globin transcription during erythroid maturation through its downstream effector CREB1 which binds the Gγ-globin cAMP response element (G-CRE). We demonstrated that a loss of p38 or CREB1 function by siRNA knockdown resulted in target gene silencing. Moreover, gain of p38 or CREB1 function augments γ-globin transcription. These regulatory effects were conserved under physiological conditions tested in primary erythroid cells. When the G-CRE was mutated in a stable chromatin environment Gγ-globin promoter activity was nearly abolished. Furthermore, introduction of mutations in the G-CRE abolished Gγ-globin activation via p38 MAPK/CREB1 signaling. Chromatin immunoprecipitation assays (ChIP) demonstrated that CREB1 and its binding partner CREB binding protein (CBP) co-localize at the G-CRE region. These data support the role of p38 MAPK/CREB1 signaling in Gγ-globin gene transcription under steady-state conditions.
Collapse
Affiliation(s)
- Valya Ramakrishnan
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75080, USA
| | | |
Collapse
|
6
|
Cooperation of NFκB and CREB to induce synergistic IL-6 expression in astrocytes. Cell Signal 2010; 22:871-81. [DOI: 10.1016/j.cellsig.2010.01.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 01/19/2010] [Indexed: 12/16/2022]
|
7
|
CTCF-dependent enhancer-blocking by alternative chromatin loop formation. Proc Natl Acad Sci U S A 2008; 105:20398-403. [PMID: 19074263 DOI: 10.1073/pnas.0808506106] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The mechanism underlying enhancer-blocking by insulators is unclear. We explored the activity of human beta-globin HS5, the orthologue of the CTCF-dependent chicken HS4 insulator. An extra copy of HS5 placed between the beta-globin locus control region (LCR) and downstream genes on a transgene fulfills the classic predictions for an enhancer-blocker. Ectopic HS5 does not perturb the LCR but blocks gene activation by interfering with RNA pol II, activator and coactivator recruitment, and epigenetic modification at the downstream beta-globin gene. Underlying these effects, ectopic HS5 disrupts chromatin loop formation between beta-globin and the LCR, and instead forms a new loop with endogenous HS5 that topologically isolates the LCR. Both enhancer-blocking and insulator-loop formation depend on an intact CTCF site in ectopic HS5 and are sensitive to knock-down of the CTCF protein by siRNA. Thus, intrinsic looping activity of CTCF sites can nullify LCR function.
Collapse
|
8
|
Dean A, Fiering S. Epigenetic Gene Regulation—Lessons from Globin. Epigenomics 2008. [DOI: 10.1007/978-1-4020-9187-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Guimarães KS, Przytycka TM. Interrogating domain-domain interactions with parsimony based approaches. BMC Bioinformatics 2008; 9:171. [PMID: 18366803 PMCID: PMC2358894 DOI: 10.1186/1471-2105-9-171] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 03/26/2008] [Indexed: 12/17/2022] Open
Abstract
Background The identification and characterization of interacting domain pairs is an important step towards understanding protein interactions. In the last few years, several methods to predict domain interactions have been proposed. Understanding the power and the limitations of these methods is key to the development of improved approaches and better understanding of the nature of these interactions. Results Building on the previously published Parsimonious Explanation method (PE) to predict domain-domain interactions, we introduced a new Generalized Parsimonious Explanation (GPE) method, which (i) adjusts the granularity of the domain definition to the granularity of the input data set and (ii) permits domain interactions to have different costs. This allowed for preferential selection of the so-called "co-occurring domains" as possible mediators of interactions between proteins. The performance of both variants of the parsimony method are competitive to the performance of the top algorithms for this problem even though parsimony methods use less information than some of the other methods. We also examined possible enrichment of co-occurring domains and homo-domains among domain interactions mediating the interaction of proteins in the network. The corresponding study was performed by surveying domain interactions predicted by the GPE method as well as by using a combinatorial counting approach independent of any prediction method. Our findings indicate that, while there is a considerable propensity towards these special domain pairs among predicted domain interactions, this overrepresentation is significantly lower than in the iPfam dataset. Conclusion The Generalized Parsimonious Explanation approach provides a new means to predict and study domain-domain interactions. We showed that, under the assumption that all protein interactions in the network are mediated by domain interactions, there exists a significant deviation of the properties of domain interactions mediating interactions in the network from that of iPfam data.
Collapse
Affiliation(s)
- Katia S Guimarães
- National Center of Biotechnology, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
10
|
Palstra R, de Laat W, Grosveld F. Chapter 4 β‐Globin Regulation and Long‐Range Interactions. LONG-RANGE CONTROL OF GENE EXPRESSION 2008; 61:107-42. [DOI: 10.1016/s0065-2660(07)00004-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Pouilhe M, Gilardi-Hebenstreit P, Desmarquet-Trin Dinh C, Charnay P. Direct regulation of vHnf1 by retinoic acid signaling and MAF-related factors in the neural tube. Dev Biol 2007; 309:344-57. [PMID: 17669392 DOI: 10.1016/j.ydbio.2007.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 06/21/2007] [Accepted: 07/04/2007] [Indexed: 12/14/2022]
Abstract
The homeodomain transcription factor vHNF1 plays an essential role in the patterning of the caudal segmented hindbrain, where it participates in the definition of the boundary between rhombomeres (r) 4 and 5 and in the specification of the identity of r5 and r6. Understanding the molecular basis of vHnf1 own expression therefore constitutes an important issue to decipher the regulatory network governing hindbrain patterning. We have identified a highly conserved 800-bp enhancer element located in the fourth intron of vHnf1 and whose activity recapitulates vHnf1 neural expression in transgenic mice. Functional analysis of this enhancer revealed that it contains two types of essential motifs, a retinoic acid response element and two half T-MARE sites, indicating that it integrates direct inputs from the retinoic acid signaling cascade and MAF-related factors. Our data suggest that MAFB, which is itself regulated by vHNF1, acts as a positive modulator of vHnf1 in r5 and r6, whereas another MAF-related factor is absolutely required for the expression of vHnf1 in both the hindbrain and the spinal cord. We propose a model accounting for the initiation and maintenance phases of vHnf1 expression and for the establishment of the r4/r5 boundary, based on cooperative contributions of Maf factors and retinoic acid signaling.
Collapse
Affiliation(s)
- Marie Pouilhe
- INSERM, U784, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | | | |
Collapse
|
12
|
Kim A, Zhao H, Ifrim I, Dean A. Beta-globin intergenic transcription and histone acetylation dependent on an enhancer. Mol Cell Biol 2007; 27:2980-6. [PMID: 17283048 PMCID: PMC1899946 DOI: 10.1128/mcb.02337-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Histone acetyltransferases are associated with the elongating RNA polymerase II (Pol II) complex, supporting the idea that histone acetylation and transcription are intertwined mechanistically in gene coding sequences. Here, we studied the establishment and function of histone acetylation and transcription in noncoding sequences by using a model locus linking the beta-globin HS2 enhancer and the embryonic epsilon-globin gene in chromatin. An intact HS2 enhancer that recruits RNA Pol II is required for intergenic transcription and histone H3 acetylation and K4 methylation between the enhancer and target gene. RNA Pol II recruitment to the target gene TATA box is not required for the intergenic transcription or intergenic histone modifications, strongly implying that they are properties conferred by the enhancer. However, Pol II recruitment at HS2, intergenic transcription, and intergenic histone modification are not sufficient for transcription or modification of the target gene: these changes require initiation at the TATA box of the gene. The results suggest that intergenic and genic transcription complexes are independent and possibly differ from one another.
Collapse
Affiliation(s)
- Aeri Kim
- Laboratory of Cellular and Developmental Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
13
|
Moore A, Merad Boudia M, Lehalle D, Massrieh W, Derjuga A, Blank V. Regulation of globin gene transcription by heme in erythroleukemia cells: analysis of putative heme regulatory motifs in the p45 NF-E2 transcription factor. Antioxid Redox Signal 2006; 8:68-75. [PMID: 16487039 DOI: 10.1089/ars.2006.8.68] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The function of the NF-E2 transcription factor, a p45/small Maf heterodimer, was analyzed in the erythroleukemia cell lines MEL and CB3. In contrast to MEL cells, CB3 cells are null for p45 and thus express only extremely low levels of adult globin transcripts upon induction by agents promoting erythroid differentiation. We investigated the response of erythroleukemia cells to hemin treatment. Hemin rapidly induces beta-globin gene transcript levels in MEL cells, but not in CB3 cells. Stable expression of the large p45 NF-E2 subunit in CB3 cells restores hemin mediated beta-globin gene transcription, suggesting that the presence of a functional NF-E2 is required for strong induction of beta-globin mRNA levels by hemin in erythroleukemia cells. We performed mutagenesis of two potential heme-regulatory motifs (HRMs) in p45 NF-E2 and found that the mutated versions are expressed and can still recognize a NF-E2 DNA binding element. In addition, we showed that p45 NF-E2 HRM mutants are able to restore beta-globin gene transcription in CB3 cells upon induction by hemin. Our results suggest that globin gene activation by heme appears to be independent of the putative HRMs in the p45 subunit of the NF-E2 transcription factor.
Collapse
Affiliation(s)
- Amy Moore
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Shyu YC, Lee TL, Ting CY, Wen SC, Hsieh LJ, Li YC, Hwang JL, Lin CC, Shen CKJ. Sumoylation of p45/NF-E2: nuclear positioning and transcriptional activation of the mammalian beta-like globin gene locus. Mol Cell Biol 2005; 25:10365-78. [PMID: 16287851 PMCID: PMC1291221 DOI: 10.1128/mcb.25.23.10365-10378.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NF-E2 is a transcription activator for the regulation of a number of erythroid- and megakaryocytic lineage-specific genes. Here we present evidence that the large subunit of mammalian NF-E2, p45, is sumoylated in vivo in human erythroid K562 cells and in mouse fetal liver. By in vitro sumoylation reaction and DNA transfection experiments, we show that the sumoylation occurs at lysine 368 (K368) of human p45/NF-E2. Furthermore, p45 sumoylation enhances the transactivation capability of NF-E2, and this is accompanied by an increase of the NF-E2 DNA binding affinity. More interestingly, we have found that in K562 cells, the beta-globin gene loci in the euchromatin regions are predominantly colocalized with the nuclear bodies promyelocytic leukemia protein (PML) oncogenic domains that are enriched with the PML, SUMO-1, RNA polymerase II, and sumoylatable p45/NF-E2. Chromatin immunoprecipitation assays further showed that the intact sumoylation site of p45/NF-E2 is required for its binding to the DNase I-hypersensitive sites of the beta-globin locus control region. Finally, we demonstrated by stable transfection assay that only the wild-type p45, but not its mutant form p45 (K368R), could efficiently rescue beta-globin gene expression in the p45-null, erythroid cell line CB3. These data together point to a model of mammalian beta-like globin gene activation by sumoylated p45/NF-E2 in erythroid cells.
Collapse
Affiliation(s)
- Yu-Chiau Shyu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Schaak S, Cussac D, Labialle S, Mignotte V, Paris H. Cloning and functional characterization of the rat alpha2B-adrenergic receptor gene promoter region: Evidence for binding sites for erythropoiesis-related transcription factors GATA1 and NF-E2. Biochem Pharmacol 2005; 70:606-17. [PMID: 15993847 DOI: 10.1016/j.bcp.2005.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 05/23/2005] [Accepted: 05/24/2005] [Indexed: 10/25/2022]
Abstract
In the rat, the alpha2B-adrenergic receptor (alpha2B-AR) is encoded by the rat non-glycosylated (RNG) gene and is primarily expressed in the kidney, brain and liver of adult animals. High levels of alpha2B-AR are also found during fetal life in the placenta, liver and blood, where it is borne by cells of the erythropoietic lineage. As a first step to define the mechanisms responsible for the spatio-temporal pattern of alpha2B-AR expression, a genomic fragment containing 2.8 kb of the 5'-flanking region, the ORF and approximately 20 kb of the 3'-flanking region of the RNG gene was isolated. RNase protection assays performed on RNA from placenta or kidney using a series of riboprobes permitted to locate the transcription start site 372 bases upstream from the start codon. Transient transfection of various cells, including rat proximal tubule in primary culture, with constructs containing luciferase as a reporter gene demonstrated that: (i) the 5'-flanking region exhibited a strong and sense-dependent transcriptional activity and (ii) the 332 bp fragment (-732/-401 relative to the start codon), which lacks a TATA box but contains Sp1 sites, is sufficient to drive expression. Analysis of chromatin susceptibility to DNaseI digestion identified two hypersensitive sites (HS1 and HS2) located 1.7 and 1.0 kb, respectively, upstream from ATG and containing recognition sequences for erythroid transcription factors. EMSA showed specific binding of GATA1 and NF-E2 to these elements. Taken together, the results suggest that the chromatin environment in the vicinity of these boxes plays a critical role for alpha2B-AR expression during fetal life.
Collapse
Affiliation(s)
- Stéphane Schaak
- INSERM Unit 388, Institut Louis Bugnard, CHU Rangueil, Bâtiment L3, BP 84225, 31432 Toulouse Cedex 4, France
| | | | | | | | | |
Collapse
|
16
|
Chénais B, Derjuga A, Massrieh W, Red-Horse K, Bellingard V, Fisher SJ, Blank V. Functional and placental expression analysis of the human NRF3 transcription factor. Mol Endocrinol 2004; 19:125-37. [PMID: 15388789 DOI: 10.1210/me.2003-0379] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Members of the Maf protooncogene and cap'n' collar families of basic-leucine zipper transcription factors play important roles in development, differentiation, oncogenesis, and stress signaling. In this study, we performed an in vivo protein-protein interaction screen to search for novel partners of the small Maf proteins. Using full-length human MAFG protein as bait, we identified the human basic-leucine zipper protein NRF3 [NF-E2 (nuclear factor erythroid 2)-related factor 3] as an interaction partner. Transfection studies confirmed that NRF3 is able to dimerize with MAFG. The resulting NRF3/MAFG heterodimer recognizes nuclear factor-erythroid 2/Maf recognition element-type DNA-binding motifs. Functional analysis revealed the presence of a strong transcriptional activation domain in the center region of the NRF3 protein. We found that NRF3 transcripts are present in placental chorionic villi from at least week 12 of gestation on through term. In particular, NRF3 is highly expressed in primary placental cytotrophoblasts, but not in placental fibroblasts. The human choriocarcinoma cell lines BeWo and JAR, derived from trophoblastic tumors of the placenta, also strongly express NRF3 transcripts. We generated a NRF3-specific antiserum and identified NRF3 protein in placental choriocarcinoma cells. Furthermore, we showed that NRF3 transcript and protein levels are induced by TNF-alpha in JAR cells. Our functional studies suggest that human NRF3 is a potent transcriptional activator. Finally, our expression and induction analyses hint at a possible role of Nrf3 in placental gene expression and development.
Collapse
Affiliation(s)
- Benoît Chénais
- Lady Davis Institute for Medical Research, University of Montréal, 3755 Côte-Sainte-Catherine Road, Montréal, Québec, Canada H3T 1E2
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhao H, Dean A. An insulator blocks spreading of histone acetylation and interferes with RNA polymerase II transfer between an enhancer and gene. Nucleic Acids Res 2004; 32:4903-19. [PMID: 15371553 PMCID: PMC519119 DOI: 10.1093/nar/gkh832] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We studied the mechanism by which an insulator interrupts enhancer signaling to a gene using stably replicated chromatin templates containing the human beta-globin locus control region HS2 enhancer and a target globin gene. The chicken beta-globin 5' HS4 (cHS4) insulator acted as a positional enhancer blocker, inhibiting promoter remodeling and transcription activation only when placed between the enhancer and gene. Enhancer blocking by cHS4 reduced histone hyperacetylation across a zone extending from the enhancer to the gene and inhibited recruitment of CBP and p300 to HS2. Enhancer blocking also led to accumulation of RNA polymerase II at HS2 and within cHS4, accompanied by its diminution at the gene promoter. The enhancer blocking effects were completely attributable to the CTCF binding site in cHS4. These findings provide experimental evidence for the involvement of spreading in establishment of a broad zone of histone modification by an enhancer, as well as for blocking by an insulator of the transfer of RNA polymerase II from an enhancer to a promoter.
Collapse
Affiliation(s)
- Hui Zhao
- Laboratory of Cellular and Developmental Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
18
|
Liu Y, Borchert GL, Phang JM. Polyoma enhancer activator 3, an ets transcription factor, mediates the induction of cyclooxygenase-2 by nitric oxide in colorectal cancer cells. J Biol Chem 2004; 279:18694-700. [PMID: 14976201 DOI: 10.1074/jbc.m308136200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abundant evidence supports the role of cyclooxygenase-2 (COX-2) in colorectal cancer. Nitric oxide (NO), a pro-inflammatory signaling factor, may regulate COX-2 expression and activity thereby linking hyper-inflammatory states to cancer susceptibility. Previously we showed that NO induced COX-2 expression. Although NO also activated the beta-catenin.T-cell factor/lymphocyte enhancing factor transcriptional pathway, a direct causal link between this pathway and COX-2 expression was not demonstrated. In this current study, we focused on NO-induced transcriptional activity and elucidated its role in COX-2 expression. NO donors stimulated the expression of peroxisome proliferator-activated receptor-delta and c-myc, both downstream genes of beta-catenin. They also induced the expression of polyoma enhancer activator 3 (PEA3) and increased its DNA-binding activity. To establish a role for PEA3 to beta-catenin-induced COX-2, we transfected RKO cells with beta-catenin and found that beta-catenin increased PEA3 expression. Also, there was higher PEA3 in immortal mouse colon epithelium cells (Apc(Min/)(+)) compared with young adult mouse colon cells (Apc(+/+)). Luciferase reporter assays revealed that, although several transcription factors/coactivator, acting alone or in synergistic combination, induced COX-2 promoter activity, PEA3 was one of the most potent. Interestingly, NO from NO donors or generated endogenously from transfected inducible nitric-oxide synthase, increased PEA3/p300-induced COX-2 promoter activity. We also found that an ETS site (-75/-72) and the NF-IL6 site were responsible for COX-2 activity induced by PEA3, PEA3/p300, and NO. Taken together, our results demonstrated that NO through beta-catenin signaling stimulated PEA3 to increase COX-2 activity. In addition, NO augmented the synergistic interaction between PEA3 and CBP/p300.
Collapse
Affiliation(s)
- Yongmin Liu
- Metabolism & Cancer Susceptibility Section, Laboratory of Comparative Carcinogenesis, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
19
|
Brand M, Ranish JA, Kummer NT, Hamilton J, Igarashi K, Francastel C, Chi TH, Crabtree GR, Aebersold R, Groudine M. Dynamic changes in transcription factor complexes during erythroid differentiation revealed by quantitative proteomics. Nat Struct Mol Biol 2003; 11:73-80. [PMID: 14718926 DOI: 10.1038/nsmb713] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Accepted: 11/17/2003] [Indexed: 01/30/2023]
Abstract
During erythroid differentiation, beta-globin gene expression is regulated by the locus control region (LCR). The transcription factor NF-E2p18/MafK binds within this region and is essential for beta-globin expression in murine erythroleukemia (MEL) cells. Here we use the isotope-coded affinity tag (ICAT) technique of quantitative mass spectrometry to compare proteins interacting with NF-E2p18/MafK during differentiation. Our results define MafK as a 'dual-function' molecule that shifts from a repressive to an activating mode during erythroid differentiation. The exchange of MafK dimerization partner from Bach1 to NF-E2p45 is a key step in the switch from the repressed to the active state. This shift is associated with changes in the interaction of MafK with co-repressors and co-activators. Thus, our results suggest that in addition to its role as a cis-acting activator of beta-globin gene expression in differentiated erythroid cells, the LCR also promotes an active repression of beta-globin transcription in committed cells before terminal differentiation.
Collapse
Affiliation(s)
- Marjorie Brand
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Loyd MR, Okamoto Y, Randall MS, Ney PA. Role of AP1/NFE2 binding sites in endogenous alpha-globin gene transcription. Blood 2003; 102:4223-8. [PMID: 12920035 DOI: 10.1182/blood-2003-02-0574] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
High-level alpha-globin expression depends on cis-acting regulatory sequences located far upstream of the alpha-globin cluster. Sequences that contain the alpha-globin positive regulatory element (PRE) activate alpha-globin expression in transgenic mice. The alpha-globin PRE contains a pair of composite binding sites for the transcription factors activating protein 1 and nuclear factor erythroid 2 (AP1/NFE2). To determine the role of these binding sites in alpha-globin gene transcription, we mutated the AP1/NFE2 sites in the alpha-globin PRE in mice. We replaced the AP1/NFE2 sites with a neomycin resistance gene (neo) that is flanked by LoxP sites (floxed). Mice with this mutation exhibited increased embryonic death and alpha-thalassemia intermedia. Next, we removed the neo gene by Cre-mediated recombination, leaving a single LoxP site in place of the AP1/NFE2 sites. These mice were phenotypically normal. However, alpha-globin expression, measured by allele-specific RNA polymerase chain reaction (PCR), was decreased 25%. We examined the role of the hematopoietic-restricted transcription factor p45Nfe2 in activating expression through these sites and found that it is not required. Thus, we have demonstrated that AP1/NFE2 binding sites in the murine alpha-globin PRE contribute to long-range alpha-globin gene activation. The proteins that mediate this effect remain to be determined.
Collapse
Affiliation(s)
- Melanie R Loyd
- Department of Biochemistry, Rm 4064, Thomas Tower, St Jude Children's Research Hospital, 332 N Lauderdale St, Memphis, TN 38105-2794, USA
| | | | | | | |
Collapse
|
21
|
Kiekhaefer CM, Boyer ME, Johnson KD, Bresnick EH. A WW domain-binding motif within the activation domain of the hematopoietic transcription factor NF-E2 is essential for establishment of a tissue-specific histone modification pattern. J Biol Chem 2003; 279:7456-61. [PMID: 14597626 DOI: 10.1074/jbc.m309750200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone H3 methylated at lysine 4 (H3-meK4) co-localizes with hyperacetylated histones H3 and H4 in transcriptionally active chromatin, but mechanisms that establish H3-meK4 are poorly understood. Previously, we showed that the hematopoietic-specific activator NF-E2, which is required for beta-globin transcription in erythroleukemia cells, induces histone H3 hyperacetylation and H3-meK4 at the adult beta-globin genes (betamajor and betaminor). Chromatin immunoprecipitation analysis indicated that NF-E2 occupies hypersensitive site two (HS2) of the beta-globin locus control region. The mechanism of NF-E2-mediated chromatin modification was investigated by complementation analysis in NF-E2-null CB3 erythroleukemia cells. The activation domain of the hematopoietic-specific subunit of NF-E2 (p45/NF-E2) contains two WW domain-binding motifs (PXY-1 and PXY-2). PXY-1 is required for activation of beta-globin transcription. Here, we determined which step in NF-E2-dependent transactivation is PXY-1-dependent. A p45/NF-E2 mutant lacking 42 amino acids of the activation domain, including both PXY motifs, and a mutant lacking only PXY-1 were impaired in inducing histone H3 hyperacetylation, H3-meK4, and RNA polymerase II recruitment. The PXY motifs were not required for transactivation in the context of a GAL4 DNA-binding domain fusion to p45/NF-E2 in transient transfection assays. As the PXY-1 mutant occupied HS2 normally, the chromatin modification defect occurred post-DNA binding. PXY-1 was not required for recruitment of the histone acetyltransferases cAMP-responsive element-binding protein-binding protein (CBP) and p300 to HS2. These results indicate that PXY-1 confers chromatin-specific transcriptional activation via interaction with a co-regulator distinct from CBP/p300 or by regulating CBP/p300 function.
Collapse
Affiliation(s)
- Carol M Kiekhaefer
- University of Wisconsin Medical School, Department of Pharmacology, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
22
|
Perrotta S, Nobili B, Rossi F, Di Pinto D, Cucciolla V, Borriello A, Oliva A, Della Ragione F. Vitamin A and infancy. Biochemical, functional, and clinical aspects. VITAMINS AND HORMONES 2003; 66:457-591. [PMID: 12852263 DOI: 10.1016/s0083-6729(03)01013-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Vitamin A is a very intriguing natural compound. The molecule not only has a complex array of physiological functions, but also represents the precursor of promising and powerful new pharmacological agents. Although several aspects of human retinol metabolism, including absorption and tissue delivery, have been clarified, the type and amounts of vitamin A derivatives that are intracellularly produced remain quite elusive. In addition, their precise function and targets still need to be identified. Retinoic acids, undoubtedly, play a major role in explaining activities of retinol, but, recently, a large number of physiological functions have been attributed to different retinoids and to vitamin A itself. One of the primary roles this vitamin plays is in embryogenesis. Almost all steps in organogenesis are controlled by retinoic acids, thus suggesting that retinol is necessary for proper development of embryonic tissues. These considerations point to the dramatic importance of a sufficient intake of vitamin A and explain the consequences if intake of retinol is deficient. However, hypervitaminosis A also has a number of remarkable negative consequences, which, in same cases, could be fatal. Thus, the use of large doses of retinol in the treatment of some human diseases and the use of megavitamin therapy for certain chronic disorders as well as the growing tendency toward vitamin faddism should alert physicians to the possibility of vitamin overdose.
Collapse
Affiliation(s)
- Silverio Perrotta
- Department of Pediatric, Medical School, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Méndez-Pertuz M, Sánchez-Pacheco A, Aranda A. The thyroid hormone receptor antagonizes CREB-mediated transcription. EMBO J 2003; 22:3102-12. [PMID: 12805224 PMCID: PMC162147 DOI: 10.1093/emboj/cdg295] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Revised: 04/28/2003] [Accepted: 04/28/2003] [Indexed: 11/14/2022] Open
Abstract
Combinatorial regulation of transcription involves binding of transcription factors to DNA as well as protein-protein interactions between them. In this paper, we demonstrate the existence of a mutual transcriptional antagonism between the thyroid hormone receptor (TR) and the cyclic AMP response element binding protein (CREB), which involves a direct association of both transcription factors. TR inhibits transcriptional activity of CREB and represses activation of cAMP response element (CRE)-containing promoters. TR does not bind to the CRE in vitro, but in vivo the liganded receptor is tethered to the promoter through protein-protein interactions. In turn, expression of CREB reduces TR-dependent transcriptional responses. The association of TR with CREB inhibits the ability of protein kinase A to phosphorylate CREB at Ser133, and leads to a reduction in the ligand-dependent recruitment of the p160 coactivators by TR. These results indicate the existence of a transcriptional cross-talk between CREB and TR signalling pathways, which can have important functional consequences.
Collapse
Affiliation(s)
- Marinela Méndez-Pertuz
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Arturo Duperier 4, 28029 Madrid, Spain
| | | | | |
Collapse
|
24
|
Gui CY, Dean A. A major role for the TATA box in recruitment of chromatin modifying complexes to a globin gene promoter. Proc Natl Acad Sci U S A 2003; 100:7009-14. [PMID: 12773626 PMCID: PMC165821 DOI: 10.1073/pnas.1236499100] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The developmentally regulated mammalian beta-globin genes are activated by a distant locus control region/enhancer. To understand the role of chromatin remodeling complexes in this activation, we used stably replicated chromatin templates, in which transcription activation of the human embryonic epsilon-globin gene depends on the tandem Maf-recognition elements (MAREs) within the beta-globin locus control region HS2 enhancer, to which the erythroid factor NF-E2 binds. The HS2 MAREs are required for nucleosome mobilization and histone hyperacetylation at the distant promoter. Nucleosome mobilization also requires the promoter TATA box, and is independent of histone hyperacetylation. In contrast, promoter hyperacetylation requires the promoter GATA-1, and CACC-factor activator motifs, as well as the TATA box. ChIP analysis reveals that NF-E2 is associated with the active epsilon-globin promoter, which lacks an NF-E2 binding sequence, in a TATA box and HS2/MARE-dependent fashion. NF-E2 association with the epsilon-globin promoter coincides with that of RNA polymerase II at both regulatory sites. The results emphasize MARE-TATA box interactions in the recruitment of complexes modifying promoter chromatin for transcription activation and imply close physical interaction between widely separated regulatory sequences mediated through these sites.
Collapse
Affiliation(s)
- Chang-Yun Gui
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
25
|
Sawado T, Halow J, Bender MA, Groudine M. The beta -globin locus control region (LCR) functions primarily by enhancing the transition from transcription initiation to elongation. Genes Dev 2003; 17:1009-18. [PMID: 12672691 PMCID: PMC196035 DOI: 10.1101/gad.1072303] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To investigate the molecular basis of beta-globin gene activation, we analyzed factor recruitment and histone modification at the adult beta-globin gene in wild-type (WT)/locus control region knockout (DeltaLCR) heterozygous mice and in murine erythroleukemia (MEL) cells. Although histone acetylation and methylation (Lys 4) are high before and after MEL differentiation, recruitment of the erythroid-specific activator NF-E2 to the promoter and preinitiation complex (PIC) assembly occur only after differentiation. We reported previously that targeted deletion of the LCR reduces beta-globin gene expression to 1%-4% of WT without affecting promoter histone acetylation. Here, we report that NF-E2 is recruited equally efficiently to the adult beta-globin promoters of the DeltaLCR and WT alleles. Moreover, the LCR deletion reduces PIC assembly only twofold, but has a dramatic effect on Ser 5 phosphorylation of RNA polymerase II and transcriptional elongation. Our results suggest at least three distinct stages in beta-globin gene activation: (1) an LCR-independent chromatin opening stage prior to NF-E2 recruitment to the promoter and PIC assembly; (2) an intermediate stage in which NF-E2 binding (LCR-independent) and PIC assembly (partially LCR-dependent) occur; and (3) an LCR-dependent fully active stage characterized by efficient pol II elongation. Thus, in its native location the LCR functions primarily downstream of activator recruitment and PIC assembly.
Collapse
Affiliation(s)
- Tomoyuki Sawado
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
26
|
Onishi Y, Kiyama R. Interaction of NF-E2 in the human beta-globin locus control region before chromatin remodeling. J Biol Chem 2003; 278:8163-71. [PMID: 12509425 DOI: 10.1074/jbc.m209612200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
When transcription is initiated under repressive conditions, such as when chromatin are packed together, binding followed by the functioning of key components in the transcriptional apparatus should be appropriately facilitated in the chromatin architecture. We provide evidence that the erythroid-specific enhancer- binding protein NF-E2 interacts with the cognate motif at DNase I-hypersensitive site 2 of the human beta-globin locus control region in a repressive state. The nucleosome containing the NF-E2-binding site showed characteristic rotational and translational phases in vitro. The binding site had less affinity to the histone octamers than nearby regions while showing greater accessibility to DNase I and micrococcal nuclease. Furthermore, the motif was recognized by the exogenous NF-E2 protein expressed in HeLa cells, which have a repressive state of chromatin at the beta-globin locus, as shown by ligation-mediated PCR and chromatin immunoprecipitation assay. These lines of evidence indicate that NF-E2 interacts with the cognate motif on the nucleosome before chromatin is remodeled.
Collapse
Affiliation(s)
- Yoshiaki Onishi
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 6, 1-1-1 Higashi, Ibaraki 305-8566, Japan.
| | | |
Collapse
|
27
|
Kapoor GS, Golden C, Atkins B, Mehta KD. pp90RSK- and protein kinase C-dependent pathway regulates p42/44MAPK-induced LDL receptor transcription in HepG2 cells. J Lipid Res 2003; 44:584-93. [PMID: 12562867 DOI: 10.1194/jlr.m200302-jlr200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that different extracellular stimuli require signaling through the Raf/MEK/p42/44MAPK cascade to induce LDL receptor expression. The present studies were designed to delineate the molecular mechanisms underlying p42/44MAPK-induced LDL receptor transcription in HepG2-Delta Raf-1:ER cells, a modified HepG2 cell line in which the Raf-1/MEK/p42/44MAPK cascade can be specifically activated by anti-estradiol ICI182,780 in an agonist-specific manner. Using these cells, we show that: a) LDL receptor induction was reduced in reporter constructs containing mutation in either Sp1 or sterol-regulatory element-1 (SRE-1) sites, whereas inactivation of both sites abolished the induction; b) E1A, which inhibits CREB binding protein (CBP), a common activator of SRE-1 binding protein and Sp1, strongly repressed the induction; c) intracellular inhibition of the 90 kDa ribosomal S6 kinase (pp90RSK) cascade reduced LDL receptor induction; d) highly selective protein kinase C (PKC) inhibitors effectively abrogated the induction without affecting activation of pp90RSK; and e) overexpression of PKC beta significantly induced LDL receptor promoter activity. Taken together, these results demonstrate that pp90RSK and PKC beta are downstream effectors and Sp1, SRE-1 binding protein, and CBP are part of the transcriptional complex resulting in induction of LDL receptor expression in response to activation of the Raf/MEK/p42/44MAPK cascade. These findings identify for the first time a role for PKC beta in determining the specificity of p42/44MAPK signaling by participating with pp90RSK in regulating gene expression.
Collapse
Affiliation(s)
- Gurpreet S Kapoor
- Department of Molecular and Cellular Biochemistry, The Ohio State University College of Medicine and Public Health, 464 Hamilton Hall, 1645 Neil Ave., Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
28
|
Letting DL, Rakowski C, Weiss MJ, Blobel GA. Formation of a tissue-specific histone acetylation pattern by the hematopoietic transcription factor GATA-1. Mol Cell Biol 2003; 23:1334-40. [PMID: 12556492 PMCID: PMC141148 DOI: 10.1128/mcb.23.4.1334-1340.2003] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One function of lineage-restricted transcription factors may be to control the formation of tissue-specific chromatin domains. In erythroid cells, the beta-globin gene cluster undergoes developmentally regulated hyperacetylation of histones at the active globin genes and the locus control region (LCR). However, it is unknown which transcription factor(s) governs the establishment of this erythroid-specific chromatin domain. We measured histone acetylation at the beta-globin locus in the erythroid cell line G1E, which is deficient for the essential hematopoietic transcription factor GATA-1. Restoration of GATA-1 activity in G1E cells led to a substantial increase in acetylation of histones H3 and H4 at the beta-globin promoter and the LCR. Time course experiments showed that histone acetylation occurred rapidly after GATA-1 activation and coincided with globin gene expression, indicating that the effects of GATA-1 are direct. Moreover, increases in histone acetylation correlated with occupancy of GATA-1 and the acetyltransferase CBP at the locus in vivo. Together, these results suggest that GATA-1 and its cofactor CBP are essential for the formation of an erythroid-specific acetylation pattern that is permissive for high levels of gene expression.
Collapse
Affiliation(s)
- Danielle L Letting
- Division of Hematology, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
29
|
Guberman AS, Scassa ME, Giono LE, Varone CL, Cánepa ET. Inhibitory effect of AP-1 complex on 5-aminolevulinate synthase gene expression through sequestration of cAMP-response element protein (CRE)-binding protein (CBP) coactivator. J Biol Chem 2003; 278:2317-26. [PMID: 12433930 DOI: 10.1074/jbc.m205057200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Activation protein-1 (AP-1) transcription factors are early response genes involved in a diverse set of transcriptional regulatory processes. The phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) is often used to induce AP-1 activity. The purpose of this work was to explore the molecular mechanisms involved in the TPA regulation of ubiquitous 5-aminolevulinate synthase (ALAS) gene expression, the first and rate-controlling step of the heme biosynthesis. Previous analysis of the 5'-flanking sequence of ALAS revealed the existence of two cAMP-response elements (CRE) required for basal and cAMP-stimulated expression. The fragment -833 to +42 in the 5'-flanking region of rat ALAS gene was subcloned into a chloramphenicol acetyltransferase (CAT) reporter vector. The expression vector pALAS/CAT produced a significant CAT activity in transiently transfected HepG2 human hepatoma cells, which was repressed by TPA. Sequence and deletion analysis detected a TPA response element (TRE), located between -261 and -255 (TRE-ALAS), that was critical for TPA regulation. We demonstrated that c-Fos, c-Jun, and JunD are involved in TPA inhibitory effect due to their ability to bind TRE-ALAS, evidenced by supershift analysis and their capacity to repress promoter activity in transfection assays. Repression of ALAS promoter activity by TPA treatment or Fos/Jun overexpression was largely relieved when CRE protein-binding protein or p300 was ectopically expressed. When the TRE site was placed in a different context with respect to CRE sites, it appeared to act as a transcriptional enhancer. We propose that the decrease in ALAS basal activity observed in the presence of TPA may reflect a lower ability of this promoter to assemble the productive pre-initiation complex due to CRE protein-binding protein sequestration. We also suggest that the transcriptional properties of this AP-1 site would depend on a spatial-disposition-dependent manner with respect to the CRE sites and to the transcription initiation site.
Collapse
MESH Headings
- 5-Aminolevulinate Synthetase/biosynthesis
- 5-Aminolevulinate Synthetase/genetics
- Blotting, Western
- CREB-Binding Protein
- Cloning, Molecular
- Cyclic AMP/metabolism
- Dimerization
- Dose-Response Relationship, Drug
- Gene Deletion
- Genes, Dominant
- Genes, Reporter
- Genetic Vectors
- Humans
- Models, Biological
- Mutagenesis, Site-Directed
- Naphthalenes/pharmacology
- Nuclear Proteins/metabolism
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- Proto-Oncogene Proteins c-fos/metabolism
- RNA, Messenger/metabolism
- Time Factors
- Trans-Activators/metabolism
- Transcription Factor AP-1/metabolism
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Alejandra S Guberman
- Laboratorio de Biologia Molecular, Departamento de Quimica Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II Piso 4, Ciudad Universitaria, Argentina
| | | | | | | | | |
Collapse
|
30
|
Lee KH, Chang MY, Ahn JI, Yu DH, Jung SS, Choi JH, Noh YH, Lee YS, Ahn MJ. Differential gene expression in retinoic acid-induced differentiation of acute promyelocytic leukemia cells, NB4 and HL-60 cells. Biochem Biophys Res Commun 2002; 296:1125-33. [PMID: 12207890 DOI: 10.1016/s0006-291x(02)02043-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Acute promyelocytic leukemia (APL) is characterized by a specific chromosome translocation t(15;17), which results in the fusion of the promyelocytic leukemia gene (PML) and retinoic acid receptor alpha gene (RARalpha). APL can be effectively treated with the cell differentiation inducer all-trans retinoic acid (ATRA). NB4 cells, an acute promyelocytic leukemia cell line, have the t(15;17) translocation and differentiate in response to ATRA, whereas HL-60 cells lack this chromosomal translocation, even after differentiation by ATRA. To identify changes in the gene expression patterns of promyelocytic leukemia cells during differentiation, we compared the gene expression profiles in NB4 and HL-60 cells with and without ATRA treatment using a cDNA microarray containing 10,000 human genes. NB4 and HL-60 cells were treated with ATRA (10(-6)M) and total RNA was extracted at various time points (3, 8, 12, 24, and 48h). Cell differentiation was evaluated for cell morphology changes and CD11b expression. PML/RARalpha degradation was studied by indirect immunofluoresence with polyclonal PML antibodies. Typical morphologic and immunophenotypic changes after ATRA treatment were observed both in NB4 and HL-60 cells. The cDNA microarray identified 119 genes that were up-regulated and 17 genes that were down-regulated in NB4 cells, while 35 genes were up-regulated and 36 genes were down-regulated in HL60 cells. Interestingly, we did not find any common gene expression profiles regulated by ATRA in NB4 and HL-60 cells, even though the granulocytic differentiation induced by ATRA was observed in both cell lines. These findings suggest that the molecular mechanisms and genes involved in ATRA-induced differentiation of APL cells may be different and cell type specific. Further studies will be needed to define the important molecular pathways involved in granulocytic differentiation by ATRA in APL cells.
Collapse
Affiliation(s)
- Ki-Hwan Lee
- Department of Biochemistry, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Johnson KD, Grass JA, Boyer ME, Kiekhaefer CM, Blobel GA, Weiss MJ, Bresnick EH. Cooperative activities of hematopoietic regulators recruit RNA polymerase II to a tissue-specific chromatin domain. Proc Natl Acad Sci U S A 2002; 99:11760-5. [PMID: 12193659 PMCID: PMC129342 DOI: 10.1073/pnas.192285999] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The hematopoietic transcription factor GATA-1 regulates erythropoiesis and beta-globin expression. Although consensus GATA-1 binding sites exist throughout the murine beta-globin locus, we found that GATA-1 discriminates among these sites in vivo. Conditional expression of GATA-1 in GATA-1-null cells recapitulated the occupancy pattern. GATA-1 induced RNA polymerase II (pol II) recruitment to subregions of the locus control region and to the beta-globin promoters. The hematopoietic factor NF-E2 cooperated with GATA-1 to recruit pol II to the promoters. We propose that only when GATA-1 attracts pol II to the locus control region can pol II access the promoter in a NF-E2-dependent manner.
Collapse
Affiliation(s)
- Kirby D Johnson
- Department of Pharmacology, Molecular and Cellular Pharmacology Program, University of Wisconsin Medical School, 383 Medical Science Center, 1300 University Avenue, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Yaekashiwa M, Wang LH. Transcriptional control of the human thromboxane synthase gene in vivo and in vitro. J Biol Chem 2002; 277:22497-508. [PMID: 11956185 DOI: 10.1074/jbc.m111058200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Thromboxane A(2), a potent mediator of vasoconstriction and platelet aggregation, is synthesized from prostaglandin H(2) by thromboxane synthase (TXAS). We report here on promoter analyses of human TXAS using in vitro transcription and in vivo transfection methods. The 39-bp core promoter, containing both TATA and initiator elements, accurately initiates transcription in an orientation-dependent manner in a cell-free transcription system. Mutation of either TATA or initiator abolished transcriptional activity, but the upstream sequence had no effect on TXAS promoter activities in vitro, suggesting that the core promoter is sufficient for transcriptional activity from a naked DNA template. In contrast, mutation of both elements drastically decreased the promoter activity in vivo. Furthermore, TXAS proximal promoter containing the nucleotides -90 to -56 relative to the transcriptional start site was necessary for promoter transactivation in vivo. Transcriptional activities from 5'-deletion mutants indicated that the effects of the nucleotides -90/-56 were more pronounced in stably transfected cells (a 150-fold difference) than in the transiently transfected cells (an 8-fold difference), reflecting the effects of TXAS transcriptional activation from replicating and nonreplicating DNA templates. Partial micrococcal nuclease digestion indicated that the sequence -90/-56, where the NF-E2 site is located, is associated with alterations of nucleosomal structure at the regions of promoter and reporter gene but not the region further downstream. Mutagenesis and forced expression studies demonstrated a critical role of p45 NF-E2 in controlling TXAS expression under native chromatin conditions. Band shifting and chromatin immunoprecipitation assays indicated that p45 NF-E2 was bound to the TXAS promoter in vitro and in vivo. Indirect end labeling and ligation-mediated PCR analyses further demonstrated that the occupation of TXAS promoter NF-E2 site was associated with disruption of nucleosomal structure. Collectively, these results indicate that binding of NF-E2 is critical both for alteration of the nucleosomal structure and for activation of the TXAS promoter, whereas the TATA and initiator elements are essential for transcription.
Collapse
Affiliation(s)
- Masahiro Yaekashiwa
- Division of Hematology, Department of Internal Medicine, University of Texas, Houston, Texas 77030, USA
| | | |
Collapse
|
33
|
Hong W, Kim AY, Ky S, Rakowski C, Seo SB, Chakravarti D, Atchison M, Blobel GA. Inhibition of CBP-mediated protein acetylation by the Ets family oncoprotein PU.1. Mol Cell Biol 2002; 22:3729-43. [PMID: 11997509 PMCID: PMC133832 DOI: 10.1128/mcb.22.11.3729-3743.2002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2001] [Revised: 01/30/2002] [Accepted: 02/28/2002] [Indexed: 01/09/2023] Open
Abstract
Aberrant expression of PU.1 inhibits erythroid cell differentiation and contributes to the formation of murine erythroleukemias (MEL). The molecular mechanism by which this occurs is poorly understood. Here we show that PU.1 specifically and efficiently inhibits CBP-mediated acetylation of several nuclear proteins, including the hematopoietic transcription factors GATA-1, NF-E2, and erythroid Krüppel-like factor. In addition, PU.1 blocks acetylation of histones and interferes with acetylation-dependent transcriptional events. CBP acetyltransferase activity increases during MEL cell differentiation as PU.1 levels decline and is inhibited by sustained PU.1 expression. Finally, PU.1 inhibits the differentiation-associated increase in histone acetylation at an erythroid-specific gene locus in vivo. Together, these findings suggest that aberrant expression of PU.1 and possibly other members of the Ets family of oncoproteins subverts normal cellular differentiation in part by inhibiting the acetylation of critical nuclear factors involved in balancing cellular proliferation and maturation.
Collapse
Affiliation(s)
- Wei Hong
- Division of Hematology, Children's Hospital of Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bulger M, Sawado T, Schübeler D, Groudine M. ChIPs of the beta-globin locus: unraveling gene regulation within an active domain. Curr Opin Genet Dev 2002; 12:170-7. [PMID: 11893490 DOI: 10.1016/s0959-437x(02)00283-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent studies of beta-globin gene expression have concentrated on the analysis of factor binding and chromatin structure within the endogenous locus. These studies have more precisely defined the extent and nature of the active chromosomal domain and the elements that organize it. Surprisingly, the beta-globin locus control region (LCR), although critical for high-level gene expression, plays little role in the overall architecture of the active locus. Analysis of the effects of targeted deletion of the beta-globin LCR, along with emerging knowledge of the behavior of the erythroid transcription factor NF-E2, leads to a new perspective on factor binding and LCR function.
Collapse
Affiliation(s)
- Michael Bulger
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
35
|
Johnson KD, Norton JE, Bresnick EH. Requirements for utilization of CREB binding protein by hypersensitive site two of the beta-globin locus control region. Nucleic Acids Res 2002; 30:1522-30. [PMID: 11917012 PMCID: PMC101831 DOI: 10.1093/nar/30.7.1522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Strong transactivation of the beta-globin genes is conferred by the beta-globin locus control region (LCR), which consists of four erythroid-specific DNase I hypersensitive sites (HS1-HS4). HS2 has a powerful enhancer activity dependent upon tandem binding sites for the erythroid cell- and megakaryocyte-specific transcription factor NF-E2. An important co-activator-mediating transactivation by HS2 is the histone acetyltransferase (HAT) CREB binding protein (CBP). We showed previously that recruitment of a GAL4-CBP fusion protein to HS2 largely bypassed the requirement of the NF-E2 sites for transactivation. To determine whether GAL4-CBP recruitment is sufficient for transactivation, we assessed the importance of cis-elements within HS2. Docking of GAL4-CBP upstream of an Agamma-globin promoter lacking HS2 only weakly activated the promoter, indicating that HS2 components are required for GAL4-CBP-mediated transactivation. Sequences upstream and downstream of the NF-E2 sites were required for maximal GAL4-CBP-mediated transactivation, and HAT catalytic activity of GAL4-CBP was critical. No single factor-binding site was required for GAL4-CBP-mediated transactivation. However, deletion of two sites, a CACC site and an E-box, abolished transactivation in transient and stable transfection assays. These results suggest that NF-E2 recruits CBP as a critical step in transactivation, but additional components of HS2 are required to achieve maximal enhancer activity.
Collapse
Affiliation(s)
- Kirby D Johnson
- University of Wisconsin Medical School, Department of Pharmacology, Molecular and Cellular Pharmacology Program, 383 Medical Science Center, 1300 University Avenue, Madison, WI 53706, USA
| | | | | |
Collapse
|
36
|
Blobel GA. CBP and p300: versatile coregulators with important roles in hematopoietic gene expression. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.4.545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Gerd A. Blobel
- Division of Hematology, Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia
| |
Collapse
|
37
|
Gavva NR, Wen SC, Daftari P, Moniwa M, Yang WM, Yang-Feng LPT, Seto E, Davie JR, Shen CKJ. NAPP2, a peroxisomal membrane protein, is also a transcriptional corepressor. Genomics 2002; 79:423-31. [PMID: 11863372 DOI: 10.1006/geno.2002.6714] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear factor-erythroid number 2 (NF-E2) is a positive regulatory, DNA binding transcription factor for gene expression in erythroid and megakaryocytic cells. To further understand the mechanisms of NF-E2 function, we used expression cloning to identify coregulators interacting with the erythroid-specific subunit of NF-E2, p45. We have isolated a protein, NAPP2, which contains an aspartic-acid- and glutamic-acid-rich region and a nuclear localization signal. The gene encoding NAPP2, PEX14, is located on chromosome 1p36 and is ubiquitously expressed. The domains of interaction in vitro and in vivo between p45 and NAPP2 were mapped by a yeast two-hybrid system and cotransfection experiments. In mammalian cell culture, ectopically expressed NAPP2 inhibited p45-directed transcriptional activation. Furthermore, NAPP2 functions as a corepressor and interacts specifically with histone deacetylase l (HDAC1), but not HDAC2 or HDAC3. NAPP2 is thus potentially a negative coregulator of NF-E2. NAPP2 is identical to PEX14, an integral membrane protein essential for protein docking onto the peroxisomes. These studies have identified a novel, bifunctional protein capable of acting as a transcriptional corepressor and a polypeptide transport modulator. They also suggest that NF-E2 may function both positively and negatively in the transcription regulation of specific erythroid and megakaryocytic genes.
Collapse
Affiliation(s)
- Narender R Gavva
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Megakaryocytes, among the rarest of hematopoietic cells, serve the essential function of producing numerous platelets. Genetic studies have recently provided rich insights into the molecular and transcriptional regulation of megakaryocyte differentiation and thrombopoiesis. Three transcription factors, GATA-1, FOG-1, and NF-E2, are essential regulators of distinct stages in megakaryocyte differentiation, extending from the birth of early committed progenitors to the final step of platelet release; a fourth factor, Fli-1, likely also plays an important role. The putative transcriptional targets of these regulators, including the NF-E2-dependent hematopoietic-specific beta-tubulin isoform beta1, deepen our understanding of molecular mechanisms in platelet biogenesis. The study of rare syndromes of inherited thrombocytopenia in mice and man has also refined the emerging picture of megakaryocyte maturation. Synthesis of platelet-specific organelles is mediated by a variety of regulators of intracellular vesicle membrane fusion, and platelet release is coordinated through extensive and dynamic reorganization of the actin and microtubule cytoskeletons. As in other aspects of hematopoiesis, characterization of recurrent chromosomal translocations in human leukemias provides an added dimension to the molecular underpinnings of megakaryocyte differentiation. Long regarded as a mysterious cell, the megakaryocyte is thus yielding many of its secrets, and mechanisms of thrombopoiesis are becoming clearer. Although this review focuses on transcriptional control mechanisms, it also discusses recent advances in broader consideration of the birth of platelets.
Collapse
Affiliation(s)
- R A Shivdasani
- Departments of Adult Oncology and Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| |
Collapse
|
39
|
Ingley E, Chappell D, Poon SY, Sarna MK, Beaumont JG, Williams JH, Stillitano JP, Tsai S, Leedman PJ, Tilbrook PA, Klinken SP. Thyroid hormone receptor-interacting protein 1 modulates cytokine and nuclear hormone signaling in erythroid cells. J Biol Chem 2001; 276:43428-34. [PMID: 11544260 DOI: 10.1074/jbc.m106645200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin (Epo) and thyroid hormone (T(3)) are key molecules in the development of red blood cells. We have shown previously that the tyrosine kinase Lyn is involved in differentiation signals emanating from an activated erythropoietin receptor. Here we demonstrate that Lyn interacts with thyroid hormone receptor-interacting protein 1 (Trip-1), a transcriptional regulator associated with the T(3) receptor, providing a link between the Epo and T(3) signaling pathways. Trip-1 co-localized with Lyn and the T(3) receptor alpha in the cytoplasm/plasma membrane of erythroid cells but translocated to discrete nuclear foci shortly after Epo-induced differentiation. Our data reveal that T(3) stimulated the proliferation of immature erythroid cells, and inhibited maturation promoted by erythropoietin. Removal of T(3) reduced cell division and enhanced terminal differentiation. This was accompanied by large increases in the cell cycle inhibitor p27(Kip1) and by increasing expression of erythroid transcription factors GATA-1, EKLF, and NF-E2. Strikingly, a truncated Trip-1 inhibited both erythropoietin-induced maturation and T(3)-initiated cell division. This mutant Trip-1 acted in a dominant negative fashion by eliminating endogenous Lyn, elevating p27(Kip1), and blocking T(3) response elements. These data demonstrate that Trip-1 can simultaneously modulate responses involving both cytokine and nuclear receptors.
Collapse
Affiliation(s)
- E Ingley
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and the Department of Biochemistry, University of Western Australia, Perth, Western Australia 6000, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Francastel C, Magis W, Groudine M. Nuclear relocation of a transactivator subunit precedes target gene activation. Proc Natl Acad Sci U S A 2001; 98:12120-5. [PMID: 11593025 PMCID: PMC59778 DOI: 10.1073/pnas.211444898] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Murine erythroleukemia (MEL) cells are a model system to study reorganization of the eukaryotic nucleus during terminal differentiation. Upon chemical induction, MEL cells undergo erythroid differentiation, leading to activation of globin gene expression. Both processes strongly depend on the transcriptional activator NF-E2. Before induction of differentiation, both subunits of the NF-E2 heterodimer are present, but little DNA-binding activity is detectable. Using immunofluorescence microscopy, we show that the two NF-E2 subunits occupy distinct nuclear compartments in uninduced MEL cells; the smaller subunit NF-E2p18 is found primarily in the centromeric heterochromatin compartment, whereas the larger subunit NF-E2p45 occupies the euchromatin compartment. Concomitant with the commitment period of differentiation that precedes globin gene activation, NF-E2p18, along with other transcriptional repressors, relocates to the euchromatin compartment. Thus, relocation of NF-E2 p18 may be a rate-limiting step in formation of an active NF-E2 complex. To understand the mechanisms of NF-E2 localization, we show that centromeric targeting of NF-E2p18 requires dimerization, but not with an erythroid-specific partner, and that the transactivation domain of NF-E2p45 may be necessary and sufficient to prevent its localization in centromeric heterochromatin. Finally, using fluorescence in situ hybridization, we show that, upon differentiation, the beta-globin gene loci relocate away from heterochromatin compartments to euchromatin. This relocation correlates with both transcriptional activation of the globin locus and relocation of NF-E2p18 away from heterochromatin, suggesting that these processes are linked.
Collapse
Affiliation(s)
- C Francastel
- Division of Basic Sciences, Fred Hutchinson Cancer Research, Seattle, WA 98109, USA
| | | | | |
Collapse
|
41
|
Katoh Y, Itoh K, Yoshida E, Miyagishi M, Fukamizu A, Yamamoto M. Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells 2001; 6:857-68. [PMID: 11683914 DOI: 10.1046/j.1365-2443.2001.00469.x] [Citation(s) in RCA: 406] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Nrf2 belongs to the Cap-N-Collar (CNC) transcription factor family and is essential for the antioxidant responsive element (ARE)-mediated expression of a group of detoxifying and antioxidant genes. The forced expression of Nrf2 in mammalian cells activates the expression of target genes through the ARE, with Nrf2 showing the highest transactivation activity among the CNC family of transcription factors. To elucidate the molecular mechanisms generating this potent transactivation activity, we examined the functions of the domains within Nrf2. RESULT We found that Nrf2 contains two transcription activation domains, Neh4 and Neh5, which act synergistically to attain maximum a activation of reporter gene expression. Neh4 and Neh5 both individually and cooperatively bind to CBP (CREB (cAMP Responsive Element Binding protein) Binding Protein). In fact, the specific inhibitor of CBP, adenovirus E1A protein, significantly reduced Nrf2 activity. Importantly, the CBP-binding activity of Nrf2 deletion mutants positively correlated with their transactivation activity. Neh5 contains a motif which is commonly conserved among the CNC factors, whereas Neh4 contains the novel CBP-interacting motif recently identified in p53 and E2F. CONCLUSIONS Our results indicate that Nrf2 exploits the cooperative binding of two independent transactivation domains to CBP in the acquisition of a potent transactivation activity.
Collapse
Affiliation(s)
- Y Katoh
- Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Teyssier C, Belguise K, Galtier F, Chalbos D. Characterization of the physical interaction between estrogen receptor alpha and JUN proteins. J Biol Chem 2001; 276:36361-9. [PMID: 11477071 DOI: 10.1074/jbc.m101806200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activated estrogen receptor alpha (ERalpha) modulates transcription triggered by the transcription factor activator protein-1 (AP-1), which consists of Jun-Jun homodimers and Jun-Fos heterodimers. Previous studies have demonstrated that the interference occurs without binding of ERalpha to DNA but probably results from protein.protein interactions. However, involvement of a direct interaction between ERalpha and AP-1 is still debated. Using glutathione S-transferase pull-down assays, we demonstrated that ERalpha bound directly to c-Jun and JunB but not to FOS family members, in a ligand-independent manner. The interaction could occur when c-Jun was bound onto DNA, as shown in a protein-protein-DNA assay. It implicated the C-terminal part of c-Jun and amino acids 259-302 present in the ERalpha hinge domain. ERalpha but not an ERalpha mutant deleted of amino acids 250-303 (ER241G), also associated with c-Jun in intact cells, in the presence of estradiol, as shown by two-hybrid and coimmunoprecipitation assays. We also show that ERalpha, c-Jun, and the p160 coactivator GRIP1 can form a multiprotein complex in vitro and in intact cells and that the ERalpha.c-Jun interaction could be crucial for the stability of this complex. VP16-ERalpha and c-Jun, which both interact with GRIP1, had synergistic effect on GAL4-GRIP1-induced transcription in the presence of estradiol, and this synergistic effect was not observed with the ERalpha mutant VP16-ER241G or when c-Fos, which bound GRIP1 but not ERalpha, was used instead of c-Jun. Finally, ER241G was inefficient for regulation of AP-1 activity, and an ERalpha truncation mutant encompassing the hinge domain had a dominant negative effect on ERalpha action. These results altogether demonstrate that ERalpha can bind to c-Jun in vitro and in intact cells and that this interaction, by stabilizing a multiprotein complex containing p160 coactivator, is likely to be involved in estradiol regulation of AP-1 responses.
Collapse
Affiliation(s)
- C Teyssier
- Institut National de la Santé et de la Recherche Médicale, Endocrinologie Moléculaire et Cellulaire des Cancers (U 540), 60 Rue de Navacelles, Montpellier 34090, France
| | | | | | | |
Collapse
|
43
|
Luderer U, Kavanagh TJ, White CC, Faustman EM. Gonadotropin regulation of glutathione synthesis in the rat ovary. Reprod Toxicol 2001; 15:495-504. [PMID: 11780957 DOI: 10.1016/s0890-6238(01)00157-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glutathione (GSH), an antioxidant and conjugator of electrophilic toxicants, prevents toxicant-mediated destruction of ovarian follicles and oocytes. Ovarian GSH has previously been shown to change with estrous cycle stage in rats, suggesting that the gonadotropin hormones may regulate ovarian GSH synthesis. The present studies tested the hypotheses that [1] estrous cycle-related changes in ovarian GSH result from cyclic changes in protein and mRNA expression of the rate-limiting enzyme in GSH synthesis, glutamate cysteine ligase (GCL, also called gamma-glutamylcysteine synthetase), and [2] that these changes result from gonadotropin-mediated regulation of GCL subunit expression. In the first experiment, ovaries were harvested from cycling adult female rats on each stage of the estrous cycle. In the second experiment immature female rats were injected with pregnant mare's serum gonadotropin (PMSG) to stimulate follicular development or with vehicle and killed 8, 24, or 48 h later. In both experiments the ovaries were harvested for [1] total GSH assay, [2] Western analysis for GCL catalytic (GCLc) and regulatory (GCLm) subunit protein levels, or [3] Northern analysis for Gclc and Gclm mRNA levels. Ovarian GSH concentrations and Gclc and Gclm mRNA levels, but not GCL subunit protein levels, varied significantly with estrous cycle stage. PMSG administration significantly increased ovarian GSH concentrations 24 and 48 h later. GCLm protein levels increased significantly at 24 h and 48 h following PMSG. GCLc protein levels did not increase significantly following PMSG. Gcl subunit mRNA levels were not significantly increased at any time point by the planned ANOVA; however, an increase in Gelc at 48 h was identified by t-testing. These results support the hypothesis that gonadotropins regulate ovarian GSH synthesis by modulating GCL subunit expression.
Collapse
Affiliation(s)
- U Luderer
- Center for Occupational and Environmental Health, University of California, Irvine, USA.
| | | | | | | |
Collapse
|
44
|
Sawado T, Igarashi K, Groudine M. Activation of beta-major globin gene transcription is associated with recruitment of NF-E2 to the beta-globin LCR and gene promoter. Proc Natl Acad Sci U S A 2001; 98:10226-31. [PMID: 11517325 PMCID: PMC56943 DOI: 10.1073/pnas.181344198] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mouse beta-globin gene locus control region (LCR), located upstream of the beta-globin gene cluster, is essential for the activated transcription of genes in the cluster. The LCR contains multiple binding sites for transactivators, including Maf-recognition elements (MAREs). However, little is known about the specific proteins that bind to these sites or the time at which they bind during erythroid differentiation. We have performed chromatin immunoprecipitation experiments to determine the recruitment of the erythroid-specific transactivator p45 NF-E2/MafK (p18 NF-E2) heterodimer and small Maf proteins to various regions in the globin gene locus before and after the induction of murine erythroleukemia (MEL) cell differentiation. We report that, before induction, the LCR is occupied by small Maf proteins, and, on erythroid maturation, the NF-E2 complex is recruited to the LCR and the active globin promoters, even though the promoters do not contain MAREs. This differentiation-coupled recruitment of NF-E2 complex correlates with a greater than 100-fold increase in beta-major globin transcription, but is not associated with a significant change in locus-wide histone H3 acetylation. These findings suggest that the beta-globin gene locus exists in a constitutively open chromatin conformation before terminal differentiation, and we speculate that recruitment of NF-E2 complex to the LCR and active promoters may be a rate-limiting step in the activation of beta-globin gene expression.
Collapse
Affiliation(s)
- T Sawado
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | |
Collapse
|
45
|
Ishizuka T, Satoh T, Monden T, Shibusawa N, Hashida T, Yamada M, Mori M. Human immunodeficiency virus type 1 Tat binding protein-1 is a transcriptional coactivator specific for TR. Mol Endocrinol 2001; 15:1329-43. [PMID: 11463857 DOI: 10.1210/mend.15.8.0680] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The DNA-binding domain of nuclear hormone receptors functions as an interaction interface for other transcription factors. Using the DNA-binding domain of TRbeta1 as bait in the yeast two-hybrid system, we cloned the Tat binding protein-1 that was originally isolated as a protein binding to the human immunodeficiency virus type 1 Tat transactivator. Tat binding protein-1 has subsequently been identified as a member of the ATPase family and a component of the 26S proteasome. Tat binding protein-1 interacted with the DNA-binding domain but not with the ligand binding domain of TR in vivo and in vitro. TR bound to the amino-terminal portion of Tat binding protein-1 that contains a leucine zipper-like structure. In mammalian cells, Tat binding protein-1 potentiated the ligand-dependent transactivation by TRbeta1 and TRalpha1 via thyroid hormone response elements. Both the intact DNA-binding domain and activation function-2 of the TR were required for the transcriptional enhancement in the presence of Tat binding protein-1. Tat binding protein-1 did not augment the transactivation function of the RAR, RXR, PPARgamma, or ER. The intrinsic activation domain in Tat binding protein-1 resided within the carboxyl-terminal conserved ATPase domain, and a mutation of a putative ATP binding motif but not a helicase motif in the carboxyl-terminal conserved ATPase domain abolished the activation function. Tat binding protein-1 synergistically activated the TR-mediated transcription with the steroid receptor coactivator 1, p120, and cAMP response element-binding protein, although Tat binding protein-1 did not directly interact with these coactivators in vitro. In contrast, the N-terminal portion of Tat binding protein-1 directly interacted in vitro and in vivo with the TR-interacting protein 1 possessing an ATPase activity that interacts with the activation function-2 of liganded TR. Collectively, Tat binding protein-1 might function as a novel DNA-binding domain-binding transcriptional coactivator specific for the TR probably in cooperation with other activation function-2-interacting cofactors such as TR-interacting protein 1.
Collapse
Affiliation(s)
- T Ishizuka
- First Department of Internal Medicine, Gunma University School of Medicine 3-39-15, Maebashi 371-8511, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Cabanillas AM, Smith GE, Darling DS. T3-activation of the rat growth hormone gene is inhibited by a zinc finger/homeodomain protein. Mol Cell Endocrinol 2001; 181:131-7. [PMID: 11476947 DOI: 10.1016/s0303-7207(01)00531-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Since the transcription factor Zfhep is expressed in somatotropes and binds the rat growth hormone (rGH) gene T3-response element (TRE), we investigated whether Zfhep regulates the response of this gene to T3. In cotransfection experiments, Zfhep did not regulate the native rGH promoter in the absence of T3. However, Zfhep repressed T3-mediated activation significantly in either GH(3) or JEG-3 cells. Up to 70% repression was mediated through the rGH TRE in a heterologous promoter (thymidine kinase), but was not observed with the idealized DR4 or chicken lysozyme F2 TREs. Zfhep apparently does not repress T3-mediated activation simply by competition for binding to DNA since the C-terminal DNA-binding domain of Zfhep (which is sufficient for DNA-binding) is not sufficient for repression and since cotransfection of excess thyroid hormone receptor (TR) did not prevent repression by Zfhep. These data indicate that the rGH TRE is a composite element that can integrate Zfhep and T3 regulation.
Collapse
Affiliation(s)
- A M Cabanillas
- Department of Molecular, Cellular and Craniofacial Biology, School of Dentistry, University of Louisville, 501 South Preston Street, Louisville, KY 40292, USA
| | | | | |
Collapse
|
47
|
Camp HS, Chaudhry A, Leff T. A novel potent antagonist of peroxisome proliferator-activated receptor gamma blocks adipocyte differentiation but does not revert the phenotype of terminally differentiated adipocytes. Endocrinology 2001; 142:3207-13. [PMID: 11416043 DOI: 10.1210/endo.142.7.8254] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The antidiabetic thiazolidinediones, which include troglitazone and rosiglitazone, are ligands for the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma). Their antihyperglycemic effects seem to be linked to the regulation of PPARgamma-responsive genes. Here, we report the characterization of a specific PPARgamma antagonist that blocks several of the biological activities of the PPARgamma agonist rosiglitazone. PD068235 inhibited rosiglitazone-dependent PPARgamma transcriptional activity with an IC(50) of 0.8 microM and rosiglitazone-stimulated in vitro coactivator association. The role of PPARgamma in the initiation of differentiation is well documented. In this study, we used PD068235 as a tool to evaluate the functional role of PPARgamma in the maintenance of the terminally differentiated state. Treatment of confluent, growth-arrested 3T3-L1 preadipocytes with PD068235 blocked adipocyte differentiation induced by the standard adipogenic hormonal mixture (insulin/dexamethasone/isobutylmethylxanthin) and fully antagonized rosiglitazone-induced adipogenesis. In contrast, long-term treatment of terminally differentiated 3T3-L1 adipocytes with PD068235 did not induce any obvious morphological changes and had no effect on basal lipolysis rates. In addition, in fully differentiated adipocytes PD068235 did not alter the basal expression of PPARgamma target genes aP2 and CAP, but it effectively blocked rosiglitazone-induced expression of both genes. These results suggest that in terminally differentiated adipocytes, the PPARgamma activity is minimal and may not be required for the maintenance of PPARgamma target gene expression.
Collapse
Affiliation(s)
- H S Camp
- Department of Cell Biology and Endocrinology, Pfizer Global Research and Development, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA.
| | | | | |
Collapse
|
48
|
Wang Y, Yin L, Hillgartner FB. The homeodomain proteins PBX and MEIS1 are accessory factors that enhance thyroid hormone regulation of the malic enzyme gene in hepatocytes. J Biol Chem 2001; 276:23838-48. [PMID: 11331288 DOI: 10.1074/jbc.m102166200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Triiodothyronine (T3) stimulates a robust increase (>40-fold) in transcription of the malic enzyme gene in chick embryo hepatocytes. Previous work has shown that optimal T3 regulation of malic enzyme transcription is dependent on the presence of an accessory element (designated as region E) that immediately flanks a cluster of five T3 response elements in the malic enzyme gene. Here, we have analyzed the binding of nuclear proteins to region E and investigated the mechanism by which region E enhances T3 responsiveness. In nuclear extracts from hepatocytes, region E binds heterodimeric complexes consisting of the homeodomain proteins PBX and MEIS1. Region E contains four consecutive PBX/MEIS1 half-sites. PBX-MEIS1 heterodimers bind the first and second half-sites, the third and fourth half-sites, and the first and fourth half-sites. The configuration conferring the greatest increase in T3 responsiveness consists of the first and fourth half-sites that are separated by 7 nucleotides. Stimulation of T3 response element functions by region E does not require the presence of additional malic enzyme sequences. In pull-down experiments, PBX1a and PBX1b specifically bind the nuclear T3 receptor-alpha, and this interaction is enhanced by the presence of T3. A T3 receptor-alpha region containing the DNA binding domain plus flanking sequences (amino acids 21-157) is necessary and sufficient for binding to PBX1a and PBX1b. These results indicate that PBX-MEIS1 complexes interact with nuclear T3 receptors to enhance T3 regulation of malic enzyme transcription in hepatocytes.
Collapse
Affiliation(s)
- Y Wang
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | |
Collapse
|
49
|
Gizard F, Lavallée B, DeWitte F, Hum DW. A novel zinc finger protein TReP-132 interacts with CBP/p300 to regulate human CYP11A1 gene expression. J Biol Chem 2001; 276:33881-92. [PMID: 11349124 DOI: 10.1074/jbc.m100113200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human CYP11A1 gene is expressed specifically in steroidogenic tissues and encodes cytochrome P450scc, which catalyzes the first step in steroid synthesis. A region of the 5'-flanking DNA of the gene from nucleotides -155 to -131 (-155/-131) is shown to activate transcription in steroidogenic human placental JEG-3 (1) and adrenal NCI-H295 cells. Using this region of the gene as probe, a cDNA clone of 4.4 kilobase pairs was isolated by screening JEG-3 cell and human placental cDNA expression libraries. The open reading frame encodes three zinc fingers of the C(2)H(2) subtype, and separate regions rich in glutamate, proline, and glutamine, which are indicative of a DNA-binding protein involved in gene transcription. Expression of the cDNA in vitro and in HeLa cells yields a protein of 132 kDa, which concurs with the predicted size. Northern blot analysis demonstrate expression of two TReP-132 transcripts of 4.4 and 7.5 kilobase pairs in the thymus, adrenal cortex, and testis; and expression is also found in the steroidogenic JEG-3, NCI-H295, and MCF-7 cell lines. Immunocytochemistry analysis demonstrates localization of the HA-tagged TReP-132 protein in the nucleus. The expression of exogenous TReP-132 in HeLa cells was demonstrated to interact with the -155/-131 region in bandshift analysis. Transfection of the cDNA in placental JEG-3 and adrenal NCI-H295 cells increases expression of a reporter construct controlled by the P450scc gene 5'-flanking region from nucleotides -1676 to +49. Moreover, a chimeric protein generated by fusion of TReP-132 with the Gal4 DNA-binding domain was able to significantly increase promoter activity of a reporter construct via Gal4-binding sites upstream of the E1b minimal promoter. Coexpression of CREB-binding protein (CBP)/p300 with TReP-132 has an additive effect on promoter activity, and the proteins were demonstrated to interact physically. Thus, these results together indicate the isolation of a novel zinc-finger transcriptional regulating protein of 132 kDa (TReP-132) involved in the regulation of P450scc gene expression.
Collapse
Affiliation(s)
- F Gizard
- Oncology and Molecular Endocrinology Research Center, Laval University, Quebec G1K 7P4, Canada
| | | | | | | |
Collapse
|
50
|
Hung HL, Kim AY, Hong W, Rakowski C, Blobel GA. Stimulation of NF-E2 DNA binding by CREB-binding protein (CBP)-mediated acetylation. J Biol Chem 2001; 276:10715-21. [PMID: 11154691 DOI: 10.1074/jbc.m007846200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The hematopoietic transcription factor NF-E2 is an important regulator of erythroid and megakaryocytic gene expression. The transcription cofactor cAMP-response element-binding protein (CREB)-binding protein (CBP) has previously been implicated in mediating NF-E2 function. In this report, we examined the role of CBP, a coactivator with intrinsic acetyltransferase activity, in the regulation of NF-E2. We found that both the hematopoietic-specific subunit of NF-E2, p45, and the widely expressed small subunit, MafG, interact with CBP in vitro and in vivo. CBP acetylates MafG, but not p45, predominantly in the basic region of MafG. Immunoprecipitation experiments with anti-acetyl lysine antibodies demonstrate that MafG is acetylated in vivo in erythroid cells. Transfection experiments further show that CBP stimulates MafG acetylation in intact cells in an E1A-sensitive manner. Acetylation of MafG augments DNA binding activity of NF-E2, and mutations at the major acetylation sites markedly reduce DNA binding and transcriptional activation by NF-E2. Together, these results suggest that recruitment of CBP by NF-E2 to specific erythroid/megakaryocytic promoters might regulate transcription by at least two mechanisms involving both modification of chromatin structure and modulation of transcription factor activity.
Collapse
Affiliation(s)
- H L Hung
- Division of Hematology, Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|