1
|
Liu X, Li F, Xiao C, Yu Y, Zheng L, Zhao M, Huang M. Rational Design and Model Predictions for Optimized Elastase Production in Saccharomyces cerevisiae. ACS Synth Biol 2025; 14:1719-1731. [PMID: 40327375 DOI: 10.1021/acssynbio.5c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Pseudomonas aeruginosa elastase is a metalloprotease with significant industrial potential but is challenging to produce due to its pathogenic origin and folding complexities. In this study, we applied rational design to engineer nonfunctional regions of elastase within Saccharomyces cerevisiae, specifically targeting propeptide and signal peptide cleavage sites, and N-glycosylation in the propeptide. This led to the development of several improved elastase variants. Integrating the yeast protein secretory model pcSecYeast with protease production characteristics, a total of 75 targets were identified and validated, comprising both model-predicted and production-feature-based targets. Notably, overexpression of POS5 enhanced protease activity to 2.43-fold that of the control, while knockout of TES1 or VPS10 further optimized production. This work demonstrates the potential of systems biology in creating yeast cell factories for protease production and highlights S. cerevisiae as a versatile host for biotechnological applications.
Collapse
Affiliation(s)
- Xiufang Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Feiran Li
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chufan Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Yixin Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| |
Collapse
|
2
|
Huang K, Bai H, Meng C, Kashif M, Wei Z, Tang Z, He S, Wu S, He S, Jiang C. Deciphering the ammonia transformation mechanism of a novel marine multi-stress-tolerant yeast, Pichia kudriavzevii HJ2, as revealed by integrated omics analysis. Appl Environ Microbiol 2025:e0221124. [PMID: 40338088 DOI: 10.1128/aem.02211-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/20/2025] [Indexed: 05/09/2025] Open
Abstract
Ammonia nitrogen posed a significant threat to aquatic animals in aquaculture environments, and the substantial potential of microorganisms in removing ammonia nitrogen had garnered considerable attention. This study identified a marine yeast, Pichia kudriavzevii HJ2, which effectively removed ammonia nitrogen. By combining transcriptomics and metabolomics, the ammonia nitrogen transformation mechanism of HJ2 was elucidated. HJ2 achieved 100% ammonia nitrogen removal efficiency within 1 day of fermentation at 35°C with 300 mg/L ammonia nitrogen and 73.56% removal efficiency within 36 h with 600 mg/L ammonia nitrogen. Transcriptomics revealed that exposure to 600 mg/L ammonia nitrogen resulted in 541 up-regulated genes and 567 down-regulated genes in the HJ2 strain. Differentially expressed genes (DEGs) were primarily involved in the tricarboxylic acid (TCA) cycle and amino acid metabolism. Metabolomics revealed that HJ2 facilitated the production of 383 up-regulated metabolites and suppressed 137 down-regulated metabolites when exposed to 600 mg/L ammonia nitrogen. Integrating transcriptomics and metabolomics analyses showed that HJ2 removed ammonia nitrogen by sensing its presence in the extracellular environment, activating the TCA cycle, enhancing amino acid metabolism and nucleotide metabolism, and promoting its robust growth and reproduction. Amino acid metabolism played an important role in the ammonia transformation mechanism of HJ2. The result was confirmed by the increased activity of glutamate dehydrogenase (GDH) and aspartate aminotransferase (GOT). Up-regulated nitrogen metabolites such as L-glutamate, L-aspartic acid, spermidine, and trigonelline were produced. The results of enzyme activity tests, construction of overexpressing strains, and adding exogenous amino acid experiments demonstrated that HJ2 could utilize GDH and GOT ammonia assimilation pathways.IMPORTANCEAmmonia nitrogen removal ability was a universal characteristic among the ammonia-oxidizing bacteria or archaea. Recently, yeast strains from the genus Pichia were found to have ammonia nitrogen removal ability. However, the mechanism of ammonia nitrogen removal in Pichia had not been reported. In the study, the ammonia nitrogen removal efficiency of Pichia kudriavzevii HJ2 was identified, and the mechanisms by which HJ2 transformed ammonia nitrogen into non-toxic organic nitrogen were elucidated, offering potential solutions to pollution challenges in aquaculture and helping minimize resource waste. The study offered new insights into the transformation mechanism of microbial ammonia nitrogen removal and its environmentally friendly application.
Collapse
Affiliation(s)
- Kunmei Huang
- Guangxi Key Laboratory for Green Processing of Sugar Resources, Liuzhou Key Laboratory of Guizhong Characteristic Medicinal Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Huashan Bai
- Guangxi Key Laboratory for Green Processing of Sugar Resources, Liuzhou Key Laboratory of Guizhong Characteristic Medicinal Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Can Meng
- Guangxi Key Laboratory for Green Processing of Sugar Resources, Liuzhou Key Laboratory of Guizhong Characteristic Medicinal Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Muhammad Kashif
- Guangxi Key Laboratory for Green Processing of Sugar Resources, Liuzhou Key Laboratory of Guizhong Characteristic Medicinal Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, China
| | - Zhiling Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Zaihang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shu He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shanguang Wu
- Guangxi Key Laboratory for Green Processing of Sugar Resources, Liuzhou Key Laboratory of Guizhong Characteristic Medicinal Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Sheng He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Birth Defects Prevention and Control Institute, Maternal and Child Health Hospital of Guangxi Zhuangzu Autonomous Region, Nanning, China
| | - Chengjian Jiang
- Guangxi Key Laboratory for Green Processing of Sugar Resources, Liuzhou Key Laboratory of Guizhong Characteristic Medicinal Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
3
|
Sonawala U, Busidan A, Haak D, Pilot G. Characterization and whole genome sequencing of Saccharomyces cerevisiae strains lacking several amino acid transporters: Tools for studying amino acid transport. PLoS One 2025; 20:e0315789. [PMID: 40305508 PMCID: PMC12043151 DOI: 10.1371/journal.pone.0315789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025] Open
Abstract
Saccharomyces cerevisiae mutants have been used since the early 1980s as a tool for characterizing genes from other organisms by functional complementation. This approach has been extremely successful in cloning and studying transporters; for instance, plant amino acid, sugar, urea, ammonium, peptide, sodium, and potassium transporters were characterized using yeast mutants lacking these functions. Over the years, new strains lacking even more endogenous transporters have been developed, enabling the characterization of transport properties of heterologous proteins in a more precise way. Furthermore, these strains provide the added possibility of characterizing a transporter belonging to a family of proteins in isolation, and thus can be used to study the relative contribution of redundant transporters to the whole function. We focused on amino acid transport, starting with the yeast strain 22 ∆ 8AA, which was developed to clone plant amino acid transporters in the early 2000s. We recently deleted two additional amino acid permeases, Gnp1 and Agp1, creating 22 ∆ 10α. In the present work, five additional permeases (Bap3, Tat1, Tat2, Agp3, Bap2) were deleted from 22 ∆ 10α genome, in a combination of up to three at a time. Unexpectedly, the amino acid transport properties of the new strains were not very different from the parent, suggesting that these amino acid permeases play a minor role in amino acid uptake, at least in our conditions. Furthermore, the inability to utilize certain amino acids as sole nitrogen source did not correlate with reduced uptake activity, questioning the well-accepted relationship between lack of growth and loss of transport properties. Finally, in order to verify the mutations and the integrity of 22 ∆ 10α genome, we performed whole-genome sequencing of 22 ∆ 10α using long-read PacBio sequencing technology. We successfully assembled 22 ∆ 10α's genome de novo, identified all expected mutations and precisely characterized the nature of the deletions of the ten amino acid transporters. The sequencing data and genome will serve as a valuable resource to researchers interested in using these strains as a tool for amino acid transport study.
Collapse
Affiliation(s)
- Unnati Sonawala
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Aymeric Busidan
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - David Haak
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Guillaume Pilot
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
4
|
Kojima R, Watanabe T, Kasumi T, Mitsuzawa H. Identification and functional characterization of ammonium transporters in Penicilliumpurpurogenum. J Biosci Bioeng 2025; 139:257-262. [PMID: 39922795 DOI: 10.1016/j.jbiosc.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/10/2025]
Abstract
The filamentous fungus Penicillium purpurogenum IAM15392 produces a nitrogen-containing azaphilone pigment, (10Z)-12-carboxyl-monascorubramine (PP-V), which is a potentially valuable natural food colorant. Because ammonium is used as a nitrogen source, and because ammonium uptake is the first step in the synthesis of PP-V, ammonium transporters of P. purpurogenum were identified and characterized. The P. purpurogenum genome was found to contain four putative ammonium transporter genes, designated amtA, amtB, amtC, and amtD, which encode 11 transmembrane proteins of 479, 567, 452, and 475 amino acid residues, respectively. These genes were tested for their ability to complement mutations in the ammonium transporter genes of the fission yeast Schizosaccharomyces pombe. The phenotypes of mutants included defects in growth on low ammonium medium, methylammonium sensitivity, ammonium uptake from the culture medium, and ammonium limitation-induced invasive growth. Furthermore, the transcription of the amt genes was examined in P. purpurogenum grown under different ammonium concentrations. The results suggest that AmtB plays a major role in growth using ammonium as a nitrogen source, whereas AmtA and possibly AmtD function at low ammonium concentrations. Because a medium used for the production of PP-V contains a high concentration of ammonium, our functional characterization of the P. purpurogenum ammonium transporters suggests that AmtB is a potential target of bioengineering for increased PP-V production.
Collapse
Affiliation(s)
- Ryo Kojima
- Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Taisuke Watanabe
- Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Takafumi Kasumi
- Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Hiroshi Mitsuzawa
- Department of Bioscience in Daily Life, Nihon University College of Bioresource Sciences, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
5
|
Yu YX, Wang MQ, Fang ZJ, Li H, Gong JM. The Ammonium Transporter SpAMT1;2 Contributes to Nitrogen Utilisation and Cadmium Accumulation in the Hyperaccumulator Sedum Plumbizincicola. PLANT, CELL & ENVIRONMENT 2025; 48:2256-2266. [PMID: 39572913 DOI: 10.1111/pce.15296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 02/04/2025]
Abstract
Sedum plumbizincicola (Sp) is a cadmium (Cd) hyperaccumulator found specifically in abandoned ancient mines where N is regularly deficient while Cd presents in excess. How Sp got adapted to this unique habitat remains unknown. Here, we reported relative abundant presence of NH4 + in mine areas for Sp, and the isolation and functional characterisation of a putative NH4 + transporter gene AMT1;2, which is highly expressed in Sp roots and encodes a pH-dependent dual affinity ammonium uptake transporter. Compared to SaAMT1;2, the homologous gene in the nonhyperaccumulating control Sedum alfredii (Sa), SpAMT1;2 expression is much higher and not inhibited by Cd. Only eight amino acid sequence polymorphisms were observed between SpAMT1;2 and SaAMT1;2, and the in-vitro NH4 + uptake activity and subcellular localisation are identical between them with or without Cd stress. Moreover, in contrast in Sa, NH4 + uptake in Sp is not inhibited by Cd, and NH4 + at ambient level promotes Cd accumulation. These data suggest that SpAMT1;2 is likely an essential gene contributing to nitrogen nutrition and the interaction between NH4 +and Cd uptake in Sp, which might represent a novel N utilisation pathway evolved in mines for the hyperaccumulator Sp.
Collapse
Affiliation(s)
- Yan-Xuan Yu
- National Key Laboratory of Molecular Plant Genetics, Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meng-Qi Wang
- National Key Laboratory of Molecular Plant Genetics, Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zi-Jun Fang
- National Key Laboratory of Molecular Plant Genetics, Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hui Li
- National Key Laboratory of Molecular Plant Genetics, Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ji-Ming Gong
- National Key Laboratory of Molecular Plant Genetics, Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
6
|
Wang Y, Xia Y, You L, Liu Y, Zou J, Xie Q, Jiang X. Characterization of ammonium absorption by ammonium-preferential cassava. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154401. [PMID: 39674080 DOI: 10.1016/j.jplph.2024.154401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Cassava plants can adapt to poor soils where most other crops are unable to grow normally, suggesting that they are able to efficiently uptake and utilize nutrient elements from the soils. However, little is known about the mechanism of nutrient efficiency in the crop. Herein, we report that cassava grows better under low concentration of mixed nitrogen sources (0.15 mM NH4NO3) than under normal nitrogen levels. Furthermore, a low concentration of ammonium (NH4+) was sufficient for cassava plants, suggesting that cassava may efficiently absorb NH4+ in the high-affinity concentration range. AMT1 transporters are involved in high-affinity NH4+ uptake in plants. Four AMT1-type genes were cloned from cassava plants, and all four MeAMT1 transporters (MeAMT1; 1-MeAMT1; 3, MeAMT1; 5) were found to localize at the plasma membrane. Of them, expression of MeAMT1; 1, MeAMT1; 3 and MeAMT1; 5 restored growth of a yeast mutant strain and an Arabidopsis mutant line lacking primary ammonium transporters under ammonium deficiency. More interestingly, both NH4+ absorption mediated by MeAMT1; 5 in transgenic yeast cells and NH4+ influx at cassava roots displayed a two-phase pattern characterized by high- and low-affinity. In particular, the constant of high-affinity ammonium uptake mediated by MeAMT1; 5 is similar to the Km value of high-affinity ammonium absorption at cassava roots, but also close to the ammonium concentration of most soils, suggesting that cassava can efficiently capture low amounts of NH4+ from soils via plasma membrane-bound AMT1-type ammonium transporters, allowing the crop to grow and develop very well in low-nitrogen soils.
Collapse
Affiliation(s)
- Yu Wang
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/ Institute of Tropical Crops, Hainan University, Haikou 570228, China; National Center for Technology Innovation of Saline-Alkali Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Youquan Xia
- Medical College, Hexi University, Zhangye 734000, China
| | - Lili You
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/ Institute of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yindi Liu
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/ Institute of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jixin Zou
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/ Institute of Tropical Crops, Hainan University, Haikou 570228, China
| | - Qing Xie
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/ Institute of Tropical Crops, Hainan University, Haikou 570228, China; National Center for Technology Innovation of Saline-Alkali Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Xingyu Jiang
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/ Institute of Tropical Crops, Hainan University, Haikou 570228, China; National Center for Technology Innovation of Saline-Alkali Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
7
|
Wang X, Wu H, Manzoor N, Dongcheng W, Su Y, Liu Z, Lin C, Mao Z. The Identification of AMT Family Genes and Their Expression, Function, and Regulation in Chenopodium quinoa. PLANTS (BASEL, SWITZERLAND) 2024; 13:3524. [PMID: 39771223 PMCID: PMC11676291 DOI: 10.3390/plants13243524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Quinoa (Chenopodium quinoa) is an Andean allotetraploid pseudocereal crop with higher protein content and balanced amino acid composition in the seeds. Ammonium (NH4+), a direct source of organic nitrogen assimilation, mainly transported by specific transmembrane ammonium transporters (AMTs), plays important roles in the development, yield, and quality of crops. Many AMTs and their functions have been identified in major crops; however, no systematic analyses of AMTs and their regulatory networks, which is important to increase the yield and protein accumulation in the seeds of quinoa, have been performed to date. In this study, the CqAMTs were identified, followed by the quantification of the gene expression, while the regulatory networks were predicted based on weighted gene co-expression network analysis (WGCNA), with the putative transcriptional factors (TFs) having binding sites on the promoters of CqAMTs, nitrate transporters (CqNRTs), and glutamine-synthases (CqGSs), as well as the putative TF expression being correlated with the phenotypes and activities of GSs, glutamate synthase (GOGAT), nitrite reductase (NiR), and nitrate reductase (NR) of quinoa roots. The results showed a total of 12 members of the CqAMT family with varying expressions in different organs and in the same organs at different developmental stages. Complementation expression analyses in the triple mep1/2/3 mutant of yeast showed that except for CqAMT2.2b, 11/12 CqAMTs restored the uptake of NH4+ in the host yeast. CqAMT1.2a was found to mainly locate on the cell membrane, while TFs (e.g., CqNLPs, CqG2Ls, B3 TFs, CqbHLHs, CqZFs, CqMYBs, CqNF-YA/YB/YC, CqNACs, and CqWRKY) were predicted to be predominantly involved in the regulation, transportation, and assimilation of nitrogen. These results provide the functions of CqAMTs and their possible regulatory networks, which will lead to improved nitrogen use efficiency (NUE) in quinoa as well as other major crops.
Collapse
Affiliation(s)
- Xiangxiang Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; (X.W.); (H.W.); (N.M.); (W.D.); (Z.L.)
| | - He Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; (X.W.); (H.W.); (N.M.); (W.D.); (Z.L.)
| | - Nazer Manzoor
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; (X.W.); (H.W.); (N.M.); (W.D.); (Z.L.)
| | - Wenhua Dongcheng
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; (X.W.); (H.W.); (N.M.); (W.D.); (Z.L.)
| | - Youbo Su
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China;
| | - Zhengjie Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; (X.W.); (H.W.); (N.M.); (W.D.); (Z.L.)
- Institute of Improvement and Utilization of Characteristic Resource Plants, Yunnan Agricultural University, Kunming 650201, China
| | - Chun Lin
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; (X.W.); (H.W.); (N.M.); (W.D.); (Z.L.)
- The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming 650201, China
| | - Zichao Mao
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; (X.W.); (H.W.); (N.M.); (W.D.); (Z.L.)
- Institute of Improvement and Utilization of Characteristic Resource Plants, Yunnan Agricultural University, Kunming 650201, China
- The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming 650201, China
| |
Collapse
|
8
|
Chevriau J, De Palma GZ, Jozefkowicz C, Vitali V, Canessa Fortuna A, Ayub N, Soto G, Bienert GP, Zeida A, Alleva K. Permeation mechanisms of hydrogen peroxide and water through Plasma Membrane Intrinsic Protein aquaporins. Biochem J 2024; 481:1329-1347. [PMID: 39136178 DOI: 10.1042/bcj20240310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/26/2024]
Abstract
Hydrogen peroxide (H2O2) transport by aquaporins (AQP) is a critical feature for cellular redox signaling. However, the H2O2 permeation mechanism through these channels remains poorly understood. Through functional assays, two Plasma membrane Intrinsic Protein (PIP) AQP from Medicago truncatula, MtPIP2;2 and MtPIP2;3 have been identified as pH-gated channels capable of facilitating the permeation of both water (H2O) and H2O2. Employing a combination of unbiased and enhanced sampling molecular dynamics simulations, we investigated the key barriers and translocation mechanisms governing H2O2 permeation through these AQP in both open and closed conformational states. Our findings reveal that both H2O and H2O2 encounter their primary permeation barrier within the selectivity filter (SF) region of MtPIP2;3. In addition to the SF barrier, a second energetic barrier at the NPA (asparagine-proline-alanine) region that is more restrictive for the passage of H2O2 than for H2O, was found. This behavior can be attributed to a dissimilar geometric arrangement and hydrogen bonding profile between both molecules in this area. Collectively, these findings suggest mechanistic heterogeneity in H2O and H2O2 permeation through PIPs.
Collapse
Affiliation(s)
- Jonathan Chevriau
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Buenos Aires, Argentina
| | - Gerardo Zerbetto De Palma
- Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cintia Jozefkowicz
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA) and Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Hurlingham, Argentina
- Instituto de Genética (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Victoria Vitali
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Agustina Canessa Fortuna
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolas Ayub
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA) and Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Hurlingham, Argentina
- Instituto de Genética (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Gabriela Soto
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA) and Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Hurlingham, Argentina
- Instituto de Genética (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Gerd Patrick Bienert
- Crop Physiology, TUM School of Life Sciences, Technical University of Munich, Alte Akademie 12, Freising, Germany
- HEF World Agricultural Systems Center, Technical University of Munich, 85354 Freising, Germany
| | - Ari Zeida
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (Ceinbio), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Karina Alleva
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
9
|
Xu WL, Li R, Zhang XY, Chen YQ, Ni DJ, Wang ML. Zinc/Iron-Regulated Transporter-like Protein CsZIP4 Enhances Zinc and Nitrogen Uptake and Alleviates Zinc Stresses with Nitrogen Supply in Camellia sinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21193-21207. [PMID: 39258382 DOI: 10.1021/acs.jafc.4c05011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Zinc (Zn) and nitrogen (N) are the two crucial nutrients for tea plant growth and development and contribute to the quality formation of tea fresh leaves. In this study, a zinc/iron-regulated transporter-like protein 4 gene (i.e., CsZIP4) was functionally characterized. Expression profiling showed that CsZIP4 could be induced by Zn stresses and a N deficiency. Heterologous expression of CsZIP4 in yeast revealed that CsZIP4 possessed the capacity for Zn transport but not ammonium. Moreover, CsZIP4 overexpression in Arabidopsis thaliana promoted Zn and N uptake and transport and contributed to alleviate Zn stresses by collaborating with N supply, which might be interrelated to the expression of N or Zn metabolism-related genes, such as AtNRT1.1 and AtZIP4. Additionally, CsZIP4 was localized in the plasma membrane and chloroplast, which was helpful in maintaining cellular homeostasis under a Zn excess. Furthermore, silencing of CsZIP4 in tea plants by virus-induced gene silencing increased the chlorophyll content but decreased the Zn content. Finally, the yeast one-hybrid assay demonstrated that CsbZIP2 bound to the CsZIP4 promoter. These results will shed light on the functions of CsZIP4 in the N and Zn interaction in tea plants.
Collapse
Affiliation(s)
- Wen-Luan Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Rui Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xu-Yang Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yu-Qiong Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - De-Jiang Ni
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ming-Le Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
10
|
Williamson G, Harris T, Bizior A, Hoskisson PA, Pritchard L, Javelle A. Biological ammonium transporters: evolution and diversification. FEBS J 2024; 291:3786-3810. [PMID: 38265636 DOI: 10.1111/febs.17059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/14/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Although ammonium is the preferred nitrogen source for microbes and plants, in animal cells it is a toxic product of nitrogen metabolism that needs to be excreted. Thus, ammonium movement across biological membranes, whether for uptake or excretion, is a fundamental and ubiquitous biological process catalysed by the superfamily of the Amt/Mep/Rh transporters. A remarkable feature of the Amt/Mep/Rh family is that they are ubiquitous and, despite sharing low amino acid sequence identity, are highly structurally conserved. Despite sharing a common structure, these proteins have become involved in a diverse range of physiological process spanning all domains of life, with reports describing their involvement in diverse biological processes being published regularly. In this context, we exhaustively present their range of biological roles across the domains of life and after explore current hypotheses concerning their evolution to help to understand how and why the conserved structure fulfils diverse physiological functions.
Collapse
Affiliation(s)
- Gordon Williamson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Thomas Harris
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Adriana Bizior
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Paul Alan Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Leighton Pritchard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Arnaud Javelle
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
11
|
Yim C, Chung Y, Son S, Kim J, Kim JS, Kim H. Abundance of the Membrane Proteome in Yeast Cells Lacking Spc1, a Non-catalytic Subunit of the Signal Peptidase Complex. J Membr Biol 2024; 257:207-214. [PMID: 38630294 DOI: 10.1007/s00232-024-00312-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/05/2024] [Indexed: 07/31/2024]
Abstract
The signal peptidase complex (SPC) mediates processing of signal peptides of secretory precursors. But, recent studies show that the eukaryotic SPC also cleaves internal transmembrane segments of some membrane proteins, and its non-catalytic subunit, Spc1/SPCS1 plays a critical role in this process. To assess the impact of Spc1 on membrane proteostasis, we carried out quantitative proteomics of yeast cells with and without Spc1. Our data show that the abundance of the membrane proteome in yeast cells lacking Spc1 is in general reduced compared to that in wild-type cells, implicating its role in controlling the cellular levels of membrane proteins.
Collapse
Affiliation(s)
- Chewon Yim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Building 504-421, Seoul, 08826, South Korea
| | - Yeonji Chung
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Building 504-421, Seoul, 08826, South Korea
| | - Sungjoon Son
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Building 504-421, Seoul, 08826, South Korea
| | - Jeesoo Kim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Building 504-421, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Jong-Seo Kim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Building 504-421, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Hyun Kim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Building 504-421, Seoul, 08826, South Korea.
| |
Collapse
|
12
|
Remines M, Schoonover MG, Knox Z, Kenwright K, Hoffert KM, Coric A, Mead J, Ampfer J, Seye S, Strome ED. Profiling the compendium of changes in Saccharomyces cerevisiae due to mutations that alter availability of the main methyl donor S-Adenosylmethionine. G3 (BETHESDA, MD.) 2024; 14:jkae002. [PMID: 38184845 PMCID: PMC10989883 DOI: 10.1093/g3journal/jkae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/17/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
The SAM1 and SAM2 genes encode for S-Adenosylmethionine (AdoMet) synthetase enzymes, with AdoMet serving as the main cellular methyl donor. We have previously shown that independent deletion of these genes alters chromosome stability and AdoMet concentrations in opposite ways in Saccharomyces cerevisiae. To characterize other changes occurring in these mutants, we grew wildtype, sam1Δ/sam1Δ, and sam2Δ/sam2Δ strains in 15 different Phenotypic Microarray plates with different components and measured growth variations. RNA-Sequencing was also carried out on these strains and differential gene expression determined for each mutant. We explored how the phenotypic growth differences are linked to the altered gene expression, and hypothesize mechanisms by which loss of the SAM genes and subsequent AdoMet level changes, impact pathways and processes. We present 6 stories, discussing changes in sensitivity or resistance to azoles, cisplatin, oxidative stress, arginine biosynthesis perturbations, DNA synthesis inhibitors, and tamoxifen, to demonstrate the power of this novel methodology to broadly profile changes due to gene mutations. The large number of conditions that result in altered growth, as well as the large number of differentially expressed genes with wide-ranging functionality, speaks to the broad array of impacts that altering methyl donor abundance can impart. Our findings demonstrate that some cellular changes are directly related to AdoMet-dependent methyltransferases and AdoMet availability, some are directly linked to the methyl cycle and its role in production of several important cellular components, and others reveal impacts of SAM gene mutations on previously unconnected pathways.
Collapse
Affiliation(s)
- McKayla Remines
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Makailyn G Schoonover
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Zoey Knox
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Kailee Kenwright
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Kellyn M Hoffert
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Amila Coric
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - James Mead
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Joseph Ampfer
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Serigne Seye
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Erin D Strome
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| |
Collapse
|
13
|
Quijada-Rodriguez AR, Fehsenfeld S, Marini AM, Wilson JM, Nash MT, Sachs M, Towle DW, Weihrauch D. Branchial CO 2 and ammonia excretion in crustaceans: Involvement of an apical Rhesus-like glycoprotein. Acta Physiol (Oxf) 2024; 240:e14078. [PMID: 38205922 DOI: 10.1111/apha.14078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/13/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
AIM To determine whether the crustacean Rh1 protein functions as a dual CO2 /ammonia transporter and investigate its role in branchial ammonia excretion and acid-base regulation. METHODS Sequence analysis of decapod Rh1 proteins was used to determine the conservation of amino acid residues putatively involved in ammonia transport and CO2 binding in human and bacterial Rh proteins. Using the Carcinus maenas Rh1 protein (CmRh1) as a representative of decapod Rh1 proteins, we test the ammonia and CO2 transport capabilities of CmRh1 through heterologous expression in yeast and Xenopus oocytes coupled with site-directed mutagenesis. Quantitative PCR was used to assess the distribution of CmRh1 mRNA in various tissues. Western blotting was used to assess CmRh1 protein expression changes in response to high environmental ammonia and CO2 . Further, immunohistochemistry was used to assess sub-cellular localization of CmRh1 and a membrane-bound carbonic anhydrase (CmCAg). RESULTS Sequence analysis of decapod Rh proteins revealed high conservation of several amino acid residues putatively involved in conducting ammonia transport and CO2 binding. Expression of CmRh1 in Xenopus oocytes enhanced both ammonia and CO2 transport which was nullified in CmRh1 D180N mutant oocytes. Transport of the ammonia analog methylamine by CmRh1 is dependent on both ionized and un-ionized ammonia/methylamine species. CmRh1 was co-localized with CmCAg to the apical membrane of the crustacean gill and only experienced decreased protein expression in the anterior gills when exposed to high environmental ammonia. CONCLUSION CmRh1 is the first identified apical transporter-mediated route for ammonia and CO2 excretion in the crustacean gill. Our findings shed further light on the potential universality of dual ammonia and CO2 transport capacity of Rhesus glycoproteins in both vertebrates and invertebrates.
Collapse
Affiliation(s)
- Alex R Quijada-Rodriguez
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Sandra Fehsenfeld
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Département de biologie, chimie et géographie, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - Anna-Maria Marini
- Biology of Membrane Transport Laboratory, Molecular Biology Department, Université Libre de Bruxelles, Bruxelles, Belgium
- WELBIO, Wavre, Belgium
| | - Jonathan M Wilson
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Mikyla T Nash
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maria Sachs
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David W Towle
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Williamson G, Bizior A, Harris T, Pritchard L, Hoskisson P, Javelle A. Biological ammonium transporters from the Amt/Mep/Rh superfamily: mechanism, energetics, and technical limitations. Biosci Rep 2024; 44:BSR20211209. [PMID: 38131184 PMCID: PMC10794816 DOI: 10.1042/bsr20211209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
The exchange of ammonium across cellular membranes is a fundamental process in all domains of life and is facilitated by the ubiquitous Amt/Mep/Rh transporter superfamily. Remarkably, despite a high structural conservation in all domains of life, these proteins have gained various biological functions during evolution. It is tempting to hypothesise that the physiological functions gained by these proteins may be explained at least in part by differences in the energetics of their translocation mechanisms. Therefore, in this review, we will explore our current knowledge of energetics of the Amt/Mep/Rh family, discuss variations in observations between different organisms, and highlight some technical drawbacks which have hampered effects at mechanistic characterisation. Through the review, we aim to provide a comprehensive overview of current understanding of the mechanism of transport of this unique and extraordinary Amt/Mep/Rh superfamily of ammonium transporters.
Collapse
Affiliation(s)
- Gordon Williamson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, U.K
| | - Adriana Bizior
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, U.K
| | - Thomas Harris
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, U.K
| | - Leighton Pritchard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, U.K
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, U.K
| | - Arnaud Javelle
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, U.K
| |
Collapse
|
15
|
Maniero RA, Koltun A, Vitti M, Factor BG, de Setta N, Câmara AS, Lima JE, Figueira A. Identification and functional characterization of the sugarcane ( Saccharum spp.) AMT2-type ammonium transporter ScAMT3;3 revealed a presumed role in shoot ammonium remobilization. FRONTIERS IN PLANT SCIENCE 2023; 14:1299025. [PMID: 38098795 PMCID: PMC10720369 DOI: 10.3389/fpls.2023.1299025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023]
Abstract
Sugarcane (Saccharum spp.) is an important crop for sugar and bioethanol production worldwide. To maintain and increase sugarcane yields in marginal areas, the use of nitrogen (N) fertilizers is essential, but N overuse may result in the leaching of reactive N to the natural environment. Despite the importance of N in sugarcane production, little is known about the molecular mechanisms involved in N homeostasis in this crop, particularly regarding ammonium (NH4 +), the sugarcane's preferred source of N. Here, using a sugarcane bacterial artificial chromosome (BAC) library and a series of in silico analyses, we identified an AMMONIUM TRANSPORTER (AMT) from the AMT2 subfamily, sugarcane AMMONIUM TRANSPORTER 3;3 (ScAMT3;3), which is constitutively and highly expressed in young and mature leaves. To characterize its biochemical function, we ectopically expressed ScAMT3;3 in heterologous systems (Saccharomyces cerevisiae and Arabidopsis thaliana). The complementation of triple mep mutant yeast demonstrated that ScAMT3;3 is functional for NH3/H+ cotransport at high availability of NH4 + and under physiological pH conditions. The ectopic expression of ScAMT3;3 in the Arabidopsis quadruple AMT knockout mutant restored the transport capacity of 15N-NH4 + in roots and plant growth under specific N availability conditions, confirming the role of ScAMT3;3 in NH4 + transport in planta. Our results indicate that ScAMT3;3 belongs to the low-affinity transport system (Km 270.9 µM; Vmax 209.3 µmol g-1 root DW h-1). We were able to infer that ScAMT3;3 plays a presumed role in NH4 + source-sink remobilization in the shoots via phloem loading. These findings help to shed light on the functionality of a novel AMT2-type protein and provide bases for future research focusing on the improvement of sugarcane yield and N use efficiency.
Collapse
Affiliation(s)
- Rodolfo A. Maniero
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Alessandra Koltun
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Marielle Vitti
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Bruna G. Factor
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Nathalia de Setta
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Amanda S. Câmara
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Joni E. Lima
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
16
|
Wu X, Zhou X, Wang S, Wang Z, Huang P, Pu W, Peng Y, Fan X, Gao J, Li Z. Overexpression of a nitrate transporter NtNPF2.11 increases nitrogen accumulation and yield in tobacco. Gene 2023; 885:147715. [PMID: 37591325 DOI: 10.1016/j.gene.2023.147715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/30/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Nitrogen (N) is the key essential macronutrient for crop growth and yield. Over-application of inorganic N fertilizer in fields generated serious environmental pollution and had a negative impact to human health. Therefore, improving crop N use efficiency (NUE) is helpful for sustainable agriculture. The biological functions of nitrogen transporters and regulators have been intensively studied in many crop species. However, only a few nitrogen transporters have been identified in tobacco to date. We reported the identification and functional characterization of a nitrate transporter NtNPF2.11 from tobacco (Nicotiana tabacum). qRT-PCR assay revealed that NtNPF2.11 was mainly expressed in leaf and vein. Under middle N (MN, 1.57 kg N/100 m2) and high N (HN, 2.02 kg N/100 m2) conditions, overexpression of NtNPF2.11 in tobacco greatly improved N utilization and biomass. Moreover, under middle N and high N conditions, the expression of genes for nitrate assimilation, such as NtNR1, NtNiR, NtGS and NtGOGAT, were upregulated in NtNPF2.11 overexpression plants. Compared with WT, overexpression of NtNPF2.11 increased potassium (K) accumulation under high N conditions. These results indicated that overexpression of NtNPF2.11 could increase tobacco yield, N and K accumulation under higher N conditions. Overall, these findings improve our understanding the function of NtNPF2.11 and provide useful gene for sustainable agriculture.
Collapse
Affiliation(s)
- Xiaoqiu Wu
- Puai Medical College, Shaoyang University, Shaoyang 422000, China
| | - Xiaojie Zhou
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Shuaibin Wang
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha 410007, China
| | - Zhangying Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Pingjun Huang
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha 410007, China
| | - Wenxuan Pu
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha 410007, China
| | - Yu Peng
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha 410007, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Junping Gao
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha 410007, China.
| | - Zhaowu Li
- Puai Medical College, Shaoyang University, Shaoyang 422000, China.
| |
Collapse
|
17
|
Cruz-Leite VRM, Moreira ALE, Silva LOS, Inácio MM, Parente-Rocha JA, Ruiz OH, Weber SS, Soares CMDA, Borges CL. Proteomics of Paracoccidioides lutzii: Overview of Changes Triggered by Nitrogen Catabolite Repression. J Fungi (Basel) 2023; 9:1102. [PMID: 37998907 PMCID: PMC10672198 DOI: 10.3390/jof9111102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Members of the Paracoccidioides complex are the causative agents of Paracoccidioidomycosis (PCM), a human systemic mycosis endemic in Latin America. Upon initial contact with the host, the pathogen needs to uptake micronutrients. Nitrogen is an essential source for biosynthetic pathways. Adaptation to nutritional stress is a key feature of fungi in host tissues. Fungi utilize nitrogen sources through Nitrogen Catabolite Repression (NCR). NCR ensures the scavenging, uptake and catabolism of alternative nitrogen sources, when preferential ones, such as glutamine or ammonium, are unavailable. The NanoUPLC-MSE proteomic approach was used to investigate the NCR response of Paracoccidioides lutzii after growth on proline or glutamine as a nitrogen source. A total of 338 differentially expressed proteins were identified. P. lutzii demonstrated that gluconeogenesis, β-oxidation, glyoxylate cycle, adhesin-like proteins, stress response and cell wall remodeling were triggered in NCR-proline conditions. In addition, within macrophages, yeast cells trained under NCR-proline conditions showed an increased ability to survive. In general, this study allows a comprehensive understanding of the NCR response employed by the fungus to overcome nutritional starvation, which in the human host is represented by nutritional immunity. In turn, the pathogen requires rapid adaptation to the changing microenvironment induced by macrophages to achieve successful infection.
Collapse
Affiliation(s)
- Vanessa Rafaela Milhomem Cruz-Leite
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - André Luís Elias Moreira
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Lana O’Hara Souza Silva
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Moises Morais Inácio
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
- Estácio de Goiás University Center—FESGO, Goiânia 74063-010, GO, Brazil
| | - Juliana Alves Parente-Rocha
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Orville Hernandez Ruiz
- MICROBA Research Group, Cellular and Molecular Biology Unit, Department of Microbiology, School of Microbiology, University of Antioquia, Medellín 050010, Colombia;
| | - Simone Schneider Weber
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79304-902, MS, Brazil;
| | - Célia Maria de Almeida Soares
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Clayton Luiz Borges
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| |
Collapse
|
18
|
Cao H, Liu Q, Liu X, Ma Z, Zhang J, Li X, Shen L, Yuan J, Zhang Q. Phosphatidic acid regulates ammonium uptake by interacting with AMMONIUM TRANSPORTER 1;1 in Arabidopsis. PLANT PHYSIOLOGY 2023; 193:1954-1969. [PMID: 37471275 DOI: 10.1093/plphys/kiad421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023]
Abstract
Ammonium (NH4+) is a key inorganic nitrogen source in cellular amino acid biosynthesis. The coupling of transcriptional and posttranslational regulation of AMMONIUM TRANSPORTER (AMT) ensures that NH4+ acquisition by plant roots is properly balanced, which allows for rapid adaptation to a variety of nitrogen conditions. Here, we report that phospholipase D (PLD)-derived phosphatidic acid (PA) interacts with AMT1;1 to mediate NH4+ uptake in Arabidopsis (Arabidopsis thaliana). We examined pldα1 pldδ-knockout mutants and found that a reduced PA level increased seedling growth under nitrogen deficiency and inhibited root growth upon NH4+ stress, which was consistent with the enhanced accumulation of cellular NH4+. PA directly bound to AMT1;1 and inhibited its transport activity. Mutation of AMT1;1 R487 to Gly (R487G) resulted in abolition of PA suppression and, subsequently, enhancement of ammonium transport activity in vitro and in vivo. Observations of AMT1;1-GFP showed suppressed endocytosis under PLD deficiency or by mutation of the PA-binding site in AMT1;1. Endocytosis was rescued by PA in the pldα1 pldδ mutant but not in the mutant AMT1;1R487G-GFP line. Together, these findings demonstrated PA-based shutoff control of plant NH4+ transport and point to a broader paradigm of lipid-transporter function.
Collapse
Affiliation(s)
- Hongwei Cao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingyun Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaokun Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jixiu Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuebing Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Like Shen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingya Yuan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qun Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
19
|
Milner DS, Galindo LJ, Irwin NAT, Richards TA. Transporter Proteins as Ecological Assets and Features of Microbial Eukaryotic Pangenomes. Annu Rev Microbiol 2023; 77:45-66. [PMID: 36944262 DOI: 10.1146/annurev-micro-032421-115538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Here we review two connected themes in evolutionary microbiology: (a) the nature of gene repertoire variation within species groups (pangenomes) and (b) the concept of metabolite transporters as accessory proteins capable of providing niche-defining "bolt-on" phenotypes. We discuss the need for improved sampling and understanding of pangenome variation in eukaryotic microbes. We then review the factors that shape the repertoire of accessory genes within pangenomes. As part of this discussion, we outline how gene duplication is a key factor in both eukaryotic pangenome variation and transporter gene family evolution. We go on to outline how, through functional characterization of transporter-encoding genes, in combination with analyses of how transporter genes are gained and lost from accessory genomes, we can reveal much about the niche range, the ecology, and the evolution of virulence of microbes. We advocate for the coordinated systematic study of eukaryotic pangenomes through genome sequencing and the functional analysis of genes found within the accessory gene repertoire.
Collapse
Affiliation(s)
- David S Milner
- Department of Biology, University of Oxford, Oxford, United Kingdom;
| | | | - Nicholas A T Irwin
- Department of Biology, University of Oxford, Oxford, United Kingdom;
- Merton College, University of Oxford, Oxford, United Kingdom
| | - Thomas A Richards
- Department of Biology, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
20
|
Huang J, Zheng X, Tian M, Zhang K. Ammonia and Nematode Ascaroside Are Synergistic in Trap Formation in Arthrobotrys oligospora. Pathogens 2023; 12:1114. [PMID: 37764922 PMCID: PMC10536950 DOI: 10.3390/pathogens12091114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Nematode-trapping (NT) fungi are natural predators of the soil living nematodes. Diverse external signals mediate the generation of predatory devices of NT fungi. Among these, broad ascarosides and nitrogenous ammonia are highly efficient inducers for trap structure initiation. However, the overlay effect of ammonia and ascaroside on the trap morphogenesis remains unclear. This study demonstrated that the combination of nitrogenous substances with nematode-derived ascarosides led to higher trap production compared to the single inducing cues; notably, ammonia and Ascr#18 had the most synergistic effect on the trap in A. oligospora. Further, the deletion of ammonia transceptor Amt43 blocked trap formation against ammonia addition in A. oligospora but not for the ascaroside Ascr#18 induction. Moreover, ammonia addition could promote plasma endocytosis in the process of trap formation. In contrast, ascaroside addition would facilitate the stability of intracellular organization away from endocytosis. Therefore, there is a synergistic effect on trap induction from different nitrogenous and ascaroside signals.
Collapse
Affiliation(s)
- Jinrong Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (J.H.); (X.Z.)
| | - Xi Zheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (J.H.); (X.Z.)
| | - Mengqing Tian
- Key Laboratory for Potato Biology of Yunnan Province, The CAAS-YNNU-YINMORE Joint Academy of Potato Science, Yunnan Normal University, Kunming 650091, China;
| | - Keqin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (J.H.); (X.Z.)
| |
Collapse
|
21
|
Bizior A, Williamson G, Harris T, Hoskisson PA, Javelle A. Prokaryotic ammonium transporters: what has three decades of research revealed? MICROBIOLOGY (READING, ENGLAND) 2023; 169:001360. [PMID: 37450375 PMCID: PMC10433425 DOI: 10.1099/mic.0.001360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/24/2023] [Indexed: 07/18/2023]
Abstract
The exchange of ammonium across cellular membranes is a fundamental process in all domains of life. In plants, bacteria and fungi, ammonium represents a vital source of nitrogen, which is scavenged from the external environment. In contrast, in animal cells ammonium is a cytotoxic metabolic waste product and must be excreted to prevent cell death. Transport of ammonium is facilitated by the ubiquitous Amt/Mep/Rh transporter superfamily. In addition to their function as transporters, Amt/Mep/Rh proteins play roles in a diverse array of biological processes and human physiopathology. Despite this clear physiological importance and medical relevance, the molecular mechanism of Amt/Mep/Rh proteins has remained elusive. Crystal structures of bacterial Amt/Rh proteins suggest electroneutral transport, whilst functional evidence supports an electrogenic mechanism. Here, focusing on bacterial members of the family, we summarize the structure of Amt/Rh proteins and what three decades of research tells us concerning the general mechanisms of ammonium translocation, in particular the possibility that the transport mechanism might differ in various members of the Amt/Mep/Rh superfamily.
Collapse
Affiliation(s)
- Adriana Bizior
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Gordon Williamson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Thomas Harris
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Arnaud Javelle
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| |
Collapse
|
22
|
Remines M, Schoonover M, Knox Z, Kenwright K, Hoffert KM, Coric A, Mead J, Ampfer J, Seye S, Strome ED. Profiling The Compendium Of Changes In Saccharomyces cerevisiae Due To Mutations That Alter Availability Of The Main Methyl Donor S-Adenosylmethionine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544294. [PMID: 37333147 PMCID: PMC10274911 DOI: 10.1101/2023.06.09.544294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The SAM1 and SAM2 genes encode for S-AdenosylMethionine (AdoMet) synthetase enzymes, with AdoMet serving as the main methyl donor. We have previously shown that independent deletion of these genes alters chromosome stability and AdoMet concentrations in opposite ways in S. cerevisiae. To characterize other changes occurring in these mutants, we grew wildtype, sam1∆/sam1∆, and sam2∆/sam2∆ strains in 15 different Phenotypic Microarray plates with different components, equal to 1440 wells, and measured for growth variations. RNA-Sequencing was also carried out on these strains and differential gene expression determined for each mutant. In this study, we explore how the phenotypic growth differences are linked to the altered gene expression, and thereby predict the mechanisms by which loss of the SAM genes and subsequent AdoMet level changes, impact S. cerevisiae pathways and processes. We present six stories, discussing changes in sensitivity or resistance to azoles, cisplatin, oxidative stress, arginine biosynthesis perturbations, DNA synthesis inhibitors, and tamoxifen, to demonstrate the power of this novel methodology to broadly profile changes due to gene mutations. The large number of conditions that result in altered growth, as well as the large number of differentially expressed genes with wide-ranging functionality, speaks to the broad array of impacts that altering methyl donor abundance can impart, even when the conditions tested were not specifically selected as targeting known methyl involving pathways. Our findings demonstrate that some cellular changes are directly related to AdoMet-dependent methyltransferases and AdoMet availability, some are directly linked to the methyl cycle and its role is production of several important cellular components, and others reveal impacts of SAM gene mutations on previously unconnected pathways.
Collapse
Affiliation(s)
- McKayla Remines
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Makailyn Schoonover
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Zoey Knox
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Kailee Kenwright
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Kellyn M. Hoffert
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Amila Coric
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - James Mead
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Joseph Ampfer
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Serigne Seye
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Erin D. Strome
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| |
Collapse
|
23
|
Hays M, Schwartz K, Schmidtke DT, Aggeli D, Sherlock G. Paths to adaptation under fluctuating nitrogen starvation: The spectrum of adaptive mutations in Saccharomyces cerevisiae is shaped by retrotransposons and microhomology-mediated recombination. PLoS Genet 2023; 19:e1010747. [PMID: 37192196 PMCID: PMC10218751 DOI: 10.1371/journal.pgen.1010747] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/26/2023] [Accepted: 04/14/2023] [Indexed: 05/18/2023] Open
Abstract
There are many mechanisms that give rise to genomic change: while point mutations are often emphasized in genomic analyses, evolution acts upon many other types of genetic changes that can result in less subtle perturbations. Changes in chromosome structure, DNA copy number, and novel transposon insertions all create large genomic changes, which can have correspondingly large impacts on phenotypes and fitness. In this study we investigate the spectrum of adaptive mutations that arise in a population under consistently fluctuating nitrogen conditions. We specifically contrast these adaptive alleles and the mutational mechanisms that create them, with mechanisms of adaptation under batch glucose limitation and constant selection in low, non-fluctuating nitrogen conditions to address if and how selection dynamics influence the molecular mechanisms of evolutionary adaptation. We observe that retrotransposon activity accounts for a substantial number of adaptive events, along with microhomology-mediated mechanisms of insertion, deletion, and gene conversion. In addition to loss of function alleles, which are often exploited in genetic screens, we identify putative gain of function alleles and alleles acting through as-of-yet unclear mechanisms. Taken together, our findings emphasize that how selection (fluctuating vs. non-fluctuating) is applied also shapes adaptation, just as the selective pressure (nitrogen vs. glucose) does itself. Fluctuating environments can activate different mutational mechanisms, shaping adaptive events accordingly. Experimental evolution, which allows a wider array of adaptive events to be assessed, is thus a complementary approach to both classical genetic screens and natural variation studies to characterize the genotype-to-phenotype-to-fitness map.
Collapse
Affiliation(s)
- Michelle Hays
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Katja Schwartz
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Danica T. Schmidtke
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Dimitra Aggeli
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
24
|
Fehsenfeld S, Quijada-Rodriguez AR, Zhouyao H, Durant AC, Donini A, Sachs M, Eck P, Weihrauch D. Hiat1 as a new transporter involved in ammonia regulation. Sci Rep 2023; 13:4416. [PMID: 36932112 PMCID: PMC10023664 DOI: 10.1038/s41598-023-31503-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
The orphan transporter hippocampus-abundant transcript 1 (Hiat1) was first identified in the mammalian brain. Its specific substrate specificity, however, has not been investigated to date. Here, we identified and analyzed Hiat1 in a crustacean, the green crab Carcinus maenas. Our phylogenetic analysis showed that Hiat1 protein is conserved at a considerable level between mammals and this invertebrate (ca. 78% identical and conserved amino acids). Functional expression of Carcinus maenas Hiat1 in Xenopus laevis oocytes demonstrated the capability to transport ammonia (likely NH4+) in a sodium-dependent manner. Furthermore, applying quantitative polymerase chain reaction, our results indicated a physiological role for Carcinus maenas Hiat1 in ammonia homeostasis, as mRNA abundance increased in posterior gills in response to elevated circulating hemolymph ammonia upon exposure to high environmental ammonia. Its ubiquitous mRNA expression pattern also suggests an essential role in general cellular detoxification of ammonia. Overall, our results introduce a new ubiquitously expressed ammonia transporter, consequently demanding revision of our understanding of ammonia handling in key model systems from mammalian kidneys to crustacean and fish gills.
Collapse
Affiliation(s)
- Sandra Fehsenfeld
- Département de Biologie, Chimie et Géographie, Université du Quebec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, G5L 3A1, Canada.
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada.
| | - Alex R Quijada-Rodriguez
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada
| | - Haonan Zhouyao
- Department of Food and Human Nutritional Sciences, University of Manitoba, 35 Chancellor's Circle, Winnipeg, MB, R3T 2N2, Canada
| | - Andrea C Durant
- Department of Biology, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Andrew Donini
- Department of Biology, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - Maria Sachs
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada
| | - Peter Eck
- Department of Food and Human Nutritional Sciences, University of Manitoba, 35 Chancellor's Circle, Winnipeg, MB, R3T 2N2, Canada
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
25
|
Cui G, Konciute MK, Ling L, Esau L, Raina JB, Han B, Salazar OR, Presnell JS, Rädecker N, Zhong H, Menzies J, Cleves PA, Liew YJ, Krediet CJ, Sawiccy V, Cziesielski MJ, Guagliardo P, Bougoure J, Pernice M, Hirt H, Voolstra CR, Weis VM, Pringle JR, Aranda M. Molecular insights into the Darwin paradox of coral reefs from the sea anemone Aiptasia. SCIENCE ADVANCES 2023; 9:eadf7108. [PMID: 36921053 PMCID: PMC10017044 DOI: 10.1126/sciadv.adf7108] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Symbiotic cnidarians such as corals and anemones form highly productive and biodiverse coral reef ecosystems in nutrient-poor ocean environments, a phenomenon known as Darwin's paradox. Resolving this paradox requires elucidating the molecular bases of efficient nutrient distribution and recycling in the cnidarian-dinoflagellate symbiosis. Using the sea anemone Aiptasia, we show that during symbiosis, the increased availability of glucose and the presence of the algae jointly induce the coordinated up-regulation and relocalization of glucose and ammonium transporters. These molecular responses are critical to support symbiont functioning and organism-wide nitrogen assimilation through glutamine synthetase/glutamate synthase-mediated amino acid biosynthesis. Our results reveal crucial aspects of the molecular mechanisms underlying nitrogen conservation and recycling in these organisms that allow them to thrive in the nitrogen-poor ocean environments.
Collapse
Affiliation(s)
- Guoxin Cui
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Migle K. Konciute
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lorraine Ling
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Luke Esau
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Baoda Han
- DARWIN21, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Octavio R. Salazar
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jason S. Presnell
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Nils Rädecker
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Department of Biology, University of Konstanz, Konstanz 78457, Germany
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Huawen Zhong
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jessica Menzies
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Phillip A. Cleves
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | - Yi Jin Liew
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Cory J. Krediet
- Department of Marine Science, Eckerd College, St. Petersburg, FL 33711, USA
| | - Val Sawiccy
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Maha J. Cziesielski
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Paul Guagliardo
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| | - Jeremy Bougoure
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| | - Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Christian R. Voolstra
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - John R. Pringle
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Manuel Aranda
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
26
|
Genome-Wide Identification and Characterization of Ammonium Transporter (AMT) Genes in Rapeseed (Brassica napus L.). Genes (Basel) 2023; 14:genes14030658. [PMID: 36980930 PMCID: PMC10048622 DOI: 10.3390/genes14030658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Ammonium transporters (AMTs) are plasma membrane proteins mediating ammonium uptake and transport. As such, AMTs play vital roles in ammonium acquisition and mobilization, plant growth and development, and stress and pathogen defense responses. Identification of favorable AMT genotypes is a prime target for crop improvement. However, to date, systematic identification and expression analysis of AMT gene family members has not yet been reported for rapeseed (Brassica napus L.). In this study, 20 AMT genes were identified in a comprehensive search of the B. napus genome, 14 members of AMT1 and 6 members of AMT2. Tissue expression analyses revealed that the 14 AMT genes were primarily expressed in vegetative organs, suggesting that different BnaAMT genes might function in specific tissues at the different development stages. Meanwhile, qRT-PCR analysis found that several BnaAMTs strongly respond to the exogenous N conditions, implying the functional roles of AMT genes in ammonium absorption in rapeseed. Moreover, the rapeseed AMT genes were found to be differentially regulated by N, P, and K deficiency, indicating that crosstalk might exist in response to different stresses. Additionally, the subcellular localization of several BnaAMT proteins was confirmed in Arabidopsis protoplasts, and their functions were studied in detail by heterologous expression in yeast. In summary, our studies revealed the potential roles of BnaAMT genes in N acquisition or transportation and abiotic stress response and could provide valuable resources for revealing the functionality of AMTs in rapeseed.
Collapse
|
27
|
Densi A, Iyer RS, Bhat PJ. Synonymous and Nonsynonymous Substitutions in Dictyostelium discoideum Ammonium Transporter amtA Are Necessary for Functional Complementation in Saccharomyces cerevisiae. Microbiol Spectr 2023; 11:e0384722. [PMID: 36840598 PMCID: PMC10100761 DOI: 10.1128/spectrum.03847-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
Ammonium transporters are present in all three domains of life. They have undergone extensive horizontal gene transfer (HGT), gene duplication, and functional diversification and therefore offer an excellent paradigm to study protein evolution. We attempted to complement a mep1Δmep2Δmep3Δ strain of Saccharomyces cerevisiae (triple-deletion strain), which otherwise cannot grow on ammonium as a sole nitrogen source at concentrations of <3 mM, with amtA of Dictyostelium discoideum, an orthologue of S. cerevisiae MEP2. We observed that amtA did not complement the triple-deletion strain of S. cerevisiae for growth on low-ammonium medium. We isolated two mutant derivatives of amtA (amtA M1 and amtA M2) from a PCR-generated mutant plasmid library that complemented the triple-deletion strain of S. cerevisiae. amtA M1 bears three nonsynonymous and two synonymous substitutions, which are necessary for its functionality. amtA M2 bears two nonsynonymous substitutions and one synonymous substitution, all of which are necessary for functionality. Interestingly, AmtA M1 transports ammonium but does not confer methylamine toxicity, while AmtA M2 transports ammonium and confers methylamine toxicity, demonstrating functional diversification. Preliminary biochemical analyses indicated that the mutants differ in their conformations as well as their mechanisms of ammonium transport. These intriguing results clearly point out that protein evolution cannot be fathomed by studying nonsynonymous and synonymous substitutions in isolation. The above-described observations have significant implications for various facets of biological processes and are discussed in detail. IMPORTANCE Functional diversification following gene duplication is one of the major driving forces of protein evolution. While the role of nonsynonymous substitutions in the functional diversification of proteins is well recognized, knowledge of the role of synonymous substitutions in protein evolution is in its infancy. Using functional complementation, we isolated two functional alleles of the D. discoideum ammonium transporter gene (amtA), which otherwise does not function in S. cerevisiae as an ammonium transporters. One of them is an ammonium transporter, while the other is an ammonium transporter that also confers methylammonium (ammonium analogue) toxicity, suggesting functional diversification. Surprisingly, both alleles require a combination of synonymous and nonsynonymous substitutions for their functionality. These results bring out a hitherto-unknown pathway of protein evolution and pave the way for not only understanding protein evolution but also interpreting single nucleotide polymorphisms (SNPs).
Collapse
Affiliation(s)
- Asha Densi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Revathi S. Iyer
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Paike Jayadeva Bhat
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
28
|
Kishchenko O, Stepanenko A, Straub T, Zhou Y, Neuhäuser B, Borisjuk N. Ammonium Uptake, Mediated by Ammonium Transporters, Mitigates Manganese Toxicity in Duckweed, Spirodela polyrhiza. PLANTS (BASEL, SWITZERLAND) 2023; 12:208. [PMID: 36616338 PMCID: PMC9824425 DOI: 10.3390/plants12010208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 06/12/2023]
Abstract
Nitrogen is an essential nutrient that affects all aspects of the growth, development and metabolic responses of plants. Here we investigated the influence of the two major sources of inorganic nitrogen, nitrate and ammonium, on the toxicity caused by excess of Mn in great duckweed, Spirodela polyrhiza. The revealed alleviating effect of ammonium on Mn-mediated toxicity, was complemented by detailed molecular, biochemical and evolutionary characterization of the species ammonium transporters (AMTs). Four genes encoding AMTs in S. polyrhiza, were classified as SpAMT1;1, SpAMT1;2, SpAMT1;3 and SpAMT2. Functional testing of the expressed proteins in yeast and Xenopus oocytes clearly demonstrated activity of SpAMT1;1 and SpAMT1;3 in transporting ammonium. Transcripts of all SpAMT genes were detected in duckweed fronds grown in cultivation medium, containing a physiological or 50-fold elevated concentration of Mn at the background of nitrogen or a mixture of nitrate and ammonium. Each gene demonstrated an individual expression pattern, revealed by RT-qPCR. Revealing the mitigating effect of ammonium uptake on manganese toxicity in aquatic duckweed S. polyrhiza, the study presents a comprehensive analysis of the transporters involved in the uptake of ammonium, shedding a new light on the interactions between the mechanisms of heavy metal toxicity and the regulation of the plant nitrogen metabolism.
Collapse
Affiliation(s)
- Olena Kishchenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Acad. Zabolotnogo Str. 148, 03143 Kyiv, Ukraine
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Acad. Zabolotnogo Str. 148, 03143 Kyiv, Ukraine
| | - Tatsiana Straub
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Yuzhen Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
| | - Benjamin Neuhäuser
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
| |
Collapse
|
29
|
Progress of Molecular Display Technology Using Saccharomyces cerevisiae to Achieve Sustainable Development Goals. Microorganisms 2023; 11:microorganisms11010125. [PMID: 36677416 PMCID: PMC9864768 DOI: 10.3390/microorganisms11010125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
In the long history of microorganism use, yeasts have been developed as hosts for producing biologically active compounds or for conventional fermentation. Since the introduction of genetic engineering, recombinant proteins have been designed and produced using yeast or bacterial cells. Yeasts have the unique property of expressing genes derived from both prokaryotes and eukaryotes. Saccharomyces cerevisiae is one of the well-studied yeasts in genetic engineering. Recently, molecular display technology, which involves a protein-producing system on the yeast cell surface, has been established. Using this technology, designed proteins can be displayed on the cell surface, and novel abilities are endowed to the host yeast strain. This review summarizes various molecular yeast display technologies and their principles and applications. Moreover, S. cerevisiae laboratory strains generated using molecular display technology for sustainable development are described. Each application of a molecular displayed yeast cell is also associated with the corresponding Sustainable Development Goals of the United Nations.
Collapse
|
30
|
Xia J, Wang Y, Zhang T, Pan C, Ji Y, Zhou Y, Jiang X. Genome-wide identification, expression profiling, and functional analysis of ammonium transporter 2 (AMT2) gene family in cassava ( Manihot esculenta crantz). Front Genet 2023; 14:1145735. [PMID: 36911399 PMCID: PMC9992417 DOI: 10.3389/fgene.2023.1145735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Background: Nitrogen (N), absorbed primarily as ammonium (NH4 +) from soil by plant, is a necessary macronutrient in plant growth and development. Ammonium transporter (AMT) plays a vital role in the absorption and transport of ammonium (NH4 +). Cassava (Manihot esculenta Crantz) has a strong adaptability to nitrogen deprivation. However, little is known about the functions of ammonium transporter AMT2 in cassava. Methods: The cassava AMT2-type genes were identified and their characteristics were analyzed using bioinformatic techniques. The spatial expression patterns were analyzed based on the public RNA-seq data and their expression profiles under low ammonium treatment were studied using Real-time quantitative PCR (RT-qPCR) method. The cassava AMT2 genes were transformed into yeast mutant strain TM31019b by PEG/LiAc method to investigate their functions. Results: Seven AMT2-type genes (MeAMT2.1-2.7) were identified in cassava and they were distributed on 6 chromosomes and included two segmental duplication events (MeAMT2.2/MeAMT2.4 and MeAMT2.3/MeAMT2.5). Based on their amino acid sequences, seven MeAMT2 were further divided into four subgroups, and each subgroup contained similar motif constitution and protein structure. Synteny analysis showed that two and four MeAMT2 genes in cassava were collinear with those in the Arabidopsis and soybean genomes, respectively. Sixteen types of cis-elements were identified in the MeAMT2 promoters, and they were related to light-, hormone-, stress-, and plant growth and development-responsive elements, respectively. Most of the MeAMT2 genes displayed tissue-specific expression patterns according to the RNA-seq data, of them, three MeAMT2 (MeAMT2.3, MeAMT2.5, and MeATM2.6) expressions were up-regulated under ammonium deficiency. Complementation experiments showed that yeast mutant strain TM31019b transformed with MeAMT2.3, MeAMT2.5, or MeATM2.6 grew better than untransgenic yeast cells under ammonium deficiency, suggesting that MeAMT2.3, MeAMT2.5, and MeATM2.6 might be the main contributors in response to ammonium deficiency in cassava. Conclusion: This study provides a basis for further study of nitrogen efficient utilization in cassava.
Collapse
Affiliation(s)
- Jinze Xia
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yu Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Tingting Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China.,Xiangyang Academy of Agricultural Sciences, Xiangyang, China
| | - Chengcai Pan
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Yiyin Ji
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Yang Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Xingyu Jiang
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
31
|
Sebastiana M, Serrazina S, Monteiro F, Wipf D, Fromentin J, Teixeira R, Malhó R, Courty PE. Nitrogen Acquisition and Transport in the Ectomycorrhizal Symbiosis-Insights from the Interaction between an Oak Tree and Pisolithus tinctorius. PLANTS (BASEL, SWITZERLAND) 2022; 12:10. [PMID: 36616139 PMCID: PMC9823632 DOI: 10.3390/plants12010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/04/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
In temperate forests, the roots of various tree species are colonized by ectomycorrhizal fungi, which have a key role in the nitrogen nutrition of their hosts. However, not much is known about the molecular mechanisms related to nitrogen metabolism in ectomycorrhizal plants. This study aimed to evaluate the nitrogen metabolic response of oak plants when inoculated with the ectomycorrhizal fungus Pisolithus tinctorius. The expression of candidate genes encoding proteins involved in nitrogen uptake and assimilation was investigated in ectomycorrhizal roots. We found that three oak ammonium transporters were over-expressed in root tissues after inoculation, while the expression of amino acid transporters was not modified, suggesting that inorganic nitrogen is the main form of nitrogen transferred by the symbiotic fungus into the roots of the host plant. Analysis by heterologous complementation of a yeast mutant defective in ammonium uptake and GFP subcellular protein localization clearly confirmed that two of these genes encode functional ammonium transporters. Structural similarities between the proteins encoded by these ectomycorrhizal upregulated ammonium transporters, and a well-characterized ammonium transporter from E. coli, suggest a similar transport mechanism, involving deprotonation of NH4+, followed by diffusion of uncharged NH3 into the cytosol. This view is supported by the lack of induction of NH4+ detoxifying mechanisms, such as the GS/GOGAT pathway, in the oak mycorrhizal roots.
Collapse
Affiliation(s)
- Mónica Sebastiana
- BioISI—Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Susana Serrazina
- BioISI—Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Filipa Monteiro
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Daniel Wipf
- Agroécologie, INRAE, Institut Agro, University Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Jérome Fromentin
- Agroécologie, INRAE, Institut Agro, University Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Rita Teixeira
- BioISI—Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Rui Malhó
- BioISI—Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Pierre-Emmanuel Courty
- Agroécologie, INRAE, Institut Agro, University Bourgogne Franche-Comté, F-21000 Dijon, France
| |
Collapse
|
32
|
Genome-Wide Identification of AMT2-Type Ammonium Transporters Reveal That CsAMT2.2 and CsAMT2.3 Potentially Regulate NH 4+ Absorption among Three Different Cultivars of Camellia sinensis. Int J Mol Sci 2022; 23:ijms232415661. [PMID: 36555302 PMCID: PMC9779401 DOI: 10.3390/ijms232415661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Ammonium (NH4+), as a major inorganic source of nitrogen (N) for tea plant growth, is transported and distributed across membranes by the proteins of ammonium transporters (AMTs). However, the AMT2-type AMTs from tea plants remain poorly understood. In this study, five CsAMT2 subfamily genes were identified in tea plant genomes, and their full-length coding sequences (CDS) were isolated from roots. Then, a NH4+ uptake kinetic comparison of Fudingdabaicha (FD), Huangdan (HD), and Maoxie (MX) showed that FD was a high N efficiency (HNE) cultivar that had a wide range of adaptability to NH4+, HD was a high N efficiency under high N conditions (HNEH) cultivar, in which it was easy to obtain higher yield in a high N environment, and MX was a high N efficiency under low N conditions (HNEL) cultivar, which had a higher affinity for NH4+ than the other two. Tissue-specific expression analysis suggested that CsAMT2.2 and CsAMT2.3 were highly expressed in the roots, indicating that these two members may be unique in the CsAMT2 subfamily. This is further supported by our findings from the temporal expression profiles in the roots among these three different N adaptation cultivars. Expression levels of CsAMT2.2 and CsAMT2.3 in FD and HD were upregulated by a short time (2 h) under high NH4+ treatment, while under low NH4+ treatment, CsAMT2.2 and CsAMT2.3 were highly expressed at 0 h and 2 h in the HNEL-type cultivar-MX. Furthermore, the functional analysis illustrated that CsAMT2.2 and CsAMT2.3 could make a functional complementation of NH4+-defective mutant yeast cells at low NH4+ levels, and the transport efficiency of CsAMT2.3 was higher than that of CsAMT2.2. Thus, we concluded that CsAMT2.2 and CsAMT2.3 might play roles in controlling the NH4+ uptake from the soil to the roots. These results will further the understanding of the NH4+ signal networks of AMT2-type proteins in tea plants.
Collapse
|
33
|
Konzock O, Zaghen S, Fu J, Kerkhoven EJ. Urea is a drop-in nitrogen source alternative to ammonium sulphate in Yarrowia lipolytica. iScience 2022; 25:105703. [PMID: 36567708 PMCID: PMC9772842 DOI: 10.1016/j.isci.2022.105703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/28/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Media components, including the nitrogen source, are significant cost factors in cultivation processes. The nitrogen source also influences cell behavior and production performance. Ammonium sulfate is a widely used nitrogen source for microorganisms' cultivation. Urea is a sustainable and cheap alternative nitrogen source. We investigated the influence of urea as a nitrogen source compared to ammonium sulfate by cultivating phenotypically different Yarrowia lipolytica strains in chemostats under carbon or nitrogen limitation. We found no significant coherent changes in growth and lipid production. RNA sequencing revealed no significant concerted changes in the transcriptome. The genes involved in urea uptake and degradation are not upregulated on a transcriptional level. Our findings support urea usage, indicating that previous metabolic engineering efforts where ammonium sulfate was used are likely translatable to the usage of urea and can ease the way for urea as a cheap and sustainable nitrogen source in more applications.
Collapse
Affiliation(s)
- Oliver Konzock
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Simone Zaghen
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Jing Fu
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Eduard J. Kerkhoven
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden,Corresponding author
| |
Collapse
|
34
|
Koltun A, Maniero RA, Vitti M, de Setta N, Giehl RFH, Lima JE, Figueira A. Functional characterization of the sugarcane ( Saccharum spp.) ammonium transporter AMT2;1 suggests a role in ammonium root-to-shoot translocation. FRONTIERS IN PLANT SCIENCE 2022; 13:1039041. [PMID: 36466275 PMCID: PMC9716016 DOI: 10.3389/fpls.2022.1039041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
AMMONIUM TRANSPORTER/METHYLAMMONIUM PERMEASE/RHESUS (AMT) family members transport ammonium across membranes in all life domains. Plant AMTs can be categorized into AMT1 and AMT2 subfamilies. Functional studies of AMTs, particularly AMT1-type, have been conducted using model plants but little is known about the function of AMTs from crops. Sugarcane (Saccharum spp.) is a major bioenergy crop that requires heavy nitrogen fertilization but depends on a low carbon-footprint for competitive sustainability. Here, we identified and functionally characterized sugarcane ScAMT2;1 by complementing ammonium uptake-defective mutants of Saccharomyces cerevisiae and Arabidopsis thaliana. Reporter gene driven by the ScAMT2;1 promoter in A. thaliana revealed preferential expression in the shoot vasculature and root endodermis/pericycle according to nitrogen availability and source. Arabidopsis quadruple mutant plants expressing ScAMT2;1 driven by the CaMV35S promoter or by a sugarcane endogenous promoter produced significantly more biomass than mutant plants when grown in NH4 + and showed more 15N-ammonium uptake by roots and nitrogen translocation to shoots. In A. thaliana, ScAMT2;1 displayed a Km of 90.17 µM and Vmax of 338.99 µmoles h-1 g-1 root DW. Altogether, our results suggest that ScAMT2;1 is a functional high-affinity ammonium transporter that might contribute to ammonium uptake and presumably to root-to-shoot translocation under high NH4 + conditions.
Collapse
Affiliation(s)
- Alessandra Koltun
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Rodolfo A. Maniero
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Marielle Vitti
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Nathalia de Setta
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
- Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ricardo F. H. Giehl
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Joni E. Lima
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
35
|
Schoonover MG, Chilson EC, Strome ED. Heterozygous Mutations in Aromatic Amino Acid Synthesis Genes Trigger TOR Pathway Activation in Saccharomyces cerevisiae.. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000685. [PMID: 36468155 PMCID: PMC9713580 DOI: 10.17912/micropub.biology.000685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 01/25/2023]
Abstract
The highly conserved complexes of Target of Rapamycin (TORC1 and TORC2) are central regulators to many vital cellular processes including growth and autophagy in response to nutrient availability. Previous research has extensively elucidated exogenous nutrient control on TORC1/TORC2; however, little is known about the potential alteration of nutrient pools from mutations in biosynthesis pathways and their impact on Tor pathway activity. Here, we analyze the impacts of heterozygous mutations in aromatic amino acid biosynthesis genes on TOR signaling via differential expression of genes downstream of TORC1 and autophagy induction for TORC1 and TORC2 activity.
Collapse
|
36
|
Hui J, An X, Li Z, Neuhäuser B, Ludewig U, Wu X, Schulze WX, Chen F, Feng G, Lambers H, Zhang F, Yuan L. The mycorrhiza-specific ammonium transporter ZmAMT3;1 mediates mycorrhiza-dependent nitrogen uptake in maize roots. THE PLANT CELL 2022; 34:4066-4087. [PMID: 35880836 PMCID: PMC9516061 DOI: 10.1093/plcell/koac225] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Most plant species can form symbioses with arbuscular mycorrhizal fungi (AMFs), which may enhance the host plant's acquisition of soil nutrients. In contrast to phosphorus nutrition, the molecular mechanism of mycorrhizal nitrogen (N) uptake remains largely unknown, and its physiological relevance is unclear. Here, we identified a gene encoding an AMF-inducible ammonium transporter, ZmAMT3;1, in maize (Zea mays) roots. ZmAMT3;1 was specifically expressed in arbuscule-containing cortical cells and the encoded protein was localized at the peri-arbuscular membrane. Functional analysis in yeast and Xenopus oocytes indicated that ZmAMT3;1 mediated high-affinity ammonium transport, with the substrate NH4+ being accessed, but likely translocating uncharged NH3. Phosphorylation of ZmAMT3;1 at the C-terminus suppressed transport activity. Using ZmAMT3;1-RNAi transgenic maize lines grown in compartmented pot experiments, we demonstrated that substantial quantities of N were transferred from AMF to plants, and 68%-74% of this capacity was conferred by ZmAMT3;1. Under field conditions, the ZmAMT3;1-dependent mycorrhizal N pathway contributed >30% of postsilking N uptake. Furthermore, AMFs downregulated ZmAMT1;1a and ZmAMT1;3 protein abundance and transport activities expressed in the root epidermis, suggesting a trade-off between mycorrhizal and direct root N-uptake pathways. Taken together, our results provide a comprehensive understanding of mycorrhiza-dependent N uptake in maize and present a promising approach to improve N-acquisition efficiency via plant-microbe interactions.
Collapse
Affiliation(s)
- Jing Hui
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Xia An
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Zhibo Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Benjamin Neuhäuser
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, 70593, Germany
| | - Uwe Ludewig
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, 70593, Germany
| | - Xuna Wu
- Department of Plant Systems Biology, Institute for Physiology and Biotechnology of Plants, University of Hohenheim, Stuttgart, 70593, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, Institute for Physiology and Biotechnology of Plants, University of Hohenheim, Stuttgart, 70593, Germany
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Gu Feng
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Hans Lambers
- School of Biological Science and Institute of Agriculture, University of Western Australia, Perth, WA6009, Australia
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | | |
Collapse
|
37
|
Multifarious Translational Regulation during Replicative Aging in Yeast. J Fungi (Basel) 2022; 8:jof8090938. [PMID: 36135663 PMCID: PMC9500732 DOI: 10.3390/jof8090938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Protein synthesis is strictly regulated during replicative aging in yeast, but global translational regulation during replicative aging is poorly characterized. To conduct ribosome profiling during replicative aging, we collected a large number of dividing aged cells using a miniature chemostat aging device. Translational efficiency, defined as the number of ribosome footprints normalized to transcript abundance, was compared between young and aged cells for each gene. We identified more than 700 genes with changes greater than twofold during replicative aging. Increased translational efficiency was observed in genes involved in DNA repair and chromosome organization. Decreased translational efficiency was observed in genes encoding ribosome components, transposon Ty1 and Ty2 genes, transcription factor HAC1 gene associated with the unfolded protein response, genes involved in cell wall synthesis and assembly, and ammonium permease genes. Our results provide a global view of translational regulation during replicative aging, in which the pathways involved in various cell functions are translationally regulated and cause diverse phenotypic changes.
Collapse
|
38
|
LjAMT2;2 Promotes Ammonium Nitrogen Transport during Arbuscular Mycorrhizal Fungi Symbiosis in Lotus japonicus. Int J Mol Sci 2022; 23:ijms23179522. [PMID: 36076919 PMCID: PMC9455674 DOI: 10.3390/ijms23179522] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are important symbiotic microorganisms in soil that engage in symbiotic relationships with legumes, resulting in mycorrhizal symbiosis. Establishment of strong symbiotic relationships between AMF and legumes promotes the absorption of nitrogen by plants. Ammonium nitrogen can be directly utilised by plants following ammonium transport, but there are few reports on ammonium transporters (AMTs) promoting ammonium nitrogen transport during AM symbiosis. Lotus japonicus is a typical legume model plant that hosts AMF. In this study, we analysed the characteristics of the Lotus japonicus ammonium transporter LjAMT2;2, and found that it is a typical ammonium transporter with mycorrhizal-induced and ammonium nitrogen transport-related cis-acting elements in its promoter region. LjAMT2;2 facilitated ammonium transfer in yeast mutant supplement experiments. In the presence of different nitrogen concentrations, the LjAMT2;2 gene was significantly upregulated following inoculation with AMF, and induced by low nitrogen. Overexpression of LjAMT2;2 increased the absorption of ammonium nitrogen, resulting in doubling of nitrogen content in leaves and roots, thus alleviating nitrogen stress and promoting plant growth.
Collapse
|
39
|
Li Q, Zhan Y, Xu Y, Zhang L, Di P, Lu B, Chen C. Deciphering the transcriptomic response of Ilyonectria robusta in relation to ginsenoside Rg1 treatment and the development of Ginseng rusty root rot. FEMS Microbiol Lett 2022; 369:6659192. [PMID: 35945650 DOI: 10.1093/femsle/fnac075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/02/2022] [Accepted: 08/06/2022] [Indexed: 11/12/2022] Open
Abstract
Rusty root rot is a severe disease in Ginseng (Panax ginseng C.A.Mey.) production caused by Ilyonectria robusta. The severity of the disease may be related to the residual ginsenosides in soil. In order to elucidate the response mechanism between Rg1 treatment and occurrence of ginseng rust, we performed growth, reproduction and transcriptome analysis on Rg1-treated. The results showed that Rg1 significantly promoted the mycelial growth, and sporulation compared to the control, and aggravated the disease symptoms of Panax ginseng. A total of 6708 transcripts out of 213 131 annotated genes identified from global transcriptomic analysis were differentially expressed in Ilyonectria robusta grown in the Rg1 treatment. These genes were found to be related to the carbon-nitrogen metabolism, transport, and assimilation. Many of these genes were also associated with pathogenicity based on the Phi-base database. Several transcription factors were related to specific biological processes, such as nitrogen utilization. The current results revealed that Rg1 played a major role in the development of rusty root rot by promoting fungal cell growth and affected the expression of genes required for pathogenesis. Rg1 could aggravate the invasion of Ilyonectria robusta on ginseng root, which preliminarily revealed the reason for the aggravation of rusty root rot in ginseng soil-borne.
Collapse
Affiliation(s)
- Qiong Li
- State -Local Joint Engineering Research Center of Ginseng Breeding and Application (Jilin), Jilin Agricultural University, Changchun, China.,Jilin ginseng Academy in Changchun University of Chinese Medicine, Changchun, China
| | - Yu Zhan
- Jilin ginseng Academy in Changchun University of Chinese Medicine, Changchun, China
| | - Yonghua Xu
- State -Local Joint Engineering Research Center of Ginseng Breeding and Application (Jilin), Jilin Agricultural University, Changchun, China
| | - Lianxue Zhang
- State -Local Joint Engineering Research Center of Ginseng Breeding and Application (Jilin), Jilin Agricultural University, Changchun, China
| | - Peng Di
- State -Local Joint Engineering Research Center of Ginseng Breeding and Application (Jilin), Jilin Agricultural University, Changchun, China
| | - Baohui Lu
- State -Local Joint Engineering Research Center of Ginseng Breeding and Application (Jilin), Jilin Agricultural University, Changchun, China
| | - Changbao Chen
- Jilin ginseng Academy in Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
40
|
Chutrakul C, Panchanawaporn S, Vorapreeda T, Jeennor S, Anantayanon J, Laoteng K. The Exploring Functional Role of Ammonium Transporters of Aspergillus oryzae in Nitrogen Metabolism: Challenges towards Cell Biomass Production. Int J Mol Sci 2022; 23:7567. [PMID: 35886914 PMCID: PMC9319855 DOI: 10.3390/ijms23147567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
Ammonium is a source of fermentable inorganic nitrogen essential for the growth and development of filamentous fungi. It is involved in several cellular metabolic pathways underlying nitrogen transport and assimilation. Ammonium can be transferred into the cell by an ammonium transporter. This study explored the role of ammonium transporters in nitrogen metabolism and cell biomass production in Aspergillus oryzae strain BCC 7051. Specific sequences encoding ammonium transporters (Amts) in A. oryzae were identified using genomic analysis. Four of the identified ammonium transporter genes, aoamt1-aoamt4, showed similarity in deduced amino acid sequences to the proteins in the ammonium transporter/methylammonium permease (AMT/MEP) family. Transcriptional analysis showed that the expression of aoamt2 and aoamt3 was ammonium-dependent, and was highly upregulated under ammonium-limited conditions. Their functional roles are characterized by genetic perturbations. The gene disruption and overexpression of aoamt3 indicated that the protein encoded by it was a crucial ammonium transporter associated with nitrogen metabolism and was required for filamentous growth. Compared with the wild type, the aoamt3-overexpressing strain showed superior growth performance, high biomass yield, and low glucose consumption. These results shed light on further improvements in the production of potent bioproducts by A. oryzae by manipulating the ammonium uptake capacity and nitrogen metabolism.
Collapse
Affiliation(s)
- Chanikul Chutrakul
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.P.); (S.J.); (J.A.); (K.L.)
| | - Sarocha Panchanawaporn
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.P.); (S.J.); (J.A.); (K.L.)
| | - Tayvich Vorapreeda
- Biochemical Engineering and Systems Biology Research Group (IBEG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), at King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand;
| | - Sukanya Jeennor
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.P.); (S.J.); (J.A.); (K.L.)
| | - Jutamas Anantayanon
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.P.); (S.J.); (J.A.); (K.L.)
| | - Kobkul Laoteng
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.P.); (S.J.); (J.A.); (K.L.)
| |
Collapse
|
41
|
Nigg M, de Oliveira TC, Sarmiento-Villamil JL, de la Bastide PY, Hintz WE, Sherif SM, Shukla M, Bernier L, Saxena PK. Comparative Analysis of Transcriptomes of Ophiostoma novo-ulmi ssp. americana Colonizing Resistant or Sensitive Genotypes of American Elm. J Fungi (Basel) 2022; 8:637. [PMID: 35736120 PMCID: PMC9224576 DOI: 10.3390/jof8060637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/26/2022] [Accepted: 06/11/2022] [Indexed: 12/10/2022] Open
Abstract
The Ascomycete Ophiostoma novo-ulmi threatens elm populations worldwide. The molecular mechanisms underlying its pathogenicity and virulence are still largely uncharacterized. As part of a collaborative study of the O. novo-ulmi-elm interactome, we analyzed the O. novo-ulmi ssp. americana transcriptomes obtained by deep sequencing of messenger RNAs recovered from Ulmus americana saplings from one resistant (Valley Forge, VF) and one susceptible (S) elm genotypes at 0 and 96 h post-inoculation (hpi). Transcripts were identified for 6424 of the 8640 protein-coding genes annotated in the O. novo-ulmi nuclear genome. A total of 1439 genes expressed in planta had orthologs in the PHI-base curated database of genes involved in host-pathogen interactions, whereas 472 genes were considered differentially expressed (DEG) in S elms (370 genes) and VF elms (102 genes) at 96 hpi. Gene ontology (GO) terms for processes and activities associated with transport and transmembrane transport accounted for half (27/55) of GO terms that were significantly enriched in fungal genes upregulated in S elms, whereas the 22 GO terms enriched in genes overexpressed in VF elms included nine GO terms associated with metabolism, catabolism and transport of carbohydrates. Weighted gene co-expression network analysis identified three modules that were significantly associated with higher gene expression in S elms. The three modules accounted for 727 genes expressed in planta and included 103 DEGs upregulated in S elms. Knockdown- and knockout mutants were obtained for eight O. novo-ulmi genes. Although mutants remained virulent towards U. americana saplings, we identified a large repertoire of additional candidate O. novo-ulmi pathogenicity genes for functional validation by loss-of-function approaches.
Collapse
Affiliation(s)
- Martha Nigg
- Centre d’Étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada; (M.N.); (T.C.d.O.); (J.L.S.-V.)
| | - Thais C. de Oliveira
- Centre d’Étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada; (M.N.); (T.C.d.O.); (J.L.S.-V.)
| | - Jorge L. Sarmiento-Villamil
- Centre d’Étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada; (M.N.); (T.C.d.O.); (J.L.S.-V.)
| | - Paul Y. de la Bastide
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada; (P.Y.d.l.B.); (W.E.H.)
| | - Will E. Hintz
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada; (P.Y.d.l.B.); (W.E.H.)
| | - Sherif M. Sherif
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22602, USA;
| | - Mukund Shukla
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation (GRIPP), University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Louis Bernier
- Centre d’Étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada; (M.N.); (T.C.d.O.); (J.L.S.-V.)
| | - Praveen K. Saxena
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation (GRIPP), University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
42
|
Ai Y, Luo T, Yu Y, Zhou J, Lu H. Downregulation of ammonium uptake improves the growth and tolerance of Kluyveromyces marxianus at high temperature. Microbiologyopen 2022; 11:e1290. [PMID: 35765191 PMCID: PMC9131600 DOI: 10.1002/mbo3.1290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 05/06/2022] [Indexed: 01/18/2023] Open
Abstract
The growth and tolerance of Kluyveromyces marxianus at high temperatures decreased significantly in the synthetic medium (SM), which is commonly used in industrial fermentations. After 100 days of adaptive laboratory evolution, a strain named KM234 exhibited excellent tolerance at a high temperature, without loss of its growth ability at a moderate temperature. Transcriptomic analysis revealed that the KM234 strain decreased the expression of the ammonium (NH4+ ) transporter gene MEP3 and increased the synthesis of the amino acid carbon backbone, which may contribute greatly to the high-temperature growth phenotype. High NH4+ content in SM significantly increased the reactive oxygen species (ROS) production at high temperatures and thus caused toxicity to yeast cells. Replacing NH4+ with organic nitrogen sources or increasing the concentration of potassium ions (K+ ) in the medium restored the growth of the wild-type K. marxianus at a high temperature in SM. We also showed that the NH4+ toxicity mitigated by K+ might closely depend on the KIN1 gene. Our results provide a practical solution to industrial fermentation under high-temperature conditions.
Collapse
Affiliation(s)
- Yi Ai
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP.R. China
- Shanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghaiP.R. China
| | - Tongyu Luo
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP.R. China
- Shanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghaiP.R. China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP.R. China
- Shanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghaiP.R. China
| | - Jungang Zhou
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP.R. China
- Shanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghaiP.R. China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP.R. China
- Shanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghaiP.R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB)East ChinaUniversity of Science and TechnologyShanghaiP.R. China
| |
Collapse
|
43
|
Wu XX, Yuan DP, Chen H, Kumar V, Kang SM, Jia B, Xuan YH. Ammonium transporter 1 increases rice resistance to sheath blight by promoting nitrogen assimilation and ethylene signalling. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1085-1097. [PMID: 35170194 PMCID: PMC9129087 DOI: 10.1111/pbi.13789] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Sheath blight (ShB) significantly threatens rice yield production. However, the underlying mechanism of ShB defence in rice remains largely unknown. Here, we identified a highly ShB-susceptible mutant Ds-m which contained a mutation at the ammonium transporter 1;1 (AMT1;1) D358 N. AMT1;1 D358 N interacts with AMT1;1, AMT1;2 and AMT1;3 to inhibit the ammonium transport activity. The AMT1 RNAi was more susceptible and similar to the AMT1;1 D358 N mutant; however, plants with higher NH4+ uptake activity were less susceptible to ShB. Glutamine synthetase 1;1 (GS1;1) mutant gs1;1 and overexpressors (GS1;1 OXs) were more and less susceptible to ShB respectively. Furthermore, AMT1;1 overexpressor (AMT1;1 OX)/gs1;1 and gs1;1 exhibited a similar response to ShB, suggesting that ammonium assimilation rather than accumulation controls the ShB defence. Genetic and physiological assays further demonstrated that plants with higher amino acid or chlorophyll content promoted rice resistance to ShB. Interestingly, the expression of ethylene-related genes was higher in AMT1;1 OX and lower in RNAi mutants than in wild-type. Also, ethylene signalling positively regulated rice resistance to ShB and NH4+ uptake, suggesting that ethylene signalling acts downstream of AMT and also NH4+ uptake is under feedback control. Taken together, our data demonstrated that the AMT1 promotes rice resistance to ShB via the regulation of diverse metabolic and signalling pathways.
Collapse
Affiliation(s)
- Xian Xin Wu
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - De Peng Yuan
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Huan Chen
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Vikranth Kumar
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | | | - Baolei Jia
- School of BioengineeringState Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology (Shandong Academy of Sciences)JinanChina
- Department of Life SciencesChung‐Ang UniversitySeoulSouth Korea
| | - Yuan Hu Xuan
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
44
|
Cheng K, Wei M, Jin X, Tang M, Zhang H. LbAMT3-1, an ammonium transporter induced by arbuscular mycorrhizal in Lycium barbarum, confers tobacco with higher mycorrhizal levels and nutrient uptake. PLANT CELL REPORTS 2022; 41:1477-1480. [PMID: 35201412 DOI: 10.1007/s00299-022-02847-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
KEY MESSAGE An ammonium transporter LbAMT3-1 overexpression increases the arbuscular abundance of mycorrhizal that opens the possibility of using LbAMT3-1 in breeding programs to improve symbiotic nutrient uptake in Lycium barbarum. Nitrogen (N) is one of the most essential nutrients required by plants and limits net primary production much of the time in most terrestrial ecosystems. Arbuscular mycorrhizal (AM) fungi can enhance plant nutrient uptake and improve plant productivity in nutrient limit ecosystems. Here, we identified an ammonia transporter, LbAMT3-1, specifically induced by AM fungi in Lycium barbarum. To understand the expression characteristics and biological functions, LbAMT3-1 was cloned, characterized, and overexpressed in Nicotiana tabacum (tobacco). A BLAST search identified the coding sequence for LbAMT3-1 with an open-reading frame of 1473 bp. Reverse transcription polymerase chain reaction (RT-PCR) analysis indicated that, besides mycorrhizal roots, LbAMT3-1 were barely detectable in other tissues, including stems and leaves. Promoter-GUS assay showed that GUS staining was detected in mycorrhizal roots, and GUS activity driven by the LbAMT3-1 promoter was exclusively confined to root cells containing arbuscules. LbAMT3-1 functionally complemented the yeast mutant efficiently, and yeast expressing LbAMT3-1 showed well growth on the agar medium with 0.02, 0.2, and 2 mM NH4+ supply. Moreover, overexpression of LbAMT3-1 in N. tabacum resulted a significant increase in arbuscular abundance and enhanced the nutrient acquisition capacity of mycorrhizal plants. Based on the results of our study, we propose that overexpression of LbAMT3-1 can promote P and N uptake of host plants through the mycorrhizal pathway, and increase the colonization intensity and arbuscular abundance, which opens the possibility of using LbAMT3-1 in breeding programs.
Collapse
Affiliation(s)
- Kang Cheng
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Man Wei
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoxia Jin
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Haoqiang Zhang
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
45
|
Genome-Wide Identification and Expression Analysis of AMT Gene Family in Apple (Malus domestica Borkh.). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ammonium is one of the prevalent nitrogen sources for growth and development of higher plants. Ammonium acquisition from soil is facilitated by ammonium transporters (AMTs), which are plasma membrane proteins that exclusively transport ammonium/ammonia. However, the functional characteristics and molecular mechanisms of AMTs in apple remain unclear. In this work, 15 putative AMT genes were identified and classified into four clusters (AMT1–AMT4) in apple. According to expression analysis, these AMTs had varying expressions in roots, leaves, stems, flowers and fruits. Some of them were strongly affected by diurnal cycles. AMT genes showed multiple transcript patterns to N regimes and were quite responsive to osmotic stress. In addition, phosphorylation analysis revealed that there were some conserved phosphorylation residues within the C-terminal of AMT proteins. Furthermore, detailed research was conducted on AMT1;2 functioning by heterologous expression in yeast. The present study is expected to provide basic bioinformatic information and expression profiles for the apple AMT family and to lay a basis for exploring the functional roles and regulation mechanisms of AMTs in apple.
Collapse
|
46
|
Williamson G, Brito AS, Bizior A, Tamburrino G, Dias Mirandela G, Harris T, Hoskisson PA, Zachariae U, Marini AM, Boeckstaens M, Javelle A. Coexistence of Ammonium Transporter and Channel Mechanisms in Amt-Mep-Rh Twin-His Variants Impairs the Filamentation Signaling Capacity of Fungal Mep2 Transceptors. mBio 2022; 13:e0291321. [PMID: 35196127 PMCID: PMC9040831 DOI: 10.1128/mbio.02913-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/26/2022] [Indexed: 12/01/2022] Open
Abstract
Ammonium translocation through biological membranes, by the ubiquitous Amt-Mep-Rh family of transporters, plays a key role in all domains of life. Two highly conserved histidine residues protrude into the lumen of the pore of these transporters, forming the family's characteristic Twin-His motif. It has been hypothesized that the motif is essential to confer the selectivity of the transport mechanism. Here, using a combination of in vitro electrophysiology on Escherichia coli AmtB, in silico molecular dynamics simulations, and in vivo yeast functional complementation assays, we demonstrate that variations in the Twin-His motif trigger a mechanistic switch between a specific transporter, depending on ammonium deprotonation, to an unspecific ion channel activity. We therefore propose that there is no selective filter that governs specificity in Amt-Mep-Rh transporters, but the inherent mechanism of translocation, dependent on the fragmentation of the substrate, ensures the high specificity of the translocation. We show that coexistence of both mechanisms in single Twin-His variants of yeast Mep2 transceptors disrupts the signaling function and so impairs fungal filamentation. These data support a signaling process driven by the transport mechanism of the fungal Mep2 transceptors. IMPORTANCE Fungal infections represent a significant threat to human health and cause huge damage to crop yields worldwide. The dimorphic switch between yeast and filamentous growth is associated with the virulence of pathogenic fungi. Of note, fungal Mep2 proteins of the conserved Amt-Mep-Rh family play a transceptor role in the induction of filamentation; however, the signaling mechanism remains largely unknown. Amt-Mep-Rh proteins ensure the specific scavenging of NH4+ through a mechanism relying on substrate deprotonation, thereby preventing competition and translocation of similar-sized K+. Our multidisciplinary approaches using E. coli AmtB, Saccharomyces cerevisiae, and Candida albicans Mep2 show that double variation of the family-defining Twin-His motif triggers a mechanistic switch from a specific transporter to an unspecific ion channel with both mechanisms still coexisting in single variants. Moreover, we show that this mechanistic alteration is associated with loss of signaling ability of Mep2, supporting a transport mechanism-driven process in filamentation induction.
Collapse
Affiliation(s)
- Gordon Williamson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Ana Sofia Brito
- Biology of Membrane Transport Laboratory, Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Adriana Bizior
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Giulia Tamburrino
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Gaëtan Dias Mirandela
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- Biology of Membrane Transport Laboratory, Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Thomas Harris
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Anna Maria Marini
- Biology of Membrane Transport Laboratory, Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Mélanie Boeckstaens
- Biology of Membrane Transport Laboratory, Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Arnaud Javelle
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
47
|
Multiple nutrient transporters enable cells to mitigate a rate-affinity tradeoff. PLoS Comput Biol 2022; 18:e1010060. [PMID: 35468136 PMCID: PMC9071158 DOI: 10.1371/journal.pcbi.1010060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/05/2022] [Accepted: 03/26/2022] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic genomes often encode multiple transporters for the same nutrient. For example, budding yeast has 17 hexose transporters (HXTs), all of which potentially transport glucose. Using mathematical modelling, we show that transporters that use either facilitated diffusion or symport can have a rate-affinity tradeoff, where an increase in the maximal rate of transport decreases the transporter’s apparent affinity. These changes affect the import flux non-monotonically, and for a given concentration of extracellular nutrient there is one transporter, characterised by its affinity, that has a higher import flux than any other. Through encoding multiple transporters, cells can therefore mitigate the tradeoff by expressing those transporters with higher affinities in lower concentrations of nutrients. We verify our predictions using fluorescent tagging of seven HXT genes in budding yeast and follow their expression over time in batch culture. Using the known affinities of the corresponding transporters, we show that their regulation in glucose is broadly consistent with a rate-affinity tradeoff: as glucose falls, the levels of the different transporters peak in an order that mostly follows their affinity for glucose. More generally, evolution is constrained by tradeoffs. Our findings indicate that one such tradeoff often occurs in the cellular transport of nutrients. From yeast to humans, cells often express multiple different types of transporters for the same nutrient, and it is puzzling why a single high-affinity transporter is not expressed instead. Here we initially use mathematical modelling to demonstrate that transporters facilitating diffusion and those powered by the proton motive force can both exhibit a rate-affinity tradeoff, for quite general conditions. A transporter with a higher affinity necessarily has a lower rate, and vice versa. The tradeoff implies that there is a range of nutrient concentrations for which a transporter, characterised by its affinity, has a higher import flux than any other transporter with a different affinity. To mitigate the tradeoff, genomes may therefore encode multiple different transporters, and cells that express each transporter in the concentrations where it imports best will uptake nutrients at higher rates. Consistently, we show that as cells of budding yeast consume glucose, they express five types of hexose transporters in an order that follows the transporters’ affinities.
Collapse
|
48
|
Wang Y, Xuan YM, Wang SM, Fan DM, Wang XC, Zheng XQ. Genome-wide identification, characterization, and expression analysis of the ammonium transporter gene family in tea plants (Camellia sinensis L.). PHYSIOLOGIA PLANTARUM 2022; 174:e13646. [PMID: 35129836 DOI: 10.1111/ppl.13646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
As a preferred nitrogen form, ammonium (NH4 + ) transport via specific transporters is particularly important for the growth and development of tea plants (Camellia sinensis L.). However, our understanding of the functions of the AMT family in tea plants is limited. We identified and named 16 putative AMT genes according to phylogenetic analysis. All CsAMT genes were divided into three groups, distributed on 12 chromosomes with only one segmental duplication repetition. The CsAMT genes showed different expression levels in different organs, and most of them were expressed mainly in the apical buds and roots. Complementation analysis of yeast mutants showed that CsAMTs restored the uptake of NH4 + . This study provides insights into the genome-wide distribution and spatial expression of AMT genes in tea plants.
Collapse
Affiliation(s)
- Yu Wang
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yi-Min Xuan
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shu-Mao Wang
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Dong-Mei Fan
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiao-Chang Wang
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xin-Qiang Zheng
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
49
|
Engineering precursor supply for the high-level production of ergothioneine in Saccharomyces cerevisiae. Metab Eng 2022; 70:129-142. [DOI: 10.1016/j.ymben.2022.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022]
|
50
|
Ata Ö, Ergün BG, Fickers P, Heistinger L, Mattanovich D, Rebnegger C, Gasser B. What makes Komagataella phaffii non-conventional? FEMS Yeast Res 2021; 21:foab059. [PMID: 34849756 PMCID: PMC8709784 DOI: 10.1093/femsyr/foab059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/23/2021] [Indexed: 12/30/2022] Open
Abstract
The important industrial protein production host Komagataella phaffii (syn Pichia pastoris) is classified as a non-conventional yeast. But what exactly makes K. phaffii non-conventional? In this review, we set out to address the main differences to the 'conventional' yeast Saccharomyces cerevisiae, but also pinpoint differences to other non-conventional yeasts used in biotechnology. Apart from its methylotrophic lifestyle, K. phaffii is a Crabtree-negative yeast species. But even within the methylotrophs, K. phaffii possesses distinct regulatory features such as glycerol-repression of the methanol-utilization pathway or the lack of nitrate assimilation. Rewiring of the transcriptional networks regulating carbon (and nitrogen) source utilization clearly contributes to our understanding of genetic events occurring during evolution of yeast species. The mechanisms of mating-type switching and the triggers of morphogenic phenotypes represent further examples for how K. phaffii is distinguished from the model yeast S. cerevisiae. With respect to heterologous protein production, K. phaffii features high secretory capacity but secretes only low amounts of endogenous proteins. Different to S. cerevisiae, the Golgi apparatus of K. phaffii is stacked like in mammals. While it is tempting to speculate that Golgi architecture is correlated to the high secretion levels or the different N-glycan structures observed in K. phaffii, there is recent evidence against this. We conclude that K. phaffii is a yeast with unique features that has a lot of potential to explore both fundamental research questions and industrial applications.
Collapse
Affiliation(s)
- Özge Ata
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Burcu Gündüz Ergün
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, Turkey
- Biotechnology Research Center, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Av. de la Faculté 2B, 5030 Gembloux, Belgium
| | - Lina Heistinger
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
- Christian Doppler Laboratory for Innovative Immunotherapeutics, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Diethard Mattanovich
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Corinna Rebnegger
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
- Christian Doppler Laboratory for Growth-Decoupled Protein Production in Yeast, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Brigitte Gasser
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
- Biotechnology Research Center, Ministry of Agriculture and Forestry, Ankara, Turkey
| |
Collapse
|