1
|
Liang W, Xu Y, Cui X, Li C, Lu S. Genome-Wide Identification and Characterization of miRNAs and Natural Antisense Transcripts Show the Complexity of Gene Regulatory Networks for Secondary Metabolism in Aristolochia contorta. Int J Mol Sci 2024; 25:6043. [PMID: 38892231 PMCID: PMC11172604 DOI: 10.3390/ijms25116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Aristolochia contorta Bunge is an academically and medicinally important plant species. It belongs to the magnoliids, with an uncertain phylogenetic position, and is one of the few plant species lacking a whole-genome duplication (WGD) event after the angiosperm-wide WGD. A. contorta has been an important traditional Chinese medicine material. Since it contains aristolochic acids (AAs), chemical compounds with nephrotoxity and carcinogenicity, the utilization of this plant has attracted widespread attention. Great efforts are being made to increase its bioactive compounds and reduce or completely remove toxic compounds. MicroRNAs (miRNAs) and natural antisense transcripts (NATs) are two classes of regulators potentially involved in metabolism regulation. Here, we report the identification and characterization of 223 miRNAs and 363 miRNA targets. The identified miRNAs include 51 known miRNAs belonging to 20 families and 172 novel miRNAs belonging to 107 families. A negative correlation between the expression of miRNAs and their targets was observed. In addition, we identified 441 A. contorta NATs and 560 NAT-sense transcript (ST) pairs, of which 12 NATs were targets of 13 miRNAs, forming 18 miRNA-NAT-ST modules. Various miRNAs and NATs potentially regulated secondary metabolism through the modes of miRNA-target gene-enzyme genes, NAT-STs, and NAT-miRNA-target gene-enzyme genes, suggesting the complexity of gene regulatory networks in A. contorta. The results lay a solid foundation for further manipulating the production of its bioactive and toxic compounds.
Collapse
Affiliation(s)
- Wenjing Liang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yayun Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xinyun Cui
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Caili Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shanfa Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
2
|
Park SW, Park IB, Kang SJ, Bae J, Chun T. Interaction between host cell proteins and open reading frames of porcine circovirus type 2. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:698-719. [PMID: 37970506 PMCID: PMC10640953 DOI: 10.5187/jast.2023.e67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 11/17/2023]
Abstract
Postweaning multisystemic wasting syndrome (PMWS) is caused by a systemic inflammation after porcine circovirus type 2 (PCV2) infection. It was one of the most economically important pathogens affecting pig production worldwide before PCV2 vaccine was first introduced in 2006. After the development of a vaccine against PCV2a type, pig farms gradually restored enormous economic losses from PMWS. However, vaccine against PCV2a type could not be fully effective against several different PCV2 genotypes (PCV2b - PCV2h). In addition, PCV2a vaccine itself could generate antigenic drift of PCV2 capsid. Therefore, PCV2 infection still threats pig industry worldwide. PCV2 infection was initially found in local tissues including reproductive, respiratory, and digestive tracks. However, PCV2 infection often leads to a systemic inflammation which can cause severe immunosuppression by depleting peripheral lymphocytes in secondary lymphoid tissues. Subsequently, a secondary infection with other microorganisms can cause PMWS. Eleven putative open reading frames (ORFs) have been predicted to encode PCV2 genome. Among them, gene products of six ORFs from ORF1 to ORF6 have been identified and characterized to estimate its functional role during PCV2 infection. Acquiring knowledge about the specific interaction between each PCV2 ORF protein and host protein might be a key to develop preventive or therapeutic tools to control PCV2 infection. In this article, we reviewed current understanding of how each ORF of PCV2 manipulates host cell signaling related to immune suppression caused by PCV2.
Collapse
Affiliation(s)
- Si-Won Park
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - In-Byung Park
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Seok-Jin Kang
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Joonbeom Bae
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Taehoon Chun
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| |
Collapse
|
3
|
Porcine Circovirus Type 2 Hijacks Host IPO5 to Sustain the Intracytoplasmic Stability of Its Capsid Protein. J Virol 2022; 96:e0152222. [PMID: 36409110 PMCID: PMC9749456 DOI: 10.1128/jvi.01522-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nuclear entrance and stability of porcine circovirus type 2 (PCV2), the smallest virus in mammals, are crucial for its infection and replication. However, the mechanisms are not fully understood. Here, we found that the PCV2 virion maintains self-stability via the host importin 5 (IPO5) during infection. Coimmunoprecipitation combined with mass spectrometry and glutathione S-transferase pulldown assays showed that the capsid protein (Cap) of PCV2 binds directly to IPO5. Fine identification demonstrated that the N-terminal residue arginine24 of Cap is the most critical to efficient binding to the proline709 residue of IPO5. Detection of replication ability further showed that IPO5 supports PCV2 replication by promoting the nuclear import of incoming PCV2 virions. Knockdown of IPO5 delayed the nuclear transport of incoming PCV2 virions and significantly decreased the intracellular levels of overexpressed PCV2 Cap, which was reversed by treatment with a proteasome inhibitor or by rescuing IPO5 expression. Cycloheximide treatment showed that IPO5 increases the stability of the PCV2 Cap protein. Taken together, our findings demonstrated that during infection, IPO5 facilitates PCV2 replication by directly binding to the nuclear localization signal of Cap to block proteasome degradation. IMPORTANCE Circovirus is the smallest virus to cause immune suppression in pigs. The capsid protein (Cap) is the only viral structural protein that is closely related to viral infection. The nuclear entry and stability of Cap are necessary for PCV2 replication. However, the molecular mechanism maintaining the stability of Cap during nuclear trafficking of PCV2 is unknown. Here, we report that IPO5 aggregates within the nuclear periphery and combines with incoming PCV2 capsids to promote their nuclear entry. Concurrently, IPO5 inhibits the degradation of newly synthesized Cap protein, which facilitates the synthesis of virus proteins and virus replication. These findings highlight a mechanism whereby IPO5 plays a dual role in PCV2 infection, which not only enriches our understanding of the virus replication cycle but also lays the foundation for the subsequent development of antiviral drugs.
Collapse
|
4
|
Porter VL, Marra MA. The Drivers, Mechanisms, and Consequences of Genome Instability in HPV-Driven Cancers. Cancers (Basel) 2022; 14:4623. [PMID: 36230545 PMCID: PMC9564061 DOI: 10.3390/cancers14194623] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022] Open
Abstract
Human papillomavirus (HPV) is the causative driver of cervical cancer and a contributing risk factor of head and neck cancer and several anogenital cancers. HPV's ability to induce genome instability contributes to its oncogenicity. HPV genes can induce genome instability in several ways, including modulating the cell cycle to favour proliferation, interacting with DNA damage repair pathways to bring high-fidelity repair pathways to viral episomes and away from the host genome, inducing DNA-damaging oxidative stress, and altering the length of telomeres. In addition, the presence of a chronic viral infection can lead to immune responses that also cause genome instability of the infected tissue. The HPV genome can become integrated into the host genome during HPV-induced tumorigenesis. Viral integration requires double-stranded breaks on the DNA; therefore, regions around the integration event are prone to structural alterations and themselves are targets of genome instability. In this review, we present the mechanisms by which HPV-dependent and -independent genome instability is initiated and maintained in HPV-driven cancers, both across the genome and at regions of HPV integration.
Collapse
Affiliation(s)
- Vanessa L. Porter
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
5
|
Patouret R, Barluenga S, Winssinger N. Withaferin A, a polyfunctional pharmacophore that includes covalent engagement of IPO5, is an inhibitor of influenza A replication. Bioorg Med Chem 2022; 69:116883. [DOI: 10.1016/j.bmc.2022.116883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
|
6
|
Importins: Diverse roles in male fertility. Semin Cell Dev Biol 2021; 121:82-98. [PMID: 34426066 DOI: 10.1016/j.semcdb.2021.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
Regulated nucleocytoplasmic transport is central to the changes in gene expression that underpin cellular development and homeostasis, including in the testis, and proteins in the importin family are the predominant facilitators of cargo transport through the nuclear envelope. Reports documenting cell-specific profiles of importin transcripts and proteins during spermatogenesis led us to hypothesize that importins facilitate developmental switches in the testis. More recently, importins have been shown to serve additional functions, both inside and outside the nucleus; these include acting as subcellular scaffolding, mediating cellular stress responses, and controlling transcription. This paper seeks to provide an overview and update on the functions of importin proteins, with a focus on testis development and spermatogenesis. We present an extended survey of importins by combining published single cell RNAseq data with immunohistochemistry on developing and adult mouse testes. This approach reinforces and broadens knowledge of importins in biological processes, including in spermatogenesis and during testis development, revealing additional avenues for impactful investigations.
Collapse
|
7
|
Lai KY, Rizzato M, Aydin I, Villalonga-Planells R, Drexler HCA, Schelhaas M. A Ran-binding protein facilitates nuclear import of human papillomavirus type 16. PLoS Pathog 2021; 17:e1009580. [PMID: 33974675 PMCID: PMC8139508 DOI: 10.1371/journal.ppat.1009580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/21/2021] [Accepted: 04/23/2021] [Indexed: 01/01/2023] Open
Abstract
Human papillomaviruses (HPVs) utilize an atypical mode of nuclear import during cell entry. Residing in the Golgi apparatus until mitosis onset, a subviral complex composed of the minor capsid protein L2 and viral DNA (L2/vDNA) is imported into the nucleus after nuclear envelope breakdown by associating with mitotic chromatin. In this complex, L2 plays a crucial role in the interactions with cellular factors that enable delivery and ultimately tethering of the viral genome to mitotic chromatin. To date, the cellular proteins facilitating these steps remain unknown. Here, we addressed which cellular proteins may be required for this process. Using label-free mass spectrometry, biochemical assays, microscopy, and functional virological assays, we discovered that L2 engages a hitherto unknown protein complex of Ran-binding protein 10 (RanBP10), karyopherin alpha2 (KPNA2), and dynein light chain DYNLT3 to facilitate transport towards mitotic chromatin. Thus, our study not only identifies novel cellular interactors and mechanism that facilitate a poorly understood step in HPV entry, but also a novel cellular transport complex. Human papillomaviruses (HPVs) cause proliferative lesions such as benign warts or malignant invasive cancers. Like other DNA viruses, HPV has to deliver its genome to the nucleus for viral genome transcription and replication. After initial attachment, HPVs are endocytosed to be eventually directed to the trans-Golgi-network (TGN) by intracellular trafficking, where they reside until cell division. Mitosis onset enables access of the virus to cellular chromatin after nuclear envelope breakdown. Tethering of the virus to mitotic chromatin ensures nuclear delivery upon reformation of the nuclear envelope after mitosis. Our previous work showed that the minor capsid protein L2 facilitates nuclear delivery. However, the detailed mechanism, namely, how HPV trafficks from cytosol to the nuclear space, is barely understood. Here, we identified for the first time cellular proteins that interacted with L2 for nuclear import. Mechanistically, the proteins formed a hitherto unknown cellular transport complex that interacted with L2 to direct the virus to mitotic chromosomes by microtubular transport. Our findings provided not only evidence for a transport mechanism of a poorly understood step of HPV entry, but also discovered a novel cellular transport complex.
Collapse
Affiliation(s)
- Kun-Yi Lai
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
- Interfaculty Centre ‘Cells in Motion’ (CiM), Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Matteo Rizzato
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Inci Aydin
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | | | - Hannes C. A. Drexler
- Biomolecular Mass Spectrometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Mario Schelhaas
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
- Interfaculty Centre ‘Cells in Motion’ (CiM), Westphalian Wilhelms-University of Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
8
|
Ferreira PA. The coming-of-age of nucleocytoplasmic transport in motor neuron disease and neurodegeneration. Cell Mol Life Sci 2019; 76:2247-2273. [PMID: 30742233 PMCID: PMC6531325 DOI: 10.1007/s00018-019-03029-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
The nuclear pore is the gatekeeper of nucleocytoplasmic transport and signaling through which a vast flux of information is continuously exchanged between the nuclear and cytoplasmic compartments to maintain cellular homeostasis. A unifying and organizing principle has recently emerged that cements the notion that several forms of amyotrophic lateral sclerosis (ALS), and growing number of other neurodegenerative diseases, co-opt the dysregulation of nucleocytoplasmic transport and that this impairment is a pathogenic driver of neurodegeneration. The understanding of shared pathomechanisms that underpin neurodegenerative diseases with impairments in nucleocytoplasmic transport and how these interface with current concepts of nucleocytoplasmic transport is bound to illuminate this fundamental biological process in a yet more physiological context. Here, I summarize unresolved questions and evidence and extend basic and critical concepts and challenges of nucleocytoplasmic transport and its role in the pathogenesis of neurodegenerative diseases, such as ALS. These principles will help to appreciate the roles of nucleocytoplasmic transport in the pathogenesis of ALS and other neurodegenerative diseases, and generate a framework for new ideas of the susceptibility of motoneurons, and possibly other neurons, to degeneration by dysregulation of nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Paulo A Ferreira
- Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC, 27710, USA.
| |
Collapse
|
9
|
Li Y, Zhou J, Min S, Zhang Y, Zhang Y, Zhou Q, Shen X, Jia D, Han J, Sun Q. Distinct RanBP1 nuclear export and cargo dissociation mechanisms between fungi and animals. eLife 2019; 8:e41331. [PMID: 31021318 PMCID: PMC6524963 DOI: 10.7554/elife.41331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/24/2019] [Indexed: 02/05/2023] Open
Abstract
Ran binding protein 1 (RanBP1) is a cytoplasmic-enriched and nuclear-cytoplasmic shuttling protein, playing important roles in nuclear transport. Much of what we know about RanBP1 is learned from fungi. Intrigued by the long-standing paradox of harboring an extra NES in animal RanBP1, we discovered utterly unexpected cargo dissociation and nuclear export mechanisms for animal RanBP1. In contrast to CRM1-RanGTP sequestration mechanism of cargo dissociation in fungi, animal RanBP1 solely sequestered RanGTP from nuclear export complexes. In fungi, RanBP1, CRM1 and RanGTP formed a 1:1:1 nuclear export complex; in contrast, animal RanBP1, CRM1 and RanGTP formed a 1:1:2 nuclear export complex. The key feature for the two mechanistic changes from fungi to animals was the loss of affinity between RanBP1-RanGTP and CRM1, since residues mediating their interaction in fungi were not conserved in animals. The biological significances of these different mechanisms in fungi and animals were also studied.
Collapse
Affiliation(s)
- Yuling Li
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre of BiotherapyChengduChina
| | - Jinhan Zhou
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre of BiotherapyChengduChina
| | - Sui Min
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre of BiotherapyChengduChina
| | - Yang Zhang
- Division of Abdominal Cancer, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre for BiotherapyChengduChina
| | - Yuqing Zhang
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre of BiotherapyChengduChina
| | - Qiao Zhou
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre of BiotherapyChengduChina
| | - Xiaofei Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of NeurologyWest China Second University Hospital, Sichuan UniversityChengduChina
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of NeurologyWest China Second University Hospital, Sichuan UniversityChengduChina
| | - Junhong Han
- Division of Abdominal Cancer, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre for BiotherapyChengduChina
| | - Qingxiang Sun
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre of BiotherapyChengduChina
| |
Collapse
|
10
|
Coppola U, Caccavale F, Scelzo M, Holland ND, Ristoratore F, D’Aniello S. Ran GTPase, an eukaryotic gene novelty, is involved in amphioxus mitosis. PLoS One 2018; 13:e0196930. [PMID: 30300344 PMCID: PMC6177115 DOI: 10.1371/journal.pone.0196930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/23/2018] [Indexed: 01/19/2023] Open
Abstract
Ran (ras-related nuclear protein) is a small GTPase belonging to the RAS superfamily that is specialized in nuclear trafficking. Through different accessory proteins, Ran plays key roles in several processes including nuclear import-export, mitotic progression and spindle assembly. Consequently, Ran dysfunction has been linked to several human pathologies. This work illustrates the high degree of amino acid conservation of Ran orthologues across evolution, reflected in its conserved role in nuclear trafficking. Moreover, we studied the evolutionary scenario of the pre-metazoan genetic linkage between Ran and Stx, and we hypothesized that chromosomal proximity of these two genes across metazoans could be related to a regulatory logic or a functional linkage. We studied, for the first time, Ran expression during amphioxus development and reported its presence in the neural vesicle, mouth, gill slits and gut corresponding to body regions involved in active cell division.
Collapse
Affiliation(s)
- Ugo Coppola
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, Napoli, Italy
| | - Filomena Caccavale
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, Napoli, Italy
| | - Marta Scelzo
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, Napoli, Italy
- Laboratory of Developmental Biology of Villefranche sur Mer, UMR7009 CNRS/UPMC Observatoire Océanologique, Villefranche sur Mer, France
| | - Nicholas D. Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, United States of America
| | - Filomena Ristoratore
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, Napoli, Italy
| | - Salvatore D’Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, Napoli, Italy
- * E-mail:
| |
Collapse
|
11
|
Wang QQ, Zhang YM, Zhong X, Li JW, An XR, Hou J. Dimethylated histone H3 lysine 9 is dispensable for the interaction between developmental pluripotency-associated protein 3 (Dppa3) and ten-eleven translocation 3 (Tet3) in somatic cells. Reprod Fertil Dev 2018; 31:347-356. [PMID: 30099980 DOI: 10.1071/rd18062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/11/2018] [Indexed: 01/15/2023] Open
Abstract
Both developmental pluripotency-associated protein 3 (Dppa3/Stella/PGC7) and dioxygenase ten-eleven translocation 3 (Tet3) are maternal factors that regulate DNA methylation reprogramming during early embryogenesis. In the mouse zygote, dimethylated histone H3 lysine 9 (H3K9me2) attracts Dppa3 to prevent Tet3-mediated oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Here, we addressed the interplay between Dppa3 and Tet3 or H3K9me2 in somatic cells. In mouse NIH3T3 cells, the exogenously expressed Dppa3 preferentially accumulated in the cytoplasm and had no effect on Tet3-mediated 5hmC generation. In HeLa cells, the expressed Dppa3 was predominantly localised in the nucleus and could partially suppress Tet3-induced 5hmC accumulation, but this suppressive function was not correlated with H3K9me2. Co-immunoprecipitation assays further revealed an interaction of Dppa3 with Tet3 but not with H3K9me2 in HeLa cells. In cloned zygotes from somatic cells, Dppa3 distribution and 5hmC accumulation in nuclei were not affected by H3K9me2 levels. Taken together, these results suggest that H3K9me2 is not functionally associated with Dppa3 and Tet3 in somatic cells or somatic cell cloned embryos.
Collapse
Affiliation(s)
- Qian-Qian Wang
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, #2, Yuan-Ming-Yuan West Road, Haidian District, Beijing, 100193, China
| | - Yu-Mei Zhang
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, #2, Yuan-Ming-Yuan West Road, Haidian District, Beijing, 100193, China
| | - Xia Zhong
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, #2, Yuan-Ming-Yuan West Road, Haidian District, Beijing, 100193, China
| | - Jian-Wei Li
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, #2, Yuan-Ming-Yuan West Road, Haidian District, Beijing, 100193, China
| | - Xiao-Rong An
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, #2, Yuan-Ming-Yuan West Road, Haidian District, Beijing, 100193, China
| | - Jian Hou
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, #2, Yuan-Ming-Yuan West Road, Haidian District, Beijing, 100193, China
| |
Collapse
|
12
|
Giovannone AJ, Winterstein C, Bhattaram P, Reales E, Low SH, Baggs JE, Xu M, Lalli MA, Hogenesch JB, Weimbs T. Soluble syntaxin 3 functions as a transcriptional regulator. J Biol Chem 2018; 293:5478-5491. [PMID: 29475951 DOI: 10.1074/jbc.ra117.000874] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/20/2018] [Indexed: 01/06/2023] Open
Abstract
Syntaxins are a conserved family of SNARE proteins and contain C-terminal transmembrane anchors required for their membrane fusion activity. Here we show that Stx3 (syntaxin 3) unexpectedly also functions as a nuclear regulator of gene expression. We found that alternative splicing creates a soluble isoform that we termed Stx3S, lacking the transmembrane anchor. Soluble Stx3S binds to the nuclear import factor RanBP5 (RAN-binding protein 5), targets to the nucleus, and interacts physically and functionally with several transcription factors, including ETV4 (ETS variant 4) and ATF2 (activating transcription factor 2). Stx3S is differentially expressed in normal human tissues, during epithelial cell polarization, and in breast cancer versus normal breast tissue. Inhibition of endogenous Stx3S expression alters the expression of cancer-associated genes and promotes cell proliferation. Similar nuclear-targeted, soluble forms of other syntaxins were identified, suggesting that nuclear signaling is a conserved, novel function common among these membrane-trafficking proteins.
Collapse
Affiliation(s)
- Adrian J Giovannone
- From the Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, California 93106-9625
| | - Christine Winterstein
- From the Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, California 93106-9625
| | - Pallavi Bhattaram
- From the Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, California 93106-9625
| | - Elena Reales
- From the Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, California 93106-9625
| | - Seng Hui Low
- From the Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, California 93106-9625
| | - Julie E Baggs
- the Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Mimi Xu
- From the Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, California 93106-9625
| | - Matthew A Lalli
- From the Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, California 93106-9625
| | - John B Hogenesch
- the Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Thomas Weimbs
- From the Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, California 93106-9625,
| |
Collapse
|
13
|
Yuda A, Lee WS, Petrovic P, McCulloch CA. Novel proteins that regulate cell extension formation in fibroblasts. Exp Cell Res 2018; 365:85-96. [PMID: 29476834 DOI: 10.1016/j.yexcr.2018.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 01/05/2023]
Abstract
Cell extensions are critical structures that enable matrix remodeling in wound healing and cancer invasion but the regulation of their formation is not well-defined. We searched for new proteins that mediated cell extension formation over collagen by tandem mass tagged mass spectrometry analysis of purified extensions in 3T3 fibroblasts. Unexpectedly, importin-5, ENH isoform 1b (PDLIM5) and 26 S protease regulatory subunit 6B (PSMC4) were more abundant (> 10-fold) in membrane-penetrating cell extensions than cell bodies, which was confirmed by immunostaining and immunoblotting and also observed in human gingival fibroblasts. After siRNA knockdown of these proteins and plating cells on grid-supported floating collagen gels for 6 h, formation of cell extensions and collagen remodeling were examined. Knockdown of importin-5 reduced collagen compaction (1.9-fold), pericellular collagen degradation (~ 1.8-fold) and number of cell extensions (~ 69%). Knockdown of PSMC4 reduced collagen compaction (~ 1.5-fold), pericellular collagen degradation (~ 1.7-fold) and number of cell extensions (~ 42%). Knockdown of PDLIM5 reduced collagen compaction (~ 1.6-fold) and number of cell extensions (~ 21%). Inhibition of the TGF-β RI kinase, Smad3 or ROCK-II signaling pathways reduced the abundance of PDLIM5 in cell extensions but PSMC4 and importin-5 were reduced only by Smad3 or ROCK-II inhibitors. We conclude that these novel proteins are required for cell extension formation and their recruitment into extensions involves the Smad3 and ROCK signaling pathways.
Collapse
Affiliation(s)
- A Yuda
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Canada
| | - W S Lee
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Canada
| | - P Petrovic
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Canada
| | - C A McCulloch
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Canada.
| |
Collapse
|
14
|
Clerman A, Noor Z, Fishelevich R, Lockatell V, Hampton BS, Shah NG, Salcedo MV, Todd NW, Atamas SP, Luzina IG. The full-length interleukin-33 (FLIL33)-importin-5 interaction does not regulate nuclear localization of FLIL33 but controls its intracellular degradation. J Biol Chem 2017; 292:21653-21661. [PMID: 29127199 DOI: 10.1074/jbc.m117.807636] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
Human mature IL-33 is a member of the IL-1 family and a potent regulator of immunity through its pro-T helper cell 2 activity. Its precursor form, full-length interleukin-33 (FLIL33), is an intranuclear protein in many cell types, including fibroblasts, and its intracellular levels can change in response to stimuli. However, the mechanisms controlling the nuclear localization of FLIL33 or its stability in cells are not understood. Here, we identified importin-5 (IPO5), a member of the importin family of nuclear transport proteins, as an intracellular binding partner of FLIL33. By overexpressing various FLIL33 protein segments and variants in primary human lung fibroblasts and HEK293T cells, we show that FLIL33, but not mature interleukin-33, physically interacts with IPO5 and that this interaction localizes to a cluster of charged amino acids (positions 46-56) but not to an adjacent segment (positions 61-67) in the FLIL33 N-terminal region. siRNA-mediated IPO5 knockdown in cell culture did not affect nuclear localization of FLIL33. However, the IPO5 knockdown significantly decreased the intracellular levels of overexpressed FLIL33, reversed by treatment with the 20S proteasome inhibitor bortezomib. Furthermore, FLIL33 variants deficient in IPO5 binding remained intranuclear and exhibited decreased levels, which were also restored by the bortezomib treatment. These results indicate that the interaction between FLIL33 and IPO5 is localized to a specific segment of the FLIL33 protein, is not required for nuclear localization of FLIL33, and protects FLIL33 from proteasome-dependent degradation.
Collapse
Affiliation(s)
| | | | | | | | - Brian S Hampton
- the Center for Vascular and Inflammatory Diseases & Center for Innovative Biomedical Resources, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | | | | | - Nevins W Todd
- From the Department of Medicine and.,the Research Service, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201
| | - Sergei P Atamas
- From the Department of Medicine and .,the Research Service, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201
| | - Irina G Luzina
- From the Department of Medicine and.,the Research Service, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201
| |
Collapse
|
15
|
Du Y, Wu NC, Jiang L, Zhang T, Gong D, Shu S, Wu TT, Sun R. Annotating Protein Functional Residues by Coupling High-Throughput Fitness Profile and Homologous-Structure Analysis. mBio 2016; 7:e01801-16. [PMID: 27803181 PMCID: PMC5090041 DOI: 10.1128/mbio.01801-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/07/2016] [Indexed: 11/28/2022] Open
Abstract
Identification and annotation of functional residues are fundamental questions in protein sequence analysis. Sequence and structure conservation provides valuable information to tackle these questions. It is, however, limited by the incomplete sampling of sequence space in natural evolution. Moreover, proteins often have multiple functions, with overlapping sequences that present challenges to accurate annotation of the exact functions of individual residues by conservation-based methods. Using the influenza A virus PB1 protein as an example, we developed a method to systematically identify and annotate functional residues. We used saturation mutagenesis and high-throughput sequencing to measure the replication capacity of single nucleotide mutations across the entire PB1 protein. After predicting protein stability upon mutations, we identified functional PB1 residues that are essential for viral replication. To further annotate the functional residues important to the canonical or noncanonical functions of viral RNA-dependent RNA polymerase (vRdRp), we performed a homologous-structure analysis with 16 different vRdRp structures. We achieved high sensitivity in annotating the known canonical polymerase functional residues. Moreover, we identified a cluster of noncanonical functional residues located in the loop region of the PB1 β-ribbon. We further demonstrated that these residues were important for PB1 protein nuclear import through the interaction with Ran-binding protein 5. In summary, we developed a systematic and sensitive method to identify and annotate functional residues that are not restrained by sequence conservation. Importantly, this method is generally applicable to other proteins about which homologous-structure information is available. IMPORTANCE To fully comprehend the diverse functions of a protein, it is essential to understand the functionality of individual residues. Current methods are highly dependent on evolutionary sequence conservation, which is usually limited by sampling size. Sequence conservation-based methods are further confounded by structural constraints and multifunctionality of proteins. Here we present a method that can systematically identify and annotate functional residues of a given protein. We used a high-throughput functional profiling platform to identify essential residues. Coupling it with homologous-structure comparison, we were able to annotate multiple functions of proteins. We demonstrated the method with the PB1 protein of influenza A virus and identified novel functional residues in addition to its canonical function as an RNA-dependent RNA polymerase. Not limited to virology, this method is generally applicable to other proteins that can be functionally selected and about which homologous-structure information is available.
Collapse
Affiliation(s)
- Yushen Du
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA
- Cancer Institute, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, ZJU-UCLA Joint Center for Medical Education and Research, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Nicholas C Wu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Lin Jiang
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA
| | - Tianhao Zhang
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Danyang Gong
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA
| | - Sara Shu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA
- Cancer Institute, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, ZJU-UCLA Joint Center for Medical Education and Research, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
16
|
Baas R, Sijm A, van Teeffelen HAAM, van Es R, Vos HR, Marc Timmers HT. Quantitative Proteomics of the SMAD (Suppressor of Mothers against Decapentaplegic) Transcription Factor Family Identifies Importin 5 as a Bone Morphogenic Protein Receptor SMAD-specific Importin. J Biol Chem 2016; 291:24121-24132. [PMID: 27703004 DOI: 10.1074/jbc.m116.748582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/03/2016] [Indexed: 01/11/2023] Open
Abstract
Gene-specific transcription factors (GSTFs) control gene transcription by DNA binding and specific protein complex recruitment, which regulates promoter accessibility for transcription initiation by RNA polymerase II. Mutations in the GSTFs Suppressor of Mothers Against Decapentaplegic 2 (SMAD2) and SMAD4 are frequently associated with colon and rectal carcinomas. These proteins play an important role in bone morphogenic protein (BMP) and transforming growth factor β (TGF-β) signaling pathways controlling cell fate and proliferation. To study the protein interactome of the SMAD protein family we generated a quantitative proteomics pipeline that allows for inducible expression of GFP-tagged SMAD proteins followed by affinity purification and quantitative mass spectrometry analysis. Data are available via ProteomeXchange with identifier PXD004529. The nuclear importin IPO5 was identified as a novel interacting protein of SMAD1. Overexpression of IPO5 in various cell lines specifically increases nuclear localization of BMP receptor-activated SMADs (R-SMADs) confirming a functional relationship between IPO5 and BMP but not TGF-β R-SMADs. Finally, we provide evidence that variation in length of the lysine stretch of the nuclear localization sequence is a determinant for importin specificity.
Collapse
Affiliation(s)
- Roy Baas
- From the Departments of Molecular Cancer Research and Stem Cells, Regenerative Medicine Center, Center for Molecular Medicine, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Ayestha Sijm
- From the Departments of Molecular Cancer Research and Stem Cells, Regenerative Medicine Center, Center for Molecular Medicine, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Hetty A A M van Teeffelen
- From the Departments of Molecular Cancer Research and Stem Cells, Regenerative Medicine Center, Center for Molecular Medicine, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Robert van Es
- From the Departments of Molecular Cancer Research and Stem Cells, Regenerative Medicine Center, Center for Molecular Medicine, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Harmjan R Vos
- From the Departments of Molecular Cancer Research and Stem Cells, Regenerative Medicine Center, Center for Molecular Medicine, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - H Th Marc Timmers
- From the Departments of Molecular Cancer Research and Stem Cells, Regenerative Medicine Center, Center for Molecular Medicine, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
17
|
Bhosle VK, Rivera JC, Zhou TE, Omri S, Sanchez M, Hamel D, Zhu T, Rouget R, Rabea AA, Hou X, Lahaie I, Ribeiro-da-Silva A, Chemtob S. Nuclear localization of platelet-activating factor receptor controls retinal neovascularization. Cell Discov 2016; 2:16017. [PMID: 27462464 PMCID: PMC4941644 DOI: 10.1038/celldisc.2016.17] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/11/2016] [Indexed: 02/08/2023] Open
Abstract
Platelet-activating factor (PAF) is a pleiotropic phospholipid with proinflammatory, procoagulant and angiogenic actions on the vasculature. We and others have reported the presence of PAF receptor (Ptafr) at intracellular sites such as the nucleus. However, mechanisms of localization and physiologic functions of intracellular Ptafr remain poorly understood. We hereby identify the importance of C-terminal motif of the receptor and uncover novel roles of Rab11a GTPase and importin-5 in nuclear translocation of Ptafr in primary human retinal microvascular endothelial cells. Nuclear localization of Ptafr is independent of exogenous PAF stimulation as well as intracellular PAF biosynthesis. Moreover, nuclear Ptafr is responsible for the upregulation of unique set of growth factors, including vascular endothelial growth factor, in vitro and ex vivo. We further corroborate the intracrine PAF signaling, resulting in angiogenesis in vivo, using Ptafr antagonists with distinct plasma membrane permeability. Collectively, our findings show that nuclear Ptafr translocates in an agonist-independent manner, and distinctive functions of Ptafr based on its cellular localization point to another dimension needed for pharmacologic selectivity of drugs.
Collapse
Affiliation(s)
- Vikrant K Bhosle
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada; CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada
| | - José Carlos Rivera
- CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada
| | - Tianwei Ellen Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada; CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada; Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Samy Omri
- CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada
| | - Melanie Sanchez
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada; CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada
| | - David Hamel
- CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Pharmacology, University of Montréal, Montréal, QC, Canada
| | - Tang Zhu
- CHU Sainte Justine Hospital Research Centre, University of Montréal , Montréal, QC, Canada
| | - Raphael Rouget
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada; CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada
| | - Areej Al Rabea
- Experimental Surgery, Montreal General Hospital, McGill University , Montréal, QC, Canada
| | - Xin Hou
- CHU Sainte Justine Hospital Research Centre, University of Montréal , Montréal, QC, Canada
| | - Isabelle Lahaie
- CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Sylvain Chemtob
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada; CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada; Department of Pharmacology, University of Montréal, Montréal, QC, Canada; Departments of Pediatrics and Ophthalmology, Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| |
Collapse
|
18
|
Fas-Associated Factor 1 Negatively Regulates the Antiviral Immune Response by Inhibiting Translocation of Interferon Regulatory Factor 3 to the Nucleus. Mol Cell Biol 2016; 36:1136-51. [PMID: 26811330 PMCID: PMC4800795 DOI: 10.1128/mcb.00744-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/16/2016] [Indexed: 01/12/2023] Open
Abstract
This study is designed to examine the cellular functions of human Fas-associated factor 1 (FAF1) containing multiple ubiquitin-related domains. Microarray analyses revealed that interferon-stimulated genes related to the antiviral response are significantly increased in FAF1-knockdown HeLa cells. Silencing FAF1 enhanced the poly(I·C)- and respiratory syncytial virus (RSV)-induced production of type I interferons (IFNs), the target genes of interferon regulator factor 3 (IRF3). IRF3 is a key transcription factor in IFN-β signaling responsible for the host innate immune response. This study also found that FAF1 and IRF3 physically associate with IPO5/importin-β3 and that overexpression of FAF1 reduces the interaction between IRF3 and IPO5/importin-β3. These findings suggest that FAF1 negatively regulates IRF3-mediated IFN-β production and the antiviral innate immune response by regulating nuclear translocation of IRF3. We conclude that FAF1 plays a novel role in negatively regulating virus-induced IFN-β production and the antiviral response by inhibiting the translocation of active, phosphorylated IRF3 from the cytosol to the nucleus.
Collapse
|
19
|
Genome-Wide Association Study of Peripheral Arterial Disease in a Japanese Population. PLoS One 2015; 10:e0139262. [PMID: 26488411 PMCID: PMC4619060 DOI: 10.1371/journal.pone.0139262] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/10/2015] [Indexed: 02/07/2023] Open
Abstract
Characteristics of peripheral arterial disease (PAD) are the occlusion or stenosis of multiple vessel sites caused mainly by atherosclerosis and chronic lower limb ischemia. To identify PAD susceptible loci, we conducted a genome-wide association study (GWAS) with 785 cases and 3,383 controls in a Japanese population using 431,666 single nucleotide polymorphisms (SNP). After staged analyses including a total of 3,164 cases and 20,134 controls, we identified 3 novel PAD susceptibility loci at IPO5/RAP2A, EDNRA and HDAC9 with genome wide significance (combined P = 6.8 x 10−14, 5.3 x 10−9 and 8.8 x 10−8, respectively). Fine-mapping at the IPO5/RAP2A locus revealed that rs9584669 conferred risk of PAD. Luciferase assay showed that the risk allele at this locus reduced expression levels of IPO5. To our knowledge, these are the first genetic risk factors for PAD.
Collapse
|
20
|
Bao J, Tang C, Li J, Zhang Y, Bhetwal BP, Zheng H, Yan W. RAN-binding protein 9 is involved in alternative splicing and is critical for male germ cell development and male fertility. PLoS Genet 2014; 10:e1004825. [PMID: 25474150 PMCID: PMC4256260 DOI: 10.1371/journal.pgen.1004825] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/14/2014] [Indexed: 01/09/2023] Open
Abstract
As a member of the large Ran-binding protein family, Ran-binding protein 9 (RANBP9) has been suggested to play a critical role in diverse cellular functions in somatic cell lineages in vitro, and this is further supported by the neonatal lethality phenotype in Ranbp9 global knockout mice. However, the exact molecular actions of RANBP9 remain largely unknown. By inactivation of Ranbp9 specifically in testicular somatic and spermatogenic cells, we discovered that Ranbp9 was dispensable for Sertoli cell development and functions, but critical for male germ cell development and male fertility. RIP-Seq and proteomic analyses revealed that RANBP9 was associated with multiple key splicing factors and directly targeted >2,300 mRNAs in spermatocytes and round spermatids. Many of the RANBP9 target and non-target mRNAs either displayed aberrant splicing patterns or were dysregulated in the absence of Ranbp9. Our data uncovered a novel role of Ranbp9 in regulating alternative splicing in spermatogenic cells, which is critical for normal spermatogenesis and male fertility. Male fertility depends on successful production of functional sperm. Sperm are produced through spermatogenesis, a process of male germ cell proliferation and differentiation in the testis. Most of the genes involved in spermatogenesis are transcribed and processed into multiple isoforms, which are mainly achieved through alternative splicing. The testis-specific transcriptome, characterized by male germ cell-specific alternative splicing patterns, has been shown to be essential for successful spermatogenesis. However, how these male germ cells-specific alternative splicing events are regulated remains largely unknown. Here, we report that RANBP9 is involved in alternative splicing events that are critical for male germ cell development, and dysfunction of RANBP9 leads to disrupted spermatogenesis and compromised male fertility.
Collapse
Affiliation(s)
- Jianqiang Bao
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada, United States of America
| | - Chong Tang
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada, United States of America
| | - Jiachen Li
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada, United States of America
| | - Ying Zhang
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada, United States of America
| | - Bhupal P. Bhetwal
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada, United States of America
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada, United States of America
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada, United States of America
- * E-mail:
| |
Collapse
|
21
|
Furuta M, Kose S, Kehlenbach RH, Imamoto N. Analysis of Nucleocytoplasmic Transport in Digitonin-Permeabilized Cells Under Different Cellular Conditions. Methods Cell Biol 2014; 122:331-52. [DOI: 10.1016/b978-0-12-417160-2.00015-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Structural basis for the nuclear export activity of Importin13. EMBO J 2013; 32:899-913. [PMID: 23435562 DOI: 10.1038/emboj.2013.29] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/28/2013] [Indexed: 02/05/2023] Open
Abstract
Importin13 (Imp13) is a bidirectional karyopherin that can mediate both import and export of cargoes. Imp13 recognizes several import cargoes, which include the exon junction complex components Mago-Y14 and the E2 SUMO-conjugating enzyme Ubc9, and one known export cargo, the translation initiation factor 1A (eIF1A). To understand how Imp13 can perform double duty, we determined the 3.6-Å crystal structure of Imp13 in complex with RanGTP and with eIF1A. eIF1A binds at the inner surface of the Imp13 C-terminal arch adjacent and concomitantly to RanGTP illustrating how eIF1A can be exported by Imp13. Moreover, the 3.0-Å structure of Imp13 in its unbound state reveals the existence of an open conformation in the cytoplasm that explains export cargo release and completes the export branch of the Imp13 pathway. Finally, we demonstrate that Imp13 is able to bind and export eIF1A in vivo and that its function is essential.
Collapse
|
23
|
Hodas JJL, Nehring A, Höche N, Sweredoski MJ, Pielot R, Hess S, Tirrell DA, Dieterich DC, Schuman EM. Dopaminergic modulation of the hippocampal neuropil proteome identified by bioorthogonal noncanonical amino acid tagging (BONCAT). Proteomics 2012; 12:2464-76. [PMID: 22744909 DOI: 10.1002/pmic.201200112] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Local protein synthesis and its activity-dependent modulation via dopamine receptor stimulation play an important role in synaptic plasticity - allowing synapses to respond dynamically to changes in their activity patterns. We describe here the metabolic labeling, enrichment, and MS-based identification of candidate proteins specifically translated in intact hippocampal neuropil sections upon treatment with the selective D1/D5 receptor agonist SKF81297. Using the noncanonical amino acid azidohomoalanine and click chemistry, we identified over 300 newly synthesized proteins specific to dendrites and axons. Candidates specific for the SKF81297-treated samples were predominantly involved in protein synthesis and synapse-specific functions. Furthermore, we demonstrate a dendrite-specific increase in proteins synthesis upon application of SKF81297. This study provides the first snapshot in the dynamics of the dopaminergic hippocampal neuropil proteome.
Collapse
Affiliation(s)
- Jennifer J L Hodas
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chao HW, Lai YT, Lu YL, Lin CL, Mai W, Huang YS. NMDAR signaling facilitates the IPO5-mediated nuclear import of CPEB3. Nucleic Acids Res 2012; 40:8484-98. [PMID: 22730302 PMCID: PMC3458550 DOI: 10.1093/nar/gks598] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cytoplasmic polyadenylation element-binding protein (CPEB)3 is a nucleocytoplasm-shuttling RNA-binding protein and predominantly resides in the cytoplasm where it represses target RNA translation. When translocated into the nucleus, CPEB3 binds to Stat5b and downregulates Stat5b-dependent transcription. In neurons, the activation of N-methyl-d-aspartate receptors (NMDARs) accumulates CPEB3 in the nucleus and redistributes CPEB3 in the nucleocytoplasmic compartments to control gene expression. Nonetheless, it is unclear which karyopherin drives the nuclear import of CPEB3 and which transport direction is most affected by NMDA stimulation to increase the nuclear pool of CPEB3. Here, we have identified that the karyopherins, IPO5 and CRM1, facilitate CPEB3 translocation by binding to RRM1 and a leucine-containing motif of CPEB3, respectively. NMDAR signaling increases RanBP1 expression and reduces the level of cytoplasmic GTP-bound Ran. These changes enhance CPEB3-IPO5 interaction, which consequently accelerates the nuclear import of CPEB3. This study uncovers a novel NMDA-regulated import pathway to facilitate the nuclear translocation of CPEB3.
Collapse
Affiliation(s)
- Hsu-Wen Chao
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | |
Collapse
|
25
|
Venuti A, Paolini F, Nasir L, Corteggio A, Roperto S, Campo MS, Borzacchiello G. Papillomavirus E5: the smallest oncoprotein with many functions. Mol Cancer 2011; 10:140. [PMID: 22078316 PMCID: PMC3248866 DOI: 10.1186/1476-4598-10-140] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/11/2011] [Indexed: 12/11/2022] Open
Abstract
Papillomaviruses (PVs) are established agents of human and animal cancers. They infect cutaneous and mucous epithelia. High Risk (HR) Human PVs (HPVs) are consistently associated with cancer of the uterine cervix, but are also involved in the etiopathogenesis of other cancer types. The early oncoproteins of PVs: E5, E6 and E7 are known to contribute to tumour progression. While the oncogenic activities of E6 and E7 are well characterised, the role of E5 is still rather nebulous. The widespread causal association of PVs with cancer makes their study worthwhile not only in humans but also in animal model systems. The Bovine PV (BPV) system has been the most useful animal model in understanding the oncogenic potential of PVs due to the pivotal role of its E5 oncoprotein in cell transformation. This review will highlight the differences between HPV-16 E5 (16E5) and E5 from other PVs, primarily from BPV. It will discuss the targeting of E5 as a possible therapeutic agent.
Collapse
Affiliation(s)
- Aldo Venuti
- Department of Pathology and Animal Health, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Hutchinson EC, Orr OE, Man Liu S, Engelhardt OG, Fodor E. Characterization of the interaction between the influenza A virus polymerase subunit PB1 and the host nuclear import factor Ran-binding protein 5. J Gen Virol 2011; 92:1859-1869. [DOI: 10.1099/vir.0.032813-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The influenza A virus RNA polymerase is a heterotrimer that transcribes and replicates the viral genome in the cell nucleus. Newly synthesized RNA polymerase subunits must therefore be imported into the nucleus during an infection. While various models have been proposed for this process, the consensus is that the polymerase basic protein PB1 and polymerase acidic protein PA subunits form a dimer in the cytoplasm and are transported into the nucleus by the beta-importin Ran-binding protein 5 (RanBP5), with the PB2 subunit imported separately to complete the trimeric complex. In this study, we characterized the interaction of PB1 with RanBP5 further and assessed its importance for viral growth. In particular, we found that the N-terminal region of PB1 mediates its binding to RanBP5 and that basic residues in a nuclear localization signal are required for RanBP5 binding. Mutating these basic residues to alanines does not prevent PB1 forming a dimer with PA, but does reduce RanBP5 binding. RanBP5-binding mutations reduce, though do not entirely prevent, the nuclear accumulation of PB1. Furthermore, mutations affecting RanBP5 binding are incompatible with or severely attenuate viral growth, providing further support for a key role for RanBP5 in the influenza A virus life cycle.
Collapse
Affiliation(s)
| | - Olivia E. Orr
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Sai Man Liu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Importin β-type nuclear transport receptors have distinct binding affinities for Ran-GTP. Biochem Biophys Res Commun 2011; 406:383-8. [PMID: 21329658 DOI: 10.1016/j.bbrc.2011.02.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 02/11/2011] [Indexed: 01/25/2023]
Abstract
Cargos destined to enter or leave the cell nucleus are typically transported by receptors of the importin β family to pass the nuclear pore complex. The yeast Saccharomyces cerevisiae comprises 14 members of this protein family, which can be divided in importins and exportins. The Ran GTPase regulates the association and dissociation of receptors and cargos as well as the transport direction through the nuclear pore. All receptors bind to Ran exclusively in its GTP-bound state and this event is restricted to the nuclear compartment. We determined the Ran-GTP binding properties of all yeast transport receptors by biosensor measurements and observed that the affinity of importins for Ran-GTP differs significantly. The dissociation constants range from 230 pM to 270 nM, which is mostly based on a variability of the off-rate constants. The divergent affinity of importins for Ran-GTP suggests the existence of a novel mode of nucleocytoplasmic transport regulation. Furthermore, the cellular concentration of β-receptors and of other Ran-binding proteins was determined. We found that the number of β-receptors altogether about equals the amounts of yeast Ran, but Ran-GTP is not limiting in the nucleus. The implications of our results for nucleocytoplasmic transport mechanisms are discussed.
Collapse
|
28
|
Lott K, Bhardwaj A, Mitrousis G, Pante N, Cingolani G. The importin beta binding domain modulates the avidity of importin beta for the nuclear pore complex. J Biol Chem 2010; 285:13769-80. [PMID: 20197273 DOI: 10.1074/jbc.m109.095760] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Importin beta mediates active passage of cellular substrates through the nuclear pore complex (NPC). Adaptors such as importin alpha and snurportin associate with importin beta via an importin beta binding (IBB) domain. The intrinsic structural flexibility of importin beta allows its concerted interactions with IBB domains, phenylalanine-glycine nucleoporins, and the GTPase Ran during transport. In this paper, we provide evidence that the nature of the IBB domain modulates the affinity of the import complex for the NPC. In permeabilized cells, importin beta imports a cargo fused to the snurportin IBB (sIBB) with approximately 70% reduced energy requirement as compared with the classical importin alpha IBB. At the molecular level, this is explained by approximately 200-fold reduced affinity of importin beta for Nup62, when bound to the sIBB. Consistently, in vivo, the importin beta.sIBB complex has greatly reduced persistence inside the central channel of the NPC. We propose that by controlling the degree of strain in the tertiary structure of importin beta, the IBB domain modulates the affinity of the import complex for nucleoporins, thus dictating its persistence inside the NPC.
Collapse
Affiliation(s)
- Kaylen Lott
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
29
|
Krawczyk E, Suprynowicz FA, Sudarshan SR, Schlegel R. Membrane orientation of the human papillomavirus type 16 E5 oncoprotein. J Virol 2010; 84:1696-703. [PMID: 19955310 PMCID: PMC2812368 DOI: 10.1128/jvi.01968-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 11/20/2009] [Indexed: 11/20/2022] Open
Abstract
The E5 protein of human papillomavirus type 16 is a small, hydrophobic protein that localizes predominantly to membranes of the endoplasmic reticulum (ER). To define the orientation of E5 in these membranes, we employed a differential, detergent permeabilization technique that makes use of the ability of low concentrations of digitonin to selectively permeabilize the plasma membrane and saponin to permeabilize all cellular membranes. We then generated a biologically active E5 protein that was epitope tagged at both its N and C termini and determined the accessibility of these termini to antibodies in the presence and absence of detergents. In both COS cells and human ectocervical cells, the C terminus of E5 was exposed to the cytoplasm, whereas the N terminus was restricted to the lumen of the ER. Finally, the deletion of the E5 third transmembrane domain (and terminal hydrophilic amino acids) resulted in a protein with its C terminus in the ER lumen. Taken together, these topology findings are compatible with a model of E5 being a 3-pass transmembrane protein and with studies demonstrating its C terminus interacting with cytoplasmic proteins.
Collapse
Affiliation(s)
- Ewa Krawczyk
- Department of Pathology, Georgetown University Medical School, 3900 Reservoir Road NW, Washington, DC 20057
| | - Frank A. Suprynowicz
- Department of Pathology, Georgetown University Medical School, 3900 Reservoir Road NW, Washington, DC 20057
| | - Sawali R. Sudarshan
- Department of Pathology, Georgetown University Medical School, 3900 Reservoir Road NW, Washington, DC 20057
| | - Richard Schlegel
- Department of Pathology, Georgetown University Medical School, 3900 Reservoir Road NW, Washington, DC 20057
| |
Collapse
|
30
|
Bradel-Tretheway BG, Kelley Z, Chakraborty-Sett S, Takimoto T, Kim B, Dewhurst S. The human H5N1 influenza A virus polymerase complex is active in vitro over a broad range of temperatures, in contrast to the WSN complex, and this property can be attributed to the PB2 subunit. J Gen Virol 2009; 89:2923-2932. [PMID: 19008377 PMCID: PMC3067610 DOI: 10.1099/vir.0.2008/006254-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Influenza A virus (IAV) replicates in the upper respiratory tract of humans at 33 degrees C and in the intestinal tract of birds at close to 41 degrees C. The viral RNA polymerase complex comprises three subunits (PA, PB1 and PB2) and plays an important role in host adaptation. We therefore developed an in vitro system to examine the temperature sensitivity of IAV RNA polymerase complexes from different origins. Complexes were prepared from human lung epithelial cells (A549) using a novel adenoviral expression system. Affinity-purified complexes were generated that contained either all three subunits (PA/PB1/PB2) from the A/Viet/1203/04 H5N1 virus (H/H/H) or the A/WSN/33 H1N1 strain (W/W/W). We also prepared chimeric complexes in which the PB2 subunit was exchanged (H/H/W, W/W/H) or substituted with an avian PB2 from the A/chicken/Nanchang/3-120/01 H3N2 strain (W/W/N). All complexes were functional in transcription, cap-binding and endonucleolytic activity. Complexes containing the H5N1 or Nanchang PB2 protein retained transcriptional activity over a broad temperature range (30-42 degrees C). In contrast, complexes containing the WSN PB2 protein lost activity at elevated temperatures (39 degrees C or higher). The E627K mutation in the avian PB2 was not required for this effect. Finally, the avian PB2 subunit was shown to confer enhanced stability to the WSN 3P complex. These results show that PB2 plays an important role in regulating the temperature optimum for IAV RNA polymerase activity, possibly due to effects on the functional stability of the 3P complex.
Collapse
Affiliation(s)
- Birgit G Bradel-Tretheway
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Z Kelley
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Shikha Chakraborty-Sett
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Toru Takimoto
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Baek Kim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
31
|
Krawczyk E, Hanover JA, Schlegel R, Suprynowicz FA. Karyopherin beta3: a new cellular target for the HPV-16 E5 oncoprotein. Biochem Biophys Res Commun 2008; 371:684-8. [PMID: 18455505 PMCID: PMC2773212 DOI: 10.1016/j.bbrc.2008.04.122] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 04/19/2008] [Indexed: 01/13/2023]
Abstract
Epidemiological and experimental studies have shown that high-risk human papillomaviruses (HPVs) are the causative agents of cervical cancer worldwide, and that HPV-16 is associated with more than half of these cases. In addition to the well-characterized E6 and E7 oncoproteins of HPV-16, recent evidence increasingly has implicated the HPV-16 E5 protein (16E5) as an important mediator of oncogenic transformation. Since 16E5 has no known intrinsic enzymatic activity, its effects on infected cells are most likely mediated by interactions with various cellular proteins and/or its documented association with lipid rafts. In the present study, we describe a new cellular target that binds to 16E5 in COS cells and in stable human ectocervical cell lines. This target is karyopherin beta3, a member of the nuclear import receptor family with critical roles in the nuclear import of ribosomal proteins and in the secretory pathway.
Collapse
Affiliation(s)
- Ewa Krawczyk
- Department of Pathology, Georgetown University Medical School, 3900, Reservoir Road NW, Washington, DC 20057, USA
| | - John A. Hanover
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Schlegel
- Department of Pathology, Georgetown University Medical School, 3900, Reservoir Road NW, Washington, DC 20057, USA
| | - Frank A. Suprynowicz
- Department of Pathology, Georgetown University Medical School, 3900, Reservoir Road NW, Washington, DC 20057, USA
| |
Collapse
|
32
|
Sorokin AV, Kim ER, Ovchinnikov LP. Nucleocytoplasmic transport of proteins. BIOCHEMISTRY (MOSCOW) 2008; 72:1439-57. [PMID: 18282135 DOI: 10.1134/s0006297907130032] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In eukaryotic cells, the movement of macromolecules between the nucleus and cytoplasm occurs through the nuclear pore complex (NPC)--a large protein complex spanning the nuclear envelope. The nuclear transport of proteins is usually mediated by a family of transport receptors known as karyopherins. Karyopherins bind to their cargoes via recognition of nuclear localization signal (NLS) for nuclear import or nuclear export signal (NES) for export to form a transport complex. Its transport through NPC is facilitated by transient interactions between the karyopherins and NPC components. The interactions of karyopherins with their cargoes are regulated by GTPase Ran. In the current review, we describe the NPC structure, NLS, and NES, as well as the model of classic Ran-dependent transport, with special emphasis on existing alternative mechanisms; we also propose a classification of the basic mechanisms of protein transport regulation.
Collapse
Affiliation(s)
- A V Sorokin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | | | | |
Collapse
|
33
|
Hogarth CA, Jans DA, Loveland KL. Subcellular distribution of importins correlates with germ cell maturation. Dev Dyn 2007; 236:2311-20. [PMID: 17654710 DOI: 10.1002/dvdy.21238] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Importin proteins regulate access to the nucleus by recognizing and transporting distinct cargo proteins. Building on studies in Drosophila and Caenorhabditis elegans, we hypothesized that regulated expression and subcellular localization of specific importins may be linked to mammalian gonadal differentiation. We identified distinct developmental and cellular localization patterns for importins beta1, alpha3, alpha4 and RanBP5 (importin beta3) in fetal and postnatal murine testes using Western blotting and immunohistochemistry. Importin beta1 protein is detected in selected germ and somatic cells in fetal gonads, with a striking perinuclear staining evident from embryonic day (E) 14.5 within testicular gonocytes. RanBP5 exhibits age- and gender-specific subcellular localization within fetal gonads. At E12.5, RanBP5 protein is cytoplasmic in gonocytes but predominantly nuclear in oogonia, but by E14.5 RanBP5 appears nuclear in gonocytes and cytoplasmic in oogonia. In postnatal testes, importin alpha3 and alpha4 in spermatocytes, spermatids, and Sertoli cells display cytoplasmic and nuclear localization, respectively.
Collapse
Affiliation(s)
- Cathryn A Hogarth
- The Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
34
|
Deng T, Engelhardt OG, Thomas B, Akoulitchev AV, Brownlee GG, Fodor E. Role of ran binding protein 5 in nuclear import and assembly of the influenza virus RNA polymerase complex. J Virol 2006; 80:11911-9. [PMID: 17005651 PMCID: PMC1676300 DOI: 10.1128/jvi.01565-06] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 09/21/2006] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus RNA-dependent RNA polymerase is a heterotrimeric complex of polymerase basic protein 1 (PB1), PB2, and polymerase acidic protein (PA) subunits. It performs transcription and replication of the viral RNA genome in the nucleus of infected cells. We have identified a nuclear import factor, Ran binding protein 5 (RanBP5), also known as karyopherin beta3, importin beta3, or importin 5, as an interactor of the PB1 subunit. RanBP5 interacted with either PB1 alone or with a PB1-PA dimer but not with a PB1-PB2 dimer or the trimeric complex. The interaction between RanBP5 and PB1-PA was disrupted by RanGTP in vitro, allowing PB2 to bind to the PB1-PA dimer to form a functional trimeric RNA polymerase complex. We propose a model in which RanBP5 acts as an import factor for the newly synthesized polymerase by targeting the PB1-PA dimer to the nucleus. In agreement with this model, small interfering RNA (siRNA)-mediated knock-down of RanBP5 inhibited the nuclear accumulation of the PB1-PA dimer. Moreover, siRNA knock-down of RanBP5 resulted in the delayed accumulation of viral RNAs in infected cells, confirming that RanBP5 plays a biological role during the influenza virus life cycle.
Collapse
Affiliation(s)
- Tao Deng
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | | | | | | | |
Collapse
|
35
|
Krichevsky A, Kozlovsky SV, Gafni Y, Citovsky V. Nuclear import and export of plant virus proteins and genomes. MOLECULAR PLANT PATHOLOGY 2006; 7:131-146. [PMID: 20507434 DOI: 10.1111/j.1364-3703.2006.00321.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Nuclear import and export are crucial processes for any eukaryotic cell, as they govern substrate exchange between the nucleus and the cytoplasm. Proteins involved in the nuclear transport network are generally conserved among eukaryotes, from yeast and fungi to animals and plants. Various pathogens, including some plant viruses, need to enter the host nucleus to gain access to its replication machinery or to integrate their DNA into the host genome; the newly replicated viral genomes then need to exit the nucleus to spread between host cells. To gain the ability to enter and exit the nucleus, these pathogens encode proteins that recognize cellular nuclear transport receptors and utilize the host's nuclear import and export pathways. Here, we review and discuss our current knowledge about the molecular mechanisms by which plant viruses find their way into and out of the host cell nucleus.
Collapse
Affiliation(s)
- Alexander Krichevsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | | | | | | |
Collapse
|
36
|
Loveland KL, Hogarth C, Szczepny A, Prabhu SM, Jans DA. Expression of nuclear transport importins beta 1 and beta 3 is regulated during rodent spermatogenesis. Biol Reprod 2005; 74:67-74. [PMID: 16192402 DOI: 10.1095/biolreprod.105.042341] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Spermatogenic differentiation requires progressive gene expression changes, and proteins required for this must be transported into the nucleus. Many of these contain a nuclear localization signal and are likely to be transported by importin protein family members, each of which recognizes and transports distinct cargo proteins. We hypothesized that importins, as modulators of protein nuclear access, would display distinct expression profiles during spermatogenesis, indicating their potential to regulate key steps in cellular differentiation. This was tested throughout testicular development in rodents. Real-time PCR analysis of postnatal mouse testes revealed changing expression levels of Knpb1 (encoding importin beta 1) and Ranbp5 (encoding beta 3) mRNAs, with Knpb1 highest at 26 days postpartum and Ranbp5 highest in Day 26 and adult testis. Their distinctive cellular expression patterns visualized using in situ hybridization and immunohistochemistry were identical in mouse and rat testes where examined. Within the seminiferous epithelium, Knpb1 mRNA and importin beta1 protein were detected within mitotic Sertoli and germ cells during fetal and early postnatal development, becoming restricted to spermatogonia and spermatocytes in adulthood. Importin beta 3 protein in fetal germ cells displayed a striking difference in intracellular localization between male and female gonads. In adult testes, Ranbp5 mRNA was detected in round spermatids and importin beta 3 protein in elongating spermatids. This is the first comprehensive in situ demonstration of developmentally regulated synthesis of nuclear transport components. The contrasting expression patterns of importins beta 1 and 3 identify them as candidates for regulating nuclear access of factors required for developmental switches.
Collapse
Affiliation(s)
- Kate L Loveland
- Monash Institute of Medical Research, Monash University, Melbourne, Victoria 3168, Australia.
| | | | | | | | | |
Collapse
|
37
|
Heese K, Yamada T, Akatsu H, Yamamoto T, Kosaka K, Nagai Y, Sawada T. Characterizing the new transcription regulator protein p60TRP. J Cell Biochem 2005; 91:1030-42. [PMID: 15034937 DOI: 10.1002/jcb.20010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Active cell death ('apoptosis' or 'programmed cell death') is essential in the development and homeostasis of multicellular organisms and abnormal inhibition of apoptosis is an indicator of cancer and autoimmune diseases, whereas excessive cell death might be implicated in neurodegenerative disorders such as Alzheimer's disease (AD). Using bioinformatics-, Western-blotting-, yeast-two-hybrid-system-, polymerase chain reaction (PCR)-, and fluorescence microscopy-analyses, we demonstrate here that the neuroprotective protein p60TRP (p60-transcription-regulator-protein) is a basic helix-loop-helix (bHLH) domain-containing member of a new protein family that interacts with the Ran-binding-protein-5 (RanBP5) and the protein-phosphatase-2A (PP2A). The additional findings of its influence on NNT1 and p48ZnF (new-neurotrophin-1, p48-zinc-finger-protein)-signaling and its down-regulation in the brain of AD subjects point to a possible pivotal role of p60TRP in the control of cellular aging and survival.
Collapse
Affiliation(s)
- K Heese
- BF Research Institute, c/o National Cardiovascular Center, 5-7-1 Fujishirodai, Suita, Osaka 565-0873, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Ross AE, Vuica M, Desiderio S. Overlapping signals for protein degradation and nuclear localization define a role for intrinsic RAG-2 nuclear uptake in dividing cells. Mol Cell Biol 2003; 23:5308-19. [PMID: 12861017 PMCID: PMC165718 DOI: 10.1128/mcb.23.15.5308-5319.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the recombinase proteins RAG-1 and RAG-2 is discordant: while RAG-1 is relatively long lived, RAG-2 is degraded periodically at the G(1)-S transition. Destruction of RAG-2 is mediated by a conserved interval in the recombination-dispensable region. The need for RAG-2 to reaccumulate in the nucleus at each cell division suggested the existence of an intrinsic RAG-2 nuclear localization signal (NLS). RAG-1 or RAG-2, expressed individually, is a nuclear protein. A screen for proteins that bind the recombination-dispensable region of RAG-2 identified the nuclear transport protein Importin 5. Mutation of residues 499 to 508 in RAG-2 abolished Importin 5 binding, nuclear accumulation, and periodic degradation of RAG-2. The Importin 5 binding site overlaps an NLS, defined by mutagenesis. RAG-1 rescued the localization of degradation-defective, RAG-2 NLS mutants; this required an intact RAG-1 NLS. Mutations in RAG-2 that abolish intrinsic nuclear accumulation but spare periodic degradation impaired recombination in cycling cells; induction of quiescence restored recombination to wild-type levels. Recombination defects were correlated with a cell cycle-dependent defect in the ability of RAG-1 to rescue localization of the RAG-2 mutants. These results suggest that the intrinsic RAG-2 NLS functions in the nuclear uptake of RAG-2 following its reexpression in cycling cells.
Collapse
Affiliation(s)
- Ashley E Ross
- Department of Molecular Biology and Genetics and Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
39
|
Braunwarth A, Fromont-Racine M, Legrain P, Bischoff FR, Gerstberger T, Hurt E, Kunzler M. Identification and characterization of a novel RanGTP-binding protein in the yeast Saccharomyces cerevisiae. J Biol Chem 2003; 278:15397-405. [PMID: 12578832 DOI: 10.1074/jbc.m210630200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small Ras-like GTPase Ran plays an essential role in the transport of macromolecules in and out of the nucleus and has been implicated in spindle (1,2 ) and nuclear envelope formation (3,4 ) during mitosis in higher eukaryotes. We identified Saccharomyces cerevisiae open reading frame YGL164c encoding a novel RanGTP-binding protein, termed Yrb30p. The protein competes with yeast RanBP1 (Yrb1p) for binding to the GTP-bound form of yeast Ran (Gsp1p) and is, like Yrb1p, able to form trimeric complexes with RanGTP and some of the karyopherins. In contrast to Yrb1p, Yrb30p does not coactivate but inhibits RanGAP1(Rna1p)-mediated GTP hydrolysis on Ran, like the karyopherins. At steady state, Yrb30p localizes exclusively to the cytoplasm, but the presence of a functional nuclear export signal and the localization of truncated forms of Yrb30p suggest that the protein shuttles between nucleus and cytoplasm and is exported via two alternative pathways, dependent on the nuclear export receptor Xpo1p/Crm1p and on RanGTP binding. Whereas overproduction of the full-length protein and complete deletion of the open reading frame reveal no obvious phenotype, overproduction of C-terminally truncated forms of the protein inhibits yeast vegetative growth. Based on these results and the exclusive conservation of the protein in the fungal kingdom, we hypothesize that Yrb30p represents a novel modulator of the Ran GTPase switch related to fungal lifestyle.
Collapse
Affiliation(s)
- Andreas Braunwarth
- Biochemie-Zentrum Heidelberg, Ruprecht-Karls-Universität, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Anway MD, Li Y, Ravindranath N, Dym M, Griswold MD. Expression of testicular germ cell genes identified by differential display analysis. JOURNAL OF ANDROLOGY 2003; 24:173-84. [PMID: 12634303 DOI: 10.1002/j.1939-4640.2003.tb02660.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Using differential display reverse transcriptase-polymerase chain reaction (DDRT-PCR) we identified transcripts encoding for the RNA helicase mDEAH9, Ran binding protein 5 (RanBP5), and 3 novel complementary DNAs designated GC3, GC12, and GC14 in developing testicular germ cells. Sources of RNA for the initial DDRT-PCR screen were purified mouse type A spermatogonia, adult mouse wild-type testis, and W/W(v) mutant mouse testis. We identified cDNA fragments for mDEAH9, RanBP5, GC3, GC12, and GC14 in testis and type A spermatogonia samples from wild-type mice, but not in samples from the W/W(v) mouse testis. These same transcripts were absent in Northern blots of testis RNA from mice treated with busulfan 30 days prior, but were present in testis RNA from wild-type mice at 5, 15, 25, and 40 days of age. The mDEAH9 gene was expressed in many tissues, whereas RanBP5 and GC12 genes were expressed predominantly in the testis with much lower expression in other tissues. The expression of GC3 and GC14 were limited to the testis as evidenced by Northern blot and RT-PCR analyses. The mDEAH9 transcript was not detected in cultured interstitial cells but was found at low levels in cultured immature Sertoli cells, whereas the RanBP5, GC3, GC12, and GC14 transcripts were not detected in either cultured testicular interstitial cells or cultured Sertoli cells. RT-PCR analyses of isolated spermatogonia, pachytene spermatocytes, and round spermatids revealed that mDEAH9, RanBP5, GC3, GC12, and GC14 genes were expressed in all 3 cellular populations. In situ hybridization analyses of testis samples from 40-day-old mice localized expression of mDEAH9, RanBP5, GC3, GC12, and GC14 to the seminiferous tubules. RanBP5 expression appeared to be regulated during the cycle of the seminiferous epithelium, with the highest expression in stages III through VII. Expression of GC14 was greatest in the meiotic germ cell populations.
Collapse
Affiliation(s)
- Matthew D Anway
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | | | | | | | | |
Collapse
|
41
|
Plafker K, Macara IG. Fluorescence resonance energy transfer biosensors that detect Ran conformational changes and a Ran x GDP-importin-beta -RanBP1 complex in vitro and in intact cells. J Biol Chem 2002; 277:30121-7. [PMID: 12034733 DOI: 10.1074/jbc.m203006200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ran GTPase plays a central role in nucleocytoplasmic transport. Association of Ran x GTP with transport carriers (karyopherins) triggers the loading/unloading of export or import cargo, respectively. The C-terminal tail of Ran x GTP is deployed in an extended conformation when associated with a Ran binding domain or importins. To monitor tail orientation, a Ran-GFP fusion was labeled with the fluorophore Alexa546. Fluorescence resonance energy transfer (FRET) occurs efficiently between the green fluorescent protein (GFP) and Alexa546 for Ran x GDP and Ran x GTP, suggesting that the tail is tethered in both states. However, Ran x GTP complexes with importin-beta, RanBP1, and Crm1 all show reduced FRET consistent with tail extension. Displacement of the C-terminal tail of Ran by karyopherins may be a general mechanism to facilitate RanBP1 binding. A Ran x GDP-RanBP1-importin-beta complex also displayed a low FRET signal. To detect this complex in vivo, a bipartite biosensor consisting of Ran-Alexa546 plus GST-GFP-RanBP1, was co-injected into the cytoplasm of cells. The Ran redistributed predominantly to the nucleus, and RanBP1 remained cytoplasmic. Nonetheless, a robust cytoplasmic FRET signal was detectable, which suggests that a significant fraction of cytoplasmic Ran.GDP may exist in a ternary complex with RanBP1 and importins.
Collapse
Affiliation(s)
- Kendra Plafker
- Center for Cell Signaling and the Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908-0577, USA
| | | |
Collapse
|
42
|
Romanelli MG, Morandi C. Importin alpha binds to an unusual bipartite nuclear localization signal in the heterogeneous ribonucleoprotein type I. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2727-34. [PMID: 12047381 DOI: 10.1046/j.1432-1033.2002.02942.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The heterogeneous nuclear ribonucleoprotein (hnRNP) type I, a modulator of alternative splicing, localizes in the nucleoplasm of mammalian cells and in a discrete perinucleolar structure. HnRNP I contains a novel type of bipartite nuclear localization signal (NLS) at the N-terminus of the protein that we have previously named nuclear determinant localization type I (NLD-I). Recently, a neural counterpart of hnRNP I has been identified that contains a putative NLS with two strings of basic amino acids separated by a spacer of 30 residues. In the present study we show that the neural hnRNP I NLS is necessary and sufficient for nuclear localization and represents a variant of the novel bipartite NLS present in the NLD-I domain. Furthermore, we demonstrate that the NLD-I is transported into the nucleus by cytoplasmic factor(s) with active transport modality. Binding assays using recombinant importin alpha show an interaction with NLD-I similar to that of SV40 large T antigen NLS. Deletion analysis indicates that both stretches of basic residues are necessary for binding to importin alpha. The above experimental results lead to the conclusion that importin alpha acts as cytoplasmic receptor for proteins characterized by a bipartite NLS signal that extends up to 37 residues.
Collapse
Affiliation(s)
- Maria G Romanelli
- Department of Mother and Child, Biology and Genetics, University of Verona, Italy.
| | | |
Collapse
|
43
|
Jäkel S, Mingot JM, Schwarzmaier P, Hartmann E, Görlich D. Importins fulfil a dual function as nuclear import receptors and cytoplasmic chaperones for exposed basic domains. EMBO J 2002; 21:377-86. [PMID: 11823430 PMCID: PMC125346 DOI: 10.1093/emboj/21.3.377] [Citation(s) in RCA: 255] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many nuclear transport pathways are mediated by importin beta-related transport receptors. Here, we identify human importin (Imp) 4b as well as mouse Imp4a, Imp9a and Imp9b as novel family members. Imp4a mediates import of the ribosomal protein (rp) S3a, while Imp9a and Imp9b import rpS7, rpL18a and apparently numerous other substrates. Ribosomal proteins, histones and many other nuclear import substrates are very basic proteins that aggregate easily with cytoplasmic polyanions such as RNA. Imp9 effectively prevents such precipitation of, for example, rpS7 and rpL18a by covering their basic domains. The same applies to Imp4, Imp5, Imp7 and Impbeta and their respective basic import substrates. The Impbeta-Imp7 heterodimer appears specialized for the most basic proteins, such as rpL4, rpL6 and histone H1, and is necessary and sufficient to keep them soluble in a cytoplasmic environment prior to rRNA or DNA binding, respectively. Thus, just as heat shock proteins function as chaperones for exposed hydrophobic patches, importins act as chaperones for exposed basic domains, and we suggest that this represents a major and general cellular function of importins.
Collapse
Affiliation(s)
| | | | | | - Enno Hartmann
- ZMBH, INF 282, D-69120 Heidelberg and
Institut für Biologie der Universität Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany Corresponding author e-mail: S.Jäkel and J.-M.Mingot contributed equally to this work
| | - Dirk Görlich
- ZMBH, INF 282, D-69120 Heidelberg and
Institut für Biologie der Universität Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany Corresponding author e-mail: S.Jäkel and J.-M.Mingot contributed equally to this work
| |
Collapse
|
44
|
Affiliation(s)
- F Ralf Bischoff
- Division for Molecular Biology of Mitosis, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
45
|
Abstract
A defining characteristic of eukaryotic cells is the possession of a nuclear envelope. Transport of macromolecules between the nuclear and cytoplasmic compartments occurs through nuclear pore complexes that span the double membrane of this envelope. The molecular basis for transport has been revealed only within the last few years. The transport mechanism lacks motors and pumps and instead operates by a process of facilitated diffusion of soluble carrier proteins, in which vectoriality is provided by compartment-specific assembly and disassembly of cargo-carrier complexes. The carriers recognize localization signals on the cargo and can bind to pore proteins. They also bind a small GTPase, Ran, whose GTP-bound form is predominantly nuclear. Ran-GTP dissociates import carriers from their cargo and promotes the assembly of export carriers with cargo. The ongoing discovery of numerous carriers, Ran-independent transport mechanisms, and cofactors highlights the complexity of the nuclear transport process. Multiple regulatory mechanisms are also being identified that control cargo-carrier interactions. Circadian rhythms, cell cycle, transcription, RNA processing, and signal transduction are all regulated at the level of nucleocytoplasmic transport. This review focuses on recent discoveries in the field, with an emphasis on the carriers and cofactors involved in transport and on possible mechanisms for movement through the nuclear pores.
Collapse
Affiliation(s)
- I G Macara
- Center for Cell Signaling, University of Virginia, Charlottesville, Virginia 22908-0577, USA.
| |
Collapse
|
46
|
Mohr SE, Dillon ST, Boswell RE. The RNA-binding protein Tsunagi interacts with Mago Nashi to establish polarity and localize oskar mRNA during Drosophila oogenesis. Genes Dev 2001; 15:2886-99. [PMID: 11691839 PMCID: PMC312802 DOI: 10.1101/gad.927001] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2001] [Accepted: 09/12/2001] [Indexed: 11/24/2022]
Abstract
In Drosophila melanogaster, formation of the axes and the primordial germ cells is regulated by interactions between the germ line-derived oocyte and the surrounding somatic follicle cells. This reciprocal signaling results in the asymmetric localization of mRNAs and proteins critical for these oogenic processes. Mago Nashi protein interprets the posterior follicle cell-to-oocyte signal to establish the major axes and to determine the fate of the primordial germ cells. Using the yeast two-hybrid system we have identified an RNA-binding protein, Tsunagi, that interacts with Mago Nashi protein. The proteins coimmunoprecipitate and colocalize, indicating that they form a complex in vivo. Immunolocalization reveals that Tsunagi protein is localized within the posterior oocyte cytoplasm during stages 1-5 and 8-9, and that this localization is dependent on wild-type mago nashi function. When tsunagi function is removed from the germ line, egg chambers develop in which the oocyte nucleus fails to migrate, oskar mRNA is not localized within the posterior pole, and dorsal-ventral pattern abnormalities are observed. These results show that a Mago Nashi-Tsunagi protein complex is required for interpreting the posterior follicle cell-to-oocyte signal to define the major body axes and to localize components necessary for determination of the primordial germ cells.
Collapse
Affiliation(s)
- S E Mohr
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | | | |
Collapse
|
47
|
Depienne C, Mousnier A, Leh H, Le Rouzic E, Dormont D, Benichou S, Dargemont C. Characterization of the nuclear import pathway for HIV-1 integrase. J Biol Chem 2001; 276:18102-7. [PMID: 11278458 DOI: 10.1074/jbc.m009029200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The karyophilic properties of the human immunodeficiency virus, type I (HIV-1) pre-integration complex (PIC) allow the virus to infect non-dividing cells. To better understand the mechanisms responsible for nuclear translocation of the PIC, we investigated nuclear import of HIV-1 integrase (IN), a PIC-associated viral enzyme involved in the integration of the viral genome in the host cell DNA. Accumulation of HIV-1 IN into nuclei of digitonin-permeabilized cells does not result from passive diffusion but rather from an active transport that occurs through the nuclear pore complexes. HIV-1 IN is imported by a saturable mechanism, implying that a limiting cellular factor is responsible for this process. Although IN has been previously proposed to contain classical basic nuclear localization signals, we found that nuclear accumulation of IN does not involve karyopherins alpha, beta1, and beta2-mediated pathways. Neither the non-hydrolyzable GTP analog, guanosine 5'-O-(thiotriphosphate), nor the GTP hydrolysis-deficient Ran mutant, RanQ69L, significantly affects nuclear import of IN, which depends instead on ATP hydrolysis. Therefore these results support the idea that IN import is not mediated by members of the karyopherin beta family. More generally, in vitro nuclear import of IN does not require addition of cytosolic factors, suggesting that cellular factor(s) involved in this active but atypical pathway process probably remain associated with the nuclear compartment or the nuclear pore complexes from permeabilized cells.
Collapse
Affiliation(s)
- C Depienne
- Institut Jacques Monod, Unité Mixte de Recherche 7592, CNRS, Université Paris VI, Université Paris VII, Paris 75251, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Maurer P, Redd M, Solsbacher J, Bischoff FR, Greiner M, Podtelejnikov AV, Mann M, Stade K, Weis K, Schlenstedt G. The nuclear export receptor Xpo1p forms distinct complexes with NES transport substrates and the yeast Ran binding protein 1 (Yrb1p). Mol Biol Cell 2001; 12:539-49. [PMID: 11251069 PMCID: PMC30962 DOI: 10.1091/mbc.12.3.539] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2000] [Revised: 10/18/2000] [Accepted: 01/09/2001] [Indexed: 11/11/2022] Open
Abstract
Xpo1p (Crm1p) is the nuclear export receptor for proteins containing a leucine-rich nuclear export signal (NES). Xpo1p, the NES-containing protein, and GTP-bound Ran form a complex in the nucleus that translocates across the nuclear pore. We have identified Yrb1p as the major Xpo1p-binding protein in Saccharomyces cerevisiae extracts in the presence of GTP-bound Gsp1p (yeast Ran). Yrb1p is cytoplasmic at steady-state but shuttles continuously between the cytoplasm and the nucleus. Nuclear import of Yrb1p is mediated by two separate nuclear targeting signals. Export from the nucleus requires Xpo1p, but Yrb1p does not contain a leucine-rich NES. Instead, the interaction of Yrb1p with Xpo1p is mediated by Gsp1p-GTP. This novel type of export complex requires the acidic C-terminus of Gsp1p, which is dispensable for the binding to importin beta-like transport receptors. A similar complex with Xpo1p and Gsp1p-GTP can be formed by Yrb2p, a relative of Yrb1p predominantly located in the nucleus. Yrb1p also functions as a disassembly factor for NES/Xpo1p/Gsp1p-GTP complexes by displacing the NES protein from Xpo1p/Gsp1p. This Yrb1p/Xpo1p/Gsp1p complex is then completely dissociated after GTP hydrolysis catalyzed by the cytoplasmic GTPase activating protein Rna1p.
Collapse
Affiliation(s)
- P Maurer
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, 66421 Homburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kutay U, Hartmann E, Treichel N, Calado A, Carmo-Fonseca M, Prehn S, Kraft R, Gorlich D, Bischoff FR. Identification of two novel RanGTP-binding proteins belonging to the importin beta superfamily. J Biol Chem 2000; 275:40163-8. [PMID: 11024021 DOI: 10.1074/jbc.m006242200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleo-cytoplasmic transport comprises a large number of distinct pathways, many of which are defined by members of the importin beta superfamily of nuclear transport receptors. These transport receptors all directly interact with RanGTP to modulate the compartment-specific binding of their transport substrates. To identify new members of the importin beta family, we used affinity chromatography on immobilized RanGTP and isolated Ran-binding protein (RanBP) 16 from HeLa cell extracts. RanBP16 and its close human homologue, RanBP17, are distant members of the importin beta family. Like the other members of the transport receptor superfamily, RanBP16 interacts with the nuclear pore complex and is able to enter the nucleus independent of energy and additional nuclear transport receptors.
Collapse
Affiliation(s)
- U Kutay
- Swiss Federal Institute of Technology Zürich, Institute of Biochemistry, 8092 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kataoka N, Yong J, Kim VN, Velazquez F, Perkinson RA, Wang F, Dreyfuss G. Pre-mRNA splicing imprints mRNA in the nucleus with a novel RNA-binding protein that persists in the cytoplasm. Mol Cell 2000; 6:673-82. [PMID: 11030346 DOI: 10.1016/s1097-2765(00)00065-4] [Citation(s) in RCA: 272] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We describe a novel RNA binding protein, Y14, a predominantly nuclear nucleocytoplasmic shuttling protein. Interestingly, Y14 associates preferentially with mRNAs produced by splicing but not with pre-mRNAs, introns, or mRNAs produced from intronless cDNAs. Y14 associates with both nuclear mRNAs and newly exported cytoplasmic mRNAs. Splicing of a single intron is sufficient for Y14 association. Y14-containing nuclear complexes are different from general hnRNP complexes. They contain hnRNP proteins and several unique proteins including the mRNA export factor TAP. Thus, Y14 defines novel intermediates in the pathway of gene expression, postsplicing nuclear preexport mRNPs, and newly exported cytoplasmic mRNPs, whose composition is established by splicing. These findings suggest that pre-mRNA splicing imprints mRNA with a unique set of proteins that persists in the cytoplasm and thereby communicates the history of the transcript.
Collapse
Affiliation(s)
- N Kataoka
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | | | | | |
Collapse
|