1
|
Derbeneva D, Pilmane M, Petersons A. Gene proteins, growth factors/their receptors in the wall of chronic calculous cholecystitis-affected gallbladder children. BMC Pediatr 2025; 25:288. [PMID: 40221697 PMCID: PMC11992698 DOI: 10.1186/s12887-025-05650-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Chronic calculous cholecystitis is the main cause of cholecystectomies in children, and 50.5% of patients with gallstones are asymptomatic at the time of diagnosis. However, the morphopathogenesis of chronic cholecystitis with cholelithiasis is unclear and may involve various genes, gene proteins, and growth factors. METHODS Tissues were obtained from four males (aged 6-18 years) and two females (aged 15 and 14 years) during planned cholecystectomies. Five healthy gallbladder tissues were obtained from the archival postmortem tissue of children. SHH, IHH, HGF, IGF1, IGF1R, and HOXB3 were detected by immunohistochemistry and evaluated semiquantitatively. Statistical analysis was used to identify statistically significant differences and correlations between the factors. RESULTS Decreased numbers of SHH-, IHH-, and IGF1R-positive cells, along with an increased number of HOXB3-positive cells, were observed in patients. SHH-positive epitheliocytes and connective tissue cells; IHH-positive cells in all locations; IGF1R-positive epitheliocytes, endotheliocytes, and smooth muscle cells; and HOXB3-positive smooth muscle cells were significantly different among the groups. However, the strongest negative correlation was found between HOXB3-positive smooth myocytes and SHH- and IHH-positive connective tissues, and the strongest positive correlation was detected among epithelial IHH, SHH, and IGF1R, as well as between IGF1R in the epithelium and endothelium of the blood vessels. CONCLUSIONS The reduced number of cells positive for the primary endodermal proteins SHH/IHH and the decreased number of IGFR1-positive cells suggest their potential roles in the development of chronic calculous cholecystitis. Additionally, the increased number of HOXB3-positive cells under these conditions likely implies stimulated growth properties, whereas HGF and IGF1 appear to have a reduced contribution to the pathogenesis of chronic calculous cholecystitis.
Collapse
Affiliation(s)
- Darja Derbeneva
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, Riga, LV-1010, Latvia.
| | - Mara Pilmane
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, Riga, LV-1010, Latvia.
| | - Aigars Petersons
- Department of Paediatric Surgery, Riga Stradins University, Dzirciema street 16, Riga, LV-1007, Latvia
| |
Collapse
|
2
|
Bobola N, Sagerström CG. TALE transcription factors: Cofactors no more. Semin Cell Dev Biol 2024; 152-153:76-84. [PMID: 36509674 DOI: 10.1016/j.semcdb.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Exd/PBX, Hth/MEIS and PREP proteins belong to the TALE (three-amino-acid loop extension) superclass of transcription factors (TFs) with an atypical homedomain (HD). Originally discovered as "cofactors" to HOX proteins, revisiting their traditional role in light of genome-wide experiments reveals a strong and reproducible pattern of HOX and TALE co-occupancy across diverse embryonic tissues. While confirming that TALE increases HOX specificity and selectivity in vivo, this wider outlook also reveals novel aspects of HOX:TALE collaboration, namely that HOX TFs generally require pre-bound TALE factors to access their functional binding sites in vivo. In contrast to the restricted expression domains of HOX TFs, TALE factors are largely ubiquitous, and PBX and PREP are expressed at the earliest developmental stages. PBX and MEIS control development of many organs and tissues and their dysregulation is associated with congenital disease and cancer. Accordingly, many instances of TALE cooperation with non HOX TFs have been documented in various systems. The model that emerges from these studies is that TALE TFs create a permissive chromatin platform that is selected by tissue-restricted TFs for binding. In turn, HOX and other tissue-restricted TFs selectively convert a ubiquitous pool of low affinity TALE binding events into high confidence, tissue-restricted binding events associated with transcriptional activation. As a result, TALE:TF complexes are associated with active chromatin and domain/lineage-specific gene activity. TALE ubiquitous expression and broad genomic occupancy, as well as the increasing examples of TALE tissue-specific partners, reveal a universal and obligatory role for TALE in the control of tissue and lineage-specific transcriptional programs, beyond their initial discovery as HOX co-factors.
Collapse
Affiliation(s)
- Nicoletta Bobola
- School of Medical Sciences, University of Manchester, Manchester, UK.
| | - Charles G Sagerström
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Medical School, Aurora, CO, USA.
| |
Collapse
|
3
|
Tuli HS, Mittal S, Aggarwal D, Parashar G, Parashar NC, Upadhyay SK, Barwal TS, Jain A, Kaur G, Savla R, Sak K, Kumar M, Varol M, Iqubal A, Sharma AK. Path of Silibinin from diet to medicine: A dietary polyphenolic flavonoid having potential anti-cancer therapeutic significance. Semin Cancer Biol 2021; 73:196-218. [PMID: 33130037 DOI: 10.1016/j.semcancer.2020.09.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
In the last few decades, targeting cancer by the use of dietary phytochemicals has gained enormous attention. The plausible reason and believe or mind set behind this fact is attributed to either lesser or no side effects of natural compounds as compared to the modern chemotherapeutics, or due to their conventional use as dietary components by mankind for thousands of years. Silibinin is a naturally derived polyphenol (a flavonolignans), possess following biochemical features; molecular formula C25H22O10, Molar mass: 482.44 g/mol, Boiling point 793 °C, with strikingly high antioxidant and anti-tumorigenic properties. The anti-cancer properties of Silibinin are determined by a variety of cellular pathways which include induction of apoptosis, cell cycle arrest, inhibition of angiogenesis and metastasis. In addition, Silibinin controls modulation of the expression of aberrant miRNAs, inflammatory response, and synergism with existing anti-cancer drugs. Therefore, modulation of a vast array of cellular responses and homeostatic aspects makes Silibinin an attractive chemotherapeutic agent. However, like other polyphenols, the major hurdle to declare Silibinin a translational chemotherapeutic agent, is its lesser bioavailability. After summarizing the chemistry and metabolic aspects of Silibinin, this extensive review focuses on functional aspects governed by Silibinin in chemoprevention with an ultimate goal of summarizing the evidence supporting the chemopreventive potential of Silibinin and clinical trials that are currently ongoing, at a single platform.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | - Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | - Gaurav Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | | | - Sushil Kumar Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Bathinda, 151 001, Punjab, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, 151 001, Punjab, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's, NMIMS, Mumbai, 400 056, Maharastra, India
| | - Raj Savla
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's, NMIMS, Mumbai, 400 056, Maharastra, India
| | | | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, TR48000, Turkey
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy), Jamia Hamdard (Deemed to be University), Delhi, India
| | - Anil Kumar Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India.
| |
Collapse
|
4
|
Bondos SE, Swint-Kruse L, Matthews KS. Flexibility and Disorder in Gene Regulation: LacI/GalR and Hox Proteins. J Biol Chem 2015; 290:24669-77. [PMID: 26342073 DOI: 10.1074/jbc.r115.685032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To modulate transcription, a variety of input signals must be sensed by genetic regulatory proteins. In these proteins, flexibility and disorder are emerging as common themes. Prokaryotic regulators generally have short, flexible segments, whereas eukaryotic regulators have extended regions that lack predicted secondary structure (intrinsic disorder). Two examples illustrate the impact of flexibility and disorder on gene regulation: the prokaryotic LacI/GalR family, with detailed information from studies on LacI, and the eukaryotic family of Hox proteins, with specific insights from investigations of Ultrabithorax (Ubx). The widespread importance of structural disorder in gene regulatory proteins may derive from the need for flexibility in signal response and, particularly in eukaryotes, in protein partner selection.
Collapse
Affiliation(s)
- Sarah E Bondos
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Liskin Swint-Kruse
- the Department of Biochemistry and Molecular Biology, the University of Kansas Medical Center, Kansas City, Kansas 66160, and
| | | |
Collapse
|
5
|
Zhou X, Zheng C, He B, Zhu Z, Li P, He X, Zhu S, Yang C, Lao Z, Zhu Q, Liu X. A novel mutation outside homeodomain of HOXD13 causes synpolydactyly in a Chinese family. Bone 2013; 57:237-41. [PMID: 23948678 DOI: 10.1016/j.bone.2013.07.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/05/2013] [Accepted: 07/31/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Human synpolydactyly (SPD), belonging to syndactyly (SD) II, is caused by mutations in homeobox d13 (HOXD13). Here, we describe the study of a two-generation Chinese family with a variant form of synpolydactyly. MATERIALS AND METHODS The sequence of the HOXD13 gene was analyzed. Luciferase assays were conducted to determine whether the mutation affected the function of the HOXD13 protein. RESULTS We identified a novel c.659G>C (p.Gly220Ala) mutation outside the HOXD13 homeodomain responsible for the disease in this family. This mutation was not found in any of the unaffected family members and healthy control. Luciferase assays demonstrated that this mutation affected the transcriptional activation ability of HOXD13 (only approximately 84.7% of wild type, p<0.05). CONCLUSION Phenotypes displayed by individuals carrying the novel mutation present additional features, such as the fifth finger clinodactyly, which is not always associated with canonical SPD. This finding enhances our understanding about the phenotypic spectrum associated with HOXD13 mutations and advances our understanding of human limb development.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Casaca A, Santos AC, Mallo M. Controlling Hox gene expression and activity to build the vertebrate axial skeleton. Dev Dyn 2013; 243:24-36. [DOI: 10.1002/dvdy.24007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/18/2013] [Accepted: 06/21/2013] [Indexed: 11/10/2022] Open
Affiliation(s)
- Ana Casaca
- Instituto Gulbenkian de Ciência; Oeiras Portugal
| | | | - Moisés Mallo
- Instituto Gulbenkian de Ciência; Oeiras Portugal
| |
Collapse
|
7
|
Lambert B, Vandeputte J, Desmet PM, Hallet B, Remacle S, Rezsohazy R. Pentapeptide insertion mutagenesis of the Hoxa1 protein: mapping of transcription activation and DNA-binding regulatory domains. J Cell Biochem 2010; 110:484-96. [PMID: 20336696 DOI: 10.1002/jcb.22563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mode of action of Hoxa1, like that of most Hox proteins, remains poorly characterized. In an effort to identify functional determinants contributing to the activity of Hoxa1 as a transcription factor, we generated 18 pentapeptide insertion mutants of the Hoxa1 protein and we assayed them in transfected cells for their activity on target enhancers from the EphA2 and Hoxb1 genes known to respond to Hoxa1 in the developing hindbrain. Only four mutants displayed a complete loss-of-function. Three of them contained an insertion in the homeodomain of Hoxa1, whereas the fourth loss-of-function mutant harbored an insertion in the very N-terminal end of the protein. Transcription activation assays in yeast further revealed that the integrity of both the N-terminal end and homeodomain is required for Hoxa1-mediated transcriptional activation. Furthermore, an insertion in the serine-threonine-proline rich C-terminal extremity of Hoxa1 induced an increase in activity in mammalian cells as well as in the yeast assay. The C-terminal extremity thus modulates the transcriptional activation capacity of the protein. Finally, electrophoretic mobility shift assays revealed that the N-terminal extremity of the protein also exerts a modulatory influence on DNA binding by Hoxa1-Pbx1a heterodimers.
Collapse
Affiliation(s)
- Barbara Lambert
- Unit of Veterinary Sciences, Life Sciences Institute (ISV), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
8
|
Merabet S, Sambrani N, Pradel J, Graba Y. Regulation of Hox activity: insights from protein motifs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 689:3-16. [PMID: 20795319 DOI: 10.1007/978-1-4419-6673-5_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Deciphering the molecular bases of animal body plan construction is a central question in developmental and evolutionary biology. Genome analyses of a number of metazoans indicate that widely conserved regulatory molecules underlie the amazing diversity of animal body plans, suggesting that these molecules are reiteratively used for multiple purposes. Hox proteins constitute a good example of such molecules and provide the framework to address the mechanisms underlying transcriptional specificity and diversity in development and evolution. Here we examine the current knowledge of the molecular bases of Hox-mediated transcriptional control, focusing on how this control is encoded within protein sequences and structures. The survey suggests that the homeodomain is part of an extended multifunctional unit coordinating DNA binding and activity regulation and highlights the need for further advances in our understanding of Hox protein activity.
Collapse
Affiliation(s)
- Samir Merabet
- Institute of Developmental Biology of Marseille Luminy, University of the Mediterranean, Marseille, France.
| | | | | | | |
Collapse
|
9
|
Abstract
Hox proteins are well known for executing highly specific functions in vivo, but our understanding of the molecular mechanisms underlying gene regulation by these fascinating proteins has lagged behind. The premise of this review is that an understanding of gene regulation-by any transcription factor-requires the dissection of the cis-regulatory elements that they act upon. With this goal in mind, we review the concepts and ideas regarding gene regulation by Hox proteins and apply them to a curated list of directly regulated Hox cis-regulatory elements that have been validated in the literature. Our analysis of the Hox-binding sites within these elements suggests several emerging generalizations. We distinguish between Hox cofactors, proteins that bind DNA cooperatively with Hox proteins and thereby help with DNA-binding site selection, and Hox collaborators, proteins that bind in parallel to Hox-targeted cis-regulatory elements and dictate the sign and strength of gene regulation. Finally, we summarize insights that come from examining five X-ray crystal structures of Hox-cofactor-DNA complexes. Together, these analyses reveal an enormous amount of flexibility into how Hox proteins function to regulate gene expression, perhaps providing an explanation for why these factors have been central players in the evolution of morphological diversity in the animal kingdom.
Collapse
Affiliation(s)
- Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
10
|
Liu Y, Matthews KS, Bondos SE. Multiple intrinsically disordered sequences alter DNA binding by the homeodomain of the Drosophila hox protein ultrabithorax. J Biol Chem 2008; 283:20874-87. [PMID: 18508761 PMCID: PMC2475714 DOI: 10.1074/jbc.m800375200] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 04/21/2008] [Indexed: 12/21/2022] Open
Abstract
During animal development, distinct tissues, organs, and appendages are specified through differential gene transcription by Hox transcription factors. However, the conserved Hox homeodomains bind DNA with high affinity yet low specificity. We have therefore explored the structure of the Drosophila melanogaster Hox protein Ultrabithorax and the impact of its nonhomeodomain regions on DNA binding properties. Computational and experimental approaches identified several conserved, intrinsically disordered regions outside the homeodomain of Ultrabithorax that impact DNA binding by the homeodomain. Full-length Ultrabithorax bound to target DNA 2.5-fold weaker than its isolated homeodomain. Using N-terminal and C-terminal deletion mutants, we demonstrate that the YPWM region and the disordered microexons (termed the I1 region) inhibit DNA binding approximately 2-fold, whereas the disordered I2 region inhibits homeodomain-DNA interaction a further approximately 40-fold. Binding is restored almost to homeodomain affinity by the mostly disordered N-terminal 174 amino acids (R region) in a length-dependent manner. Both the I2 and R regions contain portions of the activation domain, functionally linking DNA binding and transcription regulation. Given that (i) the I1 region and a portion of the R region alter homeodomain-DNA binding as a function of pH and (ii) an internal deletion within I1 increases Ultrabithorax-DNA affinity, I1 must directly impact homeodomain-DNA interaction energetics. However, I2 appears to indirectly affect DNA binding in a manner countered by the N terminus. The amino acid sequences of I2 and much of the I1 and R regions vary significantly among Ultrabithorax orthologues, potentially diversifying Hox-DNA interactions.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biochemistry and Cell
Biology, Rice University, Houston, Texas 77005 and the
Department of Molecular and Cellular Medicine,
Texas A & M Health Science Center, College Station, Texas 77843-1114
| | - Kathleen S. Matthews
- Department of Biochemistry and Cell
Biology, Rice University, Houston, Texas 77005 and the
Department of Molecular and Cellular Medicine,
Texas A & M Health Science Center, College Station, Texas 77843-1114
| | - Sarah E. Bondos
- Department of Biochemistry and Cell
Biology, Rice University, Houston, Texas 77005 and the
Department of Molecular and Cellular Medicine,
Texas A & M Health Science Center, College Station, Texas 77843-1114
| |
Collapse
|
11
|
Horvat-Switzer RD, Thompson AA. HOXA11 mutation in amegakaryocytic thrombocytopenia with radio-ulnar synostosis syndrome inhibits megakaryocytic differentiation in vitro. Blood Cells Mol Dis 2006; 37:55-63. [PMID: 16765069 DOI: 10.1016/j.bcmd.2006.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 04/04/2006] [Indexed: 02/05/2023]
Abstract
Homeobox genes encode for regulatory proteins central to hematopoietic differentiation and proliferation. Previously, we identified an inherited syndrome of congenital amegakaryocytic thrombocytopenia and radio-ulnar synostosis that is associated with a point mutation in the third helix of HOXA11 homeodomain (HOXA11-DeltaH3). Here, we demonstrate that this mutation results in a significantly truncated protein with impaired DNA-binding efficiency. Electrophoretic mobility shift assays (EMSA) confirm that wild-type HOXA11 (HOXA11-WT) interacts in vitro with the DNA-binding consensus sequence for HOXA11, and that this interaction is most efficient when the TALE transcription factor, Meis1b, is also present. However, the binding between HOXA11-DeltaH3 and DNA is abrogated even in the presence of Meis1b, suggesting the point mutant causes a disruption in the DNA-binding capacity. We investigated whether the point mutation also affected the physical protein-protein interaction between HoxA11 and Meis1b. Using GST pulldown assays, we find Meis1b interactions with both HOXA11-WT and HOXA11-DeltaH3 in the presence of DNA. DNAse treatment decreased these interactions, suggesting that the interaction is a protein-protein association, and DNA may serve to stabilize this interaction. Stable expression of FLAG-HOXA11-WT or -DeltaH3 in K562 cells significantly impacts megakaryocytic differentiation. Staurosporine (STSP) induced K562 cells to differentiate into a megakaryocytic phenotype. Treatment leads to an increase in surface expression of the megakaryocytic/platelet-specific antigen, CD61, and causes morphological changes consistent with megakaryocytic differentiation. CD61 surface expression on STSP treated HOXA11-WT and -DeltaH3 expressing cells was significantly reduced as compared to untransfected K562 cells. Interestingly, we found only a slight difference in CD61 expression between wild-type and mutant HOXA11 K562. These data suggest that HoxA11 inhibition of differentiation may involve nonhomeodomain sequences. Finally, our laboratory has detected a small amount of HoxA11 mRNA in cells isolated from unfractionated human cord blood and murine ES cell culture cocultured on OP9 for 6 days in the absence of leukemia inhibitory factor (LIF). This finding suggests HoxA11 may be endogenously expressed in very early hematopoietic precursor cells. Taken together, these data begin to give us insight into the molecular mechanisms by which HoxA11 may be involved in regulating megakaryocytic differentiation.
Collapse
Affiliation(s)
- Regina D Horvat-Switzer
- Molecular and Cellular Pathobiology Program, Children's Memorial Research Center, Division of Hematology Oncology and Stem Cell Transplantation, Children's Memorial Hospital, Chicago, IL 60614, USA
| | | |
Collapse
|
12
|
Williams ME, Lehoczky JA, Innis JW. A group 13 homeodomain is neither necessary nor sufficient for posterior prevalence in the mouse limb. Dev Biol 2006; 297:493-507. [PMID: 16806154 DOI: 10.1016/j.ydbio.2006.05.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 05/18/2006] [Accepted: 05/22/2006] [Indexed: 01/08/2023]
Abstract
Posterior prevalence is the general property attributed to HOX proteins describing the dominant effect of more posterior HOX proteins over the function of anterior orthologs in common areas of expression. To explore the HOX group 13 protein domains required for this property, we used the mouse Prx-1 promoter to drive transgenic expression of Hox constructs throughout the entire limb bud during development. This system allowed us to conclusively demonstrate a hierarchy of Hox function in developing limbs. Furthermore, by substituting the HOXD11 or HOXA9 homeodomain for that of HOXD13, we show that a HOXD13 homeodomain is not necessary for posterior prevalence. Proximal expression of these chimeric proteins unexpectedly caused defects consistent with wild-type HOXD13 mediated posterior prevalence. Moreover, group 13 non-homeodomain residues appear to confer the property as proximal expression of HOXA9 containing the HOXD13 homeodomain did not result in limb reductions characteristic of HOXD13. These data are most compatible with models of posterior prevalence based on protein-protein interactions and support examination of the N-terminal non-homeodomain regions of Hox group 13 proteins as necessary agents for posterior prevalence.
Collapse
Affiliation(s)
- Melissa E Williams
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
13
|
Akin ZN, Nazarali AJ. Hox genes and their candidate downstream targets in the developing central nervous system. Cell Mol Neurobiol 2005; 25:697-741. [PMID: 16075387 PMCID: PMC11529567 DOI: 10.1007/s10571-005-3971-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 04/14/2004] [Indexed: 12/14/2022]
Abstract
1. Homeobox (Hox) genes were originally discovered in the fruit fly Drosophila, where they function through a conserved homeodomain as transcriptional regulators to control embryonic morphogenesis. Since then over 1000 homeodomain proteins have been identified in several species. In vertebrates, 39 Hox genes have been identified as homologs of the original Drosophila complex, and like their Drosophila counterparts they are organized within chromosomal clusters. Vertebrate Hox genes have also been shown to play a critical role in embryonic development as transcriptional regulators. 2. Both the Drosophila and vertebrate Hox genes have been shown to interact with various cofactors, such as the TALE homeodomain proteins, in recognition of consensus sequences within regulatory elements of their target genes. These protein-protein interactions are believed to contribute to enhancing the specificity of target gene recognition in a cell-type or tissue- dependent manner. The regulatory activity of a particular Hox protein on a specific regulatory element is highly variable and dependent on its interacting partners within the transcriptional complex. 3. In vertebrates, Hox genes display spatially restricted patterns of expression within the developing CNS, both along the anterioposterior and dorsoventral axis of the embryo. Their restricted gene expression is suggestive of a regulatory role in patterning of the CNS, as well as in cell specification. Determining the precise function of individual Hox genes in CNS morphogenesis through classical mutational analyses is complicated due to functional redundancy between Hox genes. 4. Understanding the precise mechanisms through which Hox genes mediate embryonic morphogenesis requires the identification of their downstream target genes. Although Hox genes have been implicated in the regulation of several pathways, few target genes have been shown to be under their direct regulatory control. Development of methodologies used for the isolation of target genes and for the analysis of putative targets will be beneficial in establishing the genetic pathways controlled by Hox factors. 5. Within the developing CNS various cell adhesion molecules and signaling molecules have been identified as candidate downstream target genes of Hox proteins. These targets play a role in processes such as cell migration and differentiation, and are implicated in contributing to neuronal processes such as plasticity and/or specification. Hence, Hox genes not only play a role in patterning of the CNS during early development, but may also contribute to cell specification and identity.
Collapse
Affiliation(s)
- Z. N. Akin
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, 116 Thorvaldson Building, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9 Canada
| | - A. J. Nazarali
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, 116 Thorvaldson Building, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9 Canada
| |
Collapse
|
14
|
Chen H, Rubin E, Zhang H, Chung S, Jie CC, Garrett E, Biswal S, Sukumar S. Identification of transcriptional targets of HOXA5. J Biol Chem 2005; 280:19373-80. [PMID: 15757903 DOI: 10.1074/jbc.m413528200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The homeobox gene HOXA5 encodes a transcription factor that has been shown to play important roles in embryogenesis, hematopoiesis, and tumorigenesis. In order to decipher downstream signaling pathways of HOXA5, we utilized oligonucleotide microarray analysis to identify genes that are differentially expressed in HOXA5-induced cells compared with uninduced cells. Comparative analysis of gene expression changes after 9 h of HOXA5 induction in Hs578T breast cancer cells identified 306 genes whose expression was modulated at least 2-fold. Ten of these 306 genes were also up-regulated by at least 2-fold at 6 h post-induction. The expression of all of these 10 genes was confirmed by semiquantitative reverse transcription-PCR. Among these 10 genes, which are most likely to be direct targets of HOXA5, we initiated an investigation into the pleiotrophin gene by first cloning its promoter. Transient transfection assays indicated that HOXA5 can specifically activate the pleiotrophin promoter. Promoter deletion, chromatin immunoprecipitation assay, and gel-shift assays were performed to show that HOXA5 can directly bind to one binding site on the pleiotrophin promoter. These data strongly suggest that microarray analysis can successfully identify many potential direct downstream genes of HOXA5. Further functional analysis of these targets will allow us to better understand the diverse functions of HOXA5 in embryonic development and tumorigenesis.
Collapse
Affiliation(s)
- Hexin Chen
- Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, Maryland 21231-1000, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
MAB21L2, a vertebrate member of the Male-abnormal 21 family, modulates BMP signaling and interacts with SMAD1. BMC Cell Biol 2004; 5:48. [PMID: 15613244 PMCID: PMC545073 DOI: 10.1186/1471-2121-5-48] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2004] [Accepted: 12/21/2004] [Indexed: 12/02/2022] Open
Abstract
Background Through in vivo loss-of-function studies, vertebrate members of the Male abnormal 21 (mab-21) gene family have been implicated in gastrulation, neural tube formation and eye morphogenesis. Despite mounting evidence of their considerable importance in development, the biochemical properties and nature of MAB-21 proteins have remained strikingly elusive. In addition, genetic studies conducted in C. elegans have established that in double mutants mab-21 is epistatic to genes encoding various members of a Transforming Growth Factor beta (TGF-beta) signaling pathway involved in the formation of male-specific sensory organs. Results Through a gain-of-function approach, we analyze the interaction of Mab21l2 with a TGF-beta signaling pathway in early vertebrate development. We show that the vertebrate mab-21 homolog Mab21l2 antagonizes the effects of Bone Morphogenetic Protein 4 (BMP4) overexpression in vivo, rescuing the dorsal axis and restoring wild-type distribution of Chordin and Xvent2 transcripts in Xenopus gastrulae. We show that MAB21L2 immunoprecipitates in vivo with the BMP4 effector SMAD1, whilst in vitro it binds SMAD1 and the SMAD1-SMAD4 complex. Finally, when targeted to an heterologous promoter, MAB21L2 acts as a transcriptional repressor. Conclusions Our results provide the first biochemical and cellular foundation for future functional studies of mab-21 genes in normal neural development and its pathological disturbances.
Collapse
|
16
|
Kim EC, Edmonston CR, Wu X, Schaffer A, Casali P. The HoxC4 homeodomain protein mediates activation of the immunoglobulin heavy chain 3' hs1,2 enhancer in human B cells. Relevance to class switch DNA recombination. J Biol Chem 2004; 279:42258-69. [PMID: 15252056 PMCID: PMC4631311 DOI: 10.1074/jbc.m407496200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The immunoglobulin heavy chain (IgH) 3' regulatory region modulates IgH locus transcription, upon induction by specific trans-acting factors, and plays a significant role in class switch DNA recombination (CSR) and, perhaps, somatic hypermutation (SHM). CSR and SHM are central to the maturation of the antibody response. In contrast to the single 5'-hs3a-hs1,2-hs3b-hs4-3 ' mouse IgH 3 ' regulatory region, the human IgH 3 ' regulatory region exists as a 5'-hs3-hs1,2-hs4-3' cluster duplicated 3 ' of Calpha1 and Calpha2. We show here that the human hs1,2 element is the strongest enhancer of transcription, as directed by a V(H)1 or the ECS-Igamma3 promoter, thereby suggesting a dominant role for hs1,2 over hs3 and hs4 in the overall activity of the 3 ' regulatory region. Within hs1,2, we identified three regions (1, 2, and 3) that are all necessary, but individually not sufficient, for enhancement of transcription. In region 2, a HoxC4 site and a HoxC4/embedded octamer (HoxC4/Oct) site are conserved across human, mouse, rat, and rabbit. These two sites recruit HoxC4 and Oct-1/Oct-2, which act synergistically with the Oca-B coactivator to effect the full hs1,2-enhancing activity. HoxC4, Oct-1/Oct-2, and Oca-B recruitment is negligible in pro-B cells, moderate in pre-B cells, and maximal in germinal center B cells and plasma cells, where HoxC4, Oct-2, and Oca-B expression correlates with hs1,2 activation and ongoing CSR. The hs1,2mediated enhancement of V(H) and C(H) promoter-driven transcription as induced by HoxC4 and Oct-1/Oct-2 suggests an important role of these homeodomain proteins in the overall regulation of the IgH locus expression.
Collapse
Affiliation(s)
| | | | | | | | - Paolo Casali
- To whom correspondence should be addressed: Center for Immunology, 3028 Hewitt Hall, University of California, Irvine, CA 92697-4120. Tel.: 949-824-9648;
| |
Collapse
|
17
|
Bondos SE, Catanese DJ, Tan XX, Bicknell A, Li L, Matthews KS. Hox Transcription Factor Ultrabithorax Ib Physically and Genetically Interacts with Disconnected Interacting Protein 1, a Double-stranded RNA-binding Protein. J Biol Chem 2004; 279:26433-44. [PMID: 15039447 DOI: 10.1074/jbc.m312842200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Hox protein family consists of homeodomain-containing transcription factors that are primary determinants of cell fate during animal development. Specific Hox function appears to rely on protein-protein interactions; however, the partners involved in these interactions and their function are largely unknown. Disconnected Interacting Protein 1 (DIP1) was isolated in a yeast two-hybrid screen of a 0-12-h Drosophila embryo library designed to identify proteins that interact with Ultrabithorax (Ubx), a Drosophila Hox protein. The Ubx.DIP1 physical interaction was confirmed using phage display, immunoprecipitation, pull-down assays, and gel retardation analysis. Ectopic expression of DIP1 in wing and haltere imaginal discs malforms the adult structures and enhances a decreased Ubx expression phenotype, establishing a genetic interaction. Ubx can generate a ternary complex by simultaneously binding its target DNA and DIP1. A large region of Ubx, including the repression domain, is required for interaction with DIP1. These more variable sequences may be key to the differential Hox function observed in vivo. The Ubx.DIP1 interaction prevents transcriptional activation by Ubx in a modified yeast one-hybrid assay, suggesting that DIP1 may modulate transcriptional regulation by Ubx. The DIP1 sequence contains two dsRNA-binding domains, and DIP1 binds double-stranded RNA with a 1000-fold higher affinity than either single-stranded RNA or double-stranded DNA. The strong interaction of Ubx with an RNA-binding protein suggests a wider range of proteins may influence Ubx function than previously appreciated.
Collapse
Affiliation(s)
- Sarah E Bondos
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | | | | | | | | | |
Collapse
|
18
|
Merabet S, Kambris Z, Capovilla M, Bérenger H, Pradel J, Graba Y. The hexapeptide and linker regions of the AbdA Hox protein regulate its activating and repressive functions. Dev Cell 2003; 4:761-8. [PMID: 12737810 DOI: 10.1016/s1534-5807(03)00126-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Hox family transcription factors control diversified morphogenesis during development and evolution. They function in concert with Pbc cofactor proteins. Pbc proteins bind the Hox hexapeptide (HX) motif and are thereby thought to confer DNA binding specificity. Here we report that mutation of the AbdA HX motif does not alter its binding site selection but does modify its transregulatory properties in a gene-specific manner in vivo. We also show that a short, evolutionarily conserved motif, PFER, in the homeodomain-HX linker region acts together with the HX to control an AbdA activation/repression switch. Our in vivo data thus reveal functions not previously anticipated from in vitro analyses for the hexapeptide motif in the regulation of Hox activity.
Collapse
Affiliation(s)
- Samir Merabet
- Laboratoire de Génétique et Physiologie du Développement, IBDM, CNRS, Université de la méditerranée, Parc Scientifique de Luminy, Case 907, 13288 Marseille Cedex 09, France
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
A number of models attempt to explain the functional relationships of Hox genes. The functional equivalence model states that mammalian Hox-encoded proteins are largely functionally equivalent, and that Hox quantity is more important than Hox quality. In this report, we describe the results of two homeobox swaps. In one case, the homeobox of Hoxa 11 was replaced with that of the very closely related Hoxa 10. Developmental function was assayed by analyzing the phenotypes of all possible allele combinations, including the swapped allele, and null alleles for Hoxa 11 and Hoxd 11. This chimeric gene provided wild-type function in the development of the axial skeleton and male reproductive tract, but served as a hypomorph allele in the development of the appendicular skeleton, kidneys, and female reproductive tract. In the other case, the Hoxa 11 homeobox was replaced with that of the divergent Hoxa 4 gene. This chimeric gene provided near recessive null function in all tissues except the axial skeleton, which developed normally. These results demonstrate that even the most conserved regions of Hox genes, the homeoboxes, are not functionally interchangeable in the development of most tissues. In some cases, developmental function tracked with the homeobox, as previously seen in simpler organisms. Homeoboxes with more 5' cluster positions were generally dominant over more 3' homeoboxes, consistent with phenotypic suppression seen in Drosophila. Surprisingly, however, all Hox homeoboxes tested did appear functionally equivalent in the formation of the axial skeleton. The determination of segment identity is one of the most evolutionarily ancient functions of Hox genes. It is interesting that Hox homeoboxes are interchangeable in this process, but are functionally distinct in other aspects of development.
Collapse
Affiliation(s)
- Yuanxiang Zhao
- Division of Developmental Biology, Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45224, USA
| | | |
Collapse
|
20
|
Choe SK, Vlachakis N, Sagerström CG. Meis family proteins are required for hindbrain development in the zebrafish. Development 2002; 129:585-95. [PMID: 11830560 DOI: 10.1242/dev.129.3.585] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Meis homeodomain proteins function as Hox-cofactors by binding Pbx and Hox proteins to form multimeric complexes that control transcription of genes involved in development and differentiation. It is not known what role Meis proteins play in these complexes, nor is it clear which Hox functions require Meis proteins in vivo. We now show that a divergent Meis family member, Prep1, acts as a Hox co-factor in zebrafish. This suggests that all Meis family members have at least one shared function and that this function must be carried out by a conserved domain. We proceed to show that the Meinox domain, an N-terminal conserved domain shown to mediate Pbx binding, is sufficient to provide Meis activity to a Pbx/Hox complex. We find that this activity is separable from Pbx binding and resides within the M1 subdomain. This finding also presents a rational strategy for interfering with Meis activity in vivo. We accomplish this by expressing the Pbx4/Lzr N-terminus, which sequesters Meis proteins in the cytoplasm away from the nuclear transcription complexes. Sequestering Meis proteins in the cytoplasm leads to extensive loss of rhombomere (r) 3- and r4-specific gene expression, as well as defective rhombomere boundary formation in this region. These changes in gene expression correlate with impaired neuronal differentiation in r3 and r4, e.g. the loss of r3-specific nV branchiomotor neurons and r4-specific Mauthner neurons. We conclude that Meis family proteins are essential for the specification of r3 and r4 of the hindbrain.
Collapse
Affiliation(s)
- Seong-Kyu Choe
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | |
Collapse
|
21
|
Marty T, Vigano MA, Ribeiro C, Nussbaumer U, Grieder NC, Affolter M. A HOX complex, a repressor element and a 50 bp sequence confer regional specificity to a DPP-responsive enhancer. Development 2001; 128:2833-45. [PMID: 11526088 DOI: 10.1242/dev.128.14.2833] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A central theme during development and homeostasis is the generation of cell type-specific responses to the action of a limited number of extant signaling cascades triggered by extracellular ligands. The molecular mechanisms by which information from such signals are integrated in responding cells in a cell-type specific manner remain poorly understood. We have undertaken a detailed characterization of an enhancer that is regulated by DPP signaling and by the homeotic protein Labial and its partners, Extradenticle and Homothorax. The expression driven by this enhancer (lab550) and numerous deletions and point mutants thereof was studied in wild-type and mutant Drosophila embryos as well as in cultured cells. We find that the lab550 enhancer is composed of two elements, a Homeotic Response Element (HOMRE) and a DPP Response Element (DPPRE) that synergize. None of these two elements can reproduce the expression of lab550, either with regard to expression level or with regard to spatial restriction. The isolated DPPRE of lab550 responds extremely weakly to DPP. Interestingly, we found that the inducibility of this DPPRE is weak because it is tuned down by the action of a repressor element. This repressor element and an additional 50 bp element appear to be crucial for the cooperation of the HOMRE and the DPPRE, and might tightly link the DPP response to the homeotic input. The cooperation between the different elements of the enhancer leads to the segmentally restricted activity of lab550 in the endoderm and provides a mechanism to create specific responses to DPP signaling with the help of a HOX protein complex.
Collapse
Affiliation(s)
- T Marty
- Abteilung Zellbiologie, Biozentrum, Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
22
|
Di Rocco G, Gavalas A, Popperl H, Krumlauf R, Mavilio F, Zappavigna V. The recruitment of SOX/OCT complexes and the differential activity of HOXA1 and HOXB1 modulate the Hoxb1 auto-regulatory enhancer function. J Biol Chem 2001; 276:20506-15. [PMID: 11278854 DOI: 10.1074/jbc.m011175200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regionally restricted expression patterns of Hox genes in developing embryos rely on auto-, cross-, and para-regulatory transcriptional elements. One example is the Hoxb1 auto-regulatory element (b1-ARE), which drives expression of Hoxb1 in the fourth rhombomere of the hindbrain. We previously showed that HOXB1 and PBX1 activate transcription from the b1-ARE by binding to sequences required for the expression of a reporter gene in rhombomere 4 in vivo. We now report that in embryonal carcinoma cells, which retain characteristics of primitive neuroectodermal cells, the b1-ARE displays higher basal and HOX/PBX-induced activities than in other cell backgrounds. We have identified a bipartite-binding site for SOX/OCT heterodimers within the b1-ARE that accounts for its cell context-specific activity and is required for maximal transcriptional activity of HOX/PBX complexes in embryonal carcinoma cells. Furthermore, we found that in an embryonal carcinoma cell background, HOXB1 has a significantly higher transcriptional activity than its paralog HOXA1. We map the determinants for this differential activity within the HOXB1 N-terminal transcriptional activation domain. By using analysis in transgenic and HOXA1 mutant mice, we extended these findings on the differential activities of HOXA1 and HOXB1 in vivo, and we demonstrated that they are important for regulating aspects of HOXB1 expression in the hindbrain. We found that mutation of the SOX/OCT site and targeted inactivation of Hoxa1 both impair the response of the b1-ARE to retinoic acid in transgenic mice. Our results show that Hoxa1 is the primary mediator of the response of b1-ARE to retinoic acid in vivo and that this function is dependent on the binding of SOX/OCT heterodimers to the b1-ARE. These results uncover novel functional differences between Hox paralogs and their modulators.
Collapse
Affiliation(s)
- G Di Rocco
- DIBIT-Istituto Scientifico H. San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Norris RA, Kern MJ. Identification of domains mediating transcription activation, repression, and inhibition in the paired-related homeobox protein, Prx2 (S8). DNA Cell Biol 2001; 20:89-99. [PMID: 11244566 DOI: 10.1089/104454901750070292] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite the growing information concerning the developmental importance of the Prx2 protein, the structural determinants of Prx2 function are poorly understood. To gain insight into the transcription regulatory regions of the Prx2 protein, we generated a series of truncation mutants. Both the Prx2 response element (PRE) and a portion of the tenascin promoter, a downstream target of Prx2, were used as reporters in transient transfection assays. This analysis showed that a conserved domain (PRX), found in both Prx1 and Prx2, activated transcription in NIH 3T3 cells. This PRX domain, as well as other functional regions of Prx2, demonstrated both cell-specific and promoter-dependent transcriptional regulation. A second important region, the OAR (aristaless) domain, which is conserved among 35 Paired-type homeodomain proteins, was observed to inhibit transcription. Deletion of this element resulted in a 20-fold increase of transcription from the tenascin reporter in NIH 3T3 cells but not in C2C12 cells. The OAR domain did not function as a repressor in chimeric fusions with the Gal4 DNA binding domain in either cell type, characterizing it as an inhibitor instead of a repressor. These results give insight into the function of the Prx2 transcription factor while establishing the framework for comparison with the two isoforms of Prx1.
Collapse
Affiliation(s)
- R A Norris
- University of South Carolina, Department of Cell Biology and Anatomy, Charleston, South Carolina, USA
| | | |
Collapse
|
24
|
Grapes M, O'Hare P. Differences in determinants required for complex formation and transactivation in related VP16 proteins. J Virol 2000; 74:10112-21. [PMID: 11024140 PMCID: PMC102050 DOI: 10.1128/jvi.74.21.10112-10121.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
VP16-H is an essential structural protein of herpes simplex virus type 1 (HSV-1) and is also a potent activator of virus immediate-early (IE) gene expression. Current models of functional determinants within VP16-H indicate that it consists of two domains, an N-terminal domain involved in recruiting VP16-H to a multicomponent DNA binding complex with two host proteins, Oct-1 and host cell factor (HCF), and an acidic C-terminal domain exclusively involved in transactivation. VP16-E, from equine herpesvirus 1 (EHV-1), exhibits strong conservation with the N-terminal domain of VP16-H but, with the exception of a short segment at the extreme C terminus, lacks almost the entire acidic C-terminal domain. Studies of key activation determinants within the C terminus of VP16-H would predict that VP16-E may activate poorly, if at all. However, VP16-E is a potent activator of both EHV-1 and HSV-1 IE gene transcription. We show that VP16-E does not follow the simple two-domain model of VP16-H. Thus, despite the conservation in the N-terminal domains, this region in VP16-E is not sufficient for assembly into the DNA binding complex with Oct-1 and HCF. The short conserved determinant close to the C terminus is completely dispensable in VP16-H but is absolutely required in VP16-E. In activation studies, the potency of intact VP16-E was not recapitulated in chimeric proteins in which it was fused with a GAL4 DNA binding domain. Furthermore, a chimeric protein consisting of the C-terminal region of VP16-E fused to the N-terminal domain of VP16-H, while able to promote complex formation, nevertheless exhibited very weak activation. These results indicate that the mode of recruitment of the activation domain, i.e., through complex formation with Oct-1 and HCF, may be crucial for activation and that key determinants required for activation in VP16-E, and possibly VP16-H, may involve interactions between regions of the C terminus and the N terminus rather than discrete domains with independent functions.
Collapse
Affiliation(s)
- M Grapes
- Marie Curie Research Institute, Oxted, Surrey RH8 OTL, United Kingdom
| | | |
Collapse
|
25
|
Zhao C, Dave V, Yang F, Scarborough T, Ma J. Target selectivity of bicoid is dependent on nonconsensus site recognition and protein-protein interaction. Mol Cell Biol 2000; 20:8112-23. [PMID: 11027281 PMCID: PMC86421 DOI: 10.1128/mcb.20.21.8112-8123.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe experiments to compare the activities of two Drosophila homeodomain proteins, Bicoid (Bcd) and an altered-specificity mutant of Fushi tarazu, Ftz(Q50K). Although the homeodomains of these proteins share a virtually indistinguishable ability to recognize a consensus Bcd site, only Bcd can activate transcription from natural enhancer elements when assayed in both yeast and Drosophila Schneider S2 cells. Our analysis of chimeric proteins suggests that both the homeodomain of Bcd and sequences outside the homeodomain contribute to its ability to recognize natural enhancer elements. We further show that, unlike the Bcd homeodomain, the Ftz(Q50K) homeodomain fails to recognize nonconsensus sites found in natural enhancer elements. The defect of a chimeric protein containing the homeodomain of Ftz(Q50K) in place of that of Bcd can be preferentially restored by converting the nonconsensus sites in natural enhancer elements to consensus sites. Our experiments suggest that the biological specificity of Bcd is determined by combinatorial contributions of two important mechanisms: the nonconsensus site recognition function conferred by the homeodomain and the cooperativity function conferred primarily by sequences outside the homeodomain. A systematic comparison of different assay methods and enhancer elements further suggests a fluid nature of the requirements for these two Bcd functions in target selection.
Collapse
Affiliation(s)
- C Zhao
- Division of Developmental Biology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | | | |
Collapse
|
26
|
Kömüves LG, Shen WF, Kwong A, Stelnicki E, Rozenfeld S, Oda Y, Blink A, Krishnan K, Lau B, Mauro T, Largman C. Changes in HOXB6 homeodomain protein structure and localization during human epidermal development and differentiation. Dev Dyn 2000; 218:636-47. [PMID: 10906782 DOI: 10.1002/1097-0177(2000)9999:9999<::aid-dvdy1014>3.0.co;2-i] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
HOX homeodomain proteins are master developmental regulators, which are now thought to function as transcription factors by forming cooperative DNA binding complexes with PBX or other protein partners. Although PBX proteins exhibit regulated subcellular localization and function in the nucleus in other tissues, little data exists on HOX and PBX protein localization during skin development. We now show that the HOXB6 protein is expressed in the suprabasal layer of the early developing epidermis and throughout the upper layers of late fetal and adult human skin. HOXB6 signal is cytoplasmic throughout fetal epidermal development, but substantially nuclear in normal adult skin. HOXB6 protein is also partially nuclear in hyperproliferative skin conditions, but appears to be cytoplasmic in basal and squamous cell carcinomas. Although all three PBX genes are expressed in fetal epidermis, none of the three PBX proteins exhibit nuclear co-localization with HOXB6 in either fetal or adult epidermis. RNA and protein data suggest that a truncated HOXB6 protein, lacking the homeodomain, is expressed in undifferentiated keratinocytes and that the full-length protein is induced by differentiation. GFP-fusion proteins were used to demonstrate that the full-length HOXB6 protein is localized to the nucleus while the truncated protein is largely cytoplasmic. Taken together, these data suggest that during epidermal development the truncated HOXB6 isoform may function by a mechanism other than as DNA binding protein, and that most of the nuclear, homeodomain-containing HOXB6 protein does not utilize PBX proteins as DNA binding partners in the skin. Published 2000 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- L G Kömüves
- Department of Dermatology, University of California VA Medical Center, San Francisco, California
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
de Stanchina E, Gabellini D, Norio P, Giacca M, Peverali FA, Riva S, Falaschi A, Biamonti G. Selection of homeotic proteins for binding to a human DNA replication origin. J Mol Biol 2000; 299:667-80. [PMID: 10835276 DOI: 10.1006/jmbi.2000.3782] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that a cell cycle-dependent nucleoprotein complex assembles in vivo on a 74 bp sequence within the human DNA replication origin associated to the Lamin B2 gene. Here, we report the identification, using a one-hybrid screen in yeast, of three proteins interacting with the 74 bp sequence. All of them, namely HOXA13, HOXC10 and HOXC13, are orthologues of the Abdominal-B gene of Drosophila melanogaster and are members of the homeogene family of developmental regulators. We describe the complete open reading frame sequence of HOXC10 and HOXC13 along with the structure of the HoxC13 gene. The specificity of binding of these two proteins to the Lamin B2 origin is confirmed by both band-shift and in vitro footprinting assays. In addition, the ability of HOXC10 and HOXC13 to increase the activity of a promoter containing the 74 bp sequence, as assayed by CAT-assay experiments, demonstrates a direct interaction of these homeoproteins with the origin sequence in mammalian cells. We also show that HOXC10 expression is cell-type-dependent and positively correlates with cell proliferation.
Collapse
Affiliation(s)
- E de Stanchina
- Istituto di Genetica Biochimica ed Evoluzionistica del CNR, Via Abbiategrasso 207, Pavia, 27100, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Yang X, Ji X, Shi X, Cao X. Smad1 domains interacting with Hoxc-8 induce osteoblast differentiation. J Biol Chem 2000; 275:1065-72. [PMID: 10625647 DOI: 10.1074/jbc.275.2.1065] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bone morphogenetic proteins are potent osteotropic agents that induce osteoblast differentiation and bone formation. The signal transduction of bone morphogenetic proteins has recently been discovered to involve Smad proteins. Smad1 is an essential intracellular component that is specifically phosphorylated by bone morphogenetic protein receptors and translocated into the nucleus upon ligand stimulation. Previously, we have reported that Smad1 activates osteopontin gene expression in response to bone morphogenetic protein simulation through an interaction with a homeodomain transcription factor, Hoxc-8. In the present study, the interaction domains between the two proteins were characterized by deletional analysis in both yeast two-hybrid and gel shift assays. Two regions within the amino-terminal 87 amino acid residues of Smad1 were mapped to interact with Hoxc-8, one of which binds to the homeodomain. Overexpression of recombinant cDNAs encoding the Hoxc-8 interaction domains of Smad1 effectively activated osteopontin gene transcription in transient transfection assays. Furthermore, stable expression of these Smad1 fragments in 2T3 osteoblast precursor cells stimulated osteoblast differentiation-related gene expression and led to mineralized bone matrix formation. Our data suggest that the interaction of amino-terminal Smad1 with Hoxc-8 mimics bone morphogenetic protein signaling and is sufficient to induce osteoblast differentiation and bone cell formation.
Collapse
Affiliation(s)
- X Yang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
29
|
Abstract
The Dlx homeobox gene family is of ancient origin, with apparent ancestral developmental functions in both nervous system regionalization and appendage (limb) outgrowth. Additional roles in inner ear and craniofacial development were likely acquired by the Dlx gene family during the course of animal evolution. Loss-of-function genetic mutations generated in the mouse have revealed a striking role for Dlx genes in patterning of the mammalian central nervous system, craniofacial structures and inner ear. Interestingly, none of the individual murine Dlx gene mutations to date have resulted in limb defects, suggesting a potentially significant developmental overlap of Dlx activity in this embryonic structure. J. Cell. Biochem. Suppls. 32/33:133-140, 1999.
Collapse
Affiliation(s)
- P Kraus
- Ronald O. Perleman Department of Dermatology, NYU School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | | |
Collapse
|
30
|
Chariot A, Gielen J, Merville MP, Bours V. The homeodomain-containing proteins: an update on their interacting partners. Biochem Pharmacol 1999; 58:1851-7. [PMID: 10591139 DOI: 10.1016/s0006-2952(99)00234-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Homeodomain-containing proteins are transcription regulators controlling the coordinated expression of genes involved in development, differentiation, and cellular transformation. They share a highly conserved 60-amino-acid region (the "homeodomain"), which allows them to bind DNA and modulate the expression of multiple target genes, whose identities remain largely unknown. Although each HOX gene product exhibits in vivo specificity, they harbor very similar DNA-binding affinities in vitro, suggesting that other mechanisms such as protein-protein interactions are critical to modulate their function. In this commentary, we describe the proteins that can interact with the HOX gene products, including newly identified partners such as CREB binding protein and the NF-kappaB/IkappaB-alpha proteins. We also outline the molecular programs that are regulated by the transcriptional complexes involving the HOX gene products and where new pharmacological tools could find interesting targets.
Collapse
Affiliation(s)
- A Chariot
- Laboratory of Medical Chemistry and Medical Oncology, University of Liege, Belgium.
| | | | | | | |
Collapse
|
31
|
Shanmugam K, Green NC, Rambaldi I, Saragovi HU, Featherstone MS. PBX and MEIS as non-DNA-binding partners in trimeric complexes with HOX proteins. Mol Cell Biol 1999; 19:7577-88. [PMID: 10523646 PMCID: PMC84774 DOI: 10.1128/mcb.19.11.7577] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/1999] [Accepted: 07/21/1999] [Indexed: 11/20/2022] Open
Abstract
HOX, PBX, and MEIS transcription factors bind DNA through a homeodomain. PBX proteins bind DNA cooperatively as heterodimers with MEIS family members and also with HOX proteins from paralog groups 1 to 10. MEIS proteins cooperatively bind DNA with ABD-B class HOX proteins of groups 9 and 10. Here, we examine aspects of dimeric and higher-order interactions between these three homeodomain classes. The most significant results can be summarized as follows. (i) Most of PBX N terminal to the homeodomain is required for efficient cooperative binding with HOXD4 and HOXD9. (ii) MEIS and PBX proteins form higher-order complexes on a heterodimeric binding site. (iii) Although MEIS does not cooperatively bind DNA with ANTP class HOX proteins, it does form a trimer as a non-DNA-binding partner with DNA-bound PBX-HOXD4. (iv) The N terminus of HOXD4 negatively regulates trimer formation. (v) MEIS forms a similar trimer with DNA-bound PBX-HOXD9. (vi) A related trimer (where MEIS is a non-DNA-binding partner) is formed on a transcriptional promoter within the cell. (vii) We observe an additional trimer class involving non-DNA-bound PBX and DNA-bound MEIS-HOXD9 or MEIS-HOXD10 heterodimers that is enhanced by mutation of the PBX homeodomain. (viii) In this latter trimer, PBX is likely to contact both MEIS and HOXD9/D10. (ix) The stability of DNA binding by all trimers is enhanced relative to the heterodimers. These findings suggest novel functions for PBX and MEIS in modulating the function of DNA-bound MEIS-HOX and PBX-HOX heterodimers, respectively.
Collapse
Affiliation(s)
- K Shanmugam
- McGill Cancer Centre, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | |
Collapse
|
32
|
Chariot A, van Lint C, Chapelier M, Gielen J, Merville MP, Bours V. CBP and histone deacetylase inhibition enhance the transactivation potential of the HOXB7 homeodomain-containing protein. Oncogene 1999; 18:4007-14. [PMID: 10435624 DOI: 10.1038/sj.onc.1202776] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Homeodomain-containing proteins are transcription factors regulating the coordinated expression of multiple target genes involved in development, differentiation and cellular transformation. In this study, we demonstrated that HOXB7, one member of this family, behaved as a transactivator in breast cancer cells. Deletion of either the HOXB7 N-terminal domain or the C-terminal acidic tail abolished this transcriptional effect, suggesting a combination of distinct functional transactivating domains. HOXB7 physically interacted both in vitro and in vivo with the coactivator CREB-binding protein (CBP). This interaction led to an enhanced transactivating potential and required the N-terminal of HOXB7 as well as two domains located at the C-terminal part of CBP. Moreover, trichostatin A, a deacetylase inhibitor, strongly enhanced the transcriptional properties of HOXB7. Our data therefore indicate that HOX proteins can directly interact with CBP and that acetylation/deacetylation may regulate their transcriptional properties.
Collapse
Affiliation(s)
- A Chariot
- Laboratory of Medical Chemistry and Medical Oncology, CHU B35, University of Liege Sart-Tilman, Belgium
| | | | | | | | | | | |
Collapse
|