1
|
Lee HK, Willi M, Liu C, Hennighausen L. Cell-specific and shared regulatory elements control a multigene locus active in mammary and salivary glands. Nat Commun 2023; 14:4992. [PMID: 37591874 PMCID: PMC10435465 DOI: 10.1038/s41467-023-40712-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023] Open
Abstract
Regulation of high-density loci harboring genes with different cell-specificities remains a puzzle. Here we investigate a locus that evolved through gene duplication and contains eight genes and 20 candidate regulatory elements, including one super-enhancer. Casein genes (Csn1s1, Csn2, Csn1s2a, Csn1s2b, Csn3) are expressed in mammary glands, induced 10,000-fold during pregnancy and account for 50% of mRNAs during lactation, Prr27 and Fdcsp are salivary-specific and Odam has dual specificity. We probed the function of 12 candidate regulatory elements, individually and in combination, in the mouse genome. The super-enhancer is essential for the expression of Csn3, Csn1s2b, Odam and Fdcsp but largely dispensable for Csn1s1, Csn2 and Csn1s2a. Csn3 activation also requires its own local enhancer. Synergism between local enhancers and cytokine-responsive promoter elements facilitates activation of Csn2 during pregnancy. Our work identifies the regulatory complexity of a multigene locus with an ancestral super-enhancer active in mammary and salivary tissue and local enhancers and promoter elements unique to mammary tissue.
Collapse
Affiliation(s)
- Hye Kyung Lee
- Section of Genetics and Physiology, Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, 20892, USA.
| | - Michaela Willi
- Section of Genetics and Physiology, Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Lothar Hennighausen
- Section of Genetics and Physiology, Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
2
|
Muncie JM, Weaver VM. The Physical and Biochemical Properties of the Extracellular Matrix Regulate Cell Fate. Curr Top Dev Biol 2018; 130:1-37. [PMID: 29853174 DOI: 10.1016/bs.ctdb.2018.02.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The extracellular matrix is a complex network of hydrated macromolecular proteins and sugars that, in concert with bound soluble factors, comprise the acellular stromal microenvironment of tissues. Rather than merely providing structural information to cells, the extracellular matrix plays an instructive role in development and is critical for the maintenance of tissue homeostasis. In this chapter, we review the composition of the extracellular matrix and summarize data illustrating its importance in embryogenesis, tissue-specific development, and stem cell differentiation. We discuss how the biophysical and biochemical properties of the extracellular matrix ligate specific transmembrane receptors to activate intracellular signaling that alter cell shape and cytoskeletal dynamics to modulate cell growth and viability, and direct cell migration and cell fate. We present examples describing how the extracellular matrix functions as a highly complex physical and chemical entity that regulates tissue organization and cell behavior through a dynamic and reciprocal dialogue with the cellular constituents of the tissue. We suggest that the extracellular matrix not only transmits cellular and tissue-level force to shape development and tune cellular activities that are key for coordinated tissue behavior, but that it is itself remodeled such that it temporally evolves to maintain the integrated function of the tissue. Accordingly, we argue that perturbations in extracellular matrix composition and structure compromise key developmental events and tissue homeostasis, and promote disease.
Collapse
Affiliation(s)
- Jonathon M Muncie
- Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, CA, United States; Graduate Program in Bioengineering, University of California San Francisco and University of California Berkeley, San Francisco, CA, United States
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, CA, United States; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States.
| |
Collapse
|
3
|
Wang Y, Nagarajan M, Uhler C, Shivashankar GV. Orientation and repositioning of chromosomes correlate with cell geometry-dependent gene expression. Mol Biol Cell 2017; 28:1997-2009. [PMID: 28615317 PMCID: PMC5541849 DOI: 10.1091/mbc.e16-12-0825] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022] Open
Abstract
Extracellular matrix signals from the microenvironment regulate gene expression patterns and cell behavior. Using a combination of experiments and geometric models, we demonstrate correlations between cell geometry, three-dimensional (3D) organization of chromosome territories, and gene expression. Fluorescence in situ hybridization experiments showed that micropatterned fibroblasts cultured on anisotropic versus isotropic substrates resulted in repositioning of specific chromosomes, which contained genes that were differentially regulated by cell geometries. Experiments combined with ellipsoid packing models revealed that the mechanosensitivity of chromosomes was correlated with their orientation in the nucleus. Transcription inhibition experiments suggested that the intermingling degree was more sensitive to global changes in transcription than to chromosome radial positioning and its orientations. These results suggested that cell geometry modulated 3D chromosome arrangement, and their neighborhoods correlated with gene expression patterns in a predictable manner. This is central to understanding geometric control of genetic programs involved in cellular homeostasis and the associated diseases.
Collapse
Affiliation(s)
- Yejun Wang
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411 Singapore
| | - Mallika Nagarajan
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411 Singapore
| | - Caroline Uhler
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - G V Shivashankar
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411 Singapore
- FIRC Institute for Molecular Oncology, 20139 Milan, Italy
| |
Collapse
|
4
|
Furuta S, Bissell MJ. Pathways Involved in Formation of Mammary Organoid Architecture Have Keys to Understanding Drug Resistance and to Discovery of Druggable Targets. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 81:207-217. [PMID: 28416576 DOI: 10.1101/sqb.2016.81.030825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Signals from the extracellular matrix (ECM) are received at the cell surface receptor, transmitted to the cytoskeletons, and transferred to the nucleus and chromatin for tissue- and context-specific gene expression. Cells, in return, modulate the cell shape and ECM, allowing for the maintenance of tissue homeostasis as well as for coevolution and adaptation to the environmental signals. We postulated the existence of dynamic and reciprocal interactions between the ECM and the nucleus more than three decades ago, but now these pathways have been proven experimentally thanks to the advances in imaging and cell/molecular biology techniques. In this review, we will introduce some of our recent work that has validated the critical roles of the three-dimensional (3D) tissue architecture in determining mammary biology, therapeutic response, and druggable targets. We describe a novel screen based on reversion of the malignant phenotype in 3D assays. We will also summarize our recent discoveries of the integration of feedback signaling for mammary acinar formation and phenotypic reversion of tumor cells in the LrECM. Lastly, we will introduce our exciting discovery of the physical linkages between the cell surface and cytofibers within a tunnel deep inside of the nucleus, enabling interaction with nuclear lamin and SUN proteins.
Collapse
Affiliation(s)
- Saori Furuta
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720.,Department of Biochemistry and Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science, Toledo, Ohio 43614
| | - Mina J Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
5
|
Simian M, Bissell MJ. Organoids: A historical perspective of thinking in three dimensions. J Cell Biol 2016; 216:31-40. [PMID: 28031422 PMCID: PMC5223613 DOI: 10.1083/jcb.201610056] [Citation(s) in RCA: 423] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/05/2016] [Accepted: 12/13/2016] [Indexed: 02/08/2023] Open
Abstract
In this perspective, Simian and Bissell discuss the evolution of the 3D culture and organoid research field up to now as well as its future directions. In the last ten years, there has been a dramatic surge in the number of publications where single or groups of cells are grown in substrata that have elements of basement membrane leading to the formation of tissue-like structures referred to as organoids. However, this field of research began many decades ago, when the pioneers of cell culture began to ask questions we still ask today: How does organogenesis occur? How do signals integrate to make such vastly different tissues and organs given that the sequence of the genome in our trillions of cells is identical? Here, we summarize how work over the past century generated the conceptual framework that has allowed us to make progress in the understanding of tissue-specific morphogenetic programs. The development of cell culture systems that provide accurate and physiologically relevant models are proving to be key in establishing appropriate platforms for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Marina Simian
- Instituto de Nanosistemas, Universidad Nacional de San Martín, San Martín 1650, Provincia de Buenos Aires, Argentina
| | - Mina J Bissell
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
6
|
Kung M, Lee Y, Hsu J, Huang M, Ju Y. A functional study of proximal goat β-casein promoter and intron 1 in immortalized goat mammary epithelial cells. J Dairy Sci 2015; 98:3859-75. [DOI: 10.3168/jds.2014-9054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 02/23/2015] [Indexed: 11/19/2022]
|
7
|
Inman JL, Robertson C, Mott JD, Bissell MJ. Mammary gland development: cell fate specification, stem cells and the microenvironment. Development 2015; 142:1028-42. [DOI: 10.1242/dev.087643] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of the mammary gland is unique: the final stages of development occur postnatally at puberty under the influence of hormonal cues. Furthermore, during the life of the female, the mammary gland can undergo many rounds of expansion and proliferation. The mammary gland thus provides an excellent model for studying the ‘stem/progenitor’ cells that allow this repeated expansion and renewal. In this Review, we provide an overview of the different cell types that constitute the mammary gland, and discuss how these cell types arise and differentiate. As cellular differentiation cannot occur without proper signals, we also describe how the tissue microenvironment influences mammary gland development.
Collapse
Affiliation(s)
- Jamie L. Inman
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | - Claire Robertson
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | - Joni D. Mott
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
8
|
Kaimala S, Kumar S. An evolutionarily conserved non-coding element in casein locus acts as transcriptional repressor. Gene 2015; 554:75-80. [PMID: 25455101 DOI: 10.1016/j.gene.2014.10.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 12/31/2022]
Abstract
In mammals, the casein locus consists of stretches of non-coding DNA, the functions of most of which are unknown. These regions are believed to harbour elements responsible for spatio-temporally regulated expression of genes in this locus and so far, only a few such elements have been identified. In this study, we report a novel regulatory element in the casein locus. Comparative analysis of genomic DNA sequences of casein loci from different mammals identified a 147bp long evolutionarily conserved region (ECR) upstream of Odam, a gene in this locus. The ECR was found in close proximity of Odam gene in all the mammals examined. In-silico analysis predicted the ECR as a potential regulatory element. Functional analysis in different cell lines identified it as a unidirectional repressor element. From our findings we speculate that the ECR may be involved in the repression of the Odam expression in the mammary gland during lactation.
Collapse
Affiliation(s)
- Suneesh Kaimala
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), Hyderabad, India.
| | - Satish Kumar
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), Hyderabad, India.
| |
Collapse
|
9
|
Thorne JT, Segal TR, Chang S, Jorge S, Segars JH, Leppert PC. Dynamic reciprocity between cells and their microenvironment in reproduction. Biol Reprod 2014; 92:25. [PMID: 25411389 DOI: 10.1095/biolreprod.114.121368] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dynamic reciprocity (DR) refers to the ongoing, bidirectional interaction between cells and their microenvironment, specifically the extracellular matrix (ECM). The continuous remodeling of the ECM exerts mechanical force on cells and modifies biochemical mediators near the cell membrane, thereby initiating cell-signaling cascades that produce changes in gene expression and cell behavior. Cellular changes, in turn, affect the composition and organization of ECM components. These continuous interactions are the fundamental principle behind DR, and its critical role throughout development and adult tissue homeostasis has been extensively investigated. While DR in the mammary gland has been well described, we provide direct evidence that similar dynamic interactions occur in other areas of reproductive biology as well. In order to establish the importance of DR in the adaptive functioning of the female reproductive tract, we present our most current understanding of DR in reproductive tissues, exploring the mammary gland, ovary, and uterus. In addition to explaining normal physiological function, investigating DR may shed new light into pathologic processes that occur in these tissues and provide an exciting opportunity for novel therapeutic intervention.
Collapse
Affiliation(s)
- Jeffrey T Thorne
- Department of Obstetrics & Gynecology, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Thalia R Segal
- Department of Obstetrics & Gynecology, North Shore - Long Island Jewish Hospital, Manhasset, New York
| | - Sydney Chang
- Unit of Reproductive Endocrinology and Infertility, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, Maryland Department of Obstetrics & Gynecology, Duke University School of Medicine, Durham, North Carolina
| | - Soledad Jorge
- Unit of Reproductive Endocrinology and Infertility, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, Maryland Yale University School of Medicine, New Haven, Connecticut
| | - James H Segars
- Unit of Reproductive Endocrinology and Infertility, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, Maryland
| | - Phyllis C Leppert
- Department of Obstetrics & Gynecology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
10
|
Naruse K, Yoo SK, Kim SM, Choi YJ, Lee HM, Jin DI. Analysis of Tissue-Specific Expression of Human Type II Collagen cDNA Driven by Different Sizes of the Upstream Region of the β-Casein Promoter. Biosci Biotechnol Biochem 2014; 70:93-8. [PMID: 16428825 DOI: 10.1271/bbb.70.93] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To investigate the ability of 1.8 kb or 3.1 kb bovine beta-casein promoter sequences for the expression regulation of transgene in vivo, transgenic mice were produced with human type II collagen gene fused to 1.8 kb and 3.1 kb of bovine beta-casein promoter by DNA microinjection. Five and three transgenic founder mice were produced using transgene constructs with 1.8 kb and 3.1 kb of bovine beta-casein promoters respectively. Founder mice were outbred with the wild type to produce F1 and F2 progenies. Total RNAs were extracted from four tissues (mammary gland, liver, kidney, and muscle) of female F1 transgenic mice of each transgenic line following parturition. RT-PCR and Northern blot analysis revealed that the expression level of transgene was variable among the transgenic lines, but transgenic mice containing 1.8 kb of promoter sequences exhibited more leaky expression of transgene in other tissues compared to those with 3.1 kb promoter. Moreover, Western blot analysis of transgenic mouse milk showed that human type II collagen proteins secreted into the milk of lactating transgenic mice contained 1.8 kb and 3.1 kb of bovine beta-casein promoter. These results suggest that promoter sequences of 3.1 kb bovine beta-casein gene can be used for induction of mammary gland-specific expression of transgenes in transgenic animals.
Collapse
Affiliation(s)
- Kenji Naruse
- Research Center for Transgenic and Cloned Pigs, Chungnam National University, Korea
| | | | | | | | | | | |
Collapse
|
11
|
Lo AT, Mori H, Mott J, Bissell MJ. Constructing three-dimensional models to study mammary gland branching morphogenesis and functional differentiation. J Mammary Gland Biol Neoplasia 2012; 17:103-10. [PMID: 22573197 DOI: 10.1007/s10911-012-9251-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/26/2012] [Indexed: 11/25/2022] Open
Abstract
Tissue organogenesis is directed by both intercellular interactions and communication with the surrounding microenvironment. When cells are cultured on two-dimensional plastic substrata (2D), important signals controlling programs of cell proliferation, metabolism, differentiation and death responsible for the formation of correct tissue-specific architecture and function are lost. Designing three-dimensional (3D), physiologically relevant culture models, we can recapitulate some crucial aspects of the dynamic and reciprocal signaling necessary for establishing and maintaining tissue specific morphogenic programs. Here we briefly describe the details of robust methods for culturing mouse primary mammary organoids in 3D gels of different extracellular matrices and describe techniques for analyzing the resulting structures. These designer microenvironments are useful for both understanding branching morphogenesis and signaling integrations, but also for analysis of individual susceptibilities and drug testing.
Collapse
Affiliation(s)
- Alvin T Lo
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
12
|
Correia AL, Bissell MJ. The tumor microenvironment is a dominant force in multidrug resistance. Drug Resist Updat 2012; 15:39-49. [PMID: 22335920 DOI: 10.1016/j.drup.2012.01.006] [Citation(s) in RCA: 320] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The emergence of clinical drug resistance is still one of the most challenging factors in cancer treatment effectiveness. Until more recently, the assumption has been that random genetic lesions are sufficient to explain the progression of malignancy and escape from chemotherapy. Here we propose an additional perspective, one in which the tumor cells despite the malignant genome could find a microenvironment either within the tumor or as a dormant cell to remain polar and blend into an organized context. Targeting this dynamic interplay could be considered a new avenue to prevent therapeutic resistance, and may even provide a promising effective cancer treatment.
Collapse
Affiliation(s)
- Ana Luísa Correia
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 977, Berkeley, CA 94720, USA
| | | |
Collapse
|
13
|
Cichon MA, Gainullin VG, Zhang Y, Radisky DC. Growth of lung cancer cells in three-dimensional microenvironments reveals key features of tumor malignancy. Integr Biol (Camb) 2011; 4:440-8. [PMID: 22089949 DOI: 10.1039/c1ib00090j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cultured human lung cancer cell lines have been used extensively to dissect signaling pathways underlying cancer malignancy, including proliferation and resistance to chemotherapeutic agents. However, the ability of malignant cells to grow and metastasize in vivo is dependent upon specific cell-cell and cell-extracellular matrix (ECM) interactions, many of which are absent when cells are cultured on conventional tissue culture plastic. Previous studies have found that breast cancer cell lines show differential growth morphologies in three-dimensional (3D) gels of laminin-rich (lr) ECM, and that gene expression patterns associated with organized cell structure in 3D lrECM were associated with breast cancer patient prognosis. We show here that established lung cancer cell lines also can be classified by growth in lrECM into different morphological categories and that transcriptional alterations distinguishing growth on conventional tissue culture plastic from growth in 3D lrECM are reflective of tissue-specific differentiation. We further show that gene expression differences that distinguish lung cell lines that grow as smooth vs. branched structures in 3D lrECM can be used to stratify adenocarcinoma patients into prognostic groups with significantly different outcome, defining phenotypic response to 3D lrECM as a potential surrogate of lung cancer malignancy.
Collapse
|
14
|
Spencer VA, Costes S, Inman JL, Xu R, Chen J, Hendzel MJ, Bissell MJ. Depletion of nuclear actin is a key mediator of quiescence in epithelial cells. J Cell Sci 2011; 124:123-32. [PMID: 21172822 DOI: 10.1242/jcs.073197] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Functional differentiation is orchestrated by precise growth-regulatory controls conveyed by the tissue microenvironment. Cues from laminin 111 (LN1) lower transcription and suppress mammary epithelial cell growth in culture, but how LN1 induces quiescence is unknown. Recent literature points to involvement of nuclear β-actin in transcriptional regulation. Here, we show that quiescence induced by growth factor withdrawal, or LN1 addition, rapidly decreases nuclear β-actin. LN1, but not other extracellular matrix (ECM) molecules, decreases the levels of nuclear β-actin and destabilizes RNA polymerase (RNA Pol) II and III binding to transcription sites, leading to a dramatic drop in transcription and DNA synthesis. Constitutive overexpression of globular β-actin in the nucleus reverses the effect of LN1 on transcription and RNA Pol II association and prevents the cells from becoming quiescent in the presence of LN1. The physiological relevance of our findings was verified by identifying a clear spatial separation of LN1 and β-actin in developing mammary end buds. These data indicate a novel role for nuclear β-actin in growth arrest of epithelial cells and underscore the importance of the integrity of the basement membrane in homeostasis.
Collapse
Affiliation(s)
- Virginia A Spencer
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 977R225A, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Beliveau A, Mott JD, Lo A, Chen EI, Koller AA, Yaswen P, Muschler J, Bissell MJ. Raf-induced MMP9 disrupts tissue architecture of human breast cells in three-dimensional culture and is necessary for tumor growth in vivo. Genes Dev 2010; 24:2800-11. [PMID: 21159820 PMCID: PMC3003198 DOI: 10.1101/gad.1990410] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 11/01/2010] [Indexed: 12/21/2022]
Abstract
Organization into polarized three-dimensional structures defines whether epithelial cells are normal or malignant. In a model of morphogenesis, we show that inhibiting key signaling pathways in human breast cancer cells leads to "phenotypic reversion" of the malignant cells. Using architecture as an endpoint, we report that, in all cases, signaling through Raf/MEK/ERK disrupted tissue polarity via matrix metalloproteinase9 (MMP9) activity. Induction of Raf or activation of an engineered, functionally inducible MMP9 in nonmalignant cells led to loss of tissue polarity, and reinitiated proliferation. Conversely, inhibition of Raf or MMP9 with small molecule inhibitors or shRNAs restored the ability of cancer cells to form polarized quiescent structures. Silencing MMP9 expression also reduced tumor growth dramatically in a murine xenograft model. LC-MS/MS analysis comparing conditioned medium from nonmalignant cells with or without active MMP9 revealed laminin 111 (LM1) as an important target of MMP9. LM1 has been implicated in acinar morphogenesis; thus, its degradation by MMP9 provides a mechanism for loss of tissue polarity and reinitiation of growth associated with MMP9 activity. These findings underscore the importance of the dynamic reciprocity between the extracellular matrix integrity, tissue polarity, and Raf/MEK/ERK and MMP9 activities, providing an axis for either tissue homeostasis or malignant progression.
Collapse
Affiliation(s)
- Alain Beliveau
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Joni D. Mott
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Alvin Lo
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Emily I. Chen
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794, USA
| | - Antonius A. Koller
- Proteomics Center and Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Paul Yaswen
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - John Muschler
- California Pacific Medical Center Research Institute, San Francisco, California 94107, USA
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
16
|
Xu R, Spencer VA, Groesser DL, Bissell MJ. Laminin regulates PI3K basal localization and activation to sustain STAT5 activation. Cell Cycle 2010; 9:4315-22. [PMID: 20980837 DOI: 10.4161/cc.9.21.13578] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Extracellular matrix (ECM) is a key regulator of tissue morphogenesis and functional differentiation in the mammary gland. We showed recently that laminin-111 (LN1) together with prolactin induces β-casein expression in mammary epithelial cells (MECs) by sustaining STAT5 activation. Others have shown that Rac1 is required for integrin-mediated STAT5 activation, but molecules upstream of Rac1 remain to be elucidated. Here, we show that exposure to three-dimensional (3D) laminin-rich ECM (LrECM) gels changes the localization of phosphoinositide 3-kinase (PI3K) in MECs from diffuse to basal accompanied with the activation of PI3K-Rac1 signaling pathway. We show by co-immunoprecipitation that Rac1 associates with STAT5, and that LrECM treatment enhances this interaction. Blocking PI3K with LY294002 inhibits LrECM-dependent Rac1 activation, attenuates sustained STAT5 phosphorylation and blocks β-casein gene transcription. These results indicate that PI3K is a key mediator of the LN1-induced signaling cascade which controls the activity of transcription factors essential for tissue-specific gene expression.
Collapse
Affiliation(s)
- Ren Xu
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, USA.
| | | | | | | |
Collapse
|
17
|
Morrison B, Cutler ML. The contribution of adhesion signaling to lactogenesis. J Cell Commun Signal 2010; 4:131-9. [PMID: 21063503 DOI: 10.1007/s12079-010-0099-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 08/30/2010] [Indexed: 11/28/2022] Open
Abstract
The mammary gland undergoes hormonally controlled cycles of pubertal maturation, pregnancy, lactation, and involution, and these processes rely on complex signaling mechanisms, many of which are controlled by cell-cell and cell-matrix adhesion. The adhesion of epithelial cells to the extracellular matrix initiates signaling mechanisms that have an impact on cell proliferation, survival, and differentiation throughout lactation. The control of integrin expression on the mammary epithelial cells, the composition of the extracellular matrix and the presence of secreted matricellular proteins all contribute to essential adhesion signaling during lactogenesis. In vitro and in vivo studies, including the results from genetically engineered mice, have shed light on the regulation of these processes at the cell and tissue level and have led to increased understanding of the essential signaling components that are regulated in temporal and cell specific manner during lactogenesis. Recent studies suggest that a secreted matricellular protein, CTGF/CCN2, may play a role in lactogenic differentiation through binding to β1 integrin complexes, enhancing the production of extracellular matrix components and contributions to cell adhesion signaling.
Collapse
|
18
|
Morrison BL, Jose CC, Cutler ML. Connective Tissue Growth Factor (CTGF/CCN2) enhances lactogenic differentiation of mammary epithelial cells via integrin-mediated cell adhesion. BMC Cell Biol 2010; 11:35. [PMID: 20497571 PMCID: PMC2887411 DOI: 10.1186/1471-2121-11-35] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 05/24/2010] [Indexed: 11/24/2022] Open
Abstract
Background Connective Tissue Growth Factor (CTGF/CCN2), a known matrix-associated protein, is required for the lactogenic differentiation of mouse mammary epithelial cells. An HC11 mammary epithelial cell line expressing CTGF/CCN2 was constructed to dissect the cellular responses to CTGF/CCN2 that contribute to this differentiation program. Results Tetracycline-regulated expression of CTGF/CCN2 in HC11 cells enhanced multiple markers of lactogenic differentiation including β-casein transcription and mammosphere formation. In a separate measure of mammary differentiation the addition of CTGF/CCN2 to cultures of MCF10A cells increased the development of acini in vitro. In HC11 cells the elevated levels of CTGF/CCN2 diminished the requirement for extracellular matrix proteins in the activation of β-casein transcription, indicating that CTGF/CCN2 contributed to lactogenic differentiation through the regulation of matrix dependent cell adhesion. CTGF/CCN2 expression in HC11 cells increased expression of extracellular matrix proteins and integrins, enhanced the formation of focal adhesion complexes, and increased survival signaling. In addition, HC11 cells adhered to immobilized CTGF/CCN2 and this was inhibited by function-blocking antibodies to the integrins α6 and β1, and to a lesser degree by antibody to β3 integrin. Conclusions CTGF/CCN2 expression in HC11 cells led to an increase in multiple markers of lactogenic differentiation. The mechanisms by which CTGF/CCN2 contributed to lactogenic differentiation include direct binding of CTGF/CCN2 to integrin complexes and CTGF/CCN2-induced matrix protein expression resulting in elevated integrin functionality.
Collapse
Affiliation(s)
- Bethanie L Morrison
- Department of Pathology, F, Edward Hebert School of Medicine, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | | | | |
Collapse
|
19
|
Rijnkels M, Kabotyanski E, Montazer-Torbati MB, Hue Beauvais C, Vassetzky Y, Rosen JM, Devinoy E. The epigenetic landscape of mammary gland development and functional differentiation. J Mammary Gland Biol Neoplasia 2010; 15:85-100. [PMID: 20157770 PMCID: PMC3006238 DOI: 10.1007/s10911-010-9170-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 01/21/2010] [Indexed: 12/16/2022] Open
Abstract
Most of the development and functional differentiation in the mammary gland occur after birth. Epigenetics is defined as the stable alterations in gene expression potential that arise during development and proliferation. Epigenetic changes are mediated at the biochemical level by the chromatin conformation initiated by DNA methylation, histone variants, post-translational modifications of histones, non-histone chromatin proteins, and non-coding RNAs. Epigenetics plays a key role in development. However, very little is known about its role in the developing mammary gland or how it might integrate the many signalling pathways involved in mammary gland development and function that have been discovered during the past few decades. An inverse relationship between marks of closed (DNA methylation) or open chromatin (DnaseI hypersensitivity, certain histone modifications) and milk protein gene expression has been documented. Recent studies have shown that during development and functional differentiation, both global and local chromatin changes occur. Locally, chromatin at distal regulatory elements and promoters of milk protein genes gains a more open conformation. Furthermore, changes occur both in looping between regulatory elements and attachment to nuclear matrix. These changes are induced by developmental signals and environmental conditions. Additionally, distinct epigenetic patterns have been identified in mammary gland stem and progenitor cell sub-populations. Together, these findings suggest that epigenetics plays a role in mammary development and function. With the new tools for epigenomics developed in recent years, we now can begin to establish a framework for the role of epigenetics in mammary gland development and disease.
Collapse
Affiliation(s)
- Monique Rijnkels
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Spencer VA, Xu R, Bissell MJ. Gene expression in the third dimension: the ECM-nucleus connection. J Mammary Gland Biol Neoplasia 2010; 15:65-71. [PMID: 20107877 PMCID: PMC2912292 DOI: 10.1007/s10911-010-9163-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 01/05/2010] [Indexed: 12/25/2022] Open
Abstract
Decades ago, we and others proposed that the dynamic interplay between a cell and its surrounding environment dictates cell phenotype and tissue structure. Whereas much has been discovered about the effects of extracellular matrix molecules on cell growth and tissue-specific gene expression, the nuclear mechanisms through which these molecules promote these physiological events remain unknown. Using mammary epithelial cells as a model, the purpose of this review is to discuss how the extracellular matrix influences nuclear structure and function in a three-dimensional context to promote epithelial morphogenesis and function in the mammary gland.
Collapse
|
21
|
Spencer VA, Xu R, Bissell MJ. Extracellular matrix, nuclear and chromatin structure, and gene expression in normal tissues and malignant tumors: a work in progress. Adv Cancer Res 2009; 97:275-94. [PMID: 17419950 PMCID: PMC2912285 DOI: 10.1016/s0065-230x(06)97012-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Almost three decades ago, we presented a model where the extracellular matrix (ECM) was postulated to influence gene expression and tissue-specificity through the action of ECM receptors and the cytoskeleton. This hypothesis implied that ECM molecules could signal to the nucleus and that the unit of function in higher organisms was not the cell alone, but the cell plus its microenvironment. We now know that ECM invokes changes in tissue and organ architecture and that tissue, cell, nuclear, and chromatin structure are changed profoundly as a result of and during malignant progression. Whereas some evidence has been generated for a link between ECM-induced alterations in tissue architecture and changes in both nuclear and chromatin organization, the manner by which these changes actively induce or repress gene expression in normal and malignant cells is a topic in need of further attention. Here, we will discuss some key findings that may provide insights into mechanisms through which ECM could influence gene transcription and how tumor cells acquire the ability to overcome these levels of control.
Collapse
Affiliation(s)
- Virginia A Spencer
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | |
Collapse
|
22
|
Xu R, Boudreau A, Bissell MJ. Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev 2009; 28:167-76. [PMID: 19160017 DOI: 10.1007/s10555-008-9178-z] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mammary gland development, functional differentiation, and homeostasis are orchestrated and sustained by a balance of biochemical and biophysical cues from the organ's microenvironment. The three-dimensional microenvironment of the mammary gland, predominantly 'encoded' by a collaboration between the extracellular matrix (ECM), hormones, and growth factors, sends signals from ECM receptors through the cytoskeletal intracellular matrix to nuclear and chromatin structures resulting in gene expression; the ECM in turn is regulated and remodeled by signals from the nucleus. In this chapter, we discuss how coordinated ECM deposition and remodeling is necessary for mammary gland development, how the ECM provides structural and biochemical cues necessary for tissue-specific function, and the role of the cytoskeleton in mediating the extra--to intracellular dialogue occurring between the nucleus and the microenvironment. When operating normally, the cytoskeletal-mediated dynamic and reciprocal integration of tissue architecture and function directs mammary gland development, tissue polarity, and ultimately, tissue-specific gene expression. Cancer occurs when these dynamic interactions go awry for an extended time.
Collapse
Affiliation(s)
- Ren Xu
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 977-225A, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
23
|
Extracellular matrix control of mammary gland morphogenesis and tumorigenesis: insights from imaging. Histochem Cell Biol 2008; 130:1105-18. [PMID: 19009245 DOI: 10.1007/s00418-008-0537-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2008] [Indexed: 12/21/2022]
Abstract
The extracellular matrix (ECM), once thought to solely provide physical support to a tissue, is a key component of a cell's microenvironment responsible for directing cell fate and maintaining tissue specificity. It stands to reason, then, that changes in the ECM itself or in how signals from the ECM are presented to or interpreted by cells can disrupt tissue organization; the latter is a necessary step for malignant progression. In this review, we elaborate on this concept using the mammary gland as an example. We describe how the ECM directs mammary gland formation and function, and discuss how a cell's inability to interpret these signals -- whether as a result of genetic insults or physicochemical alterations in the ECM -- disorganizes the gland and promotes malignancy. By restoring context and forcing cells to properly interpret these native signals, aberrant behavior can be quelled and organization re-established. Traditional imaging approaches have been a key complement to the standard biochemical, molecular, and cell biology approaches used in these studies. Utilizing imaging modalities with enhanced spatial resolution in live tissues may uncover additional means by which the ECM regulates tissue structure, on different length scales, through its pericellular organization (short-scale) and by biasing morphogenic and morphostatic gradients (long-scale).
Collapse
|
24
|
Robinson C, Kolb AF. Analysis of mammary specific gene locus regulation in differentiated cells derived by somatic cell fusion. Exp Cell Res 2008; 315:508-22. [PMID: 19014936 DOI: 10.1016/j.yexcr.2008.10.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 09/19/2008] [Accepted: 10/14/2008] [Indexed: 10/21/2022]
Abstract
The transcriptional regulation of a gene is best analysed in the context of its normal chromatin surroundings. However, most somatic cells, in contrast to embryonic stem cells, are refractory to accurate modification by homologous recombination. We show here that it is possible to introduce precise genomic modifications in ES cells and to analyse the phenotypic consequences in differentiated cells by using a combination of gene targeting, site-specific recombination and somatic cell fusion. To provide a proof of principle, we have analysed the regulation of the casein gene locus in mammary gland cells derived from modified murine ES cells by somatic cell fusion. A beta-galactosidase reporter gene was inserted in place of the beta-casein gene and the modified ES cells, which do not express the reporter gene, were fused with the mouse mammary gland cell line HC11. The resulting cell clones expressed the beta-galactosidase gene to a similar extent and with similar hormone responsiveness as the endogenous gene. However, a reporter gene under the control of a minimal beta-casein promoter (encompassing the two consensus STAT5 binding sites which mediate the hormone response of the casein genes) was unable to replicate expression levels or hormone responsiveness of the endogenous gene when inserted into the same site of the casein locus. As expected, these results implicate sequences other than the STAT5 sites in the regulation of the beta-casein gene.
Collapse
Affiliation(s)
- Claire Robinson
- Molecular Recognition Group, Hannah Research Institute, Ayr KA6 5HL, UK
| | | |
Collapse
|
25
|
Lazarevich NL, Fleishman DI. Tissue-specific transcription factors in progression of epithelial tumors. BIOCHEMISTRY (MOSCOW) 2008; 73:573-91. [PMID: 18605982 DOI: 10.1134/s0006297908050106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dedifferentiation and epithelial-mesenchymal transition are important steps in epithelial tumor progression. A central role in the control of functional and morphological properties of different cell types is attributed to tissue-specific transcription factors which form regulatory cascades that define specification and differentiation of epithelial cells during embryonic development. The main principles of the action of such regulatory systems are reviewed on an example of a network of hepatocyte nuclear factors (HNFs) which play a key role in establishment and maintenance of hepatocytes--the major functional type of liver cells. HNFs, described as proteins binding to promoters of most hepatospecific genes, not only control expression of functional liver genes, but are also involved in regulation of proliferation, morphogenesis, and detoxification processes. One of the central components of the hepatospecific regulatory network is nuclear receptor HNF4alpha. Derangement of the expression of this gene is associated with progression of rodent and human hepatocellular carcinomas (HCCs) and contributes to increase of proliferation, loss of epithelial morphology, and dedifferentiation. Dysfunction of HNF4alpha during HCC progression can be either caused by structural changes of this gene or occurs due to modification of up-stream regulatory signaling pathways. Investigations preformed on a model system of the mouse one-step HCC progression have shown that the restoration of HNF4alpha function in dedifferentiated cells causes partial reversion of malignant phenotype both in vitro and in vivo. Derangement of HNFs function was also described in other tumors of epithelial origin. We suppose that tissue-specific factors that underlie the key steps in differentiation programs of certain tissues and are able to receive or modulate signals from the cell environment might be considered as promising candidates for the role of tumor suppressors in the tissue types where they normally play the most significant role.
Collapse
Affiliation(s)
- N L Lazarevich
- Institute of Carcinogenesis, Blokhin Russian Cancer Research Center, Russian Academy of Medical Sciences, Moscow 115478, Russia.
| | | |
Collapse
|
26
|
Abstract
Transcriptional repression and silencing have been strongly associated with hypoacetylation of histones. Accordingly, histone deacetylases, which remove acetyl groups from histones, have been shown to participate in mechanisms of transcriptional repression. Therefore, current models of the role of acetylation in transcriptional regulation focus on the acetylation status of histones and designate histone acetyltransferases, which add acetyl groups to histones, as transcriptional coactivators and histone deacetylases as corepressors. In recent years, an accumulation of studies have shown that these enzymes also target non-histone proteins and that histone deacetylases have clear roles as coactivators at a variety of genes, some of which are key regulators of cell growth and survival. This review summarizes the evidence for histone deacetylases as coactivators and provides models of coactivation mechanisms, some of which integrate roles of acetylated histones and non-histone proteins in transcription.
Collapse
Affiliation(s)
- Catharine L Smith
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721, USA.
| |
Collapse
|
27
|
Bissell MJ. Architecture Is the Message: The role of extracellular matrix and 3-D structure in tissue-specific gene expression and breast cancer. THE PEZCOLLER FOUNDATION JOURNAL : NEWS FROM THE PEZCOLLER FOUNDATION WORLD 2007; 16:2-17. [PMID: 21132084 PMCID: PMC2995891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
I was honored to deliver the 2(nd) Stanley Korsmeyer memorial Lecture on May 9(th), 2007 in Padova, Italy. Stan will always occupy a very special place in my heart: I admired him greatly not only for his magnificent and original science but also for his integrity and his grace. This review, which summarizes my laboratory's contribution to cell and cancer biology in the last 30 years, is dedicated to Stan's memory, and to Elaine Fuchs, one of my most cherished friends without whose support this work would not have gained the degree of recognition it enjoys today. My thanks also to the Pezcoller Foundation for making that week in May, 2007 one of the most memorable in my scientific life.
Collapse
|
28
|
Bissell MJ. Modelling molecular mechanisms of breast cancer and invasion: lessons from the normal gland. Biochem Soc Trans 2007; 35:18-22. [PMID: 17212581 PMCID: PMC2846175 DOI: 10.1042/bst0350018] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The interplay between genes and environment is complex, particularly when it comes to cancer. Studies on breast cancer cells have shown that environmental influences dominate over genotype in their effect on phenotype, and can cause cancerous cells to revert to a non-malignant phenotype, while remaining genotypically malignant. Using breast tissue in three-dimensional cell culture has proved a better model than traditional two-dimensional cell culture in that different cell types can be seen to behave differently to the same pro-apoptotic signal, with normal cells surviving.
Collapse
Affiliation(s)
- M J Bissell
- Division of Life Sciences, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
29
|
Sandal T, Valyi-Nagy K, Spencer VA, Folberg R, Bissell MJ, Maniotis AJ. Epigenetic reversion of breast carcinoma phenotype is accompanied by changes in DNA sequestration as measured by AluI restriction enzyme. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1739-49. [PMID: 17456778 PMCID: PMC1854967 DOI: 10.2353/ajpath.2007.060922] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The importance of microenvironment and context in regulation of tissue-specific genes is well established. DNA exposure to or the sequestration from nucleases detects differences in higher order chromatin structure in intact cells without disturbing cellular or tissue architecture. To investigate the relationship between chromatin organization and tumor phenotype, we used an established three-dimensional assay in which normal and malignant human breast cells can be easily distinguished by the morphology of the structures they make (acinus-like versus tumor-like, respectively). We show that these phenotypes can be distinguished also by sensitivity to AluI digestion in which the malignant cells resist digestion relative to nonmalignant cells. Treatment of T4-2 breast cancer cells in three-dimensional culture with cAMP analogs or a phosphatidylinositol 3-kinase inhibitor not only reverted their phenotype from nonpolar to polar acinar-like structures but also enhanced chromatin sensitivity to AluI. By using different cAMP analogs, we show that cAMP-induced phenotypic reversion, polarization, and shift in DNA organization act through a cAMP-dependent protein-kinase A-coupled signaling pathway. Importantly, inhibitory antibody to fibronectin produced the same effect. These experiments underscore the concept that modifying the tumor microenvironment can alter the organization of tumor cells and demonstrate that architecture and global chromatin organization are coupled and highly plastic.
Collapse
Affiliation(s)
- Tone Sandal
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., 130 CSN (MC 847), Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
30
|
Le Beyec J, Xu R, Lee SY, Nelson CM, Rizki A, Alcaraz J, Bissell MJ. Cell shape regulates global histone acetylation in human mammary epithelial cells. Exp Cell Res 2007; 313:3066-75. [PMID: 17524393 PMCID: PMC2040058 DOI: 10.1016/j.yexcr.2007.04.022] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/12/2007] [Accepted: 04/16/2007] [Indexed: 01/13/2023]
Abstract
Extracellular matrix (ECM) regulates cell morphology and gene expression in vivo; these relationships are maintained in three-dimensional (3D) cultures of mammary epithelial cells. In the presence of laminin-rich ECM (lrECM), mammary epithelial cells round up and undergo global histone deacetylation, a process critical for their functional differentiation. However, it remains unclear whether lrECM-dependent cell rounding and global histone deacetylation are indeed part of a common physical-biochemical pathway. Using 3D cultures as well as nonadhesive and micropatterned substrata, here we showed that the cell 'rounding' caused by lrECM was sufficient to induce deacetylation of histones H3 and H4 in the absence of biochemical cues. Microarray and confocal analysis demonstrated that this deacetylation in 3D culture is associated with a global increase in chromatin condensation and a reduction in gene expression. Whereas cells cultured on plastic substrata formed prominent stress fibers, cells grown in 3D lrECM or on micropatterns lacked these structures. Disruption of the actin cytoskeleton with cytochalasin D phenocopied the lrECM-induced cell rounding and histone deacetylation. These results reveal a novel link between ECM-controlled cell shape and chromatin structure and suggest that this link is mediated by changes in the actin cytoskeleton.
Collapse
|
31
|
Xu R, Spencer VA, Bissell MJ. Extracellular matrix-regulated gene expression requires cooperation of SWI/SNF and transcription factors. J Biol Chem 2007; 282:14992-9. [PMID: 17387179 PMCID: PMC2933196 DOI: 10.1074/jbc.m610316200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation assays and mammary-specific genes as models, we show here that extracellular matrix molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the beta- and gamma-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both beta- and gamma-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. Chromatin immunoprecipitation analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Co-immunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, CCAAT/enhancer-binding protein beta, and glucocorticoid receptor. Thus, extracellular matrix- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.
Collapse
Affiliation(s)
- Ren Xu
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | |
Collapse
|
32
|
Schedin P, O'Brien J, Rudolph M, Stein T, Borges V. Microenvironment of the involuting mammary gland mediates mammary cancer progression. J Mammary Gland Biol Neoplasia 2007; 12:71-82. [PMID: 17318269 DOI: 10.1007/s10911-007-9039-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Breast cancer diagnosed after a completed pregnancy has higher metastatic potential and therefore a much poorer prognosis. We hypothesize that following pregnancy the process of mammary gland involution, which returns the gland to its pre-pregnant state, co-opts some of the programs of wound healing. The pro-inflammatory milieu that results, while physiologically normal, promotes tumor progression. In this review, the similarities between mammary gland involution after cessation of milk-production and pathological tissue remodeling are discussed in light of emerging data demonstrating a role for pathological tissue remodeling in cancer.
Collapse
Affiliation(s)
- Pepper Schedin
- AMC Cancer Research Center, University of Colorado Health Science Center, Aurora, CO, USA.
| | | | | | | | | |
Collapse
|
33
|
Xu K, Ling MT, Wang X, Wong YC. Evidence of a novel biomarker, alphas1-Casein, a milk protein, in benign prostate hyperplasia. Prostate Cancer Prostatic Dis 2006; 9:293-7. [PMID: 16683014 DOI: 10.1038/sj.pcan.4500872] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 02/26/2006] [Accepted: 03/14/2006] [Indexed: 11/09/2022]
Abstract
Benign prostate hyperplasia (BPH) is a common disease in elderly men. Although it is a non-malignant disease, it has a significant detrimental impact on the quality of life in patients with late-stage disease. Owing to the lack of specific markers, diagnosis of early-stage BPH has been proven unsuccessful. Recently, using two-dimensional electrophoresis, we identified a group of prostatic secretory proteins that are specifically produced by BPH cells (Xu et al., Electrophoresis 2003; 24: 1311). In this study, we investigated the potential diagnostic value of one of the secretory proteins, alphas1-Casein, in BPH by inmmunohistological staining of normal, BPH and prostate cancer tissues. We found that 90% (20 out of 22) of BPH tissues showed moderate to strong alphas1-Casein protein expression whereas none of the normal tissues (0 out of 10) and less than 10% of the prostate cancer tissues (3 out of 30) showed similar staining intensity. Our results suggest that alphas1-Casein may be a potential biomarker for early identification of BPH patients.
Collapse
Affiliation(s)
- K Xu
- Department of Anatomy, Laboratory Block, Faculty of Medicine, The University of Hong Kong, Hong Kong, HKSAR, China
| | | | | | | |
Collapse
|
34
|
|
35
|
Iavnilovitch E, Eilon T, Groner B, Barash I. Expression of a carboxy terminally truncated Stat5 with no transactivation domain in the mammary glands of transgenic mice inhibits cell proliferation during pregnancy, delays onset of milk secretion, and induces apoptosis upon involution. Mol Reprod Dev 2006; 73:841-9. [PMID: 16596634 DOI: 10.1002/mrd.20479] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Signal transducer and activator of transcription (Stat5) is a transcription factor, which transduces extracellular cytokine and growth-factor signals to the nuclei of mammalian cells. As a major mediator of prolactin action, it is involved in the regulation of the development, function, and survival of mammary epithelial cells. The carboxyl terminal of Stat5 encodes a transactivation domain (TAD), which interacts with coactivators and is crucial for the transcriptional induction of Stat5 target genes. To study the role of the Stat5 TAD in mediating Stat5 functions, a carboxy terminally truncated Stat5 variant (Stat5Delta750) was directed for expression in the mammary glands of transgenic mice by regulatory sequences of the beta-lactoglobulin (BLG) gene. Expression of Stat5Delta750 in mammary tissue reduced the rates of cell proliferation at mid and late pregnancy. Subsequently, morphological signs of milk secretion upon parturition were delayed. In double-transgenic mice, expression of Stat5Delta750 drastically decreased BLG/luciferase activity during lactation, but did not affect the expression and secretion of the endogenous beta-casein or alpha-lactalbumin into the milk. Expression of Stat5Delta750 also caused an increase in the number of apoptotic cells during mammary involution by a factor of 3 relative to control glands. Our data established a role for the Stat5 TAD in mediating the effects of Stat5 on mammary development, regulation of milk protein gene activity, and cell survival. The full effects of Stat5Delta750 may be partially buffered by the expression of endogenous wild-type Stat5 and the formation of truncated and wild-type heterodimers.
Collapse
|
36
|
Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 2006; 22:287-309. [PMID: 16824016 PMCID: PMC2933192 DOI: 10.1146/annurev.cellbio.22.010305.104315] [Citation(s) in RCA: 815] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The microenvironment influences gene expression so that the behavior of a cell is largely determined by its interactions with the extracellular matrix, neighboring cells, and soluble local and systemic cues. We describe the essential roles of context and organ structure in directing mammary gland development and differentiated function and in determining the response to oncogenic insults, including mutations. We expand on the concept of "dynamic reciprocity" to present an integrated view of development, cancer, and aging and posit that genes are like the keys on a piano: Although they are essential, it is the context that makes the music.
Collapse
Affiliation(s)
- Celeste M. Nelson
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
37
|
|
38
|
Nelson CM, Bissell MJ. Modeling dynamic reciprocity: engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Semin Cancer Biol 2005; 15:342-52. [PMID: 15963732 PMCID: PMC2933210 DOI: 10.1016/j.semcancer.2005.05.001] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In order to understand why cancer develops as well as predict the outcome of pharmacological treatments, we need to model the structure and function of organs in culture so that our experimental manipulations occur under physiological contexts. This review traces the history of the development of a prototypic example, the three-dimensional (3D) model of the mammary gland acinus. We briefly describe the considerable information available on both normal mammary gland function and breast cancer generated by the current model and present future challenges that will require an increase in its complexity. We propose the need for engineered tissues that faithfully recapitulate their native structures to allow a greater understanding of tissue function, dysfunction, and potential therapeutic intervention.
Collapse
Affiliation(s)
| | - Mina J. Bissell
- Corresponding author. Tel.: +1 510 486 4365; fax: +1 510 486 5586. (M.J. Bissell)
| |
Collapse
|
39
|
Jolivet G, Pantano T, Houdebine LM. Regulation by the extracellular matrix (ECM) of prolactin-induced alpha s1-casein gene expression in rabbit primary mammary cells: role of STAT5, C/EBP, and chromatin structure. J Cell Biochem 2005; 95:313-27. [PMID: 15778982 DOI: 10.1002/jcb.20397] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The aim of the present study was to understand how the extracellular matrix (ECM) regulates at the gene level the prolactin (Prl)-induced signal transducer and activator of transcription 5 (STAT5)-dependent expression of the alpha s1-casein gene in mammary epithelial cells. CCAAT enhancer binding proteins (C/EBPs) are assumed regulators of beta-casein gene expression. Rabbit primary mammary cells express alpha s1-casein gene when cultured on collagen and not on plastic. Similar C/EBPbeta, C/EBPdelta, STAT5, and Prl-activated STAT5 were found under all culture conditions. Thus the ECM does not act through C/EBPs or STAT5. This was confirmed by transfections of rabbit primary mammary cells by a construct sensitive to ovine prolactin (oPrl) and ECM (6i TK luc) encompassing STAT5 and C/EBP binding sites. The mutation of C/EBPs binding sites showed that these sites were not mandatory for Prl-induced expression of the construct. Interestingly, chromatin immunoprecipitation by the anti-acetylhistone H4 antibody (ChIP) showed that the ECM (and not Prl) maintained a high amount of histone H4 acetylation upstream of the alpha s1-casein gene especially at the level of a distal Prl- and ECM-sensitive enhancer. Alpha6 integrin (a membrane receptor of laminin, the principal active component of the mammary ECM) was found at the surface of cells cultured on collagen but not on plastic. In cells cultured on collagen in the presence of anti-alpha6 integrin antibody, Prl-induced transcription of the endogenous alpha s1-casein gene was significantly reduced, without modifying C/EBPs and STAT5. Besides, histone H4 acetylation was reduced. Thus, we propose that the ECM regulates rabbit alpha s1-casein protein expression by local modification of chromatin structure, independently of STAT5 and C/EBPs.
Collapse
Affiliation(s)
- Geneviève Jolivet
- Biologie du Développement et Reproduction, Institut National de la Recherche Agronomique, 78352 Jouy en Josas, France.
| | | | | |
Collapse
|
40
|
Maniotis AJ, Valyi-Nagy K, Karavitis J, Moses J, Boddipali V, Wang Y, Nuñez R, Setty S, Arbieva Z, Bissell MJ, Folberg R. Chromatin organization measured by AluI restriction enzyme changes with malignancy and is regulated by the extracellular matrix and the cytoskeleton. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:1187-203. [PMID: 15793298 PMCID: PMC1602386 DOI: 10.1016/s0002-9440(10)62338-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Given that expression of many genes changes when cells become malignant or are placed in different microenvironments, we asked whether these changes were accompanied by global reorganization of chromatin. We reasoned that sequestration or exposure of chromatin-sensitive sites to restriction enzymes could be used to detect this reorganization. We found that AluI-sensitive sites of nonmalignant cells were relatively more exposed compared to their malignant counterparts in cultured cells and human tumor samples. Changes in exposure and sequestration of AluI-sensitive sites in normal fibroblasts versus fibrosarcoma or those transfected with oncogenes, nonmalignant breast cells versus carcinomas and poorly metastatic versus highly invasive melanoma were shown to be independent of the cell cycle and may be influenced by proteins rich in disulfide bonds. Remarkably, regardless of degree of malignancy, AluI-sensitive sites became profoundly sequestered when cells were incubated with laminin, Matrigel, or a circular RGD peptide (RGD-C), but became exposed when cells were placed on collagen I or in serum-containing medium. Disruption of the actin cytoskeleton led to exposure, whereas disruption of microtubules or intermediate filaments exerted a sequestering effect. Thus, AluI-sensitive sites are more sequestered with increasing malignant behavior, but the sequestration and exposure of these sites is exquisitely sensitive to information conferred to the cell by molecules and biomechanical forces that regulate cellular and tissue architecture.
Collapse
Affiliation(s)
- Andrew J Maniotis
- Department of Pathology, University of Illinois at Chicago, 1819 W. Polk Street, 446 CMW (MC 847), Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Reichenstein M, German T, Barash I. BLG-e1 - a novel regulatory element in the distal region of the beta-lactoglobulin gene promoter. FEBS Lett 2005; 579:2097-104. [PMID: 15811325 DOI: 10.1016/j.febslet.2005.02.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2005] [Revised: 02/16/2005] [Accepted: 02/20/2005] [Indexed: 10/25/2022]
Abstract
beta-Lactoglobulin (BLG) is a major ruminant milk protein. A regulatory element, termed BLG-e1, was defined in the distal region of the ovine BLG gene promoter. This 299-bp element lacks the established cis-regulatory sequences that affect milk-protein gene expression. Nevertheless, it alters the binding of downstream BLG sequences to histone H4 and the sensitivity of the histone-DNA complexes to trichostatin A treatment. In mammary cells cultured under favorable lactogenic conditions, BLG-e1 acts as a potent, position-independent silencer of BLG/luciferase expression, and similarly affects the promoter activity of the mouse whey acidic protein gene. Intragenic sequences upstream of BLG exon 2 reverse the silencing effect of BLG-e1 in vitro and in transgenic mice.
Collapse
Affiliation(s)
- Moshe Reichenstein
- Institute of Animal Science, ARO, The Volcani Center, P.O. Box 6, Bet-Dagan 50250, Israel
| | | | | |
Collapse
|
42
|
Bissell MJ, Kenny PA, Radisky DC. Microenvironmental regulators of tissue structure and function also regulate tumor induction and progression: the role of extracellular matrix and its degrading enzymes. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 70:343-56. [PMID: 16869771 PMCID: PMC3004779 DOI: 10.1101/sqb.2005.70.013] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It is now widely accepted that elements of the cellular and tissue microenvironment are crucial regulators of cell behavior in culture and homeostasis in vivo, and that many of the same factors influence the course of tumor progression. Less well established is the extent to which extracellular factors actually cause cancer, and the circumstances under which this may occur. Using physiologically relevant three-dimensional culture assays and transgenic animals, we have explored how the environmental and architectural context of cells, tissues, and organs controls mammary-specific gene expression, growth regulation, apoptosis, and drug resistance and have found that loss of tissue structure is a prerequisite for cancer progression. Here we summarize this evidence and highlight two of our recent studies. Using mouse mammary epithelial cells, we show that exposure to matrix metalloproteinase-3 (MMP-3) stimulates production of reactive oxygen species (ROS) that destabilize the genome and induce epithelial-mesenchymal transition, causing malignant transformation. Using a human breast cancer progression series, we find that ADAM-dependent growth factor shedding plays a crucial role in acquisition of the malignant phenotype. These findings illustrate how normal tissue structure controls the response to extracellular signals so as to preserve tissue specificity and growth status.
Collapse
Affiliation(s)
- M J Bissell
- Cancer Biology Department, Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, 94720, USA
| | | | | |
Collapse
|
43
|
Bissell MJ, Rizki A, Mian IS. Tissue architecture: the ultimate regulator of breast epithelial function. Curr Opin Cell Biol 2004; 15:753-62. [PMID: 14644202 PMCID: PMC2933200 DOI: 10.1016/j.ceb.2003.10.016] [Citation(s) in RCA: 309] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mina J Bissell
- Department of Cell and Molecular Biology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | | | | |
Collapse
|
44
|
Zoubiane GS, Valentijn A, Lowe ET, Akhtar N, Bagley S, Gilmore AP, Streuli CH. A role for the cytoskeleton in prolactin-dependent mammary epithelial cell differentiation. J Cell Sci 2004; 117:271-80. [PMID: 14676278 DOI: 10.1242/jcs.00855] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The function of exocrine glands depends on signals within the extracellular environment. In the mammary gland, integrin-mediated adhesion to the extracellular matrix protein laminin co-operates with soluble factors such as prolactin to regulate tissue-specific gene expression. The mechanism of matrix and prolactin crosstalk and the activation of downstream signals are not fully understood. Because integrins organize the cytoskeleton, we analysed the contribution of the cytoskeleton to prolactin receptor activation and the resultant stimulation of milk protein gene expression. We show that the proximal signalling events initiated by prolactin (i.e. tyrosine phosphorylation of receptor and the associated kinase Jak2) do not depend on an intact actin cytoskeleton. However, actin networks and microtubules are both necessary for continued mammary cell differentiation, because cytoskeletal integrity is required to transduce the signals between prolactin receptor and Stat5, a transcription factor necessary for milk protein gene transcription. The two different cytoskeletal scaffolds regulate prolactin signalling through separate mechanisms that are specific to cellular differentiation but do not affect the general profile of protein synthesis.
Collapse
Affiliation(s)
- Ghada S Zoubiane
- School of Biological Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | | | | | |
Collapse
|
45
|
Novaro V, Radisky DC, Ramos Castro NE, Weisz A, Bissell MJ. Malignant mammary cells acquire independence from extracellular context for regulation of estrogen receptor alpha. Clin Cancer Res 2004; 10:402S-9S. [PMID: 14734499 DOI: 10.1158/1078-0432.ccr-031209] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interactions between luminal epithelial cells and their surrounding microenvironment govern the normal development and function of the mammary gland. Alterations of these interactions can induce abnormal intracellular signaling pathways that affect the development and progression of breast tumors. One critical component of mammary gland development, as well as breast cancer progression, is the expression of estrogen receptors. In a previous study using cultured nonmalignant mammary epithelial cells, we found that the basement membrane molecules, laminin-1 and collagen-IV, were involved in maintenance of estrogen receptor (ER) alpha expression, and that this response could be interfered with by disrupting cell-extracellular matrix adhesion. Here we use phenotypically normal mammary epithelial SCp2 cells to dissect the promoter region of the ERalpha that is involved in the selective response to basement membrane. We also analyze the alteration of this response in SCg6 cells, a malignant cell line that shares a common lineage with the SCp2 cells, to provide insight into the relative overexpression of ERalpha and the unresponsiveness to basement membrane regulation found in those malignant cells. Evidence is presented to show the relevance of the cross-talk between different signaling pathways in the constitution of a functional tissue organization and how this integration may be disrupted in the malignant phenotype.
Collapse
Affiliation(s)
- Virginia Novaro
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, and Dipartimento di Patologia generale, Seconda Università degli Studi di Napoli, Napoli, Italy
| | | | | | | | | |
Collapse
|
46
|
Guerrero-Santoro J, Yang L, Stallcup MR, DeFranco DB. Distinct LIM domains of Hic-5/ARA55 are required for nuclear matrix targeting and glucocorticoid receptor binding and coactivation. J Cell Biochem 2004; 92:810-9. [PMID: 15211577 DOI: 10.1002/jcb.20109] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hydrogen peroxide-inducible clone-5 (Hic-5), belongs to the group III LIM domain protein family and contains four carboxyl-terminal LIM domains (LIM1-LIM4). In addition to its role in focal adhesion signaling, Hic-5 acts in the nucleus as a coactivator for some steroid hormone receptors such as the glucocorticoid receptor (GR) and androgen receptor (AR). Based upon its effect on AR transactivation, Hic-5 has also been designated as ARA55. Here, we report mapping studies of Hic-5/ARA55 functional domains and establish that LIM3 and LIM4 are necessary for maximal effects on GR transactivation. However, results from yeast two-hybrid assays demonstrated that these two LIM domains together, while necessary, are not sufficient to interact with the tau2 transactivation domain of GR. LIM4 also functions as a nuclear matrix targeting sequence (NMTS) for Hic-5/ARA55, as it is both necessary and sufficient to target a heterologous protein to the nuclear matrix. Thus, as suggested from previous analysis of LIM domain-containing proteins, separate but highly related LIM domains serve distinct functions.
Collapse
|
47
|
Mulholland NM, Soeth E, Smith CL. Inhibition of MMTV transcription by HDAC inhibitors occurs independent of changes in chromatin remodeling and increased histone acetylation. Oncogene 2003; 22:4807-18. [PMID: 12894222 DOI: 10.1038/sj.onc.1206722] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Increased histone acetylation has been associated with activated gene transcription and decreased acetylation with repression. However, there is a growing number of genes known, which are downregulated by histone deacetylase (HDAC) inhibitors through unknown mechanisms. This study examines the mechanism by which the mouse mammary tumor virus (MMTV) promoter is repressed by the HDAC inhibitor, trichostatin A (TSA). We find that this repression is transcriptional in nature and that it occurs in the presence and absence of glucocorticoids. TSA decreases MMTV transcription at a rapid rate, reaching maximum in 30-60 min. In contrast with previous reports, the repression does not correlate with an inhibition of glucocorticoid-induced nuclease hypersensitivity or NF1-binding at the MMTV promoter. Surprisingly, TSA does not induce sizable increases in histone acetylation at the MMTV promoter nor does it inhibit histone deacetylation, which accompanies deactivation of the glucocorticoid-activated MMTV promoter. Repression of MMTV transcription by TSA does not depend on the chromatin organization of the promoter because a transiently transfected MMTV promoter construct with a disorganized nucleoprotein structure was also repressed by TSA treatment. Mutational analysis of the MMTV promoter indicates that repression by TSA is mediated through the TATA box region. These results suggest a novel mechanism that involves acetylation of nonhistone proteins necessary for basal transcription.
Collapse
Affiliation(s)
- Niveen M Mulholland
- Department of Genetics, George Washington University, Washington, DC 20052, USA
| | | | | |
Collapse
|
48
|
Novaro V, Roskelley CD, Bissell MJ. Collagen-IV and laminin-1 regulate estrogen receptor alpha expression and function in mouse mammary epithelial cells. J Cell Sci 2003; 116:2975-86. [PMID: 12808020 PMCID: PMC2933217 DOI: 10.1242/jcs.00523] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression level and functional activity of estrogen receptor alpha is an important determinant of breast physiology and breast cancer treatment. However, it has been difficult to identify the signals that regulate estrogen receptor because cultured mammary epithelial cells generally do not respond to estrogenic signals. Here, we use a combination of two- and three-dimensional culture systems to dissect the extracellular signals that control endogenous estrogen receptor alpha. Its expression was greatly reduced when primary mammary epithelial cells were placed on tissue culture plastic; however, the presence of a reconstituted basement membrane in combination with lactogenic hormones partially prevented this decrease. Estrogen receptor alpha expression in primary mammary fibroblasts was not altered by these culture conditions, indicating that its regulation is cell type specific. Moreover, estrogen receptor-dependent reporter gene expression, as well as estrogen receptor alpha levels, were increased threefold in a functionally normal mammary epithelial cell line when reconstituted basement membrane was added to the medium. This regulatory effect of reconstituted basement membrane was reproduced by two of its components, collagen-IV and laminin-1, and it was blocked by antibodies against alpha2, alpha6 and beta1 integrin subunits. Our results indicate that integrin-mediated response to specific basement membrane components, rather than cell rounding or cell growth arrest induced by reconstituted basement membrane, is critical in the regulation of estrogen receptor alpha expression and function in mammary epithelial cells.
Collapse
Affiliation(s)
- Virginia Novaro
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Calvin D. Roskelley
- Department of Anatomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Author for correspondence ()
| |
Collapse
|
49
|
Chua YL, Watson LA, Gray JC. The transcriptional enhancer of the pea plastocyanin gene associates with the nuclear matrix and regulates gene expression through histone acetylation. THE PLANT CELL 2003; 15:1468-79. [PMID: 12782737 PMCID: PMC156380 DOI: 10.1105/tpc.011825] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2003] [Accepted: 04/11/2003] [Indexed: 05/17/2023]
Abstract
The influence of the transcriptional enhancer of the pea plastocyanin gene (PetE) on the acetylation of histones was examined with chromatin immunoprecipitation (ChIP) experiments using antibodies that recognize acetylated or nonacetylated histones H3 and H4. In transgenic tobacco plants containing the pea PetE promoter fused to uidA, both acetylated and nonacetylated histones H3 and H4 were present on the integrated transgene. Linking the PetE enhancer to the transgene resulted in increased beta-glucuronidase activity and increased amounts of acetylated histones H3 and H4 present on the promoter, suggesting that the enhancer may increase transcription by mediating the acetylation of histones. Trichostatin A and sodium butyrate, which are potent inhibitors of histone deacetylases (HDAs), activated expression from the PetE promoter by fourfold, with a concomitant increase in the acetylation states of histones H3 and H4, as determined by ChIP, indicating that the acetylation of histones has a direct positive effect on transcription. The HDA inhibitors did not increase expression from the PetE promoter when it was linked to the enhancer, consistent with preexisting hyperacetylated histones on the transgene. Mapping of histone acetylation states along the reporter gene indicated that the histones H3 and H4 associated with the promoter and the 5' region of uidA were hyperacetylated in the presence of the PetE enhancer. The PetE enhancer bound to isolated tobacco nuclear matrices in vitro and was associated with the nuclear matrix in nuclei isolated from transgenic tobacco plants. These results suggest that the pea PetE enhancer activates transcription by associating with the nuclear matrix, mediating the acetylation of histones on the promoter and the nearby coding region and resulting in an altered chromatin structure.
Collapse
Affiliation(s)
- Yii Leng Chua
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | | | | |
Collapse
|
50
|
Mueller CR, Roskelley CD. Regulation of BRCA1 expression and its relationship to sporadic breast cancer. Breast Cancer Res 2003; 5:45-52. [PMID: 12559046 PMCID: PMC154136 DOI: 10.1186/bcr557] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2002] [Revised: 10/17/2002] [Accepted: 10/25/2002] [Indexed: 12/20/2022] Open
Abstract
Germ-line mutations in the BRCA1 tumour suppressor gene contribute to familial breast tumour formation, but there is no evidence for direct mutation of the BRCA1 gene in the sporadic form of the disease. In contrast, decreased expression of the BRCA1 gene has been shown to be common in sporadic tumours, and the magnitude of the decrease correlates with disease progression. BRCA1 expression is also tightly regulated during normal breast development. Determining how these developmental regulators of BRCA1 expression are co-opted during breast tumourigenesis could lead to a better understanding of sporadic breast cancer aetiology and the generation of novel therapeutic strategies aimed at preventing sporadic breast tumour progression.
Collapse
|