1
|
Aghajani Mir M. Vault RNAs (vtRNAs): Rediscovered non-coding RNAs with diverse physiological and pathological activities. Genes Dis 2024; 11:772-787. [PMID: 37692527 PMCID: PMC10491885 DOI: 10.1016/j.gendis.2023.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/16/2023] [Indexed: 04/05/2023] Open
Abstract
The physicochemical characteristics of RNA admit non-coding RNAs to perform a different range of biological acts through various mechanisms and are involved in regulating a diversity of fundamental processes. Notably, some reports of pathological conditions have proved abnormal expression of many non-coding RNAs guides the ailment. Vault RNAs are a class of non-coding RNAs containing stem regions or loops with well-conserved sequence patterns that play a fundamental role in the function of vault particles through RNA-ligand, RNA-RNA, or RNA-protein interactions. Taken together, vault RNAs have been proposed to be involved in a variety of functions such as cell proliferation, nucleocytoplasmic transport, intracellular detoxification processes, multidrug resistance, apoptosis, and autophagy, and serve as microRNA precursors and signaling pathways. Despite decades of investigations devoted, the biological function of the vault particle or the vault RNAs is not yet completely cleared. In this review, the current scientific assertions of the vital vault RNAs functions were discussed.
Collapse
Affiliation(s)
- Mahsa Aghajani Mir
- Deputy of Research and Technology, Health Research Institute, Babol University of Medical Sciences, Babol 47176-4774, Iran
| |
Collapse
|
2
|
Wang Z, Ren S, Li Q, Royster AD, lin L, Liu S, Ganaie SS, Qiu J, Mir S, Mir MA. Hantaviruses use the endogenous host factor P58IPK to combat the PKR antiviral response. PLoS Pathog 2021; 17:e1010007. [PMID: 34653226 PMCID: PMC8550428 DOI: 10.1371/journal.ppat.1010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/27/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022] Open
Abstract
Hantavirus nucleocapsid protein (NP) inhibits protein kinase R (PKR) dimerization by an unknown mechanism to counteract its antiviral responses during virus infection. Here we demonstrate that NP exploits an endogenous PKR inhibitor P58IPK to inhibit PKR. The activity of P58IPK is normally restricted in cells by the formation of an inactive complex with its negative regulator Hsp40. On the other hand, PKR remains associated with the 40S ribosomal subunit, a unique strategic location that facilitates its free access to the downstream target eIF2α. Although both NP and Hsp40 bind to P58IPK, the binding affinity of NP is much stronger compared to Hsp40. P58IPK harbors an NP binding site, spanning to N-terminal TPR subdomains I and II. The Hsp40 binding site on P58IPK was mapped to the TPR subdomain II. The high affinity binding of NP to P58IPK and the overlap between NP and Hsp40 binding sites releases the P58IPK from its negative regulator by competitive inhibition. The NP-P58IPK complex is selectively recruited to the 40S ribosomal subunit by direct interaction between NP and the ribosomal protein S19 (RPS19), a structural component of the 40S ribosomal subunit. NP has distinct binding sites for P58IPK and RPS19, enabling it to serve as bridge between P58IPK and the 40S ribosomal subunit. NP mutants deficient in binding to either P58IPK or RPS19 fail to inhibit PKR, demonstrating that selective engagement of P58IPK to the 40S ribosomal subunit is required for PKR inhibition. Cells deficient in P58IPK mount a rapid PKR antiviral response and establish an antiviral state, observed by global translational shutdown and rapid decline in viral load. These studies reveal a novel viral strategy in which NP releases P58IPK from its negative regulator and selectively engages it on the 40S ribosomal subunit to promptly combat the PKR antiviral responses.
Collapse
Affiliation(s)
- Zekun Wang
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Songyang Ren
- Western University of Health Sciences, Pomona, California, United States of America
| | - Qiming Li
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Austin D. Royster
- Western University of Health Sciences, Pomona, California, United States of America
| | - Lei lin
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Sichen Liu
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Safder S. Ganaie
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Sheema Mir
- Western University of Health Sciences, Pomona, California, United States of America
| | - Mohammad A. Mir
- Western University of Health Sciences, Pomona, California, United States of America
| |
Collapse
|
3
|
Emanuelli G, Nassehzadeh-Tabriz N, Morrell NW, Marciniak SJ. The integrated stress response in pulmonary disease. Eur Respir Rev 2020; 29:29/157/200184. [PMID: 33004527 PMCID: PMC7116220 DOI: 10.1183/16000617.0184-2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
The respiratory tract and its resident immune cells face daily exposure
to stress, both from without and from within. Inhaled pathogens, including
severe acute respiratory syndrome coronavirus 2, and toxins from pollution
trigger a cellular defence system that reduces protein synthesis to minimise
viral replication or the accumulation of misfolded proteins. Simultaneously, a
gene expression programme enhances antioxidant and protein folding machineries
in the lung. Four kinases (PERK, PKR, GCN2 and HRI) sense a diverse range of
stresses to trigger this “integrated stress response”. Here we review recent
advances identifying the integrated stress response as a critical pathway in the
pathogenesis of pulmonary diseases, including pneumonias, thoracic malignancy,
pulmonary fibrosis and pulmonary hypertension. Understanding the integrated
stress response provides novel targets for the development of therapies.
Collapse
Affiliation(s)
- Giulia Emanuelli
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK.,Division of Respiratory Medicine, Dept of Medicine, University of Cambridge, Cambridge, UK.,Equal first authors
| | - Nikou Nassehzadeh-Tabriz
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK.,Equal first authors
| | - Nick W Morrell
- Division of Respiratory Medicine, Dept of Medicine, University of Cambridge, Cambridge, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK .,Division of Respiratory Medicine, Dept of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Lee YS, Kunkeaw N, Lee YS. Protein kinase R and its cellular regulators in cancer: An active player or a surveillant? WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1558. [PMID: 31231984 DOI: 10.1002/wrna.1558] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
Protein kinase R (PKR), originally known as an antiviral protein, senses various stresses as well as pathogen-driven double-stranded RNAs. Thereby activated PKR provokes diverse downstream events, including eIF2α phosphorylation and nuclear factor kappa-light-chain-enhancer of activated B cells activation. Consequently, PKR induces apoptosis and inflammation, both of which are highly important in cancer as much as its original antiviral role. Therefore, cellular proteins and RNAs should tightly control PKR activity. PKR and its regulators are often dysregulated in cancer and it is undoubted that such dysregulation contributes to tumorigenesis. However, PKR's precise role in cancer is still in debate, due to incomprehensible and even contradictory data. In this review, we introduce important cellular PKR regulators and discuss about their roles in cancer. Among them, we pay particular attention to nc886, a PKR repressor noncoding RNA that has been identified relatively recently, because its expression pattern in cancer can explain interesting yet obscure oncologic aspects of PKR. Based on nc886 and its regulation of PKR, we have proposed a tumor surveillance model, which reconciles contradictory data about PKR in cancer. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Nawapol Kunkeaw
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Yeon-Su Lee
- Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea
| |
Collapse
|
5
|
Park CJ, Park JM. Endoplasmic Reticulum Plays a Critical Role in Integrating Signals Generated by Both Biotic and Abiotic Stress in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:399. [PMID: 31019523 PMCID: PMC6458287 DOI: 10.3389/fpls.2019.00399] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/15/2019] [Indexed: 05/19/2023]
Abstract
Most studies of environmental adaptations in plants have focused on either biotic or abiotic stress factors in an attempt to understand the defense mechanisms of plants against individual stresses. However, in the natural ecosystem, plants are simultaneously exposed to multiple stresses. Stress-tolerant crops developed in translational studies based on a single stress often fail to exhibit the expected traits in the field. To adapt to abiotic stress, recent studies have identified the need for interactions of plants with various microorganisms. These findings highlight the need to understand the multifaceted interactions of plants with biotic and abiotic stress factors. The endoplasmic reticulum (ER) is an organelle that links various stress responses. To gain insight into the molecular integration of biotic and abiotic stress responses in the ER, we focused on the interactions of plants with RNA viruses. This interaction points toward the relevance of ER in viral pathogenicity as well as plant responses. In this mini review, we explore the molecular crosstalk between biotic and abiotic stress signaling through the ER by elaborating ER-mediated signaling in response to RNA viruses and abiotic stresses. Additionally, we summarize the results of a recent study on phytohormones that induce ER-mediated stress response. These studies will facilitate the development of multi-stress-tolerant transgenic crops in the future.
Collapse
Affiliation(s)
- Chang-Jin Park
- Department of Bioresources Engineering, Sejong University, Seoul, South Korea
- Plant Engineering Research Institute, Sejong University, Seoul, South Korea
- *Correspondence: Chang-Jin Park,
| | - Jeong Mee Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Biosystems and Bioengineering, University of Science and Technology (UST), Daejeon, South Korea
- Jeong Mee Park,
| |
Collapse
|
6
|
Thermodynamic Model for B-Z Transition of DNA Induced by Z-DNA Binding Proteins. Molecules 2018; 23:molecules23112748. [PMID: 30355979 PMCID: PMC6278649 DOI: 10.3390/molecules23112748] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 01/10/2023] Open
Abstract
Z-DNA is stabilized by various Z-DNA binding proteins (ZBPs) that play important roles in RNA editing, innate immune response, and viral infection. In this review, the structural and dynamics of various ZBPs complexed with Z-DNA are summarized to better understand the mechanisms by which ZBPs selectively recognize d(CG)-repeat DNA sequences in genomic DNA and efficiently convert them to left-handed Z-DNA to achieve their biological function. The intermolecular interaction of ZBPs with Z-DNA strands is mediated through a single continuous recognition surface which consists of an α3 helix and a β-hairpin. In the ZBP-Z-DNA complexes, three identical, conserved residues (N173, Y177, and W195 in the Zα domain of human ADAR1) play central roles in the interaction with Z-DNA. ZBPs convert a 6-base DNA pair to a Z-form helix via the B-Z transition mechanism in which the ZBP first binds to B-DNA and then shifts the equilibrium from B-DNA to Z-DNA, a conformation that is then selectively stabilized by the additional binding of a second ZBP molecule. During B-Z transition, ZBPs selectively recognize the alternating d(CG)n sequence and convert it to a Z-form helix in long genomic DNA through multiple sequence discrimination steps. In addition, the intermediate complex formed by ZBPs and B-DNA, which is modulated by varying conditions, determines the degree of B-Z transition.
Collapse
|
7
|
Chen S, Yang C, Zhang W, Mahalingam S, Wang M, Cheng A. Flaviviridae virus nonstructural proteins 5 and 5A mediate viral immune evasion and are promising targets in drug development. Pharmacol Ther 2018; 190:1-14. [PMID: 29742479 DOI: 10.1016/j.pharmthera.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Infections with viruses in the Flaviviridae family have a vast global and economic impact because of the high morbidity and mortality. The pathogenesis of Flaviviridae infections is very complex and not fully understood because these viruses can inhibit multiple immune pathways including the complement system, NK cells, and IFN induction and signalling pathways. The non-structural (NS) 5 and 5A proteins of Flaviviridae viruses are highly conserved and play an important role in resisting host immunity through various evasion mechanisms. This review summarizes the strategies used by the NS5 and 5A proteins of Flaviviridae viruses for evading the innate immune response by inhibiting pattern recognition receptor (PRR) signalling pathways (TLR/MyD88, IRF7), suppressing interferon (IFN) signalling pathways (IFN-γRs, STAT1, STAT2), and impairing the function of IFN-stimulated genes (ISGs) (e.g. protein kinase R [PKR], oligoadenylate synthase [OAS]). All of these immune evasion mechanisms depend on the interaction of NS5 or NS5A with cellular proteins, such as MyD88 and IRF7, IFN-αRs, IFN-γRs, STAT1, STAT2, PKR and OAS. NS5 is the most attractive target for the discovery of broad spectrum compounds against Flaviviridae virus infection. The methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) activities of NS5 are the main therapeutic targets for antiviral drugs against Flaviviridae virus infection. Based on our site mapping, the sites involved in immune evasion provide some potential and promising targets for further novel antiviral therapeutics.
Collapse
Affiliation(s)
- Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| | - Chao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Suresh Mahalingam
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| |
Collapse
|
8
|
Dzananovic E, McKenna SA, Patel TR. Viral proteins targeting host protein kinase R to evade an innate immune response: a mini review. Biotechnol Genet Eng Rev 2018; 34:33-59. [PMID: 29716441 DOI: 10.1080/02648725.2018.1467151] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The innate immune system offers a first line of defense by neutralizing foreign pathogens such as bacteria, fungi, and viruses. These pathogens express molecules (RNA and proteins) that have discrete structures, known as the pathogen-associated molecular patterns that are recognized by a highly specialized class of host proteins called pattern recognition receptors to facilitate the host's immune response against infection. The RNA-dependent Protein Kinase R (PKR) is one of the host's pattern recognition receptors that is a key component of an innate immune system. PKR recognizes imperfectly double-stranded non-coding viral RNA molecules via its N-terminal double-stranded RNA binding motifs, undergoes phosphorylation of the C-terminal kinase domain, ultimately resulting in inhibition of viral protein translation by inhibiting the guanine nucleotide exchange activity of eukaryotic initiation factor 2α. Not surprisingly, viruses have evolved mechanisms by which viral non-coding RNA or protein molecules inhibit PKR's activation and/or its downstream activity to allow viral replication. In this review, we will highlight the role of viral proteins in inhibiting PKR's activity and summarize currently known mechanisms by which viral proteins execute such inhibitory activity.
Collapse
Affiliation(s)
- Edis Dzananovic
- a Plant Pathology, Plant Protection and Molecular Biology , Agriculture and Agri-Food Canada , Saskatoon , Canada
| | - Sean A McKenna
- b Department of Chemistry, Manitoba Institute for Materials, Department of Biochemistry and Medical Genetics , University of Manitoba , Winnipeg , Canada
| | - Trushar R Patel
- c Department of Chemistry and Biochemistry , Alberta RNA Research and Training Institute, University of Lethbridge , Lethbridge , Canada.,d DiscoveryLab, Faculty of Medicine & Dentistry , University of Alberta , Edmonton , Canada.,e Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine , University of Calgary , Calgary , Canada
| |
Collapse
|
9
|
Bandla H, Dasgupta D, Mauer AS, Nozickova B, Kumar S, Hirsova P, Graham RP, Malhi H. Deletion of endoplasmic reticulum stress-responsive co-chaperone p58 IPK protects mice from diet-induced steatohepatitis. Hepatol Res 2018; 48:479-494. [PMID: 29316085 PMCID: PMC5932231 DOI: 10.1111/hepr.13052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/30/2017] [Accepted: 12/29/2017] [Indexed: 01/15/2023]
Abstract
AIM Activation of PKR-like endoplasmic reticulum kinase (PERK), an endoplasmic reticulum stress sensor, is a feature of non-alcoholic steatohepatitis (NASH), yet regulators of PERK signaling remain undefined in this context. The protein p58IPK regulates PERK; however, its role in NASH has not been examined. The aim of this study was to assess the in vivo role of p58IPK in the pathogenesis of dietary NASH. METHODS Parameters of hepatocyte cell death, liver injury, inflammation, fibrosis, indirect calorimetry and PERK activation were assessed in p58IPK knockout (p58ipk-/- ) mice and their wild-type littermate controls. All animals were fed a diet enriched in fat, fructose, and cholesterol (FFC) for 20 weeks. RESULTS Activation of PERK was attenuated in FFC-fed p58ipk-/- mice. Accordingly, FFC-fed p58ipk-/- mice showed a reduction in hepatocyte apoptosis and death receptor expression, with a significant reduction in serum alanine transaminase values. Correspondingly, macrophage accumulation and fibrosis were significantly lower in FFC-fed p58ipk-/- mice. CONCLUSION We have shown that, in an in vivo dietary NASH model, p58IPK mediates hepatocyte apoptosis and liver injury, likely through PERK phosphorylation. In the absence of p58IPK , PERK phosphorylation and NASH are attenuated. Inhibition of hepatic p58IPK could be a future target for NASH therapy.
Collapse
Affiliation(s)
| | | | - Amy S. Mauer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Barbora Nozickova
- Universitatsspital Zurich, 8096, Ramistrasse 100, Zurich, Switzerland
| | - Swarup Kumar
- Department of Medicine, Saint Vincent Hospital, 123 Summer St, Worcester, MA
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Rondell P. Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN,Corresponding author: Harmeet Malhi, M.B.B.S., Associate Professor of Medicine and Physiology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, Tel: 507 284 0686, Fax: 507 284 0762,
| |
Collapse
|
10
|
Li C, Zhu Z, Du X, Cao W, Yang F, Zhang X, Feng H, Li D, Zhang K, Liu X, Zheng H. Foot-and-mouth disease virus induces lysosomal degradation of host protein kinase PKR by 3C proteinase to facilitate virus replication. Virology 2017; 509:222-231. [PMID: 28662438 PMCID: PMC7126777 DOI: 10.1016/j.virol.2017.06.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 12/16/2022]
Abstract
The interferon-induced double-strand RNA activated protein kinase (PKR) plays important roles in host defense against viral infection. Here we demonstrate the significant antiviral role of PKR against foot-and-mouth disease virus (FMDV) and report that FMDV infection inhibits PKR expression and activation in porcine kidney (PK-15) cells. The viral nonstructural protein 3C proteinase (3Cpro) is identified to be responsible for this inhibition. However, it is independent of the well-known proteinase activity of 3Cpro or 3Cpro-induced shutoff of host protein synthesis. We show that 3Cpro induces PKR degradation by lysosomal pathway and no interaction is determined between 3Cpro and PKR. Together, our results indicate that PKR acts an important antiviral factor during FMDV infection, and FMDV has evolved a strategy to overcome PKR-mediated antiviral role by downregulation of PKR protein.
Collapse
Affiliation(s)
- Chuntian Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China.
| | - Xiaoli Du
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Xiangle Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Huanhuan Feng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Keshan Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China.
| |
Collapse
|
11
|
Auto-phosphorylation Represses Protein Kinase R Activity. Sci Rep 2017; 7:44340. [PMID: 28281686 PMCID: PMC5345052 DOI: 10.1038/srep44340] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/07/2017] [Indexed: 12/11/2022] Open
Abstract
The central role of protein kinases in controlling disease processes has spurred efforts to develop pharmaceutical regulators of their activity. A rational strategy to achieve this end is to determine intrinsic auto-regulatory processes, then selectively target these different states of kinases to repress their activation. Here we investigate auto-regulation of the innate immune effector protein kinase R, which phosphorylates the eukaryotic initiation factor 2α to inhibit global protein translation. We demonstrate that protein kinase R activity is controlled by auto-inhibition via an intra-molecular interaction. Part of this mechanism of control had previously been reported, but was then controverted. We account for the discrepancy and extend our understanding of the auto-inhibitory mechanism by identifying that auto-inhibition is paradoxically instigated by incipient auto-phosphorylation. Phosphor-residues at the amino-terminus instigate an intra-molecular interaction that enlists both of the N-terminal RNA-binding motifs of the protein with separate surfaces of the C-terminal kinase domain, to co-operatively inhibit kinase activation. These findings identify an innovative mechanism to control kinase activity, providing insight for strategies to better regulate kinase activity.
Collapse
|
12
|
Carnero E, Barriocanal M, Prior C, Pablo Unfried J, Segura V, Guruceaga E, Enguita M, Smerdou C, Gastaminza P, Fortes P. Long noncoding RNA EGOT negatively affects the antiviral response and favors HCV replication. EMBO Rep 2016; 17:1013-28. [PMID: 27283940 DOI: 10.15252/embr.201541763] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/12/2016] [Indexed: 12/17/2022] Open
Abstract
The role of long noncoding RNAs (lncRNAs) in viral infection is poorly studied. We have identified hepatitis C virus (HCV)-Stimulated lncRNAs (CSRs) by transcriptome analysis. Interestingly, two of these CSRs (PVT1 and UCA1) play relevant roles in tumorigenesis, providing a novel link between HCV infection and development of liver tumors. Expression of some CSRs seems induced directly by HCV, while others are upregulated by the antiviral response against the virus. In fact, activation of pathogen sensors induces the expression of CSR32/EGOT RIG-I and the RNA-activated kinase PKR sense HCV RNA, activate NF-κB and upregulate EGOT EGOT is increased in the liver of patients infected with HCV and after infection with influenza or Semliki Forest virus (SFV). Genome-wide guilt-by-association studies predict that EGOT may function as a negative regulator of the antiviral pathway. Accordingly, EGOT depletion increases the expression of several interferon-stimulated genes and leads to decreased replication of HCV and SFV Our results suggest that EGOT is a lncRNA induced after infection that increases viral replication by antagonizing the antiviral response.
Collapse
Affiliation(s)
- Elena Carnero
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA) and IdiSNA Navarra Institute for Health Research University of Navarra, Pamplona, Spain
| | - Marina Barriocanal
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA) and IdiSNA Navarra Institute for Health Research University of Navarra, Pamplona, Spain
| | - Celia Prior
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA) and IdiSNA Navarra Institute for Health Research University of Navarra, Pamplona, Spain
| | - Juan Pablo Unfried
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA) and IdiSNA Navarra Institute for Health Research University of Navarra, Pamplona, Spain
| | - Victor Segura
- Bioinformatics Unit, CIMA and IdisNA University of Navarra, Pamplona, Spain
| | | | - Mónica Enguita
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA) and IdiSNA Navarra Institute for Health Research University of Navarra, Pamplona, Spain
| | - Cristian Smerdou
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA) and IdiSNA Navarra Institute for Health Research University of Navarra, Pamplona, Spain
| | | | - Puri Fortes
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA) and IdiSNA Navarra Institute for Health Research University of Navarra, Pamplona, Spain
| |
Collapse
|
13
|
Li F, Chen Y, Zhang Z, Ouyang J, Wang Y, Yan R, Huang S, Gao GF, Guo G, Chen JL. Robust expression of vault RNAs induced by influenza A virus plays a critical role in suppression of PKR-mediated innate immunity. Nucleic Acids Res 2015; 43:10321-37. [PMID: 26490959 PMCID: PMC4666359 DOI: 10.1093/nar/gkv1078] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/07/2015] [Indexed: 12/29/2022] Open
Abstract
Protein kinase R (PKR) is a vital component of host innate immunity against viral infection. However, the mechanism underlying inactivation of PKR by influenza A virus (IAV) remains elusive. Here, we found that vault RNAs (vtRNAs) were greatly induced in A549 cells and mouse lungs after infection with IAV. The viral NS1 protein was shown to be the inducer triggering the upregulation of vtRNAs. Importantly, silencing vtRNA in A549 cells significantly inhibited IAV replication, whereas overexpression of vtRNAs markedly promoted the viral replication. Furthermore, in vivo studies showed that disrupting vtRNA expression in mice significantly decreased IAV replication in infected lungs. The vtRNA knockdown animals exhibited significantly enhanced resistance to IAV infection, as evidenced by attenuated acute lung injury and spleen atrophy and consequently increased survival rates. Interestingly, vtRNAs promoted viral replication through repressing the activation of PKR and the subsequent antiviral interferon response. In addition, increased expression of vtRNAs was required for efficient suppression of PKR by NS1 during IAV infection. Moreover, vtRNAs were also significantly upregulated by infections of several other viruses and involved in the inactivation of PKR signaling by these viruses. These results reveal a novel mechanism by which some viruses circumvent PKR-mediated innate immunity.
Collapse
Affiliation(s)
- Fang Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Zhaoyuan Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China School of Life Sciences, Anhui University, Hefei 230601, China
| | - Jing Ouyang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yi Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Ruoxiang Yan
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Guijie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Ji-Long Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
14
|
Li Y, Bu C, Li T, Wang S, Jiang F, Yi Y, Yang H, Zhang Z. Cloning and analysis of DnaJ family members in the silkworm, Bombyx mori. Gene 2015; 576:88-98. [PMID: 26434795 DOI: 10.1016/j.gene.2015.09.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 02/03/2023]
Abstract
Heat shock proteins (Hsps) are involved in a variety of critical biological functions, including protein folding, degradation, and translocation and macromolecule assembly, act as molecular chaperones during periods of stress by binding to other proteins. Using expressed sequence tag (EST) and silkworm (Bombyx mori) transcriptome databases, we identified 27 cDNA sequences encoding the conserved J domain, which is found in DnaJ-type Hsps. Of the 27 J domain-containing sequences, 25 were complete cDNA sequences. We divided them into three types according to the number and presence of conserved domains. By analyzing the gene structures, intron numbers, and conserved domains and constructing a phylogenetic tree, we found that the DnaJ family had undergone convergent evolution, obtaining new domains to expand the diversity of its family members. The acquisition of the new DnaJ domains most likely occurred prior to the evolutionary divergence of prokaryotes and eukaryotes. The expression of DnaJ genes in the silkworm was generally higher in the fat body. The tissue distribution of DnaJ1 proteins was detected by western blotting, demonstrating that in the fifth-instar larvae, the DnaJ1 proteins were expressed at their highest levels in hemocytes, followed by the fat body and head. We also found that the DnaJ1 transcripts were likely differentially translated in different tissues. Using immunofluorescence cytochemistry, we revealed that in the blood cells, DnaJ1 was mainly localized in the cytoplasm.
Collapse
Affiliation(s)
- Yinü Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Cuiyu Bu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Tiantian Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Shibao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Feng Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Yongzhu Yi
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China.
| | - Huipeng Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Zhifang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
15
|
p58IPK is an inhibitor of the eIF2α kinase GCN2 and its localization and expression underpin protein synthesis and ER processing capacity. Biochem J 2015; 465:213-25. [PMID: 25329545 DOI: 10.1042/bj20140852] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
One of the key cellular responses to stress is the attenuation of mRNA translation and protein synthesis via the phosphorylation of eIF2α (eukaryotic translation initiation factor 2α). This is mediated by four eIF2α kinases and it has been suggested that each kinase is specific to the cellular stress imposed. In the present study, we show that both PERK (PKR-like endoplasmic reticulum kinase/eIF2α kinase 3) and GCN2 (general control non-derepressible 2/eIF2α kinase 4) are required for the stress responses associated with conditions encountered by cells overexpressing secreted recombinant protein. Importantly, whereas GCN2 is the kinase that is activated following cold-shock/hypothermic culturing of mammalian cells, PERK and GCN2 have overlapping functions since knockdown of one of these at the mRNA level is compensated for by the cell by up-regulating levels of the other. The protein p58IPK {also known as DnaJ3C [DnaJ heat-shock protein (hsp) 40 homologue, subfamily C, member 3]} is known to inhibit the eIF2α kinases PKR (dsRNA-dependent protein kinase/eIF2α kinase 2) and PERK and hence prevent or delay eIF2α phosphorylation and consequent inhibition of translation. However, we show that p58IPK is a general inhibitor of the eIF2α kinases in that it also interacts with GCN2. Thus forced overexpression of cytoplasmic p58 delays eIF2α phosphorylation, suppresses GCN2 phosphorylation and prolongs protein synthesis under endoplasmic reticulum (ER), hypothermic and prolonged culture stress conditions. Taken together, our data suggest that there is considerable cross talk between the eIF2α kinases to ensure that protein synthesis is tightly regulated. Their activation is controlled by p58 and the expression levels and localization of this protein are crucial in the capacity the cells to respond to cellular stress via control of protein synthesis rates and subsequent folding in the ER.
Collapse
|
16
|
Andes virus nucleocapsid protein interrupts protein kinase R dimerization to counteract host interference in viral protein synthesis. J Virol 2014; 89:1628-39. [PMID: 25410857 DOI: 10.1128/jvi.02347-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
UNLABELLED Pathogenic hantaviruses delay the type I interferon response during early stages of viral infection. However, the robust interferon response and induction of interferon-stimulated genes observed during later stages of hantavirus infection fail to combat the virus replication in infected cells. Protein kinase R (PKR), a classical interferon-stimulated gene product, phosphorylates the eukaryotic translation initiation factor eIF2α and causes translational shutdown to create roadblocks for the synthesis of viral proteins. The PKR-induced translational shutdown helps host cells to establish an antiviral state to interrupt virus replication. However, hantavirus-infected cells do not undergo translational shutdown and fail to establish an antiviral state during the course of viral infection. In this study, we showed for the first time that Andes virus infection induced PKR overexpression. However, the overexpressed PKR was not active due to a significant inhibition of autophosphorylation. Further studies revealed that Andes virus nucleocapsid protein inhibited PKR dimerization, a critical step required for PKR autophosphorylation to attain activity. The studies reported here establish a hantavirus nucleocapsid protein as a new PKR inhibitor. These studies provide mechanistic insights into hantavirus resistance to the host interferon response and solve the puzzle of the lack of translational shutdown observed in hantavirus-infected cells. The sensitivity of hantavirus replication to PKR has likely imposed a selective evolutionary pressure on hantaviruses to evade the PKR antiviral response for survival. We envision that evasion of the PKR antiviral response by NP has likely helped hantaviruses to exist during evolution and to survive in infected hosts with a multifaceted antiviral defense. IMPORTANCE Protein kinase R (PKR), a versatile antiviral host factor, shuts down the translation machinery upon activation in virus-infected cells to create hurdles for the manufacture of viral proteins. The studies reported here reveal that the hantavirus nucleocapsid protein counteracts the PKR antiviral response by inhibiting PKR dimerization, which is required for its activation. We report the discovery of a new PKR inhibitor whose expression in hantavirus-infected cells prevents the PKR-induced host translational shutdown to ensure the continuous synthesis of viral proteins required for efficient virus replication.
Collapse
|
17
|
Kim D, Hur J, Park K, Bae S, Shin D, Ha SC, Hwang HY, Hohng S, Lee JH, Lee S, Kim YG, Kim KK. Distinct Z-DNA binding mode of a PKR-like protein kinase containing a Z-DNA binding domain (PKZ). Nucleic Acids Res 2014; 42:5937-48. [PMID: 24682817 PMCID: PMC4027156 DOI: 10.1093/nar/gku189] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Double-stranded ribonucleic acid-activated protein kinase (PKR) downregulates translation as a defense mechanism against viral infection. In fish species, PKZ, a PKR-like protein kinase containing left-handed deoxyribonucleic acid (Z-DNA) binding domains, performs a similar role in the antiviral response. To understand the role of PKZ in Z-DNA recognition and innate immune response, we performed structural and functional studies of the Z-DNA binding domain (Zα) of PKZ from Carassius auratus (caZαPKZ). The 1.7-Å resolution crystal structure of caZαPKZ:Z-DNA revealed that caZαPKZ shares the overall fold with other Zα, but has discrete structural features that differentiate its DNA binding mode from others. Functional analyses of caZαPKZ and its mutants revealed that caZαPKZ mediates the fastest B-to-Z transition of DNA among Zα, and the minimal interaction for Z-DNA recognition is mediated by three backbone phosphates and six residues of caZαPKZ. Structure-based mutagenesis and B-to-Z transition assays confirmed that Lys56 located in the β-wing contributes to its fast B-to-Z transition kinetics. Investigation of the DNA binding kinetics of caZαPKZ further revealed that the B-to-Z transition rate is positively correlated with the association rate constant. Taking these results together, we conclude that the positive charge in the β-wing largely affects fast B-to-Z transition activity by enhancing the DNA binding rate.
Collapse
Affiliation(s)
- Doyoun Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Jeonghwan Hur
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Kwangsoo Park
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Sangsu Bae
- Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea National Center for Creative Research Initiatives, Seoul National University, Seoul 151-747, Korea
| | - Donghyuk Shin
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Korea
| | - Sung Chul Ha
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Korea
| | - Hye-Yeon Hwang
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea National Center for Creative Research Initiatives, Seoul National University, Seoul 151-747, Korea Department of Biophysics and Chemical Biology, Seoul National University, Seoul 151-747, Korea
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Jinju, Gyeongnam 660-701, Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Korea
| | - Yang-Gyun Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| |
Collapse
|
18
|
Hu YS, Li W, Li DM, Liu Y, Fan LH, Rao ZC, Lin G, Hu CY. Cloning, expression and functional analysis of PKR from grass carp (Ctenopharyngodon idellus). FISH & SHELLFISH IMMUNOLOGY 2013; 35:1874-1881. [PMID: 24084043 DOI: 10.1016/j.fsi.2013.09.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 06/02/2023]
Abstract
The interferon-induced, dsRNA-activated protein kinase (PKR) is considered as an important component of innate immune system and as a representative effector protein of interferon system. In the present study, PKR gene (CiPKR, JX511974) from grass carp (Ctenopharyngodon idellus) was isolated and identified using homology-based PCR. CiPKR shares high sequence identity with the counterparts of goldfish (Crucian carp) and zebrafish (Danio rerio). The full-length cDNA of CiPKR was found to be 2436 bp, with an ORF of 2067 bp that encodes a polypeptide of 688 amino acids. The deduced polypeptide CiPKR contains three tandem dsRNA-binding motifs (dsRBMs) at the N-terminus and a conserved Ser/Thr kinase domain at the C-terminus. CiPKR was expressed ubiquitously at a low-level under normal conditions, but it could be up-regulated after intraperitoneal (ip) injection with grass carp haemorrhagic virus (GCHV). CiPKR was dramatically up-regulated at 6 h post-injection and then recovered rapidly to normal levels within 24 h; however, it was obviously up-regulated once again at 48 h or 72 h post-injection. It seemed that CiPKR could respond to GCHV infection in an IFN-independent as well as an IFN-dependent pathway. To further investigate its mechanism of biological actions, we constructed a series of recombinant plasmids including pcDNA3.1/PKR-wt, pcDNA3.1/PKR-K430R, pcDNA3.1/PKR-C (deletion of dsRBD sequence) and pcDNA3.1/PKR-C-K430R, and then each recombinant plasmid was transfected into CIK cells. In comparison with those of controls, a 79% and a 64% decrease of luciferase activities were detected in the tested cells transfected with CiPKR and CiPKR-C, respectively; however, luciferase activities were increased in those cells transfected with PKR-K430R and PKR-C-K430R, with a 160% and 115% up-regulation, respectively. Similarly, MTT colorimetric assay indicated that cell viabilities of CIK cells transfected with pcDNA3.1/PKR-wt, pcDNA3.1/PKR-K430R, pcDNA3.1/PKR-C and pcDNA3.1/PKR-C-K430R were 49%, 90%, 54% and 100%, respectively. Our observations suggested that the expression of CiPKR could be up-regulated following viral infection, and then resulted in the inhibition of protein synthesis and the induction of potential apoptosis.
Collapse
Affiliation(s)
- You-Sheng Hu
- Department of Bioscience, College of Life Science and Food Engineering, Nanchang University, Nanchang 330031, China; Medical College, Jinggangshan University, Ji'an 343009, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Jiang P, Wen J, Song H, Chen X, Sun Y, Huo X, Zhang D. Characterization of porcine P58IPK gene and its up-regulation after H1N1 or H3N2 influenza virus infection. J Clin Virol 2013; 58:120-6. [PMID: 23827789 DOI: 10.1016/j.jcv.2013.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/27/2013] [Accepted: 06/04/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND The 58-kDa inhibitor of the interferon-induced double-stranded RNA-activated protein kinase (P58IPK) is a cellular protein that is activated during influenza virus infection. Although the function of human P58IPK has been studied for a long time, porcine P58IPK (pP58IPK) has little been studied except for its cloning. OBJECTIVE In this study, we aimed to investigate the characteristics of the pP58IPK gene, determine its subcellular localization, and find its expression change during H1N1 or H3N2 infection. STUDY DESIGN First, the sequence and structure of pP58IPK were analyzed. Second, pP58IPK gene was cloned into pEGFP-N1 and pEGFP-C1 vectors, respectively, which were transfected into cells to determine its subcellular localization. Third, Lung tissues of piglets from H1N1 infected, H3N2 infected and control groups were analyzed using histopathology, real-time PCR, and immunohistochemistry. RESULTS The sequence and structure of pP58IPK was highly similar to the counterpart of human. pP58IPK protein distributed only in the cytoplasm. Lung tissues of piglets infected by H1N1 or H3N2 appeared obvious pathological changes, and the expression of pP58IPK in both mRNA and protein level was up-regulated by approximate 1.5-fold in piglets infected by H1N1 or H3N2 comparing with control piglets. CONCLUSIONS We analyzed the characteristics of the pP58IPK gene, constructed a phylogenetic tree, determined its subcellular localization, and investigated its expression changes during H1N1 or H3N2 infection. The fundamental data accumulated in this study provides a potential medical model for investigating the function of P58IPK during influenza A viruses infection.
Collapse
Affiliation(s)
- Pengfei Jiang
- MOA Key Laboratory of Animal Biotechnology of National Ministry of Agriculture, Institute of Veterinary Immunology, Northwest A&F University, Yangling, 712100, Xi'an City, Shaanxi Province, PR China
| | | | | | | | | | | | | |
Collapse
|
20
|
Immanuel TM, Greenwood DR, MacDiarmid RM. A critical review of translation initiation factor eIF2α kinases in plants - regulating protein synthesis during stress. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:717-735. [PMID: 32480823 DOI: 10.1071/fp12116] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/10/2012] [Indexed: 05/10/2023]
Abstract
Eukaryotic cells must cope with environmental stress. One type of general stress response is the downregulation of protein synthesis in order to conserve cellular resources. Protein synthesis is mainly regulated at the level of mRNA translation initiation and when the α subunit of eukaryotic translation initiation factor 2 (eIF2) is phosphorylated, protein synthesis is downregulated. Although eIF2 has the same translation initiation function in all eukaryotes, it is not known whether plants downregulate protein synthesis via eIF2α phosphorylation. Similarly, although there is evidence that plants possess eIF2α kinases, it is not known whether they operate in a similar manner to the well characterised mammalian and yeast eIF2α kinases. Two types of eIF2α kinases have been reported in plants, yet the full understanding of the plant eIF2α phosphorylation mechanism is still lacking. Here we review the current knowledge of the eIF2α phosphorylation mechanism within plants and discuss plant eIF2α, plant eIF2α kinase GCN2 and the data supporting and contradicting the hypothesis that a functional orthologue for the eIF2α kinase PKR, is present and functional in plants.
Collapse
Affiliation(s)
- Tracey M Immanuel
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - David R Greenwood
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Robin M MacDiarmid
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| |
Collapse
|
21
|
Svärd M, Biterova EI, Bourhis JM, Guy JE. The crystal structure of the human co-chaperone P58(IPK). PLoS One 2011; 6:e22337. [PMID: 21799829 PMCID: PMC3143134 DOI: 10.1371/journal.pone.0022337] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/24/2011] [Indexed: 12/02/2022] Open
Abstract
P58IPK is one of the endoplasmic reticulum- (ER-) localised DnaJ (ERdj) proteins which interact with the chaperone BiP, the mammalian ER ortholog of Hsp70, and are thought to contribute to the specificity and regulation of its diverse functions. P58IPK, expression of which is upregulated in response to ER stress, has been suggested to act as a co-chaperone, binding un- or misfolded proteins and delivering them to BiP. In order to give further insights into the functions of P58IPK, and the regulation of BiP by ERdj proteins, we have determined the crystal structure of human P58IPK to 3.0 Å resolution using a combination of molecular replacement and single wavelength anomalous diffraction. The structure shows the human P58IPK monomer to have a very elongated overall shape. In addition to the conserved J domain, P58IPK contains nine N-terminal tetratricopeptide repeat motifs, divided into three subdomains of three motifs each. The J domain is attached to the C-terminal end via a flexible linker, and the structure shows the conserved Hsp70-binding histidine-proline-aspartate (HPD) motif to be situated on the very edge of the elongated protein, 100 Å from the putative binding site for unfolded protein substrates. The residues that comprise the surface surrounding the HPD motif are highly conserved in P58IPK from other organisms but more varied between the human ERdj proteins, supporting the view that their regulation of different BiP functions is facilitated by differences in BiP-binding.
Collapse
Affiliation(s)
- Maria Svärd
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ekaterina I. Biterova
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jean-Marie Bourhis
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jodie E. Guy
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
22
|
Sharma K, Tripathi S, Ranjan P, Kumar P, Garten R, Deyde V, Katz JM, Cox NJ, Lal RB, Sambhara S, Lal SK. Influenza A virus nucleoprotein exploits Hsp40 to inhibit PKR activation. PLoS One 2011; 6:e20215. [PMID: 21698289 PMCID: PMC3115951 DOI: 10.1371/journal.pone.0020215] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 04/15/2011] [Indexed: 02/08/2023] Open
Abstract
Background Double-stranded RNA dependent protein kinase (PKR) is a key regulator of the anti-viral innate immune response in mammalian cells. PKR activity is regulated by a 58 kilo Dalton cellular inhibitor (P58IPK), which is present in inactive state as a complex with Hsp40 under normal conditions. In case of influenza A virus (IAV) infection, P58IPK is known to dissociate from Hsp40 and inhibit PKR activation. However the influenza virus component responsible for PKR inhibition through P58IPK activation was hitherto unknown. Principal Findings Human heat shock 40 protein (Hsp40) was identified as an interacting partner of Influenza A virus nucleoprotein (IAV NP) using a yeast two-hybrid screen. This interaction was confirmed by co-immunoprecipitation studies from mammalian cells transfected with IAV NP expressing plasmid. Further, the IAV NP-Hsp40 interaction was validated in mammalian cells infected with various seasonal and pandemic strains of influenza viruses. Cellular localization studies showed that NP and Hsp40 co-localize primarily in the nucleus. During IAV infection in mammalian cells, expression of NP coincided with the dissociation of P58IPK from Hsp40 and decrease PKR phosphorylation. We observed that, plasmid based expression of NP in mammalian cells leads to decrease in PKR phosphorylation. Furthermore, inhibition of NP expression during influenza virus replication led to PKR activation and concomitant increase in eIF2α phosphorylation. Inhibition of NP expression also led to reduced IRF3 phosphorylation, enhanced IFN β production and concomitant reduction of virus replication. Taken together our data suggest that NP is the viral factor responsible for P58IPK activation and subsequent inhibition of PKR-mediated host response during IAV infection. Significance Our findings demonstrate a novel role of IAV NP in inhibiting PKR-mediated anti-viral host response and help us understand P58IPK mediated inhibition of PKR activity during IAV infection.
Collapse
Affiliation(s)
- Kulbhushan Sharma
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Shashank Tripathi
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Priya Ranjan
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Purnima Kumar
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Rebecca Garten
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Varough Deyde
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jacqueline M. Katz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Nancy J. Cox
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Renu B. Lal
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sunil K. Lal
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
- * E-mail:
| |
Collapse
|
23
|
Tao J, Sha B. Structural insight into the protective role of P58(IPK) during unfolded protein response. Methods Enzymol 2011; 490:259-70. [PMID: 21266255 DOI: 10.1016/b978-0-12-385114-7.00015-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
P58(IPK) has been identified as an ER molecular chaperone to maintain protein-folding homeostasis. P58(IPK) expression can be significantly upregulated during unfolded protein responses (UPR), and it may play important roles in suppressing the ER protein aggregations. To investigate the mechanism how P58(IPK) functions to promote protein folding within ER, we have determined the crystal structure of P58(IPK) TPR domain at 2.5Å resolution. P58(IPK) contains nine TPR motifs and a C-terminal J domain within its primary sequence. The crystal structure of P58(IPK) revealed three subdomains (I, II, and III) with similar folds and each domain contains three TPR motifs. Our data also showed that P58(IPK) acts as a molecular chaperone by interacting with the unfolded proteins such as luciferase, rhodanese, and insulin. The P58(IPK) structure reveals a conserved hydrophobic patch located in subdomain I that may be involved in binding the misfolded polypeptides. We have proposed a working model for P58(IPK) to act together with Bip to prevent protein aggregations and promote protein foldings within ER.
Collapse
Affiliation(s)
- Jiahui Tao
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
24
|
Guan Z, Liu D, Mi S, Zhang J, Ye Q, Wang M, Gao GF, Yan J. Interaction of Hsp40 with influenza virus M2 protein: implications for PKR signaling pathway. Protein Cell 2010; 1:944-55. [PMID: 21204021 PMCID: PMC4875119 DOI: 10.1007/s13238-010-0115-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 10/09/2010] [Indexed: 12/14/2022] Open
Abstract
Influenza virus contains three integral membrane proteins: haemagglutinin, neuraminidase, and matrix protein (M1 and M2). Among them, M2 protein functions as an ion channel, important for virus uncoating in endosomes of virus-infected cells and essential for virus replication. In an effort to explore potential new functions of M2 in the virus life cycle, we used yeast two-hybrid system to search for M2-associated cellular proteins. One of the positive clones was identified as human Hsp40/Hdj1, a DnaJ/Hsp40 family protein. Here, we report that both BM2 (M2 of influenza B virus) and A/M2 (M2 of influenza A virus) interacted with Hsp40 in vitro and in vivo. The region of M2-Hsp40 interaction has been mapped to the CTD1 domain of Hsp40. Hsp40 has been reported to be a regulator of PKR signaling pathway by interacting with p58(IPK) that is a cellular inhibitor of PKR. PKR is a crucial component of the host defense response against virus infection. We therefore attempted to understand the relationship among M2, Hsp40 and p58(IPK) by further experimentation. The results demonstrated that both A/M2 and BM2 are able to bind to p58(IPK) in vitro and in vivo and enhance PKR autophosphorylation probably via forming a stable complex with Hsp40 and P58(IPK), and consequently induce cell death. These results suggest that influenza virus M2 protein is involved in p58(IPK) mediated PKR regulation during influenza virus infection, therefore affecting infected-cell life cycle and virus replication.
Collapse
Affiliation(s)
- Zhenhong Guan
- College of Veterinary Medicine, China Agricultural University, Beijing, 100094 China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Di Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Shuofu Mi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jie Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Qinong Ye
- Beijing Institute of Biotechnology, Beijing, 100850 China
| | - Ming Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100094 China
| | - George F. Gao
- College of Veterinary Medicine, China Agricultural University, Beijing, 100094 China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
25
|
Sadler AJ. Orchestration of the activation of protein kinase R by the RNA-binding motif. J Interferon Cytokine Res 2010; 30:195-204. [PMID: 20377414 DOI: 10.1089/jir.2010.0005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The protein kinase R (PKR) constitutes part of the host antiviral response. PKR activation is regulated by the N-terminus of protein, which encodes tandem RNA-binding motifs (RBMs). The full capabilities of RBMs from PKR and other proteins have surpassed the narrow specificities initially determined as merely binding double-stranded RNA. Recognition of the increased affinity of the RBM for additional RNA species has established an immunological distinction by which PKR can detect exogenous RNAs, as well as identified PKR-mediated expression of specific endogenous genes. Furthermore, as RBMs also mediate interactions with other proteins, including PKR itself, this motif connects PKR to the broader RNA metabolism. Given the fundamental importance of protein-RNA interactions, not only in the innate immune response to intracellular pathogens, but also to coordinate the cellular replication machinery, there is considerable interest in the mechanisms by which proteins recognize and respond to RNA. This review appraises our understanding of how PKR activity is modulated by the RBMs.
Collapse
Affiliation(s)
- Anthony J Sadler
- Monash Institute of Medical Research, Monash University, Melbourne, Australia
| |
Collapse
|
26
|
Abstract
Protein kinase R (PKR) is a central component of the interferon antiviral defense pathway. Upon binding to dsRNA, PKR undergoes autophosphorylation reactions that activate the kinase, resulting in the inhibition of protein synthesis in virally-infected cells. We have used analytical ultracentrifugation and related biophysical methods to quantitatively characterize the stoichiometries, affinities, and free energy couplings that govern the assembly of the macromolecular complexes in the PKR activation pathway. These studies demonstrate that PKR dimerization play a key role in enzymatic activation and support a model where the role of dsRNA is to bring two or more PKR monomers in close proximity to enhance dimerization.
Collapse
Affiliation(s)
- James L Cole
- Department of Molecular and Cell Biology, National Analytical Ultracentrifugation Facility, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
27
|
Luig C, Köther K, Dudek SE, Gaestel M, Hiscott J, Wixler V, Ludwig S. MAP kinase-activated protein kinases 2 and 3 are required for influenza A virus propagation and act via inhibition of PKR. FASEB J 2010; 24:4068-77. [PMID: 20484669 DOI: 10.1096/fj.10-158766] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Influenza viruses have to overcome the type I interferon induced antiviral response to successfully propagate in target cells. A major antiviral factor induced by interferons is the protein kinase R (PKR) that is further activated by dsRNA and phosphorylates the eukaryotic initiation factor 2 (eIF2α). This results in inhibition of protein translation thereby limiting viral replication. Here we describe a novel mechanism by which influenza A viruses escape the antiviral action of PKR. We demonstrate that the mitogen-activated protein kinase-activated protein kinases (MAPKAPKs) MK2 and MK3 are activated on virus infection and, in their active form, directly interact with the repressor of the inhibitor of PKR p88(rIPK). This leads to recruitment of a tetrameric protein complex consisting of p88(rIPK), the inhibitor of PKR p58(IPK) and PKR itself, and finally results in inhibition of the kinase. The importance of MKs for influenza virus propagation was further underscored by demonstrating reduced viral progeny in cells genetically deficient in MK2 or MK3 genes as well as in highly proliferating tumor cells, in which expression of MKs was diminished by specific small interfering RNA. Accordingly, knockdown of MKs resulted in enhanced phosphorylation of PKR and its substrate eIF2α.
Collapse
Affiliation(s)
- Christina Luig
- Institute of Molecular Virology, Westfälische-Wilhelms-University, D-48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Jenke ACW, Moser S, Orth V, Zilbauer M, Gerner P, Wirth S. Mutation frequency of NS5A in patients vertically infected with HCV genotype 1 predicts sustained virological response to peginterferon alfa-2b and ribavirin combination therapy. J Viral Hepat 2009; 16:853-9. [PMID: 19682316 DOI: 10.1111/j.1365-2893.2009.01140.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Viral genome analyses performed in adult HCV-patients yielded very inconsistent results and are not transferable to children who are often infected vertically during a state of high immune tolerance. We analysed the mutational frequency in the PKR-binding domain (PKR-BD) of NS5A and PePHD of E2 protein pre- and post-treatment with peginterferon-alfa-2b and ribavirin in children chronically infected with HCV genotype 1. Amino acid sequences of NS5A (2 209-2 274) and E2 (618-681) were determined in serum samples using standard PCR procedures. Concerning the PKR-BD a significant higher number of mutations was observed in vertically compared to horizontally infected patients (2.14 vs 1.24, P-value = 0.03). This difference was exclusively based on the increased number of mutations in responders vs non-responders in vertically infected patients (2.95 vs 1.33; P-value = 0.02). While all patients with at least four mutations (n = 3) did respond to therapy, no other predictive parameters could be identified. In the PePHD no differences could be observed between either of these groups. These findings support the idea that viral properties, mode and therewith time of infection in terms of immune tolerance are equally important factors for predicting SVR in children. However given the low number of cases further studies are required to confirm this hypothesis.
Collapse
Affiliation(s)
- A C W Jenke
- Children's Hospital, HELIOS Klinikum Wuppertal, Witten-Herdecke University, Wuppertal, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Cho YM, Jang YS, Jang YM, Chung SM, Kim HS, Lee JH, Jeong SW, Kim IK, Kim JJ, Kim KS, Kwon OJ. Induction of unfolded protein response during neuronal induction of rat bone marrow stromal cells and mouse embryonic stem cells. Exp Mol Med 2009; 41:440-52. [PMID: 19322020 DOI: 10.3858/emm.2009.41.6.049] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
When we treated rat bone marrow stromal cells (rBMSCs) with neuronal differentiation induction media, typical unfolded protein response (UPR) was observed. BIP/GRP78 protein expression was time-dependently increased, and three branches of UPR were all activated. ATF6 increased the transcription of XBP1 which was successfully spliced by IRE1. PERK was phosphorylated and it was followed by eIF2alpha phosphorylation. Transcription of two downstream targets of eIF2alpha, ATF4 and CHOP/GADD153, were transiently up-regulated with the peak level at 24 h. Immunocytochemical study showed clear coexpression of BIP and ATF4 with NeuN and Map2, respectively. UPR was also observed during the neuronal differentiation of mouse embryonic stem (mES) cells. Finally, chemical endoplasmic reticulum (ER) stress inducers, thapsigargin, tunicamycin, and brefeldin A, dose-dependently increased both mRNA and protein expressions of NF-L, and, its expression was specific to BIP-positive rBMSCs. Our results showing the induction of UPR during neuronal differentiations of rBMSCs and mES cells as well as NF-L expression by ER stress inducers strongly suggest the potential role of UPR in neuronal differentiation.
Collapse
Affiliation(s)
- Yoon Mi Cho
- Department of Biochemistry, 2MRC for Cell Death Disease Research Center, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Modulation of innate immune signalling pathways by viral proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 666:49-63. [PMID: 20054974 DOI: 10.1007/978-1-4419-1601-3_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years an explosion of information on the various strategies viruses employ to penetrate and hijack the host cell has led to an increased understanding of both viruses themselves and the host immune response. Despite their simplicity viruses have evolved a number of strategies to not only evade the host immune response but also modulate immune signalling to favour their replication and survival within the cell. The innate immune response provides the host with an early reaction against viruses. This response relies heavily upon the recognition of pathogen-associated molecular patterns (PAMPs) by a number of host pattern recognition receptors (PRRs), leading to activation of innate signalling pathways and altered gene expression. In this chapter we outline the signalling pathways that respond to viral infection and the various methods that viruses utilize to evade detection and modulate the innate immune response to favour their survival.
Collapse
|
31
|
Mittelstadt M, Frump A, Khuu T, Fowlkes V, Handy I, Patel CV, Patel RC. Interaction of human tRNA-dihydrouridine synthase-2 with interferon-induced protein kinase PKR. Nucleic Acids Res 2007; 36:998-1008. [PMID: 18096616 PMCID: PMC2241914 DOI: 10.1093/nar/gkm1129] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PKR is an interferon (IFN)-induced protein kinase, which is involved in regulation of antiviral innate immunity, stress signaling, cell proliferation and programmed cell death. Although a low amount of PKR is expressed ubiquitously in all cell types in the absence of IFNs, PKR expression is induced at transcriptional level by IFN. PKR's enzymatic activity is activated by its binding to one of its activators. Double-stranded (ds) RNA, protein activator PACT and heparin are the three known activators of PKR. Activation of PKR in cells leads to a general block in protein synthesis due to phosphorylation of eIF2α on serine 51 by PKR. PKR activation is regulated very tightly in mammalian cells and a prolonged activation of PKR leads to apoptosis. Thus, positive and negative regulation of PKR activation is important for cell viability and function. The studies presented here describe human dihydrouridine synthase-2 (hDUS2) as a novel regulator of PKR. We originally identified hDUS2 as a protein interacting with PACT in a yeast two-hybrid screen. Further characterization revealed that hDUS2 also interacts with PKR through its dsRNA binding/dimerization domain and inhibits its kinase activity. Our results suggest that hDUS2 may act as a novel inhibitor of PKR in cells.
Collapse
Affiliation(s)
- Megan Mittelstadt
- Department of Biological Sciences, University of South Carolina Columbia, SC 29208, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Ni M, Lee AS. ER chaperones in mammalian development and human diseases. FEBS Lett 2007; 581:3641-51. [PMID: 17481612 PMCID: PMC2040386 DOI: 10.1016/j.febslet.2007.04.045] [Citation(s) in RCA: 586] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 04/13/2007] [Accepted: 04/18/2007] [Indexed: 12/16/2022]
Abstract
The field of endoplasmic reticulum (ER) stress in mammalian cells has expanded rapidly during the past decade, contributing to understanding of the molecular pathways that allow cells to adapt to perturbations in ER homeostasis. One major mechanism is mediated by molecular ER chaperones which are critical not only for quality control of proteins processed in the ER, but also for regulation of ER signaling in response to ER stress. Here, we summarized the properties and functions of GRP78/BiP, GRP94/gp96, GRP170/ORP150, GRP58/ERp57, PDI, ERp72, calnexin, calreticulin, EDEM, Herp and co-chaperones SIL1 and P58(IPK) and their role in development and diseases. Many of the new insights are derived from recently constructed mouse models where the genes encoding the chaperones are genetically altered, providing invaluable tools for examining the physiological involvement of the ER chaperones in vivo.
Collapse
Affiliation(s)
| | - Amy S. Lee
- *Department of Biochemistry and Molecular Biology and the USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, 1441 Eastlake Ave., Los Angeles, CA 90089-9176. Tel.: 323-865-0507; Fax: 323-865-0094; E-mail:
| |
Collapse
|
33
|
Juhász G, Puskás LG, Komonyi O, Erdi B, Maróy P, Neufeld TP, Sass M. Gene expression profiling identifies FKBP39 as an inhibitor of autophagy in larval Drosophila fat body. Cell Death Differ 2007; 14:1181-90. [PMID: 17363962 PMCID: PMC2084463 DOI: 10.1038/sj.cdd.4402123] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In Drosophila, the fat body undergoes a massive burst of autophagy at the end of larval development in preparation for the pupal transition. To identify genes involved in this process, we carried out a microarray analysis. We found that mRNA levels of the homologs of Atg8, the coat protein of early autophagic structures, and lysosomal hydrolases were upregulated, consistent with previous results. Genes encoding mitochondrial proteins and many chaperones were downregulated, including the inhibitor of eIF2alpha kinases and the peptidyl-prolyl cis-trans isomerase FK506-binding protein of 39 kDa (FKBP39). Genetic manipulation of FKBP39 expression had a significant effect on autophagy, potentially through modulation of the transcription factor Foxo. Accordingly, we found that Foxo mutants cannot properly undergo autophagy in response to starvation, and that overexpression of Foxo induces autophagy.
Collapse
Affiliation(s)
- G Juhász
- Department of General Zoology, Eötvös Loránd University, Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
34
|
Veillon P, Payan C, Le Guillou-Guillemette H, Gaudy C, Lunel F. Quasispecies evolution in NS5A region of hepatitis C virus genotype 1b during interferon or combined interferon-ribavirin therapy. World J Gastroenterol 2007; 13:1195-203. [PMID: 17451199 PMCID: PMC4146993 DOI: 10.3748/wjg.v13.i8.1195] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the implication of substitutions in the hepatitis C virus (HCV) non-structural 5A (NS5A) protein in the resistance of HCV during mono-interferon (IFN) or combined IFN-ribavirin (IFN-R) therapy. Although NS5A has been reported to interact with the HCV RNA-dependent RNA polymerase, NS5B, as well as with many cellular proteins, the function of NS5A in the life cycle of HCV remains unclear.
METHODS: HCV quasispecies were studied by cloning and sequencing of sequential isolates from patients infected by HCV genotype 1b. Patients were treated by IFN-α2b for 3 mo followed by IFN-α2b alone or combined IFN-R therapy for 9 additional months. Patients were categorized intro two groups based on their response to the treatments: 7 with sustained virological response (SVR) (quasispecies = 150) and 3 non-responders (NR) to IFN-R (quasispecies = 106).
RESULTS: Prior to treatment, SVR patients displayed a lower complexity of quasispecies than NR patients. Most patients had a decrease in the complexity of quasispecies during therapy. Analysis of amino acids substitutions showed that the degree of the complexity of the interferon sensitivity-determining region (ISDR) and the V3 domain of NS5A protein was able to discriminate the two groups of patients. Moreover, SVR patients displayed more variability in the NS5A region than NR patients.
CONCLUSION: These results suggest that detailed molecular analysis of the NS5A region may be important for understanding its function in IFN response during HCV 1b infection.
Collapse
Affiliation(s)
- Pascal Veillon
- Laboratory of Virology, Angers University Hospital, 4 rue Larrey, 49933 Angers cedex 9, France
| | | | | | | | | |
Collapse
|
35
|
Goodman AG, Smith JA, Balachandran S, Perwitasari O, Proll SC, Thomas MJ, Korth MJ, Barber GN, Schiff LA, Katze MG. The cellular protein P58IPK regulates influenza virus mRNA translation and replication through a PKR-mediated mechanism. J Virol 2006; 81:2221-30. [PMID: 17166899 PMCID: PMC1865913 DOI: 10.1128/jvi.02151-06] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We previously hypothesized that efficient translation of influenza virus mRNA requires the recruitment of P58(IPK), the cellular inhibitor of PKR, an interferon-induced kinase that targets the eukaryotic translation initiation factor eIF2alpha. P58(IPK) also inhibits PERK, an eIF2alpha kinase that is localized in the endoplasmic reticulum (ER) and induced during ER stress. The ability of P58(IPK) to interact with and inhibit multiple eIF2alpha kinases suggests it is a critical regulator of both cellular and viral mRNA translation. In this study, we sought to definitively define the role of P58(IPK) during viral infection of mammalian cells. Using mouse embryo fibroblasts from P58(IPK-/-) mice, we demonstrated that the absence of P58(IPK) led to an increase in eIF2alpha phosphorylation and decreased influenza virus mRNA translation. The absence of P58(IPK) also resulted in decreased vesicular stomatitis virus replication but enhanced reovirus yields. In cells lacking the P58(IPK) target, PKR, the trends were reversed-eIF2alpha phosphorylation was decreased, and influenza virus mRNA translation was increased. Although P58(IPK) also inhibits PERK, the presence or absence of this kinase had little effect on influenza virus mRNA translation, despite reduced levels of eIF2alpha phosphorylation in cells lacking PERK. Finally, we showed that influenza virus protein synthesis and viral mRNA levels decrease in cells that express a constitutively active, nonphosphorylatable eIF2alpha. Taken together, our results support a model in which P58(IPK) regulates influenza virus mRNA translation and infection through a PKR-mediated mechanism which is independent of PERK.
Collapse
Affiliation(s)
- Alan G Goodman
- Department of Microbiology, University of Washington, Box 358070, Seattle, WA 98195-8070, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fasciano S, Kaufman A, Patel RC. Expression of PACT is regulated by Sp1 transcription factor. Gene 2006; 388:74-82. [PMID: 17125937 PMCID: PMC1855191 DOI: 10.1016/j.gene.2006.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 10/03/2006] [Accepted: 10/04/2006] [Indexed: 11/15/2022]
Abstract
PACT is a stress-modulated, cellular activator of interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR) and is an important regulator of PKR-dependent signaling pathways. The research presented here is aimed at understanding the regulation of PACT expression in mammalian cells. PACT is expressed ubiquitously in different cell types at varying abundance. We have characterized the sequence elements in PACT promoter region that are required for its expression. Using deletion analysis of the promoter we have identified the minimal basal promoter of PACT to be within 101 nucleotides upstream of its transcription start site. Further mutational analyses within this region, followed by electrophoretic mobility shift analyses (EMSAs) and chromatin immunoprecipitation (ChiP) analysis have shown that Specificity protein 1 (Sp1) is the major transcription factor responsible for PACT promoter activity.
Collapse
Affiliation(s)
- Stephen Fasciano
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, United States
| | | | | |
Collapse
|
37
|
Hakki M, Marshall EE, De Niro KL, Geballe AP. Binding and nuclear relocalization of protein kinase R by human cytomegalovirus TRS1. J Virol 2006; 80:11817-26. [PMID: 16987971 PMCID: PMC1642616 DOI: 10.1128/jvi.00957-06] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) TRS1 and IRS1 genes block the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) and the consequent shutoff of cellular protein synthesis that occur during infection with vaccinia virus (VV) deleted of the double-stranded RNA binding protein gene E3L (VVDeltaE3L). To further define the underlying mechanism, we first evaluated the effect of pTRS1 on protein kinase R (PKR), the double-stranded RNA (dsRNA)-dependent eIF2alpha kinase. Immunoblot analyses revealed that pTRS1 expression in the context of a VVDeltaE3L recombinant decreased levels of PKR in the cytoplasm and increased its levels in the nucleus of infected cells, an effect not seen with wild-type VV or a VVDeltaE3L recombinant virus expressing E3L. This effect of pTRS1 was confirmed by visualizing the nuclear relocalization of PKR-EGFP expressed by transient transfection. PKR present in both the nuclear and cytoplasmic fractions was nonphosphorylated, indicating that it was unactivated when TRS1 was present. PKR also accumulated in the nucleus during HCMV infection as determined by indirect immunofluorescence and immunoblot analysis. Binding assays revealed that pTRS1 interacted with PKR in mammalian cells and in vitro. This interaction required the same carboxy-terminal region of pTRS1 that is necessary to rescue VVDeltaE3L replication in HeLa cells. The carboxy terminus of pIRS1 was also required for rescue of VVDeltaE3L and for mediating an interaction of pIRS1 with PKR. These results suggest that these HCMV genes directly interact with PKR and inhibit its activation by sequestering it in the nucleus, away from both its activator, cytoplasmic dsRNA, and its substrate, eIF2alpha.
Collapse
Affiliation(s)
- Morgan Hakki
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
38
|
Mulvey M, Arias C, Mohr I. Resistance of mRNA translation to acute endoplasmic reticulum stress-inducing agents in herpes simplex virus type 1-infected cells requires multiple virus-encoded functions. J Virol 2006; 80:7354-63. [PMID: 16840316 PMCID: PMC1563692 DOI: 10.1128/jvi.00479-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Via careful control of multiple kinases that inactivate the critical translation initiation factor eIF2 by phosphorylation of its alpha subunit, the cellular translation machinery can rapidly respond to a spectrum of environmental stresses, including viral infection. Indeed, virus replication produces a battery of stresses, such as endoplasmic reticulum (ER) stress resulting from misfolded proteins accumulating within the lumen of this organelle, which could potentially result in eIF2alpha phosphorylation and inhibit translation. While cellular translation is exquisitely sensitive to ER stress-inducing agents, protein synthesis in herpes simplex virus type 1 (HSV-1)-infected cells is notably resistant. Sustained translation in HSV-1-infected cells exposed to acute ER stress does not involve the interferon-induced, double-stranded RNA-responsive eIF2alpha kinase PKR, and it does not require either the PKR inhibitor encoded by the Us11 gene or the eIF2alpha phosphatase component specified by the gamma(1)34.5 gene, the two viral functions known to regulate eIF2alpha phosphorylation. In addition, although ER stress potently induced the GADD34 cellular eIF2alpha phosphatase subunit in uninfected cells, it did not accumulate to detectable levels in HSV-1-infected cells under identical exposure conditions. Significantly, resistance of translation to the acute ER stress observed in infected cells requires HSV-1 gene expression. Whereas blocking entry into the true late phase of the viral developmental program does not abrogate ER stress-resistant translation, the presence of viral immediate-early proteins is sufficient to establish a state permissive of continued polypeptide synthesis in the presence of ER stress-inducing agents. Thus, one or more previously uncharacterized viral functions exist to counteract the accumulation of phosphorylated eIF2alpha in response to ER stress in HSV-1-infected cells.
Collapse
Affiliation(s)
- Matthew Mulvey
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
39
|
Watanabe S, Yamashita T, Taira H. A new double-stranded RNA binding protein (DRBP-120) is associated with double-stranded RNA-activated protein kinase (PKR). Biosci Biotechnol Biochem 2006; 70:1717-23. [PMID: 16861808 DOI: 10.1271/bbb.60061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Double-stranded RNA-activated protein kinase (PKR) plays an important role in interferon-induced antiviral responses, and is also involved in intracellular signaling pathways, including the apoptosis, proliferation, and transcription pathways. In this study, a new 120-kDa PKR-associated protein designated double-stranded RNA binding protein (DRBP)-120 was identified using co-immunoprecipitation with anti-PKR antiserum and two-dimensional electrophoresis. Furthermore, DRBP-120 is a double-stranded RNA (dsRNA)-binding protein, and it was detected in both the cytoplasm and the nucleus of HeLa cells associated with PKR.
Collapse
Affiliation(s)
- Shuji Watanabe
- Department of Physiology, School of Medicine, Iwate Medical University, Morioka 020-8505, Japan
| | | | | |
Collapse
|
40
|
Langland JO, Cameron JM, Heck MC, Jancovich JK, Jacobs BL. Inhibition of PKR by RNA and DNA viruses. Virus Res 2006; 119:100-10. [PMID: 16704884 DOI: 10.1016/j.virusres.2005.10.014] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 09/28/2005] [Accepted: 10/20/2005] [Indexed: 11/28/2022]
Abstract
Interferons were the first of the anti-viral innate immune modulators to be characterized, initially characterized solely as anti-viral proteins [reviewed in Le Page, C., Genin, P., Baines, M.G., Hiscott, J., 2000. Inteferon activation and innate immunity. Rev. Immunogenet. 2, 374-386]. As we have progressed in our understanding of the interferons they have taken a more central role in our understanding of innate immunity and its interplay with the adaptive immune response. One of the key players in function of interferon is the interferon-inducible enzyme, protein kinase (PKR, activatable by RNA). The key role played by PKR in the innate response to virus infection is emphasized by the large number of viruses, DNA viruses as well as RNA viruses, whose hosts range from insects to humans, that code for PKR inhibitors. In this review we will first describe activation of PKR and then describe the myriad of ways that viruses inhibit function of PKR.
Collapse
Affiliation(s)
- Jeffrey O Langland
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401, USA
| | | | | | | | | |
Collapse
|
41
|
Coro ES, Chang WLW, Baumgarth N. Type I IFN receptor signals directly stimulate local B cells early following influenza virus infection. THE JOURNAL OF IMMUNOLOGY 2006; 176:4343-51. [PMID: 16547272 DOI: 10.4049/jimmunol.176.7.4343] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rapidly developing Ab responses to influenza virus provide immune protection even during a primary infection. How these early B cell responses are regulated is incompletely understood. In this study, we show that the first direct stimulatory signal for local respiratory tract B cells during influenza virus infection is provided through the type I IFNR. IFNR-mediated signals were responsible for the influenza infection-induced local but not systemic up-regulation of CD69 and CD86 on virtually all lymph node B cells and for induction of a family of IFN-regulated genes within 48 h of infection. These direct IFNR-mediated signals were shown to affect both the magnitude and quality of the local virus-specific Ab response. Thus, ligand(s) of the type I IFNR are direct nonredundant early innate signals that regulate local antiviral B cell responses.
Collapse
Affiliation(s)
- Elizabeth S Coro
- Center for Comparative Medicine, University of California, Davis, 95616, USA
| | | | | |
Collapse
|
42
|
Squatrito M, Mancino M, Sala L, Draetta GF. Ebp1 is a dsRNA-binding protein associated with ribosomes that modulates eIF2alpha phosphorylation. Biochem Biophys Res Commun 2006; 344:859-68. [PMID: 16631606 DOI: 10.1016/j.bbrc.2006.03.205] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 03/25/2006] [Indexed: 10/24/2022]
Abstract
dsRNA-binding domains (dsRBDs) characterize an expanding family of proteins involved in different cellular processes, ranging from RNA editing and processing to translational control. Here we present evidence that Ebp1, a cell growth regulating protein that is part of ribonucleoprotein (RNP) complexes, contains a dsRBD and that this domain mediates its interaction with dsRNA. Deletion of Ebp1's dsRBD impairs its localization to the nucleolus and its ability to form RNP complexes. We show that in the cytoplasm, Ebp1 is associated with mature ribosomes and that it is able to inhibit the phosphorylation of serine 51 in the eukaryotic initiation factor 2 alpha (eIF2alpha). In response to various cellular stress, eIF2alpha is phosphorylated by distinct protein kinases (PKR, PERK, GCN2, and HRI), and this event results in protein translation shut-down. Ebp1 overexpression in HeLa cells is able to protect eIF2alpha from phosphorylation at steady state and also in response to various treatments. We demonstrate that Ebp1 interacts with and is phosphorylated by the PKR protein kinase. Our results demonstrate that Ebp1 is a new dsRNA-binding protein that acts as a cellular inhibitor of eIF2alpha phosphorylation suggesting that it could be involved in protein translation control.
Collapse
Affiliation(s)
- Massimo Squatrito
- European Institute of Oncology, 435 Via Ripamonti, 20141 Milan, Italy.
| | | | | | | |
Collapse
|
43
|
Gabel F, Wang D, Madern D, Sadler A, Dayie K, Daryoush MZ, Schwahn D, Zaccai G, Lee X, Williams BRG. Dynamic flexibility of double-stranded RNA activated PKR in solution. J Mol Biol 2006; 359:610-23. [PMID: 16650856 DOI: 10.1016/j.jmb.2006.03.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 03/21/2006] [Accepted: 03/22/2006] [Indexed: 12/31/2022]
Abstract
PKR, an interferon-induced double-stranded RNA activated serine-threonine kinase, is a component of signal transduction pathways mediating cell growth control and responses to stress and viral infection. Analysis of separate PKR functional domains by NMR and X-ray crystallography has revealed details of PKR RNA binding domains and kinase domain, respectively. Here, we report the structural characteristics, calculated from biochemical and neutron scattering data, of a native PKR fraction with a high level of autophosphorylation and constitutive kinase activity. The experiments reveal association of the protein monomer into dimers and tetramers, in the absence of double-stranded RNA or other activators. Low-resolution structures of the association states were obtained from the large angle neutron scattering data and reveal the relative orientation of all protein domains in the activated kinase dimer. Low-resolution structures were also obtained for a PKR tetramer-monoclonal antibody complex. Taken together, this information leads to a new model for the structure of the functioning unit of the enzyme, highlights the flexibility of PKR and sheds light on the mechanism of PKR activation. The results of this study emphasize the usefulness of low-resolution structural studies in solution on large flexible multiple domain proteins.
Collapse
Affiliation(s)
- Frank Gabel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bonnet MC, Daurat C, Ottone C, Meurs EF. The N-terminus of PKR is responsible for the activation of the NF-kappaB signaling pathway by interacting with the IKK complex. Cell Signal 2006; 18:1865-75. [PMID: 16600570 DOI: 10.1016/j.cellsig.2006.02.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2005] [Revised: 02/07/2006] [Accepted: 02/08/2006] [Indexed: 11/21/2022]
Abstract
The interferon-induced double-stranded RNA (dsRNA)-activated protein kinase (PKR) has been shown to activate NF-kappaB independently of its kinase function after interaction with the IKK complex. In order to investigate the mechanism of NF-kappaB activation by PKR, we identified the domain of PKR responsible for stimulating the NF-kappaB pathway in PKR-deficient fibroblasts using an NF-kappaB dependent reporter assay. The N-terminal 1-265 AA of PKR activates NF-kappaB, whereas the 1-180 AA N-terminus restricted to the two dsRNA Binding Domains (DRBD), the third basic domain alone (AA 181-265), or the C-terminus of PKR (AA 266-550) were unable to stimulate the expression of the NF-kappaB dependent reporter gene. Using confocal microscopy, we confirmed that PKR full length as well as PKR N-terminus colocalized with IKKbeta. By GST-pulldown analysis, using different PKR domains, we then revealed the specific ability of the PKR N-terminus 1-265 to bind to and activate IKK and showed that this activation requires the integrity of the IKK complex. This activation is not only due to DRBDs since the DRBD fragment 1-180 failed to inhibit PKR 1-265 induced NF-kappaB activation. Our results therefore demonstrate that the ability of PKR to mediate NF-kappaB activation resides in its full N-terminus, and requires both DRBDs and the third basic domain.
Collapse
Affiliation(s)
- Marion C Bonnet
- Unité des Hépacivirus, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
45
|
Smith JA, Schmechel SC, Raghavan A, Abelson M, Reilly C, Katze MG, Kaufman RJ, Bohjanen PR, Schiff LA. Reovirus induces and benefits from an integrated cellular stress response. J Virol 2006; 80:2019-33. [PMID: 16439558 PMCID: PMC1367166 DOI: 10.1128/jvi.80.4.2019-2033.2006] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Following infection with most reovirus strains, viral protein synthesis is robust, even when cellular translation is inhibited. To gain further insight into pathways that regulate translation in reovirus-infected cells, we performed a comparative microarray analysis of cellular gene expression following infection with two strains of reovirus that inhibit host translation (clone 8 and clone 87) and one strain that does not (Dearing). Infection with clone 8 and clone 87 significantly increased the expression of cellular genes characteristic of stress responses, including the integrated stress response. Infection with these same strains decreased transcript and protein levels of P58(IPK), the cellular inhibitor of the eukaryotic initiation factor 2alpha (eIF2alpha) kinases PKR and PERK. Since infection with host shutoff-inducing strains of reovirus impacted cellular pathways that control eIF2alpha phosphorylation and unphosphorylated eIF2alpha is required for translation initiation, we examined reovirus replication in a variety of cell lines with mutations that impact eIF2alpha phosphorylation. Our results revealed that reovirus replication is more efficient in the presence of eIF2alpha kinases and phosphorylatable eIF2alpha. When eIF2alpha is phosphorylated, it promotes the synthesis of ATF4, a transcription factor that controls cellular recovery from stress. We found that the presence of this transcription factor increased reovirus yields 10- to 100-fold. eIF2alpha phosphorylation also led to the formation of stress granules in reovirus-infected cells. Based on these results, we hypothesize that eIF2alpha phosphorylation facilitates reovirus replication in two ways-first, by inducing ATF4 synthesis, and second, by creating an environment that places abundant reovirus transcripts at a competitive advantage for limited translational components.
Collapse
Affiliation(s)
- Jennifer A Smith
- Department of Microbiology, University of Minnesota, 420 Delaware Street SE, MMC 196, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Li S, Min JY, Krug RM, Sen GC. Binding of the influenza A virus NS1 protein to PKR mediates the inhibition of its activation by either PACT or double-stranded RNA. Virology 2006; 349:13-21. [PMID: 16466763 DOI: 10.1016/j.virol.2006.01.005] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 10/07/2005] [Accepted: 01/04/2006] [Indexed: 10/25/2022]
Abstract
A major component of the cellular antiviral system is the latent protein kinase PKR, which is activated by binding to either double-stranded RNA (dsRNA) or the cellular PACT protein. Activated PKR phosphorylates the translation initiation factor eIF2, thereby inhibiting viral and cellular protein synthesis and virus replication. To evade the antiviral effects of PKR, many viruses, including influenza A virus, have evolved multiple mechanisms. For influenza A virus, the non-structural (NS1A) protein plays a major role in blocking activation of PKR during virus infection. The mechanism by which the NS1A protein inhibits PKR activation in infected cells has not been established. In the present study, we first carried out a series of in vitro experiments to determine whether the NS1A protein could utilize a common mechanism to inhibit PKR activation by both PACT and dsRNA, despite their different modes of activation. We demonstrated that the direct binding of the NS1A protein to the N-terminal 230 amino acid region of PKR can serve as such a common mechanism and that this binding does not require the RNA-binding activity of the NS1A protein. The lack of requirement for NS1A RNA-binding activity for the inhibition of PKR activation in vivo was established by two approaches. First, we showed that an NS1A protein lacking RNA-binding activity, like the wild-type (wt) protein, blocked PKR activation by PACT in vivo, as well as the downstream effects of PKR activation in cells, namely, eIF2 phosphorylation and apoptosis. In addition, we demonstrated that PKR activation is inhibited in cells infected with a recombinant influenza A virus expressing NS1A mutant protein that cannot bind RNA, as is the case in cells infected with wild-type influenza A virus.
Collapse
Affiliation(s)
- Shoudong Li
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
47
|
Dey M, Cao C, Dar AC, Tamura T, Ozato K, Sicheri F, Dever TE. Mechanistic link between PKR dimerization, autophosphorylation, and eIF2alpha substrate recognition. Cell 2005; 122:901-13. [PMID: 16179259 DOI: 10.1016/j.cell.2005.06.041] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 05/05/2005] [Accepted: 06/29/2005] [Indexed: 01/27/2023]
Abstract
The antiviral protein kinase PKR inhibits protein synthesis by phosphorylating the translation initiation factor eIF2alpha on Ser51. Binding of double-stranded RNA to the regulatory domains of PKR promotes dimerization, autophosphorylation, and the functional activation of the kinase. Herein, we identify mutations that activate PKR in the absence of its regulatory domains and map the mutations to a recently identified dimerization surface on the kinase catalytic domain. Mutations of other residues on this surface block PKR autophosphorylation and eIF2alpha phosphorylation, while mutating Thr446, an autophosphorylation site within the catalytic-domain activation segment, impairs eIF2alpha phosphorylation and viral pseudosubstrate binding. Mutational analysis of catalytic-domain residues preferentially conserved in the eIF2alpha kinase family identifies helix alphaG as critical for the specific recognition of eIF2alpha. We propose an ordered mechanism of PKR activation in which catalytic-domain dimerization triggers Thr446 autophosphorylation and specific eIF2alpha substrate recognition.
Collapse
Affiliation(s)
- Madhusudan Dey
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Mohr I. Phosphorylation and dephosphorylation events that regulate viral mRNA translation. Virus Res 2005; 119:89-99. [PMID: 16305812 DOI: 10.1016/j.virusres.2005.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 08/30/2005] [Accepted: 10/20/2005] [Indexed: 10/25/2022]
Abstract
As they are completely dependent upon the protein synthesis machinery resident in the cells of their host to translate their mRNAs, it is imperative that viruses are able to effectively manipulate the elaborate cellular regulatory network that controls translation. Indeed, this exquisite dependence on host functions has made viral models attractive systems to explore translational regulatory mechanisms operative in eukaryotic cells. Central among these are an intricate array of phosphorylation and dephosphorylation events that have far reaching consequences on the activity of cellular translation factors. Not only do these modulate the activity of a given factor, but they can also determine if the translation of host proteins persists in infected cells, the efficiency with which viral mRNAs are translated and the outcome of a systemic host anti-viral response. In this review, we discuss how various viruses manipulate the phosphorylation state of key cellular translation factors, illustrating the critical nature these interactions play in virus replication, pathogenesis and innate host defense.
Collapse
Affiliation(s)
- Ian Mohr
- Department of Microbiology, MSB 214, NYU Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
49
|
Fasciano S, Hutchins B, Handy I, Patel RC. Identification of the heparin-binding domains of the interferon-induced protein kinase, PKR. FEBS J 2005; 272:1425-39. [PMID: 15752359 PMCID: PMC3969814 DOI: 10.1111/j.1742-4658.2005.04575.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PKR is an interferon-induced serine-threonine protein kinase that plays an important role in the mediation of the antiviral and antiproliferative actions of interferons. PKR is present at low basal levels in cells and its expression is induced at the transcriptional level by interferons. PKR's kinase activity stays latent until it binds to its activator. In the case of virally infected cells, double-stranded (ds) RNA serves as PKR's activator. The dsRNA binds to PKR via two copies of an evolutionarily conserved motif, thus inducing a conformational change, unmasking the ATP-binding site and leading to autophosphorylation of PKR. Activated PKR then phosphorylates the alpha-subunit of the protein synthesis initiation factor 2 (eIF2alpha) thereby inducing a general block in the initiation of protein synthesis. In addition to dsRNA, polyanionic agents such as heparin can also activate PKR. In contrast to dsRNA-induced activation of PKR, heparin-dependent PKR activation has so far remained uncharacterized. In order to understand the mechanism of heparin-induced PKR activation, we have mapped the heparin-binding domains of PKR. Our results indicate that PKR has two heparin-binding domains that are nonoverlapping with its dsRNA-binding domains. Although both these domains can function independently of each other, they function cooperatively when present together. Point mutations created within these domains rendered PKR defective in heparin-binding, thereby confirming their essential role. In addition, these mutants were defective in kinase activity as determined by both in vitro and in vivo assays.
Collapse
Affiliation(s)
- Stephen Fasciano
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
50
|
Lemaire PA, Lary J, Cole JL. Mechanism of PKR activation: dimerization and kinase activation in the absence of double-stranded RNA. J Mol Biol 2005; 345:81-90. [PMID: 15567412 DOI: 10.1016/j.jmb.2004.10.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 10/07/2004] [Accepted: 10/08/2004] [Indexed: 11/16/2022]
Abstract
The kinase PKR is a central component of the interferon antiviral pathway. PKR is activated upon binding double-stranded (ds) RNA to undergo autophosphorylation. Although PKR is known to dimerize, the relationship between dimerization and activation remains unclear. Here, we directly characterize dimerization of PKR in free solution using analytical ultracentrifugation and correlate self-association with autophosphorylation activity. Latent, unphosphorylated PKR exists predominantly as a monomer at protein concentrations below 2 mg/ml. A monomer sedimentation coefficient of s(20,w)(0)=3.58 S and a frictional ratio of f/f(0)=1.62 indicate an asymmetric shape. Sedimentation equilibrium measurements indicate that PKR undergoes a weak, reversible monomer-dimer equilibrium with K(d)=450 microM. This dimerization reaction serves to initiate a previously unrecognized dsRNA-independent autophosphorylation reaction. The resulting activated enzyme is phosphorylated on the two critical threonine residues present in the activation loop and is competent to phosphorylate the physiological substrate, eIF2alpha. Dimer stability is enhanced by approximately 500-fold upon autophosphorylation. We propose a chain reaction model for PKR dsRNA-independent activation where dimerization of latent enzyme followed by intermolecular phosphorylation serves as the initiation step. Subsequent propagation steps likely involve phosphorylation of latent PKR monomers by activated enzyme within high-affinity heterodimers. Our results support a model whereby dsRNA functions by bringing PKR monomers into close proximity in a manner that is analogous to the dimerization of free PKR.
Collapse
Affiliation(s)
- Peter A Lemaire
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|