1
|
Brown G. Hematopoietic Stem Cells: Nature and Niche Nurture. BIOENGINEERING (BASEL, SWITZERLAND) 2021; 8:bioengineering8050067. [PMID: 34063400 PMCID: PMC8155961 DOI: 10.3390/bioengineering8050067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022]
Abstract
Like all cells, hematopoietic stem cells (HSCs) and their offspring, the hematopoietic progenitor cells (HPCs), are highly sociable. Their capacity to interact with bone marrow niche cells and respond to environmental cytokines orchestrates the generation of the different types of blood and immune cells. The starting point for engineering hematopoiesis ex vivo is the nature of HSCs, and a longstanding premise is that they are a homogeneous population of cells. However, recent findings have shown that adult bone marrow HSCs are really a mixture of cells, with many having lineage affiliations. A second key consideration is: Do HSCs "choose" a lineage in a random and cell-intrinsic manner, or are they instructed by cytokines? Since their discovery, the hematopoietic cytokines have been viewed as survival and proliferation factors for lineage committed HPCs. Some are now known to also instruct cell lineage choice. These fundamental changes to our understanding of hematopoiesis are important for placing niche support in the right context and for fabricating an ex vivo environment to support HSC development.
Collapse
Affiliation(s)
- Geoffrey Brown
- Institute of Clinical Sciences, School of Biomedical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
2
|
Rothenberg EV, Kueh HY, Yui MA, Zhang JA. Hematopoiesis and T-cell specification as a model developmental system. Immunol Rev 2016; 271:72-97. [PMID: 27088908 DOI: 10.1111/imr.12417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pathway to generate T cells from hematopoietic stem cells guides progenitors through a succession of fate choices while balancing differentiation progression against proliferation, stage to stage. Many elements of the regulatory system that controls this process are known, but the requirement for multiple, functionally distinct transcription factors needs clarification in terms of gene network architecture. Here, we compare the features of the T-cell specification system with the rule sets underlying two other influential types of gene network models: first, the combinatorial, hierarchical regulatory systems that generate the orderly, synchronized increases in complexity in most invertebrate embryos; second, the dueling 'master regulator' systems that are commonly used to explain bistability in microbial systems and in many fate choices in terminal differentiation. The T-cell specification process shares certain features with each of these prevalent models but differs from both of them in central respects. The T-cell system is highly combinatorial but also highly dose-sensitive in its use of crucial regulatory factors. The roles of these factors are not always T-lineage-specific, but they balance and modulate each other's activities long before any mutually exclusive silencing occurs. T-cell specification may provide a new hybrid model for gene networks in vertebrate developmental systems.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hao Yuan Kueh
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mary A Yui
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jingli A Zhang
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
3
|
Ouboussad L, Kreuz S, Lefevre PF. CTCF depletion alters chromatin structure and transcription of myeloid-specific factors. J Mol Cell Biol 2013; 5:308-22. [PMID: 23933634 DOI: 10.1093/jmcb/mjt023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Differentiation is a multistep process tightly regulated and controlled by complex transcription factor networks. Here, we show that the rate of differentiation of common myeloid precursor cells increases after depletion of CTCF, a protein emerging as a potential key factor regulating higher-order chromatin structure. We identified CTCF binding in the vicinity of important transcription factors regulating myeloid differentiation and showed that CTCF depletion impacts on the expression of these genes in concordance with the observed acceleration of the myeloid commitment. Furthermore, we observed a loss of the histone variant H2A.Z within the selected promoter regions and an increase in non-coding RNA transcription upstream of these genes. Both abnormalities suggest a global chromatin structure destabilization and an associated increase of non-productive transcription in response to CTCF depletion but do not drive the CTCF-mediated transcription alterations of the neighbouring genes. Finally, we detected a transient eviction of CTCF at the Egr1 locus in correlation with Egr1 peak of expression in response to lipopolysaccharide (LPS) treatment in macrophages. This eviction is also correlated with the expression of an antisense non-coding RNA transcribing through the CTCF-binding region indicating that non-coding RNA transcription could be the cause and the consequence of CTCF eviction.
Collapse
Affiliation(s)
- Lylia Ouboussad
- Section of Experimental Haematology, Leeds Institute of Cancer Studies and Pathology, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds LS9 7TF, UK
| | | | | |
Collapse
|
4
|
Chiang CL, Chen SSA, Lee SJ, Tsao KC, Chu PL, Wen CH, Hwang SM, Yao CL, Lee H. Lysophosphatidic Acid Induces Erythropoiesis through Activating Lysophosphatidic Acid Receptor 3. Stem Cells 2011; 29:1763-73. [DOI: 10.1002/stem.733] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Role of transcription factors in differentiation and reprogramming of hematopoietic cells. Keio J Med 2011; 60:47-55. [PMID: 21720200 DOI: 10.2302/kjm.60.47] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Differentiation of hematopoietic cells is a sequential process of cell fate decision originating from hematopoietic stem cells (HSCs), allowing multi- or oligopotent progenitors to commit to certain lineages. HSCs are cells that are able to self-renew and repopulate the marrow for the long term. They first differentiate into multipotent progenitors (MPPs), which give rise to common lymphoid progenitors (CLPs) and common myeloid progenitors (CMPs). CMPs then differentiate into granulocyte monocyte progenitors (GMPs) and megakaryocyte erythroid progenitors (MEPs), which are the precursors of granulocytes/monocytes and erythrocytes/megakaryocytes, respectively. Lineage specification at differentiation branch points is dictated by the activation of lineage-specific transcription factors such as C/EBPα, PU.1, and GATA-1. The role of these transcription factors is generally instructive, and the expression of a single factor can often determine cell fate. Differentiation was long regarded as an irreversible process, and it was believed that somatic cells would not change their fate once they were differentiated. This paradigm was first challenged by the finding that ectopic cytokine signals could change the fate of differentiation, probably through modulating internal transcription networks. Subsequently, we and others showed that virtually all progenitors, including CLPs, CMPs, GMPs, and MEPs, still retain differentiation plasticity, and they can be converted into lineages other than their own by ectopic activation of only a single lineage-specific transcription factor. These findings established a novel paradigm for cellular differentiation and opened up an avenue for artificially manipulating cell fate for clinical use.
Collapse
|
6
|
Abstract
To understand the mechanism in lymphoid development, it is critical to identify developmental intermediates downstream of hematopoietic stem cells, including cells responsible for seeding the thymus. Although early studies showed that hematopoietic stem cells choose either the myeloid-erythroid or the lymphoid pathway, recent data suggest that myelo-lymphoid precursors lacking erythroid potential exist in early hematopoiesis before cells are fully committed to the lymphoid lineage. We here summarize the phenotype and functional properties of such progenitors and the current developmental map for the lymphoid lineage.
Collapse
Affiliation(s)
- Koichi Akashi
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
7
|
Cantor AB, Iwasaki H, Arinobu Y, Moran TB, Shigematsu H, Sullivan MR, Akashi K, Orkin SH. Antagonism of FOG-1 and GATA factors in fate choice for the mast cell lineage. ACTA ACUST UNITED AC 2008; 205:611-24. [PMID: 18299398 PMCID: PMC2275384 DOI: 10.1084/jem.20070544] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The zinc finger transcription factor GATA-1 requires direct physical interaction with the cofactor friend of GATA-1 (FOG-1) for its essential role in erythroid and megakaryocytic development. We show that in the mast cell lineage, GATA-1 functions completely independent of FOG proteins. Moreover, we demonstrate that FOG-1 antagonizes the fate choice of multipotential progenitor cells for the mast cell lineage, and that its down-regulation is a prerequisite for mast cell development. Remarkably, ectopic expression of FOG-1 in committed mast cell progenitors redirects them into the erythroid, megakaryocytic, and granulocytic lineages. These lineage switches correlate with transcriptional down-regulation of GATA-2, an essential mast cell GATA factor, via switching of GATA-1 for GATA-2 at a key enhancer element upstream of the GATA-2 gene. These findings illustrate combinatorial control of cell fate identity by a transcription factor and its cofactor, and highlight the role of transcriptional networks in lineage determination. They also provide evidence for lineage instability during early stages of hematopoietic lineage commitment.
Collapse
Affiliation(s)
- Alan B Cantor
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
To elucidate the molecular mechanisms underlying normal and malignant hematopoietic development, it is critical to identify developmental intermediates for each lineage downstream of hematopoietic stem cells. Recent advances in prospective isolation of hematopoietic stem and progenitor cells, and efficient xenogeneic transplantation systems have provided a detailed developmental map in both mouse and human hematopoiesis, demonstrating that surface phenotypes of mouse stem-progenitor cells and their human counterparts are considerably different. Here, we summarize the phenotype and functional properties and their differences of hematopoietic stem and progenitor cell populations between mouse and human.
Collapse
|
9
|
Traver D, Akashi K. Lineage commitment and developmental plasticity in early lymphoid progenitor subsets. Adv Immunol 2004; 83:1-54. [PMID: 15135627 DOI: 10.1016/s0065-2776(04)83001-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- David Traver
- Dana-Farber Cancer Institute, Boston Massachusetts 02115, USA
| | | |
Collapse
|
10
|
Araki H, Katayama N, Yamashita Y, Mano H, Fujieda A, Usui E, Mitani H, Ohishi K, Nishii K, Masuya M, Minami N, Nobori T, Shiku H. Reprogramming of human postmitotic neutrophils into macrophages by growth factors. Blood 2003; 103:2973-80. [PMID: 15070673 DOI: 10.1182/blood-2003-08-2742] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is generally recognized that postmitotic neutrophils give rise to polymorphonuclear neutrophils alone. We obtained evidence for a lineage switch of human postmitotic neutrophils into macrophages in culture. When the CD15+CD14- cell population, which predominantly consists of band neutrophils, was cultured with granulocyte macrophage-colony-stimulating factor, tumor necrosis factor-alpha, interferon-gamma, and interleukin-4, and subsequently with macrophage colony-stimulating factor alone, the resultant cells had morphologic, cytochemical, and phenotypic features of macrophages. In contrast to the starting population, they were negative for myeloperoxidase, specific esterase, and lactoferrin, and they up-regulated nonspecific esterase activity and the expression of macrophage colony-stimulating factor receptor, mannose receptor, and HLA-DR. CD15+CD14- cells proceeded to macrophages through the CD15-CD14- cell population. Microarray analysis of gene expression also disclosed the lineage conversion from neutrophils to macrophages. Macrophages derived from CD15+CD14- neutrophils had phagocytic function. Data obtained using 3 different techniques, including Ki-67 staining, bromodeoxyuridine incorporation, and cytoplasmic dye labeling, together with the yield of cells, indicated that the generation of macrophages from CD15+CD14- neutrophils did not result from a contamination of progenitors for macrophages. Our data show that in response to cytokines, postmitotic neutrophils can become macrophages. This may represent another differentiation pathway toward macrophages in human postnatal hematopoiesis.
Collapse
Affiliation(s)
- Hiroto Araki
- Second Department of Internal Medicine, Mie University School of Medicine, Tsu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Iwasaki H, Mizuno SI, Wells RA, Cantor AB, Watanabe S, Akashi K. GATA-1 Converts Lymphoid and Myelomonocytic Progenitors into the Megakaryocyte/Erythrocyte Lineages. Immunity 2003; 19:451-62. [PMID: 14499119 DOI: 10.1016/s1074-7613(03)00242-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
GATA-1 is an essential transcription factor for megakaryocyte and erythrocyte (MegE) development. Here we show that hematopoietic progenitors can be reprogrammed by the instructive action of GATA-1. Enforced expression of GATA-1 in hematopoietic stem cells led to loss of self-renewal activity and the exclusive generation of MegE lineages. Strikingly, ectopic GATA-1 reprogrammed common lymphoid progenitors as well as granulocyte/monocyte (GM) progenitors to differentiate into MegE lineages, while inhibiting normal lymphoid or GM differentiation. GATA-1 upregulated critical MegE-related transcription factors such as FOG-1 and GATA-2 in lymphoid and GM progenitors, and their MegE development did not require "permissive" erythropoietin signals. Furthermore, GATA-1 induced apoptosis of proB and myelomonocytic cells, which could not be prevented by enforced permissive Bcl-2 or myeloid cytokine signals. Thus, GATA-1 specifically instructs MegE commitment while excluding other fate outcomes in stem and progenitor cells, suggesting that regulation of GATA-1 is critical in maintaining multilineage homeostasis.
Collapse
Affiliation(s)
- Hiromi Iwasaki
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
12
|
Rylski M, Welch JJ, Chen YY, Letting DL, Diehl JA, Chodosh LA, Blobel GA, Weiss MJ. GATA-1-mediated proliferation arrest during erythroid maturation. Mol Cell Biol 2003; 23:5031-42. [PMID: 12832487 PMCID: PMC162202 DOI: 10.1128/mcb.23.14.5031-5042.2003] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2003] [Revised: 03/07/2003] [Accepted: 04/17/2003] [Indexed: 12/15/2022] Open
Abstract
Transcription factor GATA-1 is essential for erythroid and megakaryocytic maturation. GATA-1 mutations are associated with hematopoietic precursor proliferation and leukemogenesis, suggesting a role in cell cycle control. While numerous GATA-1 target genes specifying mature hematopoietic phenotypes have been identified, how GATA-1 regulates proliferation remains unknown. We used a complementation assay based on synchronous inducible rescue of GATA-1(-) erythroblasts to show that GATA-1 promotes both erythroid maturation and G(1) cell cycle arrest. Molecular studies combined with microarray transcriptome analysis revealed an extensive GATA-1-regulated program of cell cycle control in which numerous growth inhibitors were upregulated and mitogenic genes were repressed. GATA-1 inhibited expression of cyclin-dependent kinase (Cdk) 6 and cyclin D2 and induced the Cdk inhibitors p18(INK4C) and p27(Kip1) with associated inactivation of all G(1) Cdks. These effects were dependent on GATA-1-mediated repression of the c-myc (Myc) proto-oncogene. GATA-1 inhibited Myc expression within 3 h, and chromatin immunoprecipitation studies indicated that GATA-1 occupies the Myc promoter in vivo, suggesting a direct mechanism for gene repression. Surprisingly, enforced expression of Myc prevented GATA-1-induced cell cycle arrest but had minimal effects on erythroid maturation. Our results illustrate how GATA-1, a lineage-determining transcription factor, coordinates proliferation arrest with cellular maturation through distinct, interrelated genetic programs.
Collapse
Affiliation(s)
- Marcin Rylski
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Elagib KE, Racke FK, Mogass M, Khetawat R, Delehanty LL, Goldfarb AN. RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation. Blood 2003; 101:4333-41. [PMID: 12576332 DOI: 10.1182/blood-2002-09-2708] [Citation(s) in RCA: 253] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Megakaryocytic and erythroid lineages derive from a common bipotential progenitor and share many transcription factors, most prominently factors of the GATA zinc-finger family. Little is known about transcription factors unique to the megakaryocytic lineage that might program divergence from the erythroid pathway. To identify such factors, we used the K562 system in which megakaryocyte lineage commitment is dependent on sustained extracellular regulatory kinase (ERK) activation and is inhibited by stromal cell contact. During megakaryocytic induction in this system, the myeloid transcription factor RUNX1 underwent up-regulation, dependent on ERK signaling and inhibitable by stromal cell contact. Immunostaining of healthy human bone marrow confirmed a strong expression of RUNX1 and its cofactor, core-binding factor beta (CBFbeta), in megakaryocytes and a minimal expression in erythroblasts. In primary human hematopoietic progenitor cultures, RUNX1 and CBFbeta up-regulation preceded megakaryocytic differentiation, and down-regulation of these factors preceded erythroid differentiation. Functional studies showed cooperation among RUNX1, CBFbeta, and GATA-1 in the activation of a megakaryocytic promoter. By contrast, the RUNX1-ETO leukemic fusion protein potently repressed GATA-1-mediated transactivation. These functional interactions correlated with physical interactions observed between GATA-1 and RUNX1 factors. Enforced RUNX1 expression in K562 cells enhanced the induction of the megakaryocytic integrin proteins alphaIIb and alpha2. These results suggest that RUNX1 may participate in the programming of megakaryocytic lineage commitment through functional and physical interactions with GATA transcription factors. By contrast, RUNX1-ETO inhibition of GATA function may constitute a potential mechanism for the blockade of erythroid and megakaryocytic differentiation seen in leukemias with t(8;21).
Collapse
Affiliation(s)
- Kamaleldin E Elagib
- Department of Pathology, University of Virginia, Charlottesville, VA 22908-0904, USA
| | | | | | | | | | | |
Collapse
|
14
|
Warren LA, Rothenberg EV. Regulatory coding of lymphoid lineage choice by hematopoietic transcription factors. Curr Opin Immunol 2003; 15:166-75. [PMID: 12633666 DOI: 10.1016/s0952-7915(03)00011-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
During lymphopoiesis, precursor cells negotiate a complex regulatory space, defined by the levels of several competing and cross-regulating transcription factors, before arriving at stable states of commitment to the B-, T- and NK-specific developmental programs. Recent perturbation experiments provide evidence that this space has three major axes, corresponding to the PU.1 versus GATA-1 balance, the intensity of Notch signaling through the CSL pathway, and the ratio of E-box transcription factors to their Id protein antagonists.
Collapse
Affiliation(s)
- Luigi A Warren
- Division of Biology, 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
15
|
Abstract
The Ets family of transcription factors characterized by an evolutionarily-conserved DNA-binding domain regulates expression of a variety of viral and cellular genes by binding to a purine-rich GGAA/T core sequence in cooperation with other transcriptional factors and co-factors. Most Ets family proteins are nuclear targets for activation of Ras-MAP kinase signaling pathway and some of them affect proliferation of cells by regulating the immediate early response genes and other growth-related genes. Some of them also regulate apoptosis-related genes. Several Ets family proteins are preferentially expressed in specific cell lineages and are involved in their development and differentiation by increasing the enhancer or promoter activities of the genes encoding growth factor receptors and integrin families specific for the cell lineages. Many Ets family proteins also modulate gene expression through protein-protein interactions with other cellular partners. Deregulated expression or formation of chimeric fusion proteins of Ets family due to proviral insertion or chromosome translocation is associated with leukemias and specific types of solid tumors. Several Ets family proteins also participate in malignancy of tumor cells including invasion and metastasis by activating the transcription of several protease genes and angiogenesis-related genes.
Collapse
Affiliation(s)
- Tsuneyuki Oikawa
- Department of Cell Genetics, Sasaki Institute, 2-2 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | |
Collapse
|
16
|
Li K, Zhao S, Karur V, Wojchowski DM. DYRK3 activation, engagement of protein kinase A/cAMP response element-binding protein, and modulation of progenitor cell survival. J Biol Chem 2002; 277:47052-60. [PMID: 12356771 DOI: 10.1074/jbc.m205374200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DYRKs are a new family of dual-specificity tyrosine-regulated kinases with emerging roles in cell growth and development. Recently, we discovered that DYRK3 is expressed primarily in erythroid progenitor cells and modulates late erythropoiesis. We now describe 1) roles for the DYRK3 YTY signature motif in kinase activation, 2) the coupling of DYRK3 to cAMP response element (CRE)-binding protein (CREB), and 3) effects of DYRK3 on hematopoietic progenitor cell survival. Regarding the DYRK3 kinase domain, intactness of Tyr(333) (but not Tyr(331)) within subdomain loop VII-VIII was critical for activation. Tyr(331) plus Tyr(333) acidification (Tyr mutated to Glu) was constitutively activating, but kinase activity was not affected substantially by unique N- or C-terminal domains. In transfected 293 and HeLa cells, DYRK3 was discovered to efficiently stimulate CRE-luciferase expression, to activate a CREB-Gal4 fusion protein, and to promote CREB phosphorylation at Ser(133). Interestingly, this CREB/CRE response was also supported (50% of wild-type activity) by a kinase-inactive DYRK3 mutant as well as a DYRK3 C-terminal region and was blocked by protein kinase A inhibitors, suggesting functional interactions between protein kinase A and DYRK3. Finally, DYRK3 expression in cytokine-dependent hematopoietic FDCW2 cells was observed to inhibit programmed cell death. Thus, primary new insight into DYRK3 kinase signaling routes, subdomain activities, and possible biofunctions is provided.
Collapse
Affiliation(s)
- Ke Li
- Immunobiology Program and the Department of Veterinary Science, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
17
|
French SW, Hoyer KK, Shen RR, Teitell MA. Transdifferentiation and nuclear reprogramming in hematopoietic development and neoplasia. Immunol Rev 2002; 187:22-39. [PMID: 12366680 DOI: 10.1034/j.1600-065x.2002.18703.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cell transplantation and tissue regeneration studies indicate a surprisingly broad developmental potential for lineage-committed hematopoietic stem cells (HSCs). Under these conditions HSCs transition into myocytes, neurons, hepatocytes or other types of nonhematopoietic effector cells. Equally impressive is the progression of committed neuronal stem cells (NSCs) to functional blood elements. Although critical cell-of-origin issues remain unresolved, the possibility of lineage switching is strengthened by a few well-controlled examples of cell-type conversion. At the molecular level, switching probably initiates from environmental signals that induce epigenetic modifications, resulting in changes in chromatin configuration. In turn, these changes affect patterns of gene expression that mediate divergent developmental programs. This review examines recent findings in nuclear reprogramming and cell fusion as potential causative mechanisms for transdifferentiation during normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Samuel W French
- Department of Pathology and Laboratory Medicine, UCLA School of Medicine, Los Angeles, CA 90095-1732, USA
| | | | | | | |
Collapse
|
18
|
Heyworth C, Pearson S, May G, Enver T. Transcription factor-mediated lineage switching reveals plasticity in primary committed progenitor cells. EMBO J 2002; 21:3770-81. [PMID: 12110589 PMCID: PMC126114 DOI: 10.1093/emboj/cdf368] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The developmental plasticity of transplanted adult stem cells challenges the notion that tissue-restricted stem cells have stringently limited lineage potential and prompts a re-evaluation of the stability of lineage commitment. Transformed cell systems are inappropriate for such studies, since transformation potentially dysregulates the processes governing lineage commitment. We have therefore assessed the stability of normal lineage commitment in primary adult haematopoietic cells. For these studies we have used prospectively isolated primary bipotent progenitors, which normally display only neutrophil and monocyte differentiation in vitro. In response to ectopic transcription factor expression, these neutrophil/monocyte progenitors were reprogrammed to take on erythroid, eosinophil and basophil-like cell fates, with the resultant colonies resembling the mixed lineage colonies normally generated by multipotential progenitors. Clone-marking and daughter cell experiments identified lineage switching rather than differential cell selection as the mechanism of altered lineage output. These results demonstrate that the cell type-specific programming of apparently committed primary progenitors is not irrevocably fixed, but may be radically re-specified in response to a single transcriptional regulator.
Collapse
Affiliation(s)
- Clare Heyworth
- Section of Gene Function and Regulation, Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB and
Cancer Research UK Experimental Haematology Group, Paterson Institute for Cancer Research, Christie Hospital National Health Service Trust, Manchester M20 4BX, UK Corresponding author e-mail:
| | - Stella Pearson
- Section of Gene Function and Regulation, Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB and
Cancer Research UK Experimental Haematology Group, Paterson Institute for Cancer Research, Christie Hospital National Health Service Trust, Manchester M20 4BX, UK Corresponding author e-mail:
| | | | - Tariq Enver
- Section of Gene Function and Regulation, Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB and
Cancer Research UK Experimental Haematology Group, Paterson Institute for Cancer Research, Christie Hospital National Health Service Trust, Manchester M20 4BX, UK Corresponding author e-mail:
| |
Collapse
|
19
|
Affiliation(s)
- Thomas Graf
- Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
20
|
Erythropoietin receptor-dependent erythroid colony-forming unit development: capacities of Y343 and phosphotyrosine-null receptor forms. Blood 2002. [DOI: 10.1182/blood.v99.3.898.h80302000898_898_904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Red cell development depends on the binding of erythropoietin (EPO) to receptors expressed by erythroid colony-forming units (CFUe) and the subsequent activation of receptor-bound Janus kinase (Jak2). Jak2 then mediates the phosphorylation of receptor tyrosine sites and the recruitment of 25 or more Src homology 2 domain-encoding proteins and associated factors. Previous studies have shown that an EPO receptor form containing Jak2-binding domains plus a single phosphotyrosine343 (PY343)–STAT5-binding site provides all signals needed for erythroid cell development. However, roles for PY343 and STAT5 remain controversial, and findings regarding PY-null receptor activities and erythropoiesis in STAT5-deficient mice are disparate. To study activities of a PY-null EPO receptor in primary cells while avoiding compensatory mechanisms, a form retaining domains for Jak2 binding and activation, but lacking all cytoplasmic tyrosine sites, was expressed in transgenic mice from aGATA1 gene-derived vector as a human epidermal growth factor receptor- murine EPO receptor chimera (EE-T-Y343F). The bio-signaling capacities of this receptor form were investigated in CFUe from thiamphenicol-treated mice. Interestingly, this PY-null EPO receptor form supported CFUe development (in the absence of detectable STAT5 activation) at efficiencies within 3-fold of those levels mediated by either an EE-T-Y343 form or the endogenous EPO receptor. However, EE-T-Y343F–dependent Ter119+ erythroblast maturation was attenuated. In tests of cosignaling with c-Kit, EE-T-Y343F nonetheless retained full capacity to synergize with c-Kit in promoting erythroid progenitor cell proliferation. Thus, EPO receptor PY-dependent events can assist late erythropoiesis but may be nonessential for EPO receptor–c-Kit synergy.
Collapse
|
21
|
Crawford SE, Qi C, Misra P, Stellmach V, Rao MS, Engel JD, Zhu Y, Reddy JK. Defects of the heart, eye, and megakaryocytes in peroxisome proliferator activator receptor-binding protein (PBP) null embryos implicate GATA family of transcription factors. J Biol Chem 2002; 277:3585-92. [PMID: 11724781 DOI: 10.1074/jbc.m107995200] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Peroxisome proliferator activator receptor (PPAR)-binding protein (PBP) is an important coactivator for PPARgamma and other nuclear receptors. It has been identified as an integral component of a multiprotein thyroid hormone receptor-associated protein/vitamin D(3) receptor-interacting protein/activator-recruited cofactor complexes required for transcriptional activity. Here, we show that PBP is critical for the development of placenta and for the normal embryonic development of the heart, eye, vascular, and hematopoietic systems. The primary functional cause of embryonic lethality at embryonic day11.5 observed with PBP null mutation was cardiac failure because of noncompaction of the ventricular myocardium and resultant ventricular dilatation. There was a paucity of retinal pigment, defective lens formation, excessive systemic angiogenesis, a deficiency in the number of megakaryocytes, and an arrest in erythrocytic differentiation. Some of these defects involve PPARgamma and retinoid-sensitive sites, whereas others have not been recognized in the PPAR-signaling pathway. Phenotypic changes in four organ systems observed in PBP null mice overlapped with those in mice deficient in members of GATA, a family of transcription factors known to regulate differentiation of megakaryocytes, erythrocytes, and adipocytes. We demonstrate that PBP interacts with all five GATA factors analyzed, GATA-1, GATA-2, GATA-3, GATA-4, and GATA-6, and show that the binding of GATA-1, GATA-4, and GATA-6 to PBP is not dependent on the nuclear receptor recognition sequence motif LXXLL (where L is leucine and X is any amino acid) in PBP. Coexpression of PBP with GATA-3 markedly enhanced transcriptional activity of GATA-3 in nonhematopoietic cells. These observations identify the GATA family of transcription factors as a new interacting partner of PBP and demonstrate that PBP is essential for normal development of vital organ systems.
Collapse
Affiliation(s)
- Susan E Crawford
- Department of Pathology, Northwestern University School of Medicine, Chicago, Illinois 60611-3008, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Miller CP, Heilman DW, Wojchowski DM. Erythropoietin receptor-dependent erythroid colony-forming unit development: capacities of Y343 and phosphotyrosine-null receptor forms. Blood 2002; 99:898-904. [PMID: 11806992 DOI: 10.1182/blood.v99.3.898] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Red cell development depends on the binding of erythropoietin (EPO) to receptors expressed by erythroid colony-forming units (CFUe) and the subsequent activation of receptor-bound Janus kinase (Jak2). Jak2 then mediates the phosphorylation of receptor tyrosine sites and the recruitment of 25 or more Src homology 2 domain-encoding proteins and associated factors. Previous studies have shown that an EPO receptor form containing Jak2-binding domains plus a single phosphotyrosine(343) (PY(343))-STAT5-binding site provides all signals needed for erythroid cell development. However, roles for PY(343) and STAT5 remain controversial, and findings regarding PY-null receptor activities and erythropoiesis in STAT5-deficient mice are disparate. To study activities of a PY-null EPO receptor in primary cells while avoiding compensatory mechanisms, a form retaining domains for Jak2 binding and activation, but lacking all cytoplasmic tyrosine sites, was expressed in transgenic mice from a GATA1 gene-derived vector as a human epidermal growth factor receptor- murine EPO receptor chimera (EE-T-Y343F). The bio-signaling capacities of this receptor form were investigated in CFUe from thiamphenicol-treated mice. Interestingly, this PY-null EPO receptor form supported CFUe development (in the absence of detectable STAT5 activation) at efficiencies within 3-fold of those levels mediated by either an EE-T-Y343 form or the endogenous EPO receptor. However, EE-T-Y343F-dependent Ter119(+) erythroblast maturation was attenuated. In tests of cosignaling with c-Kit, EE-T-Y343F nonetheless retained full capacity to synergize with c-Kit in promoting erythroid progenitor cell proliferation. Thus, EPO receptor PY-dependent events can assist late erythropoiesis but may be nonessential for EPO receptor-c-Kit synergy.
Collapse
Affiliation(s)
- Chris P Miller
- Department of Veterinary Science, Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
23
|
Zhang D, Johnson MM, Miller CP, Pircher TJ, Geiger JN, Wojchowski DM. An optimized system for studies of EPO-dependent murine pro-erythroblast development. Exp Hematol 2001; 29:1278-88. [PMID: 11698123 DOI: 10.1016/s0301-472x(01)00725-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Objectives were to develop new means to isolate useful numbers of primary progenitor cells and to quantitatively assay the stepwise maturation of erythroblasts. METHODS Approaches involved dosing mice with thiamphenicol (TAP) to yield staged cohorts of pro-erythroid cells; optimizing conditions for their EPO-dependent in vitro growth and survival; developing assays for CFU-E maturation; analyzing stage-specific transcript expression; and expressing a heterologous, erythroid-specific tag (EE372) in transgenic mice. RESULTS Per TAP-treated mouse, 3 x 10(7) highly EPO-responsive erythroid progenitor cells were generated that represented up to 30% of total splenocytes and showed strict dependence on EPO for survival, growth, and immediate response gene expression. In this developing cohort, a tightly programmed sequence of gene expression was observed, and maximal expression of c-kit, EPO receptor, and beta-globin transcripts occurred at 72, 96, and 120 hours post-TAP withdrawal, respectively. Also, the newly discovered erythroid-specific dual-specificity kinase, DYRK3, was revealed to be expressed at a late CFU-E stage. In vitro, these progenitor cells matured stepwise from high FALS Ter119- cells (24-hour culture) to high FALS Ter119+ cells (24-36 hours) to low FALS Ter119+ maturing erythroblasts (40-48 hours) and sharp differences in their morphologies were observed. Finally, a MACS-based procedure for the purification of erythroid progenitor cells from TAP-treated EE372 transgenic mice also was developed. CONCLUSIONS A comprehensive new system for isolating large numbers of primary murine erythroid progenitor cells and quantitatively monitoring their development is established that should serve well in investigations of endogenous and pharmacological regulators of red blood cell development.
Collapse
Affiliation(s)
- D Zhang
- Department of Veterinary Science, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
24
|
Chen D, Zhang G. Enforced expression of the GATA-3 transcription factor affects cell fate decisions in hematopoiesis. Exp Hematol 2001; 29:971-80. [PMID: 11495703 DOI: 10.1016/s0301-472x(01)00670-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Three GATA family transcription factors are involved in various aspects of hematopoiesis. Their lineage-restricted expression correlates well with their function in selective lineage commitment and differentiation. We focused on the role of GATA-3 to determine whether an intrinsic variation among different GATA proteins, in addition to the distinct expression pattern, determines lineage specification. MATERIALS AND METHODS Using a retroviral vector, we introduced the GATA-3 gene into primary murine hematopoietic stem cells (HSC) and examined their development in in vitro suspension culture and colony-forming assays as well as in vivo competitive repopulation studies. RESULTS Although GATA-3 expression normally is restricted to lymphoid precursor and committed T cells, overexpression of GATA-3 in HSC results in cessation of cell expansion followed by selective induction of megakaryocytic and erythroid differentiation and inhibition of myeloid and lymphoid precursor development in liquid suspension culture and in vitro colony-forming assays. Competitive repopulation studies show that transplanted GATA-3-expressing HSC/progenitor cells give one wave of erythrocyte development but fail to expand in the bone marrow or to reconstitute other lineages. CONCLUSIONS The selective megakaryocytic/erythroid differentiation in HSC with enforced GATA-3 expression suggests a functional redundancy among GATA proteins and indicates that the specific lineage fate determination by individual GATA proteins is largely regulated at the level of expression in a lineage and developmental-stage restricted fashion, whereas the identity of the GATA factor may not be as important.
Collapse
Affiliation(s)
- D Chen
- Systemix, Inc., Palo Alto, Calif., USA.
| | | |
Collapse
|
25
|
Goldfarb AN, Wong D, Racke FK. Induction of megakaryocytic differentiation in primary human erythroblasts: a physiological basis for leukemic lineage plasticity. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:1191-8. [PMID: 11290535 PMCID: PMC1891921 DOI: 10.1016/s0002-9440(10)64068-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In myelodysplasias and acute myeloid leukemias, abnormalities in erythroid development often parallel abnormalities in megakaryocytic development. Erythroleukemic cells in particular have been shown to possess the potential to undergo megakaryocytic differentiation in response to a variety of stimuli. Whether or not such lineage plasticity occurs as a consequence of the leukemic phenotype has not previously been addressed. In this study, highly purified primary human erythroid progenitors were subjected to stimuli known to induce megakaryocytic differentiation in erythroleukemic cells. Remarkably, the primary erythroid progenitors rapidly responded with morphological and immunophenotypic evidence of megakaryocytic differentiation, equivalent to that seen in erythroleukemic cells. Even erythroblasts expressing high levels of hemoglobin manifested partial megakaryocytic differentiation. These results indicate that the lineage plasticity observed in erythroleukemic cells reflects an intrinsic property of cells in the erythroid lineage rather than an epiphenomenon of leukemic transformation.
Collapse
Affiliation(s)
- A N Goldfarb
- Department of Pathology, University of Virginia Health Sciences Center, HSC Box 204, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
26
|
Pircher TJ, Geiger JN, Zhang D, Miller CP, Gaines P, Wojchowski DM. Integrative signaling by minimal erythropoietin receptor forms and c-Kit. J Biol Chem 2001; 276:8995-9002. [PMID: 11124255 DOI: 10.1074/jbc.m007473200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythroid homeostasis depends critically upon erythropoietin (Epo) and stem cell factor cosignaling in late progenitor cells. Epo bioresponses are relayed efficiently by minimal receptor forms that retain a single Tyr-343 site for STAT5 binding, while forms that lack all cytoplasmic Tyr(P) sites activate JAK2 and the transcription of c-Myc plus presumed additional target genes. In FDCER cell lines, which express endogenous c-Kit, the signaling capacities of such minimal Epo receptor forms (ER-HY343 and ER-HY343F) have been dissected to reveal: 1) that Epo-dependent mitogenesis, survival, and bcl-x gene expression via ER-HY343 depend upon the intactness of the Tyr-343 STAT5 binding site; 2) that ER-HY343-dependent bcl-x(L) gene transcription is enhanced markedly via c-Kit; 3) that socs-3, plfap, dpp-1, and cacy-bp gene transcription is induced via ER-HY343, whereas dpp-1 and cacy-bp gene expression is also supported by ER-HY343F; 4) that ectopically expressed SOCS-3 suppresses proliferative signaling by not only ER-HY343 but also c-Kit; and 5) that in FDCER and primary erythroid cells, c-Kit appears to provide the primary route to MAPK activation. Thus, integration circuits exist in only select downstream pathways within Epo and stem call factor receptor signaling.
Collapse
Affiliation(s)
- T J Pircher
- Department of Veterinary Science, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | |
Collapse
|
27
|
Geiger JN, Knudsen GT, Panek L, Pandit AK, Yoder MD, Lord KA, Creasy CL, Burns BM, Gaines P, Dillon SB, Wojchowski DM. mDYRK3 kinase is expressed selectively in late erythroid progenitor cells and attenuates colony-forming unit-erythroid development. Blood 2001; 97:901-10. [PMID: 11159515 DOI: 10.1182/blood.v97.4.901] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DYRKs are a new subfamily of dual-specificity kinases that was originally discovered on the basis of homology to Yak1, an inhibitor of cell cycle progression in yeast. At present, mDYRK-3 and mDYRK-2 have been cloned, and mDYRK-3 has been characterized with respect to kinase activity, expression among tissues and hematopoietic cells, and possible function during erythropoiesis. In sequence, mDYRK-3 diverges markedly in noncatalytic domains from mDYRK-2 and mDYRK-1a, but is 91.3% identical overall to hDYRK-3. Catalytically, mDYRK-3 readily phosphorylated myelin basic protein (but not histone 2B) and also appeared to autophosphorylate in vitro. Expression of mDYRK-1a, mDYRK-2, and mDYRK-3 was high in testes, but unlike mDYRK1a and mDYRK 2, mDYRK-3 was not expressed at appreciable levels in other tissues examined. Among hematopoietic cells, however, mDYRK-3 expression was selectively elevated in erythroid cell lines and primary pro-erythroid cells. In developmentally synchronized erythroid progenitor cells, expression peaked sharply following exposure to erythropoietin plus stem cell factor (SCF) (but not SCF alone), and in situ hybridizations of sectioned embryos revealed selective expression of mDYRK-3 in fetal liver. Interestingly, antisense oligonucleotides to mDYRK-3 were shown to significantly and specifically enhance colony-forming unit-erythroid colony formation. Thus, it is proposed that mDYRK-3 kinase functions as a lineage-restricted, stage-specific suppressor of red cell development. (Blood. 2001;97:901-910)
Collapse
Affiliation(s)
- J N Geiger
- Department of Biochemistry & Molecular Biology and Veterinary Science, The Pennsylvania State University, University Park, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Telfer JC, Rothenberg EV. Expression and function of a stem cell promoter for the murine CBFalpha2 gene: distinct roles and regulation in natural killer and T cell development. Dev Biol 2001; 229:363-82. [PMID: 11203699 DOI: 10.1006/dbio.2000.9991] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Runt family transcription factor CBFalpha2 (AML1, PEBP2alphaB, or Runx1) is required by hematopoietic stem cells and expressed at high levels in T-lineage cells. In human T cells CBFalpha2 is usually transcribed from a different promoter (distal promoter) than in myeloid cells (proximal promoter), but the developmental and functional significance of this promoter switch has not been known. Here, we report that both coding and noncoding sequences of the distal 5' end are highly conserved between the human and the murine genes, and the distal promoter is responsible for the overwhelming majority of CBFalpha2 expression in murine hematopoietic stem cells as well as in T cells. Distal promoter activity is maintained throughout T cell development and at lower levels in B cell development, but downregulated in natural killer cell development. The distal N-terminal isoform binds to functionally important regulatory sites from known target genes with two- to threefold higher affinity than the proximal N-terminal isoform. Neither full-length isoform alters growth of a myeloid cell line under nondifferentiating conditions, but the proximal isoform selectively delays mitotic arrest of the cell line under differentiating conditions, resulting in the generation of greater numbers of neutrophils.
Collapse
Affiliation(s)
- J C Telfer
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
29
|
Giannoni F, Müller HM, Vizioli J, Catteruccia F, Kafatos FC, Crisanti A. Nuclear factors bind to a conserved DNA element that modulates transcription of Anopheles gambiae trypsin genes. J Biol Chem 2001; 276:700-7. [PMID: 11016929 DOI: 10.1074/jbc.m005540200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Anopheles gambiae trypsin family consists of seven genes that are transcribed in the gut of female mosquitoes in a temporal coordinated and mutually exclusive manner, suggesting the involvement of a complex transcription regulatory mechanism. We identified a highly conserved 12-nucleotide motif present in all A. gambiae and Anopheles stephensi trypsin promoters. We investigated the role of this putative trypsin regulatory element (PTRE) in controlling the transcription of the trypsin genes. Gel shift experiments demonstrated that nuclear proteins of A. gambiae cell lines formed two distinct complexes with probes encompassing the PTRE sequence. Mapping of the binding sites revealed that one of the complex has the specificity of a GATA transcription factor. Promoter constructs containing mutations in the PTRE sequence that selectively abolished the binding of either one or both complexes exerted opposite effects on the transcriptional activity of trypsin promoters in A. gambiae and Aedes aegypti cell lines. In addition, the expression of a novel GATA gene was highly enriched in A. gambiae guts. Taken together our data prove that factors binding to the PTRE region are key regulatory elements possibly involved in the blood meal-induced repression and activation of transcription in early and late trypsin genes.
Collapse
Affiliation(s)
- F Giannoni
- Department of Biology, Imperial College of Science, Technology and Medicine, Imperial College Road, London SW7 9AX, United Kingdom
| | | | | | | | | | | |
Collapse
|
30
|
Gaines P, Geiger JN, Knudsen G, Seshasayee D, Wojchowski DM. GATA-1- and FOG-dependent activation of megakaryocytic alpha IIB gene expression. J Biol Chem 2000; 275:34114-21. [PMID: 10926935 DOI: 10.1074/jbc.m006017200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FOG is a multitype zinc finger protein that is essential for megakaryopoiesis, binds to the amino-terminal finger of GATA-1, and modulates the transcription of GATA-1 target genes. Presently investigated are effects of FOG and GATA-1 on the transcription of the megakaryocytic integrin gene, alpha IIb. In GATA-1-deficient FDCER cells (in the presence of endogenous FOG), ectopically expressed GATA-1 activated transcription 3-10-fold both from alpha IIb templates and the endogenous alpha IIb gene. The increased expression of FOG increased reporter construct transcription 30-fold overall. Unexpectedly, alphaIIb gene transcription also was stimulated efficiently upon the ectopic expression in of FOG per se. This occurred in the absence of any detectable expression of GATA-1 and was observed in multiple independent sublines for both the endogenous alpha IIb gene and transfected constructs yet proved to depend largely upon conserved GATA elements 457 and 55 base pairs upstream from the transcriptional start site. In 293 cells, FOG plus GATA-1 but not FOG alone only moderately stimulated alpha IIb transcription, and no direct interactions of FOG with the alpha IIb promoter were detectable. Thus, FOG acts in concert with GATA-1 to stimulate alpha IIb expression but also can act via a GATA-1-independent route, which is proposed to involve additional hematopoietic-restricted cofactors (possibly GATA-2).
Collapse
Affiliation(s)
- P Gaines
- Department of Veterinary Science, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
B and T lymphocytes differentiate from multipotent precursors through distinct specification and commitment steps. New findings on the unique role of Pax5 in B-lineage commitment, dichotomous action of Notch signaling in B versus T cell development, and the gene expression changes comprising T-lineage specification and commitment now illuminate this process.
Collapse
Affiliation(s)
- E V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena 91125, USA.
| |
Collapse
|
32
|
Seshasayee D, Geiger JN, Gaines P, Wojchowski DM. Intron 1 elements promote erythroid-specific GATA-1 gene expression. J Biol Chem 2000; 275:22969-77. [PMID: 10811657 DOI: 10.1074/jbc.m002931200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The zinc finger protein GATA-1 functions in a concentration-dependent fashion to activate the transcription of erythroid and megakaryocytic genes. Less is understood, however, regarding factors that regulate the GATA-1 gene. Presently elements within intron 1 are shown to markedly affect its erythroid-restricted transcription. Within a full-length 6. 8-kilobase GATA-1 gene construct (G6.8-Luc) the deletion of a central subdomain of intron 1 inhibited transcription >/=10-fold in transiently transfected erythroid SKT6 cells, and likewise inhibited high-level transcription in erythroid FDCW2ER-GATA1 cells. In parental myeloid FDCER cells, however, low-level transcription was largely unaffected by intron 1 deletions. Within intron 1, repeated GATA and Ap1 consensus elements in a central region are described which when linked directly to reporter cassettes promote transcription in erythroid SKT6 and FDCER-GATA1 cells at high rates. Moreover, GATA-1 activated transcription from this subdomain in 293 cells, and in SKT6 cells this subdomain footprinted in vivo. For stably integrated GFP reporter constructs in erythroid SKT6 cells, corroborating results were obtained. Deletion of intronic GATA and Ap1 motifs abrogated the activity of G6.8-pEGFP; activity was decreased by 43 and 56%, respectively, by the deletion of either motif; and the above 1800-base pair region of intron 1 per se was transcribed at rates uniformly greater than G6.8-pEGFP. Also described is the differential utilization of exons 1a and 1b among primary erythromegakaryocytic and myeloid cells.
Collapse
Affiliation(s)
- D Seshasayee
- Programs in Genetics and Department of Veterinary Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
33
|
Pircher TJ, Zhao S, Geiger JN, Joneja B, Wojchowski DM. Pim-1 kinase protects hematopoietic FDC cells from genotoxin-induced death. Oncogene 2000; 19:3684-92. [PMID: 10951575 DOI: 10.1038/sj.onc.1203684] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hematopoietic cell S/T kinase Pim-1 was originally discovered as a target of murine leukemia provirus integration, and when expressed at increased levels is predisposing to lymphomagenesis. Recently, Pim-1 has been shown to enhance the activities of p100, c-Myb and cdc25a, and in part this might explain reported effects on mitogenesis. In the context of cytokine withdrawal, Pim-1 also can attenuate programmed cell death (PCD). Cytokine withdrawal, however, alters signaling pathways and can complicate the dissection of mitogenic vs apoptotic responses. To better study possible effects of Pim-1 on PCD, a hematopoietic cell model was developed in which proliferation was supported efficiently by SCF plus EPO in the absence of endogenous Pim-1 gene expression. This was provided by factor-dependent FDCW2 cells that express endogenous and functional c-Kit, and were transfected stably with truncated Epo receptor form mutated at a Y343 STAT5 binding site. In proliferating cells, exogenously expressed Pim-1 was observed to efficiently inhibit PCD as induced by either Co60 or adriamycin, and the dose-dependent nature of this effect was established in several independent clones. By comparison, effects of exogenous Pim-1 on mitogenesis were nominal. In addition, in cell fractionation studies an estimated 25% of Mr 34000 Pim-1 (but not Mr 44000 Pim-1) was present in nuclear extracts. Thus, Pim-1 efficiently buffers hematopoietic progenitor cells against death as induced by several clinically important apoptotic agents, and may directly target nuclear effectors.
Collapse
Affiliation(s)
- T J Pircher
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park 16802, USA
| | | | | | | | | |
Collapse
|
34
|
Gregory RC, Lord KA, Panek LB, Gaines P, Dillon SB, Wojchowski DM. Subtraction cloning and initial characterization of novel epo-immediate response genes. Cytokine 2000; 12:845-57. [PMID: 10880228 DOI: 10.1006/cyto.2000.0686] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies of erythropoietin (Epo) receptor signalling suggest that signals for mitogenesis, survival and differentiation are relayed efficiently by receptor forms lacking at least seven of eight cytoplasmic (phospho)tyrosine [(P)Y] sites for effector recruitment. While such receptor forms are known to activate Jak2 and a limited set of known immediate response genes (IRGs), the complex activities they exert predict the existence of additional target genes. To identify such targets, a minimal Epo receptor chimera was expressed in Epo-responsive erythroid SKT6 cells, and genes whose transcription is induced via this active receptor form were cloned by subtractive hybridization. Several known genes not previously linked to Epo signalling were discovered to be Epo IRGs including two which may further propagate Epo signals [Prl1 tyrosine phosphatase and receptor activator of of NFkappaB (Rank)], and three regulators of protein synthesis (EF1alpha, eIF3-p66 and Nat1). Several Epo IRGs were novel murine clones including FM2 and FM6 which proved to represent broadly expressed IRGs, and FM3 and FL10 which were induced primarily in haematopoietic cells. Interestingly, FL10 proved to correspond to a recently discovered regulator of yeast mating-type switching, and was induced by Epo in vivo. Thus, several new Epo signalling targets are described, which may modulate haematopoietic cell development.
Collapse
Affiliation(s)
- R C Gregory
- Departments of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park 16802, USA
| | | | | | | | | | | |
Collapse
|
35
|
Anderson MK, Rothenberg EV. Transcription factor expression in lymphocyte development: clues to the evolutionary origins of lymphoid cell lineages? Curr Top Microbiol Immunol 2000; 248:137-55. [PMID: 10793477 DOI: 10.1007/978-3-642-59674-2_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- M K Anderson
- Department of Biology, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
36
|
Tamir A, Miller RA. Aging impairs induction of cyclin-dependent kinases and down-regulation of p27 in mouse CD4(+) cells. Cell Immunol 1999; 198:11-20. [PMID: 10612647 DOI: 10.1006/cimm.1999.1573] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To define the link between the early activation defects and the impaired proliferation response of cells from old mice, we characterized the influence of age on expression and activity of proteins that participate in cell-cycle regulation. We found that aging led to significant declines in the ability of mouse CD4(+) T cells to respond to CD3 and CD28 stimuli by induction of the cyclin-dependent kinases CDK2, CDK4, and CDK6, whether the defect was assessed by protein level or functional activity. Induction of CDK2 activity was also impaired in cells from old mice that were activated with PMA plus ionomycin, stimuli that bypass the TCR/CD3 complex, or by CD3/CD28 in the presence of IL-2, indicating that the age-related changes lie, at least in part, downstream of the enzymes activated by these stimuli. We also noted an impairment in the ability of CD4(+) cells from old mice to down-regulate the CDK inhibitor p27 after activation, but we found no change in induction of p21, an inhibitor of CDK that may also play other roles in cell-cycle control. Altered CDK activation is likely to mediate the age-related decline in T cell proliferation to polyclonal stimulation.
Collapse
Affiliation(s)
- A Tamir
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
37
|
Abstract
The development of T cells and B cells from pluripotent hematopoietic precursors occurs through a stepwise narrowing of developmental potential that ends in lineage commitment. During this process, lineage-specific genes are activated asynchronously, and lineage-inappropriate genes, although initially expressed, are asynchronously turned off. These complex gene expression events are the outcome of the changes in expression of multiple transcription factors with partially overlapping roles in early lymphocyte and myeloid cell development. Key transcription factors promoting B-cell development and candidates for this role in T-cell development are discussed in terms of their possible modes of action in fate determination. We discuss how a robust, stable, cell-type-specific gene expression pattern may be established in part by the interplay between endogenous transcription factors and signals transduced by cytokine receptors, and in part by the network of effects of particular transcription factors on each other.
Collapse
Affiliation(s)
- E V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | |
Collapse
|
38
|
Abstract
In the absence of the hematopoietic transcription factor GATA-1, mice develop thrombocytopenia and an increased number of megakaryocytes characterized by marked ultrastructural abnormalities. These observations establish a critical role for GATA-1 in megakaryopoiesis and raise the question as to how GATA-1 influences megakaryocyte maturation and platelet production. To begin to address this, we have performed a more detailed examination of the megakaryocytes and platelets produced in mice that lack GATA-1 in this lineage. Our analysis demonstrates that compared with their normal counterparts, GATA-1–deficient primary megakaryocytes exhibit significant hyperproliferation in liquid culture, suggesting that the megakaryocytosis seen in animals is nonreactive. Morphologically, these mutant megakaryocytes are small and show evidence of retarded nuclear and cytoplasmic development. A significant proportion of these cells do not undergo endomitosis and express markedly lower levels of mRNA of all megakaryocyte-associated genes tested, including GPIb, GPIbβ, platelet factor 4 (PF4), c-mpl, and p45 NF-E2. These results are consistent with regulation of a program of megakaryocytic differentiation by GATA-1. Bleeding times are significantly prolonged in mutant animals. GATA-1–deficient platelets show abnormal ultrastructure, reminiscent of the megakaryocytes from which they are derived, and exhibit modest but selective defects in platelet activation in response to thrombin or to the combination of adenosine diphosphate (ADP) and epinephrine. Our findings indicate that GATA-1 serves multiple functions in megakaryocyte development, influencing both cellular growth and maturation.
Collapse
|
39
|
Abstract
AbstractIn the absence of the hematopoietic transcription factor GATA-1, mice develop thrombocytopenia and an increased number of megakaryocytes characterized by marked ultrastructural abnormalities. These observations establish a critical role for GATA-1 in megakaryopoiesis and raise the question as to how GATA-1 influences megakaryocyte maturation and platelet production. To begin to address this, we have performed a more detailed examination of the megakaryocytes and platelets produced in mice that lack GATA-1 in this lineage. Our analysis demonstrates that compared with their normal counterparts, GATA-1–deficient primary megakaryocytes exhibit significant hyperproliferation in liquid culture, suggesting that the megakaryocytosis seen in animals is nonreactive. Morphologically, these mutant megakaryocytes are small and show evidence of retarded nuclear and cytoplasmic development. A significant proportion of these cells do not undergo endomitosis and express markedly lower levels of mRNA of all megakaryocyte-associated genes tested, including GPIb, GPIbβ, platelet factor 4 (PF4), c-mpl, and p45 NF-E2. These results are consistent with regulation of a program of megakaryocytic differentiation by GATA-1. Bleeding times are significantly prolonged in mutant animals. GATA-1–deficient platelets show abnormal ultrastructure, reminiscent of the megakaryocytes from which they are derived, and exhibit modest but selective defects in platelet activation in response to thrombin or to the combination of adenosine diphosphate (ADP) and epinephrine. Our findings indicate that GATA-1 serves multiple functions in megakaryocyte development, influencing both cellular growth and maturation.
Collapse
|