1
|
Fraschilla I, Jeffrey KL. The Speckled Protein (SP) Family: Immunity's Chromatin Readers. Trends Immunol 2020; 41:572-585. [PMID: 32386862 PMCID: PMC8327362 DOI: 10.1016/j.it.2020.04.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 01/25/2023]
Abstract
Chromatin 'readers' are central interpreters of the epigenome that facilitate cell-specific transcriptional programs and are therapeutic targets in cancer and inflammation. The Speckled Protein (SP) family of chromatin 'readers' in humans consists of SP100, SP110, SP140, and SP140L. SPs possess functional domains (SAND, PHD, bromodomain) that dock to DNA or post-translationally modified histones and a caspase activation and recruitment domain (CARD) to promote multimerization. Mutations within immune expressed SPs associate with numerous immunological diseases including Crohn's disease, multiple sclerosis, chronic lymphocytic leukemia, veno-occlusive disease with immunodeficiency, as well as Mycobacterium tuberculosis infection, underscoring their importance in immune regulation. In this review, we posit that SPs are central chromatin regulators of gene silencing that establish immune cell identity and function.
Collapse
Affiliation(s)
- Isabella Fraschilla
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Immunology, Harvard Medical School, Boston, MA 02114, USA
| | - Kate L Jeffrey
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Immunology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
2
|
Ganaie SS, Zou W, Xu P, Deng X, Kleiboeker S, Qiu J. Phosphorylated STAT5 directly facilitates parvovirus B19 DNA replication in human erythroid progenitors through interaction with the MCM complex. PLoS Pathog 2017; 13:e1006370. [PMID: 28459842 PMCID: PMC5426800 DOI: 10.1371/journal.ppat.1006370] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/11/2017] [Accepted: 04/21/2017] [Indexed: 01/27/2023] Open
Abstract
Productive infection of human parvovirus B19 (B19V) exhibits high tropism for burst forming unit erythroid (BFU-E) and colony forming unit erythroid (CFU-E) progenitor cells in human bone marrow and fetal liver. This exclusive restriction of the virus replication to human erythroid progenitor cells is partly due to the intracellular factors that are essential for viral DNA replication, including erythropoietin signaling. Efficient B19V replication also requires hypoxic conditions, which upregulate the signal transducer and activator of transcription 5 (STAT5) pathway, and phosphorylated STAT5 is essential for virus replication. In this study, our results revealed direct involvement of STAT5 in B19V DNA replication. Consensus STAT5-binding elements were identified adjacent to the NS1-binding element within the minimal origins of viral DNA replication in the B19V genome. Phosphorylated STAT5 specifically interacted with viral DNA replication origins both in vivo and in vitro, and was actively recruited within the viral DNA replication centers. Notably, STAT5 interacted with minichromosome maintenance (MCM) complex, suggesting that STAT5 directly facilitates viral DNA replication by recruiting the helicase complex of the cellular DNA replication machinery to viral DNA replication centers. The FDA-approved drug pimozide dephosphorylates STAT5, and it inhibited B19V replication in ex vivo expanded human erythroid progenitors. Our results demonstrated that pimozide could be a promising antiviral drug for treatment of B19V-related diseases. Human parvovirus B19 (B19V) infection can cause severe hematological disorders, a direct consequence of the death of infected human erythroid progenitor cells (EPCs) of the bone marrow and fetal liver. B19V replicates autonomously in human EPCs, and the erythropoietin (EPO) and EPO-receptor (EPO-R) signaling is required for productive B19V replication. The Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) signaling plays a key role in B19V replication. Here, we identify that phosphorylated STAT5 directly interacts with B19V replication origins and with minichromosome maintenance (MCM) complex in human EPCs, and that it functions as a scaffold protein to bring MCM to the viral replication origins and thus plays a key role in B19V DNA replication. Importantly, pimozide, a STAT5 phosphorylation-specific inhibitor and an FDA-approved drug, abolishes B19V replication in ex vivo expanded human EPCs; therefore, pimozide has the potential to be used as an antiviral drug for treatment of B19V-caused hematological disorders.
Collapse
Affiliation(s)
- Safder S. Ganaie
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Wei Zou
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Peng Xu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Xuefeng Deng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Steve Kleiboeker
- Department of Research and Development, Viracor Eurofins Laboratories, Lee’s Summit, Missouri, United States of America
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
3
|
Yao K, Wu Y, Chen Q, Zhang Z, Chen X, Zhang Y. The Arginine/Lysine-Rich Element within the DNA-Binding Domain Is Essential for Nuclear Localization and Function of the Intracellular Pathogen Resistance 1. PLoS One 2016; 11:e0162832. [PMID: 27622275 PMCID: PMC5021326 DOI: 10.1371/journal.pone.0162832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/29/2016] [Indexed: 12/22/2022] Open
Abstract
The mouse intracellular pathogen resistance 1 (Ipr1) gene plays important roles in mediating host immunity and previous work showed that it enhances macrophage apoptosis upon mycobacterium infection. However, to date, little is known about the regulation pattern of Ipr1 action. Recent studies have investigated the protein-coding genes and microRNAs regulated by Ipr1 in mouse macrophages, but the structure and the functional motif of the Ipr1 protein have yet to be explored. In this study, we analyzed the domains and functional motif of the Ipr1 protein. The resulting data reveal that Ipr1 protein forms a homodimer and that the Sp100-like domain mediates the targeting of Ipr1 protein to nuclear dots (NDs). Moreover, we found that an Ipr1 mutant lacking the classic nuclear localization signal (cNLS) also translocated into the nuclei, suggesting that the cNLS is not the only factor that directs Ipr1 nuclear localization. Additionally, mechanistic studies revealed that an arginine/lysine-rich element within the DNA-binding domain (SAND domain) is critical for Ipr1 binding to the importin protein receptor NPI-1, demonstrating that this element plays an essential role in mediating the nuclear localization of Ipr1 protein. Furthermore, our results show that this arginine/lysine-rich element contributes to the transcriptional regulation and apoptotic activity of Ipr1. These findings highlight the structural foundations of Ipr1 action and provide new insights into the mechanism of Ipr1-mediated resistance to mycobacterium.
Collapse
Affiliation(s)
- Kezhen Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongyan Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Qi Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Zihan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
4
|
Tewary SK, Liang L, Lin Z, Lynn A, Cotmore SF, Tattersall P, Zhao H, Tang L. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding. Virology 2014; 476:61-71. [PMID: 25528417 DOI: 10.1016/j.virol.2014.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/11/2014] [Accepted: 11/19/2014] [Indexed: 12/16/2022]
Abstract
Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase active site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins.
Collapse
Affiliation(s)
- Sunil K Tewary
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Lingfei Liang
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Zihan Lin
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Annie Lynn
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Susan F Cotmore
- Departments of Laboratory Medicine, Yale University Medical School, New Haven, CT 06510, USA
| | - Peter Tattersall
- Departments of Laboratory Medicine, Yale University Medical School, New Haven, CT 06510, USA; Departments of Genetics, Yale University Medical School, New Haven, CT 06510, USA
| | - Haiyan Zhao
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| | - Liang Tang
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
5
|
Waterfield M, Khan IS, Cortez JT, Fan U, Metzger T, Greer A, Fasano K, Martinez-Llordella M, Pollack JL, Erle DJ, Su M, Anderson MS. The transcriptional regulator Aire coopts the repressive ATF7ip-MBD1 complex for the induction of immunotolerance. Nat Immunol 2014; 15:258-65. [PMID: 24464130 PMCID: PMC4172453 DOI: 10.1038/ni.2820] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/18/2013] [Indexed: 12/13/2022]
Abstract
The maintenance of immunological tolerance requires the deletion of self-reactive T cells in the thymus. The expression of genes encoding tissue-specific antigens (TSAs) by thymic epithelial cells is critical for this process and depends on activity of the transcriptional regulator Aire; however, the molecular mechanisms Aire uses to target loci encoding TSAs are unknown. Here we identified two Aire-interacting proteins known to be involved in gene repression, ATF7ip and MBD1, that were required for Aire's targeting of loci encoding TSAs. Moreover, Mbd1(-/-) mice developed pathological autoimmunity and had a defect in Aire-dependent thymic expression of genes encoding TSAs, which underscores the importance of Aire's interaction with the ATF7ip-MBD1 protein complex in maintaining central tolerance.
Collapse
Affiliation(s)
- Michael Waterfield
- Diabetes Center, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143
- Department of Pediatrics, University of California San Francisco, 533 Parnassus Avenue, San Francisco, CA 94143
| | - Imran S. Khan
- Diabetes Center, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143
| | - Jessica T. Cortez
- Diabetes Center, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143
| | - Una Fan
- Diabetes Center, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143
| | - Todd Metzger
- Diabetes Center, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143
| | - Alexandra Greer
- Department of Microbiology & Immunology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143
| | - Kayla Fasano
- Diabetes Center, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143
| | - Marc Martinez-Llordella
- Department Liver Sciences, Division of Transplantation Immunology & Mucosal Biology, King’s College London, Institute of Liver Studies, 3rd Floor Cheyne Wing, Denmark Hill, SE5 9RS
| | - Joshua L. Pollack
- Department of Medicine, University of California San Francisco, 15504 Street, San Francisco, CA 94158
| | - David J. Erle
- Department of Medicine, University of California San Francisco, 15504 Street, San Francisco, CA 94158
| | - Maureen Su
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark S. Anderson
- Diabetes Center, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143
- Department of Medicine, University of California San Francisco, 15504 Street, San Francisco, CA 94158
| |
Collapse
|
6
|
The human parvovirus B19 non-structural protein 1 N-terminal domain specifically binds to the origin of replication in the viral DNA. Virology 2013; 449:297-303. [PMID: 24418564 DOI: 10.1016/j.virol.2013.11.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/11/2013] [Accepted: 11/20/2013] [Indexed: 02/07/2023]
Abstract
The non-structural protein 1 (NS1) of human parvovirus B19 plays a critical role in viral DNA replication. Previous studies identified the origin of replication in the viral DNA, which contains four DNA elements, namely NSBE1 to NSBE4, that are required for optimal viral replication (Guan et al., 2009). Here we have demonstrated in vitro that the NS1 N-terminal domain (NS1N) binds to the origin of replication in a sequence-specific, length-dependent manner that requires NSBE1 and NSBE2, while NSBE3 and NSBE4 are dispensable. Mutagenesis analysis has identified nucleotides in NSBE1 and NSBE2 that are critical for NS1N binding. These results suggest that NS1 binds to the NSBE1-NSBE2 region in the origin of replication, while NSBE3 and NSBE4 may provide binding sites for potential cellular factors. Such a specialized nucleoprotein complex may enable NS1 to nick the terminal resolution site and separate DNA strands during replication.
Collapse
|
7
|
Szapary D, Song LN, He Y, Simons SS. Differential modulation of glucocorticoid and progesterone receptor transactivation. Mol Cell Endocrinol 2008; 283:114-26. [PMID: 18215457 PMCID: PMC2275900 DOI: 10.1016/j.mce.2007.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 11/29/2007] [Indexed: 01/13/2023]
Abstract
The determinants of the different biological activities of progesterone receptors (PRs) vs. glucocorticoid receptors (GRs), which bind to the same DNA sequences, remain poorly understood. The mechanisms by which differential expression of a common target gene can be achieved by PR and GR include unequal agonist steroid concentrations for half maximal induction (EC50) and dissimilar amounts of residual partial agonist activity for antisteroids in addition to the more common changes in total gene induction, or Vmax. Several factors are known to alter some or all of these three parameters for GR-regulated gene induction and some (i.e., the corepressors NCoR and SMRT) modulate the EC50 and partial agonist activity for GR and PR induction of the same gene in opposite directions. The current study demonstrates that other factors known to modulate GR properties (GME, GMEB-2, Ubc9, and STAMP) can also differentially interact with PRs or alter several of the above induction parameters under otherwise identical conditions. These results support the hypothesis that the modulation of EC50, partial agonist activity, and Vmax by a given factor is not limited to one receptor in a specific cell line. Furthermore, the number of factors that unequally modulate PR and GR induction parameters is now greatly expanded, thereby increasing the possible mechanisms for differential gene regulation by PRs vs. GRs.
Collapse
Affiliation(s)
- Daniele Szapary
- Steroid Hormones Section, NIDDK/CEB, National Institutes of Health, Bethesda, MD 20892-1772, United States
| | | | | | | |
Collapse
|
8
|
Cotmore SF, Gottlieb RL, Tattersall P. Replication initiator protein NS1 of the parvovirus minute virus of mice binds to modular divergent sites distributed throughout duplex viral DNA. J Virol 2007; 81:13015-27. [PMID: 17898054 PMCID: PMC2169109 DOI: 10.1128/jvi.01703-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To initiate DNA synthesis, the NS1 protein of minute virus of mice (MVM) first binds to a simple cognate recognition sequence in the viral origins, comprising two to three tandem copies of the tetranucleotide TGGT. However, this motif is also widely dispersed throughout the viral genome. Using an immunoselection procedure, we show that NS1 specifically binds to many internal sites, so that all viral fragments of more than approximately 170 nucleotides effectively compete for NS1, often binding with higher affinity to these internal sites than to sites in the origins. We explore the diversity of the internal sites using competitive binding and DNase I protection assays and show that they vary between two extreme forms. Simple sites with three somewhat degenerate, tandem TGGT reiterations bind effectively but are minimally responsive to ATP, while complex sites, containing multiple variably spaced TGGT elements arranged as opposing clusters, bind NS1 with an affinity that can be enhanced approximately 10-fold by ATP. Using immuno-selection procedures with randomized sequences embedded within specific regions of the genome, we explore possible binding configurations in these two types of site. We conclude that binding is modular, combinatorial, and highly flexible. NS1 recognizes two to six variably spaced, more-or-less degenerate forms of the 5'-TGGT-3' motif, so that it binds efficiently to a wide variety of sequences. Thus, despite complex coding constraints, binding sites are configured at frequent intervals throughout duplex forms of viral DNA, suggesting that NS1 may serve as a form of chromatin to protect and tailor the environment of replicating genomes.
Collapse
Affiliation(s)
- Susan F Cotmore
- Department of Laboratory Medicine, Yale University Medical School, 333 Cedar Street, New Haven, CT 06510, USA
| | | | | |
Collapse
|
9
|
Paglino J, Burnett E, Tattersall P. Exploring the contribution of distal P4 promoter elements to the oncoselectivity of Minute Virus of Mice. Virology 2006; 361:174-84. [PMID: 17175002 PMCID: PMC1853334 DOI: 10.1016/j.virol.2006.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2006] [Revised: 10/13/2006] [Accepted: 11/03/2006] [Indexed: 11/20/2022]
Abstract
Minute Virus of Mice (MVM) shares inherent oncotropic properties with other members of the genus Parvovirus. Two elements responsible, at least in part, for this oncoselectivity have been mapped to an Ets1 binding site adjacent to the P4 TATA box of the initiating promoter, P4, and to a more distal cyclic AMP responsive element (CRE), located within the telomeric hairpin stem. Here the CRE overlaps one half-site for the binding of parvoviral initiation factor (PIF), which is essential for viral DNA replication. We used a degenerate oligonucleotide selection approach to show that CRE binding protein (CREB) selects the sequence ACGTCAC within this context, rather than its more generally accepted palindromic TGACGTCA recognition site. We have developed strategies for manipulating these sequences directly within the left-end palindrome of the MVM infectious clone and used them to clone mutants whose CRE either matches the symmetric consensus sequence or is scrambled, or in which the PIF binding site is incrementally weakened with respect to the CRE. The panel of mutants were tested for fitness relative to wildtype in normal murine fibroblasts A9 or transformed human fibroblasts 324 K, through multiple rounds of growth in co-infected cultures, using a differential real-time quantitative PCR assay. We confirmed that inactivating the CRE substantially abrogates oncoselectivity, but found that improving its fit to the palindromic consensus is somewhat debilitating in either cell type. We also confirmed that reducing the PIF half-site spacing by one basepair enhances oncoselectivity, but found that a further basepair deletion significantly reduces this effect.
Collapse
Affiliation(s)
- Justin Paglino
- Department of Laboratory Medicine, Yale University Medical School, 333 Cedar Street, New Haven, CT 067510, USA
- Graduate Program in Investigative Medicine, Yale University Medical School, 333 Cedar Street, New Haven, CT 067510, USA
| | - Erik Burnett
- Department of Laboratory Genetics, Yale University Medical School, 333 Cedar Street, New Haven, CT 067510, USA
| | - Peter Tattersall
- Department of Laboratory Medicine, Yale University Medical School, 333 Cedar Street, New Haven, CT 067510, USA
- Department of Laboratory Genetics, Yale University Medical School, 333 Cedar Street, New Haven, CT 067510, USA
- * Corresponding author. Department of Laboratory Medicine, Yale University Medical School, 333 Cedar Street, New Haven, CT 067510, USA. Fax: +1 203 688 7340. E-mail address: (P. Tattersall)
| |
Collapse
|
10
|
Isaac A, Wilcox KW, Taylor JL. SP100B, a repressor of gene expression preferentially binds to DNA with unmethylated CpGs. J Cell Biochem 2006; 98:1106-22. [PMID: 16775843 DOI: 10.1002/jcb.20841] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
SP100A and SP100B are mammalian nuclear proteins encoded by alternatively-spliced transcripts from the SP100 gene. The N-terminal portion of SP100B (aa 1-476) is identical to SP100A and contains an HP1 interaction domain. The C-terminal portion of SP100B (aa 477-688) contains an HMG2 interaction domain and a SAND domain. The SAND domain is a DNA-binding domain identified in several nuclear proteins involved in transcriptional regulation. We have previously reported that SP100B represses expression of genes present on transfected DNA in a SAND domain-dependent manner. The goal of the present study was to characterize the DNA binding properties of full-length SP100B expressed in mammalian cells. SP100B associated with DNA whereas SP100A did not. The SP100B SAND domain was essential for DNA binding. Deletion of the HP1- or HMG2-binding domain had no effect on DNA binding. SP100B preferentially associated with sequences containing CpG dinucleotides. Our results did not reveal any preference of SP100B for bases flanking CpG dinucleotides. The number of CpGs in a DNA sequence and spacing between CpGs influenced SP100B binding, suggesting that multimers of SP100B bind DNA in a cooperative manner. Binding of SP100B was abrogated by methylation of the cytosine residue within the context of the CpG dinucleotide. We propose that the preference of SP100B for non-methylated CpGs provides a mechanism to target SP100B to foreign DNA, including plasmid DNA or viral DNA genomes, most of which are hypomethylated.
Collapse
Affiliation(s)
- Anne Isaac
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
11
|
Burnett E, Cotmore SF, Tattersall P. Segregation of a single outboard left-end origin is essential for the viability of parvovirus minute virus of mice. J Virol 2006; 80:10879-83. [PMID: 16928767 PMCID: PMC1641779 DOI: 10.1128/jvi.01501-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During DNA replication, the hairpin telomeres of Minute Virus of Mice (MVM) are extended and copied to create imperfectly palindromic duplex junction sequences that bridge adjacent genomes in concatameric replicative-form DNA. These are resolved by the viral initiator protein, NS1, but mechanisms employed at the two telomeres differ. Left-end:left-end junctions are resolved asymmetrically at a single site, OriLTC, by NS1 acting in concert with a host factor, parvovirus initiation factor (PIF). Replication segregates doublet and triplet sequences, initially present as unpaired nucleotides in the bubble region of the left-end hairpin stem, to either side of the junction. These act as spacers between the NS1 and PIF binding sites, and their asymmetric distribution sets up active (OriLTC) and inactive (OriLGAA) forms of OriL. We used a reverse genetic approach to disrupt this asymmetry and found that neither opposing doublets nor triplets in the hairpin bubble were tolerated. Viable mutants were isolated at low frequency and found to contain second-site mutations that either restored the asymmetry or crippled one PIF binding site. These mutations either inactivated the inboard or activated the outboard form of OriL, a polarity that strongly suggests that, in the genus Parvovirus, an active inboard OriL is lethal.
Collapse
Affiliation(s)
- Erik Burnett
- Department of Laboratory Medicine, Yale University Medical School, 333 Cedar St., CB408, New Haven, CT 067510, USA
| | | | | |
Collapse
|
12
|
Bjelke J, Christensen J, Nielsen P, Branner S, Kanstrup A, Wagtmann N, Rasmussen H. Dipeptidyl peptidases 8 and 9: specificity and molecular characterization compared with dipeptidyl peptidase IV. Biochem J 2006; 396:391-9. [PMID: 16475979 PMCID: PMC1462722 DOI: 10.1042/bj20060079] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dipeptidyl peptidases 8 and 9 have been identified as gene members of the S9b family of dipeptidyl peptidases. In the present paper, we report the characterization of recombinant dipeptidyl peptidases 8 and 9 using the baculovirus expression system. We have found that only the full-length variants of the two proteins can be expressed as active peptidases, which are 882 and 892 amino acids in length for dipeptidyl peptidase 8 and 9 respectively. We show further that the purified proteins are active dimers and that they show similar Michaelis-Menten kinetics and substrate specificity. Both cleave the peptide hormones glucagon-like peptide-1, glucagon-like peptide-2, neuropeptide Y and peptide YY with marked kinetic differences compared with dipeptidyl peptidase IV. Inhibition of dipeptidyl peptidases IV, 8 and 9 using the well-known dipeptidyl peptidase IV inhibitor valine pyrrolidide resulted in similar K(i) values, indicating that this inhibitor is non-selective for any of the three dipeptidyl peptidases.
Collapse
Affiliation(s)
- Jais R. Bjelke
- *Protein Structure and Biophysics, Novo Nordisk A/S, Novo Allé, 2880 Bagsvaerd, Denmark
| | - Jesper Christensen
- †Biotech Research Innovation Center, Fruebjergvej, 2100 Copenhagen Ø, Denmark
| | - Per F. Nielsen
- ‡Protein Science, Novo Nordisk A/S, Novo Allé, 2880 Bagsvaerd, Denmark
| | - Sven Branner
- ‡Protein Science, Novo Nordisk A/S, Novo Allé, 2880 Bagsvaerd, Denmark
| | - Anders B. Kanstrup
- §Medicinal Chemistry, Novo Nordisk A/S, Novo Allé, 2880 Bagsvaerd, Denmark
| | - Nicolai Wagtmann
- ∥Cancer and Immunobiology, Novo Nordisk A/S, Novo Allé, 2880 Bagsvaerd, Denmark
| | - Hanne B. Rasmussen
- *Protein Structure and Biophysics, Novo Nordisk A/S, Novo Allé, 2880 Bagsvaerd, Denmark
- To whom correspondence should be addressed (email )
| |
Collapse
|
13
|
Burnett E, Tattersall P. Reverse genetic system for the analysis of parvovirus telomeres reveals interactions between transcription factor binding sites in the hairpin stem. J Virol 2003; 77:8650-60. [PMID: 12885883 PMCID: PMC167226 DOI: 10.1128/jvi.77.16.8650-8660.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The left-hand or 3'-terminal hairpin of minute virus of mice (MVM) contains sequence elements essential for both viral DNA replication at the left-hand origin (oriL) and for the modulation of the P4 promoter, from which the viral nonstructural gene cassette is transcribed. This hairpin sequence has proven difficult to manipulate in the context of the viral genome. Here we describe a system for generating mutant viruses using synthetic hairpin oligonucleotides and a truncated form of the infectious clone. This allows manipulation of the sequence of the left-hand hairpin and examination of the effects in the context of the viral life cycle. We have confirmed the requirement for a functional parvovirus initiation factor (PIF) binding site and determined that an optimized PIF binding site, with 6 bases between the half-sites, was actually detrimental to viral growth. The distal PIF half-site overlaps a cyclic AMP-responsive element (CRE), which was shown to play an important role in initiating infection, particularly in 324K simian virus 40-transformed human fibroblasts. Interestingly, reducing the spacing of the PIF half-sites, and thus the affinity of the binding site for PIF, increased viral fitness relative to wild type in 324K cells, but not in murine A9 cells. These results indicate that the relative importance of factor binding to the CRE and PIF sites during the establishment of an infection differs markedly between these two host cells and suggest that the suboptimal spacing of PIF half-sites found in wild-type virus represents a necessary reduction in the affinity of the PIF interaction in favor of CRE function.
Collapse
Affiliation(s)
- Erik Burnett
- Department of Genetic, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
14
|
Cotmore SF, Tattersall P. Resolution of parvovirus dimer junctions proceeds through a novel heterocruciform intermediate. J Virol 2003; 77:6245-54. [PMID: 12743281 PMCID: PMC155025 DOI: 10.1128/jvi.77.11.6245-6254.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The minute virus of mice initiator protein, NS1, excises new copies of the left viral telomere in a single sequence orientation, dubbed flip, during resolution of the junction between monomer genomes in palindromic dimer intermediate duplexes. We examined this reaction in vitro using both (32)P-end-labeled linear substrates and similar unlabeled templates labeled by incorporation of [alpha-(32)P]TTP during the synthesis. The observed products suggest a resolution model that explains conservation of the hairpin sequence and in which a novel heterocruciform intermediate plays a crucial role. In vitro, NS1 initiates two replication pathways from OriL(TC), the single active origin embedded in one arm of the dimer junction. NS1-mediated nicking liberates a base-paired 3' nucleotide to prime DNA synthesis and, in a reaction we call "read-through synthesis," forks established while the substrate is a linear duplex synthesize DNA in the flop orientation, leading to DNA amplification but not to junction resolution. Nicking leaves NS1 covalently attached to the 5' end of the DNA, where it can serve as a 3'-to-5' helicase, unwinding the NS1-associated strand. In the second pathway, resolution substrates are created when such unwinding induces the palindrome to reconfigure into a cruciform prior to fork assembly. New forks can then synthesize DNA in the flip orientation, copying one cruciform arm and creating a heterocruciform intermediate. Resolution proceeds via hairpin transfer in the extended arm of the heterocruciform, which releases one covalently closed duplex telomere and a partially single-stranded junction intermediate. We suggest that the latter intermediate is finally resolved via an NS1-induced single-strand nick at the otherwise inactive origin, OriL(GAA).
Collapse
Affiliation(s)
- Susan F Cotmore
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
15
|
Abstract
A major response of steroid receptors to steroid hormones is the induction of gene transcription. Two relevant, albeit less studied, properties of these receptors are the EC(50) values of the receptor-agonist complexes and the partial agonist activity of the receptor-antagonist complexes. Contrary to earlier expectations, neither the EC(50) value nor the partial agonist activity is constant for a given receptor-steroid complex. This variation is, however, beneficial to cells and organisms because it provides a mechanism both for differential control of gene expression by a single concentration of circulating hormone and for limiting side-effects during endocrine therapies. In this article, the factors and proposed mechanisms for the modulation of the EC(50) value and partial agonist activity of receptor-steroid complexes are discussed.
Collapse
Affiliation(s)
- S Stoney Simons
- Steroid Hormones Section, Building 8, Room B2A-07, NIDDK/LMCB, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Christensen J, Tattersall P. Parvovirus initiator protein NS1 and RPA coordinate replication fork progression in a reconstituted DNA replication system. J Virol 2002; 76:6518-31. [PMID: 12050365 PMCID: PMC136255 DOI: 10.1128/jvi.76.13.6518-6531.2002] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We show here that the DNA helicase activity of the parvoviral initiator protein NS1 is highly directional, binding to the single strand at a recessed 5' end and displacing the other strand while progressing in a 3'-to-5' direction on the bound strand. NS1 and a cellular site-specific DNA binding factor, PIF, also known as glucocorticoid modulating element binding protein, bind to the left-end minimal replication origin of minute virus of mice, forming a ternary complex. In this complex, NS1 is activated to nick one DNA strand, becoming covalently attached to the 5' end of the nick in the process and providing a 3' OH for priming DNA synthesis. In this situation, the helicase activity of NS1 did not displace the nicked strand, but the origin duplex was distorted by the NS1-PIF complex, as assayed by its sensitivity to KMnO(4) oxidation, and a stretch of about 14 nucleotides on both strands of the nicked origin underwent limited unwinding. Addition of Escherichia coli single-stranded DNA binding protein (SSB) did not lead to further unwinding. However, addition of recombinant human single-stranded DNA binding protein (RPA) to the initiation reaction catalyzed extensive unwinding of the nicked origin, suggesting that RPA may be required to form a functional replication fork. Accordingly, the unwinding mediated by NS1 and RPA promoted processive leading-strand synthesis catalyzed by recombinant human DNA polymerase delta, PCNA, and RFC, using the minimal left-end origin cloned in a plasmid as a template. The requirement for RPA, rather than SSB, in the unwinding reaction indicated that specific NS1-RPA protein interactions were formed. NS1 was tested by enzyme-linked immunosorbent assay for binding to two- or three-subunit RPA complexes expressed from recombinant baculoviruses. NS1 efficiently bound each of the baculovirus-expressed complexes, indicating that the small subunit of RPA is not involved in specific NS1 binding. No NS1 interactions were observed with E. coli SSB or other proteins included as controls.
Collapse
Affiliation(s)
- Jesper Christensen
- Institute of Medical Microbiology and Immunology, Panum Institute, University of Copenhagen, Building 24.2, Blegdamsvej 3b, Copenhagen 2200 N, Denmark.
| | | |
Collapse
|
17
|
Chen J, Kaul S, Simons SS. Structure/activity elements of the multifunctional protein, GMEB-1. Characterization of domains relevant for the modulation of glucocorticoid receptor transactivation properties. J Biol Chem 2002; 277:22053-62. [PMID: 11934901 DOI: 10.1074/jbc.m202311200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GMEB-1 was initially described as a component of a 550-kDa heteromeric DNA binding complex that is involved in the modulation of two properties of glucocorticoid receptor (GR) transactivation, the dose-response curve of agonists and the partial agonist activity of antagonists. Subsequently, GMEB-1 was also found to bind to hsp27, to associate with the coactivator TIF2 in yeast cells, and to participate in Parvovirus replication. To understand these multiple activities of GMEB-1 at a molecular level, we have now determined which regions are associated with the various activities associated with the modulation of GR transactivation properties. These activities include, homooligomerization, heterooligomerization, DNA binding, binding to GR and the transcriptional cofactor CBP, and GR modulation. Complex activities such as DNA binding and GR modulation, are found to require the physical combination of those domains that would be predicted from the involved biochemical processes. We have previously documented that GMEB-1 possesses both GR modulatory and intrinsic transactivation activity. However, the domains for these two activities of GMEB-1 are found not to overlap. This separation of activities provides a structural basis for our prior biological observations that the modulation of the dose-response curve and partial agonist activity of GR complexes is independent of the total levels of gene activation by the same GR complexes.
Collapse
Affiliation(s)
- Jun Chen
- Steroid Hormones Section, NIDDK/Laboratory of Molecular and Cellular Biology, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
18
|
Veraksa A, Kennison J, McGinnis W. DEAF-1 function is essential for the early embryonic development of Drosophila. Genesis 2002; 33:67-76. [PMID: 12112874 DOI: 10.1002/gene.10090] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Drosophila protein DEAF-1 is a sequence-specific DNA binding protein that was isolated as a putative cofactor of the Hox protein Deformed (Dfd). In this study, we analyze the effects of loss or gain of DEAF-1 function on Drosophila development. Maternal/zygotic mutations of DEAF-1 largely result in early embryonic arrest prior to the expression of zygotic segmentation genes, although a few embryos develop into larvae with segmentation defects of variable severity. Overexpression of DEAF-1 protein in embryos can induce defects in migration/closure of the dorsal epidermis, and overexpression in adult primordia can strongly disrupt the development of eye or wing. The DEAF-1 protein associates with many discrete sites on polytene chromosomes, suggesting that DEAF-1 is a rather general regulator of gene expression.
Collapse
Affiliation(s)
- Alexey Veraksa
- Division of Biology, University of California, San Diego, La Jolla, California 92093-0349, USA
| | | | | |
Collapse
|
19
|
Burnett E, Christensen J, Tattersall P. A consensus DNA recognition motif for two KDWK transcription factors identifies flexible-length, CpG-methylation sensitive cognate binding sites in the majority of human promoters. J Mol Biol 2001; 314:1029-39. [PMID: 11743720 DOI: 10.1006/jmbi.2000.5198] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parvovirus initiation factor (PIF), identified in HeLa cells as a host factor essential for parvoviral DNA replication, is a ubiquitous heterodimeric cellular transcription factor. This protein complex was simultaneously identified as glucocorticoid modulatory element binding protein (GMEB) by its ability to bind to the glucocorticoid modulating element (GME) upstream of the tyrosine transaminase promoter. Here, we show that the two PIF/GMEB subunits form site-specific DNA-binding heterodimers when co-expressed from recombinant baculoviruses and homodimers when expressed separately. Degenerate oligonucleotide selection experiments, combined with analysis of dissociation rates, established that the three complexes bind to flexibly spaced tetranucleotide half-sites that conform to the consensus ACGPy N(1-9) PuCGPy, with an optimum of N=6. Binding of all three complexes is extremely sensitive to methylation of the cytosine residues in the invariant CpG half-site core, suggesting a means by which PIF/GMEB binding could be regulated in vivo. Because CpG dinucleotides are suppressed in eukaryotic genomes, such binding sites would be expected to be very rare. However, analysis of 100 human promoters showed that over half of them contained at least one site conforming to the consensus, a significant deviation from the expected random distribution. In many of these, the binding site is within 100 nucleotides of the transcriptional start site, indicating that PIF/GMEB may be involved in regulation of these genes. Oligonucleotides corresponding to five of these sequences, chosen to represent the range of half-site separations identified by the consensus, were tested for PIF/GMEB binding by mobility shift assay. All five probes bound the heterodimer efficiently and, in each case, binding was completely abrogated by 5-methylation of the C residues in the CpGs of the putative half-sites.
Collapse
Affiliation(s)
- E Burnett
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
20
|
Engelhardt OG, Ullrich E, Kochs G, Haller O. Interferon-induced antiviral Mx1 GTPase is associated with components of the SUMO-1 system and promyelocytic leukemia protein nuclear bodies. Exp Cell Res 2001; 271:286-95. [PMID: 11716541 DOI: 10.1006/excr.2001.5380] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mx proteins are interferon-induced large GTPases, some of which have antiviral activity against a variety of viruses. The murine Mx1 protein accumulates in the nucleus of interferon-treated cells and is active against members of the Orthomyxoviridae family, such as the influenza viruses and Thogoto virus. The mechanism by which Mx1 exerts its antiviral action is still unclear, but an involvement of undefined nuclear factors has been postulated. Using the yeast two-hybrid system, we identified cellular proteins that interact with Mx1 protein. The Mx1 interactors were mainly nuclear proteins. They included Sp100, Daxx, and Bloom's syndrome protein (BLM), all of which are known to localize to specific subnuclear domains called promyelocytic leukemia protein nuclear bodies (PML NBs). In addition, components of the SUMO-1 protein modification system were identified as Mx1-interacting proteins, namely the small ubiquitin-like modifier SUMO-1 and SAE2, which represents subunit 2 of the SUMO-1 activating enzyme. Analysis of the subcellular localization of Mx1 and some of these interacting proteins by confocal microscopy revealed a close spatial association of Mx1 with PML NBs. This suggests a role of PML NBs and SUMO-1 in the antiviral action of Mx1 and may allow us to discover novel functions of this large GTPase.
Collapse
Affiliation(s)
- O G Engelhardt
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Freiburg, D-79008, Germany.
| | | | | | | |
Collapse
|
21
|
Christensen J, Cotmore SF, Tattersall P. Minute virus of mice initiator protein NS1 and a host KDWK family transcription factor must form a precise ternary complex with origin DNA for nicking to occur. J Virol 2001; 75:7009-17. [PMID: 11435581 PMCID: PMC114429 DOI: 10.1128/jvi.75.15.7009-7017.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parvoviral rolling hairpin replication generates palindromic genomic concatemers whose junctions are resolved to give unit-length genomes by a process involving DNA replication initiated at origins derived from each viral telomere. The left-end origin of minute virus of mice (MVM), oriL, contains binding sites for the viral initiator nickase, NS1, and parvovirus initiation factor (PIF), a member of the emerging KDWK family of transcription factors. oriL is generated as an active form, oriL(TC), and as an inactive form, oriL(GAA), which contains a single additional nucleotide inserted between the NS1 and PIF sites. Here we examined the interactions on oriL(TC) which lead to activation of NS1 by PIF. The two subunits of PIF, p79 and p96, cooperatively bind two ACGT half-sites, which can be flexibly spaced. When coexpressed from recombinant baculoviruses, the PIF subunits preferentially form heterodimers which, in the presence of ATP, show cooperative binding with NS1 on oriL, but this interaction is preferentially enhanced on oriL(TC) compared to oriL(GAA). Without ATP, NS1 is unable to bind stably to its cognate site, but PIF facilitates this interaction, rendering the NS1 binding site, but not the nick site, resistant to DNase I. Varying the spacing of the PIF half-sites shows that the distance between the NS1 binding site and the NS1-proximal half-site is critical for nickase activation, whereas the position of the distal half-site is unimportant. When expressed separately, both PIF subunits form homodimers that bind site specifically to oriL, but only complexes containing p79 activate the NS1 nickase function.
Collapse
Affiliation(s)
- J Christensen
- Institute of Medical Microbiology and Immunology, University of Copenhagen, Panum Institute, Copenhagen 2200 N, Denmark
| | | | | |
Collapse
|
22
|
Nüesch JP, Christensen J, Rommelaere J. Initiation of minute virus of mice DNA replication is regulated at the level of origin unwinding by atypical protein kinase C phosphorylation of NS1. J Virol 2001; 75:5730-9. [PMID: 11390575 PMCID: PMC114289 DOI: 10.1128/jvi.75.13.5730-5739.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Minute virus of mice nonstructural protein NS1 is a multifunctional protein that is involved in many processes necessary for virus propagation. To perform its distinct activities in timely coordinated manner, NS1 was suggested to be regulated by posttranslational modifications, in particular phosphorylation. In fact, NS1 replicative functions are dependent on protein kinase C (PKC) phosphorylation, most likely due to alteration of the biochemical profile of the viral product as determined by comparing native NS1 with its dephosphorylated counterpart. Through the characterization of NS1 mutants at individual PKC consensus phosphorylation sites for their biochemical activities and nickase function, we were able to identify two target atypical PKC phosphorylation sites, T435 and S473, serving as regulatory elements for the initiation of viral DNA replication. Furthermore, by dissociating the energy-dependent helicase activity from the ATPase-independent trans esterification reaction using partially single-stranded substrates, we could demonstrate that atypical PKC regulation of NS1 nickase activity occurs at the level of origin unwinding prior to trans esterification.
Collapse
Affiliation(s)
- J P Nüesch
- Program of Applied Tumor Virology, Abteilung F0100, INSERM U375, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
23
|
Affiliation(s)
- J R Kerr
- Department of Medical Microbiology and Virology, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WL, UK.
| |
Collapse
|
24
|
Kaul S, Blackford JA, Chen J, Ogryzko VV, Simons SS. Properties of the glucocorticoid modulatory element binding proteins GMEB-1 and -2: potential new modifiers of glucocorticoid receptor transactivation and members of the family of KDWK proteins. Mol Endocrinol 2000; 14:1010-27. [PMID: 10894151 DOI: 10.1210/mend.14.7.0494] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
An important component of glucocorticoid steroid induction of tyrosine aminotransferase (TAT) gene expression is the glucocorticoid modulatory element (GME), which is located at -3.6 kb of the rat TAT gene. The GME both mediates a greater sensitivity to hormone, due to a left shift in the dose-response curve of agonists, and increases the partial agonist activity of antiglucocorticoids. These properties of the GME are intimately related to the binding of a heteromeric complex of two proteins (GMEB-1 and -2). We previously cloned the rat GMEB-2 as a 67-kDa protein. We now report the cloning of the other member of the GME binding complex, the 88-kDa human GMEB-1, and various properties of both proteins. GMEB-1 and -2 each possess an intrinsic transactivation activity in mammalian one-hybrid assays, consistent with our proposed model in which they modify glucocorticoid receptor (GR)-regulated gene induction. This hypothesis is supported by interactions between GR and both GMEB-1 and -2 in mammalian two-hybrid and in pull-down assays. Furthermore, overexpression of GMEB-1 and -2, either alone or in combination, results in a reversible right shift in the dose-response curve, and decreased agonist activity of antisteroids, as expected from the squelching of other limiting factors. Additional mechanistic details that are compatible with the model of GME action are suggested by the interactions in a two-hybrid assay of both GMEBs with CREB-binding protein (CBP) and the absence of histone acetyl transferase (HAT) activity in both proteins. GMEB-1 and -2 share a sequence of 90 amino acids that is 80% identical. This region also displays homology to several other proteins containing a core sequence of KDWK. Thus, the GMEBs may be members of a new family of factors with interesting transcriptional properties.
Collapse
Affiliation(s)
- S Kaul
- Steroid Hormones Section, National Institute of Diabetes and Digestive and Kidney Diseases/Laboratory of Molecular and Cellular Biology, National Institutes of Health, Bethesda, Maryland 20892-0805, USA
| | | | | | | | | |
Collapse
|
25
|
Zeng H, Kaul S, Simons SS. Genomic organization of human GMEB-1 and rat GMEB-2: structural conservation of two multifunctional proteins. Nucleic Acids Res 2000; 28:1819-29. [PMID: 10734202 PMCID: PMC102812 DOI: 10.1093/nar/28.8.1819] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The glucocorticoid modulatory element binding proteins 1 and 2 (GMEB-1 and GMEB-2) are of interest both for their multiple activities (e.g. modulation of transactivation by the glucocorticoid receptor and initiation of parvovirus replication) and their membership in the emerging family of KDWK proteins. The genomic sequence of these proteins was desired in order to begin studies on the control of GMEB expression and to pursue previous evidence for significant homologies between the GMEBs. We now report the genomic sequence of human GMEB-1 and rat GMEB-2. The structure of both genes, including portions of the introns, is highly conserved. However, GMEB-1 and GMEB-2 were found to reside on chromosomes 1 and 20, respectively, demonstrating that they are encoded by distinctly different genes. Several isoforms of the GMEBs have been reported or detected in this study, and the splicing patterns were determined. The tissue distribution of each GMEB is not the same and is highest in fetal and developing tissues, consistent with previous suggestions that both homo- and hetero-oligomers may possess biological activity. The promoter region of both genes has been identified and both display high levels of transcription activity in transiently transfected cells when fused upstream of a promoterless reporter. These results indicate that the GMEBs are proteins that evolved from a single parent gene, have been highly conserved since the divergence of rats and humans and probably play important roles in development and differentiation.
Collapse
Affiliation(s)
- H Zeng
- Steroid Hormones Section, Building 8, Room B2A-07, NIDDK/LMCB, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
26
|
Pearson JL, Pintel DJ. Recombination within the nonstructural genes of the parvovirus minute virus of mice (MVM) generates functional levels of wild-type NS1, which can be detected in the absence of selective pressure following transfection of nonreplicating plasmids. Virology 2000; 269:128-36. [PMID: 10725205 DOI: 10.1006/viro.2000.0202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recombination within the coding region of the nonstructural genes of minute virus of mice (MVM), which generates functional levels of wild-type NS1, was observed in the absence of selective pressure following cotransfection of nonreplicating plasmids. P38 activity was used as a measure of recombinant NS1 production, which, together with direct detection of recombinant-generated products by RT-PCR, allowed an estimation of recombination efficiency. In addition, we show that very low levels of wild-type NS1 were able to significantly transactivate P38. Given that recombination following cotransfection can generate NS1 at these levels, our observations have implications for the study of parvoviral genetics, the construction of recombinant parvoviral vectors for gene therapy applications, and perhaps other systems using cotransfection of plasmids that share homologous sequences.
Collapse
Affiliation(s)
- J L Pearson
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia School of Medicine, Columbia, MO 65212, USA
| | | |
Collapse
|
27
|
Jimenez-Lara AM, Heine MJ, Gronemeyer H. Cloning of a mouse glucocorticoid modulatory element binding protein, a new member of the KDWK family. FEBS Lett 2000; 468:203-10. [PMID: 10692587 DOI: 10.1016/s0014-5793(00)01209-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mouse cDNA that encodes a nuclear DNA binding protein was identified by yeast two-hybrid screening using the activation domain 2 of the nuclear receptor coactivator TIF2 as a bait. BLAST analysis revealed that the identified cDNA encodes a KDWK domain and contains sequences almost identical to three tryptic peptides of rat GMEB-1 which together with the GMEB-2 heterodimeric partner binds to the GME/CRE sequence (glucocorticoid modulatory element) of the tyrosine aminotransferase (TAT) promoter. Mouse GMEB-1 is ubiquitously expressed in all the tissues examined. In vitro translated mGMEB-1 bound specifically to GME oligonucleotides, either alone or as a heterodimer with rGMEB-2. Transient transfection experiments with TAT promoter reporter genes suggest a potential role for mGMEB-1 as a transcriptional regulator of the TAT promoter.
Collapse
Affiliation(s)
- A M Jimenez-Lara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, P.O. Box 163, 67404, Illkirch, France
| | | | | |
Collapse
|
28
|
Cotmore SF, Christensen J, Tattersall P. Two widely spaced initiator binding sites create an HMG1-dependent parvovirus rolling-hairpin replication origin. J Virol 2000; 74:1332-41. [PMID: 10627544 PMCID: PMC111468 DOI: 10.1128/jvi.74.3.1332-1341.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Minute virus of mice (MVM) replicates via a linearized form of rolling-circle replication in which the viral nickase, NS1, initiates DNA synthesis by introducing a site-specific nick into either of two distinct origin sequences. In vitro nicking and replication assays with substrates that had deletions or mutations were used to explore the sequences and structural elements essential for activity of one of these origins, located in the right-end (5') viral telomere. This structure contains 248 nucleotides, most-favorably arranged as a simple hairpin with six unpaired bases. However, a pair of opposing NS1 binding sites, located near its outboard end, create a 33-bp palindrome that could potentially assume an alternate cruciform configuration and hence directly bind HMG1, the essential cofactor for this origin. The palindromic nature of this sequence, and thus its ability to fold into a cruciform, was dispensable for origin function, as was the NS1 binding site occupying the inboard arm of the palindrome. In contrast, the NS1 site in the outboard arm was essential for initiation, even though positioned 120 bp from the nick site. The specific sequence of the nick site and an additional NS1 binding site which directly orients NS1 over the initiation site were also essential and delimited the inboard border of the minimal right-end origin. DNase I and hydroxyl radical footprints defined sequences protected by NS1 and suggest that HMG1 allows the NS1 molecules positioned at each end of the origin to interact, creating a distortion characteristic of a double helical loop.
Collapse
Affiliation(s)
- S F Cotmore
- Departments of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|