1
|
Li CL, Zhou GF, Xie XY, Wang L, Chen X, Pan QL, Pu YL, Yang J, Song L, Chen GJ. STAU1 exhibits a dual function by promoting amyloidogenesis and tau phosphorylation in cultured cells. Exp Neurol 2024; 377:114805. [PMID: 38729552 DOI: 10.1016/j.expneurol.2024.114805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
Staufen-1 (STAU1) is a double-stranded RNA-binding protein (RBP) involved in a variety of pathological conditions. In this study, we investigated the potential role of STAU1 in Alzheimer's disease (AD), in which two hallmarks are well-established as cerebral β-amyloid protein (Aβ) deposition and Tau-centered neurofibrillary tangles. We found that STAU1 protein level was significantly increased in cells that stably express full-length APP and the brain of APP/PS1 mice, an animal model of AD. STAU1 knockdown, as opposed to overexpression, significantly decreased the protein levels of β-amyloid converting enzyme 1 (BACE1) and Aβ. We further found that STAU1 extended the half-life of the BACE1 mRNA through binding to the 3' untranslated region (3'UTR). Transcriptome analysis revealed that STAU1 enhanced the expression of growth arrest and DNA damage 45 β (GADD45B) upstream of P38 MAPK signaling, which contributed to STAU1-induced regulation of Tau phosphorylation at Ser396 and Thr181. Together, STAU1 promoted amyloidogenesis by inhibiting BACE1 mRNA decay, and augmented Tau phosphorylation through activating GADD45B in relation to P38 MAPK. Targeting STAU1 that acts on both amyloidogenesis and tauopathy may serve as an optimistic approach for AD treatment.
Collapse
Affiliation(s)
- Chen-Lu Li
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Gui-Feng Zhou
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Xiao-Yong Xie
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Lu Wang
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Xue Chen
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Qiu-Ling Pan
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Ya-Lan Pu
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Jie Yang
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Li Song
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China.
| |
Collapse
|
2
|
Chen S, Collart MA. Membrane-associated mRNAs: A Post-transcriptional Pathway for Fine-turning Gene Expression. J Mol Biol 2024; 436:168579. [PMID: 38648968 DOI: 10.1016/j.jmb.2024.168579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Gene expression is a fundamental and highly regulated process involving a series of tightly coordinated steps, including transcription, post-transcriptional processing, translation, and post-translational modifications. A growing number of studies have revealed an additional layer of complexity in gene expression through the phenomenon of mRNA subcellular localization. mRNAs can be organized into membraneless subcellular structures within both the cytoplasm and the nucleus, but they can also targeted to membranes. In this review, we will summarize in particular our knowledge on localization of mRNAs to organelles, focusing on important regulators and available techniques for studying organellar localization, and significance of this localization in the broader context of gene expression regulation.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.
| | - Martine A Collart
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.
| |
Collapse
|
3
|
Horio T, Ishikura Y, Ohashi R, Shiina N. Regulation of RNG105/caprin1 dynamics by pathogenic cytoplasmic FUS and TDP-43 in neuronal RNA granules modulates synaptic loss. Heliyon 2023; 9:e17065. [PMID: 37484309 PMCID: PMC10361247 DOI: 10.1016/j.heliyon.2023.e17065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
In neurodegenerative diseases, the condensation of FUS and TDP-43 with RNA granules in neurons is linked to pathology, including synaptic disorders. However, the effects of FUS and TDP-43 on RNA granule factors remain unclear. Here, using primary cultured neurons from the mouse cerebral cortex, we show that excess cytoplasmic FUS and TDP-43 accumulated in dendritic RNA granules, where they increased the dynamics of a scaffold protein RNG105/caprin1 and dissociated it from the granules. This coincided with reduced levels of mRNA and translation around the granules and synaptic loss in dendrites. These defects were suppressed by non-dissociable RNG105, suggesting that RNG105 dissociation mediated the defects. In contrast to the model where FUS and TDP-43 co-aggregate with RNA granule factors to repress their activity, our findings provide a novel pathogenic mechanism whereby FUS and TDP-43 dissociate RNA scaffold proteins from RNA granules which are required for local translation that regulates synapse formation.
Collapse
Affiliation(s)
- Tomoyo Horio
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
| | - Yui Ishikura
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
| | - Rie Ohashi
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Life Science Research Center, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Nobuyuki Shiina
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
4
|
Inoue R, Fukutani Y, Niwa T, Matsunami H, Yohda M. Identification and Characterization of Proteins That Are Involved in RTP1S-Dependent Transport of Olfactory Receptors. Int J Mol Sci 2023; 24:ijms24097829. [PMID: 37175532 PMCID: PMC10177996 DOI: 10.3390/ijms24097829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Olfaction is mediated via olfactory receptors (ORs) that are expressed on the cilia membrane of olfactory sensory neurons in the olfactory epithelium. The functional expression of most ORs requires the assistance of receptor-transporting proteins (RTPs). We examined the interactome of RTP1S and OR via proximity biotinylation. Deubiquitinating protein VCIP135, the F-actin-capping protein sub-unit alpha-2, and insulin-like growth factor 2 mRNA-binding protein 2 were biotinylated via AirID fused with OR, RTP1S-AirID biotinylated heat shock protein A6 (HSPA6), and double-stranded RNA-binding protein Staufen homolog 2 (STAU2). Co-expression of HSPA6 partially enhanced the surface expression of Olfr544. The surface expression of Olfr544 increased by 50-80%. This effect was also observed when RTP1S was co-expressed. Almost identical results were obtained from the co-expression of STAU2. The interactions of HSPA6 and STAU2 with RTP1S were examined using a NanoBit assay. The results show that the RTP1S N-terminus interacted with the C-terminal domain of HSP6A and the N-terminal domain of STAU2. In contrast, OR did not significantly interact with STAU2 and HSPA6. Thus, HSP6A and STAU2 appear to be involved in the process of OR traffic through interaction with RTP1S.
Collapse
Affiliation(s)
- Ryosuke Inoue
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Yosuke Fukutani
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
5
|
Di Liegro CM, Schiera G, Schirò G, Di Liegro I. RNA-Binding Proteins as Epigenetic Regulators of Brain Functions and Their Involvement in Neurodegeneration. Int J Mol Sci 2022; 23:ijms232314622. [PMID: 36498959 PMCID: PMC9739182 DOI: 10.3390/ijms232314622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
A central aspect of nervous system development and function is the post-transcriptional regulation of mRNA fate, which implies time- and site-dependent translation, in response to cues originating from cell-to-cell crosstalk. Such events are fundamental for the establishment of brain cell asymmetry, as well as of long-lasting modifications of synapses (long-term potentiation: LTP), responsible for learning, memory, and higher cognitive functions. Post-transcriptional regulation is in turn dependent on RNA-binding proteins that, by recognizing and binding brief RNA sequences, base modifications, or secondary/tertiary structures, are able to control maturation, localization, stability, and translation of the transcripts. Notably, most RBPs contain intrinsically disordered regions (IDRs) that are thought to be involved in the formation of membrane-less structures, probably due to liquid-liquid phase separation (LLPS). Such structures are evidenced as a variety of granules that contain proteins and different classes of RNAs. The other side of the peculiar properties of IDRs is, however, that, under altered cellular conditions, they are also prone to form aggregates, as observed in neurodegeneration. Interestingly, RBPs, as part of both normal and aggregated complexes, are also able to enter extracellular vesicles (EVs), and in doing so, they can also reach cells other than those that produced them.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
- Correspondence: ; Tel.: +39-091-238-97 (ext. 415/446)
| |
Collapse
|
6
|
Barnault R, Verzeroli C, Fournier C, Michelet M, Redavid AR, Chicherova I, Plissonnier ML, Adrait A, Khomich O, Chapus F, Richaud M, Hervieu M, Reiterer V, Centonze FG, Lucifora J, Bartosch B, Rivoire M, Farhan H, Couté Y, Mirakaj V, Decaens T, Mehlen P, Gibert B, Zoulim F, Parent R. Hepatic inflammation elicits production of proinflammatory netrin-1 through exclusive activation of translation. Hepatology 2022; 76:1345-1359. [PMID: 35253915 DOI: 10.1002/hep.32446] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Netrin-1 displays protumoral properties, though the pathological contexts and processes involved in its induction remain understudied. The liver is a major model of inflammation-associated cancer development, leading to HCC. APPROACH AND RESULTS A panel of cell biology and biochemistry approaches (reverse transcription quantitative polymerase chain reaction, reporter assays, run-on, polysome fractionation, cross linking immunoprecipitation, filter binding assay, subcellular fractionation, western blotting, immunoprecipitation, stable isotope labeling by amino acids in cell culture) on in vitro-grown primary hepatocytes, human liver cell lines, mouse samples and clinical samples was used. We identify netrin-1 as a hepatic inflammation-inducible factor and decipher its mode of activation through an exhaustive eliminative approach. We show that netrin-1 up-regulation relies on a hitherto unknown mode of induction, namely its exclusive translational activation. This process includes the transfer of NTN1 (netrin-1) mRNA to the endoplasmic reticulum and the direct interaction between the Staufen-1 protein and this transcript as well as netrin-1 mobilization from its cell-bound form. Finally, we explore the impact of a phase 2 clinical trial-tested humanized anti-netrin-1 antibody (NP137) in two distinct, toll-like receptor (TLR) 2/TLR3/TLR6-dependent, hepatic inflammatory mouse settings. We observe a clear anti-inflammatory activity indicating the proinflammatory impact of netrin-1 on several chemokines and Ly6C+ macrophages. CONCLUSIONS These results identify netrin-1 as an inflammation-inducible factor in the liver through an atypical mechanism as well as its contribution to hepatic inflammation.
Collapse
Affiliation(s)
- Romain Barnault
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Claire Verzeroli
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Carole Fournier
- Institute for Advanced Biosciences, Inserm U1209, University of Grenoble-Alpes, La Tronche, France
| | - Maud Michelet
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Anna Rita Redavid
- University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Apoptosis, Cancer and Development Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Ievgeniia Chicherova
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Marie-Laure Plissonnier
- University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Inserm U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Annie Adrait
- University of Grenoble-Alpes, Inserm, CEA, UMR BioSanté U1292, CNRS CEA FR2048, Grenoble, France
| | - Olga Khomich
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Fleur Chapus
- Single Cell Dynamics Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina, USA
| | - Mathieu Richaud
- University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Apoptosis, Cancer and Development Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Maëva Hervieu
- University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Apoptosis, Cancer and Development Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Veronika Reiterer
- Institute of Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Julie Lucifora
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Birke Bartosch
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Michel Rivoire
- Léon Bérard Cancer Center, Lyon, France.,Université Lyon 1, Lyon, France
| | - Hesso Farhan
- Institute of Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Yohann Couté
- University of Grenoble-Alpes, Inserm, CEA, UMR BioSanté U1292, CNRS CEA FR2048, Grenoble, France
| | - Valbona Mirakaj
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tuebingen, Eberhard-Karls University, Tuebingen, Germany
| | - Thomas Decaens
- Institute for Advanced Biosciences, Inserm U1209, University of Grenoble-Alpes, La Tronche, France
| | - Patrick Mehlen
- University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Apoptosis, Cancer and Development Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Benjamin Gibert
- University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Apoptosis, Cancer and Development Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Fabien Zoulim
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Service of Hepato-Gastroenterology, Hospices Civils de Lyon, Lyon, France
| | - Romain Parent
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| |
Collapse
|
7
|
A Degradation Motif in STAU1 Defines a Novel Family of Proteins Involved in Inflammation. Int J Mol Sci 2022; 23:ijms231911588. [PMID: 36232890 PMCID: PMC9569955 DOI: 10.3390/ijms231911588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer development is regulated by inflammation. Staufen1 (STAU1) is an RNA-binding protein whose expression level is critical in cancer cells as it is related to cell proliferation or cell death. STAU1 protein levels are downregulated during mitosis due to its degradation by the E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C). In this paper, we map the molecular determinant involved in STAU1 degradation to amino acids 38-50, and by alanine scanning, we shorten the motif to F39PxPxxLxxxxL50 (FPL-motif). Mutation of the FPL-motif prevents STAU1 degradation by APC/C. Interestingly, a search in databases reveals that the FPL-motif is shared by 15 additional proteins, most of them being involved in inflammation. We show that one of these proteins, MAP4K1, is indeed degraded via the FPL-motif; however, it is not a target of APC/C. Using proximity labeling with STAU1, we identify TRIM25, an E3 ubiquitin ligase involved in the innate immune response and interferon production, as responsible for STAU1 and MAP4K1 degradation, dependent on the FPL-motif. These results are consistent with previous studies that linked STAU1 to cancer-induced inflammation and identified a novel degradation motif that likely coordinates a novel family of proteins involved in inflammation. Data are available via ProteomeXchange with the identifier PXD036675.
Collapse
|
8
|
Corbet GA, Burke JM, Bublitz GR, Tay JW, Parker R. dsRNA-induced condensation of antiviral proteins modulates PKR activity. Proc Natl Acad Sci U S A 2022; 119:e2204235119. [PMID: 35939694 PMCID: PMC9388085 DOI: 10.1073/pnas.2204235119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/01/2022] [Indexed: 12/21/2022] Open
Abstract
Mammalian cells respond to dsRNA in multiple manners. One key response to dsRNA is the activation of PKR, an eIF2α kinase, which triggers translational arrest and the formation of stress granules. However, the process of PKR activation in cells is not fully understood. In response to increased endogenous or exogenous dsRNA, we observed that PKR forms novel cytosolic condensates, referred to as dsRNA-induced foci (dRIFs). dRIFs contain dsRNA, form in proportion to dsRNA, and are enhanced by longer dsRNAs. dRIFs enrich several other dsRNA-binding proteins, including ADAR1, Stau1, NLRP1, and PACT. Strikingly, dRIFs correlate with and form before translation repression by PKR and localize to regions of cells where PKR activation is initiated. We hypothesize that dRIF formation is a mechanism that cells use to enhance the sensitivity of PKR activation in response to low levels of dsRNA or to overcome viral inhibitors of PKR activation.
Collapse
Affiliation(s)
- Giulia A. Corbet
- Department of Biochemistry, University of Colorado, Boulder, CO 80309
| | - James M. Burke
- Department of Biochemistry, University of Colorado, Boulder, CO 80309
| | - Gaia R. Bublitz
- Department of Biochemistry, University of Colorado, Boulder, CO 80309
| | | | - Roy Parker
- Department of Biochemistry, University of Colorado, Boulder, CO 80309
- BioFrontiers Institute, Boulder, CO 80309
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789
| |
Collapse
|
9
|
Gonzalez Quesada Y, Bonnet-Magnaval F, DesGroseillers L. Phosphomimicry on STAU1 Serine 20 Impairs STAU1 Posttranscriptional Functions and Induces Apoptosis in Human Transformed Cells. Int J Mol Sci 2022; 23:ijms23137344. [PMID: 35806349 PMCID: PMC9266326 DOI: 10.3390/ijms23137344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/22/2022] Open
Abstract
Staufen 1 (STAU1) is an RNA-binding protein that is essential in untransformed cells. In cancer cells, it is rather STAU1 overexpression that impairs cell proliferation. In this paper, we show that a modest increase in STAU1 expression in cancer cells triggers apoptosis as early as 12 h post-transfection and impairs proliferation in non-apoptotic cells for several days. Interestingly, a mutation that mimics the phosphorylation of STAU1 serine 20 is sufficient to cause these phenotypes, indicating that serine 20 is at the heart of the molecular mechanism leading to apoptosis. Mechanistically, phosphomimicry on serine 20 alters the ability of STAU1 to regulate translation and the decay of STAU1-bound mRNAs, indicating that the posttranscriptional regulation of mRNAs by STAU1 controls the balance between proliferation and apoptosis. Unexpectedly, the expression of RBD2S20D, the N-terminal 88 amino acids with no RNA-binding activity, is sufficient to induce apoptosis via alteration, in trans, of the posttranscriptional functions of endogenous STAU1. These results suggest that STAU1 is a sensor that controls the balance between cell proliferation and apoptosis, and, therefore, may be considered as a novel therapeutic target against cancer.
Collapse
|
10
|
Emerging Roles of RNA-Binding Proteins in Neurodevelopment. J Dev Biol 2022; 10:jdb10020023. [PMID: 35735914 PMCID: PMC9224834 DOI: 10.3390/jdb10020023] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Diverse cell types in the central nervous system (CNS) are generated by a relatively small pool of neural stem cells during early development. Spatial and temporal regulation of stem cell behavior relies on precise coordination of gene expression. Well-studied mechanisms include hormone signaling, transcription factor activity, and chromatin remodeling processes. Much less is known about downstream RNA-dependent mechanisms including posttranscriptional regulation, nuclear export, alternative splicing, and transcript stability. These important functions are carried out by RNA-binding proteins (RBPs). Recent work has begun to explore how RBPs contribute to stem cell function and homeostasis, including their role in metabolism, transport, epigenetic regulation, and turnover of target transcripts. Additional layers of complexity are provided by the different target recognition mechanisms of each RBP as well as the posttranslational modifications of the RBPs themselves that alter function. Altogether, these functions allow RBPs to influence various aspects of RNA metabolism to regulate numerous cellular processes. Here we compile advances in RNA biology that have added to our still limited understanding of the role of RBPs in neurodevelopment.
Collapse
|
11
|
Ramos H, Monette A, Niu M, Barrera A, López-Ulloa B, Fuentes Y, Guizar P, Pino K, DesGroseillers L, Mouland A, López-Lastra M. The double-stranded RNA-binding protein, Staufen1, is an IRES-transacting factor regulating HIV-1 cap-independent translation initiation. Nucleic Acids Res 2022; 50:411-429. [PMID: 34893869 PMCID: PMC8754648 DOI: 10.1093/nar/gkab1188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/06/2021] [Accepted: 11/16/2021] [Indexed: 02/05/2023] Open
Abstract
Translation initiation of the viral genomic mRNA (vRNA) of human immunodeficiency virus-type 1 (HIV-1) can be mediated by a cap- or an internal ribosome entry site (IRES)-dependent mechanism. A previous report shows that Staufen1, a cellular double-stranded (ds) RNA-binding protein (RBP), binds to the 5'untranslated region (5'UTR) of the HIV-1 vRNA and promotes its cap-dependent translation. In this study, we now evaluate the role of Staufen1 as an HIV-1 IRES-transacting factor (ITAF). We first confirm that Staufen1 associates with both the HIV-1 vRNA and the Gag protein during HIV-1 replication. We found that in HIV-1-expressing cells, siRNA-mediated depletion of Staufen1 reduces HIV-1 vRNA translation. Using dual-luciferase bicistronic mRNAs, we show that the siRNA-mediated depletion and cDNA-mediated overexpression of Staufen1 acutely regulates HIV-1 IRES activity. Furthermore, we show that Staufen1-vRNA interaction is required for the enhancement of HIV-1 IRES activity. Interestingly, we find that only Staufen1 harboring an intact dsRNA-binding domain 3 (dsRBD3) rescues HIV-1 IRES activity in Staufen1 CRISPR-Cas9 gene edited cells. Finally, we show that the expression of Staufen1-dsRBD3 alone enhances HIV-1 IRES activity. This study provides evidence of a novel role for Staufen1 as an ITAF promoting HIV-1 vRNA IRES activity.
Collapse
Affiliation(s)
- Hade Ramos
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Anne Monette
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | - Meijuan Niu
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | - Aldo Barrera
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Brenda López-Ulloa
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Yazmín Fuentes
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Paola Guizar
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Karla Pino
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Luc DesGroseillers
- Department of Biochemistry and Molecular Medicine, University of Montreal, P.O. Box 6128, Station Centre Ville, Montreal, Québec H3C 3J7, Canada
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| |
Collapse
|
12
|
Bonnet-Magnaval F, Diallo LH, Brunchault V, Laugero N, Morfoisse F, David F, Roussel E, Nougue M, Zamora A, Marchaud E, Tatin F, Prats AC, Garmy-Susini B, DesGroseillers L, Lacazette E. High Level of Staufen1 Expression Confers Longer Recurrence Free Survival to Non-Small Cell Lung Cancer Patients by Promoting THBS1 mRNA Degradation. Int J Mol Sci 2021; 23:215. [PMID: 35008641 PMCID: PMC8745428 DOI: 10.3390/ijms23010215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Stau1 is a pluripotent RNA-binding protein that is responsible for the post-transcriptional regulation of a multitude of transcripts. Here, we observed that lung cancer patients with a high Stau1 expression have a longer recurrence free survival. Strikingly, Stau1 did not impair cell proliferation in vitro, but rather cell migration and cell adhesion. In vivo, Stau1 depletion favored tumor progression and metastases development. In addition, Stau1 depletion strongly impaired vessel maturation. Among a panel of candidate genes, we specifically identified the mRNA encoding the cell adhesion molecule Thrombospondin 1 (THBS1) as a new target for Staufen-mediated mRNA decay. Altogether, our results suggest that regulation of THBS1 expression by Stau1 may be a key process involved in lung cancer progression.
Collapse
Affiliation(s)
- Florence Bonnet-Magnaval
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
- Département de Biochimie Et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, 2900 Édouard Montpetit Montréal, Montreal, QC H3T 1J4, Canada;
| | - Leïla Halidou Diallo
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Valérie Brunchault
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Nathalie Laugero
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Florent Morfoisse
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Florian David
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Emilie Roussel
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Manon Nougue
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Audrey Zamora
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Emmanuelle Marchaud
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Florence Tatin
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Anne-Catherine Prats
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Barbara Garmy-Susini
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Luc DesGroseillers
- Département de Biochimie Et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, 2900 Édouard Montpetit Montréal, Montreal, QC H3T 1J4, Canada;
| | - Eric Lacazette
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| |
Collapse
|
13
|
Gokhale NS, Smith JR, Van Gelder RD, Savan R. RNA regulatory mechanisms that control antiviral innate immunity. Immunol Rev 2021; 304:77-96. [PMID: 34405416 DOI: 10.1111/imr.13019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022]
Abstract
From the initial sensing of viral nucleotides by pattern recognition receptors, through the induction of type I and III interferons (IFN), upregulation of antiviral effector proteins, and resolution of the inflammatory response, each step of innate immune signaling is under tight control. Though innate immunity is often associated with broad regulation at the level of gene transcription, RNA-centric post-transcriptional processes have emerged as critical mechanisms for ensuring a proper antiviral response. Here, we explore the diverse RNA regulatory mechanisms that modulate the innate antiviral immune response, with a focus on RNA sensing by RIG-I-like receptors (RLR), interferon (IFN) and IFN signaling pathways, viral pathogenesis, and host genetic variation that contributes to these processes. We address the post-transcriptional interactions with RNA-binding proteins, non-coding RNAs, transcript elements, and modifications that control mRNA stability, as well as alternative splicing events that modulate the innate immune antiviral response.
Collapse
Affiliation(s)
- Nandan S Gokhale
- Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Julian R Smith
- Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Rachel D Van Gelder
- Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Ram Savan
- Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
14
|
Bonnet-Magnaval F, DesGroseillers L. The Staufen1-dependent cell cycle regulon or how a misregulated RNA-binding protein leads to cancer. Biol Rev Camb Philos Soc 2021; 96:2192-2208. [PMID: 34018319 DOI: 10.1111/brv.12749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022]
Abstract
In recent years, an increasing number of reports have linked the RNA-binding protein Staufen1 (STAU1) to the control of cell decision making. In non-transformed cells, STAU1 balances the expression of messenger RNA (mRNA) regulons that regulate differentiation and well-ordered cell division. Misregulation of STAU1 expression and/or functions changes the fragile balance in the expression of pro- and anti-proliferative and apoptotic genes and favours a novel equilibrium that supports cell proliferation and cancer development. The misregulation of STAU1 functions causes multiple coordinated modest effects in the post-transcriptional regulation of many RNA targets that code for cell cycle regulators, leading to dramatic consequences at the cellular level. The new tumorigenic equilibrium in STAU1-mediated gene regulation observed in cancer cells can be further altered by a slight increase in STAU1 expression that favours expression of pro-apoptotic genes and cell death. The STAU1-dependent cell cycle regulon is a good model to study how abnormal expression of an RNA-binding protein promotes cell growth and provides an advantageous selection of malignant cells in the first step of cancer development.
Collapse
Affiliation(s)
- Florence Bonnet-Magnaval
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Luc DesGroseillers
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC, H3T 1J4, Canada
| |
Collapse
|
15
|
Schieweck R, Ninkovic J, Kiebler MA. RNA-binding proteins balance brain function in health and disease. Physiol Rev 2020; 101:1309-1370. [PMID: 33000986 DOI: 10.1152/physrev.00047.2019] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Posttranscriptional gene expression including splicing, RNA transport, translation, and RNA decay provides an important regulatory layer in many if not all molecular pathways. Research in the last decades has positioned RNA-binding proteins (RBPs) right in the center of posttranscriptional gene regulation. Here, we propose interdependent networks of RBPs to regulate complex pathways within the central nervous system (CNS). These are involved in multiple aspects of neuronal development and functioning, including higher cognition. Therefore, it is not sufficient to unravel the individual contribution of a single RBP and its consequences but rather to study and understand the tight interplay between different RBPs. In this review, we summarize recent findings in the field of RBP biology and discuss the complex interplay between different RBPs. Second, we emphasize the underlying dynamics within an RBP network and how this might regulate key processes such as neurogenesis, synaptic transmission, and synaptic plasticity. Importantly, we envision that dysfunction of specific RBPs could lead to perturbation within the RBP network. This would have direct and indirect (compensatory) effects in mRNA binding and translational control leading to global changes in cellular expression programs in general and in synaptic plasticity in particular. Therefore, we focus on RBP dysfunction and how this might cause neuropsychiatric and neurodegenerative disorders. Based on recent findings, we propose that alterations in the entire regulatory RBP network might account for phenotypic dysfunctions observed in complex diseases including neurodegeneration, epilepsy, and autism spectrum disorders.
Collapse
Affiliation(s)
- Rico Schieweck
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Jovica Ninkovic
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Michael A Kiebler
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| |
Collapse
|
16
|
Bansal P, Madlung J, Schaaf K, Macek B, Bono F. An Interaction Network of RNA-Binding Proteins Involved in Drosophila Oogenesis. Mol Cell Proteomics 2020; 19:1485-1502. [PMID: 32554711 PMCID: PMC8143644 DOI: 10.1074/mcp.ra119.001912] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/26/2020] [Indexed: 12/31/2022] Open
Abstract
During Drosophila oogenesis, the localization and translational regulation of maternal transcripts relies on RNA-binding proteins (RBPs). Many of these RBPs localize several mRNAs and may have additional direct interaction partners to regulate their functions. Using immunoprecipitation from whole Drosophila ovaries coupled to mass spectrometry, we examined protein-protein associations of 6 GFP-tagged RBPs expressed at physiological levels. Analysis of the interaction network and further validation in human cells allowed us to identify 26 previously unknown associations, besides recovering several well characterized interactions. We identified interactions between RBPs and several splicing factors, providing links between nuclear and cytoplasmic events of mRNA regulation. Additionally, components of the translational and RNA decay machineries were selectively co-purified with some baits, suggesting a mechanism for how RBPs may regulate maternal transcripts. Given the evolutionary conservation of the studied RBPs, the interaction network presented here provides the foundation for future functional and structural studies of mRNA localization across metazoans.
Collapse
Affiliation(s)
- Prashali Bansal
- Living Systems Institute, University of Exeter, Exeter, UK; Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Johannes Madlung
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
| | - Kristina Schaaf
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Boris Macek
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
| | - Fulvia Bono
- Living Systems Institute, University of Exeter, Exeter, UK; Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|
17
|
Hassine S, Bonnet-Magnaval F, Benoit Bouvrette LP, Doran B, Ghram M, Bouthillette M, Lecuyer E, DesGroseillers L. Staufen1 localizes to the mitotic spindle and controls the localization of RNA populations to the spindle. J Cell Sci 2020; 133:jcs247155. [PMID: 32576666 DOI: 10.1242/jcs.247155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/07/2020] [Indexed: 12/20/2022] Open
Abstract
Staufen1 (STAU1) is an RNA-binding protein involved in the post-transcriptional regulation of mRNAs. We report that a large fraction of STAU1 localizes to the mitotic spindle in colorectal cancer HCT116 cells and in non-transformed hTERT-RPE1 cells. Spindle-associated STAU1 partly co-localizes with ribosomes and active sites of translation. We mapped the molecular determinant required for STAU1-spindle association within the first 88 N-terminal amino acids, a domain that is not required for RNA binding. Interestingly, transcriptomic analysis of purified mitotic spindles revealed that 1054 mRNAs and the precursor ribosomal RNA (pre-rRNA), as well as the long non-coding RNAs and small nucleolar RNAs involved in ribonucleoprotein assembly and processing, are enriched on spindles compared with cell extracts. STAU1 knockout causes displacement of the pre-rRNA and of 154 mRNAs coding for proteins involved in actin cytoskeleton organization and cell growth, highlighting a role for STAU1 in mRNA trafficking to spindle. These data demonstrate that STAU1 controls the localization of subpopulations of RNAs during mitosis and suggests a novel role of STAU1 in pre-rRNA maintenance during mitosis, ribogenesis and/or nucleoli reassembly.
Collapse
Affiliation(s)
- Sami Hassine
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC H3T 1J4, Canada
| | - Florence Bonnet-Magnaval
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC H3T 1J4, Canada
| | - Louis Philip Benoit Bouvrette
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC H3T 1J4, Canada
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Bellastrid Doran
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC H3T 1J4, Canada
| | - Mehdi Ghram
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC H3T 1J4, Canada
| | - Mathieu Bouthillette
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC H3T 1J4, Canada
| | - Eric Lecuyer
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC H3T 1J4, Canada
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Luc DesGroseillers
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
18
|
Ghram M, Bonnet-Magnaval F, Hotea DI, Doran B, Ly S, DesGroseillers L. Staufen1 is Essential for Cell-Cycle Transitions and Cell Proliferation Via the Control of E2F1 Expression. J Mol Biol 2020; 432:3881-3897. [DOI: 10.1016/j.jmb.2020.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
|
19
|
Visentin S, Cannone G, Doutch J, Harris G, Gleghorn ML, Clifton L, Smith BO, Spagnolo L. A multipronged approach to understanding the form and function of hStaufen protein. RNA (NEW YORK, N.Y.) 2020; 26:265-277. [PMID: 31852734 PMCID: PMC7025507 DOI: 10.1261/rna.072595.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/09/2019] [Indexed: 05/09/2023]
Abstract
Staufen is a dsRNA-binding protein involved in many aspects of RNA regulation, such as mRNA transport, Staufen-mediated mRNA decay and the regulation of mRNA translation. It is a modular protein characterized by the presence of conserved consensus amino acid sequences that fold into double-stranded RNA binding domains (RBDs) as well as degenerated RBDs that are instead involved in protein-protein interactions. The variety of biological processes in which Staufen participates in the cell suggests that this protein associates with many diverse RNA targets, some of which have been identified experimentally. Staufen binding mediates the recruitment of effectors via protein-protein and protein-RNA interactions. The structural determinants of a number of these interactions, as well as the structure of full-length Staufen, remain unknown. Here, we present the first solution structure models for full-length hStaufen155, showing that its domains are arranged as beads-on-a-string connected by flexible linkers. In analogy with other nucleic acid-binding proteins, this could underpin Stau1 functional plasticity.
Collapse
Affiliation(s)
- Silvia Visentin
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JQ, United Kingdom
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, Didcot OX11 OQX, United Kingdom
| | - Giuseppe Cannone
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JQ, United Kingdom
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - James Doutch
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, Didcot OX11 OQX, United Kingdom
| | - Gemma Harris
- Research Complex at Harwell, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Michael L Gleghorn
- School of Chemistry and Materials Science, College of Science, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Luke Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, Didcot OX11 OQX, United Kingdom
| | - Brian O Smith
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Laura Spagnolo
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
20
|
Francisco-Velilla R, Azman EB, Martinez-Salas E. Impact of RNA-Protein Interaction Modes on Translation Control: The Versatile Multidomain Protein Gemin5. Bioessays 2019; 41:e1800241. [PMID: 30919488 DOI: 10.1002/bies.201800241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/04/2019] [Indexed: 12/12/2022]
Abstract
The fate of cellular RNAs is largely dependent on their structural conformation, which determines the assembly of ribonucleoprotein (RNP) complexes. Consequently, RNA-binding proteins (RBPs) play a pivotal role in the lifespan of RNAs. The advent of highly sensitive in cellulo approaches for studying RNPs reveals the presence of unprecedented RNA-binding domains (RBDs). Likewise, the diversity of the RNA targets associated with a given RBP increases the code of RNA-protein interactions. Increasing evidence highlights the biological relevance of RNA conformation for recognition by specific RBPs and how this mutual interaction affects translation control. In particular, noncanonical RBDs present in proteins such as Gemin5, Roquin-1, Staufen, and eIF3 eventually determine translation of selective targets. Collectively, recent studies on RBPs interacting with RNA in a structure-dependent manner unveil new pathways for gene expression regulation, reinforcing the pivotal role of RNP complexes in genome decoding.
Collapse
Affiliation(s)
- Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Embarc-Buh Azman
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049, Madrid, Spain
| |
Collapse
|
21
|
Lazzaretti D, Bandholz-Cajamarca L, Emmerich C, Schaaf K, Basquin C, Irion U, Bono F. The crystal structure of Staufen1 in complex with a physiological RNA sheds light on substrate selectivity. Life Sci Alliance 2018; 1:e201800187. [PMID: 30456389 PMCID: PMC6238398 DOI: 10.26508/lsa.201800187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/29/2023] Open
Abstract
Combination of in vitro and in vivo data show that RNA sequence influences Staufen target recognition and that protein–RNA base contacts are required for Staufen function in Drosophila. During mRNA localization, RNA-binding proteins interact with specific structured mRNA localization motifs. Although several such motifs have been identified, we have limited structural information on how these interact with RNA-binding proteins. Staufen proteins bind structured mRNA motifs through dsRNA-binding domains (dsRBD) and are involved in mRNA localization in Drosophila and mammals. We solved the structure of two dsRBDs of human Staufen1 in complex with a physiological dsRNA sequence. We identified interactions between the dsRBDs and the RNA sugar–phosphate backbone and direct contacts of conserved Staufen residues to RNA bases. Mutating residues mediating nonspecific backbone interactions only affected Staufen function in Drosophila when in vitro binding was severely reduced. Conversely, residues involved in base-directed interactions were required in vivo even when they minimally affected in vitro binding. Our work revealed that Staufen can read sequence features in the minor groove of dsRNA and suggests that these influence target selection in vivo.
Collapse
Affiliation(s)
| | | | | | - Kristina Schaaf
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Claire Basquin
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Uwe Irion
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Fulvia Bono
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Living Systems Institute, University of Exeter, Exeter, UK
| |
Collapse
|
22
|
Staufen1 Interacts with Multiple Components of the Ebola Virus Ribonucleoprotein and Enhances Viral RNA Synthesis. mBio 2018; 9:mBio.01771-18. [PMID: 30301857 PMCID: PMC6178623 DOI: 10.1128/mbio.01771-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Ebola virus (EBOV) is a negative-strand RNA virus with significant public health importance. Currently, no therapeutics are available for Ebola, which imposes an urgent need for a better understanding of EBOV biology. Here we dissected the virus-host interplay between EBOV and host RNA-binding proteins. We identified novel EBOV host factors, including Staufen1, which interacts with multiple viral factors and is required for efficient viral RNA synthesis. Ebola virus (EBOV) genome and mRNAs contain long, structured regions that could hijack host RNA-binding proteins to facilitate infection. We performed RNA affinity chromatography coupled with mass spectrometry to identify host proteins that bind to EBOV RNAs and identified four high-confidence proviral host factors, including Staufen1 (STAU1), which specifically binds both 3′ and 5′ extracistronic regions of the EBOV genome. We confirmed that EBOV infection rate and production of infectious particles were significantly reduced in STAU1-depleted cells. STAU1 was recruited to sites of EBOV RNA synthesis upon infection and enhanced viral RNA synthesis. Furthermore, STAU1 interacts with EBOV nucleoprotein (NP), virion protein 30 (VP30), and VP35; the latter two bridge the viral polymerase to the NP-coated genome, forming the viral ribonucleoprotein (RNP) complex. Our data indicate that STAU1 plays a critical role in EBOV replication by coordinating interactions between the viral genome and RNA synthesis machinery.
Collapse
|
23
|
Paul S, Dansithong W, Figueroa KP, Scoles DR, Pulst SM. Staufen1 links RNA stress granules and autophagy in a model of neurodegeneration. Nat Commun 2018; 9:3648. [PMID: 30194296 PMCID: PMC6128856 DOI: 10.1038/s41467-018-06041-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 07/17/2018] [Indexed: 11/26/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease caused by expansion of polyglutamine tract in the ATXN2 protein. We identified Staufen1 (STAU1) as an interactor of ATXN2, and showed elevation in cells from SCA2 patients, amyotrophic lateral sclerosis (ALS) patients, and in SCA2 mouse models. We demonstrated recruitment of STAU1 to mutant ATXN2 aggregates in brain tissue from patients with SCA2 human brain and in an SCA2 mouse model, and association of STAU1 elevation with dysregulation of SCA2-related transcript abundances. Targeting STAU1 in vitro by RNAi restored PCP2 transcript levels and lowering mutant ATXN2 also normalized STAU1 levels. Reduction of Stau1 in vivo improved motor behavior in an SCA2 mouse model, normalized the levels of several SCA2-related proteins, and reduced aggregation of polyglutamine-expanded ATXN2. These findings suggest a function for STAU1 in aberrant RNA metabolism associated with ATXN2 mutation, suggesting STAU1 is a possible novel therapeutic target for SCA2.
Collapse
Affiliation(s)
- Sharan Paul
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah 84132, USA
| | - Warunee Dansithong
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah 84132, USA
| | - Karla P Figueroa
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah 84132, USA
| | - Daniel R Scoles
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah 84132, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah 84132, USA.
| |
Collapse
|
24
|
Suter B. RNA localization and transport. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:938-951. [PMID: 30496039 DOI: 10.1016/j.bbagrm.2018.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022]
Abstract
RNA localization serves numerous purposes from controlling development and differentiation to supporting the physiological activities of cells and organisms. After a brief introduction into the history of the study of mRNA localization I will focus on animal systems, describing in which cellular compartments and in which cell types mRNA localization was observed and studied. In recent years numerous novel localization patterns have been described, and countless mRNAs have been documented to accumulate in specific subcellular compartments. These fascinating revelations prompted speculations about the purpose of localizing all these mRNAs. In recent years experimental evidence for an unexpected variety of different functions has started to emerge. Aside from focusing on the functional aspects, I will discuss various ways of localizing mRNAs with a focus on the mechanism of active and directed transport on cytoskeletal tracks. Structural studies combined with imaging of transport and biochemical studies have contributed to the enormous recent progress, particularly in understanding how dynein/dynactin/BicD (DDB) dependent transport on microtubules works. This transport process actively localizes diverse cargo in similar ways to the minus end of microtubules and, at least in flies, also individual mRNA molecules. A sophisticated mechanism ensures that cargo loading licenses processive transport.
Collapse
Affiliation(s)
- Beat Suter
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
25
|
Ravanidis S, Kattan FG, Doxakis E. Unraveling the Pathways to Neuronal Homeostasis and Disease: Mechanistic Insights into the Role of RNA-Binding Proteins and Associated Factors. Int J Mol Sci 2018; 19:ijms19082280. [PMID: 30081499 PMCID: PMC6121432 DOI: 10.3390/ijms19082280] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
The timing, dosage and location of gene expression are fundamental determinants of brain architectural complexity. In neurons, this is, primarily, achieved by specific sets of trans-acting RNA-binding proteins (RBPs) and their associated factors that bind to specific cis elements throughout the RNA sequence to regulate splicing, polyadenylation, stability, transport and localized translation at both axons and dendrites. Not surprisingly, misregulation of RBP expression or disruption of its function due to mutations or sequestration into nuclear or cytoplasmic inclusions have been linked to the pathogenesis of several neuropsychiatric and neurodegenerative disorders such as fragile-X syndrome, autism spectrum disorders, spinal muscular atrophy, amyotrophic lateral sclerosis and frontotemporal dementia. This review discusses the roles of Pumilio, Staufen, IGF2BP, FMRP, Sam68, CPEB, NOVA, ELAVL, SMN, TDP43, FUS, TAF15, and TIA1/TIAR in RNA metabolism by analyzing their specific molecular and cellular function, the neurological symptoms associated with their perturbation, and their axodendritic transport/localization along with their target mRNAs as part of larger macromolecular complexes termed ribonucleoprotein (RNP) granules.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| | - Fedon-Giasin Kattan
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| | - Epaminondas Doxakis
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| |
Collapse
|
26
|
Gallagher C, Ramos A. Joining the dots - protein-RNA interactions mediating local mRNA translation in neurons. FEBS Lett 2018; 592:2932-2947. [PMID: 29856909 DOI: 10.1002/1873-3468.13121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 01/26/2023]
Abstract
Establishing and maintaining the complex network of connections required for neuronal communication requires the transport and in situ translation of large groups of mRNAs to create local proteomes. In this Review, we discuss the regulation of local mRNA translation in neurons and the RNA-binding proteins that recognise RNA zipcode elements and connect the mRNAs to the cellular transport networks, as well as regulate their translation control. However, mRNA recognition by the regulatory proteins is mediated by the combinatorial action of multiple RNA-binding domains. This increases the specificity and affinity of the interaction, while allowing the protein to recognise a diverse set of targets and mediate a range of mechanisms for translational regulation. The structural and molecular understanding of the interactions can be used together with novel microscopy and transcriptome-wide data to build a mechanistic framework for the regulation of local mRNA translation.
Collapse
Affiliation(s)
- Christopher Gallagher
- Institute of Structural and Molecular Biology, University College London, UK.,The Francis Crick Institute, London, UK
| | - Andres Ramos
- Institute of Structural and Molecular Biology, University College London, UK
| |
Collapse
|
27
|
Rao S, Cinti A, Temzi A, Amorim R, You JC, Mouland AJ. HIV-1 NC-induced stress granule assembly and translation arrest are inhibited by the dsRNA binding protein Staufen1. RNA (NEW YORK, N.Y.) 2018; 24:219-236. [PMID: 29127210 PMCID: PMC5769749 DOI: 10.1261/rna.064618.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
The nucleocapsid (NC) is an N-terminal protein derived from the HIV-1 Gag precursor polyprotein, pr55Gag NC possesses key functions at several pivotal stages of viral replication. For example, an interaction between NC and the host double-stranded RNA-binding protein Staufen1 was shown to regulate several steps in the viral replication cycle, such as Gag multimerization and genomic RNA encapsidation. In this work, we observed that the overexpression of NC leads to the induction of stress granule (SG) assembly. NC-mediated SG assembly was unique as it was resistant to the SG blockade imposed by the HIV-1 capsid (CA), as shown in earlier work. NC also reduced host cell mRNA translation, as judged by a puromycylation assay of de novo synthesized proteins, and this was recapitulated in polysome profile analyses. Virus production was also found to be significantly reduced. Finally, Staufen1 expression completely rescued the blockade to NC-mediated SG assembly, global mRNA translation as well as virus production. NC expression also resulted in the phosphorylation of protein kinase R (PKR) and eIF2α, and this was inhibited with Staufen1 coexpression. This work sheds light on an unexpected function of NC in host cell translation. A comprehensive understanding of the molecular mechanisms by which a fine balance of the HIV-1 structural proteins NC and CA act in concert with host proteins such as Staufen1 to modulate the host stress response will aid in the development of new antiviral therapeutics.
Collapse
Affiliation(s)
- Shringar Rao
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Alessandro Cinti
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, Québec, H3A 0G4, Canada
| | - Abdelkrim Temzi
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
| | - Raquel Amorim
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, Québec, H3A 0G4, Canada
| | - Ji Chang You
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seocho-gu Banpo-dong 505, Seoul 137-701, Republic of Korea
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, H3A 2B4, Canada
- Department of Medicine, McGill University, Montréal, Québec, H3A 0G4, Canada
| |
Collapse
|
28
|
Crawford Parks TE, Ravel-Chapuis A, Bondy-Chorney E, Renaud JM, Côté J, Jasmin BJ. Muscle-specific expression of the RNA-binding protein Staufen1 induces progressive skeletal muscle atrophy via regulation of phosphatase tensin homolog. Hum Mol Genet 2017; 26:1821-1838. [PMID: 28369467 DOI: 10.1093/hmg/ddx085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022] Open
Abstract
Converging lines of evidence have now highlighted the key role for post-transcriptional regulation in the neuromuscular system. In particular, several RNA-binding proteins are known to be misregulated in neuromuscular disorders including myotonic dystrophy type 1, spinal muscular atrophy and amyotrophic lateral sclerosis. In this study, we focused on the RNA-binding protein Staufen1, which assumes multiple functions in both skeletal muscle and neurons. Given our previous work that showed a marked increase in Staufen1 expression in various physiological and pathological conditions including denervated muscle, in embryonic and undifferentiated skeletal muscle, in rhabdomyosarcomas as well as in myotonic dystrophy type 1 muscle samples from both mouse models and humans, we investigated the impact of sustained Staufen1 expression in postnatal skeletal muscle. To this end, we generated a skeletal muscle-specific transgenic mouse model using the muscle creatine kinase promoter to drive tissue-specific expression of Staufen1. We report that sustained Staufen1 expression in postnatal skeletal muscle causes a myopathy characterized by significant morphological and functional deficits. These deficits are accompanied by a marked increase in the expression of several atrophy-associated genes and by the negative regulation of PI3K/AKT signaling. We also uncovered that Staufen1 mediates PTEN expression through indirect transcriptional and direct post-transcriptional events thereby providing the first evidence for Staufen1-regulated PTEN expression. Collectively, our data demonstrate that Staufen1 is a novel atrophy-associated gene, and highlight its potential as a biomarker and therapeutic target for neuromuscular disorders and conditions.
Collapse
Affiliation(s)
- Tara E Crawford Parks
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Emma Bondy-Chorney
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
29
|
Abstract
Asymmetric localization of mRNAs is a widespread gene regulatory mechanism that is crucial for many cellular processes. The localization of a transcript involves multiple steps and requires several protein factors to mediate transport, anchoring and translational repression of the mRNA. Specific recognition of the localizing transcript is a key step that depends on linear or structured localization signals, which are bound by RNA-binding proteins. Genetic studies have identified many components involved in mRNA localization. However, mechanistic aspects of the pathway are still poorly understood. Here we provide an overview of structural studies that contributed to our understanding of the mechanisms underlying mRNA localization, highlighting open questions and future challenges.
Collapse
Affiliation(s)
| | - Fulvia Bono
- a Max Planck Institute for Developmental Biology , Tübingen , Germany
| |
Collapse
|
30
|
Novel Roles for Staufen1 in Embryonal and Alveolar Rhabdomyosarcoma via c-myc-dependent and -independent events. Sci Rep 2017; 7:42342. [PMID: 28211476 PMCID: PMC5314364 DOI: 10.1038/srep42342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/09/2017] [Indexed: 01/19/2023] Open
Abstract
Rhabdomyosarcoma is the most common soft tissue sarcoma in children and young adults. Rhabdomyosarcomas are skeletal muscle-like tumours that typically arise in muscle beds, and express key myogenic regulatory factors. However, their developmental program remains blocked in the proliferative phase with cells unable to exit the cell cycle to fuse into myotubes. Recently, we uncovered a key role for the RNA-binding protein Staufen1 during myogenic differentiation through the regulation of c-myc translation. Given the known implication of c-myc in rhabdomyosarcoma, we hypothesized in the current work that Staufen1 controls rhabdomyosarcoma tumorigenesis. Here, we report for the first time the novel role of Staufen1 in cancer, specifically in rhabdomyosarcoma. We demonstrate that Staufen1 is markedly upregulated in human rhabdomyosarcoma tumours and cell lines as compared to normal skeletal muscle. Moreover, we show that Staufen1 promotes the tumorigenesis of embryonal and alveolar rhabdomyosarcoma subtypes both in cell culture and in animal models. Finally, our data demonstrate that Staufen1 has differential roles in embryonal versus alveolar rhabdomyosarcoma through the control of proliferative and apoptotic pathways, respectively. Together, these results provide the first evidence for Staufen1’s direct implication in cancer biology. Accordingly, Staufen1 thus represents a novel target for the development of future therapeutic strategies for rhabdomyosarcoma.
Collapse
|
31
|
Hypoxia and ER stress promote Staufen1 expression through an alternative translation mechanism. Biochem Biophys Res Commun 2016; 479:365-371. [PMID: 27644878 DOI: 10.1016/j.bbrc.2016.09.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 11/22/2022]
Abstract
Under physiological stress conditions the cell protects itself through a global blockade on cap-dependent translation of mRNA. This allows cap-independent mechanisms such as internal ribosome entry site (IRES)-mediated translation to take over and initiate the translation of a specific pool of mRNAs that encode proteins involved in protecting the cell from stress. Staufen 1 (Stau1) is an RNA-binding protein that has been previously implicated in the regulation of stress granule formation and therefore could play a key role in protecting the cell against stress stimuli such as oxidative and endoplasmic reticulum (ER) stress. We hypothesized that Stau1 mRNA could, like many stress response genes, contain an IRES in its 5'UTR. Here we describe that a bona fide IRES element is present in the 5'UTR of Stau1 mRNA, which is activated under hypoxic and ER stress conditions. Further, we show that the activity of PERK kinase, a major effector of the ER stress response, is required for Stau1 IRES-mediated translation during ER stress. These results suggest that Stau1 is a stress response gene that remains efficiently translated during hypoxia and ER stress despite the substantial global inhibition of cap-dependent protein translation, promoting cell recovery following stress.
Collapse
|
32
|
Vickers TA, Crooke ST. Development of a Quantitative BRET Affinity Assay for Nucleic Acid-Protein Interactions. PLoS One 2016; 11:e0161930. [PMID: 27571227 PMCID: PMC5003356 DOI: 10.1371/journal.pone.0161930] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/15/2016] [Indexed: 11/25/2022] Open
Abstract
Protein-nucleic acid interactions play a crucial role in the regulation of diverse biological processes. Elucidating the roles that protein-nucleic acid complexes play in the regulation of transcription, translation, DNA replication, repair and recombination, and RNA processing continues to be a crucial aspect of understanding of cell biology and the mechanisms of disease. In addition, proteins have been demonstrated to interact with antisense oligonucleotide therapeutics in a sequence and chemistry dependent manner, influencing ASO potency and distribution in cells and in vivo. While many assays have been developed to measure protein-nucleic acid interactions, many suffer from lack of throughput and sensitivity, or challenges with protein purification and scalability. In this report we present a new BRET assay for the analysis of DNA-protein interactions which makes use of an extremely bright luciferase as a tag for the binding protein, along with a long-wavelength fluorophore conjugated to the nucleic acid. The resulting assay is high throughput, sensitive, does not require protein purification, and even allows for quantitative characterization of these interactions within the biologically relevant context of whole cells.
Collapse
Affiliation(s)
- Timothy A. Vickers
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA, 92010, United States of America
- * E-mail:
| | - Stanley T. Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA, 92010, United States of America
| |
Collapse
|
33
|
Pohl MO, Lanz C, Stertz S. Late stages of the influenza A virus replication cycle-a tight interplay between virus and host. J Gen Virol 2016; 97:2058-2072. [PMID: 27449792 DOI: 10.1099/jgv.0.000562] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
After successful infection and replication of its genome in the nucleus of the host cell, influenza A virus faces several challenges before newly assembled viral particles can bud off from the plasma membrane, giving rise to a new infectious virus. The viral ribonucleoprotein (vRNP) complexes need to exit from the nucleus and be transported to the virus assembly sites at the plasma membrane. Moreover, they need to be bundled to ensure the incorporation of precisely one of each of the eight viral genome segments into newly formed viral particles. Similarly, viral envelope glycoproteins and other viral structural proteins need to be targeted to virus assembly sites for viral particles to form and bud off from the plasma membrane. During all these steps influenza A virus heavily relies on a tight interplay with its host, exploiting host-cell proteins for its own purposes. In this review, we summarize current knowledge on late stages of the influenza virus replication cycle, focusing on the role of host-cell proteins involved in this process.
Collapse
Affiliation(s)
- Marie O Pohl
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Caroline Lanz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
34
|
Dixit U, Pandey AK, Mishra P, Sengupta A, Pandey VN. Staufen1 promotes HCV replication by inhibiting protein kinase R and transporting viral RNA to the site of translation and replication in the cells. Nucleic Acids Res 2016; 44:5271-5287. [PMID: 27106056 PMCID: PMC4914112 DOI: 10.1093/nar/gkw312] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 01/23/2023] Open
Abstract
Persistent hepatitis C virus (HCV) infection leads to chronic hepatitis C (CHC), which often progresses to liver cirrhosis (LC) and hepatocellular carcinoma (HCC). The molecular mechanisms that establish CHC and cause its subsequent development into LC and HCC are poorly understood. We have identified a cytoplasmic double-stranded RNA binding protein, Stau1, which is crucial for HCV replication. In this study, Stau1 specifically interacted with the variable-stem-loop region in the 3' NTR and domain IIId of the HCV-IRES in the 5' NTR, and promoted HCV replication and translation. Stau1 coimmunoprecipitates HCV NS5B and a cell factor, protein kinase R (PKR), which is critical for interferon-induced cellular antiviral and antiproliferative responses. Like Stau1, PKR displayed binding specificity to domain IIId of HCV-IRES. Stau1 binds to PKR and strongly inhibits PKR-autophosphorylation. We demonstrated that the transport of HCV RNA on the polysomes is Stau1-dependent, being mainly localized in the monosome fractions when Stau1 is downregulated and exclusively localized in the polysomes when Stau1 is overexpressed. Our findings suggest that HCV may appropriate Stau1 to its advantage to prevent PKR-mediated inhibition of eIF2α, which is required for the synthesis of HCV proteins for translocation of viral RNA genome to the polysomes for efficient translation and replication.
Collapse
Affiliation(s)
- Updesh Dixit
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Ashutosh K Pandey
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Priya Mishra
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Amitabha Sengupta
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Virendra N Pandey
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
35
|
Parker MS, Sallee FR, Park EA, Parker SL. Homoiterons and expansion in ribosomal RNAs. FEBS Open Bio 2015; 5:864-76. [PMID: 26636029 PMCID: PMC4637361 DOI: 10.1016/j.fob.2015.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/30/2015] [Accepted: 10/14/2015] [Indexed: 11/27/2022] Open
Abstract
Homoiterons like GGGGGGG stabilize ribosomal RNAs of thermophile prokaryotes. In eukaryotes, homoiterons are much more abundant in RNA of the larger subunit (LSU). The LSU repeats increase with phylogenetic rank to 28% entire RNA sequence in hominids. In mammal LSU RNAs, these repeats constitute 45% of the massive expansion segments. These repeats may help in anchoring of ribosomes and export of secretory proteins.
Ribosomal RNAs in both prokaryotes and eukaryotes feature numerous repeats of three or more nucleotides with the same nucleobase (homoiterons). In prokaryotes these repeats are much more frequent in thermophile compared to mesophile or psychrophile species, and have similar frequency in both large RNAs. These features point to use of prokaryotic homoiterons in stabilization of both ribosomal subunits. The two large RNAs of eukaryotic cytoplasmic ribosomes have expanded to a different degree across the evolutionary ladder. The big RNA of the larger subunit (60S LSU) evolved expansion segments of up to 2400 nucleotides, and the smaller subunit (40S SSU) RNA acquired expansion segments of not more than 700 nucleotides. In the examined eukaryotes abundance of rRNA homoiterons generally follows size and nucleotide bias of the expansion segments, and increases with GC content and especially with phylogenetic rank. Both the nucleotide bias and frequency of homoiterons are much larger in metazoan and angiosperm LSU compared to the respective SSU RNAs. This is especially pronounced in the tetrapod vertebrates and seems to culminate in the hominid mammals. The stability of secondary structure in polyribonucleotides would significantly connect to GC content, and should also relate to G and C homoiteron content. RNA modeling points to considerable presence of homoiteron-rich double-stranded segments especially in vertebrate LSU RNAs, and homoiterons with four or more nucleotides in the vertebrate and angiosperm LSU RNAs are largely confined to the expansion segments. These features could mainly relate to protein export function and attachment of LSU to endoplasmic reticulum and other subcellular networks.
Collapse
Key Words
- ES, an expansion segment
- LSU, large cytoplasmic ribosome subunit (50S in prokaryotes and archaea, 60S in eukaryotes)
- PCN, homoionic motifs with ⩾3% and ⩾50% ionic residues, found especially in Polynucleotide-binding proteins, Carrier proteins and Nuclear localization signals
- RNA expansion segment
- RNA nucleotide bias
- RNA nucleotide repeat
- SSU, small cytoplasmic ribosome subunit (30S in prokaryotes and archaea, 40S in eukaryotes)
- XN or NX, [X = a number] a nucleotide unit with same nucleobases (homoiteron), such as 4U or U4 for UUUU
- aa, amino acid residues
- mRNP, messenger ribonucleoprotein
- ncRNA, non-coding RNA
- nt, nucleotides
- u, nucleotide unit
Collapse
Affiliation(s)
- Michael S Parker
- Department of Microbiology and Molecular Cell Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Floyd R Sallee
- Department of Psychiatry, University of Cincinnati School of Medicine, Cincinnati, OH 45276, USA
| | - Edwards A Park
- Department of Pharmacology, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Steven L Parker
- Department of Pharmacology, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| |
Collapse
|
36
|
Heyam A, Lagos D, Plevin M. Dissecting the roles of TRBP and PACT in double-stranded RNA recognition and processing of noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2015; 6:271-89. [PMID: 25630541 PMCID: PMC7169789 DOI: 10.1002/wrna.1272] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 12/27/2022]
Abstract
HIV TAR RNA-binding protein (TRBP) and Protein Activator of PKR (PACT) are double-stranded (ds) RNA-binding proteins that participate in both small regulatory RNA biogenesis and the response to viral dsRNA. Despite considerable progress toward understanding the structure-function relationship of TRBP and PACT, their specific roles in these seemingly distinct cellular pathways remain unclear. Both proteins are composed of three copies of the double-stranded RNA-binding domain, two of which interact with dsRNA, while the C-terminal copy mediates protein-protein interactions. PACT and TRBP are found in a complex with the endonuclease Dicer and facilitate processing of immature microRNAs. Their precise contribution to the Dicing step has not yet been defined: possibilities include precursor recruitment, rearrangement of dsRNA within the complex, loading the processed microRNA into the RNA-induced silencing complex, and distinguishing different classes of small dsRNA. TRBP and PACT also interact with the viral dsRNA sensors retinoic acid-inducible gene I (RIG-I) and double-stranded RNA-activated protein kinase (PKR). Current models suggest that PACT enables RIG-I to detect a wider range of viral dsRNAs, while TRBP and PACT exert opposing regulatory effects on PKR. Here, the evidence that implicates TRBP and PACT in regulatory RNA processing and viral dsRNA sensing is reviewed and discussed in the context of their molecular structure. The broader implications of a link between microRNA biogenesis and the innate antiviral response pathway are also considered.
Collapse
MESH Headings
- Amino Acid Sequence
- Carboxypeptidases/chemistry
- Carboxypeptidases/metabolism
- Carboxypeptidases/physiology
- Models, Genetic
- Models, Molecular
- Molecular Sequence Data
- Protein Structure, Tertiary
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/immunology
- RNA, Double-Stranded/metabolism
- RNA, Untranslated/metabolism
- RNA, Viral/chemistry
- RNA, Viral/immunology
- RNA, Viral/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/physiology
- Ribonuclease III/chemistry
- Ribonuclease III/metabolism
- Ribonuclease III/physiology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Alex Heyam
- Department of Biology, University of York, York, UK
| | | | | |
Collapse
|
37
|
Sugimoto Y, Vigilante A, Darbo E, Zirra A, Militti C, D’Ambrogio A, Luscombe NM, Ule J. hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature 2015; 519:491-4. [PMID: 25799984 PMCID: PMC4376666 DOI: 10.1038/nature14280] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 02/02/2015] [Indexed: 02/02/2023]
Abstract
The structure of messenger RNA is important for post-transcriptional regulation, mainly because it affects binding of trans-acting factors. However, little is known about the in vivo structure of full-length mRNAs. Here we present hiCLIP, a biochemical technique for transcriptome-wide identification of RNA secondary structures interacting with RNA-binding proteins (RBPs). Using this technique to investigate RNA structures bound by Staufen 1 (STAU1) in human cells, we uncover a dominance of intra-molecular RNA duplexes, a depletion of duplexes from coding regions of highly translated mRNAs, an unexpected prevalence of long-range duplexes in 3' untranslated regions (UTRs), and a decreased incidence of single nucleotide polymorphisms in duplex-forming regions. We also discover a duplex spanning 858 nucleotides in the 3' UTR of the X-box binding protein 1 (XBP1) mRNA that regulates its cytoplasmic splicing and stability. Our study reveals the fundamental role of mRNA secondary structures in gene expression and introduces hiCLIP as a widely applicable method for discovering new, especially long-range, RNA duplexes.
Collapse
Affiliation(s)
- Yoichiro Sugimoto
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Alessandra Vigilante
- Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
- UCL Genetics Institute, Department of Genetics, Evolution & Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Elodie Darbo
- Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Alexandra Zirra
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Cristina Militti
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Andrea D’Ambrogio
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Nicholas M Luscombe
- Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
- UCL Genetics Institute, Department of Genetics, Evolution & Environment, University College London, Gower Street, London WC1E 6BT, UK
- Okinawa Institute of Science & Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Jernej Ule
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
38
|
Glucocorticoid receptor interacts with PNRC2 in a ligand-dependent manner to recruit UPF1 for rapid mRNA degradation. Proc Natl Acad Sci U S A 2015; 112:E1540-9. [PMID: 25775514 DOI: 10.1073/pnas.1409612112] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glucocorticoid receptor (GR), which was originally known to function as a nuclear receptor, plays a role in rapid mRNA degradation by acting as an RNA-binding protein. The mechanism by which this process occurs remains unknown. Here, we demonstrate that GR, preloaded onto the 5'UTR of a target mRNA, recruits UPF1 through proline-rich nuclear receptor coregulatory protein 2 (PNRC2) in a ligand-dependent manner, so as to elicit rapid mRNA degradation. We call this process GR-mediated mRNA decay (GMD). Although GMD, nonsense-mediated mRNA decay (NMD), and staufen-mediated mRNA decay (SMD) share upstream frameshift 1 (UPF1) and PNRC2, we find that GMD is mechanistically distinct from NMD and SMD. We also identify de novo cellular GMD substrates using microarray analysis. Intriguingly, GMD functions in the chemotaxis of human monocytes by targeting chemokine (C-C motif) ligand 2 (CCL2) mRNA. Thus, our data provide molecular evidence of a posttranscriptional role of the well-studied nuclear hormone receptor, GR, which is traditionally considered a transcription factor.
Collapse
|
39
|
Peredo J, Villacé P, Ortín J, de Lucas S. Human Staufen1 associates to miRNAs involved in neuronal cell differentiation and is required for correct dendritic formation. PLoS One 2014; 9:e113704. [PMID: 25423178 PMCID: PMC4244161 DOI: 10.1371/journal.pone.0113704] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/27/2014] [Indexed: 11/19/2022] Open
Abstract
Double-stranded RNA-binding proteins are key elements in the intracellular localization of mRNA and its local translation. Staufen is a double-stranded RNA binding protein involved in the localised translation of specific mRNAs during Drosophila early development and neuronal cell fate. The human homologue Staufen1 forms RNA-containing complexes that include proteins involved in translation and motor proteins to allow their movement within the cell, but the mechanism underlying translation repression in these complexes is poorly understood. Here we show that human Staufen1-containing complexes contain essential elements of the gene silencing apparatus, like Ago1-3 proteins, and we describe a set of miRNAs specifically associated to complexes containing human Staufen1. Among these, miR-124 stands out as particularly relevant because it appears enriched in human Staufen1 complexes and is over-expressed upon differentiation of human neuroblastoma cells in vitro. In agreement with these findings, we show that expression of human Staufen1 is essential for proper dendritic arborisation during neuroblastoma cell differentiation, yet it is not necessary for maintenance of the differentiated state, and suggest potential human Staufen1 mRNA targets involved in this process.
Collapse
Affiliation(s)
- Joan Peredo
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
- Ciber de Enfermedades Respiratorias (ISCIII), Madrid, Spain
| | - Patricia Villacé
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Juan Ortín
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
- Ciber de Enfermedades Respiratorias (ISCIII), Madrid, Spain
- * E-mail: (JO); (SdL)
| | - Susana de Lucas
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
- Ciber de Enfermedades Respiratorias (ISCIII), Madrid, Spain
- * E-mail: (JO); (SdL)
| |
Collapse
|
40
|
Leal G, Afonso PM, Duarte CB. Neuronal activity induces synaptic delivery of hnRNP A2/B1 by a BDNF-dependent mechanism in cultured hippocampal neurons. PLoS One 2014; 9:e108175. [PMID: 25286195 PMCID: PMC4186808 DOI: 10.1371/journal.pone.0108175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/26/2014] [Indexed: 12/18/2022] Open
Abstract
Dendritic protein synthesis plays a critical role in several forms of synaptic plasticity, including BDNF (brain-derived neurotrophic factor)-mediated long-term synaptic potentiation (LTP). Dendritic transcripts are typically transported in a repressed state as components of large ribonucleoprotein complexes, and then translated upon stimulation at, or in the vicinity, of activated synapses. Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) is a trans-acting factor involved in dendritic mRNA trafficking, but how the distribution of the protein in dendrites is regulated has not been characterized. Here we found that a fraction of hnRNP A2/B1 is present at the synapse under resting conditions in cultured hippocampal neurons. Accordingly, this ribonucleoprotein was detected in free mRNP, monosomal, and polyribosomal fractions obtained from synaptoneurosomes. Neuronal activity and BDNF treatment increased hnRNP A2/B1 protein levels in the cell body and dendritic compartments, and induced the delivery of this protein to synaptic sites. The activity-dependent accumulation of hnRNP A2/B1 at the synapse required, at least in part, the activation of TrkB receptors, presumably by BDNF. This neurotrophin also upregulated the hnRNP A2/B1 mRNA in the soma but was without effect on the abundance of neuritic hnRNP A2/B1 transcripts. These results show that the distribution of hnRNP A2/B1 is regulated by BDNF and by neuronal activity, an effect that may have a role in BDNF-induced synaptic plasticity events.
Collapse
Affiliation(s)
- Graciano Leal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Pedro M. Afonso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Carlos B. Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
41
|
Ravel-Chapuis A, Crawford TE, Blais-Crépeau ML, Bélanger G, Richer CT, Jasmin BJ. The RNA-binding protein Staufen1 impairs myogenic differentiation via a c-myc-dependent mechanism. Mol Biol Cell 2014; 25:3765-78. [PMID: 25208565 PMCID: PMC4230783 DOI: 10.1091/mbc.e14-04-0895] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The expression pattern of Staufen1 during mouse skeletal muscle development is described. Sustained expression of Staufen1 in myoblasts prevents normal differentiation by causing decreases in the expression of key myogenic markers by an SMD-independent mechanism and by promoting the translational regulation of c-myc. Recent work has shown that Staufen1 plays key roles in skeletal muscle, yet little is known about its pattern of expression during embryonic and postnatal development. Here we first show that Staufen1 levels are abundant in mouse embryonic muscles and that its expression decreases thereafter, reaching low levels in mature muscles. A similar pattern of expression is seen as cultured myoblasts differentiate into myotubes. Muscle degeneration/regeneration experiments revealed that Staufen1 increases after cardiotoxin injection before returning to the low levels seen in mature muscles. We next prevented the decrease in Staufen1 during differentiation by generating stable C2C12 muscle cell lines overexpressing Staufen1. Cells overexpressing Staufen1 differentiated poorly, as evidenced by reductions in the differentiation and fusion indices and decreases in MyoD, myogenin, MEF2A, and MEF2C, independently of Staufen-mediated mRNA decay. However, levels of c-myc, a factor known to inhibit differentiation, were increased in C2C12 cells overexpressing Staufen1 through enhanced translation. By contrast, the knockdown of Staufen1 decreased c-myc levels in myoblasts. Collectively our results show that Staufen1 is highly expressed during early stages of differentiation/development and that it can impair differentiation by regulating c-myc, thereby highlighting the multifunctional role of Staufen1 in skeletal muscle cells.
Collapse
Affiliation(s)
- Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Tara E Crawford
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Marie-Laure Blais-Crépeau
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Guy Bélanger
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Chase T Richer
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
42
|
Gardiol A, St Johnston D. Staufen targets coracle mRNA to Drosophila neuromuscular junctions and regulates GluRIIA synaptic accumulation and bouton number. Dev Biol 2014; 392:153-67. [PMID: 24951879 PMCID: PMC4111903 DOI: 10.1016/j.ydbio.2014.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/08/2014] [Accepted: 06/09/2014] [Indexed: 11/28/2022]
Abstract
The post-synaptic translation of localised mRNAs has been postulated to underlie several forms of plasticity at vertebrate synapses, but the mechanisms that target mRNAs to these postsynaptic sites are not well understood. Here we show that the evolutionary conserved dsRNA binding protein, Staufen, localises to the postsynaptic side of the Drosophila neuromuscular junction (NMJ), where it is required for the localisation of coracle mRNA and protein. Staufen plays a well-characterised role in the localisation of oskar mRNA to the oocyte posterior, where Staufen dsRNA-binding domain 5 is specifically required for its translation. Removal of Staufen dsRNA-binding domain 5, disrupts the postsynaptic accumulation of Coracle protein without affecting the localisation of cora mRNA, suggesting that Staufen similarly regulates Coracle translation. Tropomyosin II, which functions with Staufen in oskar mRNA localisation, is also required for coracle mRNA localisation, suggesting that similar mechanisms target mRNAs to the NMJ and the oocyte posterior. Coracle, the orthologue of vertebrate band 4.1, functions in the anchoring of the glutamate receptor IIA subunit (GluRIIA) at the synapse. Consistent with this, staufen mutant larvae show reduced accumulation of GluRIIA at synapses. The NMJs of staufen mutant larvae have also a reduced number of synaptic boutons. Altogether, this suggests that this novel Staufen-dependent mRNA localisation and local translation pathway may play a role in the developmentally regulated growth of the NMJ.
Collapse
Affiliation(s)
- Alejandra Gardiol
- The WellcomeCRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Daniel St Johnston
- The WellcomeCRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom.
| |
Collapse
|
43
|
Heraud-Farlow JE, Kiebler MA. The multifunctional Staufen proteins: conserved roles from neurogenesis to synaptic plasticity. Trends Neurosci 2014; 37:470-9. [PMID: 25012293 PMCID: PMC4156307 DOI: 10.1016/j.tins.2014.05.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/22/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022]
Abstract
Staufen (Stau) proteins have evolutionarily conserved functions in the brain. Stau proteins asymmetrically segregate mRNAs during mouse and fly neurogenesis. Stau proteins regulate synaptic plasticity and memory formation in flies and mammals. Stau proteins have roles in translation, localisation, and ribonucleoprotein formation. New data indicate that mammalian Stau1 and Stau2 can both stabilise and destabilise target mRNAs.
Staufen (Stau) proteins belong to a family of RNA-binding proteins (RBPs) that are important for RNA localisation in many organisms. In this review we discuss recent findings on the conserved role played by Stau during both the early differentiation of neurons and in the synaptic plasticity of mature neurons. Recent molecular data suggest mechanisms for how Stau2 regulates mRNA localisation, mRNA stability, translation, and ribonucleoprotein (RNP) assembly. We offer a perspective on how this multifunctional RBP has been adopted to regulate mRNA localisation under several different cellular and developmental conditions.
Collapse
Affiliation(s)
- Jacki E Heraud-Farlow
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Michael A Kiebler
- Department of Anatomy and Cell Biology, Ludwig-Maximilians-University, 80336 Munich, Germany.
| |
Collapse
|
44
|
Boulay K, Ghram M, Viranaicken W, Trépanier V, Mollet S, Fréchina C, DesGroseillers L. Cell cycle-dependent regulation of the RNA-binding protein Staufen1. Nucleic Acids Res 2014; 42:7867-83. [PMID: 24906885 PMCID: PMC4081104 DOI: 10.1093/nar/gku506] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Staufen1 (Stau1) is a ribonucleic acid (RNA)-binding protein involved in the post-transcriptional regulation of gene expression. Recent studies indicate that Stau1-bound messenger RNAs (mRNAs) mainly code for proteins involved in transcription and cell cycle control. Consistently, we report here that Stau1 abundance fluctuates through the cell cycle in HCT116 and U2OS cells: it is high from the S phase to the onset of mitosis and rapidly decreases as cells transit through mitosis. Stau1 down-regulation is mediated by the ubiquitin-proteasome system and the E3 ubiquitin ligase anaphase promoting complex/cyclosome (APC/C). Stau1 interacts with the APC/C co-activators Cdh1 and Cdc20 via its first 88 N-terminal amino acids. The importance of controlling Stau155 levels is underscored by the observation that its overexpression affects mitosis entry and impairs proliferation of transformed cells. Microarray analyses identified 275 Stau155-bound mRNAs in prometaphase cells, an early mitotic step that just precedes Stau1 degradation. Interestingly, several of these mRNAs are more abundant in Stau155-containing complexes in cells arrested in prometaphase than in asynchronous cells. Our results point out for the first time to the possibility that Stau1 participates in a mechanism of post-transcriptional regulation of gene expression that is linked to cell cycle progression in cancer cells.
Collapse
Affiliation(s)
- Karine Boulay
- Département de Biochimie, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Mehdi Ghram
- Département de Biochimie, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Wildriss Viranaicken
- Département de Biochimie, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Véronique Trépanier
- Département de Biochimie, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Stéphanie Mollet
- Département de Biochimie, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Céline Fréchina
- Département de Biochimie, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Luc DesGroseillers
- Département de Biochimie, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit, Montréal, QC, H3T 1J4, Canada
| |
Collapse
|
45
|
Cui XA, Palazzo AF. Localization of mRNAs to the endoplasmic reticulum. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:481-92. [PMID: 24644132 DOI: 10.1002/wrna.1225] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 12/17/2022]
Abstract
Almost all cells use mRNA localization to establish spatial control of protein synthesis. One of the best-studied examples is the targeting and anchoring of mRNAs encoding secreted, organellar, and membrane-bound proteins to the surface of the endoplasmic reticulum (ER). In this review, we provide a historical perspective on the research that elucidated the canonical protein-mediated targeting of nascent-chain ribosome mRNA complexes to the surface of the ER. We then discuss subsequent studies which provided concrete evidence that a subpopulation of mRNAs utilize a translation-independent mechanism to localize to the surface of this organelle. This alternative mechanism operates alongside the signal recognition particle (SRP) mediated co-translational targeting pathway to promote proper mRNA localization to the ER. Recent work has uncovered trans-acting factors, such as the mRNA receptor p180, and cis-acting elements, such as transmembrane domain coding regions, that are responsible for this alternative mRNA localization process. Furthermore, some unanticipated observations have raised the possibility that this alternative pathway may be conserved from bacteria to mammalian cells.
Collapse
Affiliation(s)
- Xianying A Cui
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
46
|
Amorim R, Costa SM, Cavaleiro NP, da Silva EE, da Costa LJ. HIV-1 transcripts use IRES-initiation under conditions where Cap-dependent translation is restricted by poliovirus 2A protease. PLoS One 2014; 9:e88619. [PMID: 24520405 PMCID: PMC3919812 DOI: 10.1371/journal.pone.0088619] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 01/14/2014] [Indexed: 11/18/2022] Open
Abstract
The 30 different species of mRNAs synthesized during the HIV-1 replication cycle are all capped and polyadenilated. Internal ribosome entry sites have been recognized in the 5' untranslated region of some mRNA species of HIV-1, which would contribute to an alternative mechanism of initiation of mRNA translation. However, the Cap-dependent translation is assumed to be the main mechanism driving the initiation of HIV-1 protein synthesis. In this work, we describe a cell system in which lower to higher levels of transient expression of the poliovirus 2A protease strongly inhibited cellular Cap-dependent translation with no toxic effect to the cells during a 72-hour time frame. In this system, the synthesis of HIV-1 proteins was inhibited in a temporal dose-dependent way. Higher levels of 2A protease expression severely inhibited HIV-1 protein synthesis during the first 24 hours of infection consequently inhibiting viral production and infectivity. Intermediate to lower levels of 2A Protease expression caused the inhibition of viral protein synthesis only during the first 48 hours of viral replication. After this period both protein synthesis and viral release were recovered to the control levels. However, the infectivity of viral progeny was still partially inhibited. These results indicate that two mechanisms of mRNA translation initiation contribute to the synthesis of HIV-1 proteins; during the first 24-48 hours of viral replication HIV-1 protein synthesis is strongly dependent on Cap-initiation, while at later time points IRES-driven translation initiation is sufficient to produce high amounts of viral particles.
Collapse
Affiliation(s)
- Raquel Amorim
- Instituto de Microbiologia, Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sara Mesquita Costa
- Instituto de Microbiologia, Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathalia Pereira Cavaleiro
- Instituto de Microbiologia, Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edson Elias da Silva
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luciana Jesus da Costa
- Instituto de Microbiologia, Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
de Lucas S, Oliveros JC, Chagoyen M, Ortín J. Functional signature for the recognition of specific target mRNAs by human Staufen1 protein. Nucleic Acids Res 2014; 42:4516-26. [PMID: 24470147 PMCID: PMC3985646 DOI: 10.1093/nar/gku073] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cellular messenger RNAs (mRNAs) are associated to proteins in the form of ribonucleoprotein particles. The double-stranded RNA-binding (DRB) proteins play important roles in mRNA synthesis, modification, activity and decay. Staufen is a DRB protein involved in the localized translation of specific mRNAs during Drosophila early development. The human Staufen1 (hStau1) forms RNA granules that contain translation regulation proteins as well as cytoskeleton and motor proteins to allow the movement of the granule on microtubules, but the mechanisms of hStau1-RNA recognition are still unclear. Here we used a combination of affinity chromatography, RNAse-protection, deep-sequencing and bioinformatic analyses to identify mRNAs differentially associated to hStau1 or a mutant protein unable to bind RNA and, in this way, defined a collection of mRNAs specifically associated to wt hStau1. A common sequence signature consisting of two opposite-polarity Alu motifs was present in the hStau1-associated mRNAs and was shown to be sufficient for binding to hStau1 and hStau1-dependent stimulation of protein expression. Our results unravel how hStau1 identifies a wide spectrum of cellular target mRNAs to control their localization, expression and fate.
Collapse
Affiliation(s)
- Susana de Lucas
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CSIC), C/Darwin 3, Campus Cantoblanco, 28049 Madrid, Spain, Ciber de Enfermedades Respiratorias (ISCIII), Mallorca, Spain, Servicio de Genómica Computacional, Centro Nacional de Biotecnología (CSIC), C/Darwin 3, Campus Cantoblanco, 28049 Madrid, Spain and Bioinformática de Sistemas, Centro Nacional de Biotecnología (CSIC), C/Darwin 3, Campus Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
48
|
Staufen1 senses overall transcript secondary structure to regulate translation. Nat Struct Mol Biol 2013; 21:26-35. [PMID: 24336223 PMCID: PMC4605437 DOI: 10.1038/nsmb.2739] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/19/2013] [Indexed: 12/31/2022]
Abstract
Human Staufen1 (Stau1) is a double-stranded RNA (dsRNA)-binding protein implicated in multiple post-transcriptional gene-regulatory processes. Here we combined RNA immunoprecipitation in tandem (RIPiT) with RNase footprinting, formaldehyde cross-linking, sonication-mediated RNA fragmentation and deep sequencing to map Staufen1-binding sites transcriptome wide. We find that Stau1 binds complex secondary structures containing multiple short helices, many of which are formed by inverted Alu elements in annotated 3' untranslated regions (UTRs) or in 'strongly distal' 3' UTRs. Stau1 also interacts with actively translating ribosomes and with mRNA coding sequences (CDSs) and 3' UTRs in proportion to their GC content and propensity to form internal secondary structure. On mRNAs with high CDS GC content, higher Stau1 levels lead to greater ribosome densities, thus suggesting a general role for Stau1 in modulating translation elongation through structured CDS regions. Our results also indicate that Stau1 regulates translation of transcription-regulatory proteins.
Collapse
|
49
|
Cho H, Han S, Park OH, Kim YK. SMG1 regulates adipogenesis via targeting of staufen1-mediated mRNA decay. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1276-87. [DOI: 10.1016/j.bbagrm.2013.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 10/23/2013] [Accepted: 10/25/2013] [Indexed: 12/21/2022]
|
50
|
Gordon H, Ajamian L, Valiente-Echeverrìa F, Lévesque K, Rigby WF, Mouland AJ. Depletion of hnRNP A2/B1 overrides the nuclear retention of the HIV-1 genomic RNA. RNA Biol 2013; 10:1714-25. [PMID: 24157614 DOI: 10.4161/rna.26542] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
hnRNP A2 is a cellular protein that is important for nucleocytoplasmic and cytosolic trafficking of the HIV-1 genomic RNA. Both hnRNP A2's interaction with HIV-1 RNA and its expression levels influence the activities of Rev in mediating nucleocytoplasmic export of the HIV-1 genomic RNA. While the lack of Rev expression during HIV-1 gene expression results in nuclear retention of HIV-1 genomic RNA, we show here by fluorescence in situ hybridization and fractionation studies that the genomic RNA translocates to the cytoplasm when hnRNP A2/B1 are depleted from cells. Polyribosome analyses revealed that the genomic RNA was shunted into a cytoplasmic, dense polyribosomal fraction. This fraction contained several RNA-binding proteins involved in viral gene expression and RNA trafficking but did not contain the translation initiation factor, eIF4G1. Amino acid incorporation into nascent polypeptides in this fraction was also greatly reduced, demonstrating that this fraction contains mRNAs that are poorly translated. These results demonstrate that hnRNP A2/B1 expression plays roles in the nuclear retention of the HIV-1 genomic RNA in the absence of Rev and in the release of the genomic RNA from translationally inactive, cytoplasmic RNP complexes.
Collapse
Affiliation(s)
- Heather Gordon
- HIV-1 RNA Trafficking Laboratory; Lady Davis Institute at the Jewish General Hospital; Montréal, Québec, Canada; Department of Microbiology & Immunology; McGill University; Montréal, Québec, Canada
| | - Lara Ajamian
- HIV-1 RNA Trafficking Laboratory; Lady Davis Institute at the Jewish General Hospital; Montréal, Québec, Canada; Department of Medicine; Division of Experimental Medicine; McGill University; Montréal, Québec, Canada
| | - Fernando Valiente-Echeverrìa
- HIV-1 RNA Trafficking Laboratory; Lady Davis Institute at the Jewish General Hospital; Montréal, Québec, Canada; Department of Medicine; Division of Experimental Medicine; McGill University; Montréal, Québec, Canada
| | - Kathy Lévesque
- HIV-1 RNA Trafficking Laboratory; Lady Davis Institute at the Jewish General Hospital; Montréal, Québec, Canada; Department of Medicine; Division of Experimental Medicine; McGill University; Montréal, Québec, Canada
| | - William F Rigby
- Dartmouth Medical School; Department of Medicine; Lebanon, NH, USA
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory; Lady Davis Institute at the Jewish General Hospital; Montréal, Québec, Canada; Department of Microbiology & Immunology; McGill University; Montréal, Québec, Canada; Department of Medicine; Division of Experimental Medicine; McGill University; Montréal, Québec, Canada
| |
Collapse
|