1
|
Majima K, Kojima Y, Minoura K, Abe K, Hirose H, Shimamura T. LineageVAE: reconstructing historical cell states and transcriptomes toward unobserved progenitors. Bioinformatics 2024; 40:btae520. [PMID: 39172488 PMCID: PMC11494380 DOI: 10.1093/bioinformatics/btae520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024] Open
Abstract
MOTIVATION Single-cell RNA sequencing (scRNA-seq) enables comprehensive characterization of the cell state. However, its destructive nature prohibits measuring gene expression changes during dynamic processes such as embryogenesis or cell state divergence due to injury or disease. Although recent studies integrating scRNA-seq with lineage tracing have provided clonal insights between progenitor and mature cells, challenges remain. Because of their experimental nature, observations are sparse, and cells observed in the early state are not the exact progenitors of cells observed at later time points. To overcome these limitations, we developed LineageVAE, a novel computational methodology that utilizes deep learning based on the property that cells sharing barcodes have identical progenitors. RESULTS LineageVAE is a deep generative model that transforms scRNA-seq observations with identical lineage barcodes into sequential trajectories toward a common progenitor in a latent cell state space. This method enables the reconstruction of unobservable cell state transitions, historical transcriptomes, and regulatory dynamics at a single-cell resolution. Applied to hematopoiesis and reprogrammed fibroblast datasets, LineageVAE demonstrated its ability to restore backward cell state transitions and infer progenitor heterogeneity and transcription factor activity along differentiation trajectories. AVAILABILITY AND IMPLEMENTATION The LineageVAE model was implemented in Python using the PyTorch deep learning library. The code is available on GitHub at https://github.com/LzrRacer/LineageVAE/.
Collapse
Affiliation(s)
- Koichiro Majima
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yasuhiro Kojima
- Laboratory of Computational Life Science, National Cancer Center Research Institute, Tokyo, Tokyo 104-0045, Japan
| | - Kodai Minoura
- Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Aichi 466-8550, Japan
| | - Ko Abe
- Department of Computational and Systems Biology, Tokyo Medical and Dental University Medical Research Institute, Tokyo, Tokyo 113-8510, Japan
| | - Haruka Hirose
- Department of Computational and Systems Biology, Tokyo Medical and Dental University Medical Research Institute, Tokyo, Tokyo 113-8510, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Department of Computational and Systems Biology, Tokyo Medical and Dental University Medical Research Institute, Tokyo, Tokyo 113-8510, Japan
| |
Collapse
|
2
|
Engert J, Doll J, Vona B, Ehret Kasemo T, Spahn B, Hagen R, Rak K, Voelker J. mRNA Abundance of Neurogenic Factors Correlates with Hearing Capacity in Auditory Brainstem Nuclei of the Rat. Life (Basel) 2023; 13:1858. [PMID: 37763262 PMCID: PMC10532994 DOI: 10.3390/life13091858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Neural stem cells (NSCs) have previously been described up to the adult stage in the rat cochlear nucleus (CN). A decreasing neurogenic potential was observed with critical changes around hearing onset. A better understanding of molecular factors affecting NSCs and neurogenesis is of interest as they represent potential targets to treat the cause of neurologically based hearing disorders. The role of genes affecting NSC development and neurogenesis in CN over time on hearing capacity has remained unclear. This study investigated the mRNA abundance of genes influencing NSCs and neurogenesis in rats' CN over time. The CN of rats on postnatal days 6, 12, and 24 were examined. Real-time quantitative polymerase chain reaction arrays were used to compare mRNA levels of 84 genes relevant to NSCs and neurogenesis. Age- and hearing-specific patterns of changes in mRNA abundance of neurogenically relevant genes were detected in the rat CN. Additionally, crucial neurogenic factors with significant and relevant influence on neurogenesis were identified. The results of this work should contribute to a better understanding of the molecular mechanisms underlying the neurogenesis of the auditory pathway.
Collapse
Affiliation(s)
- Jonas Engert
- Department of Otorhinolaryngology, University Hospital Wuerzburg, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany; (T.E.K.); (B.S.); (R.H.); (K.R.); (J.V.)
| | - Julia Doll
- Institute of Pathology, University of Wuerzburg, Josef-Schneider-Strasse 2, 97080 Wuerzburg, Germany;
| | - Barbara Vona
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany;
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany
| | - Totta Ehret Kasemo
- Department of Otorhinolaryngology, University Hospital Wuerzburg, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany; (T.E.K.); (B.S.); (R.H.); (K.R.); (J.V.)
| | - Bjoern Spahn
- Department of Otorhinolaryngology, University Hospital Wuerzburg, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany; (T.E.K.); (B.S.); (R.H.); (K.R.); (J.V.)
| | - Rudolf Hagen
- Department of Otorhinolaryngology, University Hospital Wuerzburg, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany; (T.E.K.); (B.S.); (R.H.); (K.R.); (J.V.)
| | - Kristen Rak
- Department of Otorhinolaryngology, University Hospital Wuerzburg, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany; (T.E.K.); (B.S.); (R.H.); (K.R.); (J.V.)
| | - Johannes Voelker
- Department of Otorhinolaryngology, University Hospital Wuerzburg, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany; (T.E.K.); (B.S.); (R.H.); (K.R.); (J.V.)
| |
Collapse
|
3
|
Differential phase register of Hes1 oscillations with mitoses underlies cell-cycle heterogeneity in ER + breast cancer cells. Proc Natl Acad Sci U S A 2021; 118:2113527118. [PMID: 34725165 PMCID: PMC8609326 DOI: 10.1073/pnas.2113527118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Tumors exhibit heterogeneities that are not due to mutations, including cancer stem cells with different potencies. We show that the cancer stem-cell state predisposed to dormancy in vivo has a highly variable and long cell cycle. Using single-cell live imaging for the transcriptional repressor Hes1 (a key molecule in cancer), we show a type of circadian-like oscillatory expression of Hes1 in all cells in the population. The most potent cancer stem cells tend to divide around the trough of the Hes1 oscillatory wave, a feature predictive of a long cell cycle. A concept proposed here is that the position of cell division with respect to the Hes1 wave is predictive of its prospective cell-cycle length and cancer cellular substate. Here, we study the dynamical expression of endogenously labeled Hes1, a transcriptional repressor implicated in controlling cell proliferation, to understand how cell-cycle length heterogeneity is generated in estrogen receptor (ER)+ breast cancer cells. We find that Hes1 shows oscillatory expression with ∼25 h periodicity and during each cell cycle has a variable peak in G1, a trough around G1–S transition, and a less variable second peak in G2/M. Compared to other subpopulations, the cell cycle in CD44HighCD24Low cancer stem cells is longest and most variable. Most cells divide around the peak of the Hes1 expression wave, but preceding mitoses in slow dividing CD44HighCD24Low cells appear phase-shifted, resulting in a late-onset Hes1 peak in G1. The position, duration, and shape of this peak, rather than the Hes1 expression levels, are good predictors of cell-cycle length. Diminishing Hes1 oscillations by enforcing sustained expression slows down the cell cycle, impairs proliferation, abolishes the dynamic expression of p21, and increases the percentage of CD44HighCD24Low cells. Reciprocally, blocking the cell cycle causes an elongation of Hes1 periodicity, suggesting a bidirectional interaction of the Hes1 oscillator and the cell cycle. We propose that Hes1 oscillations are functionally important for the efficient progression of the cell cycle and that the position of mitosis in relation to the Hes1 wave underlies cell-cycle length heterogeneity in cancer cell subpopulations.
Collapse
|
4
|
Marinopoulou E, Biga V, Sabherwal N, Miller A, Desai J, Adamson AD, Papalopulu N. HES1 protein oscillations are necessary for neural stem cells to exit from quiescence. iScience 2021; 24:103198. [PMID: 34703994 PMCID: PMC8524149 DOI: 10.1016/j.isci.2021.103198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/10/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Quiescence is a dynamic process of reversible cell cycle arrest. High-level persistent expression of the HES1 transcriptional repressor, which oscillates with an ultradian periodicity in proliferative neural stem cells (NSCs), is thought to mediate quiescence. However, it is not known whether this is due to a change in levels or dynamics. Here, we induce quiescence in embryonic NSCs with BMP4, which does not increase HES1 level, and we find that HES1 continues to oscillate. To assess the role of HES1 dynamics, we express persistent HES1 under a moderate strength promoter, which overrides the endogenous oscillations while maintaining the total HES1 level within physiological range. We find that persistent HES1 does not affect proliferation or entry into quiescence; however, exit from quiescence is impeded. Thus, oscillatory expression of HES1 is specifically required for NSCs to exit quiescence, a finding of potential importance for controlling reactivation of stem cells in tissue regeneration and cancer.
Collapse
Affiliation(s)
- Elli Marinopoulou
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PT Manchester, UK
| | - Veronica Biga
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PT Manchester, UK
| | - Nitin Sabherwal
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PT Manchester, UK
- Imagen Therapeutics, Unit 2 & 2a, Enterprise House, Lloyd Street North, M15 6SE Manchester, UK
| | - Anzy Miller
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PT Manchester, UK
| | - Jayni Desai
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PT Manchester, UK
| | - Antony D. Adamson
- Genome Editing Unit, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PT Manchester, UK
| | - Nancy Papalopulu
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PT Manchester, UK
| |
Collapse
|
5
|
Structure, function, and pathology of protein O-glucosyltransferases. Cell Death Dis 2021; 12:71. [PMID: 33436558 PMCID: PMC7803782 DOI: 10.1038/s41419-020-03314-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 01/29/2023]
Abstract
Protein O-glucosylation is a crucial form of O-glycosylation, which involves glucose (Glc) addition to a serine residue within a consensus sequence of epidermal growth factor epidermal growth factor (EGF)-like repeats found in several proteins, including Notch. Glc provides stability to EGF-like repeats, is required for S2 cleavage of Notch, and serves to regulate the trafficking of Notch, crumbs2, and Eyes shut proteins to the cell surface. Genetic and biochemical studies have shown a link between aberrant protein O-glucosylation and human diseases. The main players of protein O-glucosylation, protein O-glucosyltransferases (POGLUTs), use uridine diphosphate (UDP)-Glc as a substrate to modify EGF repeats and reside in the endoplasmic reticulum via C-terminal KDEL-like signals. In addition to O-glucosylation activity, POGLUTs can also perform protein O-xylosylation function, i.e., adding xylose (Xyl) from UDP-Xyl; however, both activities rely on residues of EGF repeats, active-site conformations of POGLUTs and sugar substrate concentrations in the ER. Impaired expression of POGLUTs has been associated with initiation and progression of human diseases such as limb-girdle muscular dystrophy, Dowling-Degos disease 4, acute myeloid leukemia, and hepatocytes and pancreatic dysfunction. POGLUTs have been found to alter the expression of cyclin-dependent kinase inhibitors (CDKIs), by affecting Notch or transforming growth factor-β1 signaling, and cause cell proliferation inhibition or induction depending on the particular cell types, which characterizes POGLUT's cell-dependent dual role. Except for a few downstream elements, the precise mechanisms whereby aberrant protein O-glucosylation causes diseases are largely unknown, leaving behind many questions that need to be addressed. This systemic review comprehensively covers literature to understand the O-glucosyltransferases with a focus on POGLUT1 structure and function, and their role in health and diseases. Moreover, this study also raises unanswered issues for future research in cancer biology, cell communications, muscular diseases, etc.
Collapse
|
6
|
Ma Z, Xu J, Wu L, Wang J, Lin Q, Chowdhury FA, Mazumder MHH, Hu G, Li X, Du W. Hes1 deficiency causes hematopoietic stem cell exhaustion. Stem Cells 2020; 38:756-768. [PMID: 32129527 PMCID: PMC7260087 DOI: 10.1002/stem.3169] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/28/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
The transcriptional repressor Hairy Enhancer of Split 1 (HES1) plays an essential role in the development of many organs by promoting the maintenance of stem/progenitor cells, controlling the reversibility of cellular quiescence, and regulating both cell fate decisions. Deletion of Hes1 in mice results in severe defects in multiple organs and is lethal in late embryogenesis. Here we have investigated the role of HES1 in hematopoiesis using a hematopoietic lineage‐specific Hes1 knockout mouse model. We found that while Hes1 is dispensable for steady‐state hematopoiesis, Hes1‐deficient hematopoietic stem cells (HSCs) undergo exhaustion under replicative stress. Loss of Hes1 upregulates the expression of genes involved in PPARγ signaling and fatty acid metabolism pathways, and augments fatty acid oxidation (FAO) in Hes1f/fVav1Cre HSCs and progenitors. Functionally, PPARγ targeting or FAO inhibition ameliorates the repopulating defects of Hes1f/fVav1Cre HSCs through improving quiescence in HSCs. Lastly, transcriptome analysis reveals that disruption of Hes1 in hematopoietic lineage alters expression of genes critical to HSC function, PPARγ signaling, and fatty acid metabolism. Together, our findings identify a novel role of HES1 in regulating stress hematopoiesis and provide mechanistic insight into the function of HES1 in HSC maintenance.
Collapse
Affiliation(s)
- Zhilin Ma
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, People's Republic of China
| | - Jian Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, People's Republic of China
| | - Limei Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Junjie Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Qiqi Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, People's Republic of China
| | - Fabliha A Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Md Habibul H Mazumder
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Gangqing Hu
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA.,Bioinformatics Core, West Virginia University, Morgantown, West Virginia, USA
| | - Xue Li
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, People's Republic of China
| | - Wei Du
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program, West Virginia University Cancer Institute, Morgantown, West Virginia, USA
| |
Collapse
|
7
|
Ivanov D. Notch Signaling-Induced Oscillatory Gene Expression May Drive Neurogenesis in the Developing Retina. Front Mol Neurosci 2019; 12:226. [PMID: 31607861 PMCID: PMC6761228 DOI: 10.3389/fnmol.2019.00226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022] Open
Abstract
After integrating classic and cutting-edge research, we proposed a unified model that attempts to explain the key steps of mammalian retinal neurogenesis. We proposed that the Notch signaling-induced lateral inhibition mechanism promotes oscillatory expression of Hes1. Oscillating Hes1 inhibitory activity as a result leads to oscillatory expression of Notch signaling inhibitors, activators/inhibitors of retinal neuronal phenotypes, and cell cycle-promoting genes all within a retinal progenitor cell (RPC). We provided a mechanism explaining not only how oscillatory expression prevents the progenitor-to-precursor transition, but also how this transition happens. Our proposal of the mechanism posits that the levels of the above factors not only oscillate but also rise (with the exception of Hes1) as the factors accumulate within a progenitor. Depending on which factors accumulate fastest and reach the required supra-threshold levels (cell cycle activators or Notch signaling inhibitors), the progenitor either proliferates or begins to differentiate without any further proliferation when Notch signaling ceases. Thus, oscillatory gene expression may regulate an RPC's decision to proliferate or differentiate. Meanwhile, a post-mitotic precursor's selection of one retinal neuronal phenotype over many others depends on the expression level of key transcription factors (activators) required for each of these retinal neuronal phenotypes. Because the events described above are stochastic due to oscillatory gene expression and gene product inheritance from a mother RPC after its division, an RPC or precursor's decision requires the assignment of probabilities to specific outcomes in the selection process. While low and sustained (non-oscillatory) Notch signaling activity is required to promote the transition of retinal progenitors into various retinal neuronal phenotypes, we propose that the lateral inhibition mechanism, combined with high expression of the BMP signaling-induced Inhibitor of Differentiation (ID) protein family, promotes high and sustained (non-oscillatory) Hes1 and Hes5 expression. These events facilitate the transition of an RPC into the Müller glia (MG) phenotype at the late stage of retinal development.
Collapse
Affiliation(s)
- Dmitry Ivanov
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
8
|
Manu KA, Cao PHA, Chai TF, Casey PJ, Wang M. p21cip1/waf1 Coordinate Autophagy, Proliferation and Apoptosis in Response to Metabolic Stress. Cancers (Basel) 2019; 11:cancers11081112. [PMID: 31382612 PMCID: PMC6721591 DOI: 10.3390/cancers11081112] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer cells possess metabolic properties that are different from benign cells. These unique characteristics have become attractive targets that are being actively investigated for cancer therapy. p21cip1/waf1, also known as Cyclin-Dependent Kinase inhibitor 1A, is encoded by the CDKN1A gene. It is a major p53 target gene involved in cell cycle progression that has been extensively evaluated. To date, p21 has been reported to regulate various cell functions, both dependent and independent of p53. Besides regulating the cell cycle, p21 also modulates apoptosis, induces senescence, and maintains cellular quiescence in response to various stimuli. p21 transcription is induced in response to stresses, including those from oxidative and chemotherapeutic treatment. A recent study has shown that in response to metabolic stresses such as nutrient and energy depletion, p21 expression is induced to regulate various cell functions. Despite the biological significance, the mechanism of p21 regulation in cancer adaptation to metabolic stress is underexplored and thus represents an exciting field. This review focuses on the recent development of p21 regulation in response to metabolic stress and its impact in inducing cell cycle arrest and death in cancer cells.
Collapse
Affiliation(s)
- Kanjoormana Aryan Manu
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Pham Hong Anh Cao
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Tin Fan Chai
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Patrick J Casey
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mei Wang
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore.
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore.
| |
Collapse
|
9
|
Dvoriantchikova G, Seemungal RJ, Ivanov D. Development and epigenetic plasticity of murine Müller glia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1584-1594. [PMID: 31276697 DOI: 10.1016/j.bbamcr.2019.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/24/2019] [Accepted: 06/30/2019] [Indexed: 12/14/2022]
Abstract
The ability to regenerate the entire retina and restore lost sight after injury is found in some species and relies mostly on the epigenetic plasticity of Müller glia. To understand the role of mammalian Müller glia as a source of progenitors for retinal regeneration, we investigated changes in gene expression during differentiation of retinal progenitor cells (RPCs) into Müller glia and analyzed the global epigenetic profile of adult Müller glia. We observed significant changes in gene expression during differentiation of RPCs into Müller glia in only a small group of genes and found a high similarity between RPCs and Müller glia on the transcriptomic and epigenomic levels. Our findings also indicate that Müller glia are epigenetically very close to late-born retinal neurons, but not early-born retinal neurons. Importantly, we found that key genes required for phototransduction were highly methylated. Thus, our data suggest that Müller glia are epigenetically very similar to late RPCs; however, obstacles for regeneration of the entire mammalian retina from Müller glia may consist of repressive chromatin and highly methylated DNA in the promoter regions of many genes required for the development of early-born retinal neurons. In addition, DNA demethylation may be required for proper reprogramming and differentiation of Müller glia into rod photoreceptors.
Collapse
Affiliation(s)
- Galina Dvoriantchikova
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Rajeev J Seemungal
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Dmitry Ivanov
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
10
|
Fanconi anemia core complex-dependent HES1 mono-ubiquitination regulates its transcriptional activity. BMC Res Notes 2018; 11:138. [PMID: 29463306 PMCID: PMC5819684 DOI: 10.1186/s13104-018-3243-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/09/2018] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE The Hairy Enhancer of Split 1 (HES1) is a transcriptional repressor that regulates cellular proliferation and differentiation during development. We previously found an interaction between HES1 and Fanconi anemia (FA) proteins. FA is a hematological and developmental disorder caused by mutations in more than 20 different genes. Eight FA gene products form a nuclear core complex containing E3 ligase activity required for mono-ubiquitination of FANCD2 and FANCI, both of which are FA proteins. Given that HES1 interacts with members of the FA core complex, the aim of this study was to determine whether HES1 is mono-ubiquitinated via the FA core complex. RESULTS We show that HES1 is mono-ubiquitinated on a highly-conserved lysine residue that is located within a FA-like recognition motif. HES1 modification is dependent on a functional FA complex. Absence of HES1 mono-ubiquitination affects transcriptional repression of its own promoter. This study uncovers a novel post-translational modification of HES1 that regulates its transcriptional activity and suggests that ubiquitination of HES1 occurs in a FA core complex-dependent manner.
Collapse
|
11
|
Babaei Khalili M, Yazdanparast R, Nowrouzi A. Induction of transient cell cycle arrest by H 2 O 2 via modulation of ultradian oscillations of Hes1, Socs3, and p-Stat3 in fibroblast cells. J Cell Biochem 2017; 119:1453-1462. [PMID: 28771862 DOI: 10.1002/jcb.26306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/02/2017] [Indexed: 01/04/2023]
Abstract
Biological clocks, time-keeping systems, enable the living organisms to synchronize their biochemical processes with their environment. Among these molecular oscillators, ultradian oscillators have been identified with volatility less than 24 h. Transcription factor Hes1, a member of the basic Helix-loop-Helix (bHLH) protein family, has an oscillation duration of 2 h in vertebrates. Due to the pivotal role of oxidative stress in many human diseases, we evaluated the effect(s) of oxidative stress on Hes1 oscillator, its upstream regulators, and its downstream cell cycle regulators. NIH/3T3 mouse fibroblast cells were treated with sublethal (250 μM) and lethal (1000 μM) doses of H2 O2 for 30 min. H2 O2 generated a delay in p-Stat3 and Socs3 mRNAs followed by suppression of Hes1 protein. These events were accompanied by simultaneous upregulation of p21 and downregulation of cyclinD1, resulting in a temporary arrest of the cell cycle. In conclusion, the elimination of Hes1 protein oscillation by H2 O2 may represent a defense mechanism against oxidative stress in fibroblast cells.
Collapse
Affiliation(s)
| | - Razieh Yazdanparast
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Azin Nowrouzi
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Dhanesh SB, Subashini C, Riya PA, Rasheed VA, James J. Pleiotropic Hes-1 Concomitant with its Differential Activation Mediates Neural Stem Cell Maintenance and Radial Glial Propensity in Developing Neocortex. Cereb Cortex 2017; 27:3943-3961. [PMID: 27405330 DOI: 10.1093/cercor/bhw207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 06/06/2016] [Indexed: 01/09/2023] Open
Abstract
Notch signaling pathway and its downstream effector Hes-1 are well known for their role in cortical neurogenesis. Despite the canonical activation of Hes-1 in developing neocortex, recent advances have laid considerable emphasis on Notch/CBF1-independent Hes-1 (NIHes-1) expression with poor understanding of its existence and functional significance. Here, using reporter systems and in utero electroporation, we could qualitatively unravel the existence of NIHes-1 expressing neural stem cells from the cohort of dependent progenitors throughout the mouse neocortical development. Though Hes-1 expression is maintained in neural progenitor territory at all times, a simple shift from Notch-independent to -dependent state makes it pleiotropic as the former maintains the neural stem cells in a non-dividing/slow-dividing state, whereas the latter is very much required for maintenance and proliferation of radial glial cells. Therefore, our results provide an additional complexity in neural progenitor heterogeneity regarding differential Hes-1 expression in the germinal zone during neo-cortical development.
Collapse
Affiliation(s)
- Sivadasan Bindu Dhanesh
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Chandramohan Subashini
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Paul Ann Riya
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Vazhanthodi Abdul Rasheed
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Jackson James
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| |
Collapse
|
13
|
The doublesex-related Dmrta2 safeguards neural progenitor maintenance involving transcriptional regulation of Hes1. Proc Natl Acad Sci U S A 2017; 114:E5599-E5607. [PMID: 28655839 DOI: 10.1073/pnas.1705186114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanisms that determine whether a neural progenitor cell (NPC) reenters the cell cycle or exits and differentiates are pivotal for generating cells in the correct numbers and diverse types, and thus dictate proper brain development. Combining gain-of-function and loss-of-function approaches in an embryonic stem cell-derived cortical differentiation model, we report that doublesex- and mab-3-related transcription factor a2 (Dmrta2, also known as Dmrt5) plays an important role in maintaining NPCs in the cell cycle. Temporally controlled expression of transgenic Dmrta2 in NPCs suppresses differentiation without affecting their neurogenic competence. In contrast, Dmrta2 knockout accelerates the cell cycle exit and differentiation into postmitotic neurons of NPCs derived from embryonic stem cells and in Emx1-cre conditional mutant mice. Dmrta2 function is linked to the regulation of Hes1 and other proneural genes, as demonstrated by genome-wide RNA-seq and direct binding of Dmrta2 to the Hes1 genomic locus. Moreover, transient Hes1 expression rescues precocious neurogenesis in Dmrta2 knockout NPCs. Our study thus establishes a link between Dmrta2 modulation of Hes1 expression and the maintenance of NPCs during cortical development.
Collapse
|
14
|
Dhanesh SB, Subashini C, James J. Hes1: the maestro in neurogenesis. Cell Mol Life Sci 2016; 73:4019-42. [PMID: 27233500 PMCID: PMC11108451 DOI: 10.1007/s00018-016-2277-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
The process of neurogenesis is well orchestrated by the harmony of multiple cues in a spatiotemporal manner. In this review, we focus on how a dynamic gene, Hes1, is involved in neurogenesis with the view of its regulation and functional implications. Initially, we have reviewed the immense functional significance drawn by this maestro during neural development in a context-dependent manner. How this indispensable role of Hes1 in conferring the competency for neural differentiation partly relies on the direct/indirect mode of repression mediated by very specific structural and functional arms of this protein has also been outlined here. We also review the detailed molecular mechanisms behind the well-tuned oscillatory versus sustained expression of this antineurogenic bHLH repressor, which indeed makes it a master gene to implement the elusive task of neural progenitor propensity. Apart from the functional aspects of Hes1, we also discuss the molecular insights into the endogenous regulatory machinery that regulates its expression. Though Hes1 is a classical target of the Notch signaling pathway, we discuss here its differential expression at the molecular, cellular, and/or regional level. Moreover, we describe how its expression is fine-tuned by all possible ways of gene regulation such as epigenetic, transcriptional, post-transcriptional, post-translational, and environmental factors during vertebrate neurogenesis.
Collapse
Affiliation(s)
- Sivadasan Bindu Dhanesh
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, 695 014, Kerala, India
| | - Chandramohan Subashini
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, 695 014, Kerala, India
| | - Jackson James
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, 695 014, Kerala, India.
| |
Collapse
|
15
|
Nitzan E, Avraham O, Kahane N, Ofek S, Kumar D, Kalcheim C. Dynamics of BMP and Hes1/Hairy1 signaling in the dorsal neural tube underlies the transition from neural crest to definitive roof plate. BMC Biol 2016; 14:23. [PMID: 27012662 PMCID: PMC4806459 DOI: 10.1186/s12915-016-0245-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/10/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The dorsal midline region of the neural tube that results from closure of the neural folds is generally termed the roof plate (RP). However, this domain is highly dynamic and complex, and is first transiently inhabited by prospective neural crest (NC) cells that sequentially emigrate from the neuroepithelium. It only later becomes the definitive RP, the dorsal midline cells of the spinal cord. We previously showed that at the trunk level of the axis, prospective RP progenitors originate ventral to the premigratory NC and progressively reach the dorsal midline following NC emigration. However, the molecular mechanisms underlying the end of NC production and formation of the definitive RP remain virtually unknown. RESULTS Based on distinctive cellular and molecular traits, we have defined an initial NC and a subsequent RP stage, allowing us to investigate the mechanisms responsible for the transition between the two phases. We demonstrate that in spite of the constant production of BMP4 in the dorsal tube at both stages, RP progenitors only transiently respond to the ligand and lose competence shortly before they arrive at their final location. In addition, exposure of dorsal tube cells at the NC stage to high levels of BMP signaling induces premature RP traits, such as Hes1/Hairy1, while concomitantly inhibiting NC production. Reciprocally, early inhibition of BMP signaling prevents Hairy1 mRNA expression at the RP stage altogether, suggesting that BMP is both necessary and sufficient for the development of this RP-specific trait. Furthermore, when Hes1/Hairy1 is misexpressed at the NC stage, it inhibits BMP signaling and downregulates BMPR1A/Alk3 mRNA expression, transcription of BMP targets such as Foxd3, cell-cycle progression, and NC emigration. Reciprocally, Foxd3 inhibits Hairy1, suggesting that repressive cross-interactions at the level of, and downstream from, BMP ensure the temporal separation between both lineages. CONCLUSIONS Together, our data suggest that BMP signaling is important both for NC and RP formation. Given that these two structures develop sequentially, we speculate that the longer exposure of RP progenitors to BMP compared with that of premigratory NC cells may be translated into a higher signaling level in the former. This induces changes in responsiveness to BMP, most likely by downregulating the expression of Alk3 receptors and, consequently, of BMP-dependent downstream transcription factors, which exhibit spatial complementary expression patterns and mutually repress each other to generate alternative fates. This molecular dynamic is likely to account for the transition between the NC and definitive RP stages and thus be responsible for the segregation between central and peripheral lineages during neural development.
Collapse
Affiliation(s)
- Erez Nitzan
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102,, PO Box 12272,, Israel.,Present Address: Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Oshri Avraham
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102,, PO Box 12272,, Israel.,Present address: Department of Genetics, Washington University, St. Louis, MO, USA
| | - Nitza Kahane
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102,, PO Box 12272,, Israel
| | - Shai Ofek
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102,, PO Box 12272,, Israel
| | - Deepak Kumar
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102,, PO Box 12272,, Israel
| | - Chaya Kalcheim
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102,, PO Box 12272,, Israel.
| |
Collapse
|
16
|
Abstract
Hes1 is one mammalian counterpart of the Hairy and Enhancer of split proteins that play a critical role in many physiological processes including cellular differentiation, cell cycle arrest, apoptosis and self-renewal ability. Recent studies have shown that Hes1 functions in the maintenance of cancer stem cells (CSCs), metastasis and antagonizing drug-induced apoptosis. Pathways that are involved in the up-regulation of Hes1 level canonically or non-canonically, such as the Hedgehog, Wnt and hypoxia pathways are frequently aberrant in cancer cells. Here, we summarize the recent data supporting the idea that Hes1 may have an important function in the maintenance of cancer stem cells self-renewal, cancer metastasis, and epithelial-mesenchymal transition (EMT) process induction, as well as chemotherapy resistance, and conclude with the possible mechanisms by which Hes1 functions have their effect, as well as their crosstalk with other carcinogenic signaling pathways.
Collapse
Key Words
- ABC, ATP-binding cassette
- CSCs, cancer stem cells
- CSL, CBF1/ Suppressor of Hairless / Lag1
- EMT, epithelial–mesenchymal transition
- GSI, γ-secretase inhibitor
- HDACs, histone deacetylases
- Hes1
- MAML, Mastermind-like protein family
- MASH-1, Mammalian achaete-scute homolog-1
- NICD, Notch intracellular domain
- Notch signaling pathway
- Runx2, Runt-related protein 2
- TLE, transducin-like Enhancer of split
- bHLH, basic helix-loop-helix
- cancer stem cell
- chemotherapy resistance
- dnMAM, dominant-negative mastermind
- metastasis
- non-canonical Notch
Collapse
|
17
|
Su YX, Hou CC, Yang WX. Control of hair cell development by molecular pathways involving Atoh1, Hes1 and Hes5. Gene 2014; 558:6-24. [PMID: 25550047 DOI: 10.1016/j.gene.2014.12.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/23/2014] [Accepted: 12/25/2014] [Indexed: 01/14/2023]
Abstract
Atoh1, Hes1 and Hes5 are crucial for normal inner ear hair cell development. They regulate the expression of each other in a complex network, while they also interact with many other genes and pathways, such as Notch, FGF, SHH, WNT, BMP and RA. This paper summarized molecular pathways that involve Atoh1, Hes1, and Hes5. Some of the pathways and gene regulation mechanisms discussed here were studied in other tissues, yet they might inspire studies in inner ear hair cell development. Thereby, we presented a complex regulatory network involving these three genes, which might be crucial for proliferation and differentiation of inner ear hair cells.
Collapse
Affiliation(s)
- Yi-Xun Su
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cong-Cong Hou
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Vasconcelos FF, Castro DS. Transcriptional control of vertebrate neurogenesis by the proneural factor Ascl1. Front Cell Neurosci 2014; 8:412. [PMID: 25520623 PMCID: PMC4251449 DOI: 10.3389/fncel.2014.00412] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/12/2014] [Indexed: 11/19/2022] Open
Abstract
Proneural transcription factors (TFs) such as Ascl1 function as master regulators of neurogenesis in vertebrates, being both necessary and sufficient for the activation of a full program of neuronal differentiation. Novel insights into the dynamics of Ascl1 expression at the cellular level, combined with the progressive characterization of its transcriptional program, have expanded the classical view of Ascl1 as a differentiation factor in neurogenesis. These advances resulted in a new model, whereby Ascl1 promotes sequentially the proliferation and differentiation of neural/stem progenitor cells. The multiple activities of Ascl1 are associated with the activation of distinct direct targets at progressive stages along the neuronal lineage. How this temporal pattern is established is poorly understood. Two modes of Ascl1 expression recently described (oscillatory vs. sustained) are likely to be of importance, together with additional mechanistic determinants such as the chromatin landscape and other transcriptional pathways. Here we revise these latest findings, and discuss their implications to the gene regulatory functions of Ascl1 during neurogenesis.
Collapse
Affiliation(s)
| | - Diogo S Castro
- Molecular Neurobiology, Instituto Gulbenkian de Ciência Oeiras, Portugal
| |
Collapse
|
19
|
The transcription factor hairy/E(spl)-related 2 induces proliferation of neural progenitors and regulates neurogenesis and gliogenesis. Dev Biol 2014; 397:116-28. [PMID: 25446033 DOI: 10.1016/j.ydbio.2014.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 02/06/2023]
Abstract
The study of molecular regulation in neural development provides information to understand how diverse neural cells are generated. It also helps to establish therapeutic strategies for the treatment of neural degenerative disorders and brain tumors. The Hairy/E(spl) family members are potential targets of Notch signaling, which is fundamental to neural cell maintenance, cell fate decisions, and compartment boundary formation. In this study, we isolated a zebrafish homolog of Hairy/E(spl), her2, and showed that this gene is expressed in neural progenitor cells and in the developing nervous system. The expression of her2 required Notch activation, as revealed by a Notch-defective mutant and a chemical inhibitor, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT). The endogenous expression of Her2 was altered by both overexpression and morpholino-knockdown approaches, and the results demonstrated that Her2 was both necessary and sufficient to promote the proliferation of neural progenitors by inhibiting the transcription of the cell cycle inhibitors cdkn1a, cdkn1ba, and cdkn1bb. Her2 knockdown caused premature neuronal differentiation, which indicates that Her2 is essential for inhibiting neuronal differentiation. At a later stage of neural development, Her2 could induce glial differentiation. The overexpression of Her2 constructs lacking the bHLH or WRPW domain phenocopied the effect of the morpholino knockdown, demonstrating the essential function of these two domains and further confirming the knockdown specificity. In conclusion, our data reveal that Her2 promotes progenitor proliferation and maintains progenitor characteristics by inhibiting neuronal differentiation. Together, these two mechanisms ensure the proper development of the neural progenitor cell pool.
Collapse
|
20
|
Patel PN, Yu XM, Jaskula-Sztul R, Chen H. Hesperetin activates the Notch1 signaling cascade, causes apoptosis, and induces cellular differentiation in anaplastic thyroid cancer. Ann Surg Oncol 2014; 21 Suppl 4:S497-504. [PMID: 24419754 DOI: 10.1245/s10434-013-3459-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND Anaplastic thyroid cancer (ATC) is characterized by very aggressive growth with undifferentiated features. Recently, it has been reported that the Notch1 signaling pathway, which affects thyrocyte proliferation and differentiation, is inactivated in ATC. However, it remains largely unknown whether using Notch1 activating compounds can be an effective therapeutic strategy in ATC. Therefore, in this study, we aimed to evaluate the drug effects of a potential Notch activator hesperetin on ATC cell. METHODS A unique ATC cell line HTh7 was used to evaluate the drug effects of hesperetin. The Notch1 activating function and cell proliferation were evaluated. The mechanism of growth regulation was investigated by the detection of apoptotic markers. The expression levels of thyrocyte-specific genes were quantified for ATC redifferentiation. RESULTS Upregulated expression of Notch1 and its downstream effectors hairy and enhancer of split 1 (Hes1) and Hes1 related with YRPW motif was observed in hesperetin-treated ATC cells. The enhanced luciferase signal also confirmed the functional activity of hesperetin-induced Notch1 signaling. Hesperetin led to a time- and dose-dependent decrease in ATC cell proliferation. The cell-growth inhibition was mainly caused by apoptosis as evidenced by increased levels of cleaved poly ADP ribose polymerase and cleaved caspase-3 as well as decreased survivin. Additionally, hesperetin induced the expression levels of thyrocyte-specific genes including thyroid transcription factor 1 (TTF1), TTF2, paired box gene 8, thyroid stimulating hormone receptor, and sodium/iodide symporter. CONCLUSIONS Hesperetin activates the Notch1 signaling cascade and suppresses ATC cell proliferation mainly via apoptosis. Hesperetin also induces cell redifferentiation of ATC, which could be useful clinically.
Collapse
Affiliation(s)
- Priyesh N Patel
- Endocrine Surgery Research Laboratories, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | |
Collapse
|
21
|
Kobayashi T, Kageyama R. Expression Dynamics and Functions of Hes Factors in Development and Diseases. Curr Top Dev Biol 2014; 110:263-83. [DOI: 10.1016/b978-0-12-405943-6.00007-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Wen J, Lopes F, Soares G, Farrell SA, Nelson C, Qiao Y, Martell S, Badukke C, Bessa C, Ylstra B, Lewis S, Isoherranen N, Maciel P, Rajcan-Separovic E. Phenotypic and functional consequences of haploinsufficiency of genes from exocyst and retinoic acid pathway due to a recurrent microdeletion of 2p13.2. Orphanet J Rare Dis 2013; 8:100. [PMID: 23837398 PMCID: PMC3710273 DOI: 10.1186/1750-1172-8-100] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 07/03/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Rare, recurrent genomic imbalances facilitate the association of genotype with abnormalities at the "whole body" level. However, at the cellular level, the functional consequences of recurrent genomic abnormalities and how they can be linked to the phenotype are much less investigated. METHOD AND RESULTS We report an example of a functional analysis of two genes from a new, overlapping microdeletion of 2p13.2 region (from 72,140,702-72,924,626). The subjects shared intellectual disability (ID), language delay, hyperactivity, facial asymmetry, ear malformations, and vertebral and/or craniofacial abnormalities. The overlapping region included two genes, EXOC6B and CYP26B1, which are involved in exocytosis/Notch signaling and retinoic acid (RA) metabolism, respectively, and are of critical importance for early morphogenesis, symmetry as well as craniofacial, skeleton and brain development. The abnormal function of EXOC6B was documented in patient lymphoblasts by its reduced expression and with perturbed expression of Notch signaling pathway genes HES1 and RBPJ, previously noted to be the consequence of EXOC6B dysfunction in animal and cell line models. Similarly, the function of CYP26B1 was affected by the deletion since the retinoic acid induced expression of this gene in patient lymphoblasts was significantly lower compared to controls (8% of controls). CONCLUSION Haploinsufficiency of CYP26B1 and EXOC6B genes involved in retinoic acid and exocyst/Notch signaling pathways, respectively, has not been reported previously in humans. The developmental anomalies and phenotypic features of our subjects are in keeping with the dysfunction of these genes, considering their known role. Documenting their dysfunction at the cellular level in patient cells enhanced our understanding of biological processes which contribute to the clinical phenotype.
Collapse
Affiliation(s)
- Jiadi Wen
- Child and Family Research Institute, Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Omega-3 polyunsaturated Fatty acids enhance neuronal differentiation in cultured rat neural stem cells. Stem Cells Int 2013; 2013:490476. [PMID: 23365582 PMCID: PMC3556893 DOI: 10.1155/2013/490476] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 01/24/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) can induce neurogenesis and recovery from brain diseases. However, the exact mechanisms of the beneficial effects of PUFAs have not been conclusively described. We recently reported that docosahexaenoic acid (DHA) induced neuronal differentiation by decreasing Hes1 expression and increasing p27kip1 expression, which causes cell cycle arrest in neural stem cells (NSCs). In the present study, we examined the effect of eicosapentaenoic acid (EPA) and arachidonic acid (AA) on differentiation, expression of basic helix-loop-helix transcription factors (Hes1, Hes6, and NeuroD), and the cell cycle of cultured NSCs. EPA also increased mRNA levels of Hes1, an inhibitor of neuronal differentiation, Hes6, an inhibitor of Hes1, NeuroD, and Map2 mRNA and Tuj-1-positive cells (a neuronal marker), indicating that EPA induced neuronal differentiation. EPA increased the mRNA levels of p21cip1 and p27kip1, a cyclin-dependent kinase inhibitor, which indicated that EPA induced cell cycle arrest. Treatment with AA decreased Hes1 mRNA but did not affect NeuroD and Map2 mRNA levels. Furthermore, AA did not affect the number of Tuj-1-positive cells or cell cycle progression. These results indicated that EPA could be involved in neuronal differentiation by mechanisms alternative to those of DHA, whereas AA did not affect neuronal differentiation in NSCs.
Collapse
|
24
|
Majumdar S, Farris CL, Kabat BE, Jung DO, Ellsworth BS. Forkhead Box O1 is present in quiescent pituitary cells during development and is increased in the absence of p27 Kip1. PLoS One 2012; 7:e52136. [PMID: 23251696 PMCID: PMC3522653 DOI: 10.1371/journal.pone.0052136] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/15/2012] [Indexed: 02/07/2023] Open
Abstract
Congenital pituitary hormone deficiencies have been reported in approximately one in 4,000 live births, however studies reporting mutations in some widely studied transcription factors account for only a fraction of congenital hormone deficiencies in humans. Anterior pituitary hormones are required for development and function of several glands including gonads, adrenals, and thyroid. In order to identify additional factors that contribute to human congenital hormone deficiencies, we are investigating the forkhead transcription factor, FOXO1, which has been implicated in development of several organs including ovary, testis, and brain. We find that FOXO1 is present in the nuclei of non-dividing pituitary cells during embryonic development, consistent with a role in limiting proliferation and/or promoting differentiation. FOXO1 is present in a subset of differentiated cells at e18.5 and in adult with highest level of expression in somatotrope cells. We detected FOXO1 in p27(Kip1)-positive cells at e14.5. In the absence of p27(Kip1) the number of pituitary cells containing FOXO1 is significantly increased at e14.5 suggesting that a feedback loop regulates the interplay between FOXO1 and p27(Kip1).
Collapse
Affiliation(s)
- Sreeparna Majumdar
- Department of Physiology, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Corrie L. Farris
- Department of Physiology, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Brock E. Kabat
- Department of Physiology, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Deborah O. Jung
- Department of Physiology, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Buffy S. Ellsworth
- Department of Physiology, Southern Illinois University, Carbondale, Illinois, United States of America
| |
Collapse
|
25
|
Tando Y, Fujiwara K, Yashiro T, Kikuchi M. Localization of Notch signaling molecules and their effect on cellular proliferation in adult rat pituitary. Cell Tissue Res 2012; 351:511-9. [PMID: 23232913 DOI: 10.1007/s00441-012-1532-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/08/2012] [Indexed: 11/30/2022]
Abstract
Notch signaling is a cell-to-cell signaling system involved in the maintenance of precursor cells in many tissues. Although Notch signaling has been reported in the pituitary gland, the histological characteristics of Notch receptors and ligands in the gland are unknown. Here, we report the histological gene expression pattern of Notch receptors and ligands and the role of Notch signaling in cellular proliferation in adult rat pituitary gland. In situ hybridization detected transcripts of Notch1 and 2 and Jagged1 and 2. Double-staining with a combination of in situ hybridization and immunohistochemistry revealed that their mRNAs were localized in almost half of the S100-protein-positive cells, which are generally regarded as marginal layer cells and folliculo-stellate cells. In primary culture of anterior pituitary cells, proliferation of S100-protein-positive cells was modulated by Notch signaling inhibitor and solubilized Notch ligand. Furthermore, quantitative analysis revealed that the inhibition of Notch signaling led to the down-regulation of mRNA for the Notch target gene Hes1 and the up-regulation of p57 gene expression. These findings suggest that Notch signaling is involved in the proliferation of S100-protein-positive cells, presumably precursor cells, in adult rat pituitary gland.
Collapse
Affiliation(s)
- Yukiko Tando
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | | | | | | |
Collapse
|
26
|
A bovine herpesvirus 1 protein expressed in latently infected neurons (ORF2) promotes neurite sprouting in the presence of activated Notch1 or Notch3. J Virol 2012; 87:1183-92. [PMID: 23152506 DOI: 10.1128/jvi.02783-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bovine herpesvirus 1 (BHV-1) infection induces clinical symptoms in the upper respiratory tract, inhibits immune responses, and can lead to life-threatening secondary bacterial infections. Following acute infection, BHV-1 establishes latency in sensory neurons within trigeminal ganglia, but stress can induce reactivation from latency. The latency-related (LR) RNA is the only viral transcript abundantly expressed in latently infected sensory neurons. An LR mutant virus with stop codons at the amino terminus of the first open reading frame (ORF) in the LR gene (ORF2) is not reactivated from latency, in part because it induces higher levels of apoptosis in infected neurons. ORF2 inhibits apoptosis in transiently transfected cells, suggesting that it plays a crucial role in the latency-reactivation cycle. ORF2 also interacts with Notch1 or Notch3 and inhibits its ability to trans activate certain viral promoters. Notch3 RNA and protein levels are increased during reactivation from latency, suggesting that Notch may promote reactivation. Activated Notch signaling interferes with neuronal differentiation, in part because neurite and axon generation is blocked. In this study, we demonstrated that ORF2 promotes neurite formation in mouse neuroblastoma cells overexpressing Notch1 or Notch3. ORF2 also interfered with Notch-mediated trans activation of the promoter that regulates the expression of Hairy Enhancer of Split 5, an inhibitor of neurite formation. Additional studies provided evidence that ORF2 promotes the degradation of Notch3, but not that of Notch1, in a proteasome-dependent manner. In summary, these studies suggest that ORF2 promotes a mature neuronal phenotype that enhances the survival of infected neurons and consequently increases the pool of latently infected neurons.
Collapse
|
27
|
Coolen M, Thieffry D, Drivenes Ø, Becker TS, Bally-Cuif L. miR-9 controls the timing of neurogenesis through the direct inhibition of antagonistic factors. Dev Cell 2012; 22:1052-64. [PMID: 22595676 DOI: 10.1016/j.devcel.2012.03.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 01/17/2012] [Accepted: 03/08/2012] [Indexed: 11/26/2022]
Abstract
The timing of commitment and cell-cycle exit within progenitor populations during neurogenesis is a fundamental decision that impacts both the number and identity of neurons produced during development. We show here that microRNA-9 plays a key role in this process through the direct inhibition of targets with antagonistic functions. Across the ventricular zone of the developing zebrafish hindbrain, miR-9 expression occurs at a range of commitment stages. Abrogating miR-9 function transiently delays cell-cycle exit, leading to the increased generation of late-born neuronal populations. Target protection analyses in vivo identify the progenitor-promoting genes her6 and zic5 and the cell-cycle exit-promoting gene elavl3/HuC as sequential targets of miR-9 as neurogenesis proceeds. We propose that miR-9 activity generates an ambivalent progenitor state poised to respond to both progenitor maintenance and commitment cues, which may be necessary to adjust neuronal production to local extrinsic signals during late embryogenesis.
Collapse
Affiliation(s)
- Marion Coolen
- Zebrafish Neurogenetics Group, Laboratory of Neurobiology and Development, CNRS UPR 3294, Institute of Neurobiology Alfred Fessard, 91198 Gif-sur-Yvette Cédex, France.
| | | | | | | | | |
Collapse
|
28
|
Hue S, Kared H, Mehwish Y, Mouhamad S, Balbo M, Levy Y. Notch activation on effector T cells increases their sensitivity to Treg cell-mediated suppression through upregulation of TGF-βRII expression. Eur J Immunol 2012; 42:1796-803. [PMID: 22585622 DOI: 10.1002/eji.201142330] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/05/2012] [Accepted: 04/13/2012] [Indexed: 11/10/2022]
Abstract
Notch proteins play an important role in embryonic development and cell-fate decisions. Notch influences also the activation and differentiation of peripheral T cells. Here, we investigated whether Notch signaling modulates the response of effector T cells to regulatory T (Treg) cells. Pre-exposure of CD4(+) CD25(-) effector T cells to the Notch ligands Delta-4 and Jagged-1, but not Delta-1, increases significantly effector T-cell sensitivity to Treg cell-mediated suppression through upregulation of TGF-βRII expression and increased levels of the phosphorylated form of the Smad 3 protein. This effect is relieved by anti-TGF-β Abs. We demonstrate that HES (hairy and enhancer of split), the main transcription factor downstream of Notch, induces strong transactivation of TGF-ßRII by binding the TGF-βRII promoter through its DNA-binding domain. Thus, the crosstalk between Notch and the TGF-β pathway leads to potentiation of the suppressive effect of Treg cells.
Collapse
|
29
|
Lavery DN, Villaronga MA, Walker MM, Patel A, Belandia B, Bevan CL. Repression of androgen receptor activity by HEYL, a third member of the Hairy/Enhancer-of-split-related family of Notch effectors. J Biol Chem 2011; 286:17796-808. [PMID: 21454491 PMCID: PMC3093855 DOI: 10.1074/jbc.m110.198655] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 03/16/2011] [Indexed: 12/22/2022] Open
Abstract
The Hairy/Enhancer-of-split-related with YRPW-like motif (HEY) family of proteins are transcriptional repressors and downstream effectors of Notch signaling. We previously reported that HEY1 and HEY2 selectively repress androgen receptor (AR) signaling in mammalian cell lines and have shown that in human tissue HEY1 is excluded from the nuclei in prostate cancer but not benign prostatic hyperplasia. We have now characterized a third member of this family, HEYL, which is a more potent repressor of AR activity. HEYL interacted with and repressed AR activation function-1 domain and competitively inhibited SRC1e activation of AR transcriptional activity. Using a cell line inducibly expressing exogenous HEYL, we showed that HEYL represses endogenous AR-regulated genes and reduces androgen-dependent prostate cancer cell growth. Using a trans-repression assay, we identified both trichostatin-sensitive and -insensitive domains within HEYL; however, analysis of endogenous AR target genes suggested that HEYL represses AR activity through histone deacetylase I/II-independent mechanisms. Immunohistochemical analyses of tissue indicated that, in a fashion similar to that previously reported for HEY1, HEYL is excluded from the nuclei in prostate cancer but not adjacent benign tissue. This suggests that nuclear exclusion of HEY proteins may be an important step in the progression of prostate cancer.
Collapse
Affiliation(s)
- Derek N. Lavery
- From the Androgen Signalling Laboratory, Department of Surgery and Cancer, Imperial College London, London W12 0NN, United Kingdom
| | - M. Angeles Villaronga
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain, and
| | - Marjorie M. Walker
- Centre for Pathology, Division of Medicine, Imperial College London, London W2 1NY, United Kingdom
| | - Anup Patel
- Department of Urology, St. Mary's Hospital at Imperial College Healthcare Trust, London W2 1NY, United Kingdom
| | - Borja Belandia
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain, and
| | - Charlotte L. Bevan
- From the Androgen Signalling Laboratory, Department of Surgery and Cancer, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
30
|
Noda N, Honma S, Ohmiya Y. Hes1 is required for contact inhibition of cell proliferation in 3T3-L1 preadipocytes. Genes Cells 2011; 16:704-13. [PMID: 21481105 DOI: 10.1111/j.1365-2443.2011.01518.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell-cell contact causes the growth arrest of cells in culture, which is referred to as contact inhibition of cell proliferation. Notch signaling is involved in the growth arrest of cells represented by contact inhibition of cell proliferation. The Notch effector, Hes1 (Hairy and enhancer of split 1), promotes or inhibits cell proliferation by repressing the expression of cyclin-dependent kinase inhibitors. However, it is still unclear whether Hes1 is involved in the mechanisms responsible for contact inhibition of cell proliferation. Here, we examined the involvement of Hes1 in contact inhibition of cell proliferation using a γ-secretase inhibitor and a stable 3T3-L1 preadipocyte cell line expressing Hes1-shRNA as a model cell. The cell cycle was not arrested in Hes1-knockdown cells even after the cells reached confluence. Reduced Hes1 levels failed to repress the expression of E2F-1, a transcription factor required for the progression of the cell cycle. The expression of Myc, cyclin E1, and cyclin A2 in E2F-1 target genes was also higher in Hes1-knockdown cells compared with the negative control. These results suggest that Hes1 plays essential roles in contact inhibition of cell proliferation in 3T3-L1 cells by repressing E2F-1 expression.
Collapse
Affiliation(s)
- Natsumi Noda
- Department of Physiology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | | | | |
Collapse
|
31
|
Kannan S, Fang W, Song G, Mullighan CG, Hammitt R, McMurray J, Zweidler-McKay PA. Notch/HES1-mediated PARP1 activation: a cell type-specific mechanism for tumor suppression. Blood 2011; 117:2891-900. [PMID: 21224467 PMCID: PMC3062299 DOI: 10.1182/blood-2009-12-253419] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Notch signaling plays both oncogenic and tumor suppressor roles, depending on cell type. In contrast to T-cell acute lymphoblastic leukemia (ALL), where Notch activation promotes leukemogenesis, induction of Notch signaling in B-cell ALL (B-ALL) leads to growth arrest and apoptosis. The Notch target Hairy/Enhancer of Split1 (HES1) is sufficient to reproduce this tumor suppressor phenotype in B-ALL; however, the mechanism is not yet known. We report that HES1 regulates proapoptotic signals by the novel interacting protein Poly ADP-Ribose Polymerase1 (PARP1) in a cell type-specific manner. Interaction of HES1 with PARP1 inhibits HES1 function, induces PARP1 activation, and results in PARP1 cleavage in B-ALL. HES1-induced PARP1 activation leads to self-ADP ribosylation of PARP1, consumption of nicotinamide adenine dinucleotide(+), diminished adenosine triphosphate levels, and translocation of apoptosis-inducing factor from mitochondria to the nucleus, resulting in apoptosis in B-ALL but not T-cell ALL. Importantly, induction of Notch signaling by the Notch agonist peptide Delta/Serrate/Lag-2 can reproduce these events and leads to B-ALL apoptosis. The novel interaction of HES1 and PARP1 in B-ALL modulates the function of the HES1 transcriptional complex and signals through PARP1 to induce apoptosis. This mechanism shows a cell type-specific proapoptotic pathway that may lead to Notch agonist-based cancer therapeutics.
Collapse
Affiliation(s)
- Sankaranarayanan Kannan
- Division of Pediatrics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Jalali A, Bassuk AG, Kan L, Israsena N, Mukhopadhyay A, McGuire T, Kessler JA. HeyL promotes neuronal differentiation of neural progenitor cells. J Neurosci Res 2011; 89:299-309. [PMID: 21259317 PMCID: PMC3079914 DOI: 10.1002/jnr.22562] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/09/2010] [Accepted: 10/19/2010] [Indexed: 11/06/2022]
Abstract
Members of the Hes and Hey families of basic helix-loop-helix transcription factors are regarded as Notch target genes that generally inhibit neuronal differentiation of neural progenitor cells. We found that HeyL, contrary to the classic function of Hes and Hey factors, promotes neuronal differentiation of neural progenitor cells both in culture and in the embryonic brain in vivo. Furthermore, null mutation of HeyL decreased the rate of neuronal differentiation of cultured neural progenitor cells. HeyL binds to and activates the promoter of the proneural gene neurogenin2, which is inhibited by other Hes and Hey family members, and HeyL is a weak inhibitor of the Hes1 promoter. HeyL is able to bind other Hes and Hey family members, but it cannot bind the Groucho/Tle1 transcriptional corepressor, which mediates the inhibitory effects of the Hes family of factors. Furthermore, although HeyL expression is only weakly augmented by Notch signaling, we found that bone morphogenic protein signaling increases HeyL expression by neural progenitor cells. These observations suggest that HeyL promotes neuronal differentiation of neural progenitor cells by activating proneural genes and by inhibiting the actions of other Hes and Hey family members.
Collapse
Affiliation(s)
- Ali Jalali
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Lixin Kan
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nipan Israsena
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Abhishek Mukhopadhyay
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tammy McGuire
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John A. Kessler
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
33
|
Kobayashi T, Kageyama R. Hes1 oscillations contribute to heterogeneous differentiation responses in embryonic stem cells. Genes (Basel) 2011; 2:219-28. [PMID: 24710146 PMCID: PMC3924840 DOI: 10.3390/genes2010219] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/12/2011] [Accepted: 02/13/2011] [Indexed: 01/09/2023] Open
Abstract
Embryonic stem (ES) cells can differentiate into multiple types of cells belonging to all three germ layers. Although ES cells are clonally established, they display heterogeneous responses upon the induction of differentiation, resulting in a mixture of various types of differentiated cells. Our recent reports have shown that Hes1 regulates the fate choice of ES cells by repressing Notch signaling, and that the oscillatory expression of Hes1 contributes to various differentiation responses in ES cells. Here we discuss the mechanism regulating the intracellular dynamics in ES cells and how to trigger the lineage choice from pluripotent ES cells.
Collapse
Affiliation(s)
- Taeko Kobayashi
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Ryoichiro Kageyama
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
34
|
Katow H, Suyemitsu T, Ooka S, Yaguchi J, Jin-Nai T, Kuwahara I, Katow T, Yaguchi S, Abe H. Development of a dopaminergic system in sea urchin embryos and larvae. ACTA ACUST UNITED AC 2010; 213:2808-19. [PMID: 20675551 DOI: 10.1242/jeb.042150] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms that regulate the organized swimming movements of sea urchin blastulae are largely unknown. Using immunohistochemistry, we found that dopamine (DA) and the Hemicentrotus pulcherrimus homolog of the dopamine receptor D1 (Hp-DRD1) were strongly co-localized in 1-2 microm diameter granules (DA/DRD1 granules). Furthermore, these granules were arranged across the entire surface of blastulae as they developed locomotory cilia before hatching, and remained evident until metamorphosis. DA/DRD1 granules were associated with the basal bodies of cilia, and were densely packed in the ciliary band by the eight-arm pluteus stage. The transcription of Hp-DRD1 was detected from the unfertilized egg stage throughout the period of larval development. Treatment with S-(-)-carbidopa, an inhibitor of aromatic-l-amino acid decarboxylase, for 20-24 h (i) from soon after insemination until the 20 h post-fertilization (20 hpf) early gastrula stage and (ii) from the 24 hpf prism larva stage until the 48 hpf pluteus stage, inhibited the formation of DA granules and decreased the swimming activity of blastulae and larvae in a dose-dependent manner. Exogenous DA rescued these deprivations. The formation of DRD1 granules was not affected. However, in 48 hpf plutei, the serotonergic nervous system (5HT-NS) developed normally. Morpholino antisense oligonucleotides directed against Hp-DRD1 inhibited the formation of DRD1 granules and the swimming of larvae, but did not disturb the formation of DA granules. Thus, the formation of DRD1 granules and DA granules occurs chronologically closely but mechanically independently and the swimming of blastulae is regulated by the dopaminergic system. In plutei, the 5HT-NS closely surrounded the ciliary bands, suggesting the functional collaboration with the dopaminergic system in larvae.
Collapse
Affiliation(s)
- Hideki Katow
- Research Center for Marine Biology, Tohoku University, Asamushi, Aomori, Aomori, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Coglievina M, Guarnaccia C, Pintar A, Pongor S. Different degrees of structural order in distinct regions of the transcriptional repressor HES-1. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:2153-61. [PMID: 20816878 DOI: 10.1016/j.bbapap.2010.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 08/24/2010] [Accepted: 08/25/2010] [Indexed: 10/19/2022]
Abstract
HES-1 is a transcriptional repressor of the basic helix-loop-helix (bHLH) family and one of the main downstream effectors in Notch signaling. Its domain architecture is composed of a bHLH region, an Orange domain, and a poorly characterized C-terminal half. We show that different degrees of structural order are present in the different regions of HES-1. The isolated bHLH domain is only marginally stable in solution, and partially folds upon dimerization. Binding to DNA promotes folding, stabilization, and protection from proteolysis of the bHLH domain. The Orange domain, on the contrary, is well folded in all conditions, forms stable dimers, and greatly increases protein resistance to thermal denaturation. The isolated proline-rich C-terminal region is mainly disordered in solution, and remains unstructured also in the full length protein. Measurements of binding constants show that HES-1 recognizes dsDNA synthetic oligonucleotides corresponding to several functional DNA targets with high affinity, but with relatively little specificity. We propose that order/disorder transitions in the different domains are associated not only with binding to DNA, but also with protein homo- and hetero-dimerization.
Collapse
Affiliation(s)
- Maristella Coglievina
- Protein Structure and Bioinformatics Group, International Center for Genetic Engineerintg and Biotechnology (ICGEB), AREA Science Park, Trieste, Italy
| | | | | | | |
Collapse
|
36
|
Zhang P, Yang Y, Nolo R, Zweidler-McKay PA, Hughes DPM. Regulation of NOTCH signaling by reciprocal inhibition of HES1 and Deltex 1 and its role in osteosarcoma invasiveness. Oncogene 2010; 29:2916-26. [PMID: 20208568 PMCID: PMC2874642 DOI: 10.1038/onc.2010.62] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 01/27/2010] [Accepted: 02/01/2010] [Indexed: 11/09/2022]
Abstract
The highly conserved NOTCH signaling pathway has many essential functions in the development of diverse cells, tissues and organs from Drosophila to humans, and dysregulated NOTCH signaling contributes to several disorders, including vascular and bone defects, as well as several cancers. Here we describe a novel mechanism of NOTCH regulation by reciprocal inhibition of two NOTCH downstream effectors: Deltex1 and HES1. This mechanism appears to regulate invasion of osteosarcoma cells, as Deltex1 blocks osteosarcoma invasiveness by downregulating NOTCH/HES1 signaling. The inhibitory effect of endogenous Deltex1 on NOTCH signaling is mediated through binding with the intracellular domain of NOTCH and ubiquitination and degradation of NOTCH receptors. Conversely, we show that the NOTCH target gene HES1 causes transcriptional inhibition of Deltex1 by directly binding to the promoter of Deltex1. An HES1 binding site is identified 400 bp upstream of the transcription start site of Deltex1. HES1-mediated repression of Deltex1 requires the C-terminal H3/H4 and WRPW domains of HES1, which associate with the TLE/Groucho corepressors. Taken together, we define a molecular mechanism regulating NOTCH signaling by reciprocal inhibition of the NOTCH target genes HES1 and Deltex1 in mammalian cells. This mechanism may have important clinical implications for targeting NOTCH signaling in osteosarcoma and other cancers.
Collapse
Affiliation(s)
- Pingyu Zhang
- Department of Pediatrics Research, Children's Cancer Hospital, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 176, Houston, TX 77030
| | - Yanwen Yang
- Department of Pediatrics Research, Children's Cancer Hospital, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 176, Houston, TX 77030
| | - Riitta Nolo
- Department of Pediatrics Research, Children's Cancer Hospital, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 176, Houston, TX 77030
| | - Patrick A Zweidler-McKay
- Department of Pediatrics Research, Children's Cancer Hospital, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 176, Houston, TX 77030
| | - Dennis P M Hughes
- Department of Pediatrics Research, Children's Cancer Hospital, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 176, Houston, TX 77030
| |
Collapse
|
37
|
Zhang K, Hou R, Niu X, Zhang J, Yin G, Li X, Jia Y. Decreased colony formation of high proliferative potential colony-forming cells and granulocyte-macrophage colony-forming units and increased Hes-1 expression in bone marrow mononuclear cells from patients with psoriasis. Br J Dermatol 2010; 163:93-101. [PMID: 20377586 DOI: 10.1111/j.1365-2133.2010.09790.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory disease of the skin. The dysfunctional immunity experienced by patients with psoriasis is believed to influence the bone marrow haematopoietic cells and their surrounding microenvironment. Phagocytes derived from the bone marrow of patients with active psoriasis exhibit enhanced monocytopoietic activity and hyperplasia in vitro. However, direct evidence supporting the hypothesis that bone marrow is involved in the pathogenesis of psoriasis has yet to be established. OBJECTIVES To investigate the involvement of bone marrow in the pathogenesis of psoriasis. METHODS Bone marrow mononuclear cells (BMMNCs) were isolated from patients with psoriasis and healthy individuals. The high proliferative potential colony-forming cells (HPP-CFCs), granulocyte-macrophage colony-forming units (CFU-GM) and erythroid colony-forming units (CFU-E) were cultured in the presence of defined cytokines, and the effects of secreted factors from psoriatic peripheral blood mononuclear cells (PBMCs) on colony formation of normal haematopoietic cells were analysed. Furthermore, the telomere activity of psoriatic and normal BMMNCs was determined using the polymerase chain reaction (PCR)-based telomeric repeat amplification protocol, while the expression of human telomerase reverse transcriptase (hTERT) and HES1 mRNA was detected by reverse transcription-PCR assay. RESULTS The numbers of HPP-CFCs and CFU-GM, but not CFU-E, were significantly reduced in cultured haematopoietic cells from patients with psoriasis. The culture supernatant of PBMCs from patients with psoriasis was found to inhibit the colony formation capacity of HPP-CFCs, CFU-GM and CFU-E of normal haematopoietic cells. We also detected low levels of telomerase activity and hTERT gene expression in psoriatic and control BMMNCs that was statistically similar between the two groups. In contrast, the HES1 gene expression appeared to be significantly elevated in psoriatic BMMNCs (P < 0.05). CONCLUSIONS Together, our results indicate the involvement of bone marrow in the immunopathogenesis of psoriasis, and suggest a mechanism mediated by certain inflammatory or haematopoietic cytokines present in the bone marrow microenvironment. Elevated expression levels of HES1 mRNA suggest a potential role for the Notch signalling pathway in this process.
Collapse
Affiliation(s)
- K Zhang
- Institute of Dermatology, Taiyuan City Central Hospital, Affiliated with Shanxi Medical University, 1 Dong San Dao Xiang, Taiyuan 030009, Shanxi Province, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Coad RA, Dutton JR, Tosh D, Slack JMW. Inhibition of Hes1 activity in gall bladder epithelial cells promotes insulin expression and glucose responsiveness. Biochem Cell Biol 2010; 87:975-87. [PMID: 19935883 DOI: 10.1139/o09-063] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The biliary system has a close developmental relationship with the pancreas, evidenced by the natural occurrence of small numbers of biliary-derived beta-cells in the biliary system and by the replacement of biliary epithelium with pancreatic tissue in mice lacking the transcription factor Hes1. In normal pancreatic development, Hes1 is known to repress endocrine cell formation. Here we show that glucose-responsive insulin secretion can be induced in biliary epithelial cells when activity of the transcription factor Hes1 is antagonised. We describe a new culture system for adult murine gall bladder epithelial cells (GBECs), free from fibroblast contamination. We show that Hes1 is expressed both in adult murine gall bladder and in cultured GBECs. We have created a new dominant negative Hes1 (DeltaHes1) by removal of the DNA-binding domain, and show that it antagonises Hes1 function in vivo. When DeltaHes1 is introduced into the GBEC it causes expression of insulin RNA and protein. Furthermore, it confers upon the cells the ability to secrete insulin following exposure to increased external glucose. GBEC cultures are induced to express a wider range of mature beta cell markers when co-transduced with DeltaHes1 and the pancreatic transcription factor Pdx1. Introduction of DeltaHes1 and Pdx1 can therefore initiate a partial respecification of phenotype from biliary epithelial cell towards the pancreatic beta cell.
Collapse
Affiliation(s)
- R A Coad
- Stem Cell Institute, University of Minnesota, MTRF, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
39
|
Murata J, Ohtsuka T, Tokunaga A, Nishiike S, Inohara H, Okano H, Kageyama R. Notch-Hes1 pathway contributes to the cochlear prosensory formation potentially through the transcriptional down-regulation of p27Kip1. J Neurosci Res 2010; 87:3521-34. [PMID: 19598246 DOI: 10.1002/jnr.22169] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Notch signaling pathway has a crucial role in the differentiation of hair cells and supporting cells by mediating "lateral inhibition" via the ligands Delta-like1 (Dll1) and Jagged2 (Jag2) and the effectors Hes1 and Hes5 during mammalian inner ear development. Recently, another Notch ligand, Jagged1 (Jag1)-dependent Notch activation, has been revealed to be important for the determination of the prosensory region in the earlier stage before cell differentiation. However, little is known about the effectors of the Notch pathway in this context. P27(Kip1), a cyclin-dependent kinase inhibitor, is also known to demarcate the prosensory region in the cochlear primordium, which consists of the sensory progenitors that have completed their terminal mitoses. Hes1 reportedly promotes precursor cell proliferation through the transcriptional down-regulation of p27(Kip1) in the thymus, liver, and brain. In this study, we observed Hes1 as a mediator between the Notch signaling pathway and the regulation of proliferation of sensory precursor cells by p27(Kip1) in the developing cochlea. We showed that Hes1, but not Hes5, was weakly expressed at the time of onset of p27(Kip1). The expression pattern of Hes1 prior to cell differentiation was similar to that of activated Notch1. P27(Kip1) was up-regulated and BrdU-positive S-phase cells were reduced in the developing cochlear epithelium of Hes1 null mice. These results suggest that the Notch-Hes1 pathway may contribute to the adequate proliferation of sensory precursor cells via the potential transcriptional down-regulation of p27(Kip1) expression and play a pivotal role in the correct prosensory determination.
Collapse
Affiliation(s)
- Junko Murata
- Department of Otolaryngology and Sensory Organ Surgery, Osaka University School of Medicine, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
40
|
Sang L, Roberts JM, Coller HA. Hijacking HES1: how tumors co-opt the anti-differentiation strategies of quiescent cells. Trends Mol Med 2009; 16:17-26. [PMID: 20022559 DOI: 10.1016/j.molmed.2009.11.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/03/2009] [Accepted: 11/17/2009] [Indexed: 12/19/2022]
Abstract
Quiescent and tumor cells share the ability to evade irreversible cell fates. Recent studies have shown that the transcriptional regulator Hairy and Enhancer of Split 1 (HES1) protects quiescent fibroblasts from differentiation or senescence. HES1 is highly expressed in rhabdomyosarcomas, and the inhibition of HES1 restores differentiation in these cells. Pathways that lead to elevated HES1 levels, such as the Notch and Hedgehog pathways, are frequently upregulated in tumors. Compounds that inhibit these pathways induce differentiation and apoptosis in cancer cells and several are in clinical trials. HES1 might repress gene expression in part by recruiting histone deacetylases (HDACs). HDACs inhibit differentiation, whereas histone deacetylase inhibitors (HDACis) induce differentiation or apoptosis in tumors and are also showing promise as therapeutics. Small molecules that directly target HES1 itself were recently identified. Here, we discuss the importance of HES1 function in quiescent and tumor cells. Elucidating the pathways that control quiescence could provide valuable information not only for treating cancer but also other diseases.
Collapse
Affiliation(s)
- Liyun Sang
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | |
Collapse
|
41
|
Monahan P, Rybak S, Raetzman LT. The notch target gene HES1 regulates cell cycle inhibitor expression in the developing pituitary. Endocrinology 2009; 150:4386-94. [PMID: 19541765 PMCID: PMC2736073 DOI: 10.1210/en.2009-0206] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pituitary is an endocrine gland responsible for the release of hormones, which regulate growth, metabolism, and reproduction. Diseases such as hypopituitarism or pituitary adenomas are able to disrupt pituitary function leading to suboptimal function of the entire endocrine system. Growth of the pituitary during development and adulthood is a tightly regulated process. Hairy and enhancer of split (HES1), a transcription factor whose expression is initiated by the Notch signaling pathway, is a repressor of cell cycle inhibitors. We hypothesize that with the loss of Hes1, pituitary progenitors are no longer maintained in a proliferative state, choosing instead to exit the cell cycle. To test this hypothesis, we examined the expression of cell cycle regulators in wild-type and Hes1-deficient pituitaries. Our studies indicate that in early pituitary development [embryonic day (e) 10.5], cells contained in the Rathke's pouch of Hes1 mutants have decreased proliferation, indicated by changes in phosphohistone H3 expression. Furthermore, pituitaries lacking Hes1 have increased cell cycle exit, shown by significant increases in the cyclin-dependent kinase inhibitors, p27 and p57, from e10.5 to e14.5. Additionally, Hes1 mutant pituitaries have ectopic expression of p21 in Rathke's pouch progenitors, an area coincident with increased cell death. These observations taken together indicate a role for HES1 in the control of cell cycle exit and in mediating the balance between proliferation and differentiation, allowing for the properly timed emergence of hormone secreting cell types.
Collapse
Affiliation(s)
- Pamela Monahan
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
42
|
Tremblay CS, Huard CC, Huang FF, Habi O, Bourdages V, Lévesque G, Carreau M. The fanconi anemia core complex acts as a transcriptional co-regulator in hairy enhancer of split 1 signaling. J Biol Chem 2009; 284:13384-13395. [PMID: 19321451 PMCID: PMC2679438 DOI: 10.1074/jbc.m807921200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 03/25/2009] [Indexed: 01/04/2023] Open
Abstract
Mutations in one of the 13 Fanconi anemia (FA) genes cause a progressive bone marrow failure disorder associated with developmental abnormalities and a predisposition to cancer. Although FA has been defined as a DNA repair disease based on the hypersensitivity of patient cells to DNA cross-linking agents, FA patients develop various developmental defects such as skeletal abnormalities, microphthalmia, and endocrine abnormalities that may be linked to transcriptional defects. Recently, we reported that the FA core complex interacts with the transcriptional repressor Hairy Enhancer of Split 1 (HES1) suggesting that the core complex plays a role in transcription. Here we show that the FA core complex contributes to transcriptional regulation of HES1-responsive genes, including HES1 and the cyclin-dependent kinase inhibitor p21(cip1/waf1). Chromatin immunoprecipitation studies show that the FA core complex interacts with the HES1 promoter but not the p21(cip1/waf1) promoter. Furthermore, we show that the FA core complex interferes with HES1 binding to the co-repressor transducin-like-Enhancer of Split, suggesting that the core complex affects transcription both directly and indirectly. Taken together these data suggest a novel function of the FA core complex in transcriptional regulation.
Collapse
Affiliation(s)
- Cédric S Tremblay
- Centre Hospitalier de l'Université Laval, Université Laval, Québec GIV 4G2, Canada
| | - Caroline C Huard
- Centre Hospitalier de l'Université Laval, Université Laval, Québec GIV 4G2, Canada
| | - Feng-Fei Huang
- Centre Hospitalier de l'Université Laval, Université Laval, Québec GIV 4G2, Canada
| | - Ouassila Habi
- Centre Hospitalier de l'Université Laval, Université Laval, Québec GIV 4G2, Canada
| | - Valérie Bourdages
- Centre Hospitalier de l'Université Laval, Université Laval, Québec GIV 4G2, Canada
| | - Georges Lévesque
- Centre Hospitalier de l'Université Laval, Université Laval, Québec GIV 4G2, Canada; Medical Biology and Université Laval, Québec GIV 4G2, Canada
| | - Madeleine Carreau
- Medical Biology and Université Laval, Québec GIV 4G2, Canada; Departments of Pediatrics Université Laval, Québec GIV 4G2, Canada.
| |
Collapse
|
43
|
Müller P, Crofts JD, Newman BS, Bridgewater LC, Lin CY, Gustafsson JA, Ström A. SOX9 mediates the retinoic acid-induced HES-1 gene expression in human breast cancer cells. Breast Cancer Res Treat 2009; 120:317-26. [PMID: 19322650 DOI: 10.1007/s10549-009-0381-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 03/14/2009] [Indexed: 12/16/2022]
Abstract
We have previously shown that the anti-proliferative effect of retinoic acid in human breast cancer cell line MCF-7 is dependent on HES-1 expression. Here we show that retinoic acid induces HES-1 expression via upregulation of transcription factor SOX9. By expressing a dominant negative form of SOX9, disrupting endogenous SOX9 activity, the retinoic acid-induced HES-1 mRNA expression was inhibited. We found an enhancer regulating HES-1 expression: two SOX9 binding sites upstream of the HES-1 gene that were capable of binding SOX9 in vitro. By performing chromatin immunoprecipitation, we showed that SOX9 binding to the HES-1 enhancer was induced by retinoic acid in vivo. In reporter assays, transfection of a SOX9 expression plasmid increased the activity of the HES-1 enhancer. The enhancer responded to retinoic acid; furthermore, the expression of a dominant negative SOX9 abolished this response. Taken together, we present here a novel transcriptional mechanism in regulating hormone-dependent cancer cell proliferation.
Collapse
Affiliation(s)
- Patrick Müller
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 141 57, Huddinge, Sweden.
| | | | | | | | | | | | | |
Collapse
|
44
|
Kageyama R, Ohtsuka T, Shimojo H, Imayoshi I. Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition. Nat Neurosci 2008; 11:1247-51. [DOI: 10.1038/nn.2208] [Citation(s) in RCA: 247] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
45
|
Tremblay CS, Huang FF, Habi O, Huard CC, Godin C, Lévesque G, Carreau M. HES1 is a novel interactor of the Fanconi anemia core complex. Blood 2008; 112:2062-70. [PMID: 18550849 PMCID: PMC5154739 DOI: 10.1182/blood-2008-04-152710] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fanconi anemia (FA) proteins are thought to play a role in chromosome stability and repair of DNA cross-links; however, these functions may not fully explain the developmental abnormalities and bone marrow failure that are characteristic of FA individuals. Here we associate the FA proteins with the Notch1 developmental pathway through a direct protein-protein interaction between the FA core complex and the hairy enhancer of split 1 (HES1). HES1 interaction with FA core complex members is dependent on a functional FA pathway. Cells depleted of HES1 exhibit an FA-like phenotype that includes cellular hypersensitivity to mitomycin C (MMC) and lack of FANCD2 monoubiquitination and foci formation. HES1 is also required for proper nuclear localization or stability of some members of the core complex. Our results suggest that HES1 is a novel interacting protein of the FA core complex.
Collapse
Affiliation(s)
- Cédric S. Tremblay
- Unité de recherche en Pédiatrie, Centre de recherche du Centre Hospitalier de l’Université Laval, Québec, QC
| | - Feng F. Huang
- Unité de recherche en Pédiatrie, Centre de recherche du Centre Hospitalier de l’Université Laval, Québec, QC
| | - Ouassila Habi
- Unité de recherche en Pédiatrie, Centre de recherche du Centre Hospitalier de l’Université Laval, Québec, QC
| | - Caroline C. Huard
- Unité de recherche en Pédiatrie, Centre de recherche du Centre Hospitalier de l’Université Laval, Québec, QC
| | - Chantal Godin
- Unité de Neurosciences, Centre de recherche du Centre Hospitalier de l’Université Laval, Québec, QC
| | - Georges Lévesque
- Unité de Neurosciences, Centre de recherche du Centre Hospitalier de l’Université Laval, Québec, QC
- Département de Biologie Médicale, Université Laval, Québec, QC
| | - Madeleine Carreau
- Unité de recherche en Pédiatrie, Centre de recherche du Centre Hospitalier de l’Université Laval, Québec, QC
- Département de Pédiatrie, Université Laval, Québec, QC
| |
Collapse
|
46
|
Stevens JD, Roalson EH, Skinner MK. Phylogenetic and expression analysis of the basic helix-loop-helix transcription factor gene family: genomic approach to cellular differentiation. Differentiation 2008; 76:1006-22. [PMID: 18557763 DOI: 10.1111/j.1432-0436.2008.00285.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A phylogenetic analysis of seven different species (human, mouse, rat, worm, fly, yeast, and plant) utilizing all (541) basic helix-loop-helix (bHLH) genes identified, including expressed sequence tags (EST), was performed. A super-tree involving six clades and a structural categorization involving the entire coding sequence was established. A nomenclature was developed based on clade distribution to discuss the functional and ancestral relationships of all the genes. The position/location of specific genes on the phylogenetic tree in relation to known bHLH factors allows for predictions of the potential functions of uncharacterized bHLH factors, including EST's. A genomic analysis using microarrays for four different mouse cell types (i.e. Sertoli, Schwann, thymic, and muscle) was performed and considered all known bHLH family members on the microarray for comparison. Cell-specific groups of bHLH genes helped clarify those bHLH genes potentially involved in cell specific differentiation. This phylogenetic and genomic analysis of the bHLH gene family has revealed unique aspects of the evolution and functional relationships of the different genes in the bHLH gene family.
Collapse
Affiliation(s)
- Jeffrey D Stevens
- Center for Reproductive Biology, School of Molecular Biosciences, Pullman, WA 99164-4231, USA
| | | | | |
Collapse
|
47
|
Shimojo H, Ohtsuka T, Kageyama R. Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 2008; 58:52-64. [PMID: 18400163 DOI: 10.1016/j.neuron.2008.02.014] [Citation(s) in RCA: 525] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 01/11/2008] [Accepted: 02/14/2008] [Indexed: 11/19/2022]
Abstract
Expression of the Notch effector gene Hes1 is required for maintenance of neural progenitors in the embryonic brain, but persistent and high levels of Hes1 expression inhibit proliferation and differentiation of these cells. Here, by using a real-time imaging method, we found that Hes1 expression dynamically oscillates in neural progenitors. Furthermore, sustained overexpression of Hes1 downregulates expression of proneural genes, Notch ligands, and cell cycle regulators, suggesting that their proper expression depends on Hes1 oscillation. Surprisingly, the proneural gene Neurogenin2 (Ngn2) and the Notch ligand Delta-like1 (Dll1) are also expressed in an oscillatory manner by neural progenitors, and inhibition of Notch signaling, a condition known to induce neuronal differentiation, leads to downregulation of Hes1 and sustained upregulation of Ngn2 and Dll1. These results suggest that Hes1 oscillation regulates Ngn2 and Dll1 oscillations, which in turn lead to maintenance of neural progenitors by mutual activation of Notch signaling.
Collapse
Affiliation(s)
- Hiromi Shimojo
- Institute for Virus Research, Kyoto University, and Japan Science and Technology Agency, CREST, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
48
|
Stigloher C, Chapouton P, Adolf B, Bally-Cuif L. Identification of neural progenitor pools by E(Spl) factors in the embryonic and adult brain. Brain Res Bull 2008; 75:266-73. [DOI: 10.1016/j.brainresbull.2007.10.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 10/17/2007] [Indexed: 11/26/2022]
|
49
|
Nakazaki H, Reddy AC, Mania-Farnell BL, Shen YW, Ichi S, McCabe C, George D, McLone DG, Tomita T, Mayanil CSK. Key basic helix-loop-helix transcription factor genes Hes1 and Ngn2 are regulated by Pax3 during mouse embryonic development. Dev Biol 2008; 316:510-23. [PMID: 18308300 DOI: 10.1016/j.ydbio.2008.01.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 01/08/2008] [Accepted: 01/09/2008] [Indexed: 11/20/2022]
Abstract
Pax3 is expressed early during embryonic development in spatially restricted domains including limb muscle, neural crest, and neural tube. Pax3 functions at the nodal point in melanocyte stem cell differentiation, cardiogenesis and neurogenesis. Additionally Pax3 has been implicated in migration and differentiation of precursor cell populations. Currently there are questions about how Pax3 regulates these diverse functions. In this study we found that in the absence of functional Pax3, as in Splotch embryos, the neural crest cells undergo premature neurogenesis, as evidenced by increased Brn3a positive staining in neural tube explants, in comparison with wild-type. Premature neurogenesis in the absence of functional Pax3 may be due to a change in the regulation of basic helix-loop-helix transcription factors implicated in proliferation and differentiation. Using promoter-luciferase activity measurements in transient co-transfection experiments and electro-mobility shift assays, we show that Pax3 regulates Hairy and enhancer of split homolog-1 (Hes1) and Neurogenin2 (Ngn2) by directly binding to their promoters. Chromatin immunoprecipitation assays confirmed that Pax3 bound to cis-regulatory elements within Hes1 and Ngn2 promoters. These observations suggest that Pax3 regulates Hes1 and Ngn2 and imply that it may couple migration with neural stem cell maintenance and neurogenesis.
Collapse
Affiliation(s)
- Hiromichi Nakazaki
- Laboratory for Neural Tube Research, Developmental Biology Program, Children's Memorial Research Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Maroto M, Iimura T, Dale JK, Bessho Y. BHLH proteins and their role in somitogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 638:124-39. [PMID: 21038774 DOI: 10.1007/978-0-387-09606-3_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The most obvious manifestation of the existence of a segmented, or metameric, body plan in vertebrate embryos is seen during the formation of the somites. Somites are transient embryonic structures formed in a progressive manner from a nonsegmented mesoderm in a highly regulated process called somitogenesis. As development proceeds different compartments are formed within each somite and these progressively follow a variety of differentiation programs to form segmented organs, such as the different bones that make the axial skeleton, body skeletal muscles and part of the dermis. Transcription factors from the basic helix-loop-helix (bHLH) protein family have been described to be implicated in each of the processes involved in somite formation. bHLH proteins are a family of transcription factors characterized by the presence of a DNA binding domain and a dimerization motif that consists of a basic region adjacent to an amphipathic helix, a loop and a second amphipathic helix. In this chapter we will review a number of bHLH proteins known to play a role in somitogenesis.
Collapse
Affiliation(s)
- Miguel Maroto
- College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK.
| | | | | | | |
Collapse
|