1
|
Brock K, Alpha KM, Brennan G, De Jong EP, Luke E, Turner CE. A comparative analysis of paxillin and Hic-5 proximity interactomes. Cytoskeleton (Hoboken) 2025; 82:12-31. [PMID: 38801098 PMCID: PMC11599474 DOI: 10.1002/cm.21878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
Focal adhesions serve as structural and signaling hubs, facilitating bidirectional communication at the cell-extracellular matrix interface. Paxillin and the related Hic-5 (TGFβ1i1) are adaptor/scaffold proteins that recruit numerous structural and regulatory proteins to focal adhesions, where they perform both overlapping and discrete functions. In this study, paxillin and Hic-5 were expressed in U2OS osteosarcoma cells as biotin ligase (BioID2) fusion proteins and used as bait proteins for proximity-dependent biotinylation in order to directly compare their respective interactomes. The fusion proteins localized to both focal adhesions and the centrosome, resulting in biotinylation of components of each of these structures. Biotinylated proteins were purified and analyzed by mass spectrometry. The list of proximity interactors for paxillin and Hic-5 comprised numerous shared core focal adhesion proteins that likely contribute to their similar functions in cell adhesion and migration, as well as proteins unique to paxillin and Hic-5 that have been previously localized to focal adhesions, the centrosome, or the nucleus. Western blotting confirmed biotinylation and enrichment of FAK and vinculin, known interactors of Hic-5 and paxillin, as well as several potentially unique proximity interactors of Hic-5 and paxillin, including septin 7 and ponsin, respectively. Further investigation into the functional relationship between the unique interactors and Hic-5 or paxillin may yield novel insights into their distinct roles in cell migration.
Collapse
Affiliation(s)
- Katia Brock
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Kyle M. Alpha
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Grant Brennan
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Ebbing P. De Jong
- Proteomics Core facility, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Elizabeth Luke
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Christopher E. Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
2
|
The explorations of dynamic interactions of paxillin at the focal adhesions. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140825. [PMID: 35926716 DOI: 10.1016/j.bbapap.2022.140825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
Paxillin is one of the most important adapters in integrin-mediated adhesions that performs numerous crucial functions relying on its dynamic interactions. Its structural behavior serves different purposes, providing a base for several activities. The various domains of paxillin display different functions in the whole process of cell movements and have a significant role in cell adhesion, migration, signal transmission, and protein-protein interactions. On the other hand, some paxillin-associated proteins provide a unique spatiotemporal mechanism for regulating its dynamic characteristics in the tissue homeostasis and make it a more complex and decisive protein at the focal adhesions. This review briefly describes the structural adaptations and molecular mechanisms of recruitment of paxillin into adhesions, explains paxillin's binding dynamics and impact on adhesion stability and turnover, and reveals a variety of paxillin-associated regulatory mechanisms and how paxillin is embedded into the signaling networks.
Collapse
|
3
|
Wu WS, Ling CH, Lee MC, Cheng CC, Chen RF, Lin CF, You RI, Chen YC. Targeting Src-Hic-5 Signal Cascade for Preventing Migration of Cholangiocarcinoma Cell HuCCT1. Biomedicines 2022; 10:biomedicines10051022. [PMID: 35625759 PMCID: PMC9138979 DOI: 10.3390/biomedicines10051022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common primary liver cancer with poor prognosis. The deregulation of a lot of oncogenic signaling molecules, such as receptor tyrosine kinases (RTKs), has been found to be associated with CCA progression. However, RTKs-based target therapy showed limited improvement suggesting a need to search for alternative targets for preventing CCA progression. To address this issue, we screened the oncogenic signal molecules upregulated in surgical tissues of CCAs. Interestingly, over-expression of hydrogen peroxide inducible clone-5 (Hic-5) coupled with over-activation of Src, AKT, JNK were observed in 50% of the cholangiocarcinoma with metastatic potential. To investigate whether these molecules may work together to trigger metastatic signaling, their up-and-down relationship was examined in a well-established cholangiocarcinoma cell line, HuCCT1. Src inhibitors PP1 (IC50, 13.4 μM) and dasatinib (IC50, 0.1 μM) significantly decreased both phosphorylated AKT (phosphor-AKT Thr450) and Hic-5 in HuCCT1. In addition, a knockdown of Hic-5 effectively suppressed activation of Src, JNK, and AKT. These implicated a positive cross-talk occurred between Hic-5 and Src for triggering AKT activation. Further, depletion of Hic-5 and inhibition of Src suppressed HuccT1 cell migration in a dose-dependent manner. Remarkably, prior transfection of Hic-5 siRNA for 24 h followed by treatment with PP1 or dasatinib for 24 h resulted in additive suppression of HuCCT1 migration. This suggested that a promising combinatory efficacy can be achieved by depletion of Hic-5 coupled with inhibition of Src. In the future, target therapy against CCA progression by co-targeting Hic-5 and Src may be successfully developed in vivo.
Collapse
Affiliation(s)
- Wen-Sheng Wu
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (W.-S.W.); (C.-H.L.); (C.-C.C.); (R.-F.C.); (C.-F.L.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
| | - Chin-Hsien Ling
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (W.-S.W.); (C.-H.L.); (C.-C.C.); (R.-F.C.); (C.-F.L.)
| | - Ming-Che Lee
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chuan-Chu Cheng
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (W.-S.W.); (C.-H.L.); (C.-C.C.); (R.-F.C.); (C.-F.L.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
| | - Rui-Fang Chen
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (W.-S.W.); (C.-H.L.); (C.-C.C.); (R.-F.C.); (C.-F.L.)
| | - Chen-Fang Lin
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (W.-S.W.); (C.-H.L.); (C.-C.C.); (R.-F.C.); (C.-F.L.)
| | - Ren-In You
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970, Taiwan;
| | - Yen-Cheng Chen
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (W.-S.W.); (C.-H.L.); (C.-C.C.); (R.-F.C.); (C.-F.L.)
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Correspondence:
| |
Collapse
|
4
|
Alpha KM, Xu W, Turner CE. Paxillin family of focal adhesion adaptor proteins and regulation of cancer cell invasion. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:1-52. [PMID: 32859368 PMCID: PMC7737098 DOI: 10.1016/bs.ircmb.2020.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The paxillin family of proteins, including paxillin, Hic-5, and leupaxin, are focal adhesion adaptor/scaffolding proteins which localize to cell-matrix adhesions and are important in cell adhesion and migration of both normal and cancer cells. Historically, the role of these proteins in regulating the actin cytoskeleton through focal adhesion-mediated signaling has been well documented. However, studies in recent years have revealed additional functions in modulating the microtubule and intermediate filament cytoskeletons to affect diverse processes including cell polarization, vesicle trafficking and mechanosignaling. Expression of paxillin family proteins in stromal cells is also important in regulating tumor cell migration and invasion through non-cell autonomous effects on the extracellular matrix. Both paxillin and Hic-5 can also influence gene expression through a variety of mechanisms, while their own expression is frequently dysregulated in various cancers. Accordingly, these proteins may serve as valuable targets for novel diagnostic and treatment approaches in cancer.
Collapse
Affiliation(s)
- Kyle M Alpha
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Weiyi Xu
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Christopher E Turner
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
5
|
The Leptin induced Hic-5 expression and actin puncta formation by the FAK/Src-dependent pathway in MCF10A mammary epithelial cells. ACTA ACUST UNITED AC 2019; 39:547-560. [PMID: 31584768 PMCID: PMC7357355 DOI: 10.7705/biomedica.4313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Indexed: 12/21/2022]
Abstract
Introduction: Leptin is a hormone secreted by adipocytes that has been associated with the epithelial-mesenchymal transition (EMT). Additionally, leptin promotes the migration and invasion of mammary epithelial cells through the activation of FAK and Src kinases, which are part of a regulatory complex of signaling pathways that promotes the expression of proteins related to the formation of proteolytic structures involved in the invasion and progression of cancer. Recently, overexpression and activation of Hic-5 during the EMT have been shown to induce the formation of actin puncta; these structures are indicative of the formation and functionality of invadopodia, which promote the local degradation of extracellular matrix components and cancer metastasis.
Objective: To evaluate the role of FAK and Src kinases in the expression of Hic-5 during the epithelial-mesenchymal transition induced by leptin in MCF10A cells.
Materials and methods: We used specific inhibitors of FAK (PF-573228) and Src (PP2) to evaluate Hic-5 expression and subcellular localization by Western blot and immunofluorescence assays and to investigate the formation of actin puncta by epifluorescence in MCF10A cells stimulated with leptin.
Results: Leptin induced an increase in Hic-5 expression and the formation of actin puncta. Pretreatment with inhibitors of FAK (PF-573228) and Src (PP2) promoted a decrease in Hic-5 expression and actin puncta formation in the non-tumorigenic mammary epithelial cell line MCF10A.
Conclusion: In MCF10A cells, leptin-induced Hic-5 expression and perinuclear localization, as well as the formation of actin puncta through a mechanism dependent on the kinase activity of FAK and Src.
Collapse
|
6
|
Gulvady AC, Forsythe IJ, Turner CE. Hic-5 regulates Src-induced invadopodia rosette formation and organization. Mol Biol Cell 2019; 30:1298-1313. [PMID: 30893012 PMCID: PMC6724605 DOI: 10.1091/mbc.e18-10-0629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fibroblasts transformed by the proto-oncogene Src form individual invadopodia that can spontaneously self-organize into large matrix-degrading superstructures called rosettes. However, the mechanisms by which the invadopodia can spatiotemporally reorganize their architecture is not well understood. Here, we show that Hic-5, a close relative of the scaffold protein paxillin, is essential for the formation and organization of rosettes in active Src-transfected NIH3T3 fibroblasts and cancer-associated fibroblasts. Live cell imaging, combined with domain-mapping analysis of Hic-5, identified critical motifs as well as phosphorylation sites that are required for the formation and dynamics of rosettes. Using pharmacological inhibition and mutant expression, we show that FAK kinase activity, along with its proximity to and potential interaction with the LD2,3 motifs of Hic-5, is necessary for rosette formation. Invadopodia dynamics and their coalescence into rosettes were also dependent on Rac1, formin, and myosin II activity. Superresolution microscopy revealed the presence of formin FHOD1 and INF2-mediated unbranched radial F-actin fibers emanating from invadopodia and rosettes, which may facilitate rosette formation. Collectively, our data highlight a novel role for Hic-5 in orchestrating the organization of invadopodia into higher-order rosettes, which may promote the localized matrix degradation necessary for tumor cell invasion.
Collapse
Affiliation(s)
- Anushree C Gulvady
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Ian J Forsythe
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
7
|
Zhao Y, Huang W, Kim TM, Jung Y, Menon LG, Xing H, Li H, Carroll RS, Park PJ, Yang HW, Johnson MD. MicroRNA-29a activates a multi-component growth and invasion program in glioblastoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:36. [PMID: 30683134 PMCID: PMC6347789 DOI: 10.1186/s13046-019-1026-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/06/2019] [Indexed: 12/12/2022]
Abstract
Background Glioblastoma is a malignant brain tumor characterized by rapid growth, diffuse invasion and therapeutic resistance. We recently used microRNA expression profiles to subclassify glioblastoma into five genetically and clinically distinct subclasses, and showed that microRNAs both define and contribute to the phenotypes of these subclasses. Here we show that miR-29a activates a multi-faceted growth and invasion program that promotes glioblastoma aggressiveness. Methods microRNA expression profiles from 197 glioblastomas were analyzed to identify the candidate miRNAs that are correlated to glioblastoma aggressiveness. The candidate miRNA, miR-29a, was further studied in vitro and in vivo. Results Members of the miR-29 subfamily display increased expression in the two glioblastoma subclasses with the worst prognoses (astrocytic and neural). We observed that miR-29a is among the microRNAs that are most positively-correlated with PTEN copy number in glioblastoma, and that miR-29a promotes glioblastoma growth and invasion in part by targeting PTEN. In PTEN-deficient glioblastoma cells, however, miR-29a nevertheless activates AKT by downregulating the metastasis suppressor, EphB3. In addition, miR-29a robustly promotes invasion in PTEN-deficient glioblastoma cells by repressing translation of the Sox4 transcription factor, and this upregulates the invasion-promoting protein, HIC5. Indeed, we identified Sox4 as the most anti-correlated predicted target of miR-29a in glioblastoma. Importantly, inhibition of endogenous miR-29a decreases glioblastoma growth and invasion in vitro and in vivo, and increased miR-29a expression in glioblastoma specimens correlates with decreased patient survival. Conclusions Taken together, these data identify miR-29a as a master regulator of glioblastoma growth and invasion. Electronic supplementary material The online version of this article (10.1186/s13046-019-1026-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Chemotherapy, Tumor Hospital of Guangxi Medical University, No.2, Nanning, Guangxi, China
| | - Wei Huang
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tae-Min Kim
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Yuchae Jung
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lata G Menon
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hongyan Xing
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hongwei Li
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rona S Carroll
- Department of Neurological Surgery, University of Massachusetts Medical School, Albert Sherman Center AS6-1001, 368 Plantation Street, Worcester, MA, 01605, USA.,Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Hong Wei Yang
- Department of Neurological Surgery, University of Massachusetts Medical School, Albert Sherman Center AS6-1001, 368 Plantation Street, Worcester, MA, 01605, USA. .,Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Mark D Johnson
- Department of Neurological Surgery, University of Massachusetts Medical School, Albert Sherman Center AS6-1001, 368 Plantation Street, Worcester, MA, 01605, USA. .,Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. .,Program in Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA. .,Department of Neurological Surgery, UMass Memorial Healthcare, University of Massachusetts Medical School, 55 Lake Avenue North, S2-855, Worcester, MA, 01655, USA.
| |
Collapse
|
8
|
Mori K, Uchida T, Yoshie T, Mizote Y, Ishikawa F, Katsuyama M, Shibanuma M. A mitochondrial ROS pathway controls matrix metalloproteinase 9 levels and invasive properties in RAS-activated cancer cells. FEBS J 2018; 286:459-478. [PMID: 30281903 PMCID: PMC7379617 DOI: 10.1111/febs.14671] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 08/29/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) are tissue‐remodeling enzymes involved in the processing of various biological molecules. MMPs also play important roles in cancer metastasis, contributing to angiogenesis, intravasation of tumor cells, and cell migration and invasion. Accordingly, unraveling the signaling pathways controlling MMP activities could shed additional light on cancer biology. Here, we report a molecular axis, comprising the molecular adaptor hydrogen peroxide‐inducible clone‐5 (HIC‐5), NADPH oxidase 4 (NOX4), and mitochondria‐associated reactive oxygen species (mtROS), that regulates MMP9 expression and may be a target to suppress cancer metastasis. We found that this axis primarily downregulates mtROS levels which stabilize MMP9 mRNA. Specifically, HIC‐5 suppressed the expression of NOX4, the source of the mtROS, thereby decreasing mtROS levels and, consequently, destabilizing MMP9 mRNA. Interestingly, among six cancer cell lines, only EJ‐1 and MDA‐MB‐231 cells exhibited upregulation of NOX4 and MMP9 expression after shRNA‐mediated HIC‐5 knockdown. In these two cell lines, activating RAS mutations commonly occur, suggesting that the HIC‐5–mediated suppression of NOX4 depends on RAS signaling, a hypothesis that was supported experimentally by the introduction of activated RAS into mammary epithelial cells. Notably, HIC‐5 knockdown promoted lung metastasis of MDA‐MB‐231 cancer cells in mice. The tumor growth of HIC‐5–silenced MDA‐MB‐231 cells at the primary sites was comparable to that of control cells. Consistently, the invasive properties of the cells, but not their proliferation, were enhanced by the HIC‐5 knockdown in vitro. We conclude that NOX4‐mediated mtROS signaling increases MMP9 mRNA stability and affects cancer invasiveness but not tumor growth.
Collapse
Affiliation(s)
- Kazunori Mori
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, Japan
| | - Tetsu Uchida
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, Japan
| | - Toshihiko Yoshie
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, Japan
| | - Yuko Mizote
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, Japan
| | - Fumihiro Ishikawa
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, Japan
| | - Masato Katsuyama
- Radioisotope Center, Kyoto Prefectural University of Medicine, Japan
| | - Motoko Shibanuma
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
9
|
Targeting Focal Adhesion Kinase Using Inhibitors of Protein-Protein Interactions. Cancers (Basel) 2018; 10:cancers10090278. [PMID: 30134553 PMCID: PMC6162372 DOI: 10.3390/cancers10090278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022] Open
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic non-receptor protein tyrosine kinase that is overexpressed and activated in many human cancers. FAK transmits signals to a wide range of targets through both kinase-dependant and independent mechanism thereby playing essential roles in cell survival, proliferation, migration and invasion. In the past years, small molecules that inhibit FAK kinase function have been developed and show reduced cancer progression and metastasis in several preclinical models. Clinical trials have been conducted and these molecules display limited adverse effect in patients. FAK contain multiple functional domains and thus exhibit both important scaffolding functions. In this review, we describe the major FAK interactions relevant in cancer signalling and discuss how such knowledge provide rational for the development of Protein-Protein Interactions (PPI) inhibitors.
Collapse
|
10
|
Garlíková Z, Silva AC, Rabata A, Potěšil D, Ihnatová I, Dumková J, Koledová Z, Zdráhal Z, Vinarský V, Hampl A, Pinto-do-Ó P, Nascimento DS. Generation of a Close-to-Native In Vitro System to Study Lung Cells-Extracellular Matrix Crosstalk. Tissue Eng Part C Methods 2017; 24:1-13. [PMID: 28895470 DOI: 10.1089/ten.tec.2017.0283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Extracellular matrix (ECM) is an essential component of the tissue microenvironment, actively shaping cellular behavior. In vitro culture systems are often poor in ECM constituents, thus not allowing for naturally occurring cell-ECM interactions. This study reports on a straightforward and efficient method for the generation of ECM scaffolds from lung tissue and its subsequent in vitro application using primary lung cells. Mouse lung tissue was subjected to decellularization with 0.2% sodium dodecyl sulfate, hypotonic solutions, and DNase. Resultant ECM scaffolds were devoid of cells and DNA, whereas lung ECM architecture of alveolar region and blood and airway networks were preserved. Scaffolds were predominantly composed of core ECM and ECM-associated proteins such as collagens I-IV, nephronectin, heparan sulfate proteoglycan core protein, and lysyl oxidase homolog 1, among others. When homogenized and applied as coating substrate, ECM supported the attachment of lung fibroblasts (LFs) in a dose-dependent manner. After ECM characterization and biocompatibility tests, a novel in vitro platform for three-dimensional (3D) matrix repopulation that permits live imaging of cell-ECM interactions was established. Using this system, LFs colonized the ECM scaffolds, displaying a close-to-native morphology in intimate interaction with the ECM fibers, and showed nuclear translocation of the mechanosensor yes-associated protein (YAP), when compared with cells cultured in two dimensions. In conclusion, we developed a 3D-like culture system, by combining an efficient decellularization method with a live-imaging culture platform, to replicate in vitro native lung cell-ECM crosstalk. This is a valuable system that can be easily applied to other organs for ECM-related drug screening, disease modeling, and basic mechanistic studies.
Collapse
Affiliation(s)
- Zuzana Garlíková
- 1 Department of Histology and Embryology, Faculty of Medicine, Masaryk University , Brno, Czech Republic .,2 FNUSA-ICRC-International Clinical Research Center of St. Anne University Hospital Brno , Brno, Czech Republic
| | - Ana Catarina Silva
- 3 i3S-Instituto de Investigação e Inovação em Saúde , Porto, Portugal .,4 INEB-Instituto Nacional de Engenharia Biomédica , Porto, Portugal .,5 ICBAS-Instituto de Ciências Biomédicas de Abel Salazar , Porto, Portugal .,6 Gladstone Institutes, University of California San Francisco , San Francisco, California
| | - Anas Rabata
- 1 Department of Histology and Embryology, Faculty of Medicine, Masaryk University , Brno, Czech Republic
| | - David Potěšil
- 7 CEITEC-Central European Institute for Technology, Research Group Proteomics, Masaryk University , Brno, Czech Republic
| | - Ivana Ihnatová
- 7 CEITEC-Central European Institute for Technology, Research Group Proteomics, Masaryk University , Brno, Czech Republic
| | - Jana Dumková
- 1 Department of Histology and Embryology, Faculty of Medicine, Masaryk University , Brno, Czech Republic
| | - Zuzana Koledová
- 1 Department of Histology and Embryology, Faculty of Medicine, Masaryk University , Brno, Czech Republic
| | - Zbyněk Zdráhal
- 7 CEITEC-Central European Institute for Technology, Research Group Proteomics, Masaryk University , Brno, Czech Republic
| | - Vladimír Vinarský
- 2 FNUSA-ICRC-International Clinical Research Center of St. Anne University Hospital Brno , Brno, Czech Republic
| | - Aleš Hampl
- 1 Department of Histology and Embryology, Faculty of Medicine, Masaryk University , Brno, Czech Republic .,2 FNUSA-ICRC-International Clinical Research Center of St. Anne University Hospital Brno , Brno, Czech Republic
| | - Perpétua Pinto-do-Ó
- 3 i3S-Instituto de Investigação e Inovação em Saúde , Porto, Portugal .,4 INEB-Instituto Nacional de Engenharia Biomédica , Porto, Portugal .,5 ICBAS-Instituto de Ciências Biomédicas de Abel Salazar , Porto, Portugal
| | - Diana Santos Nascimento
- 3 i3S-Instituto de Investigação e Inovação em Saúde , Porto, Portugal .,4 INEB-Instituto Nacional de Engenharia Biomédica , Porto, Portugal
| |
Collapse
|
11
|
Sheta R, Wang ZQ, Bachvarova M, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Gobeil S, Morin C, Macdonald E, Vanderhyden B, Bachvarov D. Hic-5 regulates epithelial to mesenchymal transition in ovarian cancer cells in a TGFβ1-independent manner. Oncotarget 2017; 8:82506-82530. [PMID: 29137281 PMCID: PMC5669907 DOI: 10.18632/oncotarget.19714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/17/2017] [Indexed: 01/01/2023] Open
Abstract
The molecular basis of epithelial ovarian cancer (EOC) dissemination is still poorly understood. We have previously identified the hydrogen peroxide-inducible clone-5 (Hic-5) gene as hypomethylated in high-grade (HG) serous EOC tumors, compared to normal ovarian tissues. Hic-5 is a focal adhesion scaffold protein and has been primarily studied for its role as a key mediator of TGF-β–induced epithelial-to-mesenchymal transition (EMT) in epithelial cells of both normal and malignant origin; however, its role in EOC has been never investigated. Here we demonstrate that Hic-5 is overexpressed in advanced EOC, and that Hic-5 is upregulated upon TGFβ1 treatment in the EOC cell line with epithelial morphology (A2780s), associated with EMT induction. However, ectopic expression of Hic-5 in A2780s cells induces EMT independently of TGFβ1, accompanied with enhancement of cellular proliferation rate and migratory/invasive capacity and increased resistance to chemotherapeutic drugs. Moreover, Hic-5 knockdown in the EOC cells with mesenchymal morphology (SKOV3) was accompanied by induction of mesenchymal-to-epithelial transition (MET), followed by a reduction of their proliferative, migratory/invasive capacity, and increased drugs sensitivity in vitro, as well as enhanced tumor cell colonization and metastatic growth in vivo. The modulation of Hic-5 expression in EOC cells resulted in altered regulation of numerous EMT-related canonical pathways and was indicative for a possible role of Hic-5 in controlling EMT through a RhoA/ROCK mediated mechanism. To our knowledge, this is the first report examining the role of Hic-5 in EOC, and its role in maintaining the mesenchymal phenotype of EOC cells independently of exogenous TGFβ1 treatment.
Collapse
Affiliation(s)
- Razan Sheta
- Department of Molecular Medicine, Université Laval, Québec, Québec, Canada.,Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec, Québec, Canada
| | - Zhi-Qiang Wang
- Department of Molecular Medicine, Université Laval, Québec, Québec, Canada.,Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec, Québec, Canada
| | - Magdalena Bachvarova
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec, Québec, Canada
| | - Marie Plante
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec, Québec, Canada.,Department of Obstetrics and Gynecology, Université Laval, Québec, Québec, Canada
| | - Jean Gregoire
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec, Québec, Canada.,Department of Obstetrics and Gynecology, Université Laval, Québec, Québec, Canada
| | - Marie-Claude Renaud
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec, Québec, Canada.,Department of Obstetrics and Gynecology, Université Laval, Québec, Québec, Canada
| | - Alexandra Sebastianelli
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec, Québec, Canada.,Department of Obstetrics and Gynecology, Université Laval, Québec, Québec, Canada
| | - Stephane Gobeil
- Department of Molecular Medicine, Université Laval, Québec, Québec, Canada.,Centre de recherche du CHU de Québec, CHUL, Québec, Québec, Canada
| | - Chantale Morin
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec, Québec, Canada
| | - Elizabeth Macdonald
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Barbara Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Dimcho Bachvarov
- Department of Molecular Medicine, Université Laval, Québec, Québec, Canada.,Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec, Québec, Canada
| |
Collapse
|
12
|
Sala S, Van Troys M, Medves S, Catillon M, Timmerman E, Staes A, Schaffner-Reckinger E, Gevaert K, Ampe C. Expanding the Interactome of TES by Exploiting TES Modules with Different Subcellular Localizations. J Proteome Res 2017; 16:2054-2071. [DOI: 10.1021/acs.jproteome.7b00034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefano Sala
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | | | - Sandrine Medves
- Cytoskeleton
and Cell Plasticity Lab, Life Sciences Research Unit − FSTC, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
- Laboratory of Experimental Cancer Research, LIH, 1445 Strassen, Luxembourg
| | - Marie Catillon
- Cytoskeleton
and Cell Plasticity Lab, Life Sciences Research Unit − FSTC, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Evy Timmerman
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
- VIB Medical Biotechnology Center, 9000 Gent, Belgium
| | - An Staes
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
- VIB Medical Biotechnology Center, 9000 Gent, Belgium
| | - Elisabeth Schaffner-Reckinger
- Cytoskeleton
and Cell Plasticity Lab, Life Sciences Research Unit − FSTC, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
- VIB Medical Biotechnology Center, 9000 Gent, Belgium
| | - Christophe Ampe
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| |
Collapse
|
13
|
Hic-5 remodeling of the stromal matrix promotes breast tumor progression. Oncogene 2016; 36:2693-2703. [PMID: 27893716 PMCID: PMC5541773 DOI: 10.1038/onc.2016.422] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 12/19/2022]
Abstract
The remodeling of the stromal extracellular matrix (ECM) plays a crucial, but incompletely understood role during tumor progression and metastasis. Hic-5, a focal adhesion scaffold protein, has previously been implicated in tumor cell invasion, proliferation and metastasis. To investigate the role of Hic-5 in breast tumor progression in vivo, Hic-5−/− mice were generated and crossed with the Mouse Mammary Tumor Virus-Polyoma Middle T Antigen (MMTV-PyMT) mouse. Tumors from the Hic-5−/−;PyMT mice exhibited increased latency and reduced growth, with fewer lung metastases, as compared to Hic-5+/−;PyMT mice. Immunohistochemical analysis showed that Hic-5 is primarily expressed in the cancer associated fibroblasts (CAFs). Further analysis revealed that the Hic-5−/−;PyMT tumor stroma contains fewer CAFs and exhibits reduced ECM deposition. The remodeling of the stromal matrix by CAFs has been shown to increase tumor rigidity to indirectly regulate FAK Y397 phosphorylation in tumor cells to promote their growth and invasion. Accordingly, the Hic-5−/−;PyMT tumor cells exhibited a reduction in FAK Y397 phosphorylation. Isolated Hic-5−/−;PyMT CAFs were defective in stress fiber organization and exhibited reduced contractility. These cells also failed to efficiently deposit and organize the ECM in two and three dimensions. This, in turn, impacted three dimensional MDA-MB-231 tumor cell migration behavior. Thus, using a new knockout mouse model, we have identified Hic-5 expression in CAFs as a key requirement for deposition and remodeling of the stromal ECM to promote non-cell autonomous breast tumor progression.
Collapse
|
14
|
Jacob AE, Turner CE, Amack JD. Evolution and Expression of Paxillin Genes in Teleost Fish. PLoS One 2016; 11:e0165266. [PMID: 27806088 PMCID: PMC5091871 DOI: 10.1371/journal.pone.0165266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/07/2016] [Indexed: 01/05/2023] Open
Abstract
Background Paxillin family proteins regulate intracellular signaling downstream of extracellular matrix adhesion. Tissue expression patterns and cellular functions of Paxillin proteins during embryo development remain poorly understood. Additionally, the evolution of this gene family has not been thoroughly investigated. Results This report characterizes the evolution and expression of a novel Paxillin gene, called Paxillin-b, in Teleosts. Alignments indicate that Teleost Paxillin-a and Paxillin-b proteins are highly homologous to each other and to human Paxillin. Phylogenetic and synteny analyses suggest that these genes originated from the duplication of an ancestral Paxillin gene that was in a common ancestor of Teleosts and Tetrapods. Analysis of the spatiotemporal expression profiles of Paxillin-a and Paxillin-b using zebrafish revealed both overlapping and distinct domains for Paxillin-a and Paxillin-b during embryo development. Localization of zebrafish Paxillin orthologs expressed in mammalian cells demonstrated that both proteins localize to focal adhesions, similar to mammalian Paxillin. This suggests these proteins regulate adhesion-dependent processes in their endogenous tissues. Conclusion Paxillin-a and Paxillin-b were generated by duplication in Teleosts. These genes likely play similar roles as Paxillin genes in other organisms. This work provides a framework for functional investigation of Paxillin family members during development using the zebrafish as an in vivo model system.
Collapse
Affiliation(s)
- Andrew E. Jacob
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York, 13210, United States of America
| | - Christopher E. Turner
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York, 13210, United States of America
- * E-mail: (CET); (JDA)
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York, 13210, United States of America
- * E-mail: (CET); (JDA)
| |
Collapse
|
15
|
Hadzic E, Catillon M, Halavatyi A, Medves S, Van Troys M, Moes M, Baird MA, Davidson MW, Schaffner-Reckinger E, Ampe C, Friederich E. Delineating the Tes Interaction Site in Zyxin and Studying Cellular Effects of Its Disruption. PLoS One 2015; 10:e0140511. [PMID: 26509500 PMCID: PMC4624954 DOI: 10.1371/journal.pone.0140511] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/25/2015] [Indexed: 01/21/2023] Open
Abstract
Focal adhesions are integrin-based structures that link the actin cytoskeleton and the extracellular matrix. They play an important role in various cellular functions such as cell signaling, cell motility and cell shape. To ensure and fine tune these different cellular functions, adhesions are regulated by a large number of proteins. The LIM domain protein zyxin localizes to focal adhesions where it participates in the regulation of the actin cytoskeleton. Because of its interactions with a variety of binding partners, zyxin has been proposed to act as a molecular scaffold. Here, we studied the interaction of zyxin with such a partner: Tes. Similar to zyxin, Tes harbors three highly conserved LIM domains of which the LIM1 domain directly interacts with zyxin. Using different zyxin variants in pull-down assays and ectopic recruitment experiments, we identified the Tes binding site in zyxin and showed that four highly conserved amino acids are crucial for its interaction with Tes. Based upon these findings, we used a zyxin mutant defective in Tes-binding to assess the functional consequences of abrogating the zyxin-Tes interaction in focal adhesions. Performing fluorescence recovery after photobleaching, we showed that zyxin recruits Tes to focal adhesions and modulates its turnover in these structures. However, we also provide evidence for zyxin-independent localization of Tes to focal adhesions. Zyxin increases focal adhesion numbers and reduces focal adhesion lifetimes, but does so independent of Tes. Quantitative analysis showed that the loss of interaction between zyxin and Tes affects the process of cell spreading. We conclude that zyxin influences focal adhesion dynamics, that it recruits Tes and that this interaction is functional in regulating cell spreading.
Collapse
Affiliation(s)
- Ermin Hadzic
- Laboratory of Cytoskeleton and Cell Plasticity, Life Sciences Research Unit, University of Luxembourg, Luxemburg, Luxembourg
| | - Marie Catillon
- Laboratory of Cytoskeleton and Cell Plasticity, Life Sciences Research Unit, University of Luxembourg, Luxemburg, Luxembourg
| | - Aliaksandr Halavatyi
- Laboratory of Cytoskeleton and Cell Plasticity, Life Sciences Research Unit, University of Luxembourg, Luxemburg, Luxembourg
| | - Sandrine Medves
- Laboratory of Cytoskeleton and Cell Plasticity, Life Sciences Research Unit, University of Luxembourg, Luxemburg, Luxembourg
| | | | - Michèle Moes
- Laboratory of Cytoskeleton and Cell Plasticity, Life Sciences Research Unit, University of Luxembourg, Luxemburg, Luxembourg
| | - Michelle A. Baird
- National High Magnetic Field Laboratory and Department of Biological Science, The Florida State University, Tallahassee, Florida, United States of America
| | - Michael W. Davidson
- National High Magnetic Field Laboratory and Department of Biological Science, The Florida State University, Tallahassee, Florida, United States of America
| | - Elisabeth Schaffner-Reckinger
- Laboratory of Cytoskeleton and Cell Plasticity, Life Sciences Research Unit, University of Luxembourg, Luxemburg, Luxembourg
| | - Christophe Ampe
- Department of Biochemistry, Ghent University, Ghent, Belgium
- * E-mail:
| | - Evelyne Friederich
- Laboratory of Cytoskeleton and Cell Plasticity, Life Sciences Research Unit, University of Luxembourg, Luxemburg, Luxembourg
| |
Collapse
|
16
|
Pattabiraman PP, Rao PV. Hic-5 Regulates Actin Cytoskeletal Reorganization and Expression of Fibrogenic Markers and Myocilin in Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci 2015; 56:5656-69. [PMID: 26313302 DOI: 10.1167/iovs.15-17204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To explore the role of inducible focal adhesion (FA) protein Hic-5 in actin cytoskeletal reorganization, FA formation, fibrogenic activity, and expression of myocilin in trabecular meshwork (TM) cells. METHODS Using primary cultures of human TM (HTM) cells, the effects of various external factors on Hic-5 protein levels, as well as the effects of recombinant Hic-5 and Hic-5 small interfering RNA (siRNA) on actin cytoskeleton, FAs, myocilin, α-smooth muscle actin (αSMA), and collagen-1 were determined by immunofluorescence and immunoblot analyses. RESULTS Hic-5 distributes discretely to the FAs in HTM cells and throughout the TM and Schlemm's canal of the human aqueous humor (AH) outflow pathway. Transforming growth factor-β2 (TGF-β2), endothelin-1, lysophosphatidic acid, hydrogen peroxide, and RhoA significantly increased Hic-5 protein levels in HTM cells in association with reorganization of actin cytoskeleton and FAs. While recombinant Hic-5 induced actin stress fibers, FAs, αv integrin redistribution to the FAs, increased levels of αSMA, collagen-1, and myocilin, Hic-5 siRNA suppressed most of these responses in HTM cells. Hic-5 siRNA also suppressed TGF-β2-induced fibrogenic activity and dexamethasone-induced myocilin expression in HTM cells. CONCLUSIONS Taken together, these results reveal that Hic-5, whose levels were increased by various external factors implicated in elevated intraocular pressure, induces actin cytoskeletal reorganization, FAs, expression of fibrogenic markers, and myocilin in HTM cells. These characteristics of Hic-5 in TM cells indicate its importance in regulation of AH outflow through the TM in both normal and glaucomatous eyes.
Collapse
Affiliation(s)
| | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States 2Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
17
|
Hornigold N, Mooney A. Extracellular matrix-induced Hic-5 expression in glomerular mesangial cells leads to a prosclerotic phenotype independent of TGF-β. FASEB J 2015; 29:4956-67. [PMID: 26405299 DOI: 10.1096/fj.14-269894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023]
Abstract
Chronic fibroproliferative diseases account for approximately 45% of all deaths in the developed world. In the kidney, glomerulosclerosis is the underlying pathology in approximately half of patients with renal failure receiving dialysis. Mesangial cell expression of the LIM protein hydrogen peroxide-induced clone-5 (Hic-5) is important in its pathogenesis. Hic-5 expression increases following mesangial cell attachment to collagen I, associated with increased collagen I expression and increased susceptibility to apoptosis both in vitro and in experimental glomerulosclerosis. TGF-β has an established role in many fibrotic diseases, including glomerulosclerosis, where it increases collagen I deposition in vivo and promotes mesangial cell apoptosis in vitro. In other cell types, TGF-β induces Hic-5 expression. We investigated whether Hic-5-induced changes in mesangial cell phenotype were TGF-β-dependent. Adding exogenous TGF-β to mesangial cell cultures failed to increase Hic-5 expression; blocking TGF-β signaling did not reduce Hic-5 expression. However, inducing Hic-5 expression in mesangial cells by adhesion to collagen I led to TGF-β expression, which was abolished by small interfering RNA (siRNA) Hic-5 knockdown. Mesangial cells expressing Hic-5 showed altered latent TGF-β-binding protein expression and Smad signaling, with enhanced susceptibility to TGF-β-induced apoptosis. Mesangial cell attachment to collagen I led to increased Hic-5 expression within 2-4 h and increased procollagen I transcription within 12 h, whereas adding TGF-β to siRNA Hic-5 knockdown mesangial cells increased procollagen I transcription to a lesser degree after 48 h. Mesangial cell Hic-5 expression was associated with increased α-smooth muscle actin and plasminogen activator inhibitor-1 expression. Taken together, these data indicate that there is a prosclerotic feedback loop in mesangial cells dependent on matrix-derived signals in which Hic-5 is a pivotal signaling protein. This feedback loop is TGF-β-independent. The role of TGF-β-dependent and -independent sclerotic pathways merit further investigation.
Collapse
Affiliation(s)
- Nick Hornigold
- *Cancer Research UK Clinical Centre and Renal Unit, St. James's University Hospital, Leeds, United Kingdom
| | - Andrew Mooney
- *Cancer Research UK Clinical Centre and Renal Unit, St. James's University Hospital, Leeds, United Kingdom
| |
Collapse
|
18
|
Ohanian J, Pieri M, Ohanian V. Non-receptor tyrosine kinases and the actin cytoskeleton in contractile vascular smooth muscle. J Physiol 2014; 593:3807-14. [PMID: 25433074 DOI: 10.1113/jphysiol.2014.284174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/14/2014] [Indexed: 01/01/2023] Open
Abstract
The contractility of vascular smooth muscle cells within the walls of arteries is regulated by mechanical stresses and vasoactive signals. Transduction of these diverse stimuli into a cellular response occurs through many different mechanisms, one being reorganisation of the actin cytoskeleton. In addition to a structural role in maintaining cellular architecture it is now clear that the actin cytoskeleton of contractile vascular smooth muscle cells is a dynamic structure reacting to changes in the cellular environment. Equally clear is that disrupting the cytoskeleton or interfering with its rearrangement, has profound effects on artery contractility. The actin cytoskeleton associates with dense plaques, also called focal adhesions, at the plasma membrane of smooth muscle cells. Vasoconstrictors and mechanical stress induce remodelling of the focal adhesions, concomitant with cytoskeletal reorganisation. Recent work has shown that non-receptor tyrosine kinases and tyrosine phosphorylation of focal adhesion proteins such as paxillin and Hic-5 are important for actin cytoskeleton and focal adhesion remodelling and contraction.
Collapse
Affiliation(s)
- Jacqueline Ohanian
- Institute of Cardiovascular Sciences, Manchester Academic Health Services Centre, University of Manchester, Manchester, UK
| | - Maria Pieri
- Institute of Cardiovascular Sciences, Manchester Academic Health Services Centre, University of Manchester, Manchester, UK
| | - Vasken Ohanian
- Institute of Cardiovascular Sciences, Manchester Academic Health Services Centre, University of Manchester, Manchester, UK
| |
Collapse
|
19
|
Leach DA, Need EF, Trotta AP, Grubisha MJ, DeFranco DB, Buchanan G. Hic-5 influences genomic and non-genomic actions of the androgen receptor in prostate myofibroblasts. Mol Cell Endocrinol 2014; 384:185-99. [PMID: 24440747 DOI: 10.1016/j.mce.2014.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/27/2013] [Accepted: 01/03/2014] [Indexed: 01/31/2023]
Abstract
There is extensive knowledge of androgen receptor (AR) signaling in cancer cells, but less regarding androgen action in stromal cells of the tumor microenvironment. We report here the genome-wide effects of a stromal cell specific molecular adapter and AR coregulator, hydrogen peroxide-inducible gene 5 (Hic-5/TGFB1I1), on AR function in prostate myofibroblasts. Following androgen stimulation, Hic-5 rapidly translocates to the nucleus, coincident with increased phosphorylation of focal adhesion kinase. As a coregulator, Hic-5 acted to amplify or inhibit regulation of approximately 50% of AR target genes, affected androgen regulation of growth, cell adhesion, motility and invasion. These data suggest Hic-5 as a transferable adaptor between focal adhesions and the nucleus of prostate myofibroblasts, where it acts a key mediator of the specificity and sensitivity of AR signaling. We propose a model in which Hic-5 coordinates AR signaling with adhesion and extracellular matrix contacts to regulate cell behavior in the tumor microenvironment.
Collapse
Affiliation(s)
- Damien A Leach
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, University of Adelaide, SA, Australia
| | - Eleanor F Need
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, University of Adelaide, SA, Australia
| | - Andrew P Trotta
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, University of Adelaide, SA, Australia
| | - Melanie J Grubisha
- School of Medicine, Department of Pharmacology and Chemical Biology, University of Pittsburgh, PA, USA
| | - Donald B DeFranco
- School of Medicine, Department of Pharmacology and Chemical Biology, University of Pittsburgh, PA, USA
| | - Grant Buchanan
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, University of Adelaide, SA, Australia.
| |
Collapse
|
20
|
Inhibition of collagen I accumulation reduces glomerulosclerosis by a Hic-5-dependent mechanism in experimental diabetic nephropathy. J Transl Med 2013; 93:553-65. [PMID: 23508044 DOI: 10.1038/labinvest.2013.42] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glomerulosclerosis of any cause is characterized by loss of functional glomerular cells and deposition of excessive amounts of interstitial collagens including collagen I. We have previously reported that mesangial cell attachment to collagen I leads to upregulation of Hic-5 in vitro, which mediates mesangial cell apoptosis. Furthermore, glomerular Hic-5 expression was increased during the progression of experimental glomerulosclerosis. We hypothesized that reducing collagen I accumulation in glomerulosclerosis would in turn lower Hic-5 expression, reducing mesangial cell apoptosis, and thus maintaining glomerular integrity. We examined archive renal tissue from rats undergoing experimental diabetic glomerulosclerosis, treated with the transglutaminase-2 inhibitor NTU281. Untreated animals exhibited increased glomerular collagen I accumulation, associated with increased glomerular Hic-5 expression, apoptosis, and mesangial myofibroblast transdifferentiation characterized by α-smooth muscle actin (α-SMA) expression. NTU281 treatment reduced glomerular collagen I accumulation, Hic-5 and α-SMA expression, and apoptosis. Proteinurea and serum creatinine levels were significantly reduced in animals with reduced Hic-5 expression. In vitro studies of Hic-5 knockdown or overexpression show that mesangial cell apoptosis and expression of both α-SMA and collagen I are Hic-5 dependent. Together, these data suggest that there exists, in vitro and in vivo, a positive feedback loop whereby increased levels of collagen I lead to increased mesangial Hic-5 expression favoring not only increased apoptosis, but also mesangial myofibroblast transdifferentiation and increased collagen I expression. Prevention of collagen I accumulation interrupts this Hic-5-dependent positive feedback loop, preserving glomerular architecture, cellular phenotype, and function.
Collapse
|
21
|
Deakin NO, Pignatelli J, Turner CE. Diverse roles for the paxillin family of proteins in cancer. Genes Cancer 2012; 3:362-70. [PMID: 23226574 DOI: 10.1177/1947601912458582] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The paxillin family of intracellular scaffold proteins includes paxillin, Hic-5, and leupaxin, and all have been identified as key regulators of the cellular migration machinery in both 2- and 3-dimensional microenvironments. Herein, we provide insight into the roles of these proteins during tumorigenesis and metastasis, highlighting their functions in cancer initiation as well as tumor cell dissemination and survival. Furthermore, we speculate on the potential of paxillin family proteins as both future prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Nicholas O Deakin
- State University of New York Upstate Medical University, Syracuse, NY, USA
| | | | | |
Collapse
|
22
|
Noguchi F, Inui S, Nakajima T, Itami S. Hic-5 affects proliferation, migration and invasion of B16 murine melanoma cells. Pigment Cell Melanoma Res 2012; 25:773-82. [PMID: 22883018 DOI: 10.1111/pcmr.12005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hic-5 is a shuttling protein between the cell membrane and the nucleus which functions as a focal adhesion adaptor protein and a nuclear receptor coactivator. Although several studies have shown its involvement in other types of cancer, the role of Hic-5 in melanoma is unknown. Herein, we show for the first time that Hic-5 is expressed in B16-F1 murine melanoma cells. To determine its function in melanoma cells, we used shRNA-mediated RNA interference and established stable clones with down-regulated Hic-5 expression. These clones had impaired growth and metastatic potential compared with controls in vivo, which correlated with decreased proliferation, migration and invasion in vitro. Moreover, silencing of Hic-5 expression in B16-F1 activated RhoA with an amoeboid phenotypic change, indicating that Hic-5 is a key regulator of B16-F1 metastasis in the context of Rho-dependent motility. These results provide new evidence that Hic-5 is a possible molecular target for treatment of melanoma.
Collapse
Affiliation(s)
- Fumihito Noguchi
- Department of Regenerative Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | |
Collapse
|
23
|
Abstract
PURPOSE The 27-kDa heat shock protein (HSP27) has been implicated in wound healing in multiple tissues. We investigated the expression and localization of phosphorylated HSP27 during epithelial wound healing in the murine cornea. METHODS Corneas of 8- to 10-week-old C57BL6 mice were wounded by epithelial debridement (n = 40). Unwounded corneas served as controls (n = 3). After 3, 7, and 14 days, phosphorylated HSP27 localization in wounded corneas was observed by confocal immunohistochemistry and double immunogold labeling transmission immunoelectron microscopy. Western blot analysis was performed to determine expression levels of phosphorylated HSP27 in scraped epithelia. Phosphorylated HSP27 localization was also separately performed with confocal immunohistochemistry 8 hours after epithelial debridement to investigate the early epithelial wound-healing process. RESULTS In unwounded corneas, phosphorylated HSP27 was localized only to the superficial epithelium. In contrast, phosphorylated HSP27 was localized in the basal and superficial epithelia 3 days after corneal epithelial wounding. After 7 and 14 days, HSP27 localization was similar to that in unwounded controls. Expression levels of phosphorylated HSP27 were greater in wounded corneal epithelia on day 3 than in unwounded controls and on day 14. After 8 hours, phosphorylated HSP27 expression was prominent in the leading edge of migrating corneal epithelium. CONCLUSIONS Constitutive expression of phosphorylated HSP27 is limited to the superficial corneal epithelium in unwounded murine corneas. Changes in HSP27 epithelial distribution and expression levels after corneal epithelial wounding suggest that phosphorylated HSP27 plays a role in early phase of corneal epithelial wound healing.
Collapse
|
24
|
Mori K, Hamanaka H, Oshima Y, Araki Y, Ishikawa F, Nose K, Shibanuma M. A HIC-5- and KLF4-dependent mechanism transactivates p21(Cip1) in response to anchorage loss. J Biol Chem 2012; 287:38854-65. [PMID: 23007394 DOI: 10.1074/jbc.m112.377721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Anchorage loss elicits a set of responses in cells, such as transcriptional changes, in order to prevent inappropriate cell growth in ectopic environments. However, the mechanisms underlying these responses are poorly understood. In this study, we investigated the transcriptional up-regulation of cyclin-dependent kinase inhibitor p21(Cip1) during anchorage loss, which is important for cell cycle arrest of nonadherent cells in the G1 phase. Up-regulation was mediated by an upstream element, designated as the detachment-responsive element (DRE), that contained Kruppel-like factor 4 (KLF4) and runt-related transcription factor 1 (RUNX1) recognition sites; both of these together were necessary for transactivation, as individually they were insufficient. RNAi experiments revealed that KLF4 and a multidomain adaptor protein, hydrogen peroxide-inducible clone 5 (HIC-5), were critically involved in DRE transactivation. The role of HIC-5 in this mechanism was to tether KLF4 to DNA sites in response to cellular detachment. In addition, further analysis suggested that oligomerization and subsequent nuclear matrix localization of HIC-5, which was accelerated spontaneously in cells during anchorage loss, was assumed to potentiate the scaffolding function of HIC-5 in the nucleus and consequently regulate p21(Cip1) transcription in a manner responding to anchorage loss. At the RUNX1 site, a LIM-only protein, CRP2, imposed negative regulation on transcription, which appeared to be removed by anchorage loss and contributed to increased transcriptional activity of DRE together with regulation at the KLF4 sites. In conclusion, this study revealed a novel transcriptional mechanism that regulated gene expression in a detachment-dependent manner, thereby contributing to anchorage-dependent cell growth.
Collapse
Affiliation(s)
- Kazunori Mori
- Department of Molecular Biology, Division of Cancer Cell Biology, Showa University School of Pharmacy, Tokyo 142-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Inui S, Noguchi F, Nishiyama A, Itami S. Multipotential functions of Hic-5 in growth, differentiation, migration and adhesion of human keratinocytes. J Dermatol Sci 2012; 68:197-9. [PMID: 23062781 DOI: 10.1016/j.jdermsci.2012.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/24/2012] [Accepted: 09/05/2012] [Indexed: 11/30/2022]
|
26
|
Perisic L, Lal M, Hulkko J, Hultenby K, Önfelt B, Sun Y, Dunér F, Patrakka J, Betsholtz C, Uhlen M, Brismar H, Tryggvason K, Wernerson A, Pikkarainen T. Plekhh2, a novel podocyte protein downregulated in human focal segmental glomerulosclerosis, is involved in matrix adhesion and actin dynamics. Kidney Int 2012; 82:1071-83. [PMID: 22832517 DOI: 10.1038/ki.2012.252] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pleckstrin homology domain-containing, family H (with MyTH4 domain), member 2 (Plekhh2) is a 1491-residue intracellular protein highly enriched in renal glomerular podocytes for which no function has been ascribed. Analysis of renal biopsies from patients with focal segmental glomerulosclerosis revealed a significant reduction in total podocyte Plekhh2 expression compared to controls. Sequence analysis indicated a putative α-helical coiled-coil segment as the only recognizable domain within the N-terminal half of the polypeptide, while the C-terminal half contains two PH, a MyTH4, and a FERM domain. We identified a phosphatidylinositol-3-phosphate consensus-binding site in the PH1 domain required for Plekhh2 localization to peripheral regions of cell lamellipodia. The N-terminal half of Plekkh2 is not necessary for lamellipodial targeting but mediates self-association. Yeast two-hybrid screening showed that Plekhh2 directly interacts through its FERM domain with the focal adhesion protein Hic-5 and actin. Plekhh2 and Hic-5 coprecipitated and colocalized at the soles of podocyte foot processes in situ and Hic-5 partially relocated from focal adhesions to lamellipodia in Plekhh2-expressing podocytes. In addition, Plekhh2 stabilizes the cortical actin cytoskeleton by attenuating actin depolymerization. Our findings suggest a structural and functional role for Plekhh2 in the podocyte foot processes.
Collapse
Affiliation(s)
- Ljubica Perisic
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Deakin NO, Ballestrem C, Turner CE. Paxillin and Hic-5 interaction with vinculin is differentially regulated by Rac1 and RhoA. PLoS One 2012; 7:e37990. [PMID: 22629471 PMCID: PMC3358283 DOI: 10.1371/journal.pone.0037990] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/01/2012] [Indexed: 12/12/2022] Open
Abstract
Cell migration is of paramount importance to organism development and maintenance as well as multiple pathological processes, including cancer metastasis. The RhoGTPases Rac1 and RhoA are indispensable for cell migration as they regulate cell protrusion, cell-extracellular matrix (ECM) interactions and force transduction. However, the consequences of their activity at a molecular level within the cell remain undetermined. Using a combination of FRET, FRAP and biochemical analyses we show that the interactions between the focal adhesion proteins vinculin and paxillin, as well as the closely related family member Hic-5 are spatially and reciprocally regulated by the activity of Rac1 and RhoA. Vinculin in its active conformation interacts with either paxillin or Hic-5 in adhesions in response to Rac1 and RhoA activation respectively, while inactive vinculin interacts with paxillin in the membrane following Rac1 inhibition. Additionally, Rac1 specifically regulates the dynamics of paxillin as well as its binding partner and F-actin interacting protein actopaxin (α-parvin) in adhesions. Furthermore, FRET analysis of protein:protein interactions within cell adhesions formed in 3D matrices revealed that, in contrast to 2D systems vinculin interacts preferentially with Hic-5. This study provides new insight into the complexity of cell-ECM adhesions in both 2D and 3D matrices by providing the first description of RhoGTPase-coordinated protein:protein interactions in a cellular microenvironment. These data identify discrete roles for paxillin and Hic-5 in Rac1 and RhoA-dependent cell adhesion formation and maturation; processes essential for productive cell migration.
Collapse
Affiliation(s)
- Nicholas O. Deakin
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Christopher E. Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Li S, Lu X, Chi P, Pan J. Identification of Nkx2-3 and TGFB1I1 expression levels as potential biomarkers to predict the effects of FOLFOX4 chemotherapy. Cancer Biol Ther 2012; 13:443-9. [PMID: 22313639 DOI: 10.4161/cbt.19298] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This study was designed to detect global gene expressions of primary advanced colorectal cancer (ACC) patients who have undergone FOLFOX4 chemotherapy and screen valuable biomarkers to predict the effects of chemotherapy. Samples from primary ACC patients who have undergone FOLFOX4 chemotherapy were collected. Their chemotherapy effects were evaluated and divided into chemotherapy sensitive group (experimental group) and non-sensitive group (control group). Cancerous tissue gene expression profiles were detected by chip technology. Two groups with differentially expressed genes were screened by cluster analysis and significance analysis of microarrays (SAM). Valuable biomarkers were screened by bioinformatics analysis. Immunohistochemical analysis was performed to characterize the pattern of Nkx2-3 and TGFB1I1 expression. Nkx2-3 and TGFB1I1 signal log ratio were used Receiver Operating Characteristic (ROC) analyses to calculate its own predicting accuracy. Thirty cases were divided into experimental group (13 cases) and control group (17 cases). There was evident difference in the tumor cell biology states of the two groups; that is, 25 ESTs (21 genes) were upregulated and 5 ESTs (5 genes) were downregulated. Nkx2-3 protein was observed on the nucleus of the cancer cells and TGFB1I1 protein was observed on the nucleus and cytoplasm of the cancer cells in experimental group. Their prediction accuracies were 85.3% and 76.7% respectively. Nkx2-3 and TGFB1I1 expressions in control group are very low, but highly expressed in the experimental group; Nkx2-3 and TGFB1I1 may be classified as valuable biomarkers, as these can predict the effects of primary ACC patients who will undergo FOLFOX4.
Collapse
Affiliation(s)
- Shaotang Li
- Department of Colorectal and Anal Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | |
Collapse
|
29
|
HIC-5: A Mobile Molecular Scaffold Regulating the Anchorage Dependence of Cell Growth. Int J Cell Biol 2011; 2012:426138. [PMID: 22145007 PMCID: PMC3227459 DOI: 10.1155/2012/426138] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 09/02/2011] [Indexed: 11/18/2022] Open
Abstract
HIC-5 is a multidomain LIM protein homologous to paxillin that serves as a molecular scaffold at focal adhesions and in the nucleus. It forms mobile molecular units with LIM-only proteins, PINCH, and CRP2 and translocates in and out of the nucleus via a nuclear export signal (NES). Of note, NES of HIC-5 is distinctive in its sensitivity to the cellular redox state. Recently, the mobile units of HIC-5 have been suggested to be involved in the regulation of the anchorage dependence of cell growth. On loss of adhesion, an increase in reactive oxygen species in the cells modifies NES and stops shuttling, which leads to cell-cycle control. More specifically, the system circumvents nuclear localization of cyclin D1 and transactivates p21Cip1 in detached cells, thereby avoiding anchorage-independent cell growth. Thus, the HIC-5-LIM only protein complex has emerged as a fail-safe system for regulating the anchorage dependence of cell growth.
Collapse
|
30
|
Shah PP, Fong MY, Kakar SS. PTTG induces EMT through integrin αVβ3-focal adhesion kinase signaling in lung cancer cells. Oncogene 2011; 31:3124-35. [PMID: 22081074 DOI: 10.1038/onc.2011.488] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pituitary tumor transforming gene (PTTG) is a well-studied oncogene for its role in tumorigenesis and serves as a marker of malignancy in several cancer types including lung. In the present study, we defined the role of PTTG in actin cytoskeleton remodeling, cell migration and induction of epithelial mesenchymal transition (EMT) through the regulation of integrin α(V)β(3)-FAK (focal adhesion kinase) signaling pathway. Overexpression of PTTG through an adenovirus vector resulted in a significant increase in the expression of integrins α(V) and β(3), a process that was reversed with the downregulation of PTTG expression through the use of an adenovirus expressing PTTG-specific small interfering RNA (siRNA). Western blot analysis of cells infected with adenovirus PTTG cDNA resulted in increased FAK and enhanced expression of adhesion complex molecules paxillin, metavincullin, and talin. Furthermore, downstream signaling genes Rac1, RhoA, Cdc42 and DOCK180 showed upregulation upon PTTG overexpression. This process was dependent on integrin α(V), as blockage by antagonist echistatin (RGD peptide) or α(V)-specific siRNA resulted in a decrease in FAK and subsequent adhesion molecules. Actin cytoskeleton disruption was detected as a result of integrin-FAK signaling by PTTG as well as enhanced cell motility. Taken together, our results suggest for the first time an important role of PTTG in regulation of integrins α(V) and β(3) and adhesion-complex proteins leading to induction of EMT.
Collapse
Affiliation(s)
- P P Shah
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | | | | |
Collapse
|
31
|
Wade R, Brimer N, Lyons C, Pol SV. Paxillin enables attachment-independent tyrosine phosphorylation of focal adhesion kinase and transformation by RAS. J Biol Chem 2011; 286:37932-37944. [PMID: 21900245 DOI: 10.1074/jbc.m111.294504] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Paxillin and HIC5 are closely related adapter proteins that regulate cell migration and are tyrosine-phosphorylated by focal adhesion kinase (FAK). Paxillin, HIC5, and FAK tyrosine phosphorylation increase upon cell attachment and decrease upon detachment from extracellular matrix. Unexpectedly, we found that although FAK tyrosine phosphorylation in attached cells did not require paxillin, in detached fibroblasts there was remaining FAK tyrosine phosphorylation that required expression of paxillin and was not supported by HIC5. The support of attachment-independent FAK tyrosine phosphorylation required the paxillin LIM domains and suggested that paxillin might facilitate oncogenic transformation. Paxillin but not HIC5 augmented anchorage-independent cell proliferation induced by RAS. Both anchorage-independent FAK tyrosine phosphorylation and RAS-induced colony formation required multiple docking sites on paxillin, including LD4 (docking sites for FAK-Src and GIT1/2-PIX-NCK-PAK complex), LD5, and all four carboxyl-terminal LIM domains (that bind tubulin and PTP-PEST). Analysis using paxillin mutants dissociated domains of paxillin that are required for regulation of cell migration from domains that are required for anchorage-independent cell proliferation and demonstrated essential functions of the paxillin LIM domains that are not found in HIC5 LIM domains. These results highlight the role of paxillin in facilitating attachment-independent signal transduction implicated in cancer.
Collapse
Affiliation(s)
- Ramon Wade
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908
| | - Nicole Brimer
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908
| | - Charles Lyons
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908
| | - Scott Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908.
| |
Collapse
|
32
|
Deakin NO, Turner CE. Distinct roles for paxillin and Hic-5 in regulating breast cancer cell morphology, invasion, and metastasis. Mol Biol Cell 2011; 22:327-41. [PMID: 21148292 PMCID: PMC3031464 DOI: 10.1091/mbc.e10-09-0790] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study reveals novel roles for the focal adhesion proteins paxillin and Hic-5 in regulating breast cancer invasion strategies and metastasis. Depletion of paxillin promotes a hypermesenchymal phenotype while dysregulating 3D adhesion dynamics. In contrast, RNAi of Hic-5 induces a hyperamoeboid phenotype with dysregulated RhoA/pMLC signaling. Individual metastatic tumor cells exhibit two interconvertible modes of cell motility during tissue invasion that are classified as either mesenchymal or amoeboid. The molecular mechanisms by which invasive breast cancer cells regulate this migratory plasticity have yet to be fully elucidated. Herein we show that the focal adhesion adaptor protein, paxillin, and the closely related Hic-5 have distinct and unique roles in the regulation of breast cancer cell lung metastasis by modulating cell morphology and cell invasion through three-dimensional extracellular matrices (3D ECMs). Cells depleted of paxillin by RNA interference displayed a highly elongated mesenchymal morphology, whereas Hic-5 knockdown induced an amoeboid phenotype with both cell populations exhibiting reduced plasticity, migration persistence, and velocity through 3D ECM environments. In evaluating associated signaling pathways, we determined that Rac1 activity was increased in cells devoid of paxillin whereas Hic-5 silencing resulted in elevated RhoA activity and associated Rho kinase–induced nonmuscle myosin II activity. Hic-5 was essential for adhesion formation in 3D ECMs, and analysis of adhesion dynamics and lifetime identified paxillin as a key regulator of 3D adhesion assembly, stabilization, and disassembly.
Collapse
Affiliation(s)
- Nicholas O Deakin
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | |
Collapse
|
33
|
Chen PW, Kroog GS. Leupaxin is similar to paxillin in focal adhesion targeting and tyrosine phosphorylation but has distinct roles in cell adhesion and spreading. Cell Adh Migr 2011; 4:527-40. [PMID: 20543562 DOI: 10.4161/cam.4.4.12399] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Focal adhesion (FA) formation is induced by extracellular matrix-stimulated integrin clustering and activation of receptors for diffusible factors. Leupaxin (LPXN) is a member of the paxillin family of FA proteins expressed in many cancer cell lines. We found activation of gastrin-releasing peptide receptor (GRPr) by bombesin (BN) stimulated LPXN translocation from cytoplasm to FAs. Using mutagenesis, we identified LIM3 as the primary FA targeting domain for LPXN and showed BN-induced LPXN tyrosine phosphorylation on residues 22, 62 and 72. A LIM3 point mutant of LPXN failed to target to FAs and had no BN-stimulated tyrosine phosphorylation. Conversely, a non-phosphorylatable mutant (Y22/62/72F) translocated to FAs after BN addition. Stimulation of FA formation using vinblastine also induced LPXN translocation and tyrosine phosphorylation. Therefore, dynamic LPXN tyrosine phosphorylation requires translocation to FAs. LPXN and paxillin had opposite roles in adhesion to collagen I (CNI) in MDA-MB-231 breast cancer cells. LPXN siRNA stimulated whereas paxillin siRNA inhibited cell adhesion. Knockdown of both LPXN and paxillin behaved similarly to paxillin knockdown alone, suggesting LPXN’s function in adhesion might depend on paxillin. Additionally, LPXN regulated cell spreading on CNI but not on fibronectin whereas paxillin knockdown suppressed spreading on both substrates. These results demonstrate that although LPXN and paxillin’s FA targeting and tyrosine phosphorylation are similar, each protein has distinct functions.
Collapse
Affiliation(s)
- Pei-Wen Chen
- Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | |
Collapse
|
34
|
Bateman NW, Sun M, Hood BL, Flint MS, Conrads TP. Defining central themes in breast cancer biology by differential proteomics: conserved regulation of cell spreading and focal adhesion kinase. J Proteome Res 2010; 9:5311-24. [PMID: 20681588 DOI: 10.1021/pr100580e] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Breast cancer is a highly heterogeneous disease, an observation that underscores the importance of elucidating conserved molecular characteristics, such as gene and protein expression, across breast cancer cell types toward providing a greater understanding of context-specific features central to this disease. Motivated by the goal of defining central biological themes across breast cancer cell subtypes, we conducted a global proteomic analysis of three breast cancer cell lines, MCF7, SK-BR-3, and MDA-MB-231, and compared these to a model of nontransformed mammary cells (MCF10A). Our results demonstrate modulation of proteins localized to the extracellular matrix, plasma membrane, and nucleus, along with coordinate decreases in proteins that regulate "cell spreading," a cellular event previously shown to be dysregulated in transformed cells. Protein interaction network analysis revealed the clustering of focal adhesion kinase (FAK), a fundamental regulator of cell spreading, with several proteins identified as mutually, differentially abundant across breast cancer cell lines that impact expression and activity of FAK, such as neprilysin and keratin 19. These analyses provide insights into conservation of protein expression across breast cancer cell subtypes, a subset of which warrants further investigation for their roles in the regulation of cell spreading and FAK in breast cancer.
Collapse
Affiliation(s)
- Nicholas W Bateman
- Department of Pharmacology & Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
35
|
Caltagarone J, Hamilton RL, Murdoch G, Jing Z, DeFranco DB, Bowser R. Paxillin and hydrogen peroxide-inducible clone 5 expression and distribution in control and Alzheimer disease hippocampi. J Neuropathol Exp Neurol 2010; 69:356-71. [PMID: 20448481 PMCID: PMC2869219 DOI: 10.1097/nen.0b013e3181d53d98] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Hydrogen peroxide-inducible clone 5 (Hic-5) and paxillin are members of the Group III LIM domain protein family that localize to both cell nuclei and focal adhesions and link integrin-mediated signaling to the actin cytoskeleton. Prior in vitro studies have implicated paxillin in beta-amyloid-induced cell death, but little is known about the expression and function of Hic-5 and paxillin in the brain. We performed a blinded retrospective cross-sectional study of Hic-5 and paxillin expression in the hippocampi of Alzheimer disease (AD) and control subjects using immunohistochemistry and laser scanning confocal microscopy. The analysis included assessment of the expression of phosphorylated isoforms of paxillin that reflect activation of distinct signaling pathways. We found changes in the subcellular distribution of Hic-5, paxillin, and specific phosphorylated isoforms of paxillin in the AD brains. The Hic-5 and phosphorylated isoforms of paxillin colocalized with neurofibrillary tangles. Paxillin was predominantly found in reactive astrocytes in the AD hippocampi, and activated paxillin was also detected in granulovacuolar degeneration bodies in AD. These data indicate that these important scaffolding proteins that link various intracellular signaling pathways to the extracellular matrix are modified and have altered subcellular distribution in AD.
Collapse
Affiliation(s)
- John Caltagarone
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
36
|
Komorowsky C, Samarin J, Rehm M, Guidolin D, Goppelt-Struebe M. Hic-5 as a regulator of endothelial cell morphology and connective tissue growth factor gene expression. J Mol Med (Berl) 2010; 88:623-31. [PMID: 20333347 DOI: 10.1007/s00109-010-0608-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 10/19/2022]
Abstract
The functional role of the LIM-domain protein Hic-5 was investigated in microvascular endothelial cells using a siRNA approach. Knock down of Hic-5 reduced endothelial cell spreading and impaired structural organization of the cells on basement membrane extracts. Furthermore, Hic-5 was involved in the regulation of the multifunctional protein connective tissue growth factor (CTGF, CCN2). Upon Hic-5 down-regulation, induction of CTGF by lysophosphatidic acid or colchicine was reduced. Inhibition of CTGF expression was even more pronounced in cells treated with transforming growth factor beta and inhibitors of histone deacetylases. Treatment of endothelial cells with Hic-5 siRNA reduced CTGF promoter activity. Mutation analyses of the promoter revealed transcription factors binding to the basic control element as part of the proposed Hic-5-modulated transcription complex. Further analyses showed down-regulation of Hic-5 protein upon overnight treatment with inhibitors of histone deacetylases. These data suggest that the reduced expression of Hic-5 may contribute to the anti-angiogenic effects of histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Claudiu Komorowsky
- Department of Nephrology and Hypertension, University Hospital Erlangen, Loschgestrasse 8, 91054, Erlangen, Germany
| | | | | | | | | |
Collapse
|
37
|
Tanaka T, Moriwaki K, Murata S, Miyasaka M. LIM domain-containing adaptor, leupaxin, localizes in focal adhesion and suppresses the integrin-induced tyrosine phosphorylation of paxillin. Cancer Sci 2010; 101:363-8. [PMID: 19917054 PMCID: PMC11158308 DOI: 10.1111/j.1349-7006.2009.01398.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Focal adhesion (FA) consists of multiple cellular proteins including paxillin and serves as a center for adhesion-mediated signaling. The assembly and disassembly of FAs is regulated by locally produced intracellular signals, and tyrosine phosphorylation of paxillin has been implicated in this process. A Lin-11 Isl-1 Mec-3 (LIM) domain-containing adaptor protein, leupaxin, a member of the paxillin family, is expressed in leukocytes as well as in certain cancer cells, and shares overall structural characteristics with paxillin. However, it remains unknown whether leupaxin and paxillin cooperate with or antagonize each other in integrin signaling. Here we show that leupaxin potently represses the tyrosine phosphorylation of paxillin. When expressed in mouse thymoma BW5147 cells bound to ICAM-1, leupaxin accumulated in FA-like patches in the cell periphery. When expressed in NIH3T3 and HEK293T cells, leupaxin localized to FAs upon cell adhesion to fibronectin and strongly suppressed the integrin-induced tyrosine phosphorylation of paxillin. In integrin-stimulated HEK293T cells, leupaxin's LIM3 domain appeared essential for selective FA localization and the suppression of paxillin tyrosine phosphorylation. Leupaxin's LD3 motif, which is critical for stable association with FAK, was dispensable for leupaxin's suppressive ability. In addition, leupaxin reduced the spreading of NIH3T3 cells on fibronectin, which required both the LD3 motif and LIM3 domain. When expressed in human leukocytic K562 cells, leupaxin significantly suppressed integrin alpha5beta1-mediated cell adhesion to fibronectin and the tyrosine phosphorylation of paxillin. These findings indicate that leupaxin functions as a paxillin counterpart that potently suppresses the tyrosine phosphorylation of paxillin during integrin signaling.
Collapse
Affiliation(s)
- Toshiyuki Tanaka
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University, Graduate School of Medicine, Osaka, Japan.
| | | | | | | |
Collapse
|
38
|
Upregulation of Hic-5 in glomerulosclerosis and its regulation of mesangial cell apoptosis. Kidney Int 2009; 77:329-38. [PMID: 20010548 DOI: 10.1038/ki.2009.417] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glomerulosclerosis is characterized by the loss of glomerular cells by apoptosis and deposition of collagen type I into the normal collagen IV-containing mesangial matrix. We sought to determine the alterations that might contribute to these changes by performing proteomic analysis of rat mesangial cell lysates comparing cells cultured on normal collagen type IV to those grown on abnormal collagen type I surfaces. Subculture on collagen type I was associated with changed expression of several proteins, including a significant upregulation of the paxillin-like LIM protein, hydrogen-peroxide-induced clone 5 (Hic-5), and increased the susceptibility of the cells to apoptosis in response to physiological triggers. When we knocked down Hic-5 (using siRNA), we found mesangial cells grown on collagen type I were protected from apoptosis to the same degree as untreated cells grown on collagen type IV. Further we found that the level of Hic-5 in vivo was almost undetectable in control rats but increased dramatically in the glomerular mesangium of remnant kidneys 90 and 120 days after subtotal nephrectomy. This induction of Hic-5 paralleled the upregulation of mesangial collagen type I expression and glomerular cell apoptosis. Our results suggest that Hic-5 is pivotal in mediating the response of mesangial cells to attachment on abnormal extracellular matrix during glomerular scarring.
Collapse
|
39
|
Costello I, Biondi CA, Taylor JM, Bikoff EK, Robertson EJ. Smad4-dependent pathways control basement membrane deposition and endodermal cell migration at early stages of mouse development. BMC DEVELOPMENTAL BIOLOGY 2009; 9:54. [PMID: 19849841 PMCID: PMC2773778 DOI: 10.1186/1471-213x-9-54] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 10/22/2009] [Indexed: 01/04/2023]
Abstract
Background Smad4 mutant embryos arrest shortly after implantation and display a characteristic shortened proximodistal axis, a significantly reduced epiblast, as well as a thickened visceral endoderm layer. Conditional rescue experiments demonstrate that bypassing the primary requirement for Smad4 in the extra-embryonic endoderm allows the epiblast to gastrulate. Smad4-independent TGF-β signals are thus sufficient to promote mesoderm formation and patterning. To further analyse essential Smad4 activities contributed by the extra-embryonic tissues, and characterise Smad4 dependent pathways in the early embryo, here we performed transcriptional profiling of Smad4 null embryonic stem (ES) cells and day 4 embryoid bodies (EBs). Results Transcripts from wild-type versus Smad4 null ES cells and day 4 EBs were analysed using Illumina arrays. In addition to several known TGF-β/BMP target genes, we identified numerous Smad4-dependent transcripts that are mis-expressed in the mutants. As expected, mesodermal cell markers were dramatically down-regulated. We also observed an increase in non-canonical potency markers (Pramel7, Tbx3, Zscan4), germ cell markers (Aire, Tuba3a, Dnmt3l) as well as early endoderm markers (Dpp4, H19, Dcn). Additionally, expression of the extracellular matrix (ECM) remodelling enzymes Mmp14 and Mmp9 was decreased in Smad4 mutant ES and EB populations. These changes, in combination with increased levels of laminin alpha1, cause excessive basement membrane deposition. Similarly, in the context of the Smad4 null E6.5 embryos we observed an expanded basement membrane (BM) associated with the thickened endoderm layer. Conclusion Smad4 functional loss results in a dramatic shift in gene expression patterns and in the endodermal cell lineage causes an excess deposition of, or an inability to breakdown and remodel, the underlying BM layer. These structural abnormalities probably disrupt reciprocal signalling between the epiblast and overlying visceral endoderm required for gastrulation.
Collapse
Affiliation(s)
- Ita Costello
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | | | | | | | | |
Collapse
|
40
|
Ohnishi YN, Sakumi K, Yamazaki K, Ohnishi YH, Miura T, Tominaga Y, Nakabeppu Y. Antagonistic regulation of cell-matrix adhesion by FosB and DeltaFosB/Delta2DeltaFosB encoded by alternatively spliced forms of fosB transcripts. Mol Biol Cell 2008; 19:4717-29. [PMID: 18753407 PMCID: PMC2575163 DOI: 10.1091/mbc.e07-08-0768] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 08/08/2008] [Accepted: 08/20/2008] [Indexed: 01/28/2023] Open
Abstract
Among fos family genes encoding components of activator protein-1 complex, only the fosB gene produces two forms of mature transcripts, namely fosB and DeltafosB mRNAs, by alternative splicing of an exonic intron. The former encodes full-length FosB. The latter encodes DeltaFosB and Delta2DeltaFosB by alternative translation initiation, and both of these lack the C-terminal transactivation domain of FosB. We established two mutant mouse embryonic stem (ES) cell lines carrying homozygous fosB-null alleles and fosB(d) alleles, the latter exclusively encoding DeltaFosB/Delta2DeltaFosB. Comparison of their gene expression profiles with that of the wild type revealed that more than 200 genes were up-regulated, whereas 19 genes were down-regulated in a DeltaFosB/Delta2DeltaFosB-dependent manner. We furthermore found that mRNAs for basement membrane proteins were significantly up-regulated in fosB(d/d) but not fosB-null mutant cells, whereas genes involved in the TGF-beta1 signaling pathway were up-regulated in both mutants. Cell-matrix adhesion was remarkably augmented in fosB(d/d) ES cells and to some extent in fosB-null cells. By analyzing ES cell lines carrying homozygous fosB(FN) alleles, which exclusively encode FosB, we confirmed that FosB negatively regulates cell-matrix adhesion and the TGF-beta1 signaling pathway. We thus concluded that FosB and DeltaFosB/Delta2DeltaFosB use this pathway to antagonistically regulate cell matrix adhesion.
Collapse
Affiliation(s)
- Yoshinori N. Ohnishi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kunihiko Sakumi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Katsuhisa Yamazaki
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoko H. Ohnishi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomofumi Miura
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yohei Tominaga
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
41
|
Mori K, Hirao E, Toya Y, Oshima Y, Ishikawa F, Nose K, Shibanuma M. Competitive nuclear export of cyclin D1 and Hic-5 regulates anchorage dependence of cell growth and survival. Mol Biol Cell 2008; 20:218-32. [PMID: 18946086 DOI: 10.1091/mbc.e08-04-0428] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Anchorage dependence of cell growth and survival is a critical trait that distinguishes nontransformed cells from transformed cells. We demonstrate that anchorage dependence is determined by anchorage-dependent nuclear retention of cyclin D1, which is regulated by the focal adhesion protein, Hic-5, whose CRM1-dependent nuclear export counteracts that of cyclin D1. An adaptor protein, PINCH, interacts with cyclin D1 and Hic-5 and potentially serves as an interface for the competition between cyclin D1 and Hic-5 for CRM1. In nonadherent cells, the nuclear export of Hic-5, which is redox-sensitive, was interrupted due to elevated production of reactive oxygen species, and cyclin D1 was exported from the nucleus. When an Hic-5 mutant that was continuously exported in a reactive oxygen species-insensitive manner was introduced into the cells, cyclin D1 was retained in the nucleus under nonadherent conditions, and a significant population of cells escaped from growth arrest or apoptosis. Interestingly, activated ras achieved predominant cyclin D1 nuclear localization and thus, growth in nonadherent cells. We report a failsafe system for anchorage dependence of cell growth and survival.
Collapse
Affiliation(s)
- Kazunori Mori
- Department of Microbiology, Showa University School of Pharmaceutical Sciences, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Smad7 is inactivated through a direct physical interaction with the LIM protein Hic-5/ARA55. Oncogene 2008; 27:6791-805. [PMID: 18762808 DOI: 10.1038/onc.2008.291] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We recently reported that hydrogen peroxide-inducible clone-5 (Hic-5, also named androgen receptor-associated protein 55) can bind to the transforming growth factor-beta (TGF-beta)-signaling regulator Smad3, thereby inhibiting certain Smad3-dependent TGF-beta responses. We now show that Hic-5 can also control TGF-beta responses through an alternative mechanism involving Smad7, a key negative regulator of TGF-beta signaling. Hic-5 binds directly to Smad7. This interaction requires the LIM3 domain of Hic-5, and enhances TGF-beta signaling through causing loss of Smad7 protein but not mRNA. Enforced expression of Hic-5 reverses the ability of Smad7 to suppress TGF-beta-induced phosphorylation of Smads 2 and 3 and activation of the plasminogen activator inhibitor-1 promoter (in NRP-154 and PC3 prostate carcinoma and WPMY-1 prostate myofibroblast cell lines). Lentiviral-mediated small-hairpin RNA silencing of endogenous Hic-5 reduced TGF-beta responses in PC3 and WPMY-1 cells. Further work suggests that the level of Smad7 is modulated by its physical interaction with Hic-5 and targeted to a degradation pathway not likely to be proteasomal. Our findings support that Hic-5 functions as a cell-type-specific activator of TGF-beta signaling through its ability to physically interact with and neutralize Smad7.
Collapse
|
43
|
Kaulfuss S, Grzmil M, Hemmerlein B, Thelen P, Schweyer S, Neesen J, Bubendorf L, Glass AG, Jarry H, Auber B, Burfeind P. Leupaxin, a novel coactivator of the androgen receptor, is expressed in prostate cancer and plays a role in adhesion and invasion of prostate carcinoma cells. Mol Endocrinol 2008; 22:1606-21. [PMID: 18451096 DOI: 10.1210/me.2006-0546] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In the present study, we demonstrate that leupaxin mRNA is overexpressed in prostate cancer (PCa) as compared with normal prostate tissue by using cDNA arrays and quantitative RT-PCR analyses. Moderate to strong expression of leupaxin protein was detected in approximately 22% of the PCa tissue sections analyzed, and leupaxin expression intensities were found to be significantly correlated with Gleason patterns/scores. In addition, different leupaxin expression levels were observed in PCa cell lines, and at the subcellular level, leupaxin was usually localized in focal adhesion sites. Furthermore, mutational analysis and transfection experiments of LNCaP cells using different green fluorescent protein-leupaxin constructs demonstrated that leupaxin contains functional nuclear export signals in its LD3 and LD4 motifs, thus shuttling between the cytoplasm and the nucleus. We could also demonstrate for the first time that leupaxin interacts with the androgen receptor in a ligand-dependent manner and serves as a transcriptional activator of this hormone receptor in PCa cells. Down-regulation of leupaxin expression using RNA interference in LNCaP cells resulted in a high rate of morphological changes, detachment, spontaneous apoptosis, and a reduction of prostate-specific antigen secretion. In contrast, knockdown of leupaxin expression in androgen-independent PC-3 and DU 145 cells induced a significant decrease of both the invasive capacity and motility. Our results therefore indicate that leupaxin could serve as a potential progression marker for a subset of PCa and may represent a novel coactivator of the androgen receptor. Leupaxin could function as a putative target for therapeutic interventions of a subset of advanced PCa.
Collapse
Affiliation(s)
- Silke Kaulfuss
- Institute of Human Genetics, University of Göttingen, Heinrich-Düker Weg 12, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Srinivasan R, Forman S, Quinlan RA, Ohanian J, Ohanian V. Regulation of contractility by Hsp27 and Hic-5 in rat mesenteric small arteries. Am J Physiol Heart Circ Physiol 2007; 294:H961-9. [PMID: 18083901 DOI: 10.1152/ajpheart.00939.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulation of small artery contractility by vasoconstrictors is important for vascular function, and actin cytoskeleton remodeling is required for contraction. p38 MAPK and tyrosine kinases are implicated in actin polymerization and contraction through heat shock protein 27 (Hsp27) and the cytoskeletal protein paxillin, respectively. We evaluated the roles of downstream targets of p38 MAPK and tyrosine kinases in cytoskeletal reorganization and contraction and whether the two signaling pathways regulate contraction independent of each other. We identified the expression of the paxillin homologue hydrogen peroxide-inducible clone-5 (Hic-5) and showed its activation by norepinephrine (NE) in a Src-dependent manner. Furthermore, we demonstrated a NE-induced interaction of proline-rich tyrosine kinase-2 (PYK2) but not Src or p125 focal adhesion kinase with Hic-5. This interaction was Src dependent, suggesting that Hic-5 was a substrate for PYK2 downstream from Src. The activation of Hic-5 induced its relocalization to the cytosol. The parallel activation of Hsp27 by NE was p38 MAPK dependent and led to its dissociation from actin filaments and translocation from membrane to cytosol and increased actin polymerization. Both Hsp27 and Hic-5 activation resulted in their association within the same time frame as NE-induced contraction, and the inhibition of either p38 MAPK or Src inhibited the interaction between Hsp27 and Hic-5 and the contractile response. Furthermore, combined p38 MAPK and Src inhibition had no greater effect on contraction than individual inhibition, suggesting that the two pathways act through a common mechanism. These data show that NE-induced activation and the association of Hsp27 and Hic-5 are required for the reorganization of the actin cytoskeleton and force development in small arteries.
Collapse
Affiliation(s)
- R Srinivasan
- Cardiovascular Research Group, University of Manchester, UK
| | | | | | | | | |
Collapse
|
45
|
Totaro A, Paris S, Asperti C, de Curtis I. Identification of an intramolecular interaction important for the regulation of GIT1 functions. Mol Biol Cell 2007; 18:5124-38. [PMID: 17898078 PMCID: PMC2096589 DOI: 10.1091/mbc.e07-06-0550] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
G-protein coupled receptor kinase-interacting protein (GIT) proteins include an N-terminal Arf GTPase-activating protein domain, and a C terminus that binds proteins regulating adhesion and motility. Given their ability to form large molecular assemblies, the GIT1 protein must be tightly regulated. However, the mechanisms regulating GIT1 functions are poorly characterized. We found that carboxy-terminal-truncated fragments of GIT1 bind their partners with higher efficiency compared with the full-length GIT1. We have explored the hypothesis that GIT1 is regulated by an intramolecular mechanism, and we identified two distinct intramolecular interactions between the N and C terminus of GIT1. The release of these interactions increases binding of GIT1 to paxillin and liprin-alpha, and it correlates with effects on cell spreading. Analysis of cells plated on fibronectin has shown that different deletion mutants of GIT1 either enhance or inhibit spreading, depending on their subcellular localization. Moreover, although the association between betaPIX and GIT1 is insufficient to activate GIT1 binding to paxillin, binding of a PAK1 fragment including the betaPIX-binding domain enhances paxillin binding to betaPIX/GIT1, indicating that p21-activated kinase can activate the binding of paxillin to GIT1 by a kinase-independent mechanism. The release of the identified intramolecular interaction seems to be an important mechanism for the regulation of GIT1 functions.
Collapse
Affiliation(s)
- Antonio Totaro
- Cell Adhesion Unit, Dibit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Simona Paris
- Cell Adhesion Unit, Dibit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudia Asperti
- Cell Adhesion Unit, Dibit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ivan de Curtis
- Cell Adhesion Unit, Dibit, San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
46
|
Avraamides C, Bromberg ME, Gaughan JP, Thomas SM, Tsygankov AY, Panetti TS. Hic-5 promotes endothelial cell migration to lysophosphatidic acid. Am J Physiol Heart Circ Physiol 2007; 293:H193-203. [PMID: 17337598 DOI: 10.1152/ajpheart.00728.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelial cell migration is critical for proper blood vessel development. Signals from growth factors and matrix proteins are integrated through focal adhesion proteins to alter cell migration. Hydrogen peroxide-inducible clone 5 (Hic-5), a paxillin family member, is enriched in the focal adhesions in bovine pulmonary artery endothelial (BPAE) cells, which migrate to lysophosphatidic acid (LPA) on denatured collagen. In this study, we investigate the role of Hic-5 in LPA-stimulated endothelial cell migration. LPA recruits Hic-5 to the focal adhesions and to the pseudopodia in BPAE cells plated on collagen, suggesting that recruitment of Hic-5 to focal adhesions is associated with endothelial cell migration. Knockdown of endogenous Hic-5 significantly decreases migration toward LPA, confirming involvement of Hic-5 in migration. To address the role of Hic-5 in endothelial cell migration, we exogenously expressed wild-type (WT) Hic-5 and green fluorescent protein Hic-5 C369A/C372A (LIM3 mutant) constructs in BPAE cells. WT Hic-5 expression increases chemotaxis of BPAE cells to LPA, whereas migration toward LPA of the green fluorescent protein Hic-5 C369A/C372A-expressing cells is similar to that shown in vector control cells. Additionally, ERK phosphorylation is enhanced in the presence of LPA in WT Hic-5 cells. A pharmacological inhibitor of MEK activity inhibits LPA-stimulated WT Hic-5 cell migration and ERK phosphorylation, suggesting Hic-5 enhances migration via MEK activation of ERK. Together, these studies indicate that Hic-5, a focal adhesion protein in endothelial cells, is recruited to the pseudopodia in the presence of LPA and enhances migration.
Collapse
Affiliation(s)
- C Avraamides
- Department of Microbiology and Immunology, and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
47
|
Croke JM, Pike LRG, MacPhee DJ. The focal adhesion protein Hic-5 is highly expressed in the rat myometrium during late pregnancy and labour and co-localizes with FAK. Reprod Biol Endocrinol 2007; 5:22. [PMID: 17550607 PMCID: PMC1892559 DOI: 10.1186/1477-7827-5-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 06/05/2007] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Myometrial growth and remodeling of the cytoskeleton and focal adhesions during late pregnancy may be critical aspects of myometrial activation and thus labour. Yet our understanding of these aspects is inhibited by the paucity of information concerning the components of focal adhesions in the myometrium. The focal adhesion protein hydrogen peroxide-inducible clone-5 (Hic-5) has recently been found in mononuclear smooth muscle but was not examined in the myometrium during pregnancy. Thus, the goal of this study was to characterize Hic-5 mRNA and protein expression in the rat myometrium during pregnancy and labour. METHODS Rat myometrium samples were obtained from non-pregnant animals, pregnant animals on days (d) 6, 12, 15, 17, 19, 21, 22, 23 (active labour) and 1 day postpartum (PP). In addition, myometrium samples were collected from rats within a progesterone-delayed labour paradigm. Hic-5 mRNA expression was analyzed by Northern blot analysis while Hic-5 protein expression was examined by immunoblot and immunofluorescence analysis. RESULTS Hic-5 mRNA expression on d15, d19 and d21 was found to be significantly elevated compared to d6 and d12 of pregnancy and expression on d23 was significantly elevated over d6 (p < 0.05). Immunofluorescence analysis demonstrated that detection of Hic-5 protein in the circular muscle layer appeared to increase from d17 onwards, except PP, and Hic-5 was detectable in the cell cytoplasm and more continuously associated with myometrial cell membranes. In the longitudinal muscle layer Hic-5 was readily detectable by d15 and thereafter and primarily associated at myometrial cell membranes. Co-immunofluorescence analysis of potential Hic-5 and focal adhesion kinase (FAK) association in situ demonstrated a limited level of co-localization on d19, d23 and PP in the circular muscle layer while in the longitudinal muscle layer Hic-5 and FAK were readily co-localized at myometrial cell membranes. CONCLUSION Hic-5 is highly expressed in the rat myometrium during late pregnancy and labour and co-localizes with FAK in situ. Our results are consistent with a potential role for Hic-5 in focal adhesion remodeling in the rat myometrium during late pregnancy.
Collapse
Affiliation(s)
- Jenn M Croke
- Division of Basic Medical Sciences, Health Sciences Centre, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Luke RG Pike
- Division of Basic Medical Sciences, Health Sciences Centre, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Daniel J MacPhee
- Division of Basic Medical Sciences, Health Sciences Centre, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| |
Collapse
|
48
|
Differential roles of HIC-5 isoforms in the regulation of cell death and myotube formation during myogenesis. Exp Cell Res 2007; 313:4000-14. [PMID: 17935713 DOI: 10.1016/j.yexcr.2007.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 05/16/2007] [Accepted: 05/16/2007] [Indexed: 11/21/2022]
Abstract
Hic-5 is a LIM-Only member of the paxillin superfamily of focal adhesion proteins. It has been shown to regulate a range of biological processes including: senescence, tumorigenesis, steroid hormone action, integrin signaling, differentiation, and apoptosis. To better understand the roles of Hic-5 during development, we initiated a detailed analysis of Hic-5 expression and function in C(2)C(12) myoblasts, a well-established model for myogenesis. We have found that: (1) myoblasts express at least 6 distinct Hic-5 isoforms; (2) the two predominant isoforms, Hic-5alpha and Hic-5beta, are differentially expressed during myogenesis; (3) any experimentally induced change in Hic-5 expression results in a substantial increase in apoptosis during differentiation; (4) ectopic expression of Hic-5alpha is permissive to differentiation while expression of either Hic-5beta or antisense Hic-5 blocks myoblast fusion but not chemodifferentiation; (5) Hic-5 localizes to focal adhesions in C(2)C(12) myoblasts and perturbation of Hic-5 leads to defects in cell spreading; (6) alterations in Hic-5 expression interfere with the normal dynamics of laminin expression; and (7) ectopic laminin, but not fibronectin, can rescue the Hic-5-induced blockade of myoblast survival and differentiation. Our data demonstrate differential roles for individual Hic-5 isoforms during myogenesis and support the hypothesis that Hic-5 mediates these effects via integrin signaling.
Collapse
|
49
|
Tumbarello DA, Turner CE. Hic-5 contributes to epithelial-mesenchymal transformation through a RhoA/ROCK-dependent pathway. J Cell Physiol 2007; 211:736-47. [PMID: 17299801 DOI: 10.1002/jcp.20991] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Epithelial-mesenchymal transformation (EMT) in response to TGFbeta1 is a coordinated process of tissue morphogenesis that occurs during embryonic development as well as during certain pathologic events including kidney tubulointerstitial fibrosis. It is characterized by the disassembly of cell-cell junctions and dramatic alterations in the actin cytoskeleton that facilitates cell-matrix adhesion and stimulates migration. The focal adhesion adapter protein, Hic-5, has previously been reported to be upregulated during TGFbeta1-induced EMT in mouse mammary epithelial cells and the current study recapitulates this result in both mouse kidney proximal tubule epithelial, MCT, cells and human mammary epithelial, MCF10A, cells. To evaluate a causative role for Hic-5 in EMT, Hic-5 RNA interference (siRNA) was used to prevent Hic-5 expression in response to TGFbeta1 stimulation and was shown to suppress cell migration and actin stress fiber formation. It also resulted in the retention of a robust epithelial cell morphology characterized by elevated E-cadherin protein expression and well-organized adherens junctions. In addition, Hic-5 siRNA treatment led to the suppression of TGFbeta1 induction of RhoA activation. In contrast, forced expression of Hic-5 led to the formation of ROCK-dependent actin stress fibers. Furthermore, the induction of Hic-5 expression in response to TGFbeta1 was shown to be a RhoA/ROCK I-dependent process. Together, these data implicate Hic-5 as a key regulator of EMT and suggest that RhoA stimulated Hic-5 expression in response to TGFbeta1 may be functioning in a feed forward mechanism whereby Hic-5 maintains the mesenchymal phenotype through sustained RhoA activation and signaling.
Collapse
Affiliation(s)
- David A Tumbarello
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
50
|
Caltagarone J, Jing Z, Bowser R. Focal adhesions regulate Abeta signaling and cell death in Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1772:438-45. [PMID: 17215111 PMCID: PMC1876750 DOI: 10.1016/j.bbadis.2006.11.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 11/25/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that results from a loss of synaptic transmission and ultimately cell death. The presenting pathology of AD includes neuritic plaques composed of beta-amyloid peptide (Abeta) and neurofibrillary tangles composed of hyperphosphorylated tau, with neuronal loss in specific brain regions. However, the mechanisms that induce neuronal cell loss remain elusive. Focal adhesion (FA) proteins assemble into intracellular complexes involved in integrin-mediated communication between the extracellular matrix and the actin cytoskeleton, regulating many cell physiological processes including the cell cycle. Interestingly, recent studies report that integrins bind to Abeta fibrils, mediating Abeta signal transmission from extracellular sites of Abeta deposits into the cell and ultimately to the nucleus. In this review, we will discuss the Abeta induced integrin/FA signaling pathways that mediate cell cycle activation and cell death.
Collapse
Affiliation(s)
- John Caltagarone
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Zheng Jing
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - Robert Bowser
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|