1
|
Use of Streptolysin O (SLO) to Study the Function of Lipid Rafts. Methods Mol Biol 2021. [PMID: 32430837 DOI: 10.1007/978-1-0716-0467-0_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Group A Streptococcus (GAS) produces the pore-forming toxin, streptolysin O (SLO). SLO sequesters cholesterol and induces a plasma membrane repair process that removes the pores via a lipid raft-mediated endocytosis. The impact SLO has on membranes makes it an effective toxin for investigating the function of lipid rafts in cellular processes. Lipid rafts are essential for B-cell activation. Indeed, antigen-stimulated B-cell receptors (BCRs) require localization with lipid rafts for efficient signaling and internalization. SLO treatment impairs BCR activation by competing for lipid rafts. Here, disrupting lipid rafts using SLO and assessing the effects on BCR activation by fluorescence microscopy and flow cytometry are described.
Collapse
|
2
|
Wist M, Meier L, Gutman O, Haas J, Endres S, Zhou Y, Rösler R, Wiese S, Stilgenbauer S, Hobeika E, Henis YI, Gierschik P, Walliser C. Noncatalytic Bruton's tyrosine kinase activates PLCγ 2 variants mediating ibrutinib resistance in human chronic lymphocytic leukemia cells. J Biol Chem 2020; 295:5717-5736. [PMID: 32184360 DOI: 10.1074/jbc.ra119.011946] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/26/2020] [Indexed: 12/25/2022] Open
Abstract
Treatment of patients with chronic lymphocytic leukemia (CLL) with inhibitors of Bruton's tyrosine kinase (BTK), such as ibrutinib, is limited by primary or secondary resistance to this drug. Examinations of CLL patients with late relapses while on ibrutinib, which inhibits BTK's catalytic activity, revealed several mutations in BTK, most frequently resulting in the C481S substitution, and disclosed many mutations in PLCG2, encoding phospholipase C-γ2 (PLCγ2). The PLCγ2 variants typically do not exhibit constitutive activity in cell-free systems, leading to the suggestion that in intact cells they are hypersensitive to Rac family small GTPases or to the upstream kinases spleen-associated tyrosine kinase (SYK) and Lck/Yes-related novel tyrosine kinase (LYN). The sensitivity of the PLCγ2 variants to BTK itself has remained unknown. Here, using genetically-modified DT40 B lymphocytes, along with various biochemical assays, including analysis of PLCγ2-mediated inositol phosphate formation, inositol phospholipid assessments, fluorescence recovery after photobleaching (FRAP) static laser microscopy, and determination of intracellular calcium ([Ca2+] i ), we show that various CLL-specific PLCγ2 variants such as PLCγ2S707Y are hyper-responsive to activated BTK, even in the absence of BTK's catalytic activity and independently of enhanced PLCγ2 phospholipid substrate supply. At high levels of B-cell receptor (BCR) activation, which may occur in individual CLL patients, catalytically-inactive BTK restored the ability of the BCR to mediate increases in [Ca2+] i Because catalytically-inactive BTK is insensitive to active-site BTK inhibitors, the mechanism involving the noncatalytic BTK uncovered here may contribute to preexisting reduced sensitivity or even primary resistance of CLL to these drugs.
Collapse
Affiliation(s)
- Martin Wist
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Laura Meier
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Orit Gutman
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jennifer Haas
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Sascha Endres
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Yuan Zhou
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Reinhild Rösler
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University Medical Center, 89081 Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University Medical Center, 89081 Ulm, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, Ulm University Medical Center, 89081 Ulm, Germany
| | - Elias Hobeika
- Institute of Immunology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Peter Gierschik
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany.
| | - Claudia Walliser
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany.
| |
Collapse
|
3
|
Akatsu C, Shinagawa K, Numoto N, Liu Z, Ucar AK, Aslam M, Phoon S, Adachi T, Furukawa K, Ito N, Tsubata T. CD72 negatively regulates B lymphocyte responses to the lupus-related endogenous toll-like receptor 7 ligand Sm/RNP. J Exp Med 2016; 213:2691-2706. [PMID: 27810925 PMCID: PMC5110020 DOI: 10.1084/jem.20160560] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/05/2016] [Accepted: 09/26/2016] [Indexed: 01/03/2023] Open
Abstract
Akatsu and colleagues show that CD72 specifically recognizes Sm/RNP, a lupus-related self-antigen and an endogenous TLR7 ligand, and inhibits B cell responses to Sm/RNP. In mice, CD72 prevents production of anti-Sm/RNP antibodies crucial for lupus development. Toll-like receptor 7 (TLR7) plays an essential role in development of systemic lupus erythematosus by co-stimulating B cells reactive to the endogenous TLR7 ligand Sm/ribonucleoprotein (RNP), a crucial lupus self-antigen. However, how the TLR7-mediated autoimmune response is regulated is not yet known. In this study, we demonstrate that CD72, an inhibitory B cell co-receptor known to prevent development of lupus, recognizes Sm/RNP at the extracellular C-type lectin-like domain (CTLD) and specifically inhibits B cell response to Sm/RNP. Moreover, the CTLD of CD72c, a lupus-susceptible allele, binds to Sm/RNP less strongly than that of lupus-resistant CD72a. Reduced binding of CD72c is supported by x-ray crystallographic analysis that reveals a considerable alteration in charge at the putative ligand-binding site. Thus, CD72 appears to specifically inhibit B cell response to the endogenous TLR7 ligand Sm/RNP through CTLD-mediated recognition of Sm/RNP, thereby preventing production of anti-Sm/RNP antibody crucial for development of lupus.
Collapse
Affiliation(s)
- Chizuru Akatsu
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| | - Kenro Shinagawa
- Department of Structural Biology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| | - Nobutaka Numoto
- Department of Structural Biology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| | - Zhihong Liu
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan.,Emergency Department, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Ayse Konuskan Ucar
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| | - Mohammad Aslam
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| | - Shirly Phoon
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| | - Koji Furukawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | - Nobutoshi Ito
- Department of Structural Biology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| |
Collapse
|
4
|
Getahun A, Cambier JC. Of ITIMs, ITAMs, and ITAMis: revisiting immunoglobulin Fc receptor signaling. Immunol Rev 2016; 268:66-73. [PMID: 26497513 DOI: 10.1111/imr.12336] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Receptors for immunoglobulin Fc regions play multiple critical roles in the immune system, mediating functions as diverse as phagocytosis, triggering degranulation of basophils and mast cells, promoting immunoglobulin class switching, and preventing excessive activation. Transmembrane signaling associated with these functions is mediated primarily by two amino acid sequence motifs, ITAMs (immunoreceptor tyrosine-based activation motifs) and ITIMs (immunoreceptor tyrosine-based inhibition motifs) that act as the receptors' interface with activating and inhibitory signaling pathways, respectively. While ITAMs mobilize activating tyrosine kinases and their consorts, ITIMs mobilize opposing tyrosine and inositol-lipid phosphatases. In this review, we will discuss our current understanding of signaling by these receptors/motifs and their sometimes blurred lines of function.
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
5
|
Taylor EB, Nayak DK, Quiniou SMA, Bengten E, Wilson M. Identification of SHIP-1 and SHIP-2 homologs in channel catfish, Ictalurus punctatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 51:79-87. [PMID: 25743379 DOI: 10.1016/j.dci.2015.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 06/04/2023]
Abstract
Src homology domain 2 (SH2) domain-containing inositol 5'-phosphatases (SHIP) proteins have diverse roles in signal transduction. SHIP-1 and SHIP-2 homologs were identified in channel catfish, Ictalurus punctatus, based on sequence homology to murine and human SHIP sequences. Full-length cDNAs for catfish SHIP-1 and SHIP-2 (IpSHIP-1 and IpSHIP-2) were obtained using 5' and 3' RACE protocols. Catfish SHIP molecules share a high degree of sequence identity to their respective SHIP sequences from diverse taxa and both are encoded by single copy genes. IpSHIP-1 and IpSHIP-2 transcripts were expressed in all catfish tissues analyzed except for skin, and IpSHIP-1 message was more abundant than IpSHIP-2 message in lymphoid tissues. Catfish clonal B, cytotoxic T, and macrophage cell lines also expressed message for both molecules. IpSHIP-1 and IpSHIP-2 SH2 domains were expressed as recombinant proteins and were both found to be bound by cross-reacting rabbit anti-mouse SHIP-1 pAb. The anti-mouse SHIP-1 pAb also reacted with cell lysates from the cytotoxic T cell lines, macrophages and stimulated PBL. SHIP-1 is also phosphorylated at a conserved tyrosine residue, as shown by immunoprecipitation studies.
Collapse
Affiliation(s)
- Erin B Taylor
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Deepak K Nayak
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Sylvie M A Quiniou
- Warmwater Aquaculture Research Unit, USDA-ARS, Stoneville, MS 38776, USA
| | - Eva Bengten
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Melanie Wilson
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
6
|
Pauls SD, Lafarge ST, Landego I, Zhang T, Marshall AJ. The phosphoinositide 3-kinase signaling pathway in normal and malignant B cells: activation mechanisms, regulation and impact on cellular functions. Front Immunol 2012; 3:224. [PMID: 22908014 PMCID: PMC3414724 DOI: 10.3389/fimmu.2012.00224] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/10/2012] [Indexed: 12/20/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is a central signal transduction axis controlling normal B cell homeostasis and activation in humoral immunity. The p110δ PI3K catalytic subunit has emerged as a critical mediator of multiple B cell functions. The activity of this pathway is regulated at multiple levels, with inositol phosphatases PTEN and SHIP both playing critical roles. When deregulated, the PI3K pathway can contribute to B cell malignancies and autoantibody production. This review summarizes current knowledge on key mechanisms that activate and regulate the PI3K pathway and influence normal B cell functional responses including the development of B cell subsets, antigen presentation, immunoglobulin isotype switch, germinal center responses, and maintenance of B cell anergy. We also discuss PI3K pathway alterations reported in select B cell malignancies and highlight studies indicating the functional significance of this pathway in malignant B cell survival and growth within tissue microenvironments. Finally, we comment on early clinical trial results, which support PI3K inhibition as a promising treatment of chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Samantha D Pauls
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | |
Collapse
|
7
|
The growth of B cell receptor microcluster is a universal response of B cells encountering antigens with different motion features. Protein Cell 2012; 3:545-58. [PMID: 22773344 DOI: 10.1007/s13238-012-2054-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022] Open
Abstract
B lymphocyte cell senses and acquires foreign antigens through clonal distributed B cell receptors (BCRs) expressed on the surface of plasma membrane. The presentation formats of antigens are quite diverse. Based on their Brownian diffusion mobility, there are three forms: free mobile soluble antigens, lateral mobile membrane bound antigens, and fixed immobile antigens. Here, using high resolution high speed live cell imaging approaches, we provide evidence that BCR microclusters are formed on the surface of B cells shortly after B cell's encountering of antigens with each format of motion features. Through high speed live cell imaging, we determine that these BCR microclusters show dynamic growth feature and by doing so function as the basic platforms for B cells to acquire the antigens. We propose that the formation and dynamic growth of BCR microcluster is a universal mechanism for B cell to response to antigens with diverse motion features.
Collapse
|
8
|
Khalil AM, Cambier JC, Shlomchik MJ. B cell receptor signal transduction in the GC is short-circuited by high phosphatase activity. Science 2012; 336:1178-81. [PMID: 22555432 PMCID: PMC3777391 DOI: 10.1126/science.1213368] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Germinal centers (GCs) generate memory B and plasma cells, which are essential for long-lived humoral immunity. GC B cells with high-affinity B cell receptors (BCRs) are selectively expanded. To enable this selection, BCRs of such cells are thought to signal differently from those with lower affinity. We show that, surprisingly, most proliferating GC B cells did not demonstrate active BCR signaling. Rather, spontaneous and induced signaling was limited by increased phosphatase activity. Accordingly, both SH2 domain-containing phosphatase-1 (SHP-1) and SH2 domain-containing inositol 5 phosphatase were hyperphosphorylated in GC cells and remained colocalized with BCRs after ligation. Furthermore, SHP-1 was required for GC maintenance. Intriguingly, GC B cells in the cell-cycle G(2) period regained responsiveness to BCR stimulation. These data have implications for how higher-affinity B cells are selected in the GC.
Collapse
Affiliation(s)
- Ashraf M Khalil
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
9
|
Abstract
Negative regulation of B cell receptor signaling may contribute to B cell selection and cell fate determination in germinal centers.
Collapse
Affiliation(s)
- Oliver M Bannard
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California-San Francisco, CA 94143-0414, USA
| | | |
Collapse
|
10
|
Abstract
Lymphocyte development and function are regulated by tyrosine kinase and G-protein coupled receptors. Each of these classes of receptors activates phosphoinositide 3-kinase (PI3K). In this chapter, we summarize current understanding of how PI3K contributes to key aspects of the adaptive immune system.
Collapse
Affiliation(s)
- Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, the Babraham Institute, Cambridge, UK Phone: 44-1223-49-6573 Fax: 44-1223-49-6023
| | - David A. Fruman
- Department of Molecular Biology and Biochemistry, and Institute for Immunology, University of California, Irvine, Irvine, CA 92697-3900, USA. Phone: 1-949-824-1947 Fax: 1-949-824-8551
| |
Collapse
|
11
|
Malhotra S, Kovats S, Zhang W, Coggeshall KM. Vav and Rac activation in B cell antigen receptor endocytosis involves Vav recruitment to the adapter protein LAB. J Biol Chem 2009; 284:36202-36212. [PMID: 19858206 PMCID: PMC2794736 DOI: 10.1074/jbc.m109.040089] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/14/2009] [Indexed: 11/06/2022] Open
Abstract
The signal transduction events supporting B cell antigen receptor (BCR) endocytosis are not well understood. We have identified a pathway supporting BCR internalization that begins with tyrosine phosphorylation of the adapter protein LAB. Phosphorylated LAB recruits a complex of Grb2-dynamin and the guanine nucleotide exchange factor Vav. Vav is required for activation of the small GTPases Rac1 and Rac2. All these proteins contribute to (and dynamin, Vav, and Rac1/2 are required for) BCR endocytosis and presentation of antigen to T cells. This is the first description of a sequential signal transduction pathway from BCR to internalization and antigen presentation.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/immunology
- Adaptor Proteins, Vesicular Transport/metabolism
- Animals
- Antigen Presentation/physiology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Line, Tumor
- Dynamins/genetics
- Dynamins/immunology
- Dynamins/metabolism
- Endocytosis/physiology
- GRB2 Adaptor Protein/genetics
- GRB2 Adaptor Protein/immunology
- GRB2 Adaptor Protein/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Neuropeptides/genetics
- Neuropeptides/immunology
- Neuropeptides/metabolism
- Phosphorylation/physiology
- Proto-Oncogene Proteins c-vav/genetics
- Proto-Oncogene Proteins c-vav/immunology
- Proto-Oncogene Proteins c-vav/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/physiology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- rac GTP-Binding Proteins/genetics
- rac GTP-Binding Proteins/immunology
- rac GTP-Binding Proteins/metabolism
- rac1 GTP-Binding Protein
- RAC2 GTP-Binding Protein
Collapse
Affiliation(s)
- Shikha Malhotra
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, and Department of Cell Biology, University of Oklahoma, Oklahoma City, Oklahoma 73104
| | - Susan Kovats
- Arthritis and Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Weiguo Zhang
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | - K Mark Coggeshall
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, and Department of Cell Biology, University of Oklahoma, Oklahoma City, Oklahoma 73104.
| |
Collapse
|
12
|
Malhotra S, Kovats S, Zhang W, Coggeshall KM. B cell antigen receptor endocytosis and antigen presentation to T cells require Vav and dynamin. J Biol Chem 2009; 284:24088-97. [PMID: 19586920 DOI: 10.1074/jbc.m109.014209] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antigen binding to the B cell antigen receptor (BCR) initiates an array of signaling events. These include endocytosis of ligand-receptor complexes via clathrin-coated pits, trafficking of the internalized ligand to lysosomes, degradation of the associated proteins to peptides, and peptide presentation on nascent major histocompatibility complex class II to T cells. The signal transduction events supporting BCR internalization are not well understood. We have identified a pathway supporting BCR internalization that includes the Vav1 and/or Vav3 isoforms and the GTPase dynamin. Vav1 and -3 are not required for B cell development and maturation, nor for a variety of BCR-induced signaling events nor for BCR signaling leading to major histocompatibility complex class II and CD80 expression, but Vav1 and/or -3 are absolutely required for BCR endocytosis and BCR-induced Rac-GTP loading. This is the first demonstration of a link between Vav and Rac in BCR internalization leading to antigen presentation to T cells.
Collapse
Affiliation(s)
- Shikha Malhotra
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
13
|
Abstract
The phosphoinositide 3-kinase (PI3K) family of lipid kinases regulates diverse aspects of lymphocyte behavior. This review discusses how genetic and pharmacological tools have yielded an increasingly detailed understanding of how PI3K enzymes function at different stages of lymphocyte development and activation. Following antigen receptor engagement, activated PI3K generates 3-phosphorylated inositol lipid products that serve as membrane targeting signals for numerous proteins involved in the assembly of multiprotein complexes, termed signalosomes, and immune synapse formation. In B cells, class IA PI3K is the dominant subgroup whose loss causes profound defects in development and antigen responsiveness. In T cells, both class IA and IB PI3K contribute to development and immune function. PI3K also regulates both chemokine responsiveness and antigen-driven changes in lymphocyte trafficking. PI3K modulates the function not only of effector T cells, but also regulatory T cells; these disparate functions culminate in unexpected autoimmune phenotypes in mice with PI3K-deficient T cells. Thus, PI3K signaling is not a simple switch to promote cellular activation, but rather an intricate web of interactions that must be properly balanced to ensure appropriate cellular responses and maintain immune homeostasis. Defining these complexities remains a challenge for pharmaceutical development of PI3K inhibitors to combat inflammation and autoimmunity.
Collapse
Affiliation(s)
- David A Fruman
- Department of Molecular Biology and Biochemistry, and Center for Immunology, University of California at Irvine, Irvine, CA, USA.
| | | |
Collapse
|
14
|
Visualizing the molecular and cellular events underlying the initiation of B-cell activation. Curr Top Microbiol Immunol 2009; 334:153-77. [PMID: 19521685 DOI: 10.1007/978-3-540-93864-4_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The appropriate activation of B cells is critical for the development of effective immune responses. B cell activation is initiated following the engagement of the B cell receptor (BCR) with specific antigen. The spatiotemporal characterization of the ensuing molecular and cellular events has been the subject of recent high-resolution imaging investigations. In this review we highlight information gathered thus far concerning the initial processes underlying the activation of B cells. First, we consider studies that have offered new insights into the early molecular events that occur within the B cell prior to formation of the immunological synapse. As such, BCR-microclusters formed on engagement with antigen have been identified as the sites of active signaling and assembly of "microsignalosomes." Furthermore, signaling through these "microsignalosomes" is propagated and enhanced through B cell spreading in response to membrane-antigen in a CD19-dependent manner. Finally, we discuss a number of multiphoton microscopy studies that have enabled dynamic characterization of the initial encounters between B cells and antigen in vivo. These investigations visualize the presentation of larger antigens to B cells via cell-mediated strategies, involving macrophages in the subcapsular sinus and dendritic cells in the paracortex.
Collapse
|
15
|
Jacob M, Todd L, Sampson MF, Puré E. Dual role of Cbl links critical events in BCR endocytosis. Int Immunol 2008; 20:485-97. [PMID: 18283045 DOI: 10.1093/intimm/dxn010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Receptor endocytosis down-regulates ligand-induced signaling in a timely manner and depends on cytoskeletal remodeling. In B lymphocytes, internalization of B cell receptors (BCRs) is also critical to antigen presentation. However, the mechanisms underlying BCR endocytosis are not fully understood. Similarly, the molecular mechanisms linking endocytosis to cytoskeletal remodeling remain poorly defined. We used flow cytometry, pull-down assays, immunochemistry and fluorescence microscopy to investigate BCR internalization in the DT40 B cell line. We demonstrate that ablation of Cbl impacts BCR endocytosis and the underlying cytoskeletal dynamics. Specifically, we demonstrate that ligand-induced endocytosis is impaired in Cbl-/- cells and that the ubiquitin ligase activity is required for Cbl to promote endocytosis. We also show that phosphorylation of CrkII, activation of Rac downstream of CrkII and BCR capping require Cbl. Furthermore, we show that the association of Cbl and CrkII requires phosphorylation of Cbl, but not its ubiquitin ligase activity. Our data indicate that Cbl promotes BCR endocytosis and attenuates ligand-induced signaling by virtue of its ability to orchestrate receptor ubiquitylation and cytoskeletal dynamics.
Collapse
Affiliation(s)
- Michele Jacob
- Wistar Institute and Ludwig Institute for Cancer Research, 3601 Spruce Street, Philadelphia, PA 19104-4268, USA.
| | | | | | | |
Collapse
|
16
|
Depoil D, Fleire S, Treanor BL, Weber M, Harwood NE, Marchbank KL, Tybulewicz VLJ, Batista FD. CD19 is essential for B cell activation by promoting B cell receptor-antigen microcluster formation in response to membrane-bound ligand. Nat Immunol 2008; 9:63-72. [PMID: 18059271 DOI: 10.1038/ni1547] [Citation(s) in RCA: 286] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 11/07/2007] [Indexed: 02/01/2023]
Abstract
Here we describe the spatiotemporal architecture, at high molecular resolution, of receptors and signaling molecules during the early events of mouse B cell activation. In response to membrane-bound ligand stimulation, antigen aggregation occurs in B cell antigen receptor (BCR) microclusters containing immunoglobulin (Ig) M and IgD that recruit the kinase Syk and transiently associate with the coreceptor CD19. Unexpectedly, CD19-deficient B cells were significantly defective in initiation of BCR-dependent signaling, accumulation of downstream effectors and cell spreading, defects that culminated in reduced microcluster formation. Hence, we have defined the dynamics of assembly of the main constituents of the BCR 'signalosome' and revealed an essential role for CD19, independent of the costimulatory molecule CD21, in amplifying early B cell activation events in response to membrane-bound ligand stimulation.
Collapse
Affiliation(s)
- David Depoil
- Lymphocyte Interaction Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Patel H, Marley SB, Greener L, Gordon MY. Subcellular distribution of p210BCR-ABL in CML cell lines and primary CD34+ CML cells. Leukemia 2007; 22:559-71. [DOI: 10.1038/sj.leu.2405057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Yamashita Y, Phee H, Tudor KSRS, Rossi MID, Parnes JR, Coggeshall KM, Kincade PW. A unique CD72 epitope suggests a potential interaction with Fc gamma RII/CD32 on B lineage lymphocytes. Hybridoma (Larchmt) 2006; 25:107-14. [PMID: 16796456 DOI: 10.1089/hyb.2006.25.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It has long been known that ligation of the transmembrane CD72 glycoprotein delivers signals to B lymphocytes, with the outcome depending on context. Of particular interest is its ability to function as a counter-receptor/ ligand for the CD100 semaphorin protein. We have now obtained evidence that CD72 physically interacts on the lymphocyte membrane with Fcgamma receptor II (CD32). The association was first revealed with a new monoclonal antibody that recognizes polymorphic determinants on murine CD72. Although the specificity for CD72 was clear from immunoblotting, transfection and other experiments, staining with this reagent was inhibited when cells were pretreated with an Fc receptor-blocking antibody (CD16/CD32 specific). Furthermore, confocal microscopy revealed that the two molecules co-distributed on viable B cells. We also used the antibody to determine when CD72 becomes available to maturing lymphocytes. The marker is first acquired as large pre-B cells and enter the IL-7 independent phase of maturation within bone marrow. Subsequent interactions between CD72 and CD32 may cooperatively deliver negative signals that modulate humoral immune responses.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- COS Cells
- Cell Line, Tumor
- Cell Lineage/immunology
- Chlorocebus aethiops
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Rats
- Rats, Wistar
- Receptors, IgG/metabolism
Collapse
Affiliation(s)
- Yoshio Yamashita
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Avota E, Harms H, Schneider-Schaulies S. Measles virus induces expression of SIP110, a constitutively membrane clustered lipid phosphatase, which inhibits T cell proliferation. Cell Microbiol 2006; 8:1826-39. [PMID: 16824039 DOI: 10.1111/j.1462-5822.2006.00752.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Interference of measles virus (MV) with phosphatidyl-inositol-3-kinase (PI3K) activation in response to T cell receptor ligation was identified as important for the induction of T cell paralysis. We now show that MV exposure of unstimulated T cells induces expression of SIP110, an isoform of the lipid phosphatase SHIP145, which is translated from an intron-derived sequences containing mRNA. We found that MV contact can regulate stimulated exon inclusion into pre-mRNAs by targeting PI3K or MAPK-dependent nuclear translocation and activation of splicing regulatory serine-arginine rich (SR) and Sam68 proteins. Induction of SIP110 in resting T cells relied on MV-dependent interference with basal activity of the PI3K. SIP110 was cloned from MV-exposed T cells, and, when transiently expressed in primary or Jurkat T cells, localized into membrane clusters independently of T cell activation. Confirming that SIP110 is a catalytically active lipid phosphatase, its transgenic expression abolished basal and impaired PMA/ionomycin-stimulated phosphorylation of the Akt kinase which is important for T cell proliferation. Thus MV causes induction of SIP110 expression, which constitutively depletes the cellular phosphoinositol-3,4,5-phosphate pool suggesting that thereby the threshold for activation signals necessary for the induction of T cell proliferation is raised.
Collapse
Affiliation(s)
- Elita Avota
- Institute for Virology and Immunobiology, University of Wuerzburg, Versbacher Str. 7, D-97078 Wuerzburg, Germany
| | | | | |
Collapse
|
20
|
Collins BE, Smith BA, Bengtson P, Paulson JC. Ablation of CD22 in ligand-deficient mice restores B cell receptor signaling. Nat Immunol 2005; 7:199-206. [PMID: 16369536 DOI: 10.1038/ni1283] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 10/24/2005] [Indexed: 12/17/2022]
Abstract
CD22 is a negative regulator of B cell signaling, an activity modulated by its interaction with glycan ligands containing alpha2-6-linked sialic acids. B cells deficient in the enzyme (ST6Gal I) that forms the CD22 ligand show suppressed BCR signaling. Here we report that mice deficient in both CD22 and its ligand (Cd22-/- St6gal1-/- mice) showed restored B cell receptor (BCR) signaling, suggesting that the suppressed signaling of St6gal1-/- cells is mediated through CD22. Coincident with suppressed BCR signaling, B cells lacking ST6Gal I showed a net redistribution of the BCR to clathrin-rich microdomains containing most of the CD22, resulting in a twofold increase in the localization of CD22 together with the BCR. These studies suggest an important function for the CD22-ligand interaction in regulating BCR signaling and microdomain localization.
Collapse
Affiliation(s)
- Brian E Collins
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
21
|
Tzeng SJ, Bolland S, Inabe K, Kurosaki T, Pierce SK. The B Cell Inhibitory Fc Receptor Triggers Apoptosis by a Novel c-Abl Family Kinase-dependent Pathway. J Biol Chem 2005; 280:35247-54. [PMID: 16115887 DOI: 10.1074/jbc.m505308200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inhibitory Fc receptors function to regulate the antigen-driven activation and expansion of lymphocytes. In B cells, the Fc gammaRIIB1 is a potent inhibitor of B cell antigen receptor (BCR) signaling when coligated to the BCR by engagement of antigen-containing immune complexes. Inhibition is mediated by the recruitment of the inositol phosphatase, SHIP, to the Fc gammaRIIB1 phosphorylated tyrosine-based inhibitory motif (ITIM). Here we show that BCR-independent aggregation of the Fc gammaRIIB1 transduces an ITIM- and SHIP-independent proapoptotic signal that is dependent on members of the c-Abl tyrosine kinase family. These results define a novel Abl family kinase-dependent Fc gammaRIIB1 signaling pathway that functions independently of the BCR in controlling antigen-driven B cell responses.
Collapse
Affiliation(s)
- Shiang-Jong Tzeng
- Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | |
Collapse
|
22
|
Lesourne R, Fridman WH, Daëron M. Dynamic interactions of Fc gamma receptor IIB with filamin-bound SHIP1 amplify filamentous actin-dependent negative regulation of Fc epsilon receptor I signaling. THE JOURNAL OF IMMUNOLOGY 2005; 174:1365-73. [PMID: 15661894 DOI: 10.4049/jimmunol.174.3.1365] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The engagement of high affinity receptors for IgE (FcepsilonRI) generates both positive and negative signals whose integration determines the intensity of mast cell responses. FcepsilonRI-positive signals are also negatively regulated by low affinity receptors for IgG (FcgammaRIIB). Although the constitutive negative regulation of FcepsilonRI signaling was shown to depend on the submembranous F-actin skeleton, the role of this compartment in FcgammaRIIB-dependent inhibition is unknown. We show in this study that the F-actin skeleton is essential for FcgammaRIIB-dependent negative regulation. It contains SHIP1, the phosphatase responsible for inhibition, which is constitutively associated with the actin-binding protein, filamin-1. After coaggregation, FcgammaRIIB and FcepsilonRI rapidly interact with the F-actin skeleton and engage SHIP1 and filamin-1. Later, filamin-1 and F-actin dissociate from FcR complexes, whereas SHIP1 remains associated with FcgammaRIIB. Based on these results, we propose a dynamic model in which the submembranous F-actin skeleton forms an inhibitory compartment where filamin-1 functions as a donor of SHIP1 for FcgammaRIIB, which concentrate this phosphatase in the vicinity of FcepsilonRI and thereby extinguish activation signals.
Collapse
MESH Headings
- Actins/antagonists & inhibitors
- Actins/metabolism
- Actins/physiology
- Animals
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Line, Tumor
- Contractile Proteins/metabolism
- Down-Regulation/immunology
- Filamins
- Immunoglobulin E/physiology
- Inositol Polyphosphate 5-Phosphatases
- Mast Cells/drug effects
- Mast Cells/enzymology
- Mast Cells/metabolism
- Membrane Microdomains/metabolism
- Mice
- Microfilament Proteins/metabolism
- Molecular Weight
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoric Monoester Hydrolases/metabolism
- Phosphoric Monoester Hydrolases/physiology
- Protein Binding/immunology
- Protein Isoforms/metabolism
- Rats
- Receptor Aggregation/immunology
- Receptors, IgE/antagonists & inhibitors
- Receptors, IgE/metabolism
- Receptors, IgE/physiology
- Receptors, IgG/antagonists & inhibitors
- Receptors, IgG/metabolism
- Receptors, IgG/physiology
- Resting Phase, Cell Cycle/immunology
- Signal Transduction/immunology
- Thiazoles/pharmacology
- Thiazolidines
- Time Factors
Collapse
Affiliation(s)
- Renaud Lesourne
- Laboratoire d'Immunologie Cellulaire et Clinique, Institut National de la Santé et de la Recherche Médicale, Unité 255, Institut Biomédical des Cordeliers, Paris, France
| | | | | |
Collapse
|
23
|
Isnardi I, Lesourne R, Bruhns P, Fridman WH, Cambier JC, Daëron M. Two Distinct Tyrosine-based Motifs Enable the Inhibitory Receptor FcγRIIB to Cooperatively Recruit the Inositol Phosphatases SHIP1/2 and the Adapters Grb2/Grap. J Biol Chem 2004; 279:51931-8. [PMID: 15456754 DOI: 10.1074/jbc.m410261200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FcgammaRIIB are low-affinity receptors for IgG that contain an immunoreceptor tyrosine-based inhibition motif (ITIM) and inhibit immunoreceptor tyrosine-based activation motif (ITAM)-dependent cell activation. When coaggregated with ITAM-bearing receptors, FcgammaRIIB become tyrosyl-phosphorylated and recruit the Src homology 2 (SH2) domain-containing inositol 5'-phosphatases SHIP1 and SHIP2, which mediate inhibition. The FcgammaRIIB ITIM was proposed to be necessary and sufficient for recruiting SHIP1/2. We show here that a second tyrosine-containing motif in the intracytoplasmic domain of FcgammaRIIB is required for SHIP1/2 to be coprecipitated with the receptor. This motif functions as a docking site for the SH2 domain-containing adapters Grb2 and Grap. These adapters interact via their C-terminal SH3 domain with SHIP1/2 to form a stable receptor-phosphatase-adapter trimolecular complex. Both Grb2 and Grap are required for an optimal coprecipitation of SHIP with FcgammaRIIB, but one adapter is sufficient for the phosphatase to coprecipitate in a detectable manner with the receptors. In addition to facilitating the recruitment of SHIPs, the second tyrosine-based motif may confer upon FcgammaRIIB the properties of scaffold proteins capable of altering the composition and stability of the signaling complexes generated following receptor engagement.
Collapse
Affiliation(s)
- Isabelle Isnardi
- Laboratoire d'Immunologie Cellulaire et Clinique, INSERM U255, Institut de Recherches Biomédicales des Cordeliers, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
24
|
Niiro H, Allam A, Stoddart A, Brodsky FM, Marshall AJ, Clark EA. The B lymphocyte adaptor molecule of 32 kilodaltons (Bam32) regulates B cell antigen receptor internalization. THE JOURNAL OF IMMUNOLOGY 2004; 173:5601-9. [PMID: 15494510 DOI: 10.4049/jimmunol.173.9.5601] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The B lymphocyte adaptor molecule of 32 kDa (Bam32) is an adaptor that plays an indispensable role in BCR signaling. In this study, we found that upon BCR ligation, Bam32 is recruited to the plasma membrane where it associates with BCR complexes and redistributes and internalizes with BCRs. BCR ligation induced colocalization of Bam32 with lipid rafts, clathrin, and actin filaments. An inhibitor of Src family protein tyrosine kinases (PTKs) blocked both BCR-induced tyrosine phosphorylation of Bam32 and BCR internalization. Moreover, BCR internalization is impaired in Bam32-/- and Lyn-/- cells, and expression of Bam32 with a mutation of its tyrosine phosphorylation site (Y139F) inhibited BCR internalization. These data suggest that Bam32 functions downstream of Src family PTKs to regulate BCR internalization. Bam32 deficiency does not affect tyrosine phosphorylation of clathrin or the association of clathrin with lipid rafts upon BCR cross-linking. However, BCR-induced actin polymerization is impaired in Bam32-/- cells. Collectively, these findings indicate a novel role of Bam32 in connecting Src family PTKs to BCR internalization by an actin-dependent mechanism.
Collapse
Affiliation(s)
- Hiroaki Niiro
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
25
|
Rauh MJ, Sly LM, Kalesnikoff J, Hughes MR, Cao LP, Lam V, Krystal G. The role of SHIP1 in macrophage programming and activation. Biochem Soc Trans 2004; 32:785-8. [PMID: 15494015 DOI: 10.1042/bst0320785] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The SHIP1 (SH2-containing inositol-5′-phosphatase 1) acts as a negative regulator of proliferation, survival and end cell activation in haemopoietic cells. It does so, at least in part, by translocating to membranes after extracellular stimulation and hydrolysing the phosphoinositide 3-kinase-generated second messenger, PtdIns(3,4,5)P3 to PtdIns(3,4)P2. SHIP1−/− mice have, as a result, an increased number of neutrophils and monocyte/macrophages because their progenitors display enhanced survival and proliferation. These mice also suffer from osteoporosis because of an increased number of hyperactive osteoclasts and a significant neutrophil infiltration of the lungs. Interestingly, SHIP1−/− mice do not display endotoxin tolerance and we have found that lipopolysaccharide-induced endotoxin tolerance is contingent on up-regulating SHIP1, through the production of autocrine-acting transforming growth factor-β, in bone-marrow-derived macrophages and mast cells. Intriguingly, unlike bone-marrow-derived macrophages, SHIP1−/− peritoneal and alveolar macrophages produce 10-fold less NO than wild-type macrophages because these in vivo-generated macrophages have very high arginase I levels and this enzyme competes with inducible nitric oxide synthase for the substrate L-arginine. It is probable that, in the face of chronically increased PtdIns(3,4,5)P3 levels in their myeloid progenitors, SHIP1−/− mice display a skewed development away from M1 (killer) macrophages (which have high inducible nitric oxide synthase levels and produce NO to kill microorganisms and tumour cells), towards M2 (healing) macrophages (which have high arginase levels and produce ornithine to promote host-cell growth and collagen formation). This skewing probably occurs to avoid septic shock and suggests that the phosphoinositide 3-kinase pathway plays a critical role in programming macrophages.
Collapse
Affiliation(s)
- M J Rauh
- The Terry Fox Laboratory, B.C. Cancer Agency, Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Sly LM, Rauh MJ, Kalesnikoff J, Büchse T, Krystal G. SHIP, SHIP2, and PTEN activities are regulated in vivo by modulation of their protein levels: SHIP is up-regulated in macrophages and mast cells by lipopolysaccharide. Exp Hematol 2004; 31:1170-81. [PMID: 14662322 DOI: 10.1016/j.exphem.2003.09.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The phosphatidylinositol-3 kinase (PI3K) pathway plays a central role in regulating numerous biologic processes, including survival, adhesion, migration, metabolic activity, proliferation, differentiation, and end cell activation through the generation of the potent second messenger PI-3,4,5-trisphosphate (PI-3,4,5-P(3)). To ensure that activation of this pathway is appropriately suppressed/terminated, the ubiquitously expressed 54-kDa tumor suppressor PTEN hydrolyzes PI-3,4,5-P(3) to PI-4,5-P(2), whereas the 145-kDa hematopoietic-restricted SH2-containing inositol 5'-phosphatase SHIP (also known as SHIP1), the 104-kDa stem cell-restricted SHIP sSHIP, and the more widely expressed 150-kDa SHIP2 break it down to PI-3,4-P(2). In this review, we focus on the properties of these phospholipid phosphatases and summarize recent data showing that the activities of these negative regulators often are modulated by simply altering their protein levels. We also highlight the critical role that SHIP plays in lipopolysaccharide-induced macrophage activation and in endotoxin tolerance.
Collapse
Affiliation(s)
- Laura M Sly
- The Terry Fox Laboratory, British Columbia Cancer Agency, 601 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | | | | | | | | |
Collapse
|
27
|
Keren Z, Diamant E, Ostrovsky O, Bengal E, Melamed D. Modification of ligand-independent B cell receptor tonic signals activates receptor editing in immature B lymphocytes. J Biol Chem 2003; 279:13418-24. [PMID: 14668327 DOI: 10.1074/jbc.m311970200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maturation of B lymphocytes strictly depends on the signaling competence of the B cell antigen receptor (BCR). Autoreactive receptors undergo negative selection and can be replaced by receptor editing. In addition, the process of maturation of non-self B cells and migration to the spleen, referred to as positive selection, is limited by the signaling competence of the BCR. Using 3-83Tg mice deficient of CD19 we have shown that signaling incompetence not only blocks positive selection but also activates receptor editing. Here we study the role of ligand-independent BCR tonic tyrosine phosphorylation signals in activation of receptor editing. We find that editing, immature 3-83Tg B cells deficient of CD19 have elevated BCR tonic signals and that lowering these tonic signals effectively suppresses receptor editing. Furthermore, we show that elevation of BCR tonic signals in non-editing, immature 3-83Tg B cells stimulates significant receptor editing. We also show that positive selection and developmental progression from the bone marrow to the spleen are limited to cells capable of establishing appropriate tonic signals, as in contrast to immature cells, splenic 3-83Tg B cells deficient of CD19 have BCR tonic signals similar to those of the control 3-83Tg cells. This developmental progression is accompanied by activation of molecules signaling for growth and survival. Hence, we suggest that ligand-independent BCR tonic signals are required for promoting positive selection and suppressing the receptor-editing mechanism in immature B cells.
Collapse
Affiliation(s)
- Zohar Keren
- Technion, Faculty of Medicine, Departments of Immunology and Biochemistry, Rappaport Family Institute for Research in the Medical Sciences, Haifa 31096, Israel
| | | | | | | | | |
Collapse
|
28
|
Hamilton VT, Stone DM, Cantor GH. Translocation of the B cell receptor to lipid rafts is inhibited in B cells from BLV-infected, persistent lymphocytosis cattle. Virology 2003; 315:135-47. [PMID: 14592766 DOI: 10.1016/s0042-6822(03)00522-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bovine leukemia virus (BLV) infection causes a significant polyclonal expansion of CD5(+), IgM+ B lymphocytes known as persistent lymphocytosis (PL) in approximately 30% of infected cattle. There is evidence that this expanded B cell population has altered signaling, and resistance to apoptosis has been proposed as one mechanism of B cell expansion. In human and murine B cells, antigen binding initiates movement of the B cell receptor (BCR) into membrane microdomains enriched in sphingolipids and cholesterol, termed lipid rafts. Lipid rafts include members of the Src-family kinases and exclude certain phosphatases. Inclusion of the BCR into lipid rafts plays an important role in regulation of early signaling events and subsequent antigen internalization. Viral proteins may also influence signaling events in lipid rafts. Here we demonstrate that the largely CD5(+) B cell population in PL cattle has different mobilization and internalization of the BCR when compared to the largely CD5-negative B cells in BLV-negative cattle. Unlike B cells from BLV-negative cattle, the BCR in B cells of BLV-infected, PL cattle resists movement into lipid rafts upon stimulation and is only weakly internalized. Expression of viral proteins as determined by detection of the BLV transmembrane (TM) envelope glycoprotein gp30 did not alter these events in cells from PL cattle. This exclusion of the BCR from lipid rafts may, in part, explain signaling differences seen between B cells of BLV-infected, PL, and BLV-negative cattle and the resistance to apoptosis speculated to contribute to persistent lymphocytosis.
Collapse
Affiliation(s)
- Valerie T Hamilton
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | |
Collapse
|
29
|
Ganesan LP, Fang H, Marsh CB, Tridandapani S. The protein-tyrosine phosphatase SHP-1 associates with the phosphorylated immunoreceptor tyrosine-based activation motif of Fc gamma RIIa to modulate signaling events in myeloid cells. J Biol Chem 2003; 278:35710-7. [PMID: 12832410 DOI: 10.1074/jbc.m305078200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fc gamma RIIa is a low affinity IgG receptor uniquely expressed in human cells that promotes phagocytosis of immune complexes and induces inflammatory cytokine gene transcription. Recent studies have revealed that phagocytosis initiated by Fc gamma RIIa is tightly controlled by the inositol phosphatase SHIP-1, and the protein-tyrosine phosphatase SHP-1. Whereas the molecular nature of SHIP-1 involvement with Fc gamma RIIa has been well studied, it is not clear how SHP-1 is activated by Fc gamma RIIa to mediate its regulatory effect. Here we report that Fc gamma RIIa clustering induces SHP-1 phosphatase activity in THP-1 cells. Using synthetic phosphopeptides, and stable transfectants expressing immunoreceptor tyrosine-based activation motif (ITAM) tyrosine mutants of Fc gamma RIIa, we demonstrate that SHP-1 associates with the phosphorylated amino-terminal ITAM tyrosine of Fc gamma RIIa, whereas the tyrosine kinase Syk associates with the carboxyl-terminal ITAM tyrosine. Association of SHP-1 with Fc gamma RIIa ITAM appears to suppress total cellular tyrosine phosphorylation. Furthermore, Fc gamma RIIa clustering results in the association of SHP-1 with key signaling molecules such as Syk, p85 subunit of PtdIns 3-kinase, and p62dok, suggesting that these molecules may be substrates of SHP-1 in this system. Finally, overexpression of wild-type SHP-1 but not catalytically deficient SHP-1 led to a down-regulation of NF kappa B-dependent gene transcription in THP-1 cells activated by clustering Fc gamma RIIa.
Collapse
MESH Headings
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/isolation & purification
- Antigens, CD/physiology
- Cell Line
- Humans
- Intracellular Signaling Peptides and Proteins
- Kinetics
- Mutagenesis, Site-Directed
- Phosphorylation
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/chemistry
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- Receptors, IgG/chemistry
- Receptors, IgG/genetics
- Receptors, IgG/isolation & purification
- Receptors, IgG/physiology
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Signal Transduction/physiology
- Transfection
Collapse
Affiliation(s)
- Latha P Ganesan
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, The Dorothy M. Davis Heart and Lung Institute, and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
30
|
Sohn HW, Gu H, Pierce SK. Cbl-b negatively regulates B cell antigen receptor signaling in mature B cells through ubiquitination of the tyrosine kinase Syk. J Exp Med 2003; 197:1511-24. [PMID: 12771181 PMCID: PMC2193911 DOI: 10.1084/jem.20021686] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Members of the Cbl family of molecular adaptors play key roles in regulating tyrosine kinase-dependent signaling in a variety of cellular systems. Here we provide evidence that in B cells Cbl-b functions as a negative regulator of B cell antigen receptor (BCR) signaling during the normal course of a response. In B cells from Cbl-b-deficient mice cross-linking the BCRs resulted in sustained phosphorylation of Igalpha, Syk, and phospholipase C (PLC)-gamma2, leading to prolonged Ca2+ mobilization, and increases in extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal protein kinase (JNK) phosphorylation and surface expression of the activation marker, CD69. Image analysis following BCR cross-linking showed sustained polarization of the BCRs into large signaling-active caps associated with phosphorylated Syk in Cbl-b-deficient B cells in contrast to the BCRs in Cbl-b-expressing B cells that rapidly proceeded to form small, condensed, signaling inactive caps. Significantly, prolonged phosphorylation of Syk correlated with reduced ubiquitination of Syk indicating that Cbl-b negatively regulates BCR signaling by targeting Syk for ubiquitination.
Collapse
Affiliation(s)
- Hae Won Sohn
- The Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | |
Collapse
|
31
|
Johmura S, Oh-hora M, Inabe K, Nishikawa Y, Hayashi K, Vigorito E, Kitamura D, Turner M, Shingu K, Hikida M, Kurosaki T. Regulation of Vav localization in membrane rafts by adaptor molecules Grb2 and BLNK. Immunity 2003; 18:777-87. [PMID: 12818159 DOI: 10.1016/s1074-7613(03)00139-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Despite the importance of the Vav family proteins for B cell receptor (BCR) signaling, their activation mechanisms remain poorly understood. We demonstrate here that adaptor molecules Grb2 and BLNK, in addition to Vav, are required for efficient Rac1 activation in response to BCR stimulation. Loss of either Grb2 or BLNK results in decreased translocation of Vav3 to membrane rafts. By expression of Vav3 as a raft-targeted construct, the defective Rac1 activation in Grb2- or BLNK-deficient B cells is restored. Hence, our findings suggest that Grb2 and BLNK cooperate to localize Vav into membrane rafts, thereby contributing to optimal activation of Vav in B cells.
Collapse
Affiliation(s)
- Sachiko Johmura
- Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, 10-15 Fumizono-cho, Moriguchi 570-8506, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The formerly distinct fields of lymphocyte signal transduction and cytoskeletal remodeling have recently become linked, as proteins involved in transducing signals downstream of lymphocyte antigen receptors have also been implicated in actin cytoskeleton remodeling, microtubule dynamics and regulation of cell polarity. These discoveries have fuelled interest in understanding both the role of the actin cytoskeleton as an integral component of lymphocyte activation and the interplay between lymphoid cell-cell contact sites (immunological synapse), retractile pole structures (uropod, distal pole complex), and Rho-family GTPases (Rac, Rho, Cdc42), their upstream activators (Dbl-family guanine nucleotide exchange factors) and their downstream effectors (WASp, Arp2/3, ADAP). To understand how these complex regulatory networks are wired, a new breed of computational biologists uses mathematical language to reproduce and simulate signaling circuits 'in silico'.
Collapse
Affiliation(s)
- Ana V Miletic
- Washington University School of Medicine, Department of Pathology and Immunology, 660 Euclid Avenue, Campus Box 8118, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
33
|
Goodyear CS, Silverman GJ. Death by a B cell superantigen: In vivo VH-targeted apoptotic supraclonal B cell deletion by a Staphylococcal Toxin. J Exp Med 2003; 197:1125-39. [PMID: 12719481 PMCID: PMC2193973 DOI: 10.1084/jem.20020552] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2002] [Revised: 02/14/2003] [Accepted: 03/10/2003] [Indexed: 02/06/2023] Open
Abstract
Amongst the many ploys used by microbial pathogens to interfere with host immune responses is the production of proteins with the properties of superantigens. These properties enable superantigens to interact with conserved variable region framework subdomains of the antigen receptors of lymphocytes rather than the complementarity determining region involved in the binding of conventional antigens. To understand how a B cell superantigen affects the host immune system, we infused protein A of Staphylococcus aureus (SpA) and followed the fate of peripheral B cells expressing B cell receptors (BCRs) with VH regions capable of binding SpA. Within hours, a sequence of events was initiated in SpA-binding splenic B cells, with rapid down-regulation of BCRs and coreceptors, CD19 and CD21, the induction of an activation phenotype, and limited rounds of proliferation. Apoptosis followed through a process heralded by the dissipation of mitochondrial membrane potential, the induction of the caspase pathway, and DNA fragmentation. After exposure, B cell apoptotic bodies were deposited in the spleen, lymph nodes, and Peyer's patches. Although in vivo apoptosis did not require the Fas death receptor, B cells were protected by interleukin (IL)-4 or CD40L, or overexpression of Bcl-2. These studies define a pathway for BCR-mediated programmed cell death that is VH region targeted by a superantigen.
Collapse
Affiliation(s)
- Carl S Goodyear
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|
34
|
Deng C, Wu B, Yang H, Hussain RZ, Lovett-Racke AE, Christadoss P, Racke MK. Decreased expression of Src homology 2 domain-containing protein tyrosine phosphatase 1 reduces T cell activation threshold but not the severity of experimental autoimmune myasthenia gravis. J Neuroimmunol 2003; 138:76-82. [PMID: 12742656 DOI: 10.1016/s0165-5728(03)00119-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Myasthenia gravis (MG) and its murine model experimental autoimmune myasthenia gravis (EAMG) are T cell-dependent, antibody-mediated autoimmune diseases. Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) is a cytosolic tyrosine phosphatase that is involved in regulating the T cell activation cascade from signals initiated through the TCR. To study the role of SHP-1 in EAMG pathogenesis, we immunized C57BL/6 (B6) mice heterozygous for deletion of the SHP-1 gene (me(v+/-)) and their littermate wild type B6 mice with torpedo acetylcholine receptor (TAChR). T cell proliferation and IFNgamma production were significantly increased in B6.me(v+/-) mice after immunization with AChR compared to that of wild type littermates. However, clinical incidence and severity of the disease were not changed. There also were no significant differences in AChR-specific antibodies produced between wild type and me(v+/-) mice. These data suggest that deficiency in SHP-1 expression does decrease the activation threshold of autoreactive T cells in EAMG, but the increased frequency of autoreactive T cells does not aggravate EAMG in terms of clinical score, incidence, or antibody titers.
Collapse
MESH Headings
- Animals
- Autoantibodies/biosynthesis
- Autoantibodies/blood
- Cell Division/genetics
- Cell Division/immunology
- Cells, Cultured
- Cytokines/biosynthesis
- Down-Regulation/genetics
- Down-Regulation/immunology
- Epitopes, T-Lymphocyte/immunology
- Intracellular Signaling Peptides and Proteins
- Lymphocyte Activation/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Myasthenia Gravis, Autoimmune, Experimental/enzymology
- Myasthenia Gravis, Autoimmune, Experimental/genetics
- Myasthenia Gravis, Autoimmune, Experimental/immunology
- Protein Phosphatase 1
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/antagonists & inhibitors
- Protein Tyrosine Phosphatases/biosynthesis
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/physiology
- Receptors, Cholinergic/immunology
- T-Lymphocyte Subsets/enzymology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Up-Regulation/genetics
- Up-Regulation/immunology
- src Homology Domains/genetics
Collapse
Affiliation(s)
- Caishu Deng
- Department of Neurology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-9036, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
We present a hypothesis regarding the mode of induction of the inhibitory phosphatases SHP-1 and SHIP in hematopoietic cells. One mode is a general one in which the phosphatase regulates but does not abort signal transduction and biology. Regulator phosphatases are induced by directly or indirectly engaging the amino acid motifs present in the activating receptor, and act to control the biochemical and biological output. The other mode of induction is a specific one, which critically involves paired co-clustering of activating and inhibitory receptors. Phosphatases working in this way act only under conditions of paired co-clustering of activating and inhibitory receptors, and directly bind amino acid motifs present in the inhibitory receptor. However, this mode of induction is apparently more efficient, as cellular activation is completely aborted. This review presents several examples of each mode of inhibition and speculates on their mechanisms.
Collapse
Affiliation(s)
- K M Coggeshall
- The Oklahoma Medical Research Foundation, Program in Immunobiology, 825 N.E. 13th St., Oklahoma City, OK 73104, USA.
| | | | | |
Collapse
|
36
|
Nakamura K, Malykhin A, Coggeshall KM. The Src homology 2 domain-containing inositol 5-phosphatase negatively regulates Fcgamma receptor-mediated phagocytosis through immunoreceptor tyrosine-based activation motif-bearing phagocytic receptors. Blood 2002; 100:3374-82. [PMID: 12384440 DOI: 10.1182/blood-2002-03-0787] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular mechanisms by which the Src homology 2 domain-containing inositol 5-phosphatase (SHIP) negatively regulates phagocytosis in macrophages are unclear. We addressed the issue using bone marrow-derived macrophages from FcgammaR- or SHIP-deficient mice. Phagocytic activities of macrophages from FcgammaRII(b)(-/-) and SHIP(-/-) mice were enhanced to a similar extent, relative to those from wild type. However, calcium influx was only marginally affected in FcgammaRII(b)(-/-), but greatly enhanced in SHIP(-/-) macrophages. Furthermore, SHIP was phosphorylated on tyrosine residues upon FcgammaR aggregation even in macrophages from FcgammaRII(b)(-/-) mice or upon clustering of a chimeric receptor containing CD8 and the immunoreceptor tyrosine-based activation motif (ITAM)-bearing gamma-chain or human-restricted FcgammaRIIa. These findings indicate that, unlike B cells, SHIP is efficiently phosphorylated in the absence of an immunoreceptor tyrosine-based inhibition motif (ITIM)-bearing receptor. We further demonstrate that SHIP directly bound to phosphorylated peptides derived from FcgammaRIIa with a high affinity, comparable to that of FcgammaRII(b). Lastly, FcgammaRIIa-mediated phagocytosis was significantly enhanced in THP-1 cells overexpressing dominant-negative form of SHIP in the absence of FcgammaRII(b). These results indicate that SHIP negatively regulates FcgammaR-mediated phagocytosis through all ITAM-containing IgG receptors using a molecular mechanism distinct from that in B cells.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Antigens, CD/chemistry
- Antigens, CD/metabolism
- Bone Marrow Cells/cytology
- CD8 Antigens/genetics
- CD8 Antigens/physiology
- Calcium Signaling
- GPI-Linked Proteins
- Humans
- Macrophages/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phagocytosis/physiology
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoric Monoester Hydrolases/chemistry
- Phosphoric Monoester Hydrolases/deficiency
- Phosphoric Monoester Hydrolases/genetics
- Phosphoric Monoester Hydrolases/physiology
- Phosphorylation
- Phosphotyrosine/physiology
- Protein Processing, Post-Translational
- Receptors, IgG/chemistry
- Receptors, IgG/deficiency
- Receptors, IgG/metabolism
- Recombinant Fusion Proteins/metabolism
Collapse
Affiliation(s)
- Koji Nakamura
- Program in Immunobiology and Cancer, The Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
37
|
Jin L, McLean PA, Neel BG, Wortis HH. Sialic acid binding domains of CD22 are required for negative regulation of B cell receptor signaling. J Exp Med 2002; 195:1199-205. [PMID: 11994425 PMCID: PMC2193702 DOI: 10.1084/jem.20011796] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2001] [Revised: 03/13/2002] [Indexed: 12/21/2022] Open
Abstract
CD22, a negative regulator of B cell antigen receptor signaling, binds glycoconjugates terminating in alpha2, 6 sialic acid. The physiological ligand(s) for CD22 remain unknown. We asked whether the sialic acid binding domains are necessary for CD22 to function as a negative regulator. We generated two mutants that lack sialic acid binding activity and expressed them in a novel CD22(-/-) murine B cell line. Anti-IgM activated B cells expressing either CD22 mutant had greater Ca(2+) responses than cells expressing wild-type CD22. Each variant also had reduced CD22 tyrosine phosphorylation and Src homology 2 domain-containing protein tyrosine phosphatase-1 association. These data suggest that the alpha2, 6 sialic acid ligand binding activity of CD22 is critical for its negative regulatory functions.
Collapse
Affiliation(s)
- Lei Jin
- Department of Pathology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
38
|
Abstract
The B-cell antigen receptor acts during B-cell activation both to initiate signalling cascades and to transport antigen into the cell for subsequent processing and presentation. Recent evidence indicates that membrane microdomains, termed lipid rafts, have a role in B-cell activation as platforms for B-cell receptor (BCR) signalling and might also act in antigen trafficking. Lipid rafts might facilitate the regulation of the BCR during B-cell development by B-cell co-receptors, and during viral infection. So, lipid rafts seem to be an important new piece of the B-cell signalling puzzle.
Collapse
Affiliation(s)
- Susan K Pierce
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Laboratory of Immunogenetics, Twinbrook II, 12441 Parklawn Drive, Room 200B, MSC 8180, Rockville, Maryland 20852, USA.
| |
Collapse
|