1
|
Mars JC, Culjkovic-Kraljacic B, Borden KL. eIF4E orchestrates mRNA processing, RNA export and translation to modify specific protein production. Nucleus 2024; 15:2360196. [PMID: 38880976 PMCID: PMC11185188 DOI: 10.1080/19491034.2024.2360196] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
The eukaryotic translation initiation factor eIF4E acts as a multifunctional factor that simultaneously influences mRNA processing, export, and translation in many organisms. Its multifactorial effects are derived from its capacity to bind to the methyl-7-guanosine cap on the 5'end of mRNAs and thus can act as a cap chaperone for transcripts in the nucleus and cytoplasm. In this review, we describe the multifactorial roles of eIF4E in major mRNA-processing events including capping, splicing, cleavage and polyadenylation, nuclear export and translation. We discuss the evidence that eIF4E acts at two levels to generate widescale changes to processing, export and ultimately the protein produced. First, eIF4E alters the production of components of the mRNA processing machinery, supporting a widescale reprogramming of multiple mRNA processing events. In this way, eIF4E can modulate mRNA processing without physically interacting with target transcripts. Second, eIF4E also physically interacts with both capped mRNAs and components of the RNA processing or translation machineries. Further, specific mRNAs are sensitive to eIF4E only in particular mRNA processing events. This selectivity is governed by the presence of cis-acting elements within mRNAs known as USER codes that recruit relevant co-factors engaging the appropriate machinery. In all, we describe the molecular bases for eIF4E's multifactorial function and relevant regulatory pathways, discuss the basis for selectivity, present a compendium of ~80 eIF4E-interacting factors which play roles in these activities and provide an overview of the relevance of its functions to its oncogenic potential. Finally, we summarize early-stage clinical studies targeting eIF4E in cancer.
Collapse
Affiliation(s)
- Jean-Clément Mars
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| | - Biljana Culjkovic-Kraljacic
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| | - Katherine L.B. Borden
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Borden KLB. The eukaryotic translation initiation factor eIF4E unexpectedly acts in splicing thereby coupling mRNA processing with translation: eIF4E induces widescale splicing reprogramming providing system-wide connectivity between splicing, nuclear mRNA export and translation. Bioessays 2024; 46:e2300145. [PMID: 37926700 PMCID: PMC11021180 DOI: 10.1002/bies.202300145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Recent findings position the eukaryotic translation initiation factor eIF4E as a novel modulator of mRNA splicing, a process that impacts the form and function of resultant proteins. eIF4E physically interacts with the spliceosome and with some intron-containing transcripts implying a direct role in some splicing events. Moreover, eIF4E drives the production of key components of the splicing machinery underpinning larger scale impacts on splicing. These drive eIF4E-dependent reprogramming of the splicing signature. This work completes a series of studies demonstrating eIF4E acts in all the major mRNA maturation steps whereby eIF4E drives production of the RNA processing machinery and escorts some transcripts through various maturation steps. In this way, eIF4E couples the mRNA processing-export-translation axis linking nuclear mRNA processing to cytoplasmic translation. eIF4E elevation is linked to worse outcomes in acute myeloid leukemia patients where these activities are dysregulated. Understanding these effects provides new insight into post-transcriptional control and eIF4E-driven cancers.
Collapse
Affiliation(s)
- Katherine L. B. Borden
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell BiologyUniversity of MontrealMontrealQuebecCanada
| |
Collapse
|
3
|
Gao X, Jin Y, Zhu W, Wu X, Wang J, Guo C. Regulation of Eukaryotic Translation Initiation Factor 4E as a Potential Anticancer Strategy. J Med Chem 2023; 66:12678-12696. [PMID: 37725577 DOI: 10.1021/acs.jmedchem.3c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Eukaryotic translation initiation factors (eIFs) are highly expressed in cancer cells, especially eIF4E, the central regulatory node driving cancer cell growth and a potential target for anticancer drugs. eIF4E-targeting strategies primarily focus on inhibiting eIF4E synthesis, interfering with eIF4E/eIF4G interactions, and targeting eIF4E phosphorylation and peptide inhibitors. Although some small-molecule inhibitors are in clinical trials, no eIF4E inhibitors are available for clinical use. We provide an overview of the regulatory mechanisms of eIF4E and summarize the progress in developing and discovering eIF4E inhibitor strategies. We propose that interference with eIF4E/eIF4G interactions will provide a new perspective for the design of eIF4E inhibitors and may be a preferred strategy.
Collapse
Affiliation(s)
- Xintao Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yonglong Jin
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Wenyong Zhu
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou 014030, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
4
|
Lussier-Price M, Wahba HM, Mascle XH, Cappadocia L, Bourdeau V, Gagnon C, Igelmann S, Sakaguchi K, Ferbeyre G, Omichinski J. Zinc controls PML nuclear body formation through regulation of a paralog specific auto-inhibition in SUMO1. Nucleic Acids Res 2022; 50:8331-8348. [PMID: 35871297 PMCID: PMC9371903 DOI: 10.1093/nar/gkac620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
SUMO proteins are important regulators of many key cellular functions in part through their ability to form interactions with other proteins containing SUMO interacting motifs (SIMs). One characteristic feature of all SUMO proteins is the presence of a highly divergent intrinsically disordered region at their N-terminus. In this study, we examine the role of this N-terminal region of SUMO proteins in SUMO–SIM interactions required for the formation of nuclear bodies by the promyelocytic leukemia (PML) protein (PML-NBs). We demonstrate that the N-terminal region of SUMO1 functions in a paralog specific manner as an auto-inhibition domain by blocking its binding to the phosphorylated SIMs of PML and Daxx. Interestingly, we find that this auto-inhibition in SUMO1 is relieved by zinc, and structurally show that zinc stabilizes the complex between SUMO1 and a phospho-mimetic form of the SIM of PML. In addition, we demonstrate that increasing cellular zinc levels enhances PML-NB formation in senescent cells. Taken together, these results provide important insights into a paralog specific function of SUMO1, and suggest that zinc levels could play a crucial role in regulating SUMO1-SIM interactions required for PML-NB formation and function.
Collapse
Affiliation(s)
- Mathieu Lussier-Price
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - Haytham M Wahba
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
- Department of Biochemistry, Beni-Suef University , Beni-Suef, Egypt
| | - Xavier H Mascle
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - Laurent Cappadocia
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - Veronique Bourdeau
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - Christina Gagnon
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - Sebastian Igelmann
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - Kazuyasu Sakaguchi
- Department of Chemistry, Faculty of Science, Hokkaido University , Sapporo, Japan
| | - Gerardo Ferbeyre
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - James G Omichinski
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| |
Collapse
|
5
|
Borden K. The search for genetic dark matter and lessons learned from the journey. Biochem Cell Biol 2022; 100:276-281. [DOI: 10.1139/bcb-2022-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this review, I describe our scientific journey to unearth the impact of RNA metabolism in cancer using the eukaryotic translation initiation factor eIF4E as an exemplar. This model allowed us to discover new structural, biochemical, and molecular features of RNA processing, and to reveal their substantial impact on cell physiology. This led us to develop proof-of-principle strategies to target these pathways in cancer patients leading to clinical benefit. I discuss the important role that the unexpected plays in research and the necessity of embracing the data even when it clashes with dogma. I also touch on the importance of equity, diversity and inclusion to the success of the scientific enterprise.
Collapse
Affiliation(s)
- Katherine Borden
- University of Montreal, 5622, Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Davis MR, Delaleau M, Borden KLB. Nuclear eIF4E Stimulates 3'-End Cleavage of Target RNAs. Cell Rep 2020; 27:1397-1408.e4. [PMID: 31042468 PMCID: PMC6661904 DOI: 10.1016/j.celrep.2019.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 02/16/2019] [Accepted: 03/29/2019] [Indexed: 11/27/2022] Open
Abstract
The eukaryotic translation initiation factor eIF4E is nuclear and cytoplasmic where it plays roles in export and translation of specific transcripts, respectively. When we were studying its mRNA export activity, we unexpectedly discovered that eIF4E drives the protein expression of elements of the 3′-end core cleavage complex involved in cleavage and polyadenylation (CPA), including CPSF3, the enzyme responsible for cleavage, as well as its co-factors CPSF1, CPSF2, CPSF4, Symplekin, WDR33, and FIP1L1. Using multiple strategies, we demonstrate that eIF4E stimulates 3′-end cleavage of selected RNAs. eIF4E physically interacts with CPSF3, CPSF1, and uncleaved target RNA, suggesting it acts directly and indirectly on the pathway. Through these effects, eIF4E can generate better substrates for its mRNA export and translation activities. Thus, we identified an unanticipated function for eIF4E in 3′-end processing of specific target RNAs, and this function could potentially affect the expression of a broad range of oncoproteins. Davis et al. demonstrate that the eukaryotic translation initiation factor eIF4E, which is usually associated with nuclear export and translation of specific transcripts, also acts in 3′-end processing of selected RNAs. Through these effects, eIF4E can generate better substrates for its export and translation activities and, thus, modulate the proteome.
Collapse
Affiliation(s)
- Margaret Rose Davis
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, Pavillon Marcelle-Coutu, 2950 Chemin de Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Mildred Delaleau
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, Pavillon Marcelle-Coutu, 2950 Chemin de Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Katherine L B Borden
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, Pavillon Marcelle-Coutu, 2950 Chemin de Polytechnique, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
7
|
Cell organelles as targets of mammalian cadmium toxicity. Arch Toxicol 2020; 94:1017-1049. [PMID: 32206829 DOI: 10.1007/s00204-020-02692-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Ever increasing environmental presence of cadmium as a consequence of industrial activities is considered a health hazard and is closely linked to deteriorating global health status. General animal and human cadmium exposure ranges from ingestion of foodstuffs sourced from heavily polluted hotspots and cigarette smoke to widespread contamination of air and water, including cadmium-containing microplastics found in household water. Cadmium is promiscuous in its effects and exerts numerous cellular perturbations based on direct interactions with macromolecules and its capacity to mimic or displace essential physiological ions, such as iron and zinc. Cell organelles use lipid membranes to form complex tightly-regulated, compartmentalized networks with specialized functions, which are fundamental to life. Interorganellar communication is crucial for orchestrating correct cell behavior, such as adaptive stress responses, and can be mediated by the release of signaling molecules, exchange of organelle contents, mechanical force generated through organelle shape changes or direct membrane contact sites. In this review, cadmium effects on organellar structure and function will be critically discussed with particular consideration to disruption of organelle physiology in vertebrates.
Collapse
|
8
|
Scott DD, Aguilar LC, Kramar M, Oeffinger M. It's Not the Destination, It's the Journey: Heterogeneity in mRNA Export Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:33-81. [PMID: 31811630 DOI: 10.1007/978-3-030-31434-7_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The process of creating a translation-competent mRNA is highly complex and involves numerous steps including transcription, splicing, addition of modifications, and, finally, export to the cytoplasm. Historically, much of the research on regulation of gene expression at the level of the mRNA has been focused on either the regulation of mRNA synthesis (transcription and splicing) or metabolism (translation and degradation). However, in recent years, the advent of new experimental techniques has revealed the export of mRNA to be a major node in the regulation of gene expression, and numerous large-scale and specific mRNA export pathways have been defined. In this chapter, we will begin by outlining the mechanism by which most mRNAs are homeostatically exported ("bulk mRNA export"), involving the recruitment of the NXF1/TAP export receptor by the Aly/REF and THOC5 components of the TREX complex. We will then examine various mechanisms by which this pathway may be controlled, modified, or bypassed in order to promote the export of subset(s) of cellular mRNAs, which include the use of metazoan-specific orthologs of bulk mRNA export factors, specific cis RNA motifs which recruit mRNA export machinery via specific trans-acting-binding factors, posttranscriptional mRNA modifications that act as "inducible" export cis elements, the use of the atypical mRNA export receptor, CRM1, and the manipulation or bypass of the nuclear pore itself. Finally, we will discuss major outstanding questions in the field of mRNA export heterogeneity and outline how cutting-edge experimental techniques are providing new insights into and tools for investigating the intriguing field of mRNA export heterogeneity.
Collapse
Affiliation(s)
- Daniel D Scott
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | | | - Mathew Kramar
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Marlene Oeffinger
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada. .,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada. .,Faculté de Médecine, Département de Biochimie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
9
|
Yang C, Hao R, Lan YF, Chen YJ, Wang C, Bu N, Wang QQ, Hussain L, Ma LY, Maimaitiyiming Y, Lu XY, Naranmandura H. Integrity of zinc finger motifs in PML protein is necessary for inducing its degradation by antimony. Metallomics 2019; 11:1419-1429. [DOI: 10.1039/c9mt00102f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The presence of zinc ions in a zinc finger motif of a PML protein is a fundamental requirement for the protein's degradation by antimony.
Collapse
|
10
|
Abreu PL, Ferreira LMR, Cunha-Oliveira T, Alpoim MC, Urbano AM. HSP90: A Key Player in Metal-Induced Carcinogenesis? HEAT SHOCK PROTEINS 2019. [DOI: 10.1007/978-3-030-23158-3_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Piserà A, Campo A, Campo S. Structure and functions of the translation initiation factor eIF4E and its role in cancer development and treatment. J Genet Genomics 2018; 45:13-24. [DOI: 10.1016/j.jgg.2018.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/22/2022]
|
12
|
Tessier S, Martin-Martin N, de Thé H, Carracedo A, Lallemand-Breitenbach V. Promyelocytic Leukemia Protein, a Protein at the Crossroad of Oxidative Stress and Metabolism. Antioxid Redox Signal 2017; 26:432-444. [PMID: 27758112 DOI: 10.1089/ars.2016.6898] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Cellular metabolic activity impacts the production of reactive oxygen species (ROS), both positively through mitochondrial oxidative processes and negatively by promoting the production of reducing agents (including NADPH and reduced glutathione). A defined metabolic state in cancer cells is critical for cell growth and long-term self-renewal, and such state is intrinsically associated with redox balance. Promyelocytic leukemia protein (PML) regulates several biological processes, at least in part, through its ability to control the assembly of PML nuclear bodies (PML NBs). Recent Advances: PML is oxidation-prone, and oxidative stress promotes NB biogenesis. These nuclear subdomains recruit many nuclear proteins and regulate their SUMOylation and other post-translational modifications. Some of these cargos-such as p53, SIRT1, AKT, and mammalian target of rapamycin (mTOR)-are key regulators of cell fate. PML was also recently shown to regulate oxidation. CRITICAL ISSUES While it was long considered primarily as a tumor suppressor protein, PML-regulated metabolic switch uncovered that this protein could promote survival and/or stemness of some normal or cancer cells. In this study, we review the recent findings on this multifunctional protein. FUTURE DIRECTIONS Studying PML scaffolding functions as well as its fine role in the activation of p53 or fatty acid oxidation will bring new insights in how PML could bridge oxidative stress, senescence, cell death, and metabolism. Antioxid. Redox Signal. 26, 432-444.
Collapse
Affiliation(s)
- Sarah Tessier
- 1 Collège de France , Paris, France .,2 INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie , Paris, France .,3 CNRS UMR 7212 , Paris France .,4 Université Paris Diderot-Sorbonne Paris Cité , Paris, France
| | | | - Hugues de Thé
- 1 Collège de France , Paris, France .,2 INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie , Paris, France .,3 CNRS UMR 7212 , Paris France .,4 Université Paris Diderot-Sorbonne Paris Cité , Paris, France .,6 AP-HP, Service de Biochimie, Hôpital St. Louis , Paris, France
| | - Arkaitz Carracedo
- 5 CIC bioGUNE , Bizkaia Technology Part, Derio, Spain .,7 IKERBASQUE , Basque Foundation for Science, Bilbao, Spain .,8 Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU) , Bilbao, Spain
| | - Valérie Lallemand-Breitenbach
- 1 Collège de France , Paris, France .,2 INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie , Paris, France .,3 CNRS UMR 7212 , Paris France .,4 Université Paris Diderot-Sorbonne Paris Cité , Paris, France
| |
Collapse
|
13
|
La Porta J, Matus-Nicodemos R, Valentín-Acevedo A, Covey LR. The RNA-Binding Protein, Polypyrimidine Tract-Binding Protein 1 (PTBP1) Is a Key Regulator of CD4 T Cell Activation. PLoS One 2016; 11:e0158708. [PMID: 27513449 PMCID: PMC4981342 DOI: 10.1371/journal.pone.0158708] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023] Open
Abstract
We have previously shown that the RNA binding protein, polypyrimidine tract-binding protein (PTBP1) plays a critical role in regulating the expression of CD40L in activated CD4 T cells. This is achieved mechanistically through message stabilization at late times of activation as well as by altered distribution of CD40L mRNA within distinct cellular compartments. PTBP1 has been implicated in many different processes, however whether PTBP1 plays a broader role in CD4 T cell activation is not known. To examine this question, experiments were designed to introduce shRNA into primary human CD4 T cells to achieve decreased, but not complete ablation of PTBP1 expression. Analyses of shPTB-expressing CD4 T cells revealed multiple processes including cell proliferation, activation-induced cell death and expression of activation markers and cytokines that were regulated in part by PTBP1 expression. Although there was an overall decrease in the steady-state level of several activation genes, only IL-2 and CD40L appeared to be regulated by PTBP1 at the level of RNA decay suggesting that PTBP1 is critical at different regulatory steps of expression that is gene-specific. Importantly, even though the IL-2 protein levels were reduced in cells with lowered PTBP1, the steady-state level of IL-2 mRNA was significantly higher in these cells suggesting a block at the translational level. Evaluation of T cell activation in shPTB-expressing T cells revealed that PTBP1 was linked primarily to the activation of the PLCγ1/ERK1/2 and the NF-κB pathways. Overall, our results reveal the importance of this critical RNA binding protein in multiple steps of T cell activation.
Collapse
Affiliation(s)
- James La Porta
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Rodrigo Matus-Nicodemos
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Aníbal Valentín-Acevedo
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Lori R. Covey
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
14
|
Klutho PJ, Pennington SM, Scott JA, Wilson KM, Gu SX, Doddapattar P, Xie L, Venema AN, Zhu LJ, Chauhan AK, Lentz SR, Grumbach IM. Deletion of Methionine Sulfoxide Reductase A Does Not Affect Atherothrombosis but Promotes Neointimal Hyperplasia and Extracellular Signal-Regulated Kinase 1/2 Signaling. Arterioscler Thromb Vasc Biol 2015; 35:2594-604. [PMID: 26449752 DOI: 10.1161/atvbaha.115.305857] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/28/2015] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Emerging evidence suggests that methionine oxidation can directly affect protein function and may be linked to cardiovascular disease. The objective of this study was to define the role of the methionine sulfoxide reductase A (MsrA) in models of vascular disease and identify its signaling pathways. APPROACH AND RESULTS MsrA was readily identified in all layers of the vascular wall in human and murine arteries. Deletion of the MsrA gene did not affect atherosclerotic lesion area in apolipoprotein E-deficient mice and had no significant effect on susceptibility to experimental thrombosis after photochemical injury. In contrast, the neointimal area after vascular injury caused by complete ligation of the common carotid artery was significantly greater in MsrA-deficient than in control mice. In aortic vascular smooth muscle cells lacking MsrA, cell proliferation was significantly increased because of accelerated G1/S transition. In parallel, cyclin D1 protein and cdk4/cyclin D1 complex formation and activity were increased in MsrA-deficient vascular smooth muscle cell, leading to enhanced retinoblastoma protein phosphorylation and transcription of E2F. Finally, MsrA-deficient vascular smooth muscle cell exhibited greater activation of extracellular signal-regulated kinase 1/2 that was caused by increased activity of the Ras/Raf/mitogen-activated protein kinase signaling pathway. CONCLUSIONS Our findings implicate MsrA as a negative regulator of vascular smooth muscle cell proliferation and neointimal hyperplasia after vascular injury through control of the Ras/Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 signaling pathway.
Collapse
Affiliation(s)
- Paula J Klutho
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Steven M Pennington
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Jason A Scott
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Katina M Wilson
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Sean X Gu
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Prakash Doddapattar
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Litao Xie
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Ashlee N Venema
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Linda J Zhu
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Anil K Chauhan
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Steven R Lentz
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Isabella M Grumbach
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa.
| |
Collapse
|
15
|
Osborne MJ, Borden KLB. The eukaryotic translation initiation factor eIF4E in the nucleus: taking the road less traveled. Immunol Rev 2015; 263:210-23. [PMID: 25510279 DOI: 10.1111/imr.12240] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The eukaryotic translation initiation factor eIF4E is a potent oncogene. Although eIF4E has traditional roles in translation initiation in the cytoplasm, it is also found in the nucleus, suggesting that it has activities beyond its role in protein synthesis. The road less traveled has been taken to study these nuclear activities and to understand their contribution to the oncogenic potential of eIF4E. The molecular features and biological pathways underpinning eIF4E's nuclear mRNA export are described. New classes of eIF4E regulators have been identified and their relevance to cancer shown. The studies presented here reveal the molecular, biophysical, and structural bases for eIF4E regulation. Finally, recent clinical work targeting eIF4E in acute myeloid leukemia patients with ribavirin is discussed. In summary, these findings provide a novel paradigm for eIF4E function and the molecular basis for targeting it in leukemia patients.
Collapse
Affiliation(s)
- Michael J Osborne
- Institute for Research in Immunology and Cancer & Dept. of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| | | |
Collapse
|
16
|
Chen X, Kopecky DJ, Mihalic J, Jeffries S, Min X, Heath J, Deignan J, Lai S, Fu Z, Guimaraes C, Shen S, Li S, Johnstone S, Thibault S, Xu H, Cardozo M, Shen W, Walker N, Kayser F, Wang Z. Structure-guided design, synthesis, and evaluation of guanine-derived inhibitors of the eIF4E mRNA-cap interaction. J Med Chem 2012; 55:3837-51. [PMID: 22458568 DOI: 10.1021/jm300037x] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The eukaryotic initiation factor 4E (eIF4E) plays a central role in the initiation of gene translation and subsequent protein synthesis by binding the 5' terminal mRNA cap structure. We designed and synthesized a series of novel compounds that display potent binding affinity against eIF4E despite their lack of a ribose moiety, phosphate, and positive charge as present in m7-GMP. The biochemical activity of compound 33 is 95 nM for eIF4E in an SPA binding assay. More importantly, the compound has an IC(50) of 2.5 μM for inhibiting cap-dependent mRNA translation in a rabbit reticular cell extract assay (RRL-IVT). This series of potent, truncated analogues could serve as a promising new starting point toward the design of neutral eIF4E inhibitors with physicochemical properties suitable for cellular activity assessment.
Collapse
Affiliation(s)
- Xiaoqi Chen
- Department of Chemistry Research & Discovery, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Upregulation of the cell-cycle regulator RGC-32 in Epstein-Barr virus-immortalized cells. PLoS One 2011; 6:e28638. [PMID: 22163048 PMCID: PMC3232240 DOI: 10.1371/journal.pone.0028638] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/11/2011] [Indexed: 12/19/2022] Open
Abstract
Epstein-Barr virus (EBV) is implicated in the pathogenesis of multiple human tumours of lymphoid and epithelial origin. The virus infects and immortalizes B cells establishing a persistent latent infection characterized by varying patterns of EBV latent gene expression (latency 0, I, II and III). The CDK1 activator, Response Gene to Complement-32 (RGC-32, C13ORF15), is overexpressed in colon, breast and ovarian cancer tissues and we have detected selective high-level RGC-32 protein expression in EBV-immortalized latency III cells. Significantly, we show that overexpression of RGC-32 in B cells is sufficient to disrupt G2 cell-cycle arrest consistent with activation of CDK1, implicating RGC-32 in the EBV transformation process. Surprisingly, RGC-32 mRNA is expressed at high levels in latency I Burkitt's lymphoma (BL) cells and in some EBV-negative BL cell-lines, although RGC-32 protein expression is not detectable. We show that RGC-32 mRNA expression is elevated in latency I cells due to transcriptional activation by high levels of the differentially expressed RUNX1c transcription factor. We found that proteosomal degradation or blocked cytoplasmic export of the RGC-32 message were not responsible for the lack of RGC-32 protein expression in latency I cells. Significantly, analysis of the ribosomal association of the RGC-32 mRNA in latency I and latency III cells revealed that RGC-32 transcripts were associated with multiple ribosomes in both cell-types implicating post-initiation translational repression mechanisms in the block to RGC-32 protein production in latency I cells. In summary, our results are the first to demonstrate RGC-32 protein upregulation in cells transformed by a human tumour virus and to identify post-initiation translational mechanisms as an expression control point for this key cell-cycle regulator.
Collapse
|
18
|
The translation initiation factor eIF4E regulates the sex-specific expression of the master switch gene Sxl in Drosophila melanogaster. PLoS Genet 2011; 7:e1002185. [PMID: 21829374 PMCID: PMC3145617 DOI: 10.1371/journal.pgen.1002185] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 05/20/2011] [Indexed: 11/27/2022] Open
Abstract
In female fruit flies, Sex-lethal (Sxl) turns off the X chromosome dosage compensation system by a mechanism involving a combination of alternative splicing and translational repression of the male specific lethal-2 (msl-2) mRNA. A genetic screen identified the translation initiation factor eif4e as a gene that acts together with Sxl to repress expression of the Msl-2 protein. However, eif4e is not required for Sxl mediated repression of msl-2 mRNA translation. Instead, eif4e functions as a co-factor in Sxl-dependent female-specific alternative splicing of msl-2 and also Sxl pre-mRNAs. Like other factors required for Sxl regulation of splicing, eif4e shows maternal-effect female-lethal interactions with Sxl. This female lethality can be enhanced by mutations in other co-factors that promote female-specific splicing and is caused by a failure to properly activate the Sxl-positive autoregulatory feedback loop in early embryos. In this feedback loop Sxl proteins promote their own synthesis by directing the female-specific alternative splicing of Sxl-Pm pre-mRNAs. Analysis of pre-mRNA splicing when eif4e activity is compromised demonstrates that Sxl-dependent female-specific splicing of both Sxl-Pm and msl-2 pre-mRNAs requires eif4e activity. Consistent with a direct involvement in Sxl-dependent alternative splicing, eIF4E is associated with unspliced Sxl-Pm pre-mRNAs and is found in complexes that contain early acting splicing factors—the U1/U2 snRNP protein Sans-fils (Snf), the U1 snRNP protein U1-70k, U2AF38, U2AF50, and the Wilms' Tumor 1 Associated Protein Fl(2)d—that have been directly implicated in Sxl splicing regulation. Gene expression in eukaryotes is a complex process that occurs in several discrete steps. Some of those steps are separated into different sub-cellular compartments and thus might be expected to occur independently of one another and involve entirely distinct factors. For example pre-mRNA splicing takes place in the nucleus where it is coupled with transcription, while mRNA translation requires export to the cytoplasm and ribosome loading. We describe studies on the fruit fly Drosophila which indicate that a cytoplasmic translation initiation factor, the cap binding protein eIF4E, plays a key role in alternative splicing in the nucleus. When eIF4E activity is compromised, we observe defects in sex-specific splicing of pre-mRNAs that are regulated by the sex determination master switch gene Sex-lethal. Our data argue that eIF4E likely plays a direct role in the regulation of alternative splicing by Sex-lethal.
Collapse
|
19
|
Understanding and Targeting the Eukaryotic Translation Initiation Factor eIF4E in Head and Neck Cancer. JOURNAL OF ONCOLOGY 2009; 2009:981679. [PMID: 20049173 PMCID: PMC2798714 DOI: 10.1155/2009/981679] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Accepted: 09/30/2009] [Indexed: 01/08/2023]
Abstract
The eukaryotic translation initiation factor eIF4E is elevated in about 30% of human malignancies including HNSCC where its levels correlate with poor prognosis. Here, we discuss the biochemical and molecular underpinnings of the oncogenic potential of eIF4E. Studies in human leukemia specimens, and later in a mouse model of prostate cancer, strongly suggest that cells with elevated eIF4E develop an oncogene dependency to it, making them more sensitive to targeting eIF4E than normal cells. We describe several strategies that have been suggested for eIF4E targeting in the clinic: the use of a small molecule antagonist of eIF4E (ribavirin), siRNA or antisense oligonucleotide strategies, suicide gene therapy, and the use of a tissue-targeting 4EBP fusion peptide. The first clinical trial targeting eIF4E indicates that ribavirin effectively targets eIF4E in poor prognosis leukemia patients and more importantly leads to striking clinical responses including complete and partial remissions. Finally, we discuss the relevance of these findings to HNSCC.
Collapse
|
20
|
Kanka J, Kepková K, Nemcová L. Gene expression during minor genome activation in preimplantation bovine development. Theriogenology 2009; 72:572-83. [PMID: 19501393 DOI: 10.1016/j.theriogenology.2009.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 04/01/2009] [Accepted: 04/03/2009] [Indexed: 11/30/2022]
Abstract
The main goal of this study was to identify mRNA transcripts whose content increases during bovine minor embryonic genome activation. We compared the gene expression profile of the bovine 4-cell-stage embryo and MII oocyte using the technique of suppression subtractive hybridization. Differentially expressed amplicons were subcloned, and 60 of them were sequenced. The resulting DNA sequences were compared with GenBank databases using BLAST search. The expression of five differentially expressed genes with an apparent function in cell cycle progression, chromatin remodeling, and splicing or translation initiation was further characterized by a real-time RT-PCR. Centromere protein F, 350/400ka (CENPF), and splicing factor arginine/serine-rich 3 (SRFS3) show an increase in mRNA content during the 2- to 4-cell and late 8-cell stages. For the high mobility group nucleosomal binding domain 2 (HMGN2), the level of mRNA increases in 2- to 4-cell and morula embryos. The transcription of splicing factor SRFS3 is alpha-amanitin sensitive both during 4-cell and late 8-cell stages. The transcription of CENPF and HMGN2 is alpha-amanitin sensitive only at late 8-cell stage and morula, respectively. SRFS3 represents the first described gene with an important function in preimplantation development, which is also expressed during bovine minor genome activation, and it is alpha-amanitin sensitive during this period. All described genes can play an important role in the preimplantation development of bovine embryos.
Collapse
Affiliation(s)
- J Kanka
- Institute of Animal Physiology and Genetics, Laboratory of Developmental Biology, Academy of Sciences of the Czech Republic v.v.i., 277 21 Libechov, Czech Republic.
| | | | | |
Collapse
|
21
|
Topisirovic I, Siddiqui N, Lapointe VL, Trost M, Thibault P, Bangeranye C, Piñol-Roma S, Borden KLB. Molecular dissection of the eukaryotic initiation factor 4E (eIF4E) export-competent RNP. EMBO J 2009; 28:1087-98. [PMID: 19262567 DOI: 10.1038/emboj.2009.53] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 02/02/2009] [Indexed: 12/31/2022] Open
Abstract
The eukaryotic translation initiation factor 4E (eIF4E) controls gene expression through its effects on mRNA export and cap-dependent translation, both of which contribute to its oncogenic potential. In contrast to its translation function, the mRNA export function of eIF4E is poorly understood. Using an RNP isolation/mass spectrometry approach, we identified candidate cofactors of eIF4E mRNA export including LRPPRC. This protein associates with mRNAs containing the eIF4E-sensitivity element (4E-SE), and its overexpression alters the nuclear export of several eIF4E-sensitive mRNAs. LRPPRC-mediated alteration of eIF4E's mRNA export function requires the integrity of its eIF4E-binding site and it coincides with the subcellular re-distribution of eIF4E. The eIF4E export RNP is distinct in composition from the bulk mRNA export pathway, in that eIF4E- and eIF4E-sensitive mRNAs do not associate with general mRNA export factors such as TAP/NXF1 or REF/Aly. Our data indicate that mRNA export pathways have evolved for specific mRNAs enabling the differential regulation of biochemical pathways by modulating the expression of groups of genes at the level of their export.
Collapse
Affiliation(s)
- Ivan Topisirovic
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Stability of eukaryotic translation initiation factor 4E mRNA is regulated by HuR, and this activity is dysregulated in cancer. Mol Cell Biol 2008; 29:1152-62. [PMID: 19114552 DOI: 10.1128/mcb.01532-08] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) is encoded by a potent oncogene which is highly elevated in many human cancers. Few studies have investigated how the level, and thus activity, of eIF4E is regulated in healthy (noncancerous) cells and how they become elevated in malignant cells. Here, our studies reveal a novel mechanism by which eIF4E levels are regulated at the level of mRNA stability. Two factors known to modulate transcript stability, HuR and the p42 isoform of AUF1, compete for binding to the 3' untranslated regions (3'UTRs) of eIF4E mRNAs. We identified a distinct AU-rich element in the 3'UTR of eIF4E which is responsible for HuR-mediated binding and stabilization. Our studies show that HuR is upregulated in malignant cancer specimens characterized by high eIF4E levels and that its depletion leads to reduction in eIF4E levels. Further, HuR and eIF4E regulate a common set of transcripts involved in cellular proliferation (cyclin D1 and c-myc) and neoangiogenesis (vascular endothelial growth factor), which suggests a functional connection between HuR and eIF4E in the regulation of these important processes. In summary, we present a novel model for the regulation of eIF4E expression and show that this model is relevant to elevation of eIF4E levels in malignant cells.
Collapse
|
23
|
Borden KLB. Pondering the puzzle of PML (promyelocytic leukemia) nuclear bodies: can we fit the pieces together using an RNA regulon? BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1783:2145-54. [PMID: 18616965 PMCID: PMC2652867 DOI: 10.1016/j.bbamcr.2008.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 06/03/2008] [Accepted: 06/10/2008] [Indexed: 12/26/2022]
Abstract
The promyelocytic leukemia protein PML and its associated nuclear bodies are hot topics of investigation. This interest arises for multiple reasons including the tight link between the integrity of PML nuclear bodies and several disease states and the impact of the PML protein and PML nuclear bodies on proliferation, apoptosis and viral infection. Unfortunately, an understanding of the molecular underpinnings of PML nuclear body function remains elusive. Here, a general overview of the PML field is provided and is extended to discuss whether some of the basic tenets of "PML-ology" are still valid. For instance, recent findings suggest that some components of PML nuclear bodies form bodies in the absence of the PML protein. Also, a new model for PML nuclear body function is proposed which provides a unifying framework for its effects on diverse biochemical pathways such as Akt signaling and the p53-Mdm2 axis. In this model, the PML protein acts as an inhibitor of gene expression post-transcriptionally via inhibiting a network node in the eIF4E RNA regulon. An example is given for how the PML RNA regulon model provided the basis for the development of a new anti-cancer strategy being tested in the clinic.
Collapse
Affiliation(s)
- Katherine L B Borden
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec, Canada H4M 1J6.
| |
Collapse
|
24
|
Delisle JS, Gaboury L, Bélanger MP, Tassé E, Yagita H, Perreault C. Graft-versus-host disease causes failure of donor hematopoiesis and lymphopoiesis in interferon-gamma receptor-deficient hosts. Blood 2008; 112:2111-9. [PMID: 18552211 DOI: 10.1182/blood-2007-12-130534] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The immunopathologic condition known as graft-versus-host disease (GVHD) results from a type I T-cell process. However, a prototypical type I cytokine, interferon-gamma (IFN-gamma), can protect against several manifestations of GVHD in recipients of major histocompatibility complex (MHC)-mismatched hematopoietic cells. We transplanted hematopoietic cells from C3H.SW donors in wild-type (wt) and IFN-gamma-receptor-deficient (IFN-gammaRKO) MHC-matched C57BL/6 recipients. In IFN-gammaRKO recipients, host cells were unresponsive to IFN-gamma, whereas wt donor cells were exposed to exceptionally high levels of IFN-gamma. From an IFN-gamma perspective, we could therefore evaluate the impact of a loss-of-function on host cells and gain-of-function on donor cells. We found that lack of IFN-gammaR prevented up-regulation of MHC proteins on host cells but did not mitigate damage to most target organs. Two salient phenotypes in IFN-gammaRKO recipients involved donor cells: lymphoid hypoplasia and hematopoietic failure. Lymphopenia was due to FasL-induced apoptosis and decreased cell proliferation. Bone marrow aplasia resulted from a decreased proliferation of hematopoietic stem/progenitor cells that was associated with down-regulation of 2 genes negatively regulated by IFN-gamma: Ccnd1 and Myc. We conclude that IFN-gamma produced by alloreactive T cells may entail a severe graft-versus-graft reaction and could be responsible for cytopenias that are frequently observed in subjects with GVHD.
Collapse
|
25
|
Chen YCM, Kappel C, Beaudouin J, Eils R, Spector DL. Live cell dynamics of promyelocytic leukemia nuclear bodies upon entry into and exit from mitosis. Mol Biol Cell 2008; 19:3147-62. [PMID: 18480407 PMCID: PMC2441680 DOI: 10.1091/mbc.e08-01-0035] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 04/22/2008] [Accepted: 05/01/2008] [Indexed: 11/11/2022] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML NBs) have been proposed to be involved in tumor suppression, viral defense, DNA repair, and/or transcriptional regulation. To study the dynamics of PML NBs during mitosis, we developed several U2OS cell lines stably coexpressing PML-enhanced cyan fluorescent protein with other individual marker proteins. Using three-dimensional time-lapse live cell imaging and four-dimensional particle tracking, we quantitatively demonstrated that PML NBs exhibit a high percentage of directed movement when cells progressed from prophase to prometaphase. The timing of this increased dynamic movement occurred just before or upon nuclear entry of cyclin B1, but before nuclear envelope breakdown. Our data suggest that entry into prophase leads to a loss of tethering between regions of chromatin and PML NBs, resulting in their increased dynamics. On exit from mitosis, Sp100 and Fas death domain-associated protein (Daxx) entered the daughter nuclei after a functional nuclear membrane was reformed. However, the recruitment of these proteins to PML NBs was delayed and correlated with the timing of de novo PML NB formation. Together, these results provide insight into the dynamic changes associated with PML NBs during mitosis.
Collapse
Affiliation(s)
- Yi-Chun M. Chen
- *Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Constantin Kappel
- Division of Theoretical Bioinformatics, German Cancer Research Center, D-69120 Heidelberg, Germany; and
| | - Joel Beaudouin
- Institute for Pharmacy and Molecular Biotechnology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Roland Eils
- Division of Theoretical Bioinformatics, German Cancer Research Center, D-69120 Heidelberg, Germany; and
- Institute for Pharmacy and Molecular Biotechnology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - David L. Spector
- *Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
26
|
Meloche S, Pouysségur J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 2007; 26:3227-39. [PMID: 17496918 DOI: 10.1038/sj.onc.1210414] [Citation(s) in RCA: 839] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Ras-dependent extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein (MAP) kinase pathway plays a central role in cell proliferation control. In normal cells, sustained activation of ERK1/ERK2 is necessary for G1- to S-phase progression and is associated with induction of positive regulators of the cell cycle and inactivation of antiproliferative genes. In cells expressing activated Ras or Raf mutants, hyperactivation of the ERK1/2 pathway elicits cell cycle arrest by inducing the accumulation of cyclin-dependent kinase inhibitors. In this review, we discuss the mechanisms by which activated ERK1/ERK2 regulate growth and cell cycle progression of mammalian somatic cells. We also highlight the findings obtained from gene disruption studies.
Collapse
Affiliation(s)
- S Meloche
- Departments of Pharmacology and Molecular Biology, Institut de Recherche en Immunologie et Cancérologie, Université de Montréal, Montreal, Quebec, Canada.
| | | |
Collapse
|
27
|
Shenberger JS, Zhang L, Hughlock MK, Ueda T, Watanabe-Fukunaga R, Fukunaga R. Roles of mitogen-activated protein kinase signal-integrating kinases 1 and 2 in oxidant-mediated eIF4E phosphorylation. Int J Biochem Cell Biol 2007; 39:1828-42. [PMID: 17689282 PMCID: PMC2001257 DOI: 10.1016/j.biocel.2007.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 04/16/2007] [Accepted: 05/01/2007] [Indexed: 01/21/2023]
Abstract
Oxidative stress alters cellular metabolic processes including protein synthesis. The eukaryotic initiation factor, eIF4E, acts in the rate-limiting steps of initiation and promotes nuclear export. Phosphorylation of eIF4E by mitogen activated protein kinase signal-integrating kinases 1 and 2 (Mnk) influences the affinity of eIF4E for the 5'-mRNA cap and fosters nuclear export activity. Although phosphorylation of eIF4E on Ser209 is observed following oxidant exposure, the contribution of Mnk isoforms and the significance of phosphorylation remain elusive. Using a Mnk inhibitor and fibroblasts derived from Mnk knockout mice, we demonstrate that that H2O2 enhances eIF4E phosphorylation in cells containing Mnk1. In contrast, cells containing only Mnk2 show little change or a decrease in eIF4E phosphorylation in response to H2O2. H2O2 also shifted eIF4GI protein from the nucleus to the cytoplasm suggesting that the increases in eIF4E phosphorylation may reflect enhanced substrate availability to cytoplasmic Mnk1. In Mnk1(+/+) cells, H2O2 also enhanced eIF4E phosphorylation in the nucleus to a greater degree than in the cytoplasm, an effect not observed in cells containing Mnk2. In response to H2O2, all MEFs showed increased eIF4E:4E-BP1 and 4E-BP2:eIF4E binding and reduced eIF4E:eIF4GI binding. We also observed a dramatic increase in the amount of Mnk1 associated with eIF4E following affinity chromatography. These changes coincided with a smaller reduction in global protein synthesis in response to H2O2 in the DKO cells. These findings suggest that changes in eIF4GI distribution may enhance eIF4E phosphorylation and that the presence of either Mnk1 or 2 or any degree of eIF4E phosphorylation negatively regulates global protein synthesis in response to oxidant stress.
Collapse
Affiliation(s)
- Jeffrey S Shenberger
- Department of Pediatrics, The Pennsylvania State University College of Medicine, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Son SH, Yu E, Ahn Y, Choi EK, Lee H, Choi J. Retinoic acid attenuates promyelocytic leukemia protein-induced cell death in breast cancer cells by activation of the ubiquitin–proteasome pathway. Cancer Lett 2007; 247:213-23. [PMID: 16740359 DOI: 10.1016/j.canlet.2006.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 03/28/2006] [Accepted: 04/24/2006] [Indexed: 02/07/2023]
Abstract
All-trans-retinoic acid and the tumor suppressor promyelocytic leukemia protein (PML) are potent regulators of the growth of cancer cells. This study investigates the individual and combined effects of PML, when overexpressed by the recombinant PML adenovirus, and all-trans-retinoic acid on the proliferation of human estrogen-receptor negative SKBR-3 and estrogen-receptor positive MCF-7 breast cancer cell lines. All-trans-retinoic acid caused a significant degree of cell death in SKBR-3 cells and MCF-7 cells, and PML elicited a similar incidence of or slightly more cell death in MCF-7 cells. Dual-treated cells displayed significantly less cell death than did single-treated cells in the same cell line. We concluded that PML and all-trans-retinoic acid cause cell death by different pathways: PML activates ERK1/2, p38 MAPK, and p21; arrests the cell cycle; and later causes cell death; and all-trans-retinoic acid activates proteasome function, caspase cleavage, and apoptosis. The combined use of all-trans-retinoic acid and PML gene therapy may not be the best treatment for patients with cancer, because the ubiquitinylation of PML and its subsequent proteasome-dependent degradation by retinoic acids occur before overexpressed PML exhibits tumor-suppressive activity.
Collapse
Affiliation(s)
- Se-Hee Son
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
There is currently a high level of interest in signalling through the mammalian target of rapamycin (mTOR). This reflects both its key role in many cell functions and its involvement in disease states such as cancers. The best understood targets for mTOR signalling are proteins involved in controlling the translational machinery, including the ribosomal protein S6 kinases and proteins that regulate the initiation and elongation phases of translation. Indeed, there is compelling evidence that at least one of these targets of mTOR (eukaryotic initiation factor eIF4E) plays a key role in tumorigenesis. It is regulated through the mTOR-dependent phosphorylation of inhibitory proteins such as eIF4E-binding protein 1. Thus, targeting mTOR signalling may be an effective anticancer strategy, in at least a significant subset of tumours. Not all effects of mTOR are sensitive to the classical anti-mTOR drug rapamycin, and this compound also interferes with other processes besides eIF4E function. Developing new approaches to targeting mTOR for cancer therapy requires more detailed knowledge of signalling downstream of mTOR. Such advances are likely to come from further work to understand the regulation of mTOR targets such as components of the translational apparatus.
Collapse
Affiliation(s)
- J Averous
- Unité de Nutrition Humaine, INRA de Theix, Saint Genès Champanelle, France
| | | |
Collapse
|
30
|
Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KLB. eIF4E is a central node of an RNA regulon that governs cellular proliferation. J Cell Biol 2006; 175:415-26. [PMID: 17074885 PMCID: PMC2064519 DOI: 10.1083/jcb.200607020] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 10/06/2006] [Indexed: 11/25/2022] Open
Abstract
This study demonstrates that the eukaryotic translation initiation factor eIF4E is a critical node in an RNA regulon that impacts nearly every stage of cell cycle progression. Specifically, eIF4E coordinately promotes the messenger RNA (mRNA) export of several genes involved in the cell cycle. A common feature of these mRNAs is a structurally conserved, approximately 50-nucleotide element in the 3' untranslated region denoted as an eIF4E sensitivity element. This element is sufficient for localization of capped mRNAs to eIF4E nuclear bodies, formation of eIF4E-specific ribonucleoproteins in the nucleus, and eIF4E-dependent mRNA export. The roles of eIF4E in translation and mRNA export are distinct, as they rely on different mRNA elements. Furthermore, eIF4E-dependent mRNA export is independent of ongoing RNA or protein synthesis. Unlike the NXF1-mediated export of bulk mRNAs, eIF4E-dependent mRNA export is CRM1 dependent. Finally, the growth-suppressive promyelocytic leukemia protein (PML) inhibits this RNA regulon. These data provide novel perspectives into the proliferative and oncogenic properties of eIF4E.
Collapse
Affiliation(s)
- Biljana Culjkovic
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H4M 1J6, Canada
| | | | | | | | | |
Collapse
|
31
|
García CC, Djavani M, Topisirovic I, Borden KLB, Salvato MS, Damonte EB. Arenavirus Z protein as an antiviral target: virus inactivation and protein oligomerization by zinc finger-reactive compounds. J Gen Virol 2006; 87:1217-1228. [PMID: 16603524 PMCID: PMC2423342 DOI: 10.1099/vir.0.81667-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Several disulfide-based and azoic compounds have shown antiviral and virucidal properties against arenaviruses in virus yield-inhibition and inactivation assays, respectively. The most effective virucidal agent, the aromatic disulfide NSC20625, was able to inactivate two strains of the prototype arenavirus species Lymphocytic choriomeningitis virus (LCMV). Inactivated viral particles retained the biological functions of the virion envelope glycoproteins in virus binding and uptake, but were unable to perform viral RNA replication. Furthermore, in inactivated virions, the electrophoretic profile of the Z protein was altered when analysed under non-reducing conditions, whereas the patterns of the proteins NP and GP1 remained unaffected. Treatment of a recombinant LCMV Z protein with the virucidal agents induced unfolding and oligomerization of Z to high-molecular-mass aggregates, probably due to metal-ion ejection and the formation of intermolecular disulfide bonds through the cysteine residues of the Z RING finger. NSC20625 also exhibited antiviral properties in LCMV-infected cells without affecting other cellular RING-motif proteins, such as the promyelocytic leukaemia protein PML. Altogether, the investigations described here illustrate the potential of the Z protein as a promising target for therapy and the prospects of the Z-reactive compounds to prevent arenavirus dissemination.
Collapse
Affiliation(s)
- Cybele C. García
- Laboratory of Virology, Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina
| | - Mahmoud Djavani
- Institute of Human Virology, University of Maryland Biotechnology Center, Baltimore, MD 21201, USA
| | - Ivan Topisirovic
- Institute de Recherche en Immunologie et en Cancerologie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Katherine L. B. Borden
- Institute de Recherche en Immunologie et en Cancerologie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - María S. Salvato
- Institute of Human Virology, University of Maryland Biotechnology Center, Baltimore, MD 21201, USA
| | - Elsa B. Damonte
- Laboratory of Virology, Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina
| |
Collapse
|
32
|
Back SH, Lee K, Vink E, Kaufman RJ. Cytoplasmic IRE1alpha-mediated XBP1 mRNA splicing in the absence of nuclear processing and endoplasmic reticulum stress. J Biol Chem 2006; 281:18691-706. [PMID: 16644724 DOI: 10.1074/jbc.m602030200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Accumulation of unfolded proteins in the endoplasmic reticulum (ER) activates an intracellular signal transduction program termed the unfolded protein response (UPR). In mammalian cells, the UPR is signaled in part through dimerization of ER membrane-localized IRE1alpha to activate its protein kinase and endoribonuclease activities. Activated IRE1alpha cleaves XBP1 mRNA at two sites to initiate an unconventional splicing reaction. The 5' and 3' fragments are subsequently joined by an RNA ligase activity, thereby removing a 26-base intron. This splicing reaction creates a translational frameshift to produce a functional XBP1 transcription factor. However, the cellular location and physiological processes required for splicing of XBP1 mRNA are not well characterized. To study these processes, XBP1 mRNAs were engineered in which translation of enhanced green fluorescence protein or luciferase required splicing of the XBP1 intron. Using cell lines that continuously or transiently express these reporter constructs, we show that cytoplasmic unspliced XBP1 mRNA is efficiently spliced by activated IRE1alpha and requires ongoing cellular transcription but not active translation. The XBP1 intron was effectively removed from RNA substrates transcribed from T7 RNA polymerase or delivered directly to the cytoplasm by RNA transfection, thus indicating that the splicing reaction does not require nuclear processing of the RNA substrate. Analysis of nuclear and cytoplasmic RNA fractions demonstrated that XBP1 mRNA splicing occurs in the cytoplasm. Moreover, an artificial F(v)-IRE1alphaDeltaN was engineered that was able to splice XBP1 mRNA upon chemical-induced dimerization. These findings demonstrate that IRE1alpha dimerization is sufficient to activate XBP1 mRNA splicing in the absence of the UPR. We propose that XBP1 mRNA cytoplasmic splicing provides a novel mechanism to rapidly induce translation of a transcription factor in response to a specific stimulus.
Collapse
Affiliation(s)
- Sung Hoon Back
- Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0650, USA
| | | | | | | |
Collapse
|
33
|
Djavani M, Topisirovic I, Zapata JC, Sadowska M, Yang Y, Rodas J, Lukashevich IS, Bogue CW, Pauza CD, Borden KLB, Salvato MS. The proline-rich homeodomain (PRH/HEX) protein is down-regulated in liver during infection with lymphocytic choriomeningitis virus. J Virol 2005; 79:2461-73. [PMID: 15681447 PMCID: PMC546565 DOI: 10.1128/jvi.79.4.2461-2473.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The proline-rich homeodomain protein, PRH/HEX, participates in the early development of the brain, thyroid, and liver and in the later regenerative processes of damaged liver, vascular endothelial, and hematopoietic cells. A virulent strain of lymphocytic choriomeningitis virus (LCMV-WE) that destroys hematopoietic, vascular, and liver functions also alters the transcription and subcellular localization of PRH. A related virus (LCMV-ARM) that does not cause disease in primates can infect cells without affecting PRH. Biochemical experiments demonstrated the occurrence of binding between the viral RING protein (Z) and PRH, and genetic experiments mapped the PRH-suppressing phenotype to the large (L) segment of the viral genome, which encodes the Z and polymerase genes. The Z protein is clearly involved with PRH, but other viral determinants are needed to relocate PRH and to promote disease. By down-regulating PRH, the arenavirus is able to eliminate the antiproliferative effects of PRH and to promote liver cell division. The interaction of an arenavirus with a homeodomain protein suggests a mechanism for viral teratogenic effects and for the tissue-specific manifestations of arenavirus disease.
Collapse
Affiliation(s)
- Mahmoud Djavani
- Institute of Human Virology, University of Maryland Biotechnology Institute, 725 West Lombard St., Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KLB. eIF4E promotes nuclear export of cyclin D1 mRNAs via an element in the 3'UTR. ACTA ACUST UNITED AC 2005; 169:245-56. [PMID: 15837800 PMCID: PMC2171863 DOI: 10.1083/jcb.200501019] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The eukaryotic translation initiation factor eIF4E is a critical modulator of cellular growth with functions in the nucleus and cytoplasm. In the cytoplasm, recognition of the 5' m(7)G cap moiety on all mRNAs is sufficient for their functional interaction with eIF4E. In contrast, we have shown that in the nucleus eIF4E associates and promotes the nuclear export of cyclin D1, but not GAPDH or actin mRNAs. We determined that the basis of this discriminatory interaction is an approximately 100-nt sequence in the 3' untranslated region (UTR) of cyclin D1 mRNA, we refer to as an eIF4E sensitivity element (4E-SE). We found that cyclin D1 mRNA is enriched at eIF4E nuclear bodies, suggesting these are functional sites for organization of specific ribonucleoproteins. The 4E-SE is required for eIF4E to efficiently transform cells, thereby linking recognition of this element to eIF4E mediated oncogenic transformation. Our studies demonstrate previously uncharacterized fundamental differences in eIF4E-mRNA recognition between the nuclear and cytoplasmic compartments and further a novel level of regulation of cellular proliferation.
Collapse
Affiliation(s)
- Biljana Culjkovic
- Institute for Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
35
|
Topisirovic I, Kentsis A, Perez JM, Guzman ML, Jordan CT, Borden KLB. Eukaryotic translation initiation factor 4E activity is modulated by HOXA9 at multiple levels. Mol Cell Biol 2005; 25:1100-12. [PMID: 15657436 PMCID: PMC544005 DOI: 10.1128/mcb.25.3.1100-1112.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The eukaryotic translation initiation factor 4E (eIF4E) alters gene expression on multiple levels. In the cytoplasm, eIF4E acts in the rate-limiting step of translation initiation. In the nucleus, eIF4E facilitates nuclear export of a subset of mRNAs. Both of these functions contribute to eIF4E's ability to oncogenically transform cells. We report here that the homeodomain protein, HOXA9, is a positive regulator of eIF4E. HOXA9 stimulates eIF4E-dependent export of cyclin D1 and ornithine decarboxylase (ODC) mRNAs in the nucleus, as well as increases the translation efficiency of ODC mRNA in the cytoplasm. These activities depend on direct interactions of HOXA9 with eIF4E and are independent of the role of HOXA9 in transcription. At the biochemical level, HOXA9 mediates these effects by competing with factors that repress eIF4E function, in particular the proline-rich homeodomain PRH/Hex. This competitive mechanism of eIF4E regulation is disrupted in a subset of leukemias, where HOXA9 displaces PRH from eIF4E, thereby contributing to eIF4E's dysregulation. In regard to these results and our previous finding that approximately 200 homeodomain proteins contain eIF4E binding sites, we propose that homeodomain modulation of eIF4E activity is a novel means through which this family of proteins implements their effects on growth and development.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/genetics
- Acute Disease
- Amino Acid Sequence
- Bone Marrow Cells/metabolism
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Cytoplasm/genetics
- Cytoplasm/metabolism
- Eukaryotic Initiation Factor-4E/genetics
- Eukaryotic Initiation Factor-4E/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Molecular Sequence Data
- Ornithine Decarboxylase/genetics
- Ornithine Decarboxylase/metabolism
- Sequence Homology, Amino Acid
- Transcription Factors
- Transcription, Genetic
Collapse
Affiliation(s)
- Ivan Topisirovic
- Institute for Research in Immunovirology and Cancer, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Worch J, Tickenbrock L, Schwäble J, Steffen B, Cauvet T, Mlody B, Buerger H, Koeffler HP, Berdel WE, Serve H, Müller-Tidow C. The serine-threonine kinase MNK1 is post-translationally stabilized by PML-RARalpha and regulates differentiation of hematopoietic cells. Oncogene 2005; 23:9162-72. [PMID: 15516979 DOI: 10.1038/sj.onc.1208164] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microarray analyses were performed to identify target genes that are shared by the acute myeloid leukemia (AML) translocation products PML-RARalpha, PLZF-RARalpha and AML1-ETO in inducibly transfected U937 cell lines. The cytoplasmic serine and threonine kinase MNK1 was identified as one of the target genes. At the protein level, MNK1 was significantly induced by each of the three fusion proteins. Protein half-life analyses showed that PML-RARalpha enhanced MNK1 protein stability in U937 cells and ATRA exposure decreased MNK1 half-life in NB4 cells. EIF4E, the main MNK1 substrate, plays a role in the pathogenesis of a variety of cancers. Upon MNK1 overexpression, eIF4E phosphorylation increased as a sign of functional activation. Interestingly, MNK1 protein expression decreased during myeloid differentiation. Inhibition of MNK1 activity by a specific inhibitor (CGP57380) enhanced differentiation of HL60 and 32D cells, further suggesting a role for MNK1 in the myeloid differentiation. In addition, kinase dead mutants of MNK1 significantly impaired proliferation of 32D cells. Immunohistochemistry of primary AML bone marrow biopsies showed strong cytoplasmic MNK1 expression in 25 of 99 AML specimens (25%). MNK1 expression was associated with high levels of c-myc expression. Taken together, we identified MNK1 as a target gene of several leukemogenic fusion proteins in AML. MNK1 plays a role in myeloid differentiation. These data suggest a role for MNK1 in the AML fusion protein-associated differentiation block.
Collapse
Affiliation(s)
- Jennifer Worch
- Department of Medicine, Hematology and Oncology, University of Münster, Domagkstr. 3, 48129 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Topisirovic I, Ruiz-Gutierrez M, Borden KLB. Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities. Cancer Res 2005; 64:8639-42. [PMID: 15574771 DOI: 10.1158/0008-5472.can-04-2677] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The eukaryotic translation initiation factor eIF4E is dysregulated in a wide variety of human cancers. In the cytoplasm, eIF4E acts in the rate-limiting step of translation initiation whereas in the nucleus, eIF4E forms nuclear bodies and promotes the nucleo-cytoplasmic export of a subset of growth-promoting mRNAs including cyclin D1. The only known post-translational modification of eIF4E is its phosphorylation at S209. Many studies have examined the role of phosphorylation on cap-dependent translation. However, no studies to date have explored the role of phosphorylation on the ability of eIF4E to transform cells. Using mutagenesis and separately a small molecular inhibitor of eIF4E phosphorylation, we show that eIF4E phosphorylation enhances both its mRNA transport function and its transformation activity in cell culture. Thus, phosphorylation of nuclear eIF4E seems to be an important step in control of the mRNA transport and thus the transforming properties of eIF4E.
Collapse
Affiliation(s)
- Ivan Topisirovic
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, New York, New York, USA
| | | | | |
Collapse
|
38
|
Kentsis A, Topisirovic I, Culjkovic B, Shao L, Borden KLB. Ribavirin suppresses eIF4E-mediated oncogenic transformation by physical mimicry of the 7-methyl guanosine mRNA cap. Proc Natl Acad Sci U S A 2004; 101:18105-10. [PMID: 15601771 PMCID: PMC539790 DOI: 10.1073/pnas.0406927102] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The eukaryotic translation initiation factor eIF4E is deregulated in many human cancers, and its overexpression in cells leads to malignant transformation. Oncogenic properties of eIF4E are directly linked to its ability to bind 7-methyl guanosine of the 5' mRNA. Here, we observe that the antiviral guanosine analogue ribavirin binds to eIF4E with micromolar affinity at the functional site used by 7-methyl guanosine mRNA cap, competes with eIF4E:mRNA binding, and, at low micromolar concentrations, selectively disrupts eIF4E subcellular organization and transport and translation of mRNAs posttranscriptionally regulated by eIF4E, thereby reducing levels of oncogenes such as cyclin D1. Ribavirin potently suppresses eIF4E-mediated oncogenic transformation of murine cells in vitro, of tumor growth of a mouse model of eIF4E-dependent human squamous cell carcinoma in vivo, and of colony formation of eIF4E-dependent acute myelogenous leukemia cells derived from human patients. These findings describe a specific, potent, and unforeseen mechanism of action of ribavirin. Quantum mechanical and NMR structural studies offer directions for the development of derivatives with improved cytostatic and antiviral properties. In all, ribavirin's association with eIF4E may provide a pharmacologic means for the interruption of posttranscriptional networks of oncogenes that maintain and enhance neoplasia and malignancy in human cancer.
Collapse
Affiliation(s)
- Alex Kentsis
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
39
|
Ueda T, Watanabe-Fukunaga R, Fukuyama H, Nagata S, Fukunaga R. Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol Cell Biol 2004; 24:6539-49. [PMID: 15254222 PMCID: PMC444855 DOI: 10.1128/mcb.24.15.6539-6549.2004] [Citation(s) in RCA: 416] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mnk1 and Mnk2 are protein kinases that are directly phosphorylated and activated by extracellular signal-regulated kinase (ERK) or p38 mitogen-activated protein (MAP) kinases and implicated in the regulation of protein synthesis through their phosphorylation of eukaryotic translation initiation factor 4E (eIF4E) at Ser209. To investigate their physiological functions, we generated mice lacking the Mnk1 or Mnk2 gene or both; the resulting KO mice were viable, fertile, and developed normally. In embryonic fibroblasts prepared from Mnk1-Mnk2 DKO mice, eIF4E was not detectably phosphorylated at Ser209, even when the ERK and/or p38 MAP kinases were activated. Analysis of embryonic fibroblasts from single KO mice revealed that Mnk1 is responsible for the inducible phosphorylation of eIF4E in response to MAP kinase activation, whereas Mnk2 mainly contributes to eIF4E's basal, constitutive phosphorylation. Lipopolysaccharide (LPS)- or insulin-induced upregulation of eIF4E phosphorylation in the spleen, liver, or skeletal muscle was abolished in Mnk1(-/-) mice, whereas the basal eIF4E phosphorylation levels were decreased in Mnk2(-/-) mice. In Mnk1-Mnk2 DKO mice, no phosphorylated eIF4E was detected in any tissue studied, even after LPS or insulin injection. However, neither general protein synthesis nor cap-dependent translation, as assayed by a bicistronic reporter assay system, was affected in Mnk-deficient embryonic fibroblasts, despite the absence of phosphorylated eIF4E. Thus, Mnk1 and Mnk2 are exclusive eIF4E kinases both in cultured fibroblasts and adult tissues, and they regulate inducible and constitutive eIF4E phosphorylation, respectively. These results strongly suggest that eIF4E phosphorylation at Ser209 is not essential for cell growth during development.
Collapse
Affiliation(s)
- Takeshi Ueda
- Department of Genetics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
40
|
Kozak M. Alternative ways to think about mRNA sequences and proteins that appear to promote internal initiation of translation. Gene 2004; 318:1-23. [PMID: 14585494 DOI: 10.1016/s0378-1119(03)00774-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Translation of some mRNAs is postulated to occur via an internal initiation mechanism which is said to be augmented by a variety of RNA-binding proteins. A pervasive problem is that the RNA sequences to which the proteins bind were not rigorously proven to function as internal ribosome entry sites (IRESs). Critical examination of the evidence reveals flaws that leave room for alternative interpretations, such as the possibility that IRES elements might function as cryptic promoters, splice sites, or sequences that modulate cleavage by RNases. The growing emphasis on IRES-binding proteins diverts attention from these fundamental unresolved issues. Many of the putative IRES-binding proteins are heterogeneous nuclear ribonucleoproteins that have recognized roles in RNA processing or stability and no recognized role in translation. Thus the mechanism whereby they promote internal initiation, if indeed they do, is not obvious. Some recent experiments were said to support the idea that IRES-binding proteins cause functionally important changes in folding of the RNA, but the evidence is not convincing when examined closely. The proteins that bind to some (not all) viral IRES elements include a subset of authentic initiation factors. This has not been demonstrated with any candidate IRES of cellular origin, however; and even with viral RNAs, the required chase experiment has not been done to prove that a pre-bound initiation factor actually mediates subsequent entry of ribosomes. In short, the focus on IRES-binding proteins has gotten us no closer to understanding the mechanism of internal initiation. Given the aforementioned uncertainty about whether other mechanisms (splicing, cryptic promoters) might underlie what-appears-to-be internal initiation, a temporary solution might be to redefine IRES to mean "internal regulatory expression sequence." This compromise would allow the sequences to be used for gene expression studies, for which they sometimes work, without asserting more than has been proven about the mechanism.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
41
|
Topisirovic I, Guzman ML, McConnell MJ, Licht JD, Culjkovic B, Neering SJ, Jordan CT, Borden KLB. Aberrant eukaryotic translation initiation factor 4E-dependent mRNA transport impedes hematopoietic differentiation and contributes to leukemogenesis. Mol Cell Biol 2003; 23:8992-9002. [PMID: 14645512 PMCID: PMC309660 DOI: 10.1128/mcb.23.24.8992-9002.2003] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Revised: 08/07/2003] [Accepted: 09/15/2003] [Indexed: 12/17/2022] Open
Abstract
The eukaryotic translation initiation factor 4E (eIF4E) acts as both a key translation factor and as a promoter of nucleocytoplasmic transport of specific transcripts. Traditionally, its transformation capacity in vivo is attributed to its role in translation initiation in the cytoplasm. Here, we demonstrate that elevated eIF4E impedes granulocytic and monocytic differentiation. Our subsequent mutagenesis studies indicate that this block is a result of dysregulated eIF4E-dependent mRNA transport. These studies indicate that the RNA transport function of eIF4E could contribute to leukemogenesis. We extended our studies to provide the first evidence that the nuclear transport function of eIF4E contributes to human malignancy, specifically in a subset of acute and chronic myelogenous leukemia patients. We observe an increase in eIF4E-dependent cyclin D1 mRNA transport and a concomitant increase in cyclin D1 protein levels. The aberrant nuclear function of eIF4E is due to abnormally large eIF4E bodies and the loss of regulation by the proline-rich homeodomain PRH. We developed a novel tool to modulate this transport activity. The introduction of IkappaB, the repressor of NF-kappaB, leads to suppression of eIF4E, elevation of PRH, reorganization of eIF4E nuclear bodies, and subsequent downregulation of eIF4E-dependent mRNA transport. Thus, our findings indicate that this nuclear function of eIF4E can contribute to leukemogenesis by promoting growth and by impeding differentiation.
Collapse
Affiliation(s)
- Ivan Topisirovic
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, One Gustave Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Bjork P, Baurén G, Gelius B, Wrange O, Wieslander L. The Chironomus tentans translation initiation factor eIF4H is present in the nucleus but does not bind to mRNA until the mRNA reaches the cytoplasmic perinuclear region. J Cell Sci 2003; 116:4521-32. [PMID: 14576346 DOI: 10.1242/jcs.00766] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the cell nucleus, precursors to mRNA, pre-mRNAs, associate with a large number of proteins and are processed to mRNA-protein complexes, mRNPs. The mRNPs are then exported to the cytoplasm and the mRNAs are translated into proteins. The mRNAs containing in-frame premature stop codons are recognized and degraded in the nonsense-mediated mRNA decay process. This mRNA surveillence may also occur in the nucleus and presumably involves components of the translation machinery. Several translation factors have been detected in the nucleus, but their functional relationship to the dynamic protein composition of pre-mRNPs and mRNPs in the nucleus is still unclear.
Here, we have identified and characterized the translation initiation factor eIF4H in the dipteran Chironomus tentans. In the cytoplasm, Ct-eIF4H is associated with poly(A+) RNA in polysomes. We show that a minor fraction of Ct-eIF4H enters the nucleus. This fraction is independent on the level of transcription. CteIF4H could not be detected in gene-specific pre-mRNPs or mRNPs, nor in bulk mRNPs in the nucleus. Our immunoelectron microscopy data suggest that Ct-eIF4H associates with mRNP in the cytoplasmic perinuclear region, immediately as the mRNP exits from the nuclear pore complex.
Collapse
Affiliation(s)
- Petra Bjork
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
43
|
Benezra M, Chevallier N, Morrison DJ, MacLachlan TK, El-Deiry WS, Licht JD. BRCA1 augments transcription by the NF-kappaB transcription factor by binding to the Rel domain of the p65/RelA subunit. J Biol Chem 2003; 278:26333-41. [PMID: 12700228 DOI: 10.1074/jbc.m303076200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BRCA1 is a tumor suppressor gene mutated in cases of hereditary breast and ovarian cancer. BRCA1 protein is involved in apoptosis and growth/tumor suppression. In this study, we present evidence that p65/RelA, one of the two subunits of the transcription factor NF-kappaB, binds to the BRCA1 protein. Treatment of 293T cells with the cytokine tumor necrosis factor-alpha induces an interaction between endogenous p65/RelA and BRCA1. GST-protein affinity assay experiments reveal that the Rel homology domain of the p65/RelA subunit of NF-kappaB interacts with multiple sites within the N-terminal region of BRCA1. Transient transfection of BRCA1 significantly enhances the ability of the tumor necrosis factor-alpha or interleukin-1beta to activate transcription from the promoters of NF-kappaB target genes. Mutation of the NF-kappaB-binding sites in the NF-kappaB reporter blocks the effect of BRCA1 on transcription. Also the ability of BRCA1 to activate NF-kappaB target genes is inhibited by a super-stable inhibitor of NF-kappaB and by the chemical inhibitor SN-50. These data indicate that BRCA1 acts as a co-activator with NF-kappaB. In addition, we show that cells infected with an adenovirus expressing BRCA1 up-regulate the endogenous expression of NF-kappaB target genes Fas and interferon-beta. Together, this information suggests that BRCA1 may play a role in cell life-death decisions following cell stress by modulation of the activity of NF-kappaB.
Collapse
Affiliation(s)
- Miriam Benezra
- Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
44
|
Mistry AR, Pedersen EW, Solomon E, Grimwade D. The molecular pathogenesis of acute promyelocytic leukaemia: implications for the clinical management of the disease. Blood Rev 2003; 17:71-97. [PMID: 12642121 DOI: 10.1016/s0268-960x(02)00075-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acute promyelocytic leukaemia (APL) is characterised by chromosomal rearrangements of 17q21, leading to fusion of the gene encoding retinoic acid receptor alpha (RARalpha) to a number of alternative partner genes (X), the most frequent of which are PML (>95%), PLZF (0.8%) and NPM (0.5%). Over the last few years, it has been established that the X-RARalpha fusion proteins play a key role in the pathogenesis of APL through recruitment of co-repressors and the histone deacetylase (HDAC)-complex to repress genes implicated in myeloid differentiation. Paradoxically, the X-RARalpha fusion protein has the potential to mediate myeloid differentiation at pharmacological doses of its ligand (all trans-retinoic acid (ATRA)), which is dependent on the dissociation of the HDAC/co-repressor complex. Arsenic compounds have also been shown to be promising therapeutic agents, leading to differentiation and apoptosis of APL blasts. It is now apparent that the nature of the RARalpha-fusion partner is a critical determinant of response to ATRA and arsenic, underlining the importance of cytogenetic and molecular characterisation of patients with suspected APL to determine the most appropriate treatment approach. Standard protocols involving ATRA combined with anthracycline-based chemotherapy, lead to cure of approximately 70% patients with PML-RARalpha-associated APL. Patients at high risk of relapse can be identified by minimal residual disease monitoring. The challenge for future studies is to improve complete remission rates through reduction of induction deaths, particularly due to haemorrhage, identification of patients at high risk of relapse who would benefit from additional therapy, and identification of a favourable-risk group, for which treatment intensity could be reduced, thereby reducing risks of treatment toxicity and development of secondary leukaemia/myelodysplasia. With the advent of ATRA and arsenic, APL has already provided the first example of successful molecularly targeted therapy; it is hoped that with further understanding of the pathogenesis of the disease, the next decade will yield further improvements in the outlook for these patients.
Collapse
MESH Headings
- Animals
- Gene Rearrangement
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Leukemia, Promyelocytic, Acute/therapy
- Models, Biological
- Mutation
- Neoplasm, Residual/genetics
- Neoplasm, Residual/pathology
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Translocation, Genetic
Collapse
Affiliation(s)
- Anita R Mistry
- Division of Medical and Molecular Genetics, Guy's, King's and St Thomas' School of Medicine, London, UK
| | | | | | | |
Collapse
|
45
|
Topisirovic I, Culjkovic B, Cohen N, Perez JM, Skrabanek L, Borden KL. The proline-rich homeodomain protein, PRH, is a tissue-specific inhibitor of eIF4E-dependent cyclin D1 mRNA transport and growth. EMBO J 2003; 22:689-703. [PMID: 12554669 PMCID: PMC140753 DOI: 10.1093/emboj/cdg069] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The translation initiation factor eIF4E is involved in the modulation of cellular growth. In the nucleus, where eIF4E is associated with PML nuclear bodies, eIF4E mediates nucleocytoplasmic transport of specific transcripts, and this contributes to its transformation activity. Surprisingly, we found that a trans cription factor, the proline-rich homeodomain protein PRH, is a negative regulator of eIF4E in myeloid cells, interacting with eIF4E through a conserved binding site typically found in translational regulators. Through this interaction, PRH inhibits eIF4E-dependent mRNA transport and subsequent transformation. These activities of PRH are independent of its transcriptional functions. Further, we found that 199 homeodomain proteins contain potential eIF4E-binding sites. Thus, there could be many tissue-specific regulators of eIF4E. These findings provide a model for regulation of a general factor, eIF4E, in tissue- specific contexts, and suggest that its regulation is important in differentiation and development.
Collapse
Affiliation(s)
| | | | | | | | - Lucy Skrabanek
- Structural Biology Program and
Institute for Computational Biomedicine, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, One Gustave Levy Place, New York, NY 10029, USA Corresponding author e-mail:
| | - Katherine L.B. Borden
- Structural Biology Program and
Institute for Computational Biomedicine, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, One Gustave Levy Place, New York, NY 10029, USA Corresponding author e-mail:
| |
Collapse
|
46
|
Strudwick S, Borden KLB. Finding a role for PML in APL pathogenesis: a critical assessment of potential PML activities. Leukemia 2002; 16:1906-17. [PMID: 12357342 DOI: 10.1038/sj.leu.2402724] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2001] [Accepted: 04/02/2002] [Indexed: 01/10/2023]
Abstract
In normal mammalian cells the promyelocytic leukemia protein (PML) is primarily localized in multiprotein nuclear complexes called PML nuclear bodies. However, both PML and PML nuclear bodies are disrupted in acute promyelocytic leukemia (APL). The treatment of APL patients with all-trans retinoic acid (ATRA) results in clinical remission associated with blast cell differentiation and reformation of the PML nuclear bodies. These observations imply that the structural integrity of the PML nuclear body is critically important for normal cellular functions. Indeed, PML protein is a negative growth regulator capable of causing growth arrest in the G(1) phase of the cell cycle, transformation suppression, senescence and apoptosis. These PML-mediated, physiological effects can be readily demonstrated. However, a discrete biochemical and molecular model of PML function has yet to be defined. Upon first assessment of the current PML literature there appears to be a seemingly endless list of potential PML partner proteins implicating PML in a variety of regulatory mechanisms at every level of gene expression. The purpose of this review is to simplify this confusing field of research by using strict criteria to deduce which models of PML body function are well supported.
Collapse
Affiliation(s)
- S Strudwick
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, New York 10029, USA
| | | |
Collapse
|
47
|
Borden KLB. Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions for PML nuclear bodies. Mol Cell Biol 2002; 22:5259-69. [PMID: 12101223 PMCID: PMC133952 DOI: 10.1128/mcb.22.15.5259-5269.2002] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Katherine L B Borden
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|