1
|
Lancaster CL, Moberg KH, Corbett AH. Post-Transcriptional Regulation of Gene Expression and the Intricate Life of Eukaryotic mRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70007. [PMID: 40059537 PMCID: PMC11949413 DOI: 10.1002/wrna.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025]
Abstract
In recent years, there has been a growing appreciation for how regulatory events that occur either co- or post-transcriptionally contribute to the control of gene expression. Messenger RNAs (mRNAs) are extensively regulated throughout their metabolism in a precise spatiotemporal manner that requires sophisticated molecular mechanisms for cell-type-specific gene expression, which dictates cell function. Moreover, dysfunction at any of these steps can result in a variety of human diseases, including cancers, muscular atrophies, and neurological diseases. This review summarizes the steps of the central dogma of molecular biology, focusing on the post-transcriptional regulation of gene expression.
Collapse
Affiliation(s)
- Carly L. Lancaster
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia, USA
- Department of Cell Biology Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University Atlanta, Georgia, USA
| | - Kenneth H. Moberg
- Department of Cell Biology Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anita H. Corbett
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia, USA
| |
Collapse
|
2
|
He X, Zhang Y, Mao Z, Liu G, Huang L, Liu X, Su Y, Xing X. SUN5, a testis-specific nuclear membrane protein, participates in recruitment and export of nuclear mRNA in spermatogenesis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1673-1686. [PMID: 39108207 PMCID: PMC11659784 DOI: 10.3724/abbs.2024134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/24/2024] [Indexed: 01/06/2025] Open
Abstract
SUN5, a testis-specific gene, is associated with acephalic spermatozoa syndrome (ASS). Here, we demonstrate that Sun5 is involved in mRNA export. In Sun5-knockout mice ( Sun5 -/-), poly(A) + RNA accumulates in the nuclei of germ cells, leading to reduced sperm counts, decreased sperm motility and disrupted sperm head-to-tail junctions. Additionally, in the GC-2 germ cell line with RNA interference of Sun5, heterogeneous nuclear ribonucleoproteins (hnRNPs) and poly (A) + RNA (mainly mRNA) are retained in the nucleus. Further mechanistic studies reveal that Sun5 interacts with Nxf1 (nuclear RNA export factor 1) and nucleoporin 93 (Nup93). Interference with Nup93 inhibits mRNA export. Treatment with leptomycin B to block the CRM1 pathway indicates that Sun5 regulates mRNA export through an Nxf1-dependent pathway. In Sun5 -/- mice, the binding of Nxf1 and Nup93 decreases due to loss of Sun5 function, and the process of submitting Nxf1-binding mRNPs to Nup93 is inhibited, resulting in abnormal spermatogenesis. Together, these data may elucidate a novel pathway for mRNA export in male germ cells.
Collapse
Affiliation(s)
- Xiyi He
- Center for Experimental MedicineThird Xiangya HospitalCentral South UniversityChangsha410013China
- Department of Laboratory MedicineThird Xiangya HospitalCentral South UniversityChangsha410013China
| | - Yunfei Zhang
- Center for Experimental MedicineThird Xiangya HospitalCentral South UniversityChangsha410013China
- Department of Laboratory MedicineThird Xiangya HospitalCentral South UniversityChangsha410013China
| | - Zenghui Mao
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and ControlChangsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal UniversityChangsha410007China
| | - Gang Liu
- Institute of Reproductive and Stem Cell EngineeringSchool of Basic MedicineCentral South UniversityChangsha410078China
| | - Lihua Huang
- Center for Experimental MedicineThird Xiangya HospitalCentral South UniversityChangsha410013China
| | - Xiaowen Liu
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and ControlChangsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal UniversityChangsha410007China
| | - Yuyan Su
- Center for Experimental MedicineThird Xiangya HospitalCentral South UniversityChangsha410013China
- Department of Laboratory MedicineThird Xiangya HospitalCentral South UniversityChangsha410013China
| | - Xiaowei Xing
- Center for Experimental MedicineThird Xiangya HospitalCentral South UniversityChangsha410013China
- NHC Key Laboratory of Birth Defects PreventionZhengzhou451163China
| |
Collapse
|
3
|
Li Y, Zhu J, Zhai F, Kong L, Li H, Jin X. Advances in the understanding of nuclear pore complexes in human diseases. J Cancer Res Clin Oncol 2024; 150:374. [PMID: 39080077 PMCID: PMC11289042 DOI: 10.1007/s00432-024-05881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are sophisticated and dynamic protein structures that straddle the nuclear envelope and act as gatekeepers for transporting molecules between the nucleus and the cytoplasm. NPCs comprise up to 30 different proteins known as nucleoporins (NUPs). However, a growing body of research has suggested that NPCs play important roles in gene regulation, viral infections, cancer, mitosis, genetic diseases, kidney diseases, immune system diseases, and degenerative neurological and muscular pathologies. PURPOSE In this review, we introduce the structure and function of NPCs. Then We described the physiological and pathological effects of each component of NPCs which provide a direction for future clinical applications. METHODS The literatures from PubMed have been reviewed for this article. CONCLUSION This review summarizes current studies on the implications of NPCs in human physiology and pathology, highlighting the mechanistic underpinnings of NPC-associated diseases.
Collapse
Affiliation(s)
- Yuxuan Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Jie Zhu
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Hong Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| | - Xiaofeng Jin
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
4
|
Guglielmi V, Lam D, D’Angelo MA. Nucleoporin Nup358 drives the differentiation of myeloid-biased multipotent progenitors by modulating HDAC3 nuclear translocation. SCIENCE ADVANCES 2024; 10:eadn8963. [PMID: 38838144 PMCID: PMC11152124 DOI: 10.1126/sciadv.adn8963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Nucleoporins, the components of nuclear pore complexes (NPCs), can play cell type- and tissue-specific functions. Yet, the physiological roles and mechanisms of action for most NPC components have not yet been established. We report that Nup358, a nucleoporin linked to several myeloid disorders, is required for the developmental progression of early myeloid progenitors. We found that Nup358 ablation in mice results in the loss of myeloid-committed progenitors and mature myeloid cells and the accumulation of myeloid-primed multipotent progenitors (MPPs) in bone marrow. Accumulated MPPs in Nup358 knockout mice are greatly restricted to megakaryocyte/erythrocyte-biased MPP2, which fail to progress into committed myeloid progenitors. Mechanistically, we found that Nup358 is required for histone deacetylase 3 (HDAC3) nuclear import and function in MPP2 cells and established that this nucleoporin regulates HDAC3 nuclear translocation in a SUMOylation-independent manner. Our study identifies a critical function for Nup358 in myeloid-primed MPP2 differentiation and uncovers an unexpected role for NPCs in the early steps of myelopoiesis.
Collapse
Affiliation(s)
- Valeria Guglielmi
- Cancer Metabolism and Microenvironment Program, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Davina Lam
- Cancer Metabolism and Microenvironment Program, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Maximiliano A. D’Angelo
- Cancer Metabolism and Microenvironment Program, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
5
|
Hazawa M, Ikliptikawati DK, Iwashima Y, Lin DC, Jiang Y, Qiu Y, Makiyama K, Matsumoto K, Kobayashi A, Nishide G, Keesiang L, Yoshino H, Minamoto T, Suzuki T, Kobayashi I, Meguro-Horike M, Jiang YY, Nishiuchi T, Konno H, Koeffler HP, Hosomichi K, Tajima A, Horike SI, Wong RW. Super-enhancer trapping by the nuclear pore via intrinsically disordered regions of proteins in squamous cell carcinoma cells. Cell Chem Biol 2024; 31:792-804.e7. [PMID: 37924814 DOI: 10.1016/j.chembiol.2023.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/07/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Master transcription factors such as TP63 establish super-enhancers (SEs) to drive core transcriptional networks in cancer cells, yet the spatiotemporal regulation of SEs within the nucleus remains unknown. The nuclear pore complex (NPC) may tether SEs to the nuclear pore where RNA export rates are maximal. Here, we report that NUP153, a component of the NPC, anchors SEs to the NPC and enhances TP63 expression by maximizing mRNA export. This anchoring is mediated through protein-protein interaction between the intrinsically disordered regions (IDRs) of NUP153 and the coactivator BRD4. Silencing of NUP153 excludes SEs from the nuclear periphery, decreases TP63 expression, impairs cellular growth, and induces epidermal differentiation of squamous cell carcinoma. Overall, this work reveals the critical roles of NUP153 IDRs in the regulation of SE localization, thus providing insights into a new layer of gene regulation at the epigenomic and spatial level.
Collapse
Affiliation(s)
- Masaharu Hazawa
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Laboratory of molecular cell biology, School of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Dini Kurnia Ikliptikawati
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuki Iwashima
- Laboratory of molecular cell biology, School of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - De-Chen Lin
- Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Yuan Jiang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R.China; University of Science and Technology of China, Hefei 230026, P.R.China
| | - Yujia Qiu
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kei Makiyama
- Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Koki Matsumoto
- Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Akiko Kobayashi
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Goro Nishide
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Lim Keesiang
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hironori Yoshino
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Takeshi Suzuki
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Isao Kobayashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Makiko Meguro-Horike
- Advanced Science Research Center, Institute for Gene Research, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Yan-Yi Jiang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R.China; University of Science and Technology of China, Hefei 230026, P.R.China
| | - Takumi Nishiuchi
- Division of Integrated Omics research, Bioscience Core Facility Research Center for Experimental Modeling of Human Disease, Kanazawa University 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiroki Konno
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - H Phillip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kazuyoshi Hosomichi
- Laboratory of Computational Genomics, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Shin-Ichi Horike
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Advanced Science Research Center, Institute for Gene Research, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Richard W Wong
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Laboratory of molecular cell biology, School of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| |
Collapse
|
6
|
Li J, Su L, Jiang J, Wang YE, Ling Y, Qiu Y, Yu H, Huang Y, Wu J, Jiang S, Zhang T, Palazzo AF, Shen Q. RanBP2/Nup358 Mediates Sumoylation of STAT1 and Antagonizes Interferon-α-Mediated Antiviral Innate Immunity. Int J Mol Sci 2023; 25:299. [PMID: 38203469 PMCID: PMC10778711 DOI: 10.3390/ijms25010299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Type I interferon (IFN-I)-induced signaling plays a critical role in host antiviral innate immune responses. Despite this, the mechanisms that regulate this signaling pathway have yet to be fully elucidated. The nucleoporin Ran Binding Protein 2 (RanBP2) (also known as Nucleoporin 358 KDa, Nup358) has been implicated in a number of cellular processes, including host innate immune signaling pathways, and is known to influence viral infection. In this study, we documented that RanBP2 mediates the sumoylation of signal transducers and activators of transcription 1 (STAT1) and inhibits IFN-α-induced signaling. Specifically, we found that RanBP2-mediated sumoylation inhibits the interaction of STAT1 and Janus kinase 1 (JAK1), as well as the phosphorylation and nuclear accumulation of STAT1 after IFN-α stimulation, thereby antagonizing the IFN-α-mediated antiviral innate immune signaling pathway and promoting viral infection. Our findings not only provide insights into a novel function of RanBP2 in antiviral innate immunity but may also contribute to the development of new antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Jiawei Li
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (J.L.); (L.S.); (J.J.); (Y.L.); (H.Y.); (Y.H.); (J.W.); (S.J.); (T.Z.)
| | - Lili Su
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (J.L.); (L.S.); (J.J.); (Y.L.); (H.Y.); (Y.H.); (J.W.); (S.J.); (T.Z.)
| | - Jing Jiang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (J.L.); (L.S.); (J.J.); (Y.L.); (H.Y.); (Y.H.); (J.W.); (S.J.); (T.Z.)
| | - Yifan E. Wang
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; (Y.E.W.); (Y.Q.)
| | - Yingying Ling
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (J.L.); (L.S.); (J.J.); (Y.L.); (H.Y.); (Y.H.); (J.W.); (S.J.); (T.Z.)
| | - Yi Qiu
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; (Y.E.W.); (Y.Q.)
| | - Huahui Yu
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (J.L.); (L.S.); (J.J.); (Y.L.); (H.Y.); (Y.H.); (J.W.); (S.J.); (T.Z.)
| | - Yucong Huang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (J.L.); (L.S.); (J.J.); (Y.L.); (H.Y.); (Y.H.); (J.W.); (S.J.); (T.Z.)
| | - Jiangmin Wu
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (J.L.); (L.S.); (J.J.); (Y.L.); (H.Y.); (Y.H.); (J.W.); (S.J.); (T.Z.)
| | - Shan Jiang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (J.L.); (L.S.); (J.J.); (Y.L.); (H.Y.); (Y.H.); (J.W.); (S.J.); (T.Z.)
| | - Tao Zhang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (J.L.); (L.S.); (J.J.); (Y.L.); (H.Y.); (Y.H.); (J.W.); (S.J.); (T.Z.)
| | - Alexander F. Palazzo
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; (Y.E.W.); (Y.Q.)
| | - Qingtang Shen
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (J.L.); (L.S.); (J.J.); (Y.L.); (H.Y.); (Y.H.); (J.W.); (S.J.); (T.Z.)
| |
Collapse
|
7
|
Yang Y, Guo L, Chen L, Gong B, Jia D, Sun Q. Nuclear transport proteins: structure, function, and disease relevance. Signal Transduct Target Ther 2023; 8:425. [PMID: 37945593 PMCID: PMC10636164 DOI: 10.1038/s41392-023-01649-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023] Open
Abstract
Proper subcellular localization is crucial for the functioning of biomacromolecules, including proteins and RNAs. Nuclear transport is a fundamental cellular process that regulates the localization of many macromolecules within the nuclear or cytoplasmic compartments. In humans, approximately 60 proteins are involved in nuclear transport, including nucleoporins that form membrane-embedded nuclear pore complexes, karyopherins that transport cargoes through these complexes, and Ran system proteins that ensure directed and rapid transport. Many of these nuclear transport proteins play additional and essential roles in mitosis, biomolecular condensation, and gene transcription. Dysregulation of nuclear transport is linked to major human diseases such as cancer, neurodegenerative diseases, and viral infections. Selinexor (KPT-330), an inhibitor targeting the nuclear export factor XPO1 (also known as CRM1), was approved in 2019 to treat two types of blood cancers, and dozens of clinical trials of are ongoing. This review summarizes approximately three decades of research data in this field but focuses on the structure and function of individual nuclear transport proteins from recent studies, providing a cutting-edge and holistic view on the role of nuclear transport proteins in health and disease. In-depth knowledge of this rapidly evolving field has the potential to bring new insights into fundamental biology, pathogenic mechanisms, and therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| | - Qingxiang Sun
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, China.
| |
Collapse
|
8
|
Ferreira PA. Nucleocytoplasmic transport at the crossroads of proteostasis, neurodegeneration and neuroprotection. FEBS Lett 2023; 597:2567-2589. [PMID: 37597509 DOI: 10.1002/1873-3468.14722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023]
Abstract
Nucleocytoplasmic transport comprises the multistep assembly, transport, and disassembly of protein and RNA cargoes entering and exiting nuclear pores. Accruing evidence supports that impairments to nucleocytoplasmic transport are a hallmark of neurodegenerative diseases. These impairments cause dysregulations in nucleocytoplasmic partitioning and proteostasis of nuclear transport receptors and client substrates that promote intracellular deposits - another hallmark of neurodegeneration. Disturbances in liquid-liquid phase separation (LLPS) between dense and dilute phases of biomolecules implicated in nucleocytoplasmic transport promote micrometer-scale coacervates, leading to proteinaceous aggregates. This Review provides historical and emerging principles of LLPS at the interface of nucleocytoplasmic transport, proteostasis, aging and noxious insults, whose dysregulations promote intracellular aggregates. E3 SUMO-protein ligase Ranbp2 constitutes the cytoplasmic filaments of nuclear pores, where it acts as a molecular hub for rate-limiting steps of nucleocytoplasmic transport. A vignette is provided on the roles of Ranbp2 in nucleocytoplasmic transport and at the intersection of proteostasis in the survival of photoreceptor and motor neurons under homeostatic and pathophysiological environments. Current unmet clinical needs are highlighted, including therapeutics aiming to manipulate aggregation-dissolution models of purported neurotoxicity in neurodegeneration.
Collapse
Affiliation(s)
- Paulo A Ferreira
- Department of Ophthalmology, Department of Pathology, Duke University Medical Center, NC, Durham, USA
| |
Collapse
|
9
|
Desgraupes S, Etienne L, Arhel NJ. RANBP2 evolution and human disease. FEBS Lett 2023; 597:2519-2533. [PMID: 37795679 DOI: 10.1002/1873-3468.14749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Ran-binding protein 2 (RANBP2)/Nup358 is a nucleoporin and a key component of the nuclear pore complex. Through its multiple functions (e.g., SUMOylation, regulation of nucleocytoplasmic transport) and subcellular localizations (e.g., at the nuclear envelope, kinetochores, annulate lamellae), it is involved in many cellular processes. RANBP2 dysregulation or mutation leads to the development of human pathologies, such as acute necrotizing encephalopathy 1, cancer, neurodegenerative diseases, and it is also involved in viral infections. The chromosomal region containing the RANBP2 gene is highly dynamic, with high structural variation and recombination events that led to the appearance of a gene family called RANBP2 and GCC2 Protein Domains (RGPD), with multiple gene loss/duplication events during ape evolution. Although RGPD homoplasy and maintenance during evolution suggest they might confer an advantage to their hosts, their functions are still unknown and understudied. In this review, we discuss the appearance and importance of RANBP2 in metazoans and its function-related pathologies, caused by an alteration of its expression levels (through promotor activity, post-transcriptional, or post-translational modifications), its localization, or genetic mutations.
Collapse
Affiliation(s)
- Sophie Desgraupes
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, France
| | - Lucie Etienne
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, France
| | - Nathalie J Arhel
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, France
| |
Collapse
|
10
|
Cho UH, Hetzer MW. Caspase-mediated nuclear pore complex trimming in cell differentiation and endoplasmic reticulum stress. eLife 2023; 12:RP89066. [PMID: 37665327 PMCID: PMC10476967 DOI: 10.7554/elife.89066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
During apoptosis, caspases degrade 8 out of ~30 nucleoporins to irreversibly demolish the nuclear pore complex. However, for poorly understood reasons, caspases are also activated during cell differentiation. Here, we show that sublethal activation of caspases during myogenesis results in the transient proteolysis of four peripheral Nups and one transmembrane Nup. 'Trimmed' NPCs become nuclear export-defective, and we identified in an unbiased manner several classes of cytoplasmic, plasma membrane, and mitochondrial proteins that rapidly accumulate in the nucleus. NPC trimming by non-apoptotic caspases was also observed in neurogenesis and endoplasmic reticulum stress. Our results suggest that caspases can reversibly modulate nuclear transport activity, which allows them to function as agents of cell differentiation and adaptation at sublethal levels.
Collapse
Affiliation(s)
- Ukrae H Cho
- Molecular and Cell Biology Laboratory, Salk Institute for Biological StudiesLa JollaUnited States
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute for Biological StudiesLa JollaUnited States
- Institute of Science and Technology Austria (IST Austria)KlosterneuburgAustria
| |
Collapse
|
11
|
Sadasivan J, Hyrina A, DaSilva R, Jan E. An Insect Viral Protein Disrupts Stress Granule Formation in Mammalian Cells. J Mol Biol 2023; 435:168042. [PMID: 36898623 DOI: 10.1016/j.jmb.2023.168042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Stress granules (SGs) are cytosolic RNA-protein aggregates assembled during stress-induced translation arrest. Virus infection, in general, modulates and blocks SG formation. We previously showed that the model dicistrovirus Cricket paralysis virus (CrPV) 1A protein blocks stress granule formation in insect cells, which is dependent on a specific arginine 146 residue. CrPV-1A also inhibits SG formation in mammalian cells suggesting that this insect viral protein may be acting on a fundamental process that regulates SG formation. The mechanism underlying this process is not fully understood. Here, we show that overexpression of wild-type CrPV-1A, but not the CrPV-1A(R146A) mutant protein, inhibits distinct SG assembly pathways in HeLa cells. CrPV-1A mediated SG inhibition is independent of the Argonaute-2 (Ago-2) binding domain and the E3 ubiquitin ligase recruitment domain. CrPV-1A expression leads to nuclear poly(A)+ RNA accumulation and is correlated with the localization of CrPV-1A to the nuclear periphery. Finally, we show that the overexpression of CrPV-1A blocks FUS and TDP-43 granules, which are pathological hallmarks of neurodegenerative diseases. We propose a model whereby CrPV-1A expression in mammalian cells blocks SG formation by depleting cytoplasmic mRNA scaffolds via mRNA export inhibition. CrPV-1A provides a new molecular tool to study RNA-protein aggregates and potentially uncouple SG functions.
Collapse
Affiliation(s)
- Jibin Sadasivan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada. https://twitter.com/@jibin_sadasivan
| | - Anastasia Hyrina
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rachel DaSilva
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
12
|
Khan M, Hou S, Chen M, Lei H. Mechanisms of RNA export and nuclear retention. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1755. [PMID: 35978483 DOI: 10.1002/wrna.1755] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/21/2022] [Accepted: 07/06/2022] [Indexed: 05/13/2023]
Abstract
With the identification of huge amount of noncoding RNAs in recent years, the concept of RNA localization has extended from traditional mRNA export to RNA export of mRNA and ncRNA as well as nuclear retention of ncRNA. This review aims to summarize the recent findings from studies on the mechanisms of export of different RNAs and nuclear retention of some lncRNAs in higher eukaryotes, with a focus on splicing-dependent TREX recruitment for the export of spliced mRNA and the sequence-dependent mechanism of mRNA export in the absence of splicing. In addition, evidence to support the involvement of m6 A modification in RNA export with the coordination between the methylase complex and TREX complex as well as sequence-dependent nuclear retention of lncRNA is recapitulated. Finally, a model of sequence-dependent RNA localization is proposed along with the many questions that remain to be answered. This article is categorized under: RNA Export and Localization > RNA Localization RNA Export and Localization > Nuclear Export/Import.
Collapse
Affiliation(s)
- Misbah Khan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shuai Hou
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Mo Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Haixin Lei
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
13
|
Shen W, Gong B, Xing C, Zhang L, Sun J, Chen Y, Yang C, Yan L, Chen L, Yao L, Li G, Deng H, Wu X, Meng A. Comprehensive maturity of nuclear pore complexes regulates zygotic genome activation. Cell 2022; 185:4954-4970.e20. [PMID: 36493774 DOI: 10.1016/j.cell.2022.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/23/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022]
Abstract
Nuclear pore complexes (NPCs) are channels for nucleocytoplasmic transport of proteins and RNAs. However, it remains unclear whether composition, structure, and permeability of NPCs dynamically change during the cleavage period of vertebrate embryos and affect embryonic development. Here, we report that the comprehensive NPC maturity (CNM) controls the onset of zygotic genome activation (ZGA) during zebrafish early embryogenesis. We show that more nucleoporin proteins are recruited to and assembled into NPCs with development, resulting in progressive increase of NPCs in size and complexity. Maternal transcription factors (TFs) transport into nuclei more efficiently with increasing CNM. Deficiency or dysfunction of Nup133 or Ahctf1/Elys impairs NPC assembly, maternal TFs nuclear transport, and ZGA onset, while nup133 overexpression promotes these processes. Therefore, CNM may act as a molecular timer for ZGA by controlling nuclear transport of maternal TFs that reach nuclear concentration thresholds at a given time to initiate ZGA.
Collapse
Affiliation(s)
- Weimin Shen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bo Gong
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Cencan Xing
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lin Zhang
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiawei Sun
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Changmei Yang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lu Yan
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Luxi Chen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Likun Yao
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guangyuan Li
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaotong Wu
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Developmental Diseases and Cancer Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Laboratory of Stem Cell Regulation, Guangzhou Laboratory, Guangzhou 510320, China.
| |
Collapse
|
14
|
Sadasivan J, Vlok M, Wang X, Nayak A, Andino R, Jan E. Targeting Nup358/RanBP2 by a viral protein disrupts stress granule formation. PLoS Pathog 2022; 18:e1010598. [PMID: 36455064 PMCID: PMC9746944 DOI: 10.1371/journal.ppat.1010598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/13/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Viruses have evolved mechanisms to modulate cellular pathways to facilitate infection. One such pathway is the formation of stress granules (SG), which are ribonucleoprotein complexes that assemble during translation inhibition following cellular stress. Inhibition of SG assembly has been observed under numerous virus infections across species, suggesting a conserved fundamental viral strategy. However, the significance of SG modulation during virus infection is not fully understood. The 1A protein encoded by the model dicistrovirus, Cricket paralysis virus (CrPV), is a multifunctional protein that can bind to and degrade Ago-2 in an E3 ubiquitin ligase-dependent manner to block the antiviral RNA interference pathway and inhibit SG formation. Moreover, the R146 residue of 1A is necessary for SG inhibition and CrPV infection in both Drosophila S2 cells and adult flies. Here, we uncoupled CrPV-1A's functions and provide insight into its underlying mechanism for SG inhibition. CrPV-1A mediated inhibition of SGs requires the E3 ubiquitin-ligase binding domain and the R146 residue, but not the Ago-2 binding domain. Wild-type but not mutant CrPV-1A R146A localizes to the nuclear membrane which correlates with nuclear enrichment of poly(A)+ RNA. Transcriptome changes in CrPV-infected cells are dependent on the R146 residue. Finally, Nup358/RanBP2 is targeted and degraded in CrPV-infected cells in an R146-dependent manner and the depletion of Nup358 blocks SG formation. We propose that CrPV utilizes a multiprong strategy whereby the CrPV-1A protein interferes with a nuclear event that contributes to SG inhibition in order to promote infection.
Collapse
Affiliation(s)
- Jibin Sadasivan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marli Vlok
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xinying Wang
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arabinda Nayak
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Raul Andino
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
15
|
Tingey M, Li Y, Yu W, Young A, Yang W. Spelling out the roles of individual nucleoporins in nuclear export of mRNA. Nucleus 2022; 13:170-193. [PMID: 35593254 PMCID: PMC9132428 DOI: 10.1080/19491034.2022.2076965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/01/2022] Open
Abstract
The Nuclear Pore Complex (NPC) represents a critical passage through the nuclear envelope for nuclear import and export that impacts nearly every cellular process at some level. Recent technological advances in the form of Auxin Inducible Degron (AID) strategies and Single-Point Edge-Excitation sub-Diffraction (SPEED) microscopy have enabled us to provide new insight into the distinct functions and roles of nuclear basket nucleoporins (Nups) upon nuclear docking and export for mRNAs. In this paper, we provide a review of our recent findings as well as an assessment of new techniques, updated models, and future perspectives in the studies of mRNA's nuclear export.
Collapse
Affiliation(s)
- Mark Tingey
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Yichen Li
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Wenlan Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Albert Young
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Bley CJ, Nie S, Mobbs GW, Petrovic S, Gres AT, Liu X, Mukherjee S, Harvey S, Huber FM, Lin DH, Brown B, Tang AW, Rundlet EJ, Correia AR, Chen S, Regmi SG, Stevens TA, Jette CA, Dasso M, Patke A, Palazzo AF, Kossiakoff AA, Hoelz A. Architecture of the cytoplasmic face of the nuclear pore. Science 2022; 376:eabm9129. [PMID: 35679405 DOI: 10.1126/science.abm9129] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The subcellular compartmentalization of eukaryotic cells requires selective transport of folded proteins and protein-nucleic acid complexes. Embedded in nuclear envelope pores, which are generated by the circumscribed fusion of the inner and outer nuclear membranes, nuclear pore complexes (NPCs) are the sole bidirectional gateways for nucleocytoplasmic transport. The ~110-MDa human NPC is an ~1000-protein assembly that comprises multiple copies of ~34 different proteins, collectively termed nucleoporins. The symmetric core of the NPC is composed of an inner ring encircling the central transport channel and outer rings formed by Y‑shaped coat nucleoporin complexes (CNCs) anchored atop both sides of the nuclear envelope. The outer rings are decorated with compartment‑specific asymmetric nuclear basket and cytoplasmic filament nucleoporins, which establish transport directionality and provide docking sites for transport factors and the small guanosine triphosphatase Ran. The cytoplasmic filament nucleoporins also play an essential role in the irreversible remodeling of messenger ribonucleoprotein particles (mRNPs) as they exit the central transport channel. Unsurprisingly, the NPC's cytoplasmic face represents a hotspot for disease‑associated mutations and is commonly targeted by viral virulence factors. RATIONALE Previous studies established a near-atomic composite structure of the human NPC's symmetric core by combining (i) biochemical reconstitution to elucidate the interaction network between symmetric nucleoporins, (ii) crystal and single-particle cryo-electron microscopy structure determination of nucleoporins and nucleoporin complexes to reveal their three-dimensional shape and the molecular details of their interactions, (iii) quantitative docking in cryo-electron tomography (cryo-ET) maps of the intact human NPC to uncover nucleoporin stoichiometry and positioning, and (iv) cell‑based assays to validate the physiological relevance of the biochemical and structural findings. In this work, we extended our approach to the cytoplasmic filament nucleoporins to reveal the near-atomic architecture of the cytoplasmic face of the human NPC. RESULTS Using biochemical reconstitution, we elucidated the protein-protein and protein-RNA interaction networks of the human and Chaetomium thermophilum cytoplasmic filament nucleoporins, establishing an evolutionarily conserved heterohexameric cytoplasmic filament nucleoporin complex (CFNC) held together by a central heterotrimeric coiled‑coil hub that tethers two separate mRNP‑remodeling complexes. Further biochemical analysis and determination of a series of crystal structures revealed that the metazoan‑specific cytoplasmic filament nucleoporin NUP358 is composed of 16 distinct domains, including an N‑terminal S‑shaped α‑helical solenoid followed by a coiled‑coil oligomerization element, numerous Ran‑interacting domains, an E3 ligase domain, and a C‑terminal prolyl‑isomerase domain. Physiologically validated quantitative docking into cryo-ET maps of the intact human NPC revealed that pentameric NUP358 bundles, conjoined by the oligomerization element, are anchored through their N‑terminal domains to the central stalk regions of the CNC, projecting flexibly attached domains as far as ~600 Å into the cytoplasm. Using cell‑based assays, we demonstrated that NUP358 is dispensable for the architectural integrity of the assembled interphase NPC and RNA export but is required for efficient translation. After NUP358 assignment, the remaining 4-shaped cryo‑ET density matched the dimensions of the CFNC coiled‑coil hub, in close proximity to an outer-ring NUP93. Whereas the N-terminal NUP93 assembly sensor motif anchors the properly assembled related coiled‑coil channel nucleoporin heterotrimer to the inner ring, biochemical reconstitution confirmed that the NUP93 assembly sensor is reused in anchoring the CFNC to the cytoplasmic face of the human NPC. By contrast, two C. thermophilum CFNCs are anchored by a divergent mechanism that involves assembly sensors located in unstructured portions of two CNC nucleoporins. Whereas unassigned cryo‑ET density occupies the NUP358 and CFNC binding sites on the nuclear face, docking of the nuclear basket component ELYS established that the equivalent position on the cytoplasmic face is unoccupied, suggesting that mechanisms other than steric competition promote asymmetric distribution of nucleoporins. CONCLUSION We have substantially advanced the biochemical and structural characterization of the asymmetric nucleoporins' architecture and attachment at the cytoplasmic and nuclear faces of the NPC. Our near‑atomic composite structure of the human NPC's cytoplasmic face provides a biochemical and structural framework for elucidating the molecular basis of mRNP remodeling, viral virulence factor interference with NPC function, and the underlying mechanisms of nucleoporin diseases at the cytoplasmic face of the NPC. [Figure: see text].
Collapse
Affiliation(s)
- Christopher J Bley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Si Nie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - George W Mobbs
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Stefan Petrovic
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Anna T Gres
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Xiaoyu Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sho Harvey
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Ferdinand M Huber
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Daniel H Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Bonnie Brown
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Aaron W Tang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Emily J Rundlet
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Ana R Correia
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Shane Chen
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saroj G Regmi
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Taylor A Stevens
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Claudia A Jette
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alina Patke
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Alexander F Palazzo
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
17
|
Jiang J, Wang YE, Palazzo AF, Shen Q. Roles of Nucleoporin RanBP2/Nup358 in Acute Necrotizing Encephalopathy Type 1 (ANE1) and Viral Infection. Int J Mol Sci 2022; 23:3548. [PMID: 35408907 PMCID: PMC8998323 DOI: 10.3390/ijms23073548] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022] Open
Abstract
Ran Binding Protein 2 (RanBP2 or Nucleoporin358) is one of the main components of the cytoplasmic filaments of the nuclear pore complex. Mutations in the RANBP2 gene are associated with acute necrotizing encephalopathy type 1 (ANE1), a rare condition where patients experience a sharp rise in cytokine production in response to viral infection and undergo hyperinflammation, seizures, coma, and a high rate of mortality. Despite this, it remains unclear howRanBP2 and its ANE1-associated mutations contribute to pathology. Mounting evidence has shown that RanBP2 interacts with distinct viruses to regulate viral infection. In addition, RanBP2 may regulate innate immune response pathways. This review summarizes recent advances in our understanding of how mutations in RANBP2 contribute to ANE1 and discusses how RanBP2 interacts with distinct viruses and affects viral infection. Recent findings indicate that RanBP2 might be an important therapeutic target, not only in the suppression of ANE1-driven cytokine storms, but also to combat hyperinflammation in response to viral infections.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China;
| | - Yifan E. Wang
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada;
| | | | - Qingtang Shen
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China;
| |
Collapse
|
18
|
Raices M, D'Angelo MA. Structure, Maintenance, and Regulation of Nuclear Pore Complexes: The Gatekeepers of the Eukaryotic Genome. Cold Spring Harb Perspect Biol 2022; 14:a040691. [PMID: 34312247 PMCID: PMC8789946 DOI: 10.1101/cshperspect.a040691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In eukaryotic cells, the genetic material is segregated inside the nucleus. This compartmentalization of the genome requires a transport system that allows cells to move molecules across the nuclear envelope, the membrane-based barrier that surrounds the chromosomes. Nuclear pore complexes (NPCs) are the central component of the nuclear transport machinery. These large protein channels penetrate the nuclear envelope, creating a passage between the nucleus and the cytoplasm through which nucleocytoplasmic molecule exchange occurs. NPCs are one of the largest protein assemblies of eukaryotic cells and, in addition to their critical function in nuclear transport, these structures also play key roles in many cellular processes in a transport-independent manner. Here we will review the current knowledge of the NPC structure, the cellular mechanisms that regulate their formation and maintenance, and we will provide a brief description of a variety of processes that NPCs regulate.
Collapse
Affiliation(s)
- Marcela Raices
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| | - Maximiliano A D'Angelo
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| |
Collapse
|
19
|
Shukla P, Mandalla A, Elrick MJ, Venkatesan A. Clinical Manifestations and Pathogenesis of Acute Necrotizing Encephalopathy: The Interface Between Systemic Infection and Neurologic Injury. Front Neurol 2022; 12:628811. [PMID: 35058867 PMCID: PMC8764155 DOI: 10.3389/fneur.2021.628811] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Acute necrotizing encephalopathy (ANE) is a devastating neurologic condition that can arise following a variety of systemic infections, including influenza and SARS-CoV-2. Affected individuals typically present with rapid changes in consciousness, focal neurological deficits, and seizures. Neuroimaging reveals symmetric, bilateral deep gray matter lesions, often involving the thalami, with evidence of necrosis and/or hemorrhage. The clinical and radiologic picture must be distinguished from direct infection of the central nervous system by some viruses, and from metabolic and mitochondrial disorders. Outcomes following ANE are poor overall and worse in those with brainstem involvement. Specific management is often directed toward modulating immune responses given the potential role of systemic inflammation and cytokine storm in potentiating neurologic injury in ANE, though benefits of such approaches remain unclear. The finding that many patients have mutations in the nucleoporin gene RANBP2, which encodes a multifunctional protein that plays a key role in nucleocytoplasmic transport, may allow for the development of disease models that provide insights into pathogenic mechanisms and novel therapeutic approaches.
Collapse
Affiliation(s)
- Priya Shukla
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Abby Mandalla
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Matthew J Elrick
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Arun Venkatesan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
20
|
Iwasaki YW, Sriswasdi S, Kinugasa Y, Adachi J, Horikoshi Y, Shibuya A, Iwasaki W, Tashiro S, Tomonaga T, Siomi H. Piwi-piRNA complexes induce stepwise changes in nuclear architecture at target loci. EMBO J 2021; 40:e108345. [PMID: 34337769 PMCID: PMC8441340 DOI: 10.15252/embj.2021108345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
PIWI‐interacting RNAs (piRNAs) are germline‐specific small RNAs that form effector complexes with PIWI proteins (Piwi–piRNA complexes) and play critical roles for preserving genomic integrity by repressing transposable elements (TEs). Drosophila Piwi transcriptionally silences specific targets through heterochromatin formation and increases histone H3K9 methylation (H3K9me3) and histone H1 deposition at these loci, with nuclear RNA export factor variant Nxf2 serving as a co‐factor. Using ChEP and DamID‐seq, we now uncover a Piwi/Nxf2‐dependent target association with nuclear lamins. Hi‐C analysis of Piwi or Nxf2‐depleted cells reveals decreased intra‐TAD and increased inter‐TAD interactions in regions harboring Piwi–piRNA target TEs. Using a forced tethering system, we analyze the functional effects of Piwi–piRNA/Nxf2‐mediated recruitment of piRNA target regions to the nuclear periphery. Removal of active histone marks is followed by transcriptional silencing, chromatin conformational changes, and H3K9me3 and H1 association. Our data show that the Piwi–piRNA pathway can induce stepwise changes in nuclear architecture and chromatin state at target loci for transcriptional silencing.
Collapse
Affiliation(s)
- Yuka W Iwasaki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan.,Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Saitama, Japan
| | - Sira Sriswasdi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Computational Molecular Biology Group, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yasuha Kinugasa
- Department of Cellular Biology, Research Institute for Radiation Biology Medicine, Hiroshima University, Hiroshima, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Yasunori Horikoshi
- Department of Cellular Biology, Research Institute for Radiation Biology Medicine, Hiroshima University, Hiroshima, Japan
| | - Aoi Shibuya
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology Medicine, Hiroshima University, Hiroshima, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Blanco-Rodriguez G, Di Nunzio F. The Viral Capsid: A Master Key to Access the Host Nucleus. Viruses 2021; 13:v13061178. [PMID: 34203080 PMCID: PMC8234750 DOI: 10.3390/v13061178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Viruses are pathogens that have evolved to hijack the cellular machinery to replicate themselves and spread to new cells. During the course of evolution, viruses developed different strategies to overcome the cellular defenses and create new progeny. Among them, some RNA and many DNA viruses require access to the nucleus to replicate their genome. In non-dividing cells, viruses can only access the nucleus through the nuclear pore complex (NPC). Therefore, viruses have developed strategies to usurp the nuclear transport machinery and gain access to the nucleus. The majority of these viruses use the capsid to manipulate the nuclear import machinery. However, the particular tactics employed by each virus to reach the host chromatin compartment are very different. Nevertheless, they all require some degree of capsid remodeling. Recent notions on the interplay between the viral capsid and cellular factors shine new light on the quest for the nuclear entry step and for the fate of these viruses. In this review, we describe the main components and function of nuclear transport machinery. Next, we discuss selected examples of RNA and DNA viruses (HBV, HSV, adenovirus, and HIV) that remodel their capsid as part of their strategies to access the nucleus and to replicate.
Collapse
Affiliation(s)
- Guillermo Blanco-Rodriguez
- Advanced Molecular Virology and Retroviral Dynamics Group, Department of Virology, Pasteur Institute, 75015 Paris, France;
- Immunity and Cancer Department, Curie Institute, PSL Research University, INSERM U932, 75005 Paris, France
| | - Francesca Di Nunzio
- Advanced Molecular Virology and Retroviral Dynamics Group, Department of Virology, Pasteur Institute, 75015 Paris, France;
- Correspondence:
| |
Collapse
|
22
|
Ding B, Sepehrimanesh M. Nucleocytoplasmic Transport: Regulatory Mechanisms and the Implications in Neurodegeneration. Int J Mol Sci 2021; 22:4165. [PMID: 33920577 PMCID: PMC8072611 DOI: 10.3390/ijms22084165] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleocytoplasmic transport (NCT) across the nuclear envelope is precisely regulated in eukaryotic cells, and it plays critical roles in maintenance of cellular homeostasis. Accumulating evidence has demonstrated that dysregulations of NCT are implicated in aging and age-related neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease (AD), and Huntington disease (HD). This is an emerging research field. The molecular mechanisms underlying impaired NCT and the pathogenesis leading to neurodegeneration are not clear. In this review, we comprehensively described the components of NCT machinery, including nuclear envelope (NE), nuclear pore complex (NPC), importins and exportins, RanGTPase and its regulators, and the regulatory mechanisms of nuclear transport of both protein and transcript cargos. Additionally, we discussed the possible molecular mechanisms of impaired NCT underlying aging and neurodegenerative diseases, such as ALS/FTD, HD, and AD.
Collapse
Affiliation(s)
- Baojin Ding
- Department of Biology, University of Louisiana at Lafayette, 410 East Saint Mary Boulevard, Lafayette, LA 70503, USA;
| | | |
Collapse
|
23
|
Shen Q, Wang YE, Truong M, Mahadevan K, Wu JJ, Zhang H, Li J, Smith HW, Smibert CA, Palazzo AF. RanBP2/Nup358 enhances miRNA activity by sumoylating Argonautes. PLoS Genet 2021; 17:e1009378. [PMID: 33600493 PMCID: PMC7924746 DOI: 10.1371/journal.pgen.1009378] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 03/02/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Mutations in RanBP2 (also known as Nup358), one of the main components of the cytoplasmic filaments of the nuclear pore complex, contribute to the overproduction of acute necrotizing encephalopathy (ANE1)-associated cytokines. Here we report that RanBP2 represses the translation of the interleukin 6 (IL6) mRNA, which encodes a cytokine that is aberrantly up-regulated in ANE1. Our data indicates that soon after its production, the IL6 messenger ribonucleoprotein (mRNP) recruits Argonautes bound to let-7 microRNA. After this mRNP is exported to the cytosol, RanBP2 sumoylates mRNP-associated Argonautes, thereby stabilizing them and enforcing mRNA silencing. Collectively, these results support a model whereby RanBP2 promotes an mRNP remodelling event that is critical for the miRNA-mediated suppression of clinically relevant mRNAs, such as IL6.
Collapse
Affiliation(s)
- Qingtang Shen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yifan E. Wang
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Mathew Truong
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Kohila Mahadevan
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jingze J. Wu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Hui Zhang
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jiawei Li
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Harrison W. Smith
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Craig A. Smibert
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
24
|
Abstract
The passage of mRNAs through the nuclear pores into the cytoplasm is essential in all eukaryotes. For regulation, mRNA export is tightly connected to the full machinery of nuclear mRNA processing, starting at transcription. Export competence of pre-mRNAs gradually increases by both transient and permanent interactions with multiple RNA processing and export factors. mRNA export is best understood in opisthokonts, with limited knowledge in plants and protozoa. Here, I review and compare nuclear mRNA processing and export between opisthokonts and Trypanosoma brucei. The parasite has many unusual features in nuclear mRNA processing, such as polycistronic transcription and trans-splicing. It lacks several nuclear complexes and nuclear-pore-associated proteins that in opisthokonts play major roles in mRNA export. As a consequence, trypanosome mRNA export control is not tight and export can even start co-transcriptionally. Whether trypanosomes regulate mRNA export at all, or whether leakage of immature mRNA to the cytoplasm is kept to a low level by a fast kinetics of mRNA processing remains to be investigated. mRNA export had to be present in the last common ancestor of eukaryotes. Trypanosomes are evolutionary very distant from opisthokonts and a comparison helps understanding the evolution of mRNA export.
Collapse
|
25
|
Into the basket and beyond: the journey of mRNA through the nuclear pore complex. Biochem J 2020; 477:23-44. [DOI: 10.1042/bcj20190132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/28/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023]
Abstract
The genetic information encoded in nuclear mRNA destined to reach the cytoplasm requires the interaction of the mRNA molecule with the nuclear pore complex (NPC) for the process of mRNA export. Numerous proteins have important roles in the transport of mRNA out of the nucleus. The NPC embedded in the nuclear envelope is the port of exit for mRNA and is composed of ∼30 unique proteins, nucleoporins, forming the distinct structures of the nuclear basket, the pore channel and cytoplasmic filaments. Together, they serve as a rather stationary complex engaged in mRNA export, while a variety of soluble protein factors dynamically assemble on the mRNA and mediate the interactions of the mRNA with the NPC. mRNA export factors are recruited to and dissociate from the mRNA at the site of transcription on the gene, during the journey through the nucleoplasm and at the nuclear pore at the final stages of export. In this review, we present the current knowledge derived from biochemical, molecular, structural and imaging studies, to develop a high-resolution picture of the many events that culminate in the successful passage of the mRNA out of the nucleus.
Collapse
|
26
|
Hampoelz B, Schwarz A, Ronchi P, Bragulat-Teixidor H, Tischer C, Gaspar I, Ephrussi A, Schwab Y, Beck M. Nuclear Pores Assemble from Nucleoporin Condensates During Oogenesis. Cell 2019; 179:671-686.e17. [PMID: 31626769 PMCID: PMC6838685 DOI: 10.1016/j.cell.2019.09.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 08/09/2019] [Accepted: 09/20/2019] [Indexed: 02/02/2023]
Abstract
The molecular events that direct nuclear pore complex (NPC) assembly toward nuclear envelopes have been conceptualized in two pathways that occur during mitosis or interphase, respectively. In gametes and embryonic cells, NPCs also occur within stacked cytoplasmic membrane sheets, termed annulate lamellae (AL), which serve as NPC storage for early development. The mechanism of NPC biogenesis at cytoplasmic membranes remains unknown. Here, we show that during Drosophila oogenesis, Nucleoporins condense into different precursor granules that interact and progress into NPCs. Nup358 is a key player that condenses into NPC assembly platforms while its mRNA localizes to their surface in a translation-dependent manner. In concert, Microtubule-dependent transport, the small GTPase Ran and nuclear transport receptors regulate NPC biogenesis in oocytes. We delineate a non-canonical NPC assembly mechanism that relies on Nucleoporin condensates and occurs away from the nucleus under conditions of cell cycle arrest.
Collapse
Affiliation(s)
- Bernhard Hampoelz
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany; Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Andre Schwarz
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany; Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Paolo Ronchi
- European Molecular Biology Laboratory, Electron Microscopy Core Facility, Heidelberg, Germany
| | | | - Christian Tischer
- Center for Bioimage Analysis, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Imre Gaspar
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany
| | - Anne Ephrussi
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany
| | - Yannick Schwab
- European Molecular Biology Laboratory, Electron Microscopy Core Facility, Heidelberg, Germany; European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | - Martin Beck
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany; Max Planck Institute of Biophysics, Frankfurt am Main, Germany; European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany.
| |
Collapse
|
27
|
Zheleva A, Gómez-Orte E, Sáenz-Narciso B, Ezcurra B, Kassahun H, de Toro M, Miranda-Vizuete A, Schnabel R, Nilsen H, Cabello J. Reduction of mRNA export unmasks different tissue sensitivities to low mRNA levels during Caenorhabditis elegans development. PLoS Genet 2019; 15:e1008338. [PMID: 31525188 PMCID: PMC6762213 DOI: 10.1371/journal.pgen.1008338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 09/26/2019] [Accepted: 07/31/2019] [Indexed: 12/25/2022] Open
Abstract
Animal development requires the execution of specific transcriptional programs in different sets of cells to build tissues and functional organs. Transcripts are exported from the nucleus to the cytoplasm where they are translated into proteins that, ultimately, carry out the cellular functions. Here we show that in Caenorhabditis elegans, reduction of mRNA export strongly affects epithelial morphogenesis and germline proliferation while other tissues remain relatively unaffected. Epithelialization and gamete formation demand a large number of transcripts in the cytoplasm for the duration of these processes. In addition, our findings highlight the existence of a regulatory feedback mechanism that activates gene expression in response to low levels of cytoplasmic mRNA. We expand the genetic characterization of nuclear export factor NXF-1 to other members of the mRNA export pathway to model mRNA export and recycling of NXF-1 back to the nucleus. Our model explains how mutations in genes involved in general processes, such as mRNA export, may result in tissue-specific developmental phenotypes.
Collapse
Affiliation(s)
- Angelina Zheleva
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| | - Eva Gómez-Orte
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| | | | - Begoña Ezcurra
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| | - Henok Kassahun
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - María de Toro
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Ralf Schnabel
- Institute of Genetics, Technische Universität Braunschweig, Germany
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Juan Cabello
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| |
Collapse
|
28
|
Ben-Yishay R, Mor A, Shraga A, Ashkenazy-Titelman A, Kinor N, Schwed-Gross A, Jacob A, Kozer N, Kumar P, Garini Y, Shav-Tal Y. Imaging within single NPCs reveals NXF1's role in mRNA export on the cytoplasmic side of the pore. J Cell Biol 2019; 218:2962-2981. [PMID: 31375530 PMCID: PMC6719458 DOI: 10.1083/jcb.201901127] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/21/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
Translocation of mRNA through the nuclear pore complex (NPC) requires interactions with different NPC regions. To determine the interactions that are crucial for effective mRNA export in living cells, we examined mRNA export within individual pores by applying various types of mRNA export blocks that stalled mRNPs at different stages of transition. Focusing on the major mRNA export factor NXF1, we found that initial mRNP binding to the NPC did not require NXF1 in the NPC, whereas release into the cytoplasm did. NXF1 localization in the NPC did not require RNA or RNA binding. Superresolution microscopy showed that NXF1 consistently occupied positions on the cytoplasmic side of the NPC. Interactions with specific nucleoporins were pinpointed using FLIM-FRET for measuring protein-protein interactions inside single NPCs, showing that Dbp5 helicase activity of mRNA release is conserved in yeast and humans. Altogether, we find that specific interactions on the cytoplasmic side of the NPC are fundamental for the directional flow of mRNA export.
Collapse
Affiliation(s)
- Rakefet Ben-Yishay
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Amir Mor
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Amit Shraga
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Asaf Ashkenazy-Titelman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Noa Kinor
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Avital Schwed-Gross
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Avi Jacob
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Noga Kozer
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Pramod Kumar
- Department of Physics, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Yuval Garini
- Department of Physics, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel .,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
29
|
Ferreira PA. The coming-of-age of nucleocytoplasmic transport in motor neuron disease and neurodegeneration. Cell Mol Life Sci 2019; 76:2247-2273. [PMID: 30742233 PMCID: PMC6531325 DOI: 10.1007/s00018-019-03029-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
The nuclear pore is the gatekeeper of nucleocytoplasmic transport and signaling through which a vast flux of information is continuously exchanged between the nuclear and cytoplasmic compartments to maintain cellular homeostasis. A unifying and organizing principle has recently emerged that cements the notion that several forms of amyotrophic lateral sclerosis (ALS), and growing number of other neurodegenerative diseases, co-opt the dysregulation of nucleocytoplasmic transport and that this impairment is a pathogenic driver of neurodegeneration. The understanding of shared pathomechanisms that underpin neurodegenerative diseases with impairments in nucleocytoplasmic transport and how these interface with current concepts of nucleocytoplasmic transport is bound to illuminate this fundamental biological process in a yet more physiological context. Here, I summarize unresolved questions and evidence and extend basic and critical concepts and challenges of nucleocytoplasmic transport and its role in the pathogenesis of neurodegenerative diseases, such as ALS. These principles will help to appreciate the roles of nucleocytoplasmic transport in the pathogenesis of ALS and other neurodegenerative diseases, and generate a framework for new ideas of the susceptibility of motoneurons, and possibly other neurons, to degeneration by dysregulation of nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Paulo A Ferreira
- Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC, 27710, USA.
| |
Collapse
|
30
|
Chen S, Wang R, Zheng D, Zhang H, Chang X, Wang K, Li W, Fan J, Tian B, Cheng H. The mRNA Export Receptor NXF1 Coordinates Transcriptional Dynamics, Alternative Polyadenylation, and mRNA Export. Mol Cell 2019; 74:118-131.e7. [PMID: 30819645 DOI: 10.1016/j.molcel.2019.01.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/06/2018] [Accepted: 01/17/2019] [Indexed: 02/08/2023]
Abstract
Alternative polyadenylation (APA) produces mRNA isoforms with different 3' UTR lengths. Previous studies indicated that 3' end processing and mRNA export are intertwined in gene regulation. Here, we show that mRNA export factors generally facilitate usage of distal cleavage and polyadenylation sites (PASs), leading to long 3' UTR isoform expression. By focusing on the export receptor NXF1, which exhibits the most potent effect on APA in this study, we reveal several gene features that impact NXF1-dependent APA, including 3' UTR size, gene size, and AT content. Surprisingly, NXF1 downregulation results in RNA polymerase II (Pol II) accumulation at the 3' end of genes, correlating with its role in APA regulation. Moreover, NXF1 cooperates with CFI-68 to facilitate nuclear export of long 3' UTR isoform with UGUA motifs. Together, our work reveals important roles of NXF1 in coordinating transcriptional dynamics, 3' end processing, and nuclear export of long 3' UTR transcripts, implicating NXF1 as a nexus of gene regulation.
Collapse
Affiliation(s)
- Suli Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ruijia Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Heng Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xingya Chang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wencheng Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jing Fan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
31
|
Wang K, Wang L, Wang J, Chen S, Shi M, Cheng H. Intronless mRNAs transit through nuclear speckles to gain export competence. J Cell Biol 2018; 217:3912-3929. [PMID: 30194269 PMCID: PMC6219727 DOI: 10.1083/jcb.201801184] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/04/2018] [Accepted: 08/09/2018] [Indexed: 01/12/2023] Open
Abstract
Nuclear speckles (NSs) store splicing factors. Wang et al. show that many naturally intronless mRNAs associate with NSs and that speckle association enhances their export by facilitating TREX recruitment, suggesting that trafficking to NSs could be an important quality control step in intronless mRNA export. Nuclear speckles (NSs) serve as splicing factor storage sites. In this study, we unexpectedly found that many endogenous intronless mRNAs, which do not undergo splicing, associate with NSs. These associations do not require transcription, polyadenylation, or the polyA tail. Rather, exonic splicing enhancers present in intronless mRNAs and their binding partners, SR proteins, promote intronless mRNA localization to NSs. Significantly, speckle targeting of mRNAs promotes the recruitment of the TREX export complex and their TREX-dependent nuclear export. Furthermore, TREX, which accumulates in NSs, is required for releasing intronless mRNAs from NSs, whereas NXF1, which is mainly detected at nuclear pores, is not. Upon NXF1 depletion, the TREX protein UAP56 loses speckle concentration but coaccumulates with intronless mRNAs and polyA RNAs in the nucleoplasm, and these RNAs are trapped in NSs upon UAP56 codepletion. We propose that the export-competent messenger RNP assembly mainly occurs in NSs for intronless mRNAs and that entering NSs serves as a quality control step in mRNA export.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lantian Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianshu Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Suli Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Shi
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
32
|
De La Cruz-Herrera CF, Shire K, Siddiqi UZ, Frappier L. A genome-wide screen of Epstein-Barr virus proteins that modulate host SUMOylation identifies a SUMO E3 ligase conserved in herpesviruses. PLoS Pathog 2018; 14:e1007176. [PMID: 29979787 PMCID: PMC6051671 DOI: 10.1371/journal.ppat.1007176] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/18/2018] [Accepted: 06/22/2018] [Indexed: 12/30/2022] Open
Abstract
Many cellular processes pertinent for viral infection are regulated by the addition of small ubiquitin-like modifiers (SUMO) to key regulatory proteins, making SUMOylation an important mechanism by which viruses can commandeer cellular pathways. Epstein-Barr virus (EBV) is a master at manipulating of cellular processes, which enables life-long infection but can also lead to the induction of a variety of EBV-associated cancers. To identify new mechanisms by which EBV proteins alter cells, we screened a library of 51 EBV proteins for global effects on cellular SUMO1 and SUMO2 modifications (SUMOylation), identifying several proteins not previously known to manipulate this pathway. One EBV protein (BRLF1) globally induced the loss of SUMOylated proteins, in a proteasome-dependent manner, as well as the loss of promeylocytic leukemia nuclear bodies. However, unlike its homologue (Rta) in Kaposi's sarcoma associated herpesvirus, it did not appear to have ubiquitin ligase activity. In addition we identified the EBV SM protein as globally upregulating SUMOylation and showed that this activity was conserved in its homologues in herpes simplex virus 1 (HSV1 UL54/ICP27) and cytomegalovirus (CMV UL69). All three viral homologues were shown to bind SUMO and Ubc9 and to have E3 SUMO ligase activity in a purified system. These are the first SUMO E3 ligases discovered for EBV, HSV1 and CMV. Interestingly the homologues had different specificities for SUMO1 and SUMO2, with SM and UL69 preferentially binding SUMO1 and inducing SUMO1 modifications, and UL54 preferentially binding SUMO2 and inducing SUMO2 modifications. The results provide new insights into the function of this family of conserved herpesvirus proteins, and the conservation of this SUMO E3 ligase activity across diverse herpesviruses suggests the importance of this activity for herpesvirus infections.
Collapse
Affiliation(s)
| | - Kathy Shire
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Umama Z. Siddiqi
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
33
|
Parikh RY, Lin H, Gangaraju VK. A critical role for nucleoporin 358 (Nup358) in transposon silencing and piRNA biogenesis in Drosophila. J Biol Chem 2018; 293:9140-9147. [PMID: 29735528 DOI: 10.1074/jbc.ac118.003264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/27/2018] [Indexed: 01/10/2023] Open
Abstract
Piwi-interacting RNAs (piRNAs) are a class of small noncoding RNAs that bind Piwi proteins to silence transposons and to regulate gene expression. In Drosophila germ cells, the Aubergine (Aub)-Argonaute 3 (Ago3)-dependent ping-pong cycle generates most germline piRNAs. Loading of antisense piRNAs amplified by this cycle enables Piwi to enter the nucleus and silence transposons. Nuclear localization is crucial for Piwi function in transposon silencing, but how this process is regulated remains unknown. It is also not known whether any of the components of the nuclear pore complex (NPC) directly function in the piRNA pathway. Here, we show that nucleoporin 358 (Nup358) and Piwi interact with each other and that a germline knockdown (GLKD) of Nup358 with short hairpin RNA prevents Piwi entry into the nucleus. The Nup358 GLKD also activated transposons, increased genomic instability, and derailed piRNA biogenesis because of a combination of decreased piRNA precursor transcription and a collapse of the ping-pong cycle. Our results point to a critical role for Nup358 in the piRNA pathway, laying the foundation for future studies to fully elucidate the mechanisms by which Nup358 contributes to piRNA biogenesis and transposon silencing.
Collapse
Affiliation(s)
- Rasesh Y Parikh
- From the Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University, New Haven, Connecticut 06510
| | - Vamsi K Gangaraju
- From the Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425 and
| |
Collapse
|
34
|
Nuclear pore complex tethers to the cytoskeleton. Semin Cell Dev Biol 2017; 68:52-58. [PMID: 28676424 DOI: 10.1016/j.semcdb.2017.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022]
Abstract
The nuclear envelope is tethered to the cytoskeleton. The best known attachments of all elements of the cytoskeleton are via the so-called LINC complex. However, the nuclear pore complexes, which mediate the transport of soluble and membrane bound molecules, are also linked to the microtubule network, primarily via motor proteins (dynein and kinesins) which are linked, most importantly, to the cytoplasmic filament protein of the nuclear pore complex, Nup358, by the adaptor BicD2. The evidence for such linkages and possible roles in nuclear migration, cell cycle control, nuclear transport and cell architecture are discussed.
Collapse
|
35
|
He Q, Zhang Y, Zhang X, Xu D, Dong W, Li S, Wu R. Nucleoporin Nup358 facilitates nuclear import of Methoprene-tolerant (Met) in an importin β- and Hsp83-dependent manner. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 81:10-18. [PMID: 27979731 DOI: 10.1016/j.ibmb.2016.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/11/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
The bHLH-PAS transcription factor, Methoprene-tolerant (Met)1, functions as a juvenile hormone (JH) receptor and transduces JH signals by directly binding to E-box like motifs in the regulatory regions of JH response genes. Nuclear localization of Met is crucial for its transcriptional activity. Our previous studies have shown that the chaperone protein Hsp83 facilitates JH-induced Met nuclear import in Drosophila melanogaster. However, the exact molecular mechanisms of Met nuclear transport are not fully elucidated. Using DNA affinity chromatography, we have previously detected binding of the nucleoporin Nup358, in the presence of JH, to the JH response region (JHRR) sequences isolated from the Krüppel-homolog 1 (Kr-h1) promoter. Here, we have demonstrated that Nup358 regulates JH-Hsp83-induced Met nuclear localization. RNAi-mediated knockdown of Nup358 expression in Drosophila fat body perturbs Met nuclear transport during the 3 h after initiation of wandering, when the JH titer is high. The accompanying reduced expression of the transport receptor importin β in Nup358 RNAi flies could be one of the reasons accounting for Met mislocalization. Furthermore, a tetratricopeptide repeat (TPR) domain at the N-terminal end of Nup358 interacts with Hsp83 and is indispensable for Met nuclear localization. Overexpression of the TPR domain in Drosophila fat body prevents Met nuclear localization resulting in a decrease in JHRR-driven reporter activity and Kr-h1 expression. These data show that Nup358 facilitates JH-induced Met nuclear transport in a manner dependent on importin β and Hsp83.
Collapse
Affiliation(s)
- Qianyu He
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuanxi Zhang
- Environmental Monitoring Center Station, DaQing Environmental Protection Agency, Daqing 163316, China
| | - Xu Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - DanDan Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Wentao Dong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Sheng Li
- The Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Sciences and School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
36
|
Heikkinen T, Kämpjärvi K, Keskitalo S, von Nandelstadh P, Liu X, Rantanen V, Pitkänen E, Kinnunen M, Kuusanmäki H, Kontro M, Turunen M, Mäkinen N, Taipale J, Heckman C, Lehti K, Mustjoki S, Varjosalo M, Vahteristo P. Somatic MED12 Nonsense Mutation Escapes mRNA Decay and Reveals a Motif Required for Nuclear Entry. Hum Mutat 2017; 38:269-274. [PMID: 28054750 DOI: 10.1002/humu.23157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/01/2016] [Indexed: 11/06/2022]
Abstract
MED12 is a key component of the transcription-regulating Mediator complex. Specific missense and in-frame insertion/deletion mutations in exons 1 and 2 have been identified in uterine leiomyomas, breast tumors, and chronic lymphocytic leukemia. Here, we characterize the first MED12 5' end nonsense mutation (c.97G>T, p.E33X) identified in acute lymphoblastic leukemia and show that it escapes nonsense-mediated mRNA decay (NMD) by using an alternative translation initiation site. The resulting N-terminally truncated protein is unable to enter the nucleus due to the lack of identified nuclear localization signal (NLS). The absence of NLS prevents the mutant MED12 protein to be recognized by importin-α and subsequent loading into the nuclear pore complex. Due to this mislocalization, all interactions between the MED12 mutant and other Mediator components are lost. Our findings provide new mechanistic insights into the MED12 functions and indicate that somatic nonsense mutations in early exons may avoid NMD.
Collapse
Affiliation(s)
- Tuomas Heikkinen
- Research Programs Unit, Genome-Scale Biology, University of Helsinki, Helsinki, Finland.,Medicum, Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Kati Kämpjärvi
- Research Programs Unit, Genome-Scale Biology, University of Helsinki, Helsinki, Finland.,Medicum, Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pernilla von Nandelstadh
- Research Programs Unit, Genome-Scale Biology, University of Helsinki, Helsinki, Finland.,Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ville Rantanen
- Research Programs Unit, Genome-Scale Biology, University of Helsinki, Helsinki, Finland.,Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | - Esa Pitkänen
- Research Programs Unit, Genome-Scale Biology, University of Helsinki, Helsinki, Finland.,Medicum, Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Matias Kinnunen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Heikki Kuusanmäki
- Hematology Research Unit Helsinki, Department of Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Mika Kontro
- Hematology Research Unit Helsinki, Department of Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Mikko Turunen
- Research Programs Unit, Genome-Scale Biology, University of Helsinki, Helsinki, Finland.,Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Netta Mäkinen
- Research Programs Unit, Genome-Scale Biology, University of Helsinki, Helsinki, Finland.,Medicum, Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Jussi Taipale
- Research Programs Unit, Genome-Scale Biology, University of Helsinki, Helsinki, Finland.,Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Caroline Heckman
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Kaisa Lehti
- Research Programs Unit, Genome-Scale Biology, University of Helsinki, Helsinki, Finland.,Finnish Cancer Institute, Helsinki, Finland.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Department of Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pia Vahteristo
- Research Programs Unit, Genome-Scale Biology, University of Helsinki, Helsinki, Finland.,Medicum, Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
37
|
Ritterhoff T, Das H, Hofhaus G, Schröder RR, Flotho A, Melchior F. The RanBP2/RanGAP1*SUMO1/Ubc9 SUMO E3 ligase is a disassembly machine for Crm1-dependent nuclear export complexes. Nat Commun 2016; 7:11482. [PMID: 27160050 PMCID: PMC4866044 DOI: 10.1038/ncomms11482] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 03/31/2016] [Indexed: 02/07/2023] Open
Abstract
Continuous cycles of nucleocytoplasmic transport require disassembly of transport receptor/Ran-GTP complexes in the cytoplasm. A basic disassembly mechanism in all eukaryotes depends on soluble RanGAP and RanBP1. In vertebrates, a significant fraction of RanGAP1 stably interacts with the nucleoporin RanBP2 at a binding site that is flanked by FG-repeats and Ran-binding domains, and overlaps with RanBP2's SUMO E3 ligase region. Here, we show that the RanBP2/RanGAP1*SUMO1/Ubc9 complex functions as an autonomous disassembly machine with a preference for the export receptor Crm1. We describe three in vitro reconstituted disassembly intermediates, which show binding of a Crm1 export complex via two FG-repeat patches, cargo-release by RanBP2's Ran-binding domains and retention of free Crm1 at RanBP2 after Ran-GTP hydrolysis. Intriguingly, all intermediates are compatible with SUMO E3 ligase activity, suggesting that the RanBP2/RanGAP1*SUMO1/Ubc9 complex may link Crm1- and SUMO-dependent functions.
Collapse
Affiliation(s)
- Tobias Ritterhoff
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg 69120, Germany
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Hrishikesh Das
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg 69120, Germany
- Cryo Electron Microscopy, CellNetworks, BioQuant, Universitätsklinikum Heidelberg, Heidelberg 69120, Germany
| | - Götz Hofhaus
- Cryo Electron Microscopy, CellNetworks, BioQuant, Universitätsklinikum Heidelberg, Heidelberg 69120, Germany
| | - Rasmus R. Schröder
- Cryo Electron Microscopy, CellNetworks, BioQuant, Universitätsklinikum Heidelberg, Heidelberg 69120, Germany
| | - Annette Flotho
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg 69120, Germany
| | - Frauke Melchior
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg 69120, Germany
| |
Collapse
|
38
|
Delaleau M, Borden KLB. Multiple Export Mechanisms for mRNAs. Cells 2015; 4:452-73. [PMID: 26343730 PMCID: PMC4588045 DOI: 10.3390/cells4030452] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 12/20/2022] Open
Abstract
Nuclear mRNA export plays an important role in gene expression. We describe the mechanisms of mRNA export including the importance of mRNP assembly, docking with the nuclear basket of the nuclear pore complex (NPC), transit through the central channel of the NPC and cytoplasmic release. We describe multiple mechanisms of mRNA export including NXF1 and CRM1 mediated pathways. Selective groups of mRNAs can be preferentially transported in order to respond to cellular stimuli. RNAs can be selected based on the presence of specific cis-acting RNA elements and binding of specific adaptor proteins. The role that dysregulation of this process plays in human disease is also discussed.
Collapse
Affiliation(s)
- Mildred Delaleau
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
| | - Katherine L B Borden
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
39
|
Dickmanns A, Kehlenbach RH, Fahrenkrog B. Nuclear Pore Complexes and Nucleocytoplasmic Transport: From Structure to Function to Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 320:171-233. [PMID: 26614874 DOI: 10.1016/bs.ircmb.2015.07.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nucleocytoplasmic transport is an essential cellular activity and occurs via nuclear pore complexes (NPCs) that reside in the double membrane of the nuclear envelope. Significant progress has been made during the past few years in unravelling the ultrastructural organization of NPCs and their constituents, the nucleoporins, by cryo-electron tomography and X-ray crystallography. Mass spectrometry and genomic approaches have provided deeper insight into the specific regulation and fine tuning of individual nuclear transport pathways. Recent research has also focused on the roles nucleoporins play in health and disease, some of which go beyond nucleocytoplasmic transport. Here we review emerging results aimed at understanding NPC architecture and nucleocytoplasmic transport at the atomic level, elucidating the specific function individual nucleoporins play in nuclear trafficking, and finally lighting up the contribution of nucleoporins and nuclear transport receptors in human diseases, such as cancer and certain genetic disorders.
Collapse
Affiliation(s)
- Achim Dickmanns
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University of Göttingen, Göttingen, Germany
| | - Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| |
Collapse
|
40
|
Novel Genes Involved in Controlling Specification of Drosophila FMRFamide Neuropeptide Cells. Genetics 2015; 200:1229-44. [PMID: 26092715 DOI: 10.1534/genetics.115.178483] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/16/2015] [Indexed: 01/28/2023] Open
Abstract
The expression of neuropeptides is often extremely restricted in the nervous system, making them powerful markers for addressing cell specification . In the developing Drosophila ventral nerve cord, only six cells, the Ap4 neurons, of some 10,000 neurons, express the neuropeptide FMRFamide (FMRFa). Each Ap4/FMRFa neuron is the last-born cell generated by an identifiable and well-studied progenitor cell, neuroblast 5-6 (NB5-6T). The restricted expression of FMRFa and the wealth of information regarding its gene regulation and Ap4 neuron specification makes FMRFa a valuable readout for addressing many aspects of neural development, i.e., spatial and temporal patterning cues, cell cycle control, cell specification, axon transport, and retrograde signaling. To this end, we have conducted a forward genetic screen utilizing an Ap4-specific FMRFa-eGFP transgenic reporter as our readout. A total of 9781 EMS-mutated chromosomes were screened for perturbations in FMRFa-eGFP expression, and 611 mutants were identified. Seventy-nine of the strongest mutants were mapped down to the affected gene by deficiency mapping or whole-genome sequencing. We isolated novel alleles for previously known FMRFa regulators, confirming the validity of the screen. In addition, we identified novel essential genes, including several with previously undefined functions in neural development. Our identification of genes affecting most major steps required for successful terminal differentiation of Ap4 neurons provides a comprehensive view of the genetic flow controlling the generation of highly unique neuronal cell types in the developing nervous system.
Collapse
|
41
|
Wickramasinghe VO, Laskey RA. Control of mammalian gene expression by selective mRNA export. Nat Rev Mol Cell Biol 2015; 16:431-42. [PMID: 26081607 DOI: 10.1038/nrm4010] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nuclear export of mRNAs is a crucial step in the regulation of gene expression, linking transcription in the nucleus to translation in the cytoplasm. Although important components of the mRNA export machinery are well characterized, such as transcription-export complexes TREX and TREX-2, recent work has shown that, in some instances, mammalian mRNA export can be selective and can regulate crucial biological processes such as DNA repair, gene expression, maintenance of pluripotency, haematopoiesis, proliferation and cell survival. Such findings show that mRNA export is an unexpected, yet potentially important, mechanism for the control of gene expression and of the mammalian transcriptome.
Collapse
Affiliation(s)
- Vihandha O Wickramasinghe
- Medical Research Centre (MRC) Cancer Unit, Hutchison/MRC Research Centre, Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Ronald A Laskey
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
42
|
RNA Export through the NPC in Eukaryotes. Genes (Basel) 2015; 6:124-49. [PMID: 25802992 PMCID: PMC4377836 DOI: 10.3390/genes6010124] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/27/2015] [Accepted: 03/10/2015] [Indexed: 02/08/2023] Open
Abstract
In eukaryotic cells, RNAs are transcribed in the nucleus and exported to the cytoplasm through the nuclear pore complex. The RNA molecules that are exported from the nucleus into the cytoplasm include messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), micro RNAs (miRNAs), and viral mRNAs. Each RNA is transported by a specific nuclear export receptor. It is believed that most of the mRNAs are exported by Nxf1 (Mex67 in yeast), whereas rRNAs, snRNAs, and a certain subset of mRNAs are exported in a Crm1/Xpo1-dependent manner. tRNAs and miRNAs are exported by Xpot and Xpo5. However, multiple export receptors are involved in the export of some RNAs, such as 60S ribosomal subunit. In addition to these export receptors, some adapter proteins are required to export RNAs. The RNA export system of eukaryotic cells is also used by several types of RNA virus that depend on the machineries of the host cell in the nucleus for replication of their genome, therefore this review describes the RNA export system of two representative viruses. We also discuss the NPC anchoring-dependent mRNA export factors that directly recruit specific genes to the NPC.
Collapse
|
43
|
Sumoylation is Required for the Cytoplasmic Accumulation of a Subset of mRNAs. Genes (Basel) 2014; 5:982-1000. [PMID: 25333844 PMCID: PMC4276922 DOI: 10.3390/genes5040982] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/26/2014] [Accepted: 10/04/2014] [Indexed: 12/17/2022] Open
Abstract
In order to discover novel proteins that promote the nuclear export of newly synthesized mRNAs in mammalian cells, we carried out a limited RNAi screen for proteins required for the proper cytoplasmic distribution of a model intronless mRNA. From this screen we obtained two hits, Ubc9 (SUMO-conjugating E2 enzyme) and GANP (germinal center-associated nuclear protein). Depletion of Ubc9 inhibited the proper cytoplasmic distribution of certain overexpressed intronless mRNAs, while depletion of GANP affected all tested mRNAs. Depletion of Sae1, which is also required for sumoylation, partially inhibited the cytoplasmic distribution of our model mRNA. Interestingly, the block in cytoplasmic accumulation in Ubc9-depleted cells could be overcome if an intron was incorporated into the mRNA. Surprisingly, Ubc9-depleted cells had normal nuclear export of newly synthesized intronless mRNAs, indicating that the observed accumulation of the model mRNA in the nuclei of transfected cells was likely due to some more general perturbation. Indeed, depletion of Ubc9, coupled with the overexpression of the intronless mRNAs, caused the redistribution of the nuclear speckle protein SC35 to cytoplasmic foci. Our results suggest that sumoylation may play a role in the proper assembly of mRNPs and/or the distribution of key RNA binding proteins, and may thus contribute to general protein expression patterns.
Collapse
|
44
|
Bonnet A, Palancade B. Regulation of mRNA trafficking by nuclear pore complexes. Genes (Basel) 2014; 5:767-91. [PMID: 25184662 PMCID: PMC4198930 DOI: 10.3390/genes5030767] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 11/17/2022] Open
Abstract
Over the last two decades, multiple studies have explored the mechanisms governing mRNA export out of the nucleus, a crucial step in eukaryotic gene expression. During transcription and processing, mRNAs are assembled into messenger ribonucleoparticles (mRNPs). mRNPs are then exported through nuclear pore complexes (NPCs), which are large multiprotein assemblies made of several copies of a limited number of nucleoporins. A considerable effort has been put into the dissection of mRNA export through NPCs at both cellular and molecular levels, revealing the conserved contributions of a subset of nucleoporins in this process, from yeast to vertebrates. Several reports have also demonstrated the ability of NPCs to sort out properly-processed mRNPs for entry into the nuclear export pathway. Importantly, changes in mRNA export have been associated with post-translational modifications of nucleoporins or changes in NPC composition, depending on cell cycle progression, development or exposure to stress. How NPC modifications also impact on cellular mRNA export in disease situations, notably upon viral infection, is discussed.
Collapse
Affiliation(s)
- Amandine Bonnet
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France.
| | - Benoit Palancade
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France.
| |
Collapse
|
45
|
Takeda A, Yaseen NR. Nucleoporins and nucleocytoplasmic transport in hematologic malignancies. Semin Cancer Biol 2014; 27:3-10. [PMID: 24657637 DOI: 10.1016/j.semcancer.2014.02.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 11/19/2022]
Abstract
Hematologic malignancies are often associated with chromosomal rearrangements that lead to the expression of chimeric fusion proteins. Rearrangements of the genes encoding two nucleoporins, NUP98 and NUP214, have been implicated in the pathogenesis of several types of hematologic malignancies, particularly acute myeloid leukemia. NUP98 rearrangements result in fusion of an N-terminal portion of NUP98 to one of numerous proteins. These rearrangements often follow treatment with topoisomerase II inhibitors and tend to occur in younger patients. They have been shown to induce leukemia in mice and to enhance proliferation and disrupt differentiation in primary human hematopoietic precursors. NUP214 has only a few fusion partners. DEK-NUP214 is the most common NUP214 fusion in AML; it tends to occur in younger patients and is usually associated with FLT3 internal tandem duplications. The leukemogenic activity of NUP214 fusions is less well characterized. Normal nucleoporins, including NUP98 and NUP214, have important functions in nucleocytoplasmic transport, transcription, and mitosis. These functions and their disruptions by oncogenic nucleoporin fusions are discussed.
Collapse
Affiliation(s)
- Akiko Takeda
- Department of Pathology and Immunology, Washington University in St. Louis, United States.
| | - Nabeel R Yaseen
- Department of Pathology and Immunology, Washington University in St. Louis, United States.
| |
Collapse
|
46
|
Ori A, Banterle N, Iskar M, Andrés-Pons A, Escher C, Khanh Bui H, Sparks L, Solis-Mezarino V, Rinner O, Bork P, Lemke EA, Beck M. Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines. Mol Syst Biol 2013; 9:648. [PMID: 23511206 PMCID: PMC3619942 DOI: 10.1038/msb.2013.4] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/17/2013] [Indexed: 11/09/2022] Open
Abstract
The stoichiometry of the human nuclear pore complex is revealed by targeted mass spectrometry and super-resolution microscopy. The analysis reveals that the composition of the nuclear pore and other nuclear protein complexes is remodeled as a function of the cell type. ![]()
The human NPC has a previously unanticipated stoichiometry that varies across cell types. Primarily functional Nups are dynamic, while the NPC scaffold is static. Stoichiometries of many complexes are fine-tuned toward cell type-specific needs.
To understand the structure and function of large molecular machines, accurate knowledge of their stoichiometry is essential. In this study, we developed an integrated targeted proteomics and super-resolution microscopy approach to determine the absolute stoichiometry of the human nuclear pore complex (NPC), possibly the largest eukaryotic protein complex. We show that the human NPC has a previously unanticipated stoichiometry that varies across cancer cell types, tissues and in disease. Using large-scale proteomics, we provide evidence that more than one third of the known, well-defined nuclear protein complexes display a similar cell type-specific variation of their subunit stoichiometry. Our data point to compositional rearrangement as a widespread mechanism for adapting the functions of molecular machines toward cell type-specific constraints and context-dependent needs, and highlight the need of deeper investigation of such structural variants.
Collapse
Affiliation(s)
- Alessandro Ori
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mahadevan K, Zhang H, Akef A, Cui XA, Gueroussov S, Cenik C, Roth FP, Palazzo AF. RanBP2/Nup358 potentiates the translation of a subset of mRNAs encoding secretory proteins. PLoS Biol 2013; 11:e1001545. [PMID: 23630457 PMCID: PMC3635865 DOI: 10.1371/journal.pbio.1001545] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/07/2013] [Indexed: 12/14/2022] Open
Abstract
After nuclear export, mRNAs encoding secretory proteins interact with RanBP2/Nup358 on the cytoplasmic face of the nuclear pore, a step that is required for the efficient translation of these mRNAs. In higher eukaryotes, most mRNAs that encode secreted or membrane-bound proteins contain elements that promote an alternative mRNA nuclear export (ALREX) pathway. Here we report that ALREX-promoting elements also potentiate translation in the presence of upstream nuclear factors. These RNA elements interact directly with, and likely co-evolved with, the zinc finger repeats of RanBP2/Nup358, which is present on the cytoplasmic face of the nuclear pore. Finally we show that RanBP2/Nup358 is not only required for the stimulation of translation by ALREX-promoting elements, but is also required for the efficient global synthesis of proteins targeted to the endoplasmic reticulum (ER) and likely the mitochondria. Thus upon the completion of export, mRNAs containing ALREX-elements likely interact with RanBP2/Nup358, and this step is required for the efficient translation of these mRNAs in the cytoplasm. ALREX-elements thus act as nucleotide platforms to coordinate various steps of post-transcriptional regulation for the majority of mRNAs that encode secreted proteins. About one-fifth of the protein-coding genes in the human genome code for secreted and/or membrane-bound proteins. In the nucleus these genes are transcribed into messenger RNAs (mRNAs), which are then exported to the cytoplasm. These mRNAs are then transported to the surface of the endoplasmic reticulum where they are translated into proteins destined for the secretory pathway. Most of these mRNAs contain signal sequence coding regions (SSCRs), which code for short hydrophobic polypeptides that target the newly synthesized proteins for translocation across the endoplasmic reticulum membrane. Previously, we found that many SSCRs also act as RNA elements that promote the efficient nuclear export of mRNAs. Here we present evidence that upon the completion of nuclear export, SSCR-containing mRNAs interact with RanBP2/Nup358, a large protein found on the cytoplasmic face of the nuclear pore. This interaction is mediated by direct binding between the SSCR and zinc finger repeats found within RanBP2/Nup358, and is ultimately required for the efficient translation of SSCR-containing mRNAs into secretory and/or membrane-bound proteins. Our work demonstrates that SSCRs act as nucleotide platforms that recruit various factors to the mRNA throughout its life to regulate distinct events, such as nuclear export and translation.
Collapse
Affiliation(s)
- Kohila Mahadevan
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Hui Zhang
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Abdalla Akef
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Xianying A. Cui
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Serge Gueroussov
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Can Cenik
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Frederick P. Roth
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Alexander F. Palazzo
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
48
|
Patil H, Cho KI, Lee J, Yang Y, Orry A, Ferreira PA. Kinesin-1 and mitochondrial motility control by discrimination of structurally equivalent but distinct subdomains in Ran-GTP-binding domains of Ran-binding protein 2. Open Biol 2013; 3:120183. [PMID: 23536549 PMCID: PMC3718338 DOI: 10.1098/rsob.120183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pleckstrin homology (PH) domain is a versatile fold that mediates a variety of protein–protein and protein–phosphatidylinositol lipid interactions. The Ran-binding protein 2 (RanBP2) contains four interspersed Ran GTPase-binding domains (RBDn= 1–4) with close structural homology to the PH domain of Bruton's tyrosine kinase. The RBD2, kinesin-binding domain (KBD) and RBD3 comprise a tripartite domain (R2KR3) of RanBP2 that causes the unfolding, microtubule binding and biphasic activation of kinesin-1, a crucial anterograde motor of mitochondrial motility. However, the interplay between Ran GTPase and R2KR3 of RanBP2 in kinesin-1 activation and mitochondrial motility is elusive. We use structure–function, biochemical, kinetic and cell-based assays with time-lapse live-cell microscopy of over 260 000 mitochondrial-motility-related events to find mutually exclusive subdomains in RBD2 and RBD3 towards Ran GTPase binding, kinesin-1 activation and mitochondrial motility regulation. The RBD2 and RBD3 exhibit Ran-GTP-independent, subdomain and stereochemical-dependent discrimination on the biphasic kinetics of kinesin-1 activation or regulation of mitochondrial motility. Further, KBD alone and R2KR3 stimulate and suppress, respectively, multiple biophysical parameters of mitochondrial motility. The regulation of the bidirectional transport of mitochondria by either KBD or R2KR3 is highly coordinated, because their kinetic effects are accompanied always by changes in mitochondrial motile events of either transport polarity. These studies uncover novel roles in Ran GTPase-independent subdomains of RBD2 and RBD3, and KBD of RanBP2, that confer antagonizing and multi-modal mechanisms of kinesin-1 activation and regulation of mitochondrial motility. These findings open new venues towards the pharmacological harnessing of cooperative and competitive mechanisms regulating kinesins, RanBP2 or mitochondrial motility in disparate human disorders.
Collapse
Affiliation(s)
- Hemangi Patil
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
49
|
Quaresma AJC, Sievert R, Nickerson JA. Regulation of mRNA export by the PI3 kinase/AKT signal transduction pathway. Mol Biol Cell 2013; 24:1208-21. [PMID: 23427269 PMCID: PMC3623641 DOI: 10.1091/mbc.e12-06-0450] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
After inhibition of the PI3 kinase/AKT pathway, the binding of mRNA export proteins in nuclear complexes is reduced. The nuclear export of bulk poly(A) RNA and of a subset of specific mRNAs is increased after AKT inhibition. The results show that mRNA export can be regulated by the PI3 kinase/AKT pathway. UAP56, ALY/REF, and NXF1 are mRNA export factors that sequentially bind at the 5′ end of a nuclear mRNA but are also reported to associate with the exon junction complex (EJC). To screen for signal transduction pathways regulating mRNA export complex assembly, we used fluorescence recovery after photobleaching to measure the binding of mRNA export and EJC core proteins in nuclear complexes. The fraction of UAP56, ALY/REF, and NXF1 tightly bound in complexes was reduced by drug inhibition of the phosphatidylinositide 3-kinase (PI3 kinase)/AKT pathway, as was the tightly bound fraction of the core EJC proteins eIF4A3, MAGOH, and Y14. Inhibition of the mTOR mTORC1 pathway decreased the tight binding of MAGOH. Inhibition of the PI3 kinase/AKT pathway increased the export of poly(A) RNA and of a subset of candidate mRNAs. A similar effect of PI3 kinase/AKT inhibition was observed for mRNAs from both intron-containing and intronless histone genes. However, the nuclear export of mRNAs coding for proteins targeted to the endoplasmic reticulum or to mitochondria was not affected by the PI3 kinase/AKT pathway. These results show that the active PI3 kinase/AKT pathway can regulate mRNA export and promote the nuclear retention of some mRNAs.
Collapse
|
50
|
Kassube SA, Stuwe T, Lin DH, Antonuk CD, Napetschnig J, Blobel G, Hoelz A. Crystal structure of the N-terminal domain of Nup358/RanBP2. J Mol Biol 2012; 423:752-65. [PMID: 22959972 DOI: 10.1016/j.jmb.2012.08.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 08/24/2012] [Accepted: 08/28/2012] [Indexed: 11/18/2022]
Abstract
Key steps in mRNA export are the nuclear assembly of messenger ribonucleoprotein particles (mRNPs), the translocation of mRNPs through the nuclear pore complex (NPC), and the mRNP remodeling events at the cytoplasmic side of the NPC. Nup358/RanBP2 is a constituent of the cytoplasmic filaments of the NPC specific to higher eukaryotes and provides a multitude of binding sites for the nucleocytoplasmic transport machinery. Here, we present the crystal structure of the Nup358 N-terminal domain (NTD) at 0.95Å resolution. The structure reveals an α-helical domain that harbors three central tetratricopeptide repeats (TPRs), flanked on each side by an additional solvating amphipathic α helix. Overall, the NTD adopts an unusual extended conformation that lacks the characteristic peptide-binding groove observed in canonical TPR domains. Strikingly, the vast majority of the NTD surface exhibits an evolutionarily conserved, positive electrostatic potential, and we demonstrate that the NTD possesses the capability to bind single-stranded RNA in solution. Together, these data suggest that the NTD contributes to mRNP remodeling events at the cytoplasmic face of the NPC.
Collapse
Affiliation(s)
- Susanne A Kassube
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|