1
|
Chu X, Zhao J, Shen Y, Feng Q, Zhou C, Ma L, Zhou Y. HACD2 Promotes Pancreatic Cancer Progression by Enhancing PKM2 Dissociation From PRKN in a Dehydratase-Independent Manner. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407942. [PMID: 39836601 PMCID: PMC11904967 DOI: 10.1002/advs.202407942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/05/2025] [Indexed: 01/23/2025]
Abstract
3-Hydroxyacyl-CoA dehydratase 2 (HACD2), an obesity-related gene involved in the elongation of long-chain fatty acids, is highly expressed in pancreatic cancer (PC) and is associated with patient prognosis. Interestingly, the study reveals that HACD2 mediated the proliferation of PC cells in a dehydratase-independent manner, affecting the downstream glycolytic pathway. Mechanistically, HACD2 promotes PC cells proliferation by binding to E3 ubiquitin-protein ligase parkin (PRKN) and enhancing pyruvate kinase PKM (PKM2) dissociation from PRKN, resulting in reduced ubiquitination of PKM2 and increased dimerization of PKM2, which subsequently promote c-Myc expression and tumor growth. Moreover, HACD2 overexpression-induced PC growth is mitigated by knockdown of PKM2 or overexpression of PRKN. Furthermore, the weight loss drug orlistat, which potentially binds to HACD2, disrupted the interaction between HACD2 and PRKN and further increased the ubiquitination of PKM2. Therefore, this study elucidates the mechanism by which the obesity-related gene HACD2 regulates PC cells proliferation through a noncanonical signaling pathway, which may provide a potential new target and strategy for the individualized clinical treatment of PC.
Collapse
Affiliation(s)
- Xuanning Chu
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsu211198China
| | - Jinyu Zhao
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsu211198China
| | - Yuting Shen
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsu211198China
| | - Qi Feng
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsu211198China
| | - Changlin Zhou
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsu211198China
| | - Lingman Ma
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsu211198China
| | - Yiran Zhou
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiaotong University School of Medicine197 Ruijin Er RoadShanghai200025China
- Research Institute of Pancreatic DiseaseShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
2
|
Naik A, Lattab B, Qasem H, Decock J. Cancer testis antigens: Emerging therapeutic targets leveraging genomic instability in cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200768. [PMID: 38596293 PMCID: PMC10876628 DOI: 10.1016/j.omton.2024.200768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Cancer care has witnessed remarkable progress in recent decades, with a wide array of targeted therapies and immune-based interventions being added to the traditional treatment options such as surgery, chemotherapy, and radiotherapy. However, despite these advancements, the challenge of achieving high tumor specificity while minimizing adverse side effects continues to dictate the benefit-risk balance of cancer therapy, guiding clinical decision making. As such, the targeting of cancer testis antigens (CTAs) offers exciting new opportunities for therapeutic intervention of cancer since they display highly tumor specific expression patterns, natural immunogenicity and play pivotal roles in various biological processes that are critical for tumor cellular fitness. In this review, we delve deeper into how CTAs contribute to the regulation and maintenance of genomic integrity in cancer, and how these mechanisms can be exploited to specifically target and eradicate tumor cells. We review the current clinical trials targeting aforementioned CTAs, highlight promising pre-clinical data and discuss current challenges and future perspectives for future development of CTA-based strategies that exploit tumor genomic instability.
Collapse
Affiliation(s)
- Adviti Naik
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Boucif Lattab
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Hanan Qasem
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences (CHLS), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Julie Decock
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences (CHLS), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
3
|
Zhou Q, Liu T, Qian W, Ji J, Cai Q, Jin Y, Jiang J, Zhang J. HNF4A-BAP31-VDAC1 axis synchronously regulates cell proliferation and ferroptosis in gastric cancer. Cell Death Dis 2023; 14:356. [PMID: 37296105 PMCID: PMC10256786 DOI: 10.1038/s41419-023-05868-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/12/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
B cell receptor associated protein 31 (BAP31) is closely associated with tumor progression, while the role and mechanism of BAP31 in gastric cancer (GC) remains unknown. This study explored that BAP31 was upregulated in GC tissues and high expression indicated poor survival of GC patients. BAP31 knockdown inhibited cell growth and induced G1/S arrest. Moreover, BAP31 attenuation increased the lipid peroxidation level of the membrane and facilitated cellular ferroptosis. Mechanistically, BAP31 regulated cell proliferation and ferroptosis by directly binding to VDAC1 and affected VDAC1 oligomerization and polyubiquitination. HNF4A was bound to BAP31 at the promoter and increased its transcription. Furthermore, knockdown of BAP31 inclined to make GC cells vulnerable to 5-FU and ferroptosis inducer, erastin, in vivo and in vitro. Our work suggests that BAP31 may serve as prognostic factor for gastric cancer and act as potential therapeutic strategy for gastric cancer.
Collapse
Affiliation(s)
- Qingqing Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tengfei Liu
- Department of Oncology, Ren ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wenjing Qian
- Operating Room, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Ji
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qu Cai
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yangbing Jin
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
4
|
Khadhraoui N, Prola A, Vandestienne A, Blondelle J, Guillaud L, Courtin G, Bodak M, Prost B, Huet H, Wintrebert M, Péchoux C, Solgadi A, Relaix F, Tiret L, Pilot-Storck F. Hacd2 deficiency in mice leads to an early and lethal mitochondrial disease. Mol Metab 2023; 69:101677. [PMID: 36693621 PMCID: PMC9986742 DOI: 10.1016/j.molmet.2023.101677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Mitochondria fuel most animal cells with ATP, ensuring proper energetic metabolism of organs. Early and extensive mitochondrial dysfunction often leads to severe disorders through multiorgan failure. Hacd2 gene encodes an enzyme involved in very long chain fatty acid (C ≥ 18) synthesis, yet its roles in vivo remain poorly understood. Since mitochondria function relies on specific properties of their membranes conferred by a particular phospholipid composition, we investigated if Hacd2 gene participates to mitochondrial integrity. METHODS We generated two mouse models, the first one leading to a partial knockdown of Hacd2 expression and the second one, to a complete knockout of Hacd2 expression. We performed an in-depth analysis of the associated phenotypes, from whole organism to molecular scale. RESULTS Thanks to these models, we show that Hacd2 displays an early and broad expression, and that its deficiency in mice is lethal. Specifically, partial knockdown of Hacd2 expression leads to death within one to four weeks after birth, from a sudden growth arrest followed by cachexia and lethargy. The total knockout of Hacd2 is even more severe, characterized by embryonic lethality around E9.5 following developmental arrest and pronounced cardiovascular malformations. In-depth mechanistic analysis revealed that Hacd2 deficiency causes altered mitochondrial efficiency and ultrastructure, as well as accumulation of oxidized cardiolipin. CONCLUSIONS Altogether, these data indicate that the Hacd2 gene is essential for energetic metabolism during embryonic and postnatal development, acting through the control of proper mitochondrial organization and function.
Collapse
Affiliation(s)
- Nahed Khadhraoui
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Alexandre Prola
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Aymeline Vandestienne
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Jordan Blondelle
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Laurent Guillaud
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Guillaume Courtin
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Maxime Bodak
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Bastien Prost
- UMS IPSIT, Université Paris-Saclay, Châtenay-Malabry, F-92296, France
| | - Hélène Huet
- Biopôle, École nationale vétérinaire d'Alfort, Maisons-Alfort, F-94700, France
| | - Mélody Wintrebert
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Christine Péchoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, F-78350, Jouy-en-Josas, France
| | - Audrey Solgadi
- UMS IPSIT, Université Paris-Saclay, Châtenay-Malabry, F-92296, France
| | - Frédéric Relaix
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Laurent Tiret
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France.
| | - Fanny Pilot-Storck
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France.
| |
Collapse
|
5
|
Li GX, Jiang XH, Zang JN, Zhu BZ, Jia CC, Niu KW, Liu X, Jiang R, Wang B. B-cell receptor associated protein 31 deficiency decreases the expression of adhesion molecule CD11b/CD18 and PSGL-1 in neutrophils to ameliorate acute lung injury. Int J Biochem Cell Biol 2022; 152:106299. [PMID: 36210579 PMCID: PMC9484107 DOI: 10.1016/j.biocel.2022.106299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/31/2022] [Accepted: 09/18/2022] [Indexed: 11/23/2022]
Abstract
Acute lung injury (ALI) and its more severe condition acute respiratory distress syndrome (ARDS) are critical life-threatening disorders characterized by an excessive influx of neutrophils into the alveolar space. Neutrophil infiltration is a multi-step process involving the sequential engagement of adhesion molecules. The adhesion molecule CD11b/CD18 acts as an important role in the recruitment of neutrophils to lung tissues in the ALI model. B-cell receptor associated protein 31 (BAP31), an endoplasmic reticulum transmembrane protein, has been reported to regulate the cellular anterograde transport of CD11b/CD18 in human neutrophils. To explore how BAP31 regulates CD11b/CD18 in mouse neutrophils, we constructed myeloid-specific BAP31 knockdown mice in this study. Biological investigations indicated that BAP31 deficiency could significantly alleviated lung injury, as evidenced by the improved histopathological morphology, reduced pulmonary wet/dry weight ratio, inhibited myeloperoxidase level and decreased neutrophil counts in the bronchoalveolar lavage fluid. Further studies clarified that BAP31 deficiency obviously down-regulated the expression of CD11b/CD18 and P-selectin glycoprotein ligand-1 (PSGL-1) by deactivating the nuclear factor kappa B (NF-κB) signaling pathway. Collectively, our results revealed that BAP31 depletion exerted a protective effect on ALI, which was possibly dependent on the attenuation of neutrophil adhesion and infiltration by blocking the expression of adhesion molecules CD11b/CD18 and PSGL-1. These findings implied the potential of BAP31 as an appealing protein to mediate the occurrence of ALI.
Collapse
Affiliation(s)
- Guo-Xun Li
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Xiao-Han Jiang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Jing-Nan Zang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Ben-Zhi Zhu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Cong-Cong Jia
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Kun-Wei Niu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| | - Xia Liu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Rui Jiang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Bing Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
6
|
Quistgaard EM. BAP31: Physiological functions and roles in disease. Biochimie 2021; 186:105-129. [PMID: 33930507 DOI: 10.1016/j.biochi.2021.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
Abstract
B-cell receptor-associated protein 31 (BAP31 or BCAP31) is a ubiquitously expressed transmembrane protein found mainly in the endoplasmic reticulum (ER), including in mitochondria-associated membranes (MAMs). It acts as a broad-specificity membrane protein chaperone and quality control factor, which can promote different fates for its clients, including ER retention, ER export, ER-associated degradation (ERAD), or evasion of degradation, and it also acts as a MAM tetherer and regulatory protein. It is involved in several cellular processes - it supports ER and mitochondrial homeostasis, promotes proliferation and migration, plays several roles in metabolism and the immune system, and regulates autophagy and apoptosis. Full-length BAP31 can be anti-apoptotic, but can also mediate activation of caspase-8, and itself be cleaved by caspase-8 into p20-BAP31, which promotes apoptosis by mobilizing ER calcium stores at MAMs. BAP31 loss-of-function mutations is the cause of 'deafness, dystonia, and central hypomyelination' (DDCH) syndrome, characterized by severe neurological symptoms and early death. BAP31 is furthermore implicated in a growing number of cancers and other diseases, and several viruses have been found to target it to promote their survival or life cycle progression. The purpose of this review is to provide an overview and examination of the basic properties, functions, mechanisms, and roles in disease of BAP31.
Collapse
Affiliation(s)
- Esben M Quistgaard
- Department of Molecular Biology and Genetics - DANDRITE, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
7
|
A Multi-Mineral Intervention to Modulate Colonic Mucosal Protein Profile: Results from a 90-Day Trial in Human Subjects. Nutrients 2021; 13:nu13030939. [PMID: 33799486 PMCID: PMC8002192 DOI: 10.3390/nu13030939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/25/2022] Open
Abstract
The overall goal of this study was to determine whether Aquamin®, a calcium-, magnesium-, trace element-rich, red algae-derived natural product, would alter the expression of proteins involved in growth-regulation and differentiation in colon. Thirty healthy human subjects (at risk for colorectal cancer) were enrolled in a three-arm, 90-day interventional trial. Aquamin® was compared to calcium alone and placebo. Before and after the interventional period, colonic biopsies were obtained. Biopsies were evaluated by immunohistology for expression of Ki67 (proliferation marker) and for CK20 and p21 (differentiation markers). Tandem mass tag-mass spectrometry-based detection was used to assess levels of multiple proteins. As compared to placebo or calcium, Aquamin® reduced the level of Ki67 expression and slightly increased CK20 expression. Increased p21 expression was observed with both calcium and Aquamin®. In proteomic screen, Aquamin® treatment resulted in many more proteins being upregulated (including pro-apoptotic, cytokeratins, cell–cell adhesion molecules, and components of the basement membrane) or downregulated (proliferation and nucleic acid metabolism) than placebo. Calcium alone also altered the expression of many of the same proteins but not to the same extent as Aquamin®. We conclude that daily Aquamin® ingestion alters protein expression profile in the colon that could be beneficial to colonic health.
Collapse
|
8
|
Prola A, Blondelle J, Vandestienne A, Piquereau J, Denis RGP, Guyot S, Chauvin H, Mourier A, Maurer M, Henry C, Khadhraoui N, Gallerne C, Molinié T, Courtin G, Guillaud L, Gressette M, Solgadi A, Dumont F, Castel J, Ternacle J, Demarquoy J, Malgoyre A, Koulmann N, Derumeaux G, Giraud MF, Joubert F, Veksler V, Luquet S, Relaix F, Tiret L, Pilot-Storck F. Cardiolipin content controls mitochondrial coupling and energetic efficiency in muscle. SCIENCE ADVANCES 2021; 7:7/1/eabd6322. [PMID: 33523852 PMCID: PMC7775760 DOI: 10.1126/sciadv.abd6322] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/04/2020] [Indexed: 05/11/2023]
Abstract
Unbalanced energy partitioning participates in the rise of obesity, a major public health concern in many countries. Increasing basal energy expenditure has been proposed as a strategy to fight obesity yet raises efficiency and safety concerns. Here, we show that mice deficient for a muscle-specific enzyme of very-long-chain fatty acid synthesis display increased basal energy expenditure and protection against high-fat diet-induced obesity. Mechanistically, muscle-specific modulation of the very-long-chain fatty acid pathway was associated with a reduced content of the inner mitochondrial membrane phospholipid cardiolipin and a blunted coupling efficiency between the respiratory chain and adenosine 5'-triphosphate (ATP) synthase, which was restored by cardiolipin enrichment. Our study reveals that selective increase of lipid oxidative capacities in skeletal muscle, through the cardiolipin-dependent lowering of mitochondrial ATP production, provides an effective option against obesity at the whole-body level.
Collapse
Affiliation(s)
- Alexandre Prola
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Jordan Blondelle
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Aymeline Vandestienne
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Jérôme Piquereau
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | | | - Stéphane Guyot
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | - Hadrien Chauvin
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Arnaud Mourier
- Université Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Marie Maurer
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Céline Henry
- PAPPSO, Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350 Jouy-en-Josas, France
| | - Nahed Khadhraoui
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Cindy Gallerne
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Thibaut Molinié
- Université Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Guillaume Courtin
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Laurent Guillaud
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Mélanie Gressette
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Audrey Solgadi
- UMS IPSIT, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Florent Dumont
- UMS IPSIT, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Julien Castel
- Université de Paris, BFA, UMR 8251, CNRS, F-75014 Paris, France
| | - Julien Ternacle
- Université Paris-Est Créteil, INSERM, IMRB, Team Derumeaux, F-94010 Creteil, France
| | - Jean Demarquoy
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | - Alexandra Malgoyre
- Département Environnements Opérationnels, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Institut de Recherche Biomédicale des Armées, F-91220 Brétigny-Sur-Orge, France
- LBEPS, Université Evry, IRBA, Université Paris-Saclay, F-91025 Evry, France
| | - Nathalie Koulmann
- Département Environnements Opérationnels, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Institut de Recherche Biomédicale des Armées, F-91220 Brétigny-Sur-Orge, France
- LBEPS, Université Evry, IRBA, Université Paris-Saclay, F-91025 Evry, France
- École du Val de Grâce, Place Alphonse Laveran, F-75005 Paris, France
| | - Geneviève Derumeaux
- Université Paris-Est Créteil, INSERM, IMRB, Team Derumeaux, F-94010 Creteil, France
| | | | - Frédéric Joubert
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, UMR 8237, Paris, F-75005, France
| | - Vladimir Veksler
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Serge Luquet
- Université de Paris, BFA, UMR 8251, CNRS, F-75014 Paris, France
| | - Frédéric Relaix
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France.
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Laurent Tiret
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France.
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Fanny Pilot-Storck
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France.
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| |
Collapse
|
9
|
Jia CC, Li G, Jiang R, Liu X, Yuan Q, Le W, Hou Y, Wang B. B-Cell Receptor-Associated Protein 31 Negatively Regulates the Expression of Monoamine Oxidase A Via R1. Front Mol Biosci 2020; 7:64. [PMID: 32426368 PMCID: PMC7212379 DOI: 10.3389/fmolb.2020.00064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
B-cell receptor-associated protein 31 (Bap31) is a three trans-membrane protein of the endoplasmic reticulum (ER). Patients who have loss of function of Bap31 suffered from X-linked syndrome, such as motor and intellectual disabilities, dystonia, and sensorineural deafness. However, the underlying mechanism of Bap31 on X-linked syndrome remains unclear. Here, we found that a total of 21 proteins (9 up-regulated and 12 down-regulated proteins) related with X-linked syndrome were screened from shRNA-Bap31 transfected cells with the isobaric tags for relative and absolute quantification (iTRAQ) technique. One gene with the greatest change trend, monoamine oxidase A (MAOA), was identified. MAOA expression was up-regulated by Bap31 knockdown. However, Bap31 did not affect the ubiquitination degradation of MAOA protein. Of note, Bap31 selectively regulated the expression of cell division cycle associated 7-like (R1/RAM2/CDCA7L/JPO2, a transcriptional repressor of MAOA) and the binding activity of R1 with MAOA promoter, thereby affecting MAOA expression. This study demonstrates the molecular mechanisms of Bap31 in MAOA via R1 and supports the potential function of Bap31 on X-linked syndrome.
Collapse
Affiliation(s)
- Cong-Cong Jia
- College of Life and Health Sciences, Northeastern University, Shenyang, China.,Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Guoxun Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Rui Jiang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xia Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qing Yuan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Weidong Le
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University, Shenyang, China.,Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Bing Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
10
|
Camagna M, Grundmann A, Bär C, Koschmieder J, Beyer P, Welsch R. Enzyme Fusion Removes Competition for Geranylgeranyl Diphosphate in Carotenogenesis. PLANT PHYSIOLOGY 2019; 179:1013-1027. [PMID: 30309967 PMCID: PMC6393812 DOI: 10.1104/pp.18.01026] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/01/2018] [Indexed: 05/21/2023]
Abstract
Geranylgeranyl diphosphate (GGPP), a prenyl diphosphate synthesized by GGPP synthase (GGPS), represents a metabolic hub for the synthesis of key isoprenoids, such as chlorophylls, tocopherols, phylloquinone, gibberellins, and carotenoids. Protein-protein interactions and the amphipathic nature of GGPP suggest metabolite channeling and/or competition for GGPP among enzymes that function in independent branches of the isoprenoid pathway. To investigate substrate conversion efficiency between the plastid-localized GGPS isoform GGPS11 and phytoene synthase (PSY), the first enzyme of the carotenoid pathway, we used recombinant enzymes and determined their in vitro properties. Efficient phytoene biosynthesis via PSY strictly depended on simultaneous GGPP supply via GGPS11. In contrast, PSY could not access freely diffusible GGPP or time-displaced GGPP supply via GGPS11, presumably due to liposomal sequestration. To optimize phytoene biosynthesis, we applied a synthetic biology approach and constructed a chimeric GGPS11-PSY metabolon (PYGG). PYGG converted GGPP to phytoene almost quantitatively in vitro and did not show the GGPP leakage typical of the individual enzymes. PYGG expression in Arabidopsis resulted in orange-colored cotyledons, which are not observed if PSY or GGPS11 are overexpressed individually. This suggests insufficient GGPP substrate availability for chlorophyll biosynthesis achieved through GGPP flux redirection to carotenogenesis. Similarly, carotenoid levels in PYGG-expressing callus exceeded that in PSY- or GGPS11-overexpression lines. The PYGG chimeric protein may assist in provitamin A biofortification of edible plant parts. Moreover, other GGPS fusions may be used to redirect metabolic flux into the synthesis of other isoprenoids of nutritional and industrial interest.
Collapse
Affiliation(s)
- Maurizio Camagna
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | | | - Cornelia Bär
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | | | - Peter Beyer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Welsch
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
11
|
Welsch R, Zhou X, Koschmieder J, Schlossarek T, Yuan H, Sun T, Li L. Characterization of Cauliflower OR Mutant Variants. FRONTIERS IN PLANT SCIENCE 2019; 10:1716. [PMID: 32038686 PMCID: PMC6985574 DOI: 10.3389/fpls.2019.01716] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/05/2019] [Indexed: 05/19/2023]
Abstract
Cauliflower Orange (Or) mutant is characterized by high level of β-carotene in its curd. Or mutation affects the OR protein that was shown to be involved in the posttranslational control of phytoene synthase (PSY), a major rate-limiting enzyme of carotenoid biosynthesis, and in maintaining PSY proteostasis with the plastid Clp protease system. A transposon integration into the cauliflower wild-type Or gene (BoOR-wt) results in the formation of three differently spliced transcripts. One of them is characterized by insertion (BoOR-Ins), while the other two have exon-skipping deletions (BoOR-Del and BoOR-LD). We investigated the properties of individual BoOR variants and examined their effects on carotenoid accumulation. Using the yeast split-ubiquitin system, we showed that all variants were able to form OR dimers except BoOR-LD. The deletion in BoOR-LD eliminated the first of two adjacent transmembrane domains and was predicted to result in a misplacement of the C-terminal zinc finger domain to the opposite side of membrane, thus preventing OR dimerization. As interaction with PSY is mediated by the N-terminus of BoOR, which remains unaffected after splicing, all BoOR variants including BoOR-LD maintained interactions with PSY. Expression of individual BoOR mutant variants in Arabidopsis revealed that their protein stability varied greatly. While expression of BoOR-Del and BoOR-Ins resulted in increased BoOR protein levels as BoOR-wt, minimal amounts of BoOR-LD protein accumulated. Carotenoid accumulation showed correlated changes in calli of Arabidopsis expressing these variants. Furthermore, we found that OR also functions in E. coli to increase the proportion of native, enzymatically active PSY from plants upon co-expression, but not of bacterial phytoene synthase CrtB. Taken together, these results suggest that OR dimerization is required for OR stability in planta and that the simultaneous presence of PSY interaction-domains in both OR and PSY proteins is required for the holdase function of OR. The more pronounced effect of simultaneous expression of all BoOR variants in cauliflower Or mutant compared with individual overexpression on carotenoid accumulation suggests an enhanced activity with possible formation of various BoOR heterodimers.
Collapse
Affiliation(s)
- Ralf Welsch
- Faculty of Biology II, University of Freiburg, Freiburg, Germany
- *Correspondence: Ralf Welsch, ; Li Li,
| | - Xiangjun Zhou
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | | | - Tim Schlossarek
- Faculty of Biology II, University of Freiburg, Freiburg, Germany
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- *Correspondence: Ralf Welsch, ; Li Li,
| |
Collapse
|
12
|
Wang T, Chen J, Hou Y, Yu Y, Wang B. BAP31 deficiency contributes to the formation of amyloid‐β plaques in Alzheimer's disease by reducing the stability of RTN3. FASEB J 2018; 33:4936-4946. [DOI: 10.1096/fj.201801702r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tianyi Wang
- College of Life Science and HealthNortheastern University Shenyang China
| | - Jing Chen
- College of Life Science and HealthNortheastern University Shenyang China
| | - Yue Hou
- College of Life Science and HealthNortheastern University Shenyang China
| | - Yang Yu
- College of Life Science and HealthNortheastern University Shenyang China
| | - Bing Wang
- College of Life Science and HealthNortheastern University Shenyang China
| |
Collapse
|
13
|
Regulators of Long-Term Memory Revealed by Mushroom Body-Specific Gene Expression Profiling in Drosophila melanogaster. Genetics 2018; 209:1167-1181. [PMID: 29925565 PMCID: PMC6063240 DOI: 10.1534/genetics.118.301106] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/13/2018] [Indexed: 11/20/2022] Open
Abstract
Memory formation is achieved by genetically tightly controlled molecular pathways that result in a change of synaptic strength and synapse organization. While for short-term memory traces, rapidly acting biochemical pathways are in place, the formation of long-lasting memories requires changes in the transcriptional program of a cell. Although many genes involved in learning and memory formation have been identified, little is known about the genetic mechanisms required for changing the transcriptional program during different phases of long-term memory (LTM) formation. With Drosophila melanogaster as a model system, we profiled transcriptomic changes in the mushroom body—a memory center in the fly brain—at distinct time intervals during appetitive olfactory LTM formation using the targeted DamID technique. We describe the gene expression profiles during these phases and tested 33 selected candidate genes for deficits in LTM formation using RNAi knockdown. We identified 10 genes that enhance or decrease memory when knocked-down in the mushroom body. For vajk-1 and hacd1—the two strongest hits—we gained further support for their crucial role in appetitive learning and forgetting. These findings show that profiling gene expression changes in specific cell-types harboring memory traces provides a powerful entry point to identify new genes involved in learning and memory. The presented transcriptomic data may further be used as resource to study genes acting at different memory phases.
Collapse
|
14
|
Sawai M, Uchida Y, Ohno Y, Miyamoto M, Nishioka C, Itohara S, Sassa T, Kihara A. The 3-hydroxyacyl-CoA dehydratases HACD1 and HACD2 exhibit functional redundancy and are active in a wide range of fatty acid elongation pathways. J Biol Chem 2017; 292:15538-15551. [PMID: 28784662 DOI: 10.1074/jbc.m117.803171] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/19/2017] [Indexed: 12/31/2022] Open
Abstract
Differences among fatty acids (FAs) in chain length and number of double bonds create lipid diversity. FA elongation proceeds via a four-step reaction cycle, in which the 3-hydroxyacyl-CoA dehydratases (HACDs) HACD1-4 catalyze the third step. However, the contribution of each HACD to 3-hydroxyacyl-CoA dehydratase activity in certain tissues or in different FA elongation pathways remains unclear. HACD1 is specifically expressed in muscles and is a myopathy-causative gene. Here, we generated Hacd1 KO mice and observed that these mice had reduced body and skeletal muscle weights. In skeletal muscle, HACD1 mRNA expression was by far the highest among the HACDs However, we observed only an ∼40% reduction in HACD activity and no changes in membrane lipid composition in Hacd1-KO skeletal muscle, suggesting that some HACD activities are redundant. Moreover, when expressed in yeast, both HACD1 and HACD2 participated in saturated and monounsaturated FA elongation pathways. Disruption of HACD2 in the haploid human cell line HAP1 significantly reduced FA elongation activities toward both saturated and unsaturated FAs, and HACD1 HACD2 double disruption resulted in a further reduction. Overexpressed HACD3 exhibited weak activity in saturated and monounsaturated FA elongation pathways, and no activity was detected for HACD4. We therefore conclude that HACD1 and HACD2 exhibit redundant activities in a wide range of FA elongation pathways, including those for saturated to polyunsaturated FAs, with HACD2 being the major 3-hydroxyacyl-CoA dehydratase. Our findings are important for furthering the understanding of the molecular mechanisms in FA elongation and diversity.
Collapse
Affiliation(s)
- Megumi Sawai
- From the Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812 and
| | - Yukiko Uchida
- From the Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812 and
| | - Yusuke Ohno
- From the Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812 and
| | - Masatoshi Miyamoto
- From the Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812 and
| | - Chieko Nishioka
- the RIKEN Brain Science Institute, 2-1 Hirosawa, Wako 351-0198, Japan
| | | | - Takayuki Sassa
- From the Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812 and
| | - Akio Kihara
- From the Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812 and
| |
Collapse
|
15
|
Dickerson MT, Vierra NC, Milian SC, Dadi PK, Jacobson DA. Osteopontin activates the diabetes-associated potassium channel TALK-1 in pancreatic β-cells. PLoS One 2017; 12:e0175069. [PMID: 28403169 PMCID: PMC5389796 DOI: 10.1371/journal.pone.0175069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/20/2017] [Indexed: 12/17/2022] Open
Abstract
Glucose-stimulated insulin secretion (GSIS) relies on β-cell Ca2+ influx, which is modulated by the two-pore-domain K+ (K2P) channel, TALK-1. A gain-of-function polymorphism in KCNK16, the gene encoding TALK-1, increases risk for developing type-2 diabetes. While TALK-1 serves an important role in modulating GSIS, the regulatory mechanism(s) that control β-cell TALK-1 channels are unknown. Therefore, we employed a membrane-specific yeast two-hybrid (MYTH) assay to identify TALK-1-interacting proteins in human islets, which will assist in determining signaling modalities that modulate TALK-1 function. Twenty-one proteins from a human islet cDNA library interacted with TALK-1. Some of these interactions increased TALK-1 activity, including intracellular osteopontin (iOPN). Intracellular OPN is highly expressed in β-cells and is upregulated under pre-diabetic conditions to help maintain normal β-cell function; however, the functional role of iOPN in β-cells is poorly understood. We found that iOPN colocalized with TALK-1 in pancreatic sections and coimmunoprecipitated with human islet TALK-1 channels. As human β-cells express two K+ channel-forming variants of TALK-1, regulation of these TALK-1 variants by iOPN was assessed. At physiological voltages iOPN activated TALK-1 transcript variant 3 channels but not TALK-1 transcript variant 2 channels. Activation of TALK-1 channels by iOPN also hyperpolarized resting membrane potential (Vm) in HEK293 cells and in primary mouse β-cells. Intracellular OPN was also knocked down in β-cells to test its effect on β-cell TALK-1 channel activity. Reducing β-cell iOPN significantly decreased TALK-1 K+ currents and increased glucose-stimulated Ca2+ influx. Importantly, iOPN did not affect the function of other K2P channels or alter Ca2+ influx into TALK-1 deficient β-cells. These results reveal the first protein interactions with the TALK-1 channel and found that an interaction with iOPN increased β-cell TALK-1 K+ currents. The TALK-1/iOPN complex caused Vm hyperpolarization and reduced β-cell glucose-stimulated Ca2+ influx, which is predicted to inhibit GSIS.
Collapse
Affiliation(s)
- Matthew T. Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Nicholas C. Vierra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Sarah C. Milian
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Prasanna K. Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
16
|
Niu K, Xu J, Cao Y, Hou Y, Shan M, Wang Y, Xu Y, Sun M, Wang B. BAP31 is involved in T cell activation through TCR signal pathways. Sci Rep 2017; 7:44809. [PMID: 28333124 PMCID: PMC5363085 DOI: 10.1038/srep44809] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/15/2017] [Indexed: 12/15/2022] Open
Abstract
BAP31 is a ubiquitously expressed endoplasmic reticulum (ER) membrane protein. The functions of BAP31 in the immune system have not been investigated due to the lack of animal models. Therefore we created a BAP31 conditional knockdown mouse by performing a knockdown of BAP31 in the thymus. In doing so, we demonstrate that the maturation of T cells is normal but the number of T cells is less in the thymus of the knockout mouse. In addition, the spleen and lymph nodes of peripheral immune organs contained a lesser proportion of the mature T cells in the thymus specific BAP31 knockout mice. The BAP31 knockout T cells decreased the proliferation activated by TCR signal pathways. Further studies clarified that BAP31 affects the phosphorylation levels of both Zap70/Lck/Lat of the upstream members and Akt/GSK/Jnk/Erk of the downstream members of TCR signal pathways. Furthermore, BAP31 can regulate the expression of some markers such as CD3/TCRα/TCRβ and some cytokines like IL-2/IFN-γ/IL-6/TNF-α which are important for T cell activation. Taken together, these results demonstrate that BAP31 may play an important role in T cell activation by regulating TCR signaling.
Collapse
Affiliation(s)
- Kunwei Niu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Jialin Xu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Yuhua Cao
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Yue Hou
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Mu Shan
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Yanqing Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Yang Xu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Mingyi Sun
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Bing Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| |
Collapse
|
17
|
Nickel N, Cleven A, Enders V, Lisak D, Schneider L, Methner A. Androgen-inducible gene 1 increases the ER Ca2+ content and cell death susceptibility against oxidative stress. Gene 2016; 586:62-8. [DOI: 10.1016/j.gene.2016.03.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 11/27/2022]
|
18
|
Kihara A. Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides. Prog Lipid Res 2016; 63:50-69. [PMID: 27107674 DOI: 10.1016/j.plipres.2016.04.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/08/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
Abstract
Ceramide (Cer) is a structural backbone of sphingolipids and is composed of a long-chain base and a fatty acid. Existence of a variety of Cer species, which differ in chain-length, hydroxylation status, and/or double bond number of either of their hydrophobic chains, has been reported. Ceramide is produced by Cer synthases. Mammals have six Cer synthases (CERS1-6), each of which exhibits characteristic substrate specificity toward acyl-CoAs with different chain-lengths. Knockout mice for each Cer synthase show corresponding, isozyme-specific phenotypes, revealing the functional differences of Cers with different chain-lengths. Cer diversity is especially prominent in epidermis. Changes in Cer levels, composition, and chain-lengths are associated with atopic dermatitis. Acylceramide (acyl-Cer) specifically exists in epidermis and plays an essential role in skin permeability barrier formation. Accordingly, defects in acyl-Cer synthesis cause the cutaneous disorder ichthyosis with accompanying severe skin barrier defects. Although the molecular mechanism by which acyl-Cer is generated was long unclear, most genes involved in its synthesis have been identified recently. In Cer degradation pathways, the long-chain base moiety of Cer is converted to acyl-CoA, which is then incorporated mainly into glycerophospholipids. This pathway generates the lipid mediator sphingosine 1-phosphate. This review will focus on recent advances in our understanding of the synthesis and degradation pathways, physiological functions, and pathology of Cers/acyl-Cers.
Collapse
Affiliation(s)
- Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-choume, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
19
|
Li Y, Singhal R, Taylor IW, McMinn PH, Chua XY, Cline K, Fernandez DE. The Sec2 translocase of the chloroplast inner envelope contains a unique and dedicated SECE2 component. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:647-658. [PMID: 26406904 DOI: 10.1111/tpj.13028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/28/2015] [Accepted: 09/03/2015] [Indexed: 06/05/2023]
Abstract
Biogenesis of chloroplasts involves a series of protein trafficking events. Nuclear-encoded proteins are imported into the organelle, and then trafficked to various chloroplast locations by systems that are directly homologous to bacterial systems. Although the thylakoid-based systems have been studied extensively, much less is known about the systems that reside and function in the inner envelope membrane. One such system, the Sec2 system, is homologous to both the thylakoid-based Sec1 system and bacterial Sec systems, and may mediate both integration and translocation across the inner envelope. At a minimum, this system is expected to include three components, but only two, SCY2 and SECA2, have been identified in Arabidopsis. Bioinformatics and protein modeling were used to identify the protein encoded by At4g38490 as a candidate for the missing component (SECE2). Cellular localization, biochemistry, protein interaction assays in yeast, and co-immunoprecipitation experiments were used to establish that this protein is an integral membrane protein of the inner envelope, and specifically interacts with the SCY2 component in vivo. Sequence analyses indicated that SECE2 proteins are found in a variety of plants, and differ from the thylakoid SECE1 proteins in a stroma-exposed helical domain, which may contribute to their specificity. Finally, a genetic analysis indicated that SECE2 plays an essential role in plant growth and development.
Collapse
Affiliation(s)
- Yubing Li
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Rajneesh Singhal
- Department of Botany, University of Wisconsin at Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Isaiah W Taylor
- Department of Botany, University of Wisconsin at Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Patrick H McMinn
- Department of Botany, University of Wisconsin at Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Xien Yu Chua
- Department of Botany, University of Wisconsin at Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Kenneth Cline
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Donna E Fernandez
- Department of Botany, University of Wisconsin at Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| |
Collapse
|
20
|
Interaction between human BAP31 and respiratory syncytial virus small hydrophobic (SH) protein. Virology 2015; 482:105-10. [DOI: 10.1016/j.virol.2015.03.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/23/2014] [Accepted: 03/17/2015] [Indexed: 11/23/2022]
|
21
|
Chepelev N, Chepelev L, Alamgir M, Golshani A. Large-Scale Protein-Protein Interaction Detection Approaches: Past, Present and Future. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2008.10817505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
22
|
Kharitidi D, Manteghi S, Pause A. Pseudophosphatases: methods of analysis and physiological functions. Methods 2013; 65:207-18. [PMID: 24064037 DOI: 10.1016/j.ymeth.2013.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/20/2013] [Accepted: 09/11/2013] [Indexed: 01/27/2023] Open
Abstract
Protein tyrosine phosphatases (PTPs) are key enzymes in the regulation of cellular homeostasis and signaling pathways. Strikingly, not all PTPs bear enzymatic activity. A considerable fraction of PTPs are enzymatically inactive and are known as pseudophosphatases. Despite the lack of activity they execute pivotal roles in development, cell biology and human disease. The present review is focused on the methods used to identify pseudophosphatases, their targets, and physiological roles. We present a strategy for detailed enzymatic analysis of inactive PTPs, regulation of inactive PTP domains and identification of binding partners. Furthermore, we provide a detailed overview of human pseudophosphatases and discuss their regulation of cellular processes and functions in human pathologies.
Collapse
Affiliation(s)
- Dmitri Kharitidi
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, 3655, Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.
| | - Sanaz Manteghi
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, 3655, Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.
| | - Arnim Pause
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, 3655, Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
23
|
Muhammad E, Reish O, Ohno Y, Scheetz T, Deluca A, Searby C, Regev M, Benyamini L, Fellig Y, Kihara A, Sheffield VC, Parvari R. Congenital myopathy is caused by mutation of HACD1. Hum Mol Genet 2013; 22:5229-36. [PMID: 23933735 PMCID: PMC3842179 DOI: 10.1093/hmg/ddt380] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Congenital myopathies are heterogeneous inherited diseases of muscle characterized by a range of distinctive histologic abnormalities. We have studied a consanguineous family with congenital myopathy. Genome-wide linkage analysis and whole-exome sequencing identified a homozygous non-sense mutation in 3-hydroxyacyl-CoA dehydratase 1 (HACD1) in affected individuals. The mutation results in non-sense mediated decay of the HACD1 mRNA to 31% of control levels in patient muscle and completely abrogates the enzymatic activity of dehydration of 3-hydroxyacyl-CoA, the third step in the elongation of very long-chain fatty acids (VLCFAs). We describe clinical findings correlated with a deleterious mutation in a gene not previously known to be associated with congenital myopathy in humans. We suggest that the mutation in the HACD1 gene causes a reduction in the synthesis of VLCFAs, which are components of membrane lipids and participants in physiological processes, leading to congenital myopathy. These data indicate that HACD1 is necessary for muscle function.
Collapse
Affiliation(s)
- Emad Muhammad
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Prox J, Willenbrock M, Weber S, Lehmann T, Schmidt-Arras D, Schwanbeck R, Saftig P, Schwake M. Tetraspanin15 regulates cellular trafficking and activity of the ectodomain sheddase ADAM10. Cell Mol Life Sci 2012; 69:2919-32. [PMID: 22446748 PMCID: PMC11114675 DOI: 10.1007/s00018-012-0960-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/18/2012] [Accepted: 03/08/2012] [Indexed: 10/28/2022]
Abstract
A disintegrin and metalloproteinase10 (ADAM10) has been implicated as a major sheddase responsible for the ectodomain shedding of a number of important surface molecules including the amyloid precursor protein and cadherins. Despite a well-documented role of ADAM10 in health and disease, little is known about the regulation of this protease. To address this issue we conducted a split-ubiquitin yeast two-hybrid screen to identify membrane proteins that interact with ADAM10. The yeast experiments and co-immunoprecipitation studies in mammalian cell lines revealed tetraspanin15 (TSPAN15) to specifically associate with ADAM10. Overexpression of TSPAN15 or RNAi-mediated knockdown of TSPAN15 led to significant changes in the maturation process and surface expression of ADAM10. Expression of an endoplasmic reticulum (ER) retention mutant of TSPAN15 demonstrated an interaction with ADAM10 already in the ER. Pulse-chase experiments confirmed that TSPAN15 accelerates the ER-exit of the ADAM10-TSPAN15 complex and stabilizes the active form of ADAM10 at the cell surface. Importantly, TSPAN15 also showed the ability to mediate the regulation of ADAM10 protease activity exemplified by an increased shedding of N-cadherin and the amyloid precursor protein. In conclusion, our data show that TSPAN15 is a central modulator of ADAM10-mediated ectodomain shedding. Therapeutic manipulation of its expression levels may be an additional approach to specifically regulate the activity of the amyloid precursor protein alpha-secretase ADAM10.
Collapse
Affiliation(s)
- Johannes Prox
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Michael Willenbrock
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Silvio Weber
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Tobias Lehmann
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Dirk Schmidt-Arras
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Ralf Schwanbeck
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Michael Schwake
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| |
Collapse
|
25
|
Bcl2 at the endoplasmic reticulum protects against a Bax/Bak-independent paraptosis-like cell death pathway initiated via p20Bap31. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:335-47. [DOI: 10.1016/j.bbamcr.2011.11.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 01/20/2023]
|
26
|
Dünkler A, Müller J, Johnsson N. Detecting protein-protein interactions with the Split-Ubiquitin sensor. Methods Mol Biol 2012; 786:115-130. [PMID: 21938623 DOI: 10.1007/978-1-61779-292-2_7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A detailed understanding of a cellular process requires the knowledge about the interactions between its protein constituents. The Split-Ubiquitin technique allows to monitor and detect interactions of very diverse proteins, including transcription factors and membrane-associated proteins. The technique is based on unique features of ubiquitin, the enzymes of the ubiquitin pathway, and the reconstitution of a native-like ubiquitin from its N- and C-terminal fragments. Using Ura3p as a reporter for the reconstitution of the ubiquitin fragments, methods are presented that enable to screen in yeast for interaction partners of a given protein with either a randomly generated expression library or a defined but more limited array of protein fusions.
Collapse
Affiliation(s)
- Alexander Dünkler
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | | | | |
Collapse
|
27
|
Bertuzzi M, Bignell EM. Sensory perception in fungal pathogens: Applications of the split-ubiquitin Membrane Yeast Two-Hybrid (MYTH) technique. FUNGAL BIOL REV 2011. [DOI: 10.1016/j.fbr.2011.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
28
|
Protein tyrosine phosphatase-like A regulates myoblast proliferation and differentiation through MyoG and the cell cycling signaling pathway. Mol Cell Biol 2011; 32:297-308. [PMID: 22106411 DOI: 10.1128/mcb.05484-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Protein tyrosine phosphatase-like A (PTPLa) has been implicated in skeletal myogenesis and cardiogenesis. Mutations in PTPLa correlated with arrhythmogenic right ventricular dysplasia in humans and congenital centronuclear myopathy with severe hypotonia in dogs. The molecular mechanisms of PTPLa in myogenesis are unknown. In this report, we demonstrate that PTPLa is required for myoblast growth and differentiation. The cells lacking PTPLa remained immature and failed to differentiate into mature myotubes. The repressed MyoG expression was responsible for the impaired myoblast differentiation. Meanwhile, impeded cell growth, with an obvious S-phase arrest and compromised G(2)/M transition, was observed in PTPLa-deficient myoblasts. Further study demonstrated that the upregulation of cyclin D1 and cyclin E2 complexes, along with a compromised G(2)/M transition due to the decreased CDK1 (cyclin-dependent kinase 1) activity and upregulated p21, contributed to the mutant cell S-phase arrest and eventually led to the retarded cell growth. Finally, the transcriptional regulation of the PTPLa gene was explored. We identified PTPLa as a new target gene of the serum response factor (SRF). Skeletal- and cardiac-muscle-specific SRF knockouts resulted in significant decreases in PTPLa expression, suggesting a conserved transcriptional regulation of the PTPLa gene in mice.
Collapse
|
29
|
Ricci G, Astolfi A, Remondini D, Cipriani F, Formica S, Dondi A, Pession A. Pooled genome-wide analysis to identify novel risk loci for pediatric allergic asthma. PLoS One 2011; 6:e16912. [PMID: 21359210 PMCID: PMC3040188 DOI: 10.1371/journal.pone.0016912] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/03/2011] [Indexed: 11/22/2022] Open
Abstract
Background Genome-wide association studies of pooled DNA samples were shown to be a valuable tool to identify candidate SNPs associated to a phenotype. No such study was up to now applied to childhood allergic asthma, even if the very high complexity of asthma genetics is an appropriate field to explore the potential of pooled GWAS approach. Methodology/Principal Findings We performed a pooled GWAS and individual genotyping in 269 children with allergic respiratory diseases comparing allergic children with and without asthma. We used a modular approach to identify the most significant loci associated with asthma by combining silhouette statistics and physical distance method with cluster-adapted thresholding. We found 97% concordance between pooled GWAS and individual genotyping, with 36 out of 37 top-scoring SNPs significant at individual genotyping level. The most significant SNP is located inside the coding sequence of C5, an already identified asthma susceptibility gene, while the other loci regulate functions that are relevant to bronchial physiopathology, as immune- or inflammation-mediated mechanisms and airway smooth muscle contraction. Integration with gene expression data showed that almost half of the putative susceptibility genes are differentially expressed in experimental asthma mouse models. Conclusion/Significance Combined silhouette statistics and cluster-adapted physical distance threshold analysis of pooled GWAS data is an efficient method to identify candidate SNP associated to asthma development in an allergic pediatric population.
Collapse
Affiliation(s)
- Giampaolo Ricci
- Pediatric Unit, Department of Gynecologic, Obstetric and Pediatric Sciences, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
30
|
Wilson JD, Barlowe C. Yet1p and Yet3p, the yeast homologs of BAP29 and BAP31, interact with the endoplasmic reticulum translocation apparatus and are required for inositol prototrophy. J Biol Chem 2010; 285:18252-61. [PMID: 20378542 DOI: 10.1074/jbc.m109.080382] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian B-cell receptor-associated proteins of 29 and 31 kDa (BAP29 and BAP31) are conserved integral membrane proteins that have reported roles in endoplasmic reticulum (ER) quality control, ER export of secretory cargo, and programmed cell death. In this study we investigated the yeast homologs of BAP29 and BAP31, known as Yet1p and Yet3p, to gain insight on cellular function. We found that Yet1p forms a complex with Yet3p (Yet complex) and that complex assembly was important for subunit stability and proper ER localization. The Yet complex was not efficiently packaged into ER-derived COPII vesicles and therefore does not appear to act as an ER export receptor. Instead, a fraction of the Yet complex was detected in association with the ER translocation apparatus (Sec complex). Specific mutations in the Sec complex or Yet complex influenced these interactions. Moreover, associations between the Yet complex and Sec complex were increased by ER stress and diminished when protein translocation substrates were depleted. Surprisingly, yet1Delta and yet3Delta mutant strains displayed inositol starvation-related growth defects. In accord with the biochemical data, these growth defects were exacerbated by a combination of certain mutations in the Sec complex with yet1Delta or yet3Delta mutations. We propose a model for the Yet-Sec complex interaction that places Yet1p and Yet3p at the translocation pore to manage biogenesis of specific transmembrane secretory proteins.
Collapse
Affiliation(s)
- Joshua D Wilson
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
31
|
Jedrychowski MP, Gartner CA, Gygi SP, Zhou L, Herz J, Kandror KV, Pilch PF. Proteomic analysis of GLUT4 storage vesicles reveals LRP1 to be an important vesicle component and target of insulin signaling. J Biol Chem 2009; 285:104-14. [PMID: 19864425 DOI: 10.1074/jbc.m109.040428] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Insulin stimulates the translocation of intracellular GLUT4 to the plasma membrane where it functions in adipose and muscle tissue to clear glucose from circulation. The pathway and regulation of GLUT4 trafficking are complicated and incompletely understood and are likely to be contingent upon the various proteins other than GLUT4 that comprise and interact with GLUT4-containing vesicles. Moreover, not all GLUT4 intracellular pools are insulin-responsive as some represent precursor compartments, thus posing a biochemical challenge to the purification and characterization of their content. To address these issues, we immunodepleted precursor GLUT4-rich vesicles and then immunopurified GLUT4 storage vesicle (GSVs) from primary rat adipocytes and subjected them to semi-quantitative and quantitative proteomic analysis. The purified vesicles translocate to the cell surface almost completely in response to insulin, the expected behavior for bona fide GSVs. In total, over 100 proteins were identified, about 50 of which are novel in this experimental context. LRP1 (low density lipoprotein receptor-related protein 1) was identified as a major constituent of GSVs, and we show it interacts with the lumenal domains of GLUT4 and other GSV constituents. Its cytoplasmic tail interacts with the insulin-signaling pathway target, AS160 (Akt substrate of 160 kDa). Depletion of LRP1 from 3T3-L1 adipocytes reduces GLUT4 expression and correspondingly results in decreased insulin-stimulated 2-[(3)H]deoxyglucose uptake. Furthermore, adipose-specific LRP1 knock-out mice also exhibit decreased GLUT4 expression. These findings suggest LRP1 is an important component of GSVs, and its expression is needed for the formation of fully functional GSVs.
Collapse
Affiliation(s)
- Mark P Jedrychowski
- Department of Biochemistry, Boston University Medical School, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Novel Immunohistochemical Monoclonal Antibody Against Rat B Cell Receptor Associated Protein 31 (BAP31). Hybridoma (Larchmt) 2009; 28:363-7. [DOI: 10.1089/hyb.2009.0027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Brückner A, Polge C, Lentze N, Auerbach D, Schlattner U. Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 2009; 10:2763-2788. [PMID: 19582228 PMCID: PMC2705515 DOI: 10.3390/ijms10062763] [Citation(s) in RCA: 365] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 02/06/2023] Open
Abstract
A key property of complex biological systems is the presence of interaction networks formed by its different components, primarily proteins. These are crucial for all levels of cellular function, including architecture, metabolism and signalling, as well as the availability of cellular energy. Very stable, but also rather transient and dynamic protein-protein interactions generate new system properties at the level of multiprotein complexes, cellular compartments or the entire cell. Thus, interactomics is expected to largely contribute to emerging fields like systems biology or systems bioenergetics. The more recent technological development of high-throughput methods for interactomics research will dramatically increase our knowledge of protein interaction networks. The two most frequently used methods are yeast two-hybrid (Y2H) screening, a well established genetic in vivo approach, and affinity purification of complexes followed by mass spectrometry analysis, an emerging biochemical in vitro technique. So far, a majority of published interactions have been detected using an Y2H screen. However, with the massive application of this method, also some limitations have become apparent. This review provides an overview on available yeast two-hybrid methods, in particular focusing on more recent approaches. These allow detection of protein interactions in their native environment, as e.g. in the cytosol or bound to a membrane, by using cytosolic signalling cascades or split protein constructs. Strengths and weaknesses of these genetic methods are discussed and some guidelines for verification of detected protein-protein interactions are provided.
Collapse
Affiliation(s)
- Anna Brückner
- INSERM U884, Université Joseph Fourier, Laboratoire de Bioénergétique Fondamentale et Appliquée, 2280 Rue de la Piscine, BP 53, Grenoble Cedex 9, France
- Author to whom correspondence should be addressed; E-Mails:
(A.B.);
(U.S.); Tel. +33-476-514-671, 635-399; Fax: +33-476-514-218
| | - Cécile Polge
- INSERM U884, Université Joseph Fourier, Laboratoire de Bioénergétique Fondamentale et Appliquée, 2280 Rue de la Piscine, BP 53, Grenoble Cedex 9, France
| | - Nicolas Lentze
- Dualsystems Biotech AG / Grabenstrasse 11a, 8952 Schlieren, Switzerland
| | - Daniel Auerbach
- Dualsystems Biotech AG / Grabenstrasse 11a, 8952 Schlieren, Switzerland
| | - Uwe Schlattner
- INSERM U884, Université Joseph Fourier, Laboratoire de Bioénergétique Fondamentale et Appliquée, 2280 Rue de la Piscine, BP 53, Grenoble Cedex 9, France
- Author to whom correspondence should be addressed; E-Mails:
(A.B.);
(U.S.); Tel. +33-476-514-671, 635-399; Fax: +33-476-514-218
| |
Collapse
|
34
|
Song C, Wang F, Xu Z, Hu J, Tao H, Yang A, Yang K, Jin B. Monoclonal Antibodies Against Human BAP31 for Immunocytochemistry. Hybridoma (Larchmt) 2009; 28:177-81. [DOI: 10.1089/hyb.2008.0099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chaojun Song
- Department of Immunology, The Fourth Military Medical University, Xi'an, P.R. China
| | - Fuli Wang
- Department of Urology, Xijing Hospital, Xi'an, P.R. China
| | - Zhuwei Xu
- Department of Immunology, The Fourth Military Medical University, Xi'an, P.R. China
| | - Jintao Hu
- Department of Immunology, The Fourth Military Medical University, Xi'an, P.R. China
| | - Haiqiang Tao
- Department of Immunology, The Fourth Military Medical University, Xi'an, P.R. China
| | - Angang Yang
- Department of Immunology, The Fourth Military Medical University, Xi'an, P.R. China
| | - Kun Yang
- Department of Immunology, The Fourth Military Medical University, Xi'an, P.R. China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, Xi'an, P.R. China
| |
Collapse
|
35
|
Kim S, Lee D. Mining metastasis related genes by primary-secondary tumor comparisons from large-scale databases. BMC Bioinformatics 2009; 10 Suppl 3:S2. [PMID: 19344478 PMCID: PMC2665050 DOI: 10.1186/1471-2105-10-s3-s2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background Metastasis is the most dangerous step in cancer progression and causes more than 90% of cancer death. Although many researchers have been working on biological features and characteristics of metastasis, most of its genetic level processes remain uncertain. Some studies succeeded in elucidating metastasis related genes and pathways, followed by predicting prognosis of cancer patients, but there still is a question whether the result genes or pathways contain enough information and noise features have been controlled appropriately. Methods We set four tumor type classes composed of various tumor characteristics such as tissue origin, cellular environment, and metastatic ability. We conducted a set of comparisons among the four tumor classes followed by searching for genes that are consistently up or down regulated through the whole comparisons. Results We identified four sets of genes that are consistently differently expressed in the comparisons, each of which denotes one of four cellular characteristics respectively – liver tissue, colon tissue, liver viability and metastasis characteristics. We found that our candidate genes for tissue specificity are consistent with the TiGER database. And we also found that the metastasis candidate genes from our method were more consistent with the known biological background and independent from other noise features. Conclusion We suggested a new method for identifying metastasis related genes from a large-scale database. The proposed method attempts to minimize the influences from other factors except metastatic ability including tissue originality and tissue viability by confining the result of metastasis unrelated test combinations.
Collapse
Affiliation(s)
- Sangwoo Kim
- Department of Bio and Brain Engineering, KAIST, 373-1 Guseong-Dong, Yu-seong Gu, Daejeon, 305-701, Republic of Korea.
| | | |
Collapse
|
36
|
Müller J, Johnsson N. Split-ubiquitin and the split-protein sensors: chessman for the endgame. Chembiochem 2009; 9:2029-38. [PMID: 18677736 DOI: 10.1002/cbic.200800190] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Judith Müller
- Institute of Medical Biochemistry, Cellular Biochemistry, ZMBE, University of Münster, 48149 Münster, Germany
| | | |
Collapse
|
37
|
Ikeda M, Kanao Y, Yamanaka M, Sakuraba H, Mizutani Y, Igarashi Y, Kihara A. Characterization of four mammalian 3-hydroxyacyl-CoA dehydratases involved in very long-chain fatty acid synthesis. FEBS Lett 2008; 582:2435-40. [DOI: 10.1016/j.febslet.2008.06.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/23/2008] [Accepted: 06/03/2008] [Indexed: 10/22/2022]
|
38
|
Abstract
Interactive proteomics addresses the physical associations among proteins and establishes global, disease-, and pathway-specific protein interaction networks. The inherent chemical and structural diversity of proteins, their different expression levels, and their distinct subcellular localizations pose unique challenges for the exploration of these networks, necessitating the use of a variety of innovative and ingenious approaches. Consequently, recent years have seen exciting developments in protein interaction mapping and the establishment of very large interaction networks, especially in model organisms. In the near future, attention will shift to the establishment of interaction networks in humans and their application in drug discovery and understanding of diseases. In this review, we present an impressive toolbox of different technologies that we expect to be crucial for interactive proteomics in the coming years.
Collapse
|
39
|
Wang B, Heath-Engel H, Zhang D, Nguyen N, Thomas DY, Hanrahan JW, Shore GC. BAP31 Interacts with Sec61 Translocons and Promotes Retrotranslocation of CFTRΔF508 via the Derlin-1 Complex. Cell 2008; 133:1080-92. [DOI: 10.1016/j.cell.2008.04.042] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 07/26/2007] [Accepted: 04/10/2008] [Indexed: 10/22/2022]
|
40
|
Grefen C, Lalonde S, Obrdlik P. Split-ubiquitin system for identifying protein-protein interactions in membrane and full-length proteins. ACTA ACUST UNITED AC 2008; Chapter 5:Unit 5.27. [PMID: 18428659 DOI: 10.1002/0471142301.ns0527s41] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Protein-protein interactions play a fundamental role in the regulation of almost all cellular processes. Thus, the identification of interacting proteins can help to elucidate their function. The mating-based split-ubiquitin system (mbSUS) uses yeast as a test organism to identify potential interactions between full-length membrane proteins or between a full-length membrane protein and a soluble protein. The mbSUS can also be used to provide further evidence for protein-protein interactions detected with other methods and to map the interaction domains of selected proteins. The mbSUS is optimized for systematic screening approaches employing a mating-based approach, as typically used to determine protein interactions on a genomic scale. Construction of bait and prey fusions is simplified by adapting two different cloning procedures: (i) in vivo cloning in yeast, and (ii) Gateway cloning in E. coli. Protocols for small-scale interaction tests, as well as systematic approaches using sorted bait and prey arrays, are described.
Collapse
|
41
|
Abstract
Far western blotting (WB) was derived from the standard WB method to detect protein-protein interactions in vitro. In Far WB, proteins in a cell lysate containing prey proteins are firstly separated by SDS or native PAGE, and transferred to a membrane, as in a standard WB. The proteins in the membrane are then denatured and renatured. The membrane is then blocked and probed, usually with purified bait protein(s). The bait proteins are detected on spots in the membrane where a prey protein is located if the bait proteins and the prey protein together form a complex. Compared with other biochemical binding assays, Far WB allows prey proteins to be endogenously expressed without purification. Unlike most methods using cell lysates (e.g., co-immunoprecipitation (co-IP)) or living cells (e.g., fluorescent resonance energy transfer (FRET)), Far WB determines whether two proteins bind to each other directly. Furthermore, in cases where they bind to each other indirectly, Far WB allows the examination of candidate protein(s) that form a complex between them. Typically, 2-3 d are required to carry out the experiment.
Collapse
|
42
|
Kihara A, Sakuraba H, Ikeda M, Denpoh A, Igarashi Y. Membrane topology and essential amino acid residues of Phs1, a 3-hydroxyacyl-CoA dehydratase involved in very long-chain fatty acid elongation. J Biol Chem 2008; 283:11199-209. [PMID: 18272525 DOI: 10.1074/jbc.m708993200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Yeast Phs1 is the 3-hydroxyacyl-CoA dehydratase that catalyzes the third reaction of the four-step cycle in the elongation of very long-chain fatty acids (VLCFAs). In yeast, the hydrophobic backbone of sphingolipids, ceramide, consists of a long-chain base and an amide-linked C26 VLCFA. Therefore, defects in VLCFA synthesis would be expected to greatly affect sphingolipid synthesis. In fact, in this study we found that reduced Phs1 levels result in significant impairment of the conversion of ceramide to inositol phosphorylceramide. Phs1 proteins are conserved among eukaryotes, constituting a novel protein family. Phs1 family members exhibit no sequence similarity to other dehydratase families, so their active site sequence and catalytic mechanism have been completely unknown. Here, by mutating 22 residues conserved among Phs1 family members, we identified six amino acid residues important in Phs1 function, two of which (Tyr-149 and Glu-156) are indispensable. We also examined the membrane topology of Phs1 using an N-glycosylation reporter assay. Our results suggest that Phs1 is a membrane-spanning protein that traverses the membrane six times and has an N terminus and C terminus facing the cytosol. The important amino acids are concentrated in or near two of the six proposed transmembrane regions. Thus, we also propose a catalytic mechanism for Phs1 that is not unlike mechanisms used by other hydratases active in lipid synthesis.
Collapse
Affiliation(s)
- Akio Kihara
- Laboratory of Biomembrane and Biofunctional Chemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-choume, Kita-ku, Sapporo 060-0812, Japan.
| | | | | | | | | |
Collapse
|
43
|
Suter B, Auerbach D, Stagljar I. Yeast-based functional genomics and proteomics technologies: the first 15 years and beyond. Biotechniques 2006; 40:625-44. [PMID: 16708762 DOI: 10.2144/000112151] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Yeast-based functional genomics and proteomics technologies developed over the past decade have contributed greatly to our understanding of bacterial, yeast, fly, worm, and human gene functions. In this review, we highlight some of these yeast-based functional genomic and proteomic technologies that are advancing the utility of yeast as a model organism in molecular biology and speculate on their future uses. Such technologies include use of the yeast deletion strain collection, large-scale determination of protein localization in vivo, synthetic genetic array analysis, variations of the yeast two-hybrid system, protein microarrays, and tandem affinity purification (TAP)-tagging approaches. The integration of these advances with established technologies is invaluable in the drive toward a comprehensive understanding of protein structure and function in the cellular milieu.
Collapse
|
44
|
Szczesna-Skorupa E, Kemper B. BAP31 Is Involved in the Retention of Cytochrome P450 2C2 in the Endoplasmic Reticulum. J Biol Chem 2006; 281:4142-8. [PMID: 16332681 DOI: 10.1074/jbc.m509522200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microsomal cytochrome P450 2C2 is an integral endoplasmic reticulum (ER) membrane protein that is directly retained in the ER and excluded from transport vesicles. We have used bimolecular fluorescence complementation and co-immunoprecipitation to show that a ubiquitous ER membrane protein (BAP31) interacts with P450 2C2 in transfected COS-1 cells. A chimera containing only the N-terminal signal anchor of P450 2C1 (P450 2C1-(1-29)) also interacted with BAP31, which is consistent with interaction of the two proteins via their transmembrane domains. Down-regulation of BAP31 expression with small interfering RNA resulted in redistribution of green fluorescent protein-tagged P450 2C2 or P450 2C1-(1-29) from the ER into the nuclear membrane and compact perinuclear compartment structures as well as the cell surface in a small fraction of the cells. In Bap31-null embryonic stem cells, a significant fraction of P450 2C2 or P450 2C1-(1-29) was detected at the cell surface and nuclear envelope, but was redistributed to the ER by expression of BAP31. The expression level of P450 2C2 was significantly increased in COS-1 cells with repressed levels of BAP31. Formation of the pro-apoptotic p20 fragment of BAP31 was detected in transfected COS-1 cells expressing P450 2C2, and annexin V staining was consistent with the activation of an apoptotic pathway in these cells. Down-regulation of BAP31 with small interfering RNA partially reversed the apoptosis. These results suggest that interaction of P450 2C2 with BAP31 is important for its ER retention and expression level and that BAP31 may be involved in the regulation of apoptosis induced by the ER overload response to increased expression of P450.
Collapse
Affiliation(s)
- Elzbieta Szczesna-Skorupa
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 61801, USA
| | | |
Collapse
|
45
|
Stojanovic M, Germain M, Nguyen M, Shore GC. BAP31 and Its Caspase Cleavage Product Regulate Cell Surface Expression of Tetraspanins and Integrin-mediated Cell Survival. J Biol Chem 2005; 280:30018-24. [PMID: 15946936 DOI: 10.1074/jbc.m501306200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BAP31, a resident integral protein of the endoplasmic reticulum membrane, regulates the export of other integral membrane proteins to the downstream secretory pathway. Here we show that cell surface expression of the tetraspanins CD9 and CD81 is compromised in mouse cells from which the Bap31 gene has been deleted. CD9 and CD81 facilitate the function of multiprotein complexes at the plasma membrane, including integrins. Of note, BAP31 does not appear to influence the egress of alpha5beta1 or alpha(v)beta3 integrins to the cell surface, but in Bap31-null mouse cells, these integrins are not able to maintain cellular adhesion to the extracellular matrix in the presence of reduced serum. Consequently, Bap31-null cells are sensitive to serum starvation-induced apoptosis. Reconstitution of wild-type BAP31 into these Bap31-null cells restores integrin-mediated cell attachment and cell survival after serum stress, whereas interference with the functions of CD9, alpha5beta1, or alpha(v)beta3 by antagonizing antibodies makes BAP31 cells act similar to Bap31-null cells in these respects. Finally, in human KB epithelial cells protected from apoptosis by BCL-2, the caspase-8 cleavage product, p20 BAP31, inhibits egress of tetraspanin and integrin-mediated cell attachment. Thus, p20 BAP31 can operate upstream of BCL-2 in living cells to influence cell surface properties due to its effects on protein egress from the endoplasmic reticulum.
Collapse
Affiliation(s)
- Marina Stojanovic
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
46
|
Abstract
Previously, a microarray expression study in the yeast Saccharomyces cerevisiae indicated that the ERG28 gene was strongly coregulated with ergosterol biosynthesis. Subsequently, Erg28p was shown to function as an endoplasmic reticulum transmembrane protein, acting as a scaffold to tether the C-4 demethylation enzymatic complex and also to interact with a downstream enzyme, Erg6p. To understand all possible protein interactions involving Erg28p in sterol biosynthesis, a yeast two-hybrid system designed to assess interactions between membrane proteins was used. The Erg28p fusion protein was used as bait to assess interactions with all 14 sterol biosynthetic proteins in a pairwise study based on two reporter systems as well as Western blots demonstrating the release of a transcription factor. Our results indicated that Erg28p not only interacted with the C-4 demethylation enzymes and Erg6p but also with Erg11p and Erg1p. Interactions between Erg28p and seven ergosterol biosynthetic enzymes were confirmed by coimmunoprecipitation experiments. Furthermore, by comparing the reporter gene expression levels, we demonstrate that Erg28p is most closely associated with Erg27p, Erg25p, Erg11p, and Erg6p and less with Erg26p and Erg1p. Based on these results, we suggest that many if not all sterol biosynthetic proteins may be tethered as a large complex.
Collapse
Affiliation(s)
- Caiqing Mo
- Biology Department, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | | |
Collapse
|
47
|
Chavan M, Yan A, Lennarz WJ. Subunits of the translocon interact with components of the oligosaccharyl transferase complex. J Biol Chem 2005; 280:22917-24. [PMID: 15831493 DOI: 10.1074/jbc.m502858200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Following initiation of translocation across the membrane of the endoplasmic reticulum via the translocon, polypeptide chains are N-glycosylated by the oligosaccharyl transferase (OT) enzyme complex. Translocation and N-glycosylation are concurrent events and would be expected to require juxtaposition of the translocon and the OT complex. To determine whether any of the subunits of the OT complex and translocon mediate interactions between the two complexes, we initiated a systematic study in budding yeast using the split-ubiquitin approach. Interestingly, the OT subunit Stt3p was found to interact only with Sec61p, whereas another OT subunit, Ost4p, was found to interact with all three components of the translocon, Sec61p, Sbh1p, and Sss1p. The OT subunit Wbp1p was found to interact very strongly with Sec61p and Sbh1p and weakly with Sss1p. Other OT subunits, Ost1p, Ost2p, and Swp1p were found to interact with Sec61p and either Sbh1p or Sss1p. Ost3p exhibited a weak interaction with Sec61p and Sbh1p, whereas Ost5p and Ost6p interacted very weakly with Sec61p and failed to interact with Sbh1p or Sss1p. We were able to confirm these split-ubiquitin findings by a chemical cross-linking technique. Based on our findings using these two techniques, we conclude that the association of these two complexes is stabilized via multiple protein-protein contacts. Based on extrapolation of the structural parameters of the crystal structure of the prokaryotic Sec complex to the eukaryotic complex, we propose a working model to understand the organization of the translocon-OT supercomplex.
Collapse
Affiliation(s)
- Manasi Chavan
- Department of Biochemistry and Cell Biology, Stony Brook University, New York 11794, USA
| | | | | |
Collapse
|
48
|
Iyer K, Bürkle L, Auerbach D, Thaminy S, Dinkel M, Engels K, Stagljar I. Utilizing the split-ubiquitin membrane yeast two-hybrid system to identify protein-protein interactions of integral membrane proteins. Sci Signal 2005; 2005:pl3. [PMID: 15770033 DOI: 10.1126/stke.2752005pl3] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Various modifications of the conventional yeast two-hybrid system have played an essential role in confirming or detecting protein-protein interactions among nuclear and cytoplasmic proteins. These approaches have permitted the identification of novel interaction partners, as well as provided hints as to their function. However, membrane proteins, such as receptor tyrosine kinases, G protein-coupled receptors, membrane-bound phosphatases, and transporters, which represent important classes of signaling molecules, are difficult to study using classical protein interaction assays because of their hydrophobic nature. Here, we describe a genetic system that allows the identification of integral membrane-interacting proteins. This so-called "split-ubiquitin membrane-based yeast two-hybrid assay" involves fusing the halves of ubiquitin to two interacting proteins, at least one of which is membrane bound. Upon interaction of these two proteins, the halves of ubiquitin are brought together, and the transcription factor that is fused to a membrane protein of interest is cleaved and released. The free transcription factor then enters the nucleus and activates transcription of reporter genes. We also describe how this technology is used to screen complementary DNA libraries to identify novel binding partners of a membrane protein of interest.
Collapse
Affiliation(s)
- Kavitha Iyer
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
49
|
Reichel C, Johnsson N. The Split‐Ubiquitin Sensor: Measuring Interactions and Conformational Alterations of Proteins In Vivo. Methods Enzymol 2005; 399:757-76. [PMID: 16338394 DOI: 10.1016/s0076-6879(05)99050-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The split-ubiquitin technique can monitor alterations in the conformation of proteins and can be used to detect the interaction between two proteins in living cells. The technique is based on unique features of ubiquitin, the enzymes of the ubiquitin pathway, and the reconstitution of a native-like ubiquitin from its N- and C-terminal fragments. By exploiting the reassociation of a protein from its defined fragments to monitor protein interactions, the split-ubiquitin assay served as the prototype of a still growing number of split-protein sensors to analyze protein function within living cells.
Collapse
Affiliation(s)
- Christoph Reichel
- Forschungszentrum Karlsruhe, Institut für Toxikologie und Genetik, Eggenstein-Leopoldshafen, Germany
| | | |
Collapse
|