1
|
Yu Y, Yao Y, Liu Y, Sun Y, Feng H, Kong N, Chen R, Wu M, Guo S, Tian S, Zhang C. Effects of Thyroid Hormones on Cellular Development in Human Ovarian Granulosa Tumor Cells (KGN). Reprod Sci 2025; 32:1545-1556. [PMID: 39407059 DOI: 10.1007/s43032-024-01721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/28/2024] [Indexed: 04/30/2025]
Abstract
Ovarian cancer is a common malignant tumor in the female reproductive system, and Granulosa cell tumor (GCT) of the ovary is a rare type of ovarian cancer, which significantly threatens women's reproductive health. It has been reported that dysregulation of thyroid hormones (THs) may be closely related to the progression and prognosis of ovarian cancer. Moreover, THs regulate phosphorylation of signal transducer and activator of transcription (STAT3) and Octamer-binding transcription factor 4 (OCT4) expression. It has been reported that STAT3 and OCT4 play important roles in cellular development and tumorigenesis. However, the mechanisms by which THs affect the development of GCT are still remained unclear. To evaluate the effect of THs on human ovarian granulosa tumor cells (KGN), cells were treated with 3,5,3' -triiodothyronine (T3). Oct4 small interfering (Oct4 siRNA) or STAT3 inhibitor C188-9 was also co-cultured with cells in some experiments, respectively. The cell viability, proliferation, and proteins content were detected by CCK-8, EdU, and Western Blotting, respectively. The results showed that T3 enhanced cell viability and proliferation. Moreover, T3 also increased the expression of thyroid hormone receptor (TR), p-STAT3, and OCT4 proteins. The effects of T3 on both p-STAT3 and OCT4 expression were blocked by TR antagonist 1-850. Meanwhile, C188-9, an inhibitor of STAT3, decreased T3-induced cellular viability, proliferation, and OCT4 expression, highlighting that p-STAT3 can regulate the expression of OCT4 and affect cellular viability, and proliferation. Furthermore, T3-induced cellular growth was reduced by Oct4 siRNA, which indicates that T3 regulates cellular development through OCT4. These findings suggest that T3 increases cellular development via OCT4, which is mediated by phosphorylation of STAT3, and TR is also involved in these processes.
Collapse
Affiliation(s)
- Yakun Yu
- College of Life Science, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Yilin Yao
- College of Life Science, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Yan Liu
- College of Life Science, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Ying Sun
- College of Life Science, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Haoyuan Feng
- College of Life Science, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Nana Kong
- Center for Assisted Reproductive Medicine, Department of Obstetrics and Gynecology, the Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Rui Chen
- College of Life Science, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Mingqi Wu
- College of Life Science, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Shuaitian Guo
- College of Life Science, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Shen Tian
- College of Life Science, Capital Normal University, Beijing, 100048, People's Republic of China.
| | - Cheng Zhang
- College of Life Science, Capital Normal University, Beijing, 100048, People's Republic of China.
| |
Collapse
|
2
|
Shu Y, Wang Q, He J, Zhang H, Hong P, Leung KMY, Chen L, Wu H. Perfluorobutanesulfonate Interfering with the Intestinal Remodeling During Lithobates catesbeiana Metamorphosis via the Hypothalamic-Pituitary-Thyroid Axis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5463-5473. [PMID: 40085680 DOI: 10.1021/acs.est.4c12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The intestinal remodeling during amphibian metamorphosis is essential for adapting to various ecological niches of aquatic and terrestrial habitats. However, whether and how the widespread contaminant, perfluorobutanesulfonate (PFBS) affects intestinal remodeling remains unknown. In this study, tadpoles (Lithobates catesbeianus) at the G26 stage were exposed to environmentally relevant concentrations of PFBS (0, 1, 3, and 10 μg/L) until the end of metamorphosis. PFBS exposure resulted in reduced thyroid follicular glia; down-regulation of gene transcripts related to thyroid hormone synthesis; decreased blood hormone (corticotropin-releasing hormone, thyroid-stimulating hormone, and 3,5,3'-triiodothyronine (T3)) and transthyretin concentrations; and up-regulation of gene transcripts related to thyroid hormone degrading enzymes. Moreover, exposure to PFBS induced apoptosis in single-layer columnar epithelial cells, suppressed the proliferation of intestinal stem cells, and hindered their differentiation into adult epithelial cells during intestinal remodeling. The responses of Notch and Wnt signaling pathways regulated by T3 were downregulated, and key gene transcripts (msi, pcna, and lgr5) involved in intestinal remodeling regulated by these two pathways were also downregulated. This is the first report on the effects of PFBS on amphibian metamorphosis. Overall, PFBS reduced thyroid hormone synthesis and transport by interfering with the hypothalamic-pituitary-thyroid axis and transthyretin expression, inhibited downstream Notch and Wnt signaling pathway responses, and ultimately led to incomplete intestinal remodeling to some extent.
Collapse
Affiliation(s)
- Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Jun He
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Huijuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Pei Hong
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
3
|
Peng L, Luan S, Shen X, Zhan H, Ge Y, Liang Y, Wang J, Xu Y, Wu S, Zhong X, Zhang H, Gao L, Zhao J, He Z. Thyroid hormone deprival and TSH/TSHR signaling deficiency lead to central hypothyroidism-associated intestinal dysplasia. Life Sci 2024; 345:122577. [PMID: 38521387 DOI: 10.1016/j.lfs.2024.122577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/22/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Central hypothyroidism (CH) is characterized by low T4 levels and reduced levels or bioactivity of circulating TSH. However, there is a lack of studies on CH-related intestinal maldevelopment. In particular, the roles of TH and TSH/TSHR signaling in CH-related intestinal maldevelopment are poorly understood. Herein, we utilized Tshr-/- mice as a congenital hypothyroidism model with TH deprival and absence of TSHR signaling. METHODS The morphological characteristics of intestines were determined by HE staining, periodic acid-shiff staining, and immunohistochemical staining. T4 was administrated into the offspring of homozygous mice from the fourth postnatal day through weaning or administrated after weaning. RT-PCR was used to evaluate the expression of markers of goblet cells and intestinal digestive enzymes. Single-cell RNA-sequencing analysis was used to explore the cell types and gene profiles of metabolic alternations in early-T4-injected Tshr-/- mice. KEY FINDINGS Tshr deletion caused significant growth retardation and intestinal maldevelopment, manifested as smaller and more slender small intestines due to reduced numbers of stem cells and differentiated epithelial cells. Thyroxin supplementation from the fourth postnatal day, but not from weaning, significantly rescued the abnormal intestinal structure and restored the decreased number of proliferating intestinal cells in crypts of Tshr-/- mice. Tshr-/- mice with early-life T4 injections had more early goblet cells and impaired metabolism compared to Tshr+/+ mice. SIGNIFICANCE TH deprival leads to major defects of CH-associated intestinal dysplasia while TSH/TSHR signaling deficiency promotes the differentiation of goblet cells and impairs nutrition metabolism.
Collapse
Affiliation(s)
- Li Peng
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Sisi Luan
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xin Shen
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Huidong Zhan
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yueping Ge
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yixiao Liang
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Jing Wang
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yang Xu
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Shanshan Wu
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xia Zhong
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Haiqing Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.
| |
Collapse
|
4
|
Shi YB, Fu L, Tanizaki Y. Intestinal remodeling during Xenopus metamorphosis as a model for studying thyroid hormone signaling and adult organogenesis. Mol Cell Endocrinol 2024; 586:112193. [PMID: 38401883 PMCID: PMC10999354 DOI: 10.1016/j.mce.2024.112193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Intestinal development takes places in two phases, the initial formation of neonatal (mammals)/larval (anurans) intestine and its subsequent maturation into the adult form. This maturation occurs during postembryonic development when plasma thyroid hormone (T3) level peaks. In anurans such as the highly related Xenopus laevis and Xenopus tropicalis, the larval/tadpole intestine is drastically remodeled from a simple tubular structure to a complex, multi-folded adult organ during T3-dependent metamorphosis. This involved complete degeneration of larval epithelium via programmed cell death and de novo formation of adult epithelium, with concurrent maturation of the muscles and connective tissue. Here, we will summarize our current understanding of the underlying molecular mechanisms, with a focus on more recent genetic and genome-wide studies.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
5
|
Tanizaki Y, Shibata Y, Na W, Shi YB. Cell cycle activation in thyroid hormone-induced apoptosis and stem cell development during Xenopus intestinal metamorphosis. Front Endocrinol (Lausanne) 2023; 14:1184013. [PMID: 37265708 PMCID: PMC10230048 DOI: 10.3389/fendo.2023.1184013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Amphibian metamorphosis resembles mammalian postembryonic development, a period around birth when many organs mature into their adult forms and when plasma thyroid hormone (T3) concentration peaks. T3 plays a causative role for amphibian metamorphosis. This and its independence from maternal influence make metamorphosis of amphibians, particularly anurans such as pseudo-tetraploid Xenopus laevis and its highly related diploid species Xenopus tropicalis, an excellent model to investigate how T3 regulates adult organ development. Studies on intestinal remodeling, a process that involves degeneration of larval epithelium via apoptosis and de novo formation of adult stem cells followed by their proliferation and differentiation to form the adult epithelium, have revealed important molecular insights on T3 regulation of cell fate during development. Here, we review some evidence suggesting that T3-induced activation of cell cycle program is important for T3-induced larval epithelial cell death and de novo formation of adult intestinal stem cells.
Collapse
|
6
|
Gagliardi F, Baldini E, Lori E, Cardarelli S, Pironi D, Lauro A, Tripodi D, Palumbo P, D’Armiento E, Cavallaro G, Polistena A, D’Orazi V, Sibio S, Fallahi P, Antonelli A, D’Andrea V, Ulisse S, Sorrenti S. Insights on the Association between Thyroid Diseases and Colorectal Cancer. J Clin Med 2023; 12:2234. [PMID: 36983233 PMCID: PMC10056144 DOI: 10.3390/jcm12062234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/22/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Benign and malignant thyroid diseases (TDs) have been associated with the occurrence of extrathyroidal malignancies (EMs), including colorectal cancers (CRCs). Such associations have generated a major interest, as their characterization may provide useful clues regarding diseases' etiology and/or progression, with the possible identification of shared congenital and environmental elements. On the other hand, elucidation of the underlying molecular mechanism(s) could lead to an improved and tailored clinical management of these patients and stimulate an increased surveillance of TD patients at higher threat of developing EMs. Here, we will examine the epidemiological, clinical, and molecular findings connecting TD and CRC, with the aim to identify possible molecular mechanism(s) responsible for such diseases' relationship.
Collapse
Affiliation(s)
| | - Enke Baldini
- Department of Surgery, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Eleonora Lori
- Department of Surgery, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Silvia Cardarelli
- Department of Surgery, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Daniele Pironi
- Department of Surgery, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Augusto Lauro
- Department of Surgery, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Domenico Tripodi
- Department of Surgery, “Sapienza” University of Rome, 00161 Rome, Italy
| | | | - Eleonora D’Armiento
- Department of Internal Medicine and Medical Specialties, “Sapienza” University of Rome, 00161 Rome, Italy
| | | | - Andrea Polistena
- Department of Surgery, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Valerio D’Orazi
- Department of Surgery, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Simone Sibio
- Department of Surgery, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and of Critical Area, University of Pisa, 56126 Pisa, Italy
| | - Vito D’Andrea
- Department of Surgery, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Salvatore Ulisse
- Department of Surgery, “Sapienza” University of Rome, 00161 Rome, Italy
| | | |
Collapse
|
7
|
Young R, Lewandowska D, Long E, Wooding FBP, De Blasio MJ, Davies KL, Camm EJ, Sangild PT, Fowden AL, Forhead AJ. Hypothyroidism impairs development of the gastrointestinal tract in the ovine fetus. Front Physiol 2023; 14:1124938. [PMID: 36935746 PMCID: PMC10020222 DOI: 10.3389/fphys.2023.1124938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Growth and maturation of the fetal gastrointestinal tract near term prepares the offspring for the onset of enteral nutrition at birth. Structural and functional changes are regulated by the prepartum rise in cortisol in the fetal circulation, although the role of the coincident rise in plasma tri-iodothyronine (T3) is unknown. This study examined the effect of hypothyroidism on the structural development of the gastrointestinal tract and the activity of brush-border digestive enzymes in the ovine fetus near term. In intact fetuses studied between 100 and 144 days of gestation (dGA; term ∼145 days), plasma concentrations of T3, cortisol and gastrin; the mucosal thickness in the abomasum, duodenum, jejunum and ileum; and intestinal villus height and crypt depth increased with gestational age. Removal of the fetal thyroid gland at 105-110 dGA suppressed plasma thyroxine (T4) and T3 concentrations to the limit of assay detection in fetuses studied at 130 and 144 dGA, and decreased plasma cortisol and gastrin near term, compared to age-matched intact fetuses. Hypothyroidism was associated with reductions in the relative weights of the stomach compartments and small intestines, the outer perimeter of the intestines, the thickness of the gastric and intestinal mucosa, villus height and width, and crypt depth. The thickness of the mucosal epithelial cell layer and muscularis propria in the small intestines were not affected by gestational age or treatment. Activities of the brush border enzymes varied with gestational age in a manner that depended on the enzyme and region of the small intestines studied. In the ileum, maltase and dipeptidyl peptidase IV (DPPIV) activities were lower, and aminopeptidase N (ApN) were higher, in the hypothyroid compared to intact fetuses near term. These findings highlight the importance of thyroid hormones in the structural and functional development of the gastrointestinal tract near term, and indicate how hypothyroidism in utero may impair the transition to enteral nutrition and increase the risk of gastrointestinal disorders in the neonate.
Collapse
Affiliation(s)
- Rhian Young
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Dominika Lewandowska
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Emily Long
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - F. B. Peter Wooding
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Miles J. De Blasio
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Katie L. Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Emily J. Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Per T. Sangild
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neonatology, Rigshospitalet, Copenhagen, Denmark
- Department of Pediatrics, Odense University Hospital, Odense, Denmark
| | - Abigail L. Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Alison J. Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
8
|
Niu Y, Tang S. Circadian clock-mediated nuclear receptors in cancer. J Cell Physiol 2022; 237:4428-4442. [PMID: 36250982 DOI: 10.1002/jcp.30905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022]
Abstract
Circadian system coordinates the daily periodicity of physiological and biochemical functions to adapt to environmental changes. Circadian disruption has been identified to increase the risk of cancer and promote cancer progression, but the underlying mechanism remains unclear. And further mechanistic understanding of the crosstalk between clock components and cancer is urgent to achieve clinical anticancer benefits from chronochemotherapy. Recent studies discover that several nuclear receptors regulating circadian clock, also play crucial roles in mediating multiple cancer processes. In this review, we aim to summarize the latest developments of clock-related nuclear receptors in cancer biology and dissect mechanistic insights into how nuclear receptors coordinate with circadian clock to regulate tumorigenesis and cancer treatment. A better understanding of circadian clock-related nuclear receptors in cancer could help prevent tumorigenesis and improve anticancer efficacy.
Collapse
Affiliation(s)
- Ya Niu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shuang Tang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| |
Collapse
|
9
|
Giolito MV, Plateroti M. Thyroid hormone signaling in the intestinal stem cells and their niche. Cell Mol Life Sci 2022; 79:476. [PMID: 35947210 PMCID: PMC11072102 DOI: 10.1007/s00018-022-04503-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Several studies emphasized the function of the thyroid hormones in stem cell biology. These hormones act through the nuclear hormone receptor TRs, which are T3-modulated transcription factors. Pioneer work on T3-dependent amphibian metamorphosis showed that the crosstalk between the epithelium and the underlying mesenchyme is absolutely required for intestinal maturation and stem cell emergence. With the recent advances of powerful animal models and 3D-organoid cultures, similar findings have now begun to be described in mammals, where the action of T3 and TRα1 control physiological and cancer-related stem cell biology. In this review, we have summarized recent findings on the multiple functions of T3 and TRα1 in intestinal epithelium stem cells, cancer stem cells and their niche. In particular, we have highlighted the regulation of metabolic functions directly linked to normal and/or cancer stem cell biology. These findings help explain other possible mechanisms by which TRα1 controls stem cell biology, beyond the more classical Wnt and Notch signaling pathways.
Collapse
Affiliation(s)
- Maria Virginia Giolito
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FMTS, 3 Avenue Molière 67200, Strasbourg, France
| | - Michelina Plateroti
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FMTS, 3 Avenue Molière 67200, Strasbourg, France.
| |
Collapse
|
10
|
Sarkar D, Jaiswal A, Singh SK. Ontogeny of TRα1 expression in the mouse testis and epididymis during postnatal development. Andrologia 2022; 54:e14507. [PMID: 35753757 DOI: 10.1111/and.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/12/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Thyroid hormone (T3 ) acts on the testis via thyroid hormone receptor alpha 1 (TRα1), though the cellular localization of TRα1 in testis remains controversial. Studies on the presence of TRα1 in the epididymis are also lacking. The present study, therefore, examined the cellular localization and expression pattern of TRα1 in testis and epididymis of Parkes mice during postnatal development. Immunohistochemical results showed localization of TRα1 in interstitial and tubular compartments of the testis all through the development. On postnatal day (PND) 14, only leptotene spermatocytes showed TRα1-immunoreactivity in the testis, while at PND 28, 42, and 90, a diverse staining pattern for TRα1 was seen in almost all the seminiferous tubules mainly in leptotene spermatocytes, round and elongating spermatids, and in Leydig cells. Further, qRT-PCR and immunoblot analyses showed that TRα1 was expressed in the testis at the transcript as well as protein level throughout the postnatal development. TRα1 was also seen in principal cells of the epididymis, with maximal expression at PND 90. TRα1 was also present in cauda epididymidal spermatozoa of adult mice at PND 90. The results suggest that TRα1 is expressed in the testis and epididymis and that it may help to regulate the spermatogenic process and male fertility.
Collapse
Affiliation(s)
- Debarshi Sarkar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Asmita Jaiswal
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
11
|
Hönes GS, Kerp H, Hoppe C, Kowalczyk M, Zwanziger D, Baba HA, Führer D, Moeller LC. Canonical Thyroid Hormone Receptor β Action Stimulates Hepatocyte Proliferation in Male Mice. Endocrinology 2022; 163:6509895. [PMID: 35038735 DOI: 10.1210/endocr/bqac003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT 3,5,3'-L-triiodothyronine (T3) is a potent inducer of hepatocyte proliferation via the Wnt/β-catenin signaling pathway. Previous studies suggested the involvement of rapid noncanonical thyroid hormone receptor (TR) β signaling, directly activating hepatic Wnt/β-catenin signaling independent from TRβ DNA binding. However, the mechanism by which T3 increases Wnt/β-catenin signaling in hepatocytes has not yet been determined. OBJECTIVE We aimed to determine whether DNA binding of TRβ is required for stimulation of hepatocyte proliferation by T3. METHODS Wild-type (WT) mice, TRβ knockout mice (TRβ KO), and TRβ mutant mice with either specifically abrogated DNA binding (TRβ GS) or abrogated direct phosphatidylinositol 3 kinase activation (TRβ 147F) were treated with T3 for 6 hours or 7 days. Hepatocyte proliferation was assessed by Kiel-67 (Ki67) staining and apoptosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. Activation of β-catenin signaling was measured in primary murine hepatocytes. Gene expression was analyzed by microarray, gene set enrichment analysis (GSEA), and quantitative reverse transcription polymerase chain reaction. RESULTS T3 induced hepatocyte proliferation with an increased number of Ki67-positive cells in WT and TRβ 147F mice (9.2% ± 6.5% and 10.1% ± 2.9%, respectively) compared to TRβ KO and TRβ GS mice (1.2% ± 1.1% and 1.5% ± 0.9%, respectively). Microarray analysis and GSEA showed that genes of the Wnt/β-catenin pathway-among them, Fzd8 (frizzled receptor 8) and Ctnnb1 (β-catenin)-were positively enriched only in T3-treated WT and TRβ 147F mice while B-cell translocation gene anti-proliferation factor 2 was repressed. Consequently, expression of Ccnd1 (CyclinD1) was induced. CONCLUSIONS Instead of directly activating Wnt signaling, T3 and TRβ induce key genes of the Wnt/β-catenin pathway, ultimately stimulating hepatocyte proliferation via CyclinD1. Thus, canonical transcriptional TRβ action is necessary for T3-mediated stimulation of hepatocyte proliferation.
Collapse
Affiliation(s)
- Georg Sebastian Hönes
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Helena Kerp
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph Hoppe
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Manuela Kowalczyk
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Denise Zwanziger
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Dagmar Führer
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lars Christian Moeller
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
12
|
Voutsadakis IA. The TSH/Thyroid Hormones Axis and Breast Cancer. J Clin Med 2022; 11:687. [PMID: 35160139 PMCID: PMC8836919 DOI: 10.3390/jcm11030687] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 12/20/2022] Open
Abstract
Breast cancer, the most prevalent female carcinoma, is characterized by the expression of steroid nuclear receptors in a subset of cases. The most important nuclear receptor with prognostic and therapeutic implications is the Estrogen Receptor (ER), which is expressed in about three out of four breast cancers. The Progesterone Receptor (PR) and the Androgen Receptor (AR) are also commonly expressed. Moreover, non-steroid nuclear receptors, including the vitamin D receptor (VDR) and the thyroid receptors (TRs), are also present in breast cancers and have pathophysiologic implications. Circulating thyroid hormones may influence breast cancer risk and breast cancer cell survival, through ligating their canonical receptors TRα and TRβ but also through additional membrane receptors that are expressed in breast cancer. The expression of TR subtypes and their respective isotypes have diverse effects in breast cancers through co-operation with ER and influence on other cancer-associated pathways. Other components of the TSH/thyroid hormone axis, such as TSH and selenoiodinase enzymes, have putative effects in breast cancer pathophysiology. This paper reviews the pathophysiologic and prognostic implications of the thyroid axis in breast cancer and provides a brief therapeutic perspective.
Collapse
Affiliation(s)
- Ioannis A. Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste. Marie, ON P6B 0A8, Canada; or
- Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON P6B 0A8, Canada
| |
Collapse
|
13
|
Thyroid hormone receptor alpha sumoylation modulates white adipose tissue stores. Sci Rep 2021; 11:24105. [PMID: 34916557 PMCID: PMC8677787 DOI: 10.1038/s41598-021-03491-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
Thyroid hormone (TH) and thyroid hormone receptor (THR) regulate stem cell proliferation and differentiation during development, as well as during tissue renewal and repair in the adult. THR undergoes posttranslational modification by small ubiquitin-like modifier (SUMO). We generated the THRA (K283Q/K288R)−/− mouse model for in vivo studies and used human primary preadipocytes expressing the THRA sumoylation mutant (K283R/K288R) and isolated preadipocytes from mutant mice for in vitro studies. THRA mutant mice had reduced white adipose stores and reduced adipocyte cell diameter on a chow diet, compared to wild-type, and these differences were further enhanced after a high fat diet. Reduced preadipocyte proliferation in mutant mice, compared to wt, was shown after in vivo labeling of preadipocytes with EdU and in preadipocytes isolated from mice fat stores and studied in vitro. Mice with the desumoylated THRA had disruptions in cell cycle G1/S transition and this was associated with a reduction in the availability of cyclin D2 and cyclin-dependent kinase 2. The genes coding for cyclin D1, cyclin D2, cyclin-dependent kinase 2 and Culin3 are stimulated by cAMP Response Element Binding Protein (CREB) and contain CREB Response Elements (CREs) in their regulatory regions. We demonstrate, by Chromatin Immunoprecipitation (ChIP) assay, that in mice with the THRA K283Q/K288R mutant there was reduced CREB binding to the CRE. Mice with a THRA sumoylation mutant had reduced fat stores on chow and high fat diets and reduced adipocyte diameter.
Collapse
|
14
|
Sirakov M, Claret L, Plateroti M. Thyroid Hormone Nuclear Receptor TRα1 and Canonical WNT Pathway Cross-Regulation in Normal Intestine and Cancer. Front Endocrinol (Lausanne) 2021; 12:725708. [PMID: 34956074 PMCID: PMC8705541 DOI: 10.3389/fendo.2021.725708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022] Open
Abstract
A pivotal role of thyroid hormones and their nuclear receptors in intestinal development and homeostasis have been described, whereas their involvement in intestinal carcinogenesis is still controversial. In this perspective article we briefly summarize the recent advances in this field and present new data regarding their functional interaction with one of the most important signaling pathway, such as WNT, regulating intestinal development and carcinogenesis. These complex interactions unveil new concepts and will surely be of importance for translational research.
Collapse
Affiliation(s)
- Maria Sirakov
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Leo Claret
- Université de Strasbourg, Inserm, Interface de Recherche fondamentale et Appliquée en Cancérologie (IRFAC)/Unité Mixte de Recherche (UMR)-S1113, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Michelina Plateroti
- Université de Strasbourg, Inserm, Interface de Recherche fondamentale et Appliquée en Cancérologie (IRFAC)/Unité Mixte de Recherche (UMR)-S1113, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| |
Collapse
|
15
|
Irving K, Wellenreuther M, Ritchie PA. Description of the growth hormone gene of the Australasian snapper, Chrysophrys auratus, and associated intra- and interspecific genetic variation. JOURNAL OF FISH BIOLOGY 2021; 99:1060-1070. [PMID: 34036582 DOI: 10.1111/jfb.14810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/23/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
The growth hormone (GH) gene of the marine teleost, the Australasian snapper (Chrysophrys auratus), was identified and characterized from the reference genome showing it was approximately 5577 bp in length and consisted of six exons and five introns. Large polymorphic repeat regions were found in the first and third introns, and putative transcription factor binding sites were identified. Phylogenetic analysis of the GH genes of perciform fish showed largely conserved coding regions and highly variable noncoding regions among species. Despite some exon sequence variation and an amino acid deletion identified between C. auratus and its sister species Chrysophrys/Pagrus major, the amino acid sequences and putative secondary structures were largely conserved across the Sparidae. A population-level assessment of 99 samples caught at five separate coastal locations in New Zealand revealed six variable alleles at the intron 1 site of the C. auratus GH gene. A population genetic analysis suggested that C. auratus from the five sample locations were largely panmictic, with no evidence for departure from the Hardy-Weinberg equilibrium, and have a high level of heterozygosity. Overall these results suggest that the GH gene is largely conserved across the coding regions, but some variability could be detected.
Collapse
Affiliation(s)
- Kate Irving
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Peter A Ritchie
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
16
|
Xue L, Bao L, Roediger J, Su Y, Shi B, Shi YB. Protein arginine methyltransferase 1 regulates cell proliferation and differentiation in adult mouse adult intestine. Cell Biosci 2021; 11:113. [PMID: 34158114 PMCID: PMC8220849 DOI: 10.1186/s13578-021-00627-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023] Open
Abstract
Background Adult stem cells play an essential role in adult organ physiology and tissue repair and regeneration. While much has been learnt about the property and function of various adult stem cells, the mechanisms of their development remain poorly understood in mammals. Earlier studies suggest that the formation of adult mouse intestinal stem cells takes place during the first few weeks after birth, the postembryonic period when plasma thyroid hormone (T3) levels are high. Furthermore, deficiency in T3 signaling leads to defects in adult mouse intestine, including reduced cell proliferation in the intestinal crypts, where stem cells reside. Our earlier studies have shown that protein arginine methyltransferase 1 (PRMT1), a T3 receptor coactivator, is highly expressed during intestinal maturation in mouse. Methods We have analyzed the expression of PRMT1 by immunohistochemistry and studied the effect of tissue-specific knockout of PRMT1 in the intestinal epithelium. Results We show that PRMT1 is expressed highly in the proliferating transit amplifying cells and crypt base stem cells. By using a conditional knockout mouse line, we have demonstrated that the expression of PRMT1 in the intestinal epithelium is critical for the development of the adult mouse intestine. Specific removal of PRMT1 in the intestinal epithelium results in, surprisingly, more elongated adult intestinal crypts with increased cell proliferation. In addition, epithelial cell migration along the crypt-villus axis and cell death on the villus are also increased. Furthermore, there are increased Goblet cells and reduced Paneth cells in the crypt while the number of crypt base stem cells remains unchanged. Conclusions Our finding that PRMT1 knockout increases cell proliferation is surprising considering the role of PRMT1 in T3-signaling and the importance of T3 for intestinal development, and suggests that PRMT1 likely regulates pathways in addition to T3-signaling to affect intestinal development and/or homeostasis, thus affecting cell proliferating and epithelial turn over in the adult. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00627-z.
Collapse
Affiliation(s)
- Lu Xue
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, 182 Minyuan Road, Hongshan District, Wuhan, 430074, China.,Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Lingyu Bao
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.,Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Julia Roediger
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging and Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
Zhang J, Wei J, Yu H, Dong B. Genome-Wide Identification, Comparison, and Expression Analysis of Transcription Factors in Ascidian Styela clava. Int J Mol Sci 2021; 22:4317. [PMID: 33919240 PMCID: PMC8122590 DOI: 10.3390/ijms22094317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/09/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022] Open
Abstract
Tunicates include diverse species, as they are model animals for evolutionary developmental biology study. The embryonic development of tunicates is known to be extensively regulated by transcription factors (TFs). Styela clava, the globally distributed invasive tunicate, exhibits a strong capacity for environmental adaptation. However, the TFs were not systematically identified and analyzed. In this study, we reported 553 TFs categorized into 60 families from S. clava, based on the whole genome data. Comparison of TFs analysis among the tunicate species revealed that the gene number in the zinc finger superfamily displayed the most significant discrepancy, indicating this family was under the highly evolutionary selection and might be related to species differentiation and environmental adaptation. The greatest number of TFs was discovered in the Cys2His2-type zinc finger protein (zf-C2H2) family in S. clava. From the point of temporal view, more than half the TFs were expressed at the early embryonic stage. The expression correlation analysis revealed the existence of a transition for TFs expression from early embryogenesis to the later larval development in S. clava. Eight Hox genes were identified to be located on one chromosome, exhibiting different arrangement and expression patterns, compared to Ciona robusta (C. intestinalis type A). In addition, a total of 23 forkhead box (fox) genes were identified in S. clava, and their expression profiles referred to their potential roles in neurodevelopment and sensory organ development. Our data, thus, provides crucial clues to the potential functions of TFs in development and environmental adaptation in the leathery sea squirt.
Collapse
Affiliation(s)
- Jin Zhang
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (J.Z.); (J.W.)
| | - Jiankai Wei
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (J.Z.); (J.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Haiyan Yu
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (J.Z.); (J.W.)
| | - Bo Dong
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (J.Z.); (J.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
18
|
Godart M, Frau C, Farhat D, Giolito MV, Jamard C, Le Nevé C, Freund JN, Penalva LO, Sirakov M, Plateroti M. Murine intestinal stem cells are highly sensitive to modulation of the T3/TRα1-dependent pathway. Development 2021; 148:dev.194357. [PMID: 33757992 DOI: 10.1242/dev.194357] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 03/08/2021] [Indexed: 01/17/2023]
Abstract
The thyroid hormone T3 and its nuclear receptor TRα1 control gut development and homeostasis through the modulation of intestinal crypt cell proliferation. Despite increasing data, in-depth analysis on their specific action on intestinal stem cells is lacking. By using ex vivo 3D organoid cultures and molecular approaches, we observed early responses to T3 involving the T3-metabolizing enzyme Dio1 and the transporter Mct10, accompanied by a complex response of stem cell- and progenitor-enriched genes. Interestingly, specific TRα1 loss-of-function (inducible or constitutive) was responsible for low ex vivo organoid development and impaired stem cell activity. T3 treatment of animals in vivo not only confirmed the positive action of this hormone on crypt cell proliferation but also demonstrated its key action in modulating the number of stem cells, the expression of their specific markers and the commitment of progenitors into lineage-specific differentiation. In conclusion, T3 treatment or TRα1 modulation has a rapid and strong effect on intestinal stem cells, broadening our perspectives in the study of T3/TRα1-dependent signaling in these cells.
Collapse
Affiliation(s)
- Matthias Godart
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, 69000 Lyon, France
| | - Carla Frau
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, 69000 Lyon, France
| | - Diana Farhat
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, 69000 Lyon, France
| | - Maria Virginia Giolito
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, 69000 Lyon, France
| | - Catherine Jamard
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, 69000 Lyon, France
| | - Clementine Le Nevé
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, 69000 Lyon, France
| | - Jean-Noel Freund
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FMTS, 67200 Strasbourg, France
| | - Luiz O Penalva
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Maria Sirakov
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Michelina Plateroti
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, 69000 Lyon, France
| |
Collapse
|
19
|
Abstract
Thyroid hormone (T3) is critical not only for organ function and metabolism in the adult but also for animal development. This is particularly true during the neonatal period when T3 levels are high in mammals. Many processes during this postembryonic developmental period resemble those during amphibian metamorphosis. Anuran metamorphosis is perhaps the most dramatic developmental process controlled by T3 and affects essentially all organs/tissues, often in an organ autonomous manner. This offers a unique opportunity to study how T3 regulates vertebrate development. Earlier transgenic studies in the pseudo-tetraploid anuran Xenopus laevis revealed that T3 receptors (TRs) are necessary and sufficient for mediating the effects of T3 during metamorphosis. Recent gene knockout studies with gene-editing technologies in the highly related diploid anuran Xenopus tropicalis showed, surprisingly, that TRs are not required for most metamorphic transformations, although tadpoles lacking TRs are stalled at the climax of metamorphosis and eventually die. Analyses of the changes in different organs suggest that removal of TRs enables premature development of many adult tissues, likely due to de-repression of T3-inducible genes, while preventing the degeneration of tadpole-specific tissues, which is possibly responsible for the eventual lethality. Comparison with findings in TR knockout mice suggests both conservation and divergence in TR functions, with the latter likely due to the greatly reduced need, if any, to remove embryo/prenatal-specific tissues during mammalian postembryonic development.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Correspondence: Yun-Bo Shi, Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Drive, Building 49, Room 6A82, MSC 4480, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Shi YB, Shibata Y, Tanizaki Y, Fu L. The development of adult intestinal stem cells: Insights from studies on thyroid hormone-dependent anuran metamorphosis. VITAMINS AND HORMONES 2021; 116:269-293. [PMID: 33752821 DOI: 10.1016/bs.vh.2021.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vertebrates organ development often takes place in two phases: initial formation and subsequent maturation into the adult form. This is exemplified by the intestine. In mouse, the intestine at birth has villus, where most differentiated epithelial cells are located, but lacks any crypts, where adult intestinal stem cells reside. The crypt is formed during the first 3 weeks after birth when plasma thyroid hormone (T3) levels are high. Similarly, in anurans, the intestine undergoes drastic remodeling into the adult form during metamorphosis in a process completely dependent on T3. Studies on Xenopus metamorphosis have revealed important clues on the formation of the adult intestine during metamorphosis. Here we will review our current understanding on how T3 induces the degeneration of larval epithelium and de novo formation of adult intestinal stem cells. We will also discuss the mechanistic conservations in intestinal development between anurans and mammals.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States.
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
21
|
Shibata Y, Tanizaki Y, Zhang H, Lee H, Dasso M, Shi YB. Thyroid Hormone Receptor Is Essential for Larval Epithelial Apoptosis and Adult Epithelial Stem Cell Development but Not Adult Intestinal Morphogenesis during Xenopus tropicalis Metamorphosis. Cells 2021; 10:cells10030536. [PMID: 33802526 PMCID: PMC8000126 DOI: 10.3390/cells10030536] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/23/2022] Open
Abstract
Vertebrate postembryonic development is regulated by thyroid hormone (T3). Of particular interest is anuran metamorphosis, which offers several unique advantages for studying the role of T3 and its two nuclear receptor genes, TRα and TRβ, during postembryonic development. We have recently generated TR double knockout (TRDKO) Xenopus tropicalis animals and reported that TR is essential for the completion of metamorphosis. Furthermore, TRDKO tadpoles are stalled at the climax of metamorphosis before eventual death. Here we show that TRDKO intestine lacked larval epithelial cell death and adult stem cell formation/proliferation during natural metamorphosis. Interestingly, TRDKO tadpole intestine had premature formation of adult-like epithelial folds and muscle development. In addition, T3 treatment of premetamorphic TRDKO tadpoles failed to induce any metamorphic changes in the intestine. Furthermore, RNA-seq analysis revealed that TRDKO altered the expression of many genes in biological pathways such as Wnt signaling and the cell cycle that likely underlay the inhibition of larval epithelial cell death and adult stem cell development caused by removing both TR genes. Our data suggest that liganded TR is required for larval epithelial cell degeneration and adult stem cell formation, whereas unliganded TR prevents precocious adult tissue morphogenesis such as smooth-muscle development and epithelial folding.
Collapse
Affiliation(s)
- Yuki Shibata
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (Y.S.); (Y.T.)
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (Y.S.); (Y.T.)
| | - Hongen Zhang
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Hangnoh Lee
- Section on Cell Cycle Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (H.L.); (M.D.)
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mary Dasso
- Section on Cell Cycle Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (H.L.); (M.D.)
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (Y.S.); (Y.T.)
- Correspondence: ; Tel.: +1-301-402-1004; Fax: +1-301-402-1323
| |
Collapse
|
22
|
Liu YC, Yeh CT, Lin KH. Molecular Functions of Thyroid Hormone Signaling in Regulation of Cancer Progression and Anti-Apoptosis. Int J Mol Sci 2019; 20:ijms20204986. [PMID: 31600974 PMCID: PMC6834155 DOI: 10.3390/ijms20204986] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 02/06/2023] Open
Abstract
Several physiological processes, including cellular growth, embryonic development, differentiation, metabolism and proliferation, are modulated by genomic and nongenomic actions of thyroid hormones (TH). Several intracellular and extracellular candidate proteins are regulated by THs. 3,3,5-Triiodo-L-thyronine (T3) can interact with nuclear thyroid hormone receptors (TR) to modulate transcriptional activities via thyroid hormone response elements (TRE) in the regulatory regions of target genes or bind receptor molecules showing no structural homology to TRs, such as the cell surface receptor site on integrin αvβ3. Additionally, L-thyroxine (T4) binding to integrin αvβ3 is reported to induce gene expression through initiating non-genomic actions, further influencing angiogenesis and cell proliferation. Notably, thyroid hormones not only regulate the physiological processes of normal cells but also stimulate cancer cell proliferation via dysregulation of molecular and signaling pathways. Clinical hypothyroidism is associated with delayed cancer growth. Conversely, hyperthyroidism is correlated with cancer prevalence in various tumor types, including breast, thyroid, lung, brain, liver and colorectal cancer. In specific types of cancer, both nuclear thyroid hormone receptor isoforms and those on the extracellular domain of integrin αvβ3 are high risk factors and considered potential therapeutic targets. In addition, thyroid hormone analogs showing substantial thyromimetic activity, including triiodothyroacetic acid (Triac), an acetic acid metabolite of T3, and tetraiodothyroacetic acid (Tetrac), a derivative of T4, have been shown to reduce risk of cancer progression, enhance therapeutic effects and suppress cancer recurrence. Here, we have reviewed recent studies focusing on the roles of THs and TRs in five cancer types and further discussed the potential therapeutic applications and underlying molecular mechanisms of THs.
Collapse
Affiliation(s)
- Yu-Chin Liu
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| |
Collapse
|
23
|
Gouesse RJ, Lavoie M, Dianati E, Wade MG, Hales BF, Robaire B, Plante I. Gestational and Lactational Exposure to an Environmentally Relevant Mixture of Brominated Flame Retardants Downregulates Junctional Proteins, Thyroid Hormone Receptor α1 Expression, and the Proliferation-Apoptosis Balance in Mammary Glands Post Puberty. Toxicol Sci 2019; 171:13-31. [PMID: 31241157 PMCID: PMC6735962 DOI: 10.1093/toxsci/kfz147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Mammary gland development requires hormonal regulation during puberty, pregnancy, and lactation. Brominated flame retardants (BFRs) are endocrine disruptors; they are added to consumer products to satisfy flammability standards. Previously, we showed that gestational and lactational exposure to an environmentally relevant mixture of BFRs disrupts proteins of the adherens junctions in rat dam mammary glands at weaning. Here, we hypothesize that perinatal exposure to the same BFR mixture also disrupts junctional proteins and signaling pathways controlling mammary gland development in pups. Dams were exposed through diet to a BFR mixture based on the substances in house dust; doses of the mixture used were 0, 0.06, 20, or 60 mg/kg/day. Dams were exposed continuously beginning prior to mating until pups' weaning; female offspring were euthanized on postnatal day (PND) 21, 46, and 208. The lowest dose of BFRs significantly downregulated adherens junction proteins, E-cadherin, and β-catenin, and the gap junction protein p-Cx43, as well as thyroid hormone receptor alpha 1 protein at PND 46. No effects were observed on estrogen or progesterone receptors. The low dose also resulted in a decrease in cleaved caspase-3, a downward trend in PARP levels, proteins involved in apoptosis, and an upward trend in proliferating cell nuclear antigen, a marker of proliferation. No effects were observed on ductal elongation or on the numbers of terminal end buds. Together, our results indicate that gestational and lactational exposure to an environmentally relevant mixture of BFRs disrupts cell-cell interactions, thyroid hormone homeostasis and the proliferation-apoptosis balance at PND 46, a critical stage for mammary gland development.
Collapse
Affiliation(s)
| | - Mélanie Lavoie
- INRS, Centre Armand-Frappier Santé Bioscience, Laval, Quebec, Canada
| | - Elham Dianati
- INRS, Centre Armand-Frappier Santé Bioscience, Laval, Quebec, Canada
| | - Mike G Wade
- Health Canada, Environmental Health Science and Research Bureau, Ottawa, Ontario, Canada
| | | | - Bernard Robaire
- Department of Pharmacology & Therapeutics
- Department of Obstetrics & Gynecology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Isabelle Plante
- INRS, Centre Armand-Frappier Santé Bioscience, Laval, Quebec, Canada
| |
Collapse
|
24
|
Kojima Y, Kondo Y, Fujishita T, Mishiro‐Sato E, Kajino‐Sakamoto R, Taketo MM, Aoki M. Stromal iodothyronine deiodinase 2 (DIO2) promotes the growth of intestinal tumors in Apc Δ716 mutant mice. Cancer Sci 2019; 110:2520-2528. [PMID: 31215118 PMCID: PMC6676103 DOI: 10.1111/cas.14100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/29/2019] [Accepted: 06/15/2019] [Indexed: 12/15/2022] Open
Abstract
Iodothyronine deiodinase 2 (DIO2) converts the prohormone thyroxine (T4) to bioactive T3 in peripheral tissues and thereby regulates local thyroid hormone (TH) levels. Although epidemiologic studies suggest the contribution of TH to the progression of colorectal cancer (CRC), the role of DIO2 in CRC remains elusive. Here we show that Dio2 is highly expressed in intestinal polyps of ApcΔ716 mice, a mouse model of familial adenomatous polyposis and early stage sporadic CRC. Laser capture microdissection and in situ hybridization analysis show almost exclusive expression of Dio2 in the stroma of ApcΔ716 polyps in the proximity of the COX-2-positive areas. Treatment with iopanoic acid, a deiodinase inhibitor, or chemical thyroidectomy suppresses tumor formation in ApcΔ716 mice, accompanied by reduced tumor cell proliferation and angiogenesis. Dio2 expression in ApcΔ716 polyps is strongly suppressed by treatment with the COX-2 inhibitor meloxicam. Analysis of The Cancer Genome Atlas data shows upregulation of DIO2 in CRC clinical samples and a close association of its expression pattern with the stromal component, consistently with almost exclusive expression of DIO2 in the stroma of human CRC as revealed by in situ hybridization. These results indicate essential roles of stromal DIO2 and thyroid hormone signaling in promoting the growth of intestinal tumors.
Collapse
Affiliation(s)
- Yasushi Kojima
- Division of PathophysiologyAichi Cancer Center Research InstituteNagoyaJapan
| | - Yuriko Kondo
- Division of PathophysiologyAichi Cancer Center Research InstituteNagoyaJapan
| | - Teruaki Fujishita
- Division of PathophysiologyAichi Cancer Center Research InstituteNagoyaJapan
| | - Emi Mishiro‐Sato
- Division of PathophysiologyAichi Cancer Center Research InstituteNagoyaJapan
| | - Rie Kajino‐Sakamoto
- Division of PathophysiologyAichi Cancer Center Research InstituteNagoyaJapan
| | - Makoto Mark Taketo
- Division of Experimental TherapeuticsGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Masahiro Aoki
- Division of PathophysiologyAichi Cancer Center Research InstituteNagoyaJapan
- Department of Cancer PhysiologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
25
|
Bao L, Roediger J, Park S, Fu L, Shi B, Cheng SY, Shi YB. Thyroid Hormone Receptor Alpha Mutations Lead to Epithelial Defects in the Adult Intestine in a Mouse Model of Resistance to Thyroid Hormone. Thyroid 2019; 29:439-448. [PMID: 30595106 PMCID: PMC6437623 DOI: 10.1089/thy.2018.0340] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The thyroid hormone triiodothyronine (T3) is critical for vertebrate development and affects the function of many adult tissues and organs. Its genomic effects are mediated by thyroid hormone nuclear receptors (TRs) present in all vertebrates. The discovery of patients with resistance to thyroid hormone (RTHβ) >50 years ago and subsequent identification of genetic mutations in only the THRB gene in these patients suggest that mutations in the THRA gene may have different pathological manifestations in humans. Indeed, the recent discovery of a number of human patients carrying heterozygous mutations in the THRA gene (RTHα) revealed a distinct phenotype that was not observed in RTH patients with THRB gene mutations (RTHβ). That is, RTHα patients have constipation, implicating intestinal defects caused by THRA gene mutations. METHODS To determine how TRα1 mutations affect the intestine, this study analyzed a mutant mouse expressing a strong dominantly negative TRα1 mutant (denoted TRα1PV; Thra1PV mice). This mutant mouse faithfully reproduces RTHα phenotypes observed in patients. RESULTS In adult Thra1PV/+ mice, constipation was observed just like in patients with TRα mutations. Importantly, significant intestinal defects were discovered, including shorter villi and increased differentiated cells in the crypt, accompanied by reduced stem-cell proliferation in the intestine. CONCLUSIONS The findings suggest that further analysis of this mouse model should help to reveal the molecular and physiological defects in the intestine caused by TRα mutations and to determine the underlying mechanisms.
Collapse
Affiliation(s)
- Lingyu Bao
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, P.R. China
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD); Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
| | - Julia Roediger
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD); Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
| | - Sunmi Park
- Gene Regulation Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD); Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, P.R. China
| | - Sheue-Yann Cheng
- Gene Regulation Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD); Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
- Address correspondence to: Yun-Bo Shi, PhD, Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 49 Room 6A82, Bethesda, MD 20892
| |
Collapse
|
26
|
Fu L, Yin J, Shi YB. Involvement of epigenetic modifications in thyroid hormone-dependent formation of adult intestinal stem cells during amphibian metamorphosis. Gen Comp Endocrinol 2019; 271:91-96. [PMID: 30472386 PMCID: PMC6322911 DOI: 10.1016/j.ygcen.2018.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/27/2022]
Abstract
Amphibian metamorphosis has long been used as model to study postembryonic development in vertebrates, a period around birth in mammals when many organs/tissues mature into their adult forms and is characterized by peak levels of plasma thyroid hormone (T3). Of particular interest is the remodeling of the intestine during metamorphosis. In the highly-related anurans Xenopus laevis and Xenopus tropicalis, this remodeling process involves larval epithelial cell death and de novo formation of adult stem cells via dedifferentiation of some larval cells under the induction of T3, making it a valuable system to investigate how adult organ-specific stem cells are formed during vertebrate development. Here, we will review some studies by us and others on how T3 regulates the formation of the intestinal stem cells during metamorphosis. We will highlight the involvement of nucleosome removal and a positive feedback mechanism involving the histone methyltransferases in gene regulation by T3 receptor (TR) during this process.
Collapse
Affiliation(s)
- Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 49 Convent Dr., Bethesda, MD 20892, United States
| | - Jessica Yin
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 49 Convent Dr., Bethesda, MD 20892, United States
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 49 Convent Dr., Bethesda, MD 20892, United States.
| |
Collapse
|
27
|
Uchuya-Castillo J, Aznar N, Frau C, Martinez P, Le Nevé C, Marisa L, Penalva LOF, Laurent-Puig P, Puisieux A, Scoazec JY, Samarut J, Ansieau S, Plateroti M. Increased expression of the thyroid hormone nuclear receptor TRα1 characterizes intestinal tumors with high Wnt activity. Oncotarget 2018; 9:30979-30996. [PMID: 30123421 PMCID: PMC6089551 DOI: 10.18632/oncotarget.25741] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/12/2018] [Indexed: 01/10/2023] Open
Abstract
Our previous work demonstrated a key function of the thyroid hormone nuclear receptor TRα1, a T3-modulated transcription factor, in controlling intestinal development and homeostasis via the Wnt and Notch pathways. Importantly, increased expression of TRα1 in the intestinal epithelium in a mutated Apc genetic background (vil-TRα1/Apc+/1638N mice) accelerated tumorigenesis and contributed to a more aggressive tumor phenotype compared to that of the Apc mutants alone. Therefore, the aim of this study was to determine the relevance of this synergistic effect in human colorectal cancers and to gain insights into the mechanisms involved. We analyzed cohorts of patients by in silico and experimental approaches and observed increased TRα1 expression and a significant correlation between TRα1 levels and Wnt activity. TRα1 loss-of-function and gain-of-function in Caco2 cell lines not only confirmed that TRα1 levels control Wnt activity but also demonstrated the role of TRα1 in regulating cell proliferation and migration. Finally, upon investigation of the molecular mechanisms responsible for the Wnt-TRα1 association, we described the repression by TRα1 of several Wnt inhibitors, including Frzb, Sox17 and Wif1. In conclusion, our results underline an important functional interplay between the thyroid hormone nuclear receptor TRα1 and the canonical Wnt pathway in intestinal cancer initiation and progression. More importantly, we show for the first time that the expression of TRα1 is induced in human colorectal cancers.
Collapse
Affiliation(s)
- Joel Uchuya-Castillo
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, Lyon 69000, France
| | - Nicolas Aznar
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, Lyon 69000, France
| | - Carla Frau
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, Lyon 69000, France
| | - Pierre Martinez
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, Lyon 69000, France
| | - Clementine Le Nevé
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, Lyon 69000, France
| | - Laetitia Marisa
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre le Cancer, Paris 75000, France
| | - Luiz O F Penalva
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | | | - Alain Puisieux
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, Lyon 69000, France
| | | | - Jacques Samarut
- Institute de Génomique Fonctionnelle de Lyon, ENS de Lyon, Lyon 69342, France
| | - Stephane Ansieau
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, Lyon 69000, France
| | - Michelina Plateroti
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, Lyon 69000, France
| |
Collapse
|
28
|
Thyroid Hormone Promotes β-Catenin Activation and Cell Proliferation in Colorectal Cancer. Discov Oncol 2018; 9:156-165. [PMID: 29380230 DOI: 10.1007/s12672-018-0324-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/17/2018] [Indexed: 01/01/2023] Open
Abstract
Thyroid hormone status has long been implicated in cancer development. Here we investigated the role of thyroxine (T4) in colorectal cancer cell lines HCT 116 (APC wild type) and HT-29 (APC mutant), as well as the primary cultures of cancer cells derived from patients. Cell proliferation was evaluated with standard assay and proliferation marker expression. β-Catenin activation was examined according to nuclear β-catenin accumulation and β-catenin target gene expression. The results showed that T4 increased colorectal cancer cell proliferation while cell number and viability were elevated by T4 in both established cell lines and primary cells. Moreover, the transcriptions of proliferative genes PCNA, CCND1, and c-Myc were enhanced by T4 in the primary cells. T4 induced nuclear β-catenin accumulation, as well as high cyclin D1 and c-Myc levels compared to the untreated cells. In addition, the β-catenin-directed transactivation of CCND1 and c-Myc promoters was also upregulated by T4. CTNNB1 transcription was raised by T4 in HCT 116, but not in HT-29, while the boosted β-catenin levels were observed in both. Lastly, the T4-mediated gene expression could be averted by the knockdown of β-catenin. These results suggested that T4 promotes β-catenin activation and cell proliferation in colorectal cancer, indicating that an applicable therapeutic strategy should be considered.
Collapse
|
29
|
Oster M, Gerlinger C, Heide K, Just F, Borgelt L, Wolf P, Polley C, Vollmar B, Muráni E, Ponsuksili S, Wimmers K. Lower dietary phosphorus supply in pigs match both animal welfare aspects and resource efficiency. AMBIO 2018; 47:20-29. [PMID: 29159450 PMCID: PMC5722738 DOI: 10.1007/s13280-017-0969-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dietary phosphorus frequently exceeds age-specific requirements and pig manure often contains high phosphorus load which causes environmental burden at regional scales. Therefore, feeding strategies towards improved phosphorus efficiency and reduced environmental phosphorus load have to be developed. A 5-week feeding trial was conducted: piglets received medium, lower (-25%), or higher (+25%) amounts of phosphorus and calcium. Dietary responses were reflected by performance parameters, bone characteristics, and molecular data retrieved from serum, intestinal mucosa, and kidney cortex (p < 0.05). Transcripts associated with vitamin D hydroxylation (Cyp24A1, Cyp27A1, Cyp27B1) were regulated by diet at local tissue sites. Low-fed animals showed attempts to maintain mineral homoeostasis via intrinsic mechanisms, whereas the high-fed animals adapted at the expense of growth and development. Results suggest that a diet containing low phosphorus and calcium levels might be useful to improve resource efficiency and to reduce phosphorus losses along the agricultural value chain.
Collapse
Affiliation(s)
- Michael Oster
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Christian Gerlinger
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- University of Rostock, Justus-von-Liebig-Weg 6b, 18059 Rostock, Germany
| | - Kaja Heide
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- LUFA-ITL GmbH, Dr.-Hell-Str. 6, 24107 Kiel, Germany
| | - Franziska Just
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Luisa Borgelt
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6b, 18059 Rostock, Germany
| | - Petra Wolf
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6b, 18059 Rostock, Germany
| | - Christian Polley
- University of Rostock, Justus-von-Liebig-Weg 6b, 18059 Rostock, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University Medical Center Rostock, Schillingallee 69a, 18057 Rostock, Germany
| | - Eduard Muráni
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6b, 18059 Rostock, Germany
| |
Collapse
|
30
|
Zsarnovszky A, Kiss D, Jocsak G, Nemeth G, Toth I, Horvath TL. Thyroid hormone- and estrogen receptor interactions with natural ligands and endocrine disruptors in the cerebellum. Front Neuroendocrinol 2018; 48:23-36. [PMID: 28987779 DOI: 10.1016/j.yfrne.2017.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/06/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
Although the effects of phytoestrogens on brain function is widely unknown, they are often regarded as "natural" and thus as harmless. However, the effects of phytoestrogens or environmental pollutants on brain function is underestimated. Estrogen (17beta-estradiol, E2) and thyroid hormones (THs) play pivotal roles in brain development. In the mature brain, these hormones regulate metabolism on cellular and organismal levels. Thus, E2 and THs do not only regulate the energy metabolism of the entire organism, but simultaneously also regulate important homeostatic parameters of neurons and glia in the CNS. It is, therefore, obvious that the mechanisms through which these hormones exert their effects are pleiotropic and include both intra- and intercellular actions. These hormonal mechanisms are versatile, and the experimental investigation of simultaneous hormone-induced mechanisms is technically challenging. In addition, the normal physiological settings of metabolic parameters depend on a plethora of interactions of the steroid hormones. In this review, we discuss conceptual and experimental aspects of the gonadal and thyroid hormones as they relate to in vitro models of the cerebellum.
Collapse
Affiliation(s)
- Attila Zsarnovszky
- Department of Animal Physiology and Animal Health, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100 Gödöllő, Hungary; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - David Kiss
- Departments of Physiology and Biochemistry, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Gergely Jocsak
- Departments of Physiology and Biochemistry, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Gabor Nemeth
- Department of Obstetrics and Gynecology, University of Szeged, School of Medicine, Szeged, Hungary
| | - Istvan Toth
- Departments of Physiology and Biochemistry, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Tamas L Horvath
- Department of Animal Physiology and Animal Health, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100 Gödöllő, Hungary; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Departments of Anatomy and Histology, University of Veterinary Medicine, Budapest 1078, Hungary.
| |
Collapse
|
31
|
Frau C, Godart M, Plateroti M. Thyroid hormone regulation of intestinal epithelial stem cell biology. Mol Cell Endocrinol 2017; 459:90-97. [PMID: 28288904 DOI: 10.1016/j.mce.2017.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 01/08/2023]
Abstract
The gastrointestinal tract is a well-characterized target of thyroid hormones and thyroid hormone nuclear receptors TRs, as extensively described in the literature. The paradigm is its important remodelling in amphibians during thyroid hormone-dependent metamorphosis. Interestingly, several studies have described the conservation of this hormonal signal during intestinal development in mammals. Additional data suggested that it may also play a role in intestinal homeostasis, stem cell physiology and progenitor commitment as well as in tumour development. It is worth underlining that in the mammalian intestine the functionality of the TRα1 receptor is coordinated and integrated with other signalling pathways, such as Wnt and Notch, specifically at the level of stem/progenitor cell populations. Here, we summarize these data and concepts and discuss this new role for thyroid hormones and the TRα1 receptor in the biology of intestinal epithelial precursor cells.
Collapse
Affiliation(s)
- Carla Frau
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de La Recherche, 69000 Lyon, France
| | - Matthias Godart
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de La Recherche, 69000 Lyon, France
| | - Michelina Plateroti
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de La Recherche, 69000 Lyon, France.
| |
Collapse
|
32
|
Ishizuya-Oka A. How thyroid hormone regulates transformation of larval epithelial cells into adult stem cells in the amphibian intestine. Mol Cell Endocrinol 2017; 459:98-103. [PMID: 28232053 DOI: 10.1016/j.mce.2017.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 02/08/2023]
Abstract
In the amphibian intestine during metamorphosis, a small number of larval epithelial cells dedifferentiate into adult stem cells that newly form the adult epithelium analogous to the mammalian counterpart, while most of them undergo apoptosis. Because this larval-to-adult intestinal remodeling can be experimentally induced by thyroid hormone (TH) both in vivo and in vitro, TH response genes identified in the Xenopus intestine provide us valuable clues to investigating how adult stem cells and their niche are formed during postembryonic development. Their expression and functional analyses by using the culture and recent transgenic (Tg) techniques have shed light on key signaling pathways essential for intestinal stem cell development. The present review focuses on such recent findings and discusses the evolutionally conserved roles of TH in development or maintenance of the stem cells which are common to the terrestrial vertebrate intestines.
Collapse
Affiliation(s)
- Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, Musashino, Tokyo 180-0023, Japan.
| |
Collapse
|
33
|
Weingarten C, Jenudi Y, Tshuva RY, Moskovich D, Alfandari A, Hercbergs A, Davis PJ, Ellis M, Ashur-Fabian O. The Interplay Between Epithelial-Mesenchymal Transition (EMT) and the Thyroid Hormones-αvβ3 Axis in Ovarian Cancer. Discov Oncol 2017; 9:22-32. [PMID: 29260382 DOI: 10.1007/s12672-017-0316-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is a highly metastatic disease. The metastatic potential is enhanced by epithelial to mesenchymal transition (EMT) in which αvβ3 integrin plays a role. Thyroid hormones (L-thyroxine, T4, and 3,5,3'-triiodo-L-thyronine, T3) bind this integrin, and we hypothesized that the thyroid hormone-αvβ3 axis may be involved in EMT activity in ovarian cancer. The transcription (mRNA), protein abundance (westerns), and protein localization (fluorescence microscopy) of several EMT markers were studied in ovarian cancer cells (OVCAR-3, A2780, and SKOV-3) treated with 1 nM T3 or 100 nM T4 for 1-24 h. The protein levels of β-catenin, and its downstream targets, zeb-1, slug, and vimentin, were significantly induced by both hormones, while the effect on transcription was limited. The pre-incubation of the cells overnight with two integrin inhibitors, RGD (0.1-10 μM) or αvβ3 blocking antibody (1-100 ng/mL), prevented the induction of β-catenin by T3 and zeb-1 by T4, indicating direct integrin involvement. The transcription of the mesenchymal markers, β-catenin, zeb-1, slug/snail, vimentin, and n-cadherin was hardly affected by T3 and T4, while that of the epithelial markers, e-cadherin and zo-1, was inhibited. Our results suggest a novel role for the thyroid hormone-αvβ3 axis in EMT, with possible implications for ovarian cancer metastasis.
Collapse
Affiliation(s)
- Chen Weingarten
- Translational Oncology Laboratory, The Hematology Institute and Blood Bank, Meir Medical Center, Tchernichovsky 59, 6997801, Kfar Saba, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yonatan Jenudi
- Translational Oncology Laboratory, The Hematology Institute and Blood Bank, Meir Medical Center, Tchernichovsky 59, 6997801, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rami Yair Tshuva
- Translational Oncology Laboratory, The Hematology Institute and Blood Bank, Meir Medical Center, Tchernichovsky 59, 6997801, Kfar Saba, Israel
| | - Dotan Moskovich
- Translational Oncology Laboratory, The Hematology Institute and Blood Bank, Meir Medical Center, Tchernichovsky 59, 6997801, Kfar Saba, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Alfandari
- Translational Oncology Laboratory, The Hematology Institute and Blood Bank, Meir Medical Center, Tchernichovsky 59, 6997801, Kfar Saba, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Paul J Davis
- Department of Medicine, Albany Medical College, Albany, NY, USA
| | - Martin Ellis
- Translational Oncology Laboratory, The Hematology Institute and Blood Bank, Meir Medical Center, Tchernichovsky 59, 6997801, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Ashur-Fabian
- Translational Oncology Laboratory, The Hematology Institute and Blood Bank, Meir Medical Center, Tchernichovsky 59, 6997801, Kfar Saba, Israel. .,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
34
|
Goemann IM, Romitti M, Meyer ELS, Wajner SM, Maia AL. Role of thyroid hormones in the neoplastic process: an overview. Endocr Relat Cancer 2017; 24:R367-R385. [PMID: 28928142 DOI: 10.1530/erc-17-0192] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022]
Abstract
Thyroid hormones (TH) are critical regulators of several physiological processes, which include development, differentiation and growth in virtually all tissues. In past decades, several studies have shown that changes in TH levels caused by thyroid dysfunction, disruption of deiodinases and/or thyroid hormone receptor (TR) expression in tumor cells, influence cell proliferation, differentiation, survival and invasion in a variety of neoplasms in a cell type-specific manner. The function of THs and TRs in neoplastic cell proliferation involves complex mechanisms that seem to be cell specific, exerting effects via genomic and nongenomic pathways, repressing or stimulating transcription factors, influencing angiogenesis and promoting invasiveness. Taken together, these observations indicate an important role of TH status in the pathogenesis and/or development of human neoplasia. Here, we aim to present an updated and comprehensive picture of the accumulated knowledge and the current understanding of the potential role of TH status on the different hallmarks of the neoplastic process.
Collapse
Affiliation(s)
- Iuri Martin Goemann
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mirian Romitti
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Erika L Souza Meyer
- Department of Internal MedicineUniversidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Simone Magagnin Wajner
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Luiza Maia
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
35
|
Huang PS, Lin YH, Chi HC, Chen PY, Huang YH, Yeh CT, Wang CS, Lin KH. Thyroid hormone inhibits growth of hepatoma cells through induction of miR-214. Sci Rep 2017; 7:14868. [PMID: 29093516 PMCID: PMC5665905 DOI: 10.1038/s41598-017-14864-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022] Open
Abstract
Thyroid hormone (TH) plays a role in regulating the metabolic rate, heart functions, muscle control and maintenance of bones. 3,3′5-tri-iodo-L-thyronine (T3) displays high affinity to nuclear thyroid hormone receptors (TRs), which mediate most TH actions. Recent studies have shown hypothyroidism in patients with an increased risk of hepatocellular carcinoma (HCC). MicroRNAs (miRNAs), a class of non-protein-coding RNA, are suggested to control tumor growth by interacting with target genes. However, the clinical significance of T3/TR-regulated miRNAs in tumors has yet to be established. In the current study, miRNA expression profile screening was performed using SYBR Green-Based qRT-PCR array in TR-overexpressing HepG2 cells. miR-214-3p, which is expressed at low levels in HCC, was stimulated upon T3 application. The 3′UTR luciferase reporter assay confirmed that the proto-oncogene serine/threonine-protein kinase, PIM-1, is a miR-214-3p target. PIM-1 was decreased upon treatment with miR-214-3p or T3 stimulation. PIM-1 was highly expressed in HCC, and the effect of PIM-1 on cell proliferation might be mediated by the inhibition of p21. Furthermore, the T3-induced suppression of cell proliferation was partially rescued upon miR-214-3p knockdown. Our data demonstrate that T3 induces miR-214-3p expression and suppresses cell proliferation through PIM-1, thus contributing to the inhibition of HCC tumor formation.
Collapse
Affiliation(s)
- Po-Shuan Huang
- Department of Biochemistry, College of Medicine, Chang-Gung University, 333, Taoyuan, Taiwan
| | - Yang-Hsiang Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, 333, Taoyuan, Taiwan
| | - Hsiang-Cheng Chi
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, 333, Linkou, Taoyuan, Taiwan
| | - Pei-Yu Chen
- Department of Biochemistry, College of Medicine, Chang-Gung University, 333, Taoyuan, Taiwan
| | - Ya-Hui Huang
- Liver Research Center, Chang Gung Memorial Hospital, 333, Linko, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, 333, Linko, Taoyuan, Taiwan
| | - Chia-Siu Wang
- Department of General Surgery, Chang Gung Memorial Hospital, Chiayi, 613, Taiwan.
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, 333, Taoyuan, Taiwan. .,Liver Research Center, Chang Gung Memorial Hospital, 333, Linko, Taoyuan, Taiwan. .,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, 333, Taoyuan, Taiwan.
| |
Collapse
|
36
|
Hasebe T, Fujimoto K, Kajita M, Ishizuya-Oka A. Essential Roles of Thyroid Hormone-Regulated Hyaluronan/CD44 Signaling in Adult Stem Cell Development During Xenopus laevis
Intestinal Remodeling. Stem Cells 2017; 35:2175-2183. [DOI: 10.1002/stem.2671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/26/2017] [Accepted: 07/15/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Takashi Hasebe
- Department of Biology; Nippon Medical School; Musashino Tokyo Japan
| | - Kenta Fujimoto
- Department of Biology; Nippon Medical School; Musashino Tokyo Japan
| | - Mitsuko Kajita
- Department of Molecular Biology; Institute for Advanced Medical Sciences, Nippon Medical School; Kawasaki Kanagawa Japan
| | | |
Collapse
|
37
|
López Fontana CM, Zyla LE, Santiano FE, Sasso CV, Cuello-Carrión FD, Pistone Creydt V, Fanelli MA, Carón RW. Hypothyroidism reduces mammary tumor progression via Β-catenin-activated intrinsic apoptotic pathway in rats. Histochem Cell Biol 2017; 147:759-769. [PMID: 28191619 DOI: 10.1007/s00418-017-1544-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2017] [Indexed: 01/26/2023]
Abstract
Experimental hypothyroidism retards mammary carcinogenesis promoting apoptosis of tumor cells. β-catenin plays a critical role in cell adhesion and intracellular signaling pathways conditioning the prognosis of breast cancer. However, the mechanistic connections associated with the expression of β-catenin in thyroid status and breast cancer are not known. Therefore, we studied the relationship between the expression and localization of β-catenin and apoptosis in mammary tumors induced by 7,12-dimethylbenz(a)anthracene (DMBA) in hypothyroid (Hypot) and euthyroid (EUT) rats. Female Sprague Dawley rats were treated with a dose of DMBA (15 mg/rat) at 55 days of age and were then divided into two groups: HypoT (0.01% 6-N-propyl-2-thiouracil in drinking water, n = 54) and EUT (untreated control, n = 43). Latency, incidence and progression of tumors were determined. At sacrifice, tumors were obtained for immunohistological studies and Western Blot. The latency was longer (p < 0.05), the incidence was lower (p < 0.0001) and tumor growth was slower (p < 0.01) in HypoT rats compared to EUT. The expression of Bax, cleaved caspase-9 and caspase-3 was significantly higher in tumors of HypoT than in EUT (p < 0.05) indicating the activation of the intrinsic pathway. In this group, β-catenin was expressed in the plasma membrane and with less intensity, while its expression was nuclear and with greater intensity in the EUT (p < 0.05). Moreover, the expression of survivin was reduced in tumors of HypoT rats (p < 0.05). In conclusion, decreased expression of β-catenin and its normal location in membrane of mammary tumors are associated with augmented apoptosis via activation of the intrinsic pathway in HypoT rats.
Collapse
Affiliation(s)
- C M López Fontana
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-Mendoza CONICET, Av. Adrián Ruiz-Leal s/n, CC855, Mendoza, Argentina.
| | - L E Zyla
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-Mendoza CONICET, Av. Adrián Ruiz-Leal s/n, CC855, Mendoza, Argentina
| | - F E Santiano
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-Mendoza CONICET, Av. Adrián Ruiz-Leal s/n, CC855, Mendoza, Argentina
| | - C V Sasso
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-Mendoza CONICET, Av. Adrián Ruiz-Leal s/n, CC855, Mendoza, Argentina
| | - F D Cuello-Carrión
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-Mendoza CONICET, Av. Adrián Ruiz-Leal s/n, CC855, Mendoza, Argentina
| | - V Pistone Creydt
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-Mendoza CONICET, Av. Adrián Ruiz-Leal s/n, CC855, Mendoza, Argentina
| | - M A Fanelli
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-Mendoza CONICET, Av. Adrián Ruiz-Leal s/n, CC855, Mendoza, Argentina
| | - R W Carón
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-Mendoza CONICET, Av. Adrián Ruiz-Leal s/n, CC855, Mendoza, Argentina
| |
Collapse
|
38
|
The thyroid hormone nuclear receptors and the Wnt/β-catenin pathway: An intriguing liaison. Dev Biol 2017; 422:71-82. [DOI: 10.1016/j.ydbio.2017.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/26/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022]
|
39
|
Sun G, Roediger J, Shi YB. Thyroid hormone regulation of adult intestinal stem cells: Implications on intestinal development and homeostasis. Rev Endocr Metab Disord 2016; 17:559-569. [PMID: 27554108 DOI: 10.1007/s11154-016-9380-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organ-specific adult stem cells are essential for organ homeostasis, tissue repair and regeneration. The formation of such stem cells often takes place during postembryonic development, a period around birth in mammals when plasma thyroid hormone concentration is high. The life-long self-renewal of the intestinal epithelium has made mammalian intestine a valuable model to study the function and regulation and adult stem cells. On the other hand, much less is known about how the adult intestinal stem cells are formed during vertebrate development. Here, we will review some recent progresses on this subject, focusing mainly on the formation of the adult intestine during Xenopus metamorphosis. We will discuss the role of thyroid hormone signaling pathway in the process and potential molecular conservations between amphibians and mammals as well as the implications in organ homeostasis and human diseases.
Collapse
Affiliation(s)
- Guihong Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Julia Roediger
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD, 20892, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD, 20892, USA.
| |
Collapse
|
40
|
Izaguirre MF, Casco VH. E-cadherin roles in animal biology: A perspective on thyroid hormone-influence. Cell Commun Signal 2016; 14:27. [PMID: 27814736 PMCID: PMC5097364 DOI: 10.1186/s12964-016-0150-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/26/2016] [Indexed: 01/15/2023] Open
Abstract
The establishment, remodeling and maintenance of tissular architecture during animal development, and even across juvenile to adult life, are deeply regulated by a delicate interplay of extracellular signals, cell membrane receptors and intracellular signal messengers. It is well known that cell adhesion molecules (cell-cell and cell-extracellular matrix) play a critical role in these processes. Particularly, adherens junctions (AJs) mediated by E-cadherin and catenins determine cell-cell contact survival and epithelia function. Consequently, this review seeks to encompass the complex and prolific knowledge about E-cadherin roles during physiological and pathological states, particularly focusing on the influence exerted by the thyroid hormone (TH).
Collapse
Affiliation(s)
- María Fernanda Izaguirre
- Laboratorio de Microscopia Aplicada a Estudios Moleculares y Celulares, Facultad de Ingeniería (Bioingeniería-Bioinformática), Universidad Nacional de Entre Ríos, Ruta 11, Km 10, Oro Verde, Entre Ríos, Argentina
| | - Victor Hugo Casco
- Laboratorio de Microscopia Aplicada a Estudios Moleculares y Celulares, Facultad de Ingeniería (Bioingeniería-Bioinformática), Universidad Nacional de Entre Ríos, Ruta 11, Km 10, Oro Verde, Entre Ríos, Argentina.
| |
Collapse
|
41
|
Fu L, Shi YB. The Sox transcriptional factors: Functions during intestinal development in vertebrates. Semin Cell Dev Biol 2016; 63:58-67. [PMID: 27567710 DOI: 10.1016/j.semcdb.2016.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 12/28/2022]
Abstract
The intestine has long been studied as a model for adult stem cells due to the life-long self-renewal of the intestinal epithelium through the proliferation of the adult intestinal stem cells. Recent evidence suggests that the formation of adult intestinal stem cells in mammals takes place during the thyroid hormone-dependent neonatal period, also known as postembryonic development, which resembles intestinal remodeling during frog metamorphosis. Studies on the metamorphosis in Xenopus laevis have revealed that many members of the Sox family, a large family of DNA binding transcription factors, are upregulated in the intestinal epithelium during the formation and/or proliferation of the intestinal stem cells. Similarly, a number of Sox genes have been implicated in intestinal development and pathogenesis in mammals. Futures studies are needed to determine the expression and potential involvement of this important gene family in the development of the adult intestinal stem cells. These include the analyses of the expression and regulation of these and other Sox genes during postembryonic development in mammals as well as functional investigations in both mammals and amphibians by using the recently developed gene knockout technologies.
Collapse
Affiliation(s)
- Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD, 20892, United States
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD, 20892, United States.
| |
Collapse
|
42
|
Perra A, Plateroti M, Columbano A. T3/TRs axis in hepatocellular carcinoma: new concepts for an old pair. Endocr Relat Cancer 2016; 23:R353-69. [PMID: 27353037 DOI: 10.1530/erc-16-0152] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide, and its burden is expected to further increase in the next years. Chronic inflammation, induced by multiple viruses or metabolic alterations, and epigenetic and genetic modifications, cooperate in cancer development via a combination of common and distinct aetiology-specific pathways. In spite of the advances of classical therapies, the prognosis of this neoplasm has not considerably improved over the past few years. The advent of targeted therapies and the approval of the systemic treatment of advanced HCC with the kinase inhibitor sorafenib have provided some hope for the future. However, the benefits obtained from this treatment are still disappointing, as it extends the median life expectancy of patients by only few months. It is thus mandatory to find alternative effective treatments. Although the role played by thyroid hormones (THs) and their nuclear receptors (TRs) in human cancer is still unclear, mounting evidence indicates that they behave as oncosuppressors in HCC. However, the molecular mechanisms by which they exert this effect and the consequence of their activation following ligand binding on HCC progression remain elusive. In this review, we re-evaluate the existing evidence of the role of TH/TRs in HCC development; we will also discuss how TR alterations could affect fundamental biological processes, such as hepatocyte proliferation and differentiation, and consequently HCC progression. Finally, we will discuss if and how TRs can be foreseen as therapeutic targets in HCC and whether selective TR modulation by TH analogues may hold promise for HCC treatment.
Collapse
Affiliation(s)
- Andrea Perra
- Department of Biomedical SciencesUniversity of Cagliari, Cagliari, Italy
| | - Michelina Plateroti
- Cancer Research Center of Lyon INSERM U1052CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la Recherche, Lyon, France
| | - Amedeo Columbano
- Department of Biomedical SciencesUniversity of Cagliari, Cagliari, Italy
| |
Collapse
|
43
|
Lin H, Chin Y, Yang YSH, Lai H, Whang‐Peng J, Liu LF, Tang H, Davis PJ. Thyroid Hormone, Cancer, and Apoptosis. Compr Physiol 2016; 6:1221-37. [DOI: 10.1002/cphy.c150035] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Chung IH, Chen CY, Lin YH, Chi HC, Huang YH, Tai PJ, Liao CJ, Tsai CY, Lin SL, Wu MH, Chen CY, Lin KH. Thyroid hormone-mediated regulation of lipocalin 2 through the Met/FAK pathway in liver cancer. Oncotarget 2016; 6:15050-64. [PMID: 25940797 PMCID: PMC4558135 DOI: 10.18632/oncotarget.3670] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/25/2015] [Indexed: 11/25/2022] Open
Abstract
The thyroid hormone, 3,3′,5-triiodo-L-thyronine (T3), regulates cell growth, development and differentiation via interactions with thyroid hormone receptors (TR), but the mechanisms underlying T3-mediated modulation of cancer progression are currently unclear. Lipocalin 2 (LCN2), a tumor-associated protein, is overexpressed in a variety of cancer types. Oligonucleotide microarray, coupled with proteomic analysis, has revealed that LCN2 is positively regulated by T3/TR. However, the physiological role and pathway of T3-mediated regulation of LCN2 in hepatocellular carcinogenesis remain to be characterized. Upregulation of LCN2 after T3 stimulation was observed in a time- and dose-dependent manner. Additionally, TRE on the LCN2 promoter was identified at positions −1444/−1427. Overexpression of LCN2 enhanced tumor cell migration and invasion, and conversely, its knockdown suppressed migration and invasion, both in vitro and in vivo. LCN2-induced migration occurred through activation of the Met/FAK cascade. LCN2 was overexpressed in clinical hepatocellular carcinoma (HCC) patients, compared with normal subjects, and positively correlated with TRα levels. Both TRα and LCN2 showed similar expression patterns in relation to survival rate, tumor grade, tumor stage and vascular invasion. Our findings collectively support a potential role of T3/TR in cancer progression through regulation of LCN2 via the Met/FAK cascade. LCN2 may thus be effectively utilized as a novel marker and therapeutic target in HCC.
Collapse
Affiliation(s)
- I-Hsiao Chung
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Cheng-Yi Chen
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yang-Hsiang Lin
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Hsiang-Cheng Chi
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Ya-Hui Huang
- Liver Research Center, Department of Hepato-Gastroenterology, Chang-Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Pei-Ju Tai
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Chia-Jung Liao
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Chung-Ying Tsai
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Syuan-Ling Lin
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Meng-Han Wu
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Ching-Ying Chen
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Kwang-Huei Lin
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| |
Collapse
|
45
|
Nelson KR, Schroeder AL, Ankley GT, Blackwell BR, Blanksma C, Degitz SJ, Flynn KM, Jensen KM, Johnson RD, Kahl MD, Knapen D, Kosian PA, Milsk RY, Randolph EC, Saari T, Stinckens E, Vergauwen L, Villeneuve DL. Impaired anterior swim bladder inflation following exposure to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole part I: Fathead minnow. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 173:204-217. [PMID: 26818709 DOI: 10.1016/j.aquatox.2015.12.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/17/2015] [Accepted: 12/30/2015] [Indexed: 05/09/2023]
Abstract
In the present study, a hypothesized adverse outcome pathway linking inhibition of thyroid peroxidase (TPO) activity to impaired swim bladder inflation was investigated in two experiments in which fathead minnows (Pimephales promelas) were exposed to 2-mercaptobenzothiazole (MBT). Continuous exposure to 1mg MBT/L for up to 22 days had no effect on inflation of the posterior chamber of the swim bladder, which typically inflates around 6 days post fertilization (dpf), a period during which maternally-derived thyroid hormone is presumed to be present. In contrast, inflation of the anterior swim bladder, which occurs around 14dpf, was impacted. Specifically, at 14dpf, approximately 50% of fish exposed to 1mg MBT/L did not have an inflated anterior swim bladder. In fish exposed to MBT through 21 or 22dpf, the anterior swim bladder was able to inflate, but the ratio of the anterior/posterior chamber length was significantly reduced compared to controls. Both abundance of thyroid peroxidase mRNA and thyroid follicle histology suggest that fathead minnows mounted a compensatory response to the presumed inhibition of TPO activity by MBT. Time-course characterization showed that fish exposed to MBT for at least 4 days prior to normal anterior swim bladder inflation had significant reductions in anterior swim bladder size, relative to the posterior chamber, compared to controls. These results, along with similar results observed in zebrafish (see part II, this issue) are consistent with the hypothesis that thyroid hormone signaling plays a significant role in mediating anterior swim bladder inflation and development in cyprinids, and that role can be disrupted by exposure to thyroid hormone synthesis inhibitors. Nonetheless, possible thyroid-independent actions of MBT on anterior swim bladder inflation cannot be ruled out based on the present results. Overall, although anterior swim bladder inflation has not been directly linked to survival as posterior swim bladder inflation has, potential links to adverse ecological outcomes are plausible given involvement of the anterior chamber in sound production and detection.
Collapse
Affiliation(s)
- Krysta R Nelson
- Student Services Contractor, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Anthony L Schroeder
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA; University of Minnesota-Twin Cities, Water Resources Center, 1985 Lower Buford Circle, St. Paul, MN 55108, USA.
| | - Gerald T Ankley
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Brett R Blackwell
- Oak Ridge Institute for Science and Education (ORISE) Research Participation Program, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Chad Blanksma
- Badger Technical Services, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Sigmund J Degitz
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Kevin M Flynn
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Kathleen M Jensen
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Rodney D Johnson
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Michael D Kahl
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Patricia A Kosian
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Rebecca Y Milsk
- Oak Ridge Institute for Science and Education (ORISE) Research Participation Program, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Eric C Randolph
- Student Services Contractor, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Travis Saari
- Student Services Contractor, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Evelyn Stinckens
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Daniel L Villeneuve
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| |
Collapse
|
46
|
Milanesi A, Lee JW, Kim NH, Liu YY, Yang A, Sedrakyan S, Kahng A, Cervantes V, Tripuraneni N, Cheng SY, Perin L, Brent GA. Thyroid Hormone Receptor α Plays an Essential Role in Male Skeletal Muscle Myoblast Proliferation, Differentiation, and Response to Injury. Endocrinology 2016; 157:4-15. [PMID: 26451739 PMCID: PMC4701883 DOI: 10.1210/en.2015-1443] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thyroid hormone plays an essential role in myogenesis, the process required for skeletal muscle development and repair, although the mechanisms have not been established. Skeletal muscle develops from the fusion of precursor myoblasts into myofibers. We have used the C2C12 skeletal muscle myoblast cell line, primary myoblasts, and mouse models of resistance to thyroid hormone (RTH) α and β, to determine the role of thyroid hormone in the regulation of myoblast differentiation. T3, which activates thyroid hormone receptor (TR) α and β, increased myoblast differentiation whereas GC1, a selective TRβ agonist, was minimally effective. Genetic approaches confirmed that TRα plays an important role in normal myoblast proliferation and differentiation and acts through the Wnt/β-catenin signaling pathway. Myoblasts with TRα knockdown, or derived from RTH-TRα PV (a frame-shift mutation) mice, displayed reduced proliferation and myogenic differentiation. Moreover, skeletal muscle from the TRα1PV mutant mouse had impaired in vivo regeneration after injury. RTH-TRβ PV mutant mouse model skeletal muscle and derived primary myoblasts did not have altered proliferation, myogenic differentiation, or response to injury when compared with control. In conclusion, TRα plays an essential role in myoblast homeostasis and provides a potential therapeutic target to enhance skeletal muscle regeneration.
Collapse
Affiliation(s)
- Anna Milanesi
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Jang-Won Lee
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Nam-Ho Kim
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Yan-Yun Liu
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - An Yang
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Sargis Sedrakyan
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Andrew Kahng
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Vanessa Cervantes
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Nikita Tripuraneni
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Sheue-yann Cheng
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Laura Perin
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Gregory A Brent
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| |
Collapse
|
47
|
Sirakov M, Boussouar A, Kress E, Frau C, Lone IN, Nadjar J, Angelov D, Plateroti M. The thyroid hormone nuclear receptor TRα1 controls the Notch signaling pathway and cell fate in murine intestine. Development 2015; 142:2764-74. [PMID: 26286942 DOI: 10.1242/dev.121962] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Thyroid hormones control various aspects of gut development and homeostasis. The best-known example is in gastrointestinal tract remodeling during amphibian metamorphosis. It is well documented that these hormones act via the TR nuclear receptors, which are hormone-modulated transcription factors. Several studies have shown that thyroid hormones regulate the expression of several genes in the Notch signaling pathway, indicating a possible means by which they participate in the control of gut physiology. However, the mechanisms and biological significance of this control have remained unexplored. Using multiple in vivo and in vitro approaches, we show that thyroid hormones positively regulate Notch activity through the TRα1 receptor. From a molecular point of view, TRα1 indirectly controls Notch1, Dll1, Dll4 and Hes1 expression but acts as a direct transcriptional regulator of the Jag1 gene by binding to a responsive element in the Jag1 promoter. Our findings show that the TRα1 nuclear receptor plays a key role in intestinal crypt progenitor/stem cell biology by controlling the Notch pathway and hence the balance between cell proliferation and cell differentiation.
Collapse
Affiliation(s)
- Maria Sirakov
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon 1, 16 Rue Raphael Dubois, Villeurbanne 69622, France
| | - Amina Boussouar
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon 1, 16 Rue Raphael Dubois, Villeurbanne 69622, France
| | - Elsa Kress
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon 1, 16 Rue Raphael Dubois, Villeurbanne 69622, France
| | - Carla Frau
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon 1, 16 Rue Raphael Dubois, Villeurbanne 69622, France
| | - Imtiaz Nisar Lone
- Laboratoire de Biologie Moléculaire de la cellule, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon 69007, France
| | - Julien Nadjar
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon 1, 16 Rue Raphael Dubois, Villeurbanne 69622, France
| | - Dimitar Angelov
- Laboratoire de Biologie Moléculaire de la cellule, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon 69007, France
| | - Michelina Plateroti
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon 1, 16 Rue Raphael Dubois, Villeurbanne 69622, France
| |
Collapse
|
48
|
Heublein S, Mayr D, Meindl A, Angele M, Gallwas J, Jeschke U, Ditsch N. Thyroid Hormone Receptors Predict Prognosis in BRCA1 Associated Breast Cancer in Opposing Ways. PLoS One 2015; 10:e0127072. [PMID: 26029931 PMCID: PMC4451081 DOI: 10.1371/journal.pone.0127072] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 04/11/2015] [Indexed: 12/02/2022] Open
Abstract
Since BRCA1 associated breast cancers are frequently classified as hormone receptor negative or even triple negative, the application of endocrine therapies is rather limited in these patients. Like hormone receptors that bind to estrogen or progesterone, thyroid hormone receptors (TRs) are members of the nuclear hormone receptor superfamily. TRs might be interesting biomarkers - especially in the absence of classical hormone receptors. The current study aimed to investigate whether TRs may be specifically expressed in BRCA1 associated cancer cases and whether they are of prognostic significance in these patients as compared to sporadic breast cancer cases. This study analyzed TRα and TRβ immunopositivity in BRCA1 associated (n = 38) and sporadic breast cancer (n = 86). Further, TRs were studied in MCF7 (BRCA1 wildtype) and HCC3153 (BRCA1 mutated) cells. TRβ positivity rate was significantly higher in BRCA1 associated as compared to sporadic breast cancers (p = 0.001). The latter observation remained to be significant when cases that had been matched for clinicopathological criteria were compared (p = 0.037). Regarding BRCA1 associated breast cancer cases TRβ positivity turned out to be a positive prognostic factor for five-year (p = 0.007) and overall survival (p = 0.026) while TRα positivity predicted reduced five-year survival (p = 0.030). Activation of TRβ resulted in down-modulation of CTNNB1 while TRα inhibition reduced cell viability in HCC3153. However, only BRCA1 wildtype MCF7 cells were capable of rapidly degrading TRα1 in response to T3 stimulation. Significantly, this study identified TRβ to be up-regulated in BRCA1 associated breast cancer and revealed TRs to be associated with patients’ prognosis. TRs were also found to be expressed in triple negative BRCA1 associated breast cancer. Further studies need to be done in order to evaluate whether TRs may become interesting targets of endocrine therapeutic approaches, especially when tumors are triple-negative.
Collapse
Affiliation(s)
- Sabine Heublein
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University of Munich, Munich, Germany
- * E-mail:
| | - Doris Mayr
- Department of Pathology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Alfons Meindl
- Department of Obstetrics and Gynecology, Technical University of Munich, Munich, Germany
| | - Martin Angele
- Department of Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Julia Gallwas
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Nina Ditsch
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
49
|
Boursi B, Haynes K, Mamtani R, Yang YX. Thyroid dysfunction, thyroid hormone replacement and colorectal cancer risk. J Natl Cancer Inst 2015; 107:djv084. [PMID: 25855726 DOI: 10.1093/jnci/djv084] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Current screening guidelines for colorectal cancer (CRC) do not consider thyroid dysfunction as a risk factor for disease development. We sought to determine the risk of developing CRC in patients with thyroid dysfunction, with and without thyroid hormone replacement (THR). METHODS We conducted a nested case-control study using a large population-based medical records database from the United Kingdom. Study case patients were defined as those with any medical code of CRC. Subjects with familial colorectal cancer syndromes or inflammatory bowel disease (IBD) were excluded. For every case patient, four eligible control patients matched on age, sex, practice site, and duration of follow-up before index date were selected using incidence density sampling. Exposure was THR therapy before index date. We further divided the THR unexposed group into patients with hypothyroidism (TSH > 4 mg/dl), patients with hyperthyroidism (TSH < 0.4 mg/dl), and subjects without documented thyroid abnormality. The adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for CRC were estimated using conditional logistic regression. All statistical tests were two-sided. RESULTS We identified 20990 CRC patients and 82054 control patients. The adjusted odds ratio for CRC associated with THR was 0.88 (95% CI = 0.79 to 0.99, P = .03) and 0.68 (95% CI = 0.55 to 0.83, P < .001) for treatment initiated five to 10 years and more than 10 years before index date, respectively. This protective association increased with cumulative duration of therapy. In contrast, hyperthyroidism (adjusted OR = 1.21, 95% CI = 1.08 to 1.36, P = .001) or untreated hypothyroidism (adjusted OR = 1.16, 95% CI = 1.08 to 1.24, P < .001) were associated with increased risk of CRC. CONCLUSION Long-term THR is associated with a decreased risk of CRC. Hyperthyroidism and untreated hypothyroidism are associated with modestly elevated risk of CRC.
Collapse
Affiliation(s)
- Ben Boursi
- Division of Gastroenterology (BB, YXY), Center for Clinical Epidemiology and Biostatistics (BB, KH, RM, YXY), Department of Biostatistics and Epidemiology (BB, KH, RM, YXY), Division of Hematology/Oncology (RM), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel (BB)
| | - Kevin Haynes
- Division of Gastroenterology (BB, YXY), Center for Clinical Epidemiology and Biostatistics (BB, KH, RM, YXY), Department of Biostatistics and Epidemiology (BB, KH, RM, YXY), Division of Hematology/Oncology (RM), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel (BB)
| | - Ronac Mamtani
- Division of Gastroenterology (BB, YXY), Center for Clinical Epidemiology and Biostatistics (BB, KH, RM, YXY), Department of Biostatistics and Epidemiology (BB, KH, RM, YXY), Division of Hematology/Oncology (RM), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel (BB)
| | - Yu-Xiao Yang
- Division of Gastroenterology (BB, YXY), Center for Clinical Epidemiology and Biostatistics (BB, KH, RM, YXY), Department of Biostatistics and Epidemiology (BB, KH, RM, YXY), Division of Hematology/Oncology (RM), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel (BB).
| |
Collapse
|
50
|
Contreras-Jurado C, Lorz C, García-Serrano L, Paramio JM, Aranda A. Thyroid hormone signaling controls hair follicle stem cell function. Mol Biol Cell 2015; 26:1263-72. [PMID: 25657324 PMCID: PMC4454174 DOI: 10.1091/mbc.e14-07-1251] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In mice lacking thyroid hormone receptors, bulge stem cells of the hair follicles present epigenetic alterations and a functional defect in their mobilization out of the niche. This is related to aberrant activation of Smad signaling and reduced nuclear β-catenin accumulation, an important component of stem cell mobilization. Observations in thyroid patients and experimental animals show that the skin is an important target for the thyroid hormones. We previously showed that deletion in mice of the thyroid hormone nuclear receptors TRα1 and TRβ (the main thyroid hormone–binding isoforms) results in impaired epidermal proliferation, hair growth, and wound healing. Stem cells located at the bulges of the hair follicles are responsible for hair cycling and contribute to the regeneration of the new epidermis after wounding. Therefore a reduction in the number or function of the bulge stem cells could be responsible for this phenotype. Bulge cells show increased levels of epigenetic repressive marks, can retain bromodeoxyuridine labeling for a long time, and have colony-forming efficiency (CFE) in vitro. Here we demonstrate that mice lacking TRs do not have a decrease of the bulge stem cell population. Instead, they show an increase of label-retaining cells (LRCs) in the bulges and enhanced CFE in vitro. Reduced activation of stem cells leading to their accumulation in the bulges is indicated by a strongly reduced response to mobilization by 12-O-tetradecanolyphorbol-13-acetate. Altered function of the bulge stem cells is associated with aberrant activation of Smad signaling, leading to reduced nuclear accumulation of β-catenin, which is crucial for stem cell proliferation and mobilization. LRCs of TR-deficient mice also show increased levels of epigenetic repressive marks. We conclude that thyroid hormone signaling is an important determinant of the mobilization of stem cells out of their niche in the hair bulge. These findings correlate with skin defects observed in mice and alterations found in human thyroid disorders.
Collapse
Affiliation(s)
- Constanza Contreras-Jurado
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Corina Lorz
- Molecular Oncology Unit, Division of Biomedicine, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, 28040 Madrid, Spain
| | - Laura García-Serrano
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Jesus M Paramio
- Molecular Oncology Unit, Division of Biomedicine, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, 28040 Madrid, Spain
| | - Ana Aranda
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|