1
|
Rein LA, Yang H, Chao NJ. Applications of Gene Editing Technologies to Cellular Therapies. Biol Blood Marrow Transplant 2018; 24:1537-1545. [DOI: 10.1016/j.bbmt.2018.03.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/23/2018] [Indexed: 12/26/2022]
|
2
|
Interactions between HIV-1 Gag and Viral RNA Genome Enhance Virion Assembly. J Virol 2017; 91:JVI.02319-16. [PMID: 28539452 DOI: 10.1128/jvi.02319-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/11/2017] [Indexed: 01/09/2023] Open
Abstract
Most HIV-1 virions contain two copies of full-length viral RNA, indicating that genome packaging is efficient and tightly regulated. However, the structural protein Gag is the only component required for the assembly of noninfectious viruslike particles, and the viral RNA is dispensable in this process. The mechanism that allows HIV-1 to achieve such high efficiency of genome packaging when a packageable viral RNA is not required for virus assembly is currently unknown. In this report, we examined the role of HIV-1 RNA in virus assembly and found that packageable HIV-1 RNA enhances particle production when Gag is expressed at levels similar to those in cells containing one provirus. However, such enhancement is diminished when Gag is overexpressed, suggesting that the effects of viral RNA can be replaced by increased Gag concentration in cells. We also showed that the specific interactions between Gag and viral RNA are required for the enhancement of particle production. Taken together, these studies are consistent with our previous hypothesis that specific dimeric viral RNA-Gag interactions are the nucleation event of infectious virion assembly, ensuring that one RNA dimer is packaged into each nascent virion. These studies shed light on the mechanism by which HIV-1 achieves efficient genome packaging during virus assembly.IMPORTANCE Retrovirus assembly is a well-choreographed event, during which many viral and cellular components come together to generate infectious virions. The viral RNA genome carries the genetic information to new host cells, providing instructions to generate new virions, and therefore is essential for virion infectivity. In this report, we show that the specific interaction of the viral RNA genome with the structural protein Gag facilitates virion assembly and particle production. These findings resolve the conundrum that HIV-1 RNA is selectively packaged into virions with high efficiency despite being dispensable for virion assembly. Understanding the mechanism used by HIV-1 to ensure genome packaging provides significant insights into viral assembly and replication.
Collapse
|
3
|
Affiliation(s)
- A Dusty Miller
- Fred Hutchinson Cancer Research Center , Seattle, WA 98109
| |
Collapse
|
4
|
Hennig K, Raasch L, Kolbe C, Weidner S, Leisegang M, Uckert W, Titeux M, Hovnanian A, Kuehlcke K, Loew R. HEK293-Based Production Platform for γ-Retroviral (Self-Inactivating) Vectors: Application for Safe and Efficient Transfer ofCOL7A1cDNA. HUM GENE THER CL DEV 2014; 25:218-28. [DOI: 10.1089/humc.2014.083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
| | | | | | | | | | - Wolfgang Uckert
- Max-Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
- Institute of Biology, Humboldt University Berlin, 13092 Berlin, Germany
| | - Matthias Titeux
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases: From Disease Mechanism to Therapies, 75730 Paris, France
- Imagine Institute, Paris Descartes–Sorbonne Paris Cité University, 75730 Paris, France
| | - Alain Hovnanian
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases: From Disease Mechanism to Therapies, 75730 Paris, France
- Imagine Institute, Paris Descartes–Sorbonne Paris Cité University, 75730 Paris, France
- Department of Genetics, Necker Hospital, 75730 Paris, France
| | | | | |
Collapse
|
5
|
Laheru D, Biedrzycki B, Jaffee EM. Development of a cytokine-modified allogeneic whole cell pancreatic cancer vaccine. Methods Mol Biol 2013; 980:175-203. [PMID: 23359154 DOI: 10.1007/978-1-62703-287-2_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Management of patients with pancreatic cancer is a multidisciplinary approach that presents enormous challenges to the clinician. Overall 5-year survival for all patients remains <3%. Symptoms of early pancreas cancer are nonspecific. As such, only a fraction of patients are candidates for surgery. While surgical resection provides the only curative option, most patients will develop tumor recurrence and die of their disease. To date, the clinical benefits of chemotherapy and radiation therapy have been important but have led to modest improvements. Tumor vaccines have the potential to specifically target the needle of pancreas cancer cells amidst the haystack of normal tissue. The discovery of pancreas tumor-specific antigens and the subsequent ability to harness this technology has become an area of intense interest for tumor immunologists and clinicians alike. Without knowledge of specific antigen targets, the whole tumor cell represents the best source of immunizing antigens. This chapter will focus on the development of whole tumor cell vaccine strategies for pancreas cancer.
Collapse
Affiliation(s)
- Dan Laheru
- The Sidney Kimmel Cancer Center, the Skip Viragh Clinical Pancreatic Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| | | | | |
Collapse
|
6
|
Li Y, Lynch WP. Misfolding of CasBrE SU is reversed by interactions with 4070A Env: implications for gammaretroviral neuropathogenesis. Retrovirology 2010; 7:93. [PMID: 21054857 PMCID: PMC2998453 DOI: 10.1186/1742-4690-7-93] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/05/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND CasBrE is a neurovirulent murine leukemia virus (MLV) capable of inducing paralytic disease with associated spongiform neurodegeneration. The neurovirulence of this virus has been genetically mapped to the surface expressed subunit (SU) of the env gene. However, CasBrE SU synthesized in the absence of the transmembrane subunit (TM) does not retain ecotropic receptor binding activity, indicating that folding of the receptor binding domain (RBD) requires this domain. Using a neural stem cell (NSC) based viral trans complementation approach to examine whether misfolded CasBrE SU retained neurovirulence, we observed CasBrE SU interaction with the "non-neurovirulent" amphotropic helper virus, 4070A which restored functional activity of CasBrE SU. RESULTS Herein, we show that infection of NSCs expressing CasBrE SU with 4070A (CasES+4070A-NSCs) resulted in the redistribution of CasBrE SU from a strictly secreted product to include retention on the plasma membrane. Cell surface cross-linking analysis suggested that CasBrE SU membrane localization was due to interactions with 4070A Env. Viral particles produced from CasES+4070A-NSCS contained both CasBrE and 4070A gp70 Env proteins. These particles displayed ecotropic receptor-mediated infection, but were still 100-fold less efficient than CasE+4070A-NSC virus. Infectious center analysis showed CasBrE SU ecotropic transduction efficiencies approaching those of NSCs expressing full length CasBrE Env (CasE; SU+TM). In addition, CasBrE SU-4070A Env interactions resulted in robust ecotropic superinfection interference indicating near native intracellular SU interaction with its receptor, mCAT-1. CONCLUSIONS In this report we provided evidence that 4070A Env and CasBrE SU physically interact within NSCs leading to CasBrE SU retention on the plasma membrane, incorporation into viral particles, restoration of mCAT-1 binding, and capacity for initiation of TM-mediated fusion events. Thus, heterotropic Env-SU interactions facilitates CasBrE SU folding events that restore Env activity. These findings are consistent with the idea that one protein conformation acts as a folding scaffold or nucleus for a second protein of similar primary structure, a process reminiscent of prion formation. The implication is that template-based protein folding may represent an inherent feature of neuropathogenic proteins that extends to retroviral Envs.
Collapse
Affiliation(s)
- Ying Li
- Department of Integrative Medical Sciences, Northeastern Ohio Universities College of Medicine, 4209 State Route 44, Rootstown, Ohio 44272, USA
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Departments of Neurology and Neuroscience Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - William P Lynch
- Department of Integrative Medical Sciences, Northeastern Ohio Universities College of Medicine, 4209 State Route 44, Rootstown, Ohio 44272, USA
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
7
|
Stang A, Petrasch-Parwez E, Brandt S, Dermietzel R, Meyer HE, Stühler K, Liffers ST, Uberla K, Grunwald T. Unintended spread of a biosafety level 2 recombinant retrovirus. Retrovirology 2009; 6:86. [PMID: 19772602 PMCID: PMC2760500 DOI: 10.1186/1742-4690-6-86] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 09/22/2009] [Indexed: 11/10/2022] Open
Abstract
Background Contamination of vertebrate cell lines with animal retroviruses has been documented repeatedly before. Although such viral contaminants can be easily identified with high sensitivity by PCR, it is impossible to screen for all potential contaminants. Therefore, we explored two novel methods to identify viral contaminations in cell lines without prior knowledge of the kind of contaminant. Results The first hint for the presence of contaminating retroviruses in one of our cell lines was obtained by electron microscopy of exosome-like vesicles released from the supernatants of transfected 293T cells. Random amplification of particle associated RNAs (PAN-PCR) from supernatant of contaminated 293T cells and sequencing of the amplicons revealed several nucleotide sequences showing highest similarity to either murine leukemia virus (MuLV) or squirrel monkey retrovirus (SMRV). Subsequent mass spectrometry analysis confirmed our findings, since we could identify several peptide sequences originating from monkey and murine retroviral proteins. Quantitative PCRs were established for both viruses to test currently cultured cell lines as well as liquid nitrogen frozen cell stocks. Gene fragments for both viruses could be detected in a broad range of permissive cell lines from multiple species. Furthermore, experimental infections of cells negative for these viruses showed that both viruses replicate rapidly to high loads. We decided to further analyze the genomic sequence of the MuLV-like contaminant virus. Surprisingly it was neither identical to MuLV nor to the novel xenotropic MuLV related retrovirus (XMRV) but showed 99% identity to a synthetic retrovirus which was engineered in the 1980s. Conclusion The high degree of nucleotide identity suggests unintended spread of a biosafety level 2 recombinant virus, which could also affect the risk assessment of gene-modified organisms released from contaminated cell cultures. The study further indicates that both mass spectrometry and PAN-PCR are powerful methods to identify viral contaminations in cell lines without prior knowledge of the kind of contaminant. Both methods might be useful tools for testing cell lines before using them for critical purposes.
Collapse
Affiliation(s)
- Alexander Stang
- Department of Molecular and Medical Virology, Ruhr-University Bochum, D-44780 Bochum, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Neschadim A, McCart JA, Keating A, Medin JA. A roadmap to safe, efficient, and stable lentivirus-mediated gene therapy with hematopoietic cell transplantation. Biol Blood Marrow Transplant 2008; 13:1407-16. [PMID: 18022569 DOI: 10.1016/j.bbmt.2007.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 09/24/2007] [Indexed: 11/15/2022]
Abstract
Hematopoietic stem cells comprise a prominent target for gene therapy aimed at treating various genetic and acquired disorders. A number of limitations associated with hematopoietic cell transplantation can be circumvented by the use of cells stably modified by retroviral gene transfer. Oncoretroviral and lentiviral vectors offer means for generating efficient and stable transgene expression. This review summarizes the state of the field today in terms of vector development and clinical experimentation. In particular, concerns with the safety of retroviral vectors intended for clinical gene transfer, applicability of preclinical data in directing clinical trial design, and recent research aimed at resolving some of these issues are addressed. Finally, this review underlines the specific advantages offered by lentiviral gene-transfer vectors for gene therapy in stem cells.
Collapse
Affiliation(s)
- Anton Neschadim
- Division of Stem Cell and Developmental Biology, Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
9
|
Eglitis MA, Kantoff PW, McLachlin JR, Gillio A, Flake AW, Bordignon C, Moen RC, Karson EM, Zwiebel JA, Kohn DB. Gene therapy: efforts at developing large animal models for autologous bone marrow transplant and gene transfer with retroviral vectors. CIBA FOUNDATION SYMPOSIUM 2007; 130:229-46. [PMID: 3327664 DOI: 10.1002/9780470513507.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two new large animal models, non-human primates and fetal sheep, have been developed in an effort to determine the feasibility of using retroviruses for gene therapy. The retroviral vectors N2 and SAX have been used to introduce the genes for neomycin phosphotransferase (neoR, conferring resistance to the antibiotic G418) and human adenosine deaminase (ADA; EC 3.5.4.17), respectively. Varying levels of human ADA activity have been detected in six of the eight SAX-treated monkeys analysed. In the monkey with the greatest activity, human ADA levels approximately 0.5% of endogenous monkey ADA levels were detected. By in situ hybridization, roughly one in 100 bone marrow cells were found to express vector DNA. Sheep have been used for studies of the infectability of fetal blood progenitors in vivo. Blood cells were treated with the N2 vector at the 96th day of gestation, and marrow cells were assayed for the presence of G418-resistant haematopoietic progenitors, starting from one week after birth (62 days after treatment). Up to 33% of colony-forming progenitors were drug resistant initially and, although the proportion of resistant colony-forming units declined, a level of 10% has been found 153 days after transplantation. Human bone marrow has also been treated with the N2 vector, resulting in 1-2% G418-resistant progenitors.
Collapse
Affiliation(s)
- M A Eglitis
- Laboratory of Molecular Hematology, National Heart, Lung and Blood Institute, Bethesda, MD 20892
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lewinski MK, Yamashita M, Emerman M, Ciuffi A, Marshall H, Crawford G, Collins F, Shinn P, Leipzig J, Hannenhalli S, Berry CC, Ecker JR, Bushman FD. Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog 2006; 2:e60. [PMID: 16789841 PMCID: PMC1480600 DOI: 10.1371/journal.ppat.0020060] [Citation(s) in RCA: 278] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 05/09/2006] [Indexed: 11/19/2022] Open
Abstract
Retroviruses differ in their preferences for sites for viral DNA integration in the chromosomes of infected cells. Human immunodeficiency virus (HIV) integrates preferentially within active transcription units, whereas murine leukemia virus (MLV) integrates preferentially near transcription start sites and CpG islands. We investigated the viral determinants of integration-site selection using HIV chimeras with MLV genes substituted for their HIV counterparts. We found that transferring the MLV integrase (IN) coding region into HIV (to make HIVmIN) caused the hybrid to integrate with a specificity close to that of MLV. Addition of MLV gag (to make HIVmGagmIN) further increased the similarity of target-site selection to that of MLV. A chimeric virus with MLV Gag only (HIVmGag) displayed targeting preferences different from that of both HIV and MLV, further implicating Gag proteins in targeting as well as IN. We also report a genome-wide analysis indicating that MLV, but not HIV, favors integration near DNase I-hypersensitive sites (i.e., +/- 1 kb), and that HIVmIN and HIVmGagmIN also favored integration near these features. These findings reveal that IN is the principal viral determinant of integration specificity; they also reveal a new role for Gag-derived proteins, and strengthen models for integration targeting based on tethering of viral IN proteins to host proteins.
Collapse
Affiliation(s)
- Mary K Lewinski
- Infectious Disease Laboratory, The Salk Institute, La Jolla, California, United States of America
| | - Masahiro Yamashita
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Michael Emerman
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Angela Ciuffi
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Heather Marshall
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Gregory Crawford
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Francis Collins
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul Shinn
- Genomic Analysis Laboratory, The Salk Institute, La Jolla, California, United States of America
| | - Jeremy Leipzig
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sridhar Hannenhalli
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Charles C Berry
- Department of Family/Preventive Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute, La Jolla, California, United States of America
| | - Frederic D Bushman
- Infectious Disease Laboratory, The Salk Institute, La Jolla, California, United States of America
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
11
|
Yamashita M, Emerman M. The cell cycle independence of HIV infections is not determined by known karyophilic viral elements. PLoS Pathog 2005; 1:e18. [PMID: 16292356 PMCID: PMC1283251 DOI: 10.1371/journal.ppat.0010018] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 09/19/2005] [Indexed: 01/01/2023] Open
Abstract
Human immunodeficiency virus and other lentiviruses infect cells independent of cell cycle progression, but gammaretroviruses, such as the murine leukemia virus (MLV) require passage of cells through mitosis. This property is thought to be important for the ability of HIV to infect resting CD4+ T cells and terminally differentiated macrophages. Multiple and independent redundant nuclear localization signals encoded by HIV have been hypothesized to facilitate migration of viral genomes into the nucleus. The integrase (IN) protein of HIV is one of the HIV elements that targets to the nucleus; however, its role in nuclear entry of virus genomes has been difficult to describe because mutations in IN are pleiotropic. To investigate the importance of the HIV IN protein for infection of non-dividing cells, and to investigate whether or not IN was redundant with other viral signals for cell cycle-independent nuclear entry, we constructed an HIV-based chimeric virus in which the entire IN protein of HIV was replaced by that of MLV. This chimeric virus with a heterologous IN was infectious at a low level, and was able to integrate in an IN-dependent manner. Furthermore, this virus infected non-dividing cells as well as it infected dividing cells. Moreover, we used the chimeric HIV with MLV IN to further eliminate all of the other described nuclear localization signals from an HIV genome—matrix, IN, Viral Protein R, and the central polypurine tract—and show that no combination of the virally encoded NLS is essential for the ability of HIV to infect non-dividing cells. Human immunodeficiency virus can infect many cells irrespective of whether or not they are dividing, whereas some other retroviruses, such as the murine leukemia virus can only infect cells that are proliferating. This property is important for the ability of HIV to establish infections in critical cell types in infected people. Multiple and redundant signals encoded by HIV have been hypothesized to facilitate migration of viral genomes into the nucleus. However, here the authors eliminated all four described nuclear localizing signals from an HIV genome and show that no combination of these virally encoded signals is essential for the ability of HIV to infect non-dividing cells. They suggest that another step of the virus lifecycle, other than nuclear import, is the rate-limiting step that determines the cell cycle dependence/independence of retroviral infections.
Collapse
Affiliation(s)
- Masahiro Yamashita
- Division of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Michael Emerman
- Division of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
12
|
Ebeling SB, Simonetti ER, Borst HPE, Blok A, Schelen AM, Braakman E, Ederveen J, Hagenbeek A. Human primary T lymphocytes have a low capacity to amplify MLV-based amphotropic RCR and the virions produced are largely noninfectious. Gene Ther 2003; 10:1800-6. [PMID: 12960969 DOI: 10.1038/sj.gt.3302080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The presence of replication-competent retrovirus (RCR) in retroviral-based gene therapy products poses a potential safety risk for patients. Therefore, RCR testing of clinical gene therapy products and monitoring of patients enrolled in gene therapy trials is required to assure viral safety. The requirement to test ex vivo-transduced cells originates from the presumed amplification of adventitious RCR during the transduction procedure. However, data on the capacity of different cell types to do so are lacking. In this study, we sought to analyze the amplification potential of primary human T lymphocytes after infection with amphotropic MLV-based RCR. The total number of viral particles produced after 1 or 2 weeks was measured by a quantitative 4070A env-specific RT-PCR assay. The fraction of infectious replication-competent viral particles was analyzed in the PG-4 S+L- assay. From this study, we conclude that the total number of viral particles RCR produced by T lymphocytes is 2-4 logs lower than the number produced by NIH-3T3 cells. Surprisingly, less than 1% of the viral particles produced by primary T lymphocytes appeared to be infectious, while nearly all virions produced by NIH-3T3 were. We conclude that primary human T lymphocytes are low producers of MLV-based amphotropic RCR.
Collapse
Affiliation(s)
- S B Ebeling
- Jordan Laboratory for Hemato-Oncology, Department of Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
A key factor in the success of gene therapy is the development of gene delivery systems that are capable of efficient gene transfer in a broad variety of tissues, without causing any pathogenic effect. Currently, viral vectors based on many different viruses have been developed, and their performance and pathogenicity has been evaluated in animal models. The results of these studies form the basis for the first clinical trials for correcting genetic disorders using retroviral, adenoviral, and adeno-associated viral vectors. Even though the results of these trials are encouraging, vector development is still required to improve and refine future treatment of hereditary disorders.
Collapse
Affiliation(s)
- Neeltje A Kootstra
- Laboratory of Genetics, The Salk Institute, La Jolla, California 92037-1099, USA.
| | | |
Collapse
|
14
|
Münk C, Prassolov V, Rodenburg M, Kalinin V, Löhler J, Stocking C. 10A1-MuLV but not the related amphotropic 4070A MuLV is highly neurovirulent: importance of sequences upstream of the structural Gag coding region. Virology 2003; 313:44-55. [PMID: 12951020 DOI: 10.1016/s0042-6822(03)00210-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recombinants of Moloney murine leukemia virus (MoMuLV) with either an amphotropic (MoAmphoV) or 10A1-tropic host range (Mo10A1V) induce a spongiform neurodegenerative disease in susceptible mice. To test whether MoMuLV -derived sequences are required for induction of neuropathology, mice were inoculated with either the original 10A1 or the amphotropic (4070A) MuLV isolate. Strikingly, wild-type 10A1 was more neurovirulent than Mo10A1V, inducing severe neurological clinical symptoms with a median latency of 99 days in 100% of infected mice. In contrast, no motor disturbances were detected in any of the 4070A-infected mice, although limited central nervous system lesions were observed. A viral determinant conferring high neurovirulence to 10A1 was mapped to a region encompassing the first 676 bases of the viral genome, including the U5 LTR and encoding the amino-terminus of glycosylated Gag (glycoGag). In contrast to studies with the highly neurovirulent CasFr(KP) virus, an inverse correlation between surface expression levels of glycoGag and neurovirulence was not observed; however, this does not rule out a common underlying mechanism regulating virus pathogenicity.
Collapse
Affiliation(s)
- Carsten Münk
- Department of Cell and Virus Genetics, Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie, D-20251 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Escarpe P, Zayek N, Chin P, Borellini F, Zufferey R, Veres G, Kiermer V. Development of a sensitive assay for detection of replication-competent recombinant lentivirus in large-scale HIV-based vector preparations. Mol Ther 2003; 8:332-41. [PMID: 12907156 DOI: 10.1016/s1525-0016(03)00167-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Lentiviral vectors have demonstrated great potential as gene therapy vectors mediating efficient ex vivo and in vivo gene delivery and long-term transgene expression in both dividing and nondividing cells. However, for clinical studies it must be demonstrated that lentiviral vector preparations are safe and not contaminated by replication-competent recombinants related to the parental pathogenic virus. Here we describe a sensitive assay for the detection of replication-competent lentiviruses (RCL) in large-scale preparations of HIV-based lentiviral vectors. This RCL assay for lentiviral vectors is based on the principles used for retroviral vectors, using a highly permissive cell line, C8166-45, for RCL amplification and an appropriate positive control virus to establish the assay sensitivity. The assay is capable of detecting 1 RCL infectious unit in a background of 2.5 x 10(8) transducing units of vector in a single test culture. Statistically representative samples from large-scale lentiviral vector productions were assayed using multiple test cultures for each lot. Overall, a total of 1.4 x 10(10) transducing units of vector from 10 independent 14-liter production lots were screened and no RCL was detected. We propose to implement this assay as a release testing for clinical-grade lentiviral vector preparations intended for gene therapy clinical trials.
Collapse
Affiliation(s)
- Paul Escarpe
- Cell Genesys, Inc., 500 Forbes Boulevard, South San Francisco, California 94080, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Ploss M, Berdel B, Heber R, Reuss FU. Transcriptional inactivation of amphotropic murine leukemia virus replication in human cells. J Med Virol 2003; 69:267-72. [PMID: 12683417 DOI: 10.1002/jmv.10274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Amphotropic murine leukemia virus (MLV) replicates in cells from various mammalian species including humans and is a potential contaminant in MLV vector preparations for human gene transfer studies. Because MLV replication proceeds through an RNA genome that is generated under the control of viral enhancer and promoter elements, vectors were developed that delete such elements during transduction to reduce the generation of replication-competent virus. It was shown recently that replication of amphotropic MLV in certain human cells is possible without the 75 bp transcription enhancers. It is now demonstrated that enhancer-independent replication requires functional elements within U3 and is repressed by an extended deletion in the U3 region comprising enhancers, promoter and flanking sequences. It is concluded that the transcriptional inactivation of amphotropic MLV in human cells requires the combined deletion of enhancers and of additional elements in U3.
Collapse
Affiliation(s)
- Martin Ploss
- Deutsches Krebsforschungszentrum (DKFZ), Angewandte Tumorvirologie F0400, Heidelberg, Germany
| | | | | | | |
Collapse
|
17
|
pa317 Retrovirus Packaging Cells. Mol Ther 2002. [DOI: 10.1006/mthe.2002.0728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Reuss FU, Berdel B, Heber R, Bantel-Schaal U. Replication of enhancer-deficient amphotropic murine leukemia virus in human fibrosarcoma but not in primary human fibroblasts. J Med Virol 2002; 68:278-84. [PMID: 12210420 DOI: 10.1002/jmv.10202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Amphotropic murine leukemia virus (MLV) replicates in cells from various mammalian species including humans and is a potential contaminant in MLV vector preparations for human gene transfer studies. In general, MLV replication depends on the expression of viral genes under the control of 75 bp enhancer elements in the long terminal repeat. However, in specific human fibrosarcoma and lymphoma lines replication of amphotropic MLV is possible without these enhancers. Fibrosarcomas are malignant tumors of fibroblast origin. To test the replication potential of intact and enhancerless amphotropic MLV in untransformed cells, infection studies with these viruses were carried out in three types of primary human fibroblasts. Replication of amphotropic MLV is observed in two of three tested fibroblast strains. None of these primary human fibroblasts is permissive for enhancer-deficient MLV, suggesting that replication of this virus may be limited to transformed cells.
Collapse
Affiliation(s)
- Frank U Reuss
- Deutsches Krebsforschungszentrum, Angewandte Tumorvirologie F0400, Heidelberg, Germany.
| | | | | | | |
Collapse
|
19
|
Reuss FU, Berdel B, Heber R, Ploss M. Enhancer-deficient amphotropic murine leukemia virus and recombinants with heterologous transcription elements can be efficiently amplified and detected in Mus dunni fibroblasts. Gene Ther 2002; 9:1183-8. [PMID: 12170382 DOI: 10.1038/sj.gt.3301785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2001] [Accepted: 03/23/2002] [Indexed: 11/09/2022]
Abstract
Amphotropic murine leukemia virus (MLV) replicates in cells from various mammalian species, including humans, and is a potential contaminant in MLV vector preparations for human gene transfer studies. Mus dunni fibroblasts are routinely used for amplification and detection of contaminating virus. We have recently characterized an amphotropic MLV mutant lacking the 75-bp viral enhancer elements and spontaneous MLV-(RCMV) recombinants that have acquired cytomegalovirus (CMV) transcription elements. Both of these viruses replicate in specific human cell types. To test whether the formation of such viruses can be detected and controlled with current routine procedures, we have analyzed the replication of these amphotropic MLV mutants in Mus dunni fibroblasts. We find that M. dunni cells are permissive for enhancer-deficient and CMV promoter-recombinant MLV from several human cell lines. Thus, M. dunni fibroblasts are suitable for the amplification and subsequent detection of enhancer-deficient and enhancer-recombinant MLV in vector preparations.
Collapse
Affiliation(s)
- F U Reuss
- Deutsches Krebsforschungszentrum (DKFZ), Angewandte Tumorvirologie F0400, Heidelberg, Germany
| | | | | | | |
Collapse
|
20
|
Berlot CH. Expression and functional analysis of G protein alpha subunits in S49 lymphoma cells. Methods Enzymol 2002; 344:261-77. [PMID: 11771388 DOI: 10.1016/s0076-6879(02)44720-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Catherine H Berlot
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
21
|
Orchard PJ, Blazar BR, Burger S, Levine B, Basso L, Nelson DMK, Gordon K, McIvor RS, Wagner JE, Miller JS. Clinical-scale selection of anti-CD3/CD28-activated T cells after transduction with a retroviral vector expressing herpes simplex virus thymidine kinase and truncated nerve growth factor receptor. Hum Gene Ther 2002; 13:979-88. [PMID: 12031130 DOI: 10.1089/10430340252939087] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Activation of T cells is necessary for efficient retroviral-mediated gene transfer. In addition, if the population of infused cells is to be limited to transduced cells, a means of positive selection is required. We describe a clinical scale procedure for activation of donor T cells with anti-CD3/CD28 beads followed by transduction with a retroviral construct expressing the herpes simplex virus thymidine kinase (HSV-tk) and human nerve growth factor receptor (NGFR). Optimization of transduction parameters was performed, testing the timing of transduction, centrifugation, and the use of serum. In large-scale experiments, 3-5 x 10(8) peripheral blood mononuclear cells (PBMC) were activated with anti-CD3/CD28 beads and expanded to day 13. Transduction was accomplished using MFG-TKiNG supernatant produced from the PG13 packaging line 48 hr after T-cell activation. The mean transduction frequency was 37.5% based on NGFR expression, and the mean expansion observed was 42.6-fold (mean final cell number 1.85 x 10(10)). A comparison of the ability of the Baxter Isolex 300i and the Miltenyi CliniMACS to perform purification of NGFR+ cells suggests that greater purity can be achieved with the CliniMACS device (67.4% vs. 97.7%), while the yield of transduced cells appears higher with the Isolex 300i (41.3% vs. 23.5%). We conclude that a strategy based on activation of human T cells with anti-CD3/CD28 beads can result in sufficient transduction, expansion, and purification based on NGFR expression for clinical trials.
Collapse
Affiliation(s)
- Paul J Orchard
- Program in Blood and Marrow Transplantation, Department of Pediatrics, Institute of Human Genetics, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Traister RS, Lynch WP. Reexamination of amphotropic murine leukemia virus neurovirulence: neural stem cell-mediated microglial infection fails to induce acute neurodegeneration. Virology 2002; 293:262-72. [PMID: 11886246 DOI: 10.1006/viro.2001.1299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 4070A amphotropic murine leukemia virus (A-MuLV) has been variably reported to harbor neurovirulence determinants within its env gene. In this report we reexamined this issue by applying two approaches previously demonstrated to amplify murine leukemia virus neurovirulence. The first approach involved introducing the 4070A env gene into the background of Friend virus clone FB29 to enhance peripheral virus replication kinetics and central nervous system entry. The resulting chimeric virus, FrAmE, exhibited widespread vascular infection throughout the central nervous system (CNS); however, parenchymal infection was quite limited. Neither clinical neurological signs nor spongiform neurological changes accompanied FrAmE CNS infection. To overcome this CNS entry limitation, 4070A and FrAmE were delivered directly into the CNS via transplantation of infected C17.2 neural stem cells (NSCs). Significantly, NSC dissemination of either 4070A or FrAmE resulted in widespread, high-level amphotropic virus expression within the CNS parenchyma, including the infection of microglia, the critical target required for inducing neurodegeneration. Despite the extensive CNS infection, no associated clinical neurological signs or acute neuropathological changes were observed. Interestingly, we observed the frequent appearance of circulating polytropic (MCF) virus in the serum of amphotropic virus-infected animals. However, neither peripheral inoculation of an amphotropic/MCF virus mixture nor transplantation of NSCs expressing both amphotropic and MCF viruses induced acute clinical neurological signs or spongiform neuropathology. Thus, the results generated in this study suggest that the 4070A env gene is not inherently neurovirulent. However, the frequent appearance of endogenous MCF viruses suggests the possibility that the interactions of amphotropic viruses with endogenous retroviral elements could contribute to the development of retrovirus-induced neurodegenerative disease.
Collapse
Affiliation(s)
- Russell S Traister
- Department of Microbiology/Immunology, Northeastern Ohio Universities College of Medicine, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | | |
Collapse
|
23
|
Abstract
Gene therapy can be broadly defined as the transfer of genetic material to cure a disease or at least to improve the clinical status of a patient. One of the basic concepts of gene therapy is to transform viruses into genetic shuttles, which will deliver the gene of interest into the target cells. Based on the nature of the viral genome, these gene therapy vectors can be divided into RNA and DNA viral vectors. The majority of RNA virus-based vectors have been derived from simple retroviruses like murine leukemia virus. A major shortcoming of these vectors is that they are not able to transduce nondividing cells. This problem may be overcome by the use of novel retroviral vectors derived from lentiviruses, such as human immunodeficiency virus (HIV). The most commonly used DNA virus vectors are based on adenoviruses and adeno-associated viruses. Although the available vector systems are able to deliver genes in vivo into cells, the ideal delivery vehicle has not been found. Thus, the present viral vectors should be used only with great caution in human beings and further progress in vector development is necessary.
Collapse
Affiliation(s)
- A Pfeifer
- The Salk Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
24
|
Reuss FU, Heber R, Ploss A, Berdel B. Amphotropic murine leukemia virus replication in human mammary epithelial cells and the formation of cytomegalovirus-promoter recombinants. Virology 2001; 291:91-100. [PMID: 11878879 DOI: 10.1006/viro.2001.1199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amphotropic murine leukemia virus (MLV) can replicate in human cells and is a potential contaminant in vector preparations for human gene transfer studies. We have recently shown that replication of amphotropic MLV in specific human sarcoma and lymphoma lines is possible in the absence of the viral 75-bp transcription enhancer elements. Here, we have tested the replication of an amphotropic MLV, MLV-(MOA), and an enhancer-deficient mutant of this virus in human breast carcinoma-derived cell lines. The proviral expression plasmids use a cytomegalovirus (CMV) promoter for the initial transcription of virus RNA. We found that all cells analyzed are permissive for replication of MLV-(MOA). Enhancer-deficient virus is unable to replicate. However, in two lines the replication defect can be rescued by the spontaneous insertion of a CMV promoter and enhancer into the U3 region. This recombinant virus MLV-(RCMV) replicates with kinetics similar to that of MLV-(MOA) but is restricted to specific cell lines. The potential formation of RCMV recombinants during MLV vector preparation must be considered.
Collapse
Affiliation(s)
- F U Reuss
- Angewandte Tumorvirologie F0400, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, Heidelberg, 69120, Germany.
| | | | | | | |
Collapse
|
25
|
Supplemental guidance on testing for replication-competent retrovirus in retroviral vector-based gene therapy products and during follow-up of patients in clinical trials using retroviral vectors. Hum Gene Ther 2001; 12:315-20. [PMID: 11177567 DOI: 10.1089/10430340150218440] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Fujii I, Suzuki S, Igarashi T, Matsukura M, Miike T, Shimada T. Targeted and stable gene delivery into muscle cells by a two-step transfer system. Biochem Biophys Res Commun 2000; 275:931-5. [PMID: 10973824 DOI: 10.1006/bbrc.2000.3382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We developed a muscle-specific gene delivery system based on two-step gene transfer. The first step involved adenovirus-mediated transfer of the ecotropic retrovirus receptor (EcoRec) gene driven by the muscle-specific desmin promoter. Both human primary myoblasts and fibroblasts were efficiently transduced with this adenovirus vector. However, expression of EcoRec was detected only in myoblasts. In the second step, EcoRec-expressing myoblasts could be stably transduced with the ecotropic retroviral vector with the beta-galactosidase gene. Approximately 15% of myoblasts were transduced by this two-step strategy. When the transduced myoblasts were differentiated into myotubes, extensive cell-cell fusion occurred, and the apparent number of beta-galactosidase-positive cells increased to 28%. These results indicate that our two-step gene delivery system could be used for targeted and stable gene transfer into muscle cells.
Collapse
Affiliation(s)
- I Fujii
- Department of Biochemistry and Molecular Biology, Center for Advanced Medical Technology, Tokyo, 113-8602, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Todd S, Anderson C, Jolly DJ, Craik CS. HIV protease as a target for retrovirus vector-mediated gene therapy. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1477:168-88. [PMID: 10708857 DOI: 10.1016/s0167-4838(99)00272-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The dimeric aspartyl protease of HIV has been the subject of intense research for almost a decade. Knowledge of the substrate specificity and catalytic mechanism of this enzyme initially guided the development of several potent peptidomimetic small molecule inhibitors. More recently, the solution of the HIV protease structure led to the structure-based design of improved peptidomimetic and non-peptidomimetic antiviral compounds. Despite the qualified success of these inhibitors, the high mutation rate associated with RNA viruses continues to hamper the long-term clinical efficacy of HIV protease inhibitors. The dimeric nature of the viral protease has been conducive to the investigation of dominant-negative inhibitors of the enzyme. Some of these inhibitors are defective protease monomers that interact with functional monomers to form inactive protease heterodimers. An advantage of macromolecular inhibitors as compared to small-molecule inhibitors is the increased surface area of interaction between the inhibitor and the target gene product. Point mutations that preserve enzyme activity but confer resistance to small-molecule inhibitors are less likely to have an adverse effect on macromolecular interactions. The use of efficient retrovirus vectors has facilitated the delivery of these macromolecular inhibitors to primary human lymphocytes. The vector-transduced cells were less susceptible to HIV infection in vitro, and showed similar levels of protection compared to other macromolecular inhibitors of HIV replication, such as RevM10. These preliminary results encourage the further development of dominant-negative HIV protease inhibitors as a gene therapy-based antiviral strategy.
Collapse
Affiliation(s)
- S Todd
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143-0446, USA.
| | | | | | | |
Collapse
|
28
|
Linney E, Hardison NL, Lonze BE, Lyons S, DiNapoli L. Transgene expression in zebrafish: A comparison of retroviral-vector and DNA-injection approaches. Dev Biol 1999; 213:207-16. [PMID: 10452858 DOI: 10.1006/dbio.1999.9376] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To assess alternative methods for introducing expressing transgenes into the germ line of zebrafish, transgenic fish that express a nuclear-targeted, enhanced, green fluorescent protein (eGFP) gene were produced using both pseudotyped retroviral vector infection and DNA microinjection of embryos. Germ-line transgenic founders were identified and the embryonic progeny of these founders were evaluated for the extent and pattern of eGFP expression. To compare the two modes of transgenesis, both vectors used the Xenopus translational elongation factor 1-alpha enhancer/promoter regulatory cassette. Several transgenic founder fish which transferred eGFP expression to their progeny were identified. The gene expression patterns are described and compared for the two modes of gene transfer. Transient expression of eGFP was detected 1 day after introducing the transgenes via either DNA microinjection or retroviral vector infection. In both cases of gene transfer, transgenic females produced eGFP-positive progeny even before the zygotic genome was turned on. Therefore, GFP was being provided by the oocyte before fertilization. A transgenic female revealed eGFP expression in her ovarian follicles. The qualitative patterns of gene expression in the transgenic progeny embryos after zygotic induction of gene expression were similar and independent of the mode of transgenesis. The appearance of newly synthesized GFP is detectable within 5-7 h after fertilization. The variability of the extent of eGFP expression from transgenic founder to transgenic founder was wider for the DNA-injection transgenics than for the retroviral vector-produced transgenics. The ability to provide expressing germ-line transgenic progeny via retroviral vector infection provides both an alternative mode of transgenesis for zebrafish work and a possible means of easily assessing the insertional mutagenesis frequency of retroviral vector infection of zebrafish embryos. However, because of the transfer of GFP from oocyte to embryo, the stability of GFP may create problems of analysis in embryos which develop as quickly as those of zebrafish.
Collapse
Affiliation(s)
- E Linney
- Department of Microbiology, Duke University Medical Center, Duke University, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
29
|
Satoh K, Narumi K, Abe T, Sakai T, Kikuchi T, Tanaka M, Shimo-Oka T, Uchida M, Tezuka F, Isemura M, Nukiwa T. Diminution of 37-kDa laminin binding protein expression reduces tumour formation of murine lung cancer cells. Br J Cancer 1999; 80:1115-22. [PMID: 10376960 PMCID: PMC2362373 DOI: 10.1038/sj.bjc.6690474] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Expression of the 37-kDa laminin binding protein (37LBP/p40), a precursor of the 67-kDa laminin receptor, is well-correlated with the biological aggressiveness of cancer cells. To elucidate the direct role played by 37LBP/p40 in cancer cells, a murine lung cancer cell line T11, the 37LBP/p40 expression of which was remarkably diminished, was established by the introduction of the antisense 37LBP/p40-RNA using a retroviral vector. As a result, the population doubling time of T11 was prolonged (60 h) compared with that of P29, the non-transfected parental cell line (42 h), and TN2, a transfectant with vehicle only (40 h). In-vitro studies also showed that T11 cells adhered to immobilized laminin less firmly than P29 cells did. When 5 x 10(5) cells were subcutaneously inoculated into syngenic mice, the mean survival time of T11-recipients (77.0+/-14.8 days) was also significantly prolonged compared with that for P29 (34.8+/-5.5 days) and TN2 (36.7+/-6.1 days) recipients (P < 0.001). The electron-microscopic view of the tumour tissue revealed that T11 cells were loosely apposed and their intercellular space was markedly widened. Some of the T11 cells sporadically degenerated with the infiltration of lymphocytes and neutrophils. These results suggest that the suppressed expression of 37LBP/p40 reduces the capability of lung cancer cell proliferation in vitro and tumour formation in vivo.
Collapse
Affiliation(s)
- K Satoh
- Department of Respiratory Oncology and Molecular Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
A novel receptor-targeted gene delivery system for cancer gene therapy. ACTA ACUST UNITED AC 1999; 42:216-24. [DOI: 10.1007/bf02880059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/1998] [Indexed: 10/22/2022]
|
31
|
Juang SH, Xie K, Xu L, Shi Q, Wang Y, Yoneda J, Fidler IJ. Suppression of tumorigenicity and metastasis of human renal carcinoma cells by infection with retroviral vectors harboring the murine inducible nitric oxide synthase gene. Hum Gene Ther 1998; 9:845-54. [PMID: 9581907 DOI: 10.1089/hum.1998.9.6-845] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The purpose of this study was to determine whether retrovirus-mediated transfer of the murine macrophage inducible nitric oxide synthase (iNOS) gene can inhibit tumorigenicity and metastasis of human renal cancer cells. Retroviral vectors encoding murine macrophage iNOS were constructed in the pLXSN retroviral vector with the iNOS gene under the control of a long terminal repeat promoter and a neomycin resistance gene under the control of an internal simian virus 40 promoter. Highly metastatic human renal carcinoma SN12PM6 cells were infected with control or iNOS retrovirus. Expression of iNOS was confirmed by Northern and Western blot analyses, and expression of the functional iNOS protein, i.e., production of nitric oxide (NO), was determined by measuring nitrite accumulation in culture supernatants. Noninfected or control cells produced large orthotopic tumors in the kidney of nude mice and a larger number of experimental lung metastases, whereas iNOS-infected cells produced small tumors in the kidneys and few to no lung metastases. The data indicate that the infection of human renal cancer cells by retroviruses harboring the murine iNOS gene can induce the production of high levels of NO, which is associated with autocytotoxicity, suppression of tumorigenicity, and abrogation of metastasis.
Collapse
Affiliation(s)
- S H Juang
- Department of Cell Biology, The University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Lever A. Chapter 23 Retroviral vectors. Microbiology (Reading) 1998. [DOI: 10.1016/s1569-2582(97)80007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
33
|
DNA Cross-Linker–Induced G2/M Arrest in Group C Fanconi Anemia Lymphoblasts Reflects Normal Checkpoint Function. Blood 1998. [DOI: 10.1182/blood.v91.1.275.275_275_287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells from individuals with Fanconi anemia (FA) arrest excessively in the G2/M cell cycle compartment after exposure to low doses of DNA cross-linking agents. The relationship of this abnormality to the fundamental genetic defect in such cells is unknown, but many investigators have speculated that the various FA genes directly regulate cell cycle checkpoints. We tested the hypothesis that the protein encoded by the FA group C complementing gene (FAC) functions to control a cell cycle checkpoint and that cells from group C patients (FA[C]) have abnormalities of cell cycle regulation directly related to the genetic mutation. We found that retroviral transduction of FA(C) lymphoblasts with wild-type FAC cDNA resulted in normalization of the cell cycle response to low-dose mitomycin C (MMC). However, when DNA damage was quantified in terms of cytogenetic damage or cellular cytotoxicity, we found similar degrees of G2/M arrest in response to equitoxic amounts of MMC in FA(C) cells as well as in normal lymphoblasts. Similar results were obtained using isogenic pairs of uncorrected, FAC- or mock-corrected (neo only) FA(C) cell lines. To test the function of other checkpoints we examined the effects of hydroxyurea (HU) and ionizing radiation on cell cycle kinetics of FA(C) and normal lymphoblasts as well as with isogenic pairs of uncorrected, FAC-corrected, or mock-corrected FA(C) cell lines. In all cases the cell cycle response of FA(C) and normal lymphoblasts to these two agents were identical. Based on these studies we conclude that the aberrant G2/M arrest that typifies the response of FA(C) cells to low doses of cross-linking agents does not represent an abnormal cell cycle response but instead represents a normal cellular response to the excessive DNA damage that results in FA(C) cells following exposure to low doses of cross-linking agents.
Collapse
|
34
|
DNA Cross-Linker–Induced G2/M Arrest in Group C Fanconi Anemia Lymphoblasts Reflects Normal Checkpoint Function. Blood 1998. [DOI: 10.1182/blood.v91.1.275] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractCells from individuals with Fanconi anemia (FA) arrest excessively in the G2/M cell cycle compartment after exposure to low doses of DNA cross-linking agents. The relationship of this abnormality to the fundamental genetic defect in such cells is unknown, but many investigators have speculated that the various FA genes directly regulate cell cycle checkpoints. We tested the hypothesis that the protein encoded by the FA group C complementing gene (FAC) functions to control a cell cycle checkpoint and that cells from group C patients (FA[C]) have abnormalities of cell cycle regulation directly related to the genetic mutation. We found that retroviral transduction of FA(C) lymphoblasts with wild-type FAC cDNA resulted in normalization of the cell cycle response to low-dose mitomycin C (MMC). However, when DNA damage was quantified in terms of cytogenetic damage or cellular cytotoxicity, we found similar degrees of G2/M arrest in response to equitoxic amounts of MMC in FA(C) cells as well as in normal lymphoblasts. Similar results were obtained using isogenic pairs of uncorrected, FAC- or mock-corrected (neo only) FA(C) cell lines. To test the function of other checkpoints we examined the effects of hydroxyurea (HU) and ionizing radiation on cell cycle kinetics of FA(C) and normal lymphoblasts as well as with isogenic pairs of uncorrected, FAC-corrected, or mock-corrected FA(C) cell lines. In all cases the cell cycle response of FA(C) and normal lymphoblasts to these two agents were identical. Based on these studies we conclude that the aberrant G2/M arrest that typifies the response of FA(C) cells to low doses of cross-linking agents does not represent an abnormal cell cycle response but instead represents a normal cellular response to the excessive DNA damage that results in FA(C) cells following exposure to low doses of cross-linking agents.
Collapse
|
35
|
Intracellular Immunization of Rhesus CD34+ Hematopoietic Progenitor Cells With a Hairpin Ribozyme Protects T Cells and Macrophages From Simian Immunodeficiency Virus Infection. Blood 1997. [DOI: 10.1182/blood.v90.12.4822] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractEvaluation of candidate genes for stem cell gene therapy for acquired immunodeficiency syndrome (AIDS) has been limited by the difficulty of supporting in vitro T-cell differentiation of genetically modified hematopoietic progenitor cells. Using a novel thymic stromal culture technique, we evaluated the ability of a hairpin ribozyme specific for simian immunodeficiency virus (SIV) and human immunodeficiency virus type 2 (HIV-2) to inhibit viral replication in T lymphocytes derived from transduced CD34+ progenitor cells. Retroviral transduction of rhesus macaque CD34+ progenitor cells with a retroviral vector (p9456t) encoding the SIV-specific ribozyme and the selectable marker neomycin phosphotransferase in the presence of bone marrow stroma and in the absence of exogenous cytokines resulted in efficient transduction of both colony-forming units and long-term culture-initiating cells, with transduction efficiencies ranging between 21% and 56%. After transduction, CD34+ cells were cultured on rhesus thymic stromal culture (to support in vitro differentiation of T cells) or in the presence of cytokines (to support differentiation of macrophage-like cells). After expansion and selection with the neomycin analog G418, cells derived from transduced progenitor cells were challenged with SIV. CD4+ T cells derived from CD34+ hematopoietic cells transduced with the ribozyme vector p9456t were highly resistant to challenge with SIV, exhibiting up to a 500-fold decrease in SIV replication, even after high multiplicities of infection. Macrophages derived from CD34+ cells transduced with the 9456 ribozyme exhibited a comparable level of inhibition of SIV replication. These results show that a hairpin ribozyme introduced into CD34+ hematopoietic progenitor cells can retain the ability to inhibit AIDS virus replication after T-cell differentiation and support the feasibility of intracellular immunization of hematopoietic stem cells against infection with HIV and SIV. Protection of multiple hematopoietic lineages with the SIV-specific ribozyme should permit analysis of stem cell gene therapy for AIDS in the SIV/macaque model.
Collapse
|
36
|
Intracellular Immunization of Rhesus CD34+ Hematopoietic Progenitor Cells With a Hairpin Ribozyme Protects T Cells and Macrophages From Simian Immunodeficiency Virus Infection. Blood 1997. [DOI: 10.1182/blood.v90.12.4822.4822_4822_4831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Evaluation of candidate genes for stem cell gene therapy for acquired immunodeficiency syndrome (AIDS) has been limited by the difficulty of supporting in vitro T-cell differentiation of genetically modified hematopoietic progenitor cells. Using a novel thymic stromal culture technique, we evaluated the ability of a hairpin ribozyme specific for simian immunodeficiency virus (SIV) and human immunodeficiency virus type 2 (HIV-2) to inhibit viral replication in T lymphocytes derived from transduced CD34+ progenitor cells. Retroviral transduction of rhesus macaque CD34+ progenitor cells with a retroviral vector (p9456t) encoding the SIV-specific ribozyme and the selectable marker neomycin phosphotransferase in the presence of bone marrow stroma and in the absence of exogenous cytokines resulted in efficient transduction of both colony-forming units and long-term culture-initiating cells, with transduction efficiencies ranging between 21% and 56%. After transduction, CD34+ cells were cultured on rhesus thymic stromal culture (to support in vitro differentiation of T cells) or in the presence of cytokines (to support differentiation of macrophage-like cells). After expansion and selection with the neomycin analog G418, cells derived from transduced progenitor cells were challenged with SIV. CD4+ T cells derived from CD34+ hematopoietic cells transduced with the ribozyme vector p9456t were highly resistant to challenge with SIV, exhibiting up to a 500-fold decrease in SIV replication, even after high multiplicities of infection. Macrophages derived from CD34+ cells transduced with the 9456 ribozyme exhibited a comparable level of inhibition of SIV replication. These results show that a hairpin ribozyme introduced into CD34+ hematopoietic progenitor cells can retain the ability to inhibit AIDS virus replication after T-cell differentiation and support the feasibility of intracellular immunization of hematopoietic stem cells against infection with HIV and SIV. Protection of multiple hematopoietic lineages with the SIV-specific ribozyme should permit analysis of stem cell gene therapy for AIDS in the SIV/macaque model.
Collapse
|
37
|
Gene Transfer into Marrow Repopulating Cells: Comparison Between Amphotropic and Gibbon Ape Leukemia Virus Pseudotyped Retroviral Vectors in a Competitive Repopulation Assay in Baboons. Blood 1997. [DOI: 10.1182/blood.v90.11.4638.4638_4638_4645] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many diseases might be treated by gene therapy targeted to the hematopoietic system, but low rates of gene transfer achieved in humans and large animals have limited the application of this technique. We have developed a competitive hematopoietic repopulation assay in baboons to evaluate methods for improving gene transfer and have used this method to compare gene transfer rates for retroviral vectors having an envelope protein (pseudotype) from amphotropic murine retrovirus with similar vectors having an envelope protein derived from gibbon ape leukemia virus (GALV). We hypothesized that vectors with a GALV pseudotype might perform better based on our previous work with cultured human hematopoietic cells. CD34+ marrow cells from each of four untreated baboons were divided into two equal portions that were cocultivated for 48 hours with packaging cells producing equivalent titers of either amphotropic or GALV pseudotyped vectors containing the neo gene. The vectors contained small sequence differences to allow differentiation of cells genetically marked by the different vectors. Nonadherent and adherent cells from the cultures were infused into animals after they received a myeloablative dose of total body irradiation. Polymerase chain reaction (PCR) analysis for neo gene-specific sequences in colony-forming unit–granulocyte-macrophage from cell populations used for transplant showed gene transfer rates of 2.7%, 7.1%, <15%, and 3.9% with the amphotropic vectors and 7.1%, 11.3%, <15%, and 26.4% with the GALV pseudotyped vector. PCR analysis of peripheral blood and marrow cells after engraftment showed the neo gene to be present in all four animals analyzed at levels between 0.1% and 5%. Overall gene transfer efficiency was higher with the GALVpseudotyped vector than with the amphotropic vectors. Southern blot analysis in one animal confirmed a gene transfer efficiency of between 1% and 5%. The higher gene transfer efficiency with the GALV-pseudotyped vector correlated with higher levels of GALV receptor RNA compared with the amphotropic receptor in CD34+ hematopoietic cells. These results show that GALV-pseudotyped vectors are capable of transducing baboon marrow repopulating cells and may allow more efficient gene transfer rates for human gene therapy directed at hematopoietic cells. In addition, our data show considerable differences in gene transfer efficiency between individual baboons, suggesting that a competitive repopulation assay will be critical for evaluation of methods designed to improve gene transfer into hematopoietic stem cells.
Collapse
|
38
|
Gene Transfer into Marrow Repopulating Cells: Comparison Between Amphotropic and Gibbon Ape Leukemia Virus Pseudotyped Retroviral Vectors in a Competitive Repopulation Assay in Baboons. Blood 1997. [DOI: 10.1182/blood.v90.11.4638] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractMany diseases might be treated by gene therapy targeted to the hematopoietic system, but low rates of gene transfer achieved in humans and large animals have limited the application of this technique. We have developed a competitive hematopoietic repopulation assay in baboons to evaluate methods for improving gene transfer and have used this method to compare gene transfer rates for retroviral vectors having an envelope protein (pseudotype) from amphotropic murine retrovirus with similar vectors having an envelope protein derived from gibbon ape leukemia virus (GALV). We hypothesized that vectors with a GALV pseudotype might perform better based on our previous work with cultured human hematopoietic cells. CD34+ marrow cells from each of four untreated baboons were divided into two equal portions that were cocultivated for 48 hours with packaging cells producing equivalent titers of either amphotropic or GALV pseudotyped vectors containing the neo gene. The vectors contained small sequence differences to allow differentiation of cells genetically marked by the different vectors. Nonadherent and adherent cells from the cultures were infused into animals after they received a myeloablative dose of total body irradiation. Polymerase chain reaction (PCR) analysis for neo gene-specific sequences in colony-forming unit–granulocyte-macrophage from cell populations used for transplant showed gene transfer rates of 2.7%, 7.1%, <15%, and 3.9% with the amphotropic vectors and 7.1%, 11.3%, <15%, and 26.4% with the GALV pseudotyped vector. PCR analysis of peripheral blood and marrow cells after engraftment showed the neo gene to be present in all four animals analyzed at levels between 0.1% and 5%. Overall gene transfer efficiency was higher with the GALVpseudotyped vector than with the amphotropic vectors. Southern blot analysis in one animal confirmed a gene transfer efficiency of between 1% and 5%. The higher gene transfer efficiency with the GALV-pseudotyped vector correlated with higher levels of GALV receptor RNA compared with the amphotropic receptor in CD34+ hematopoietic cells. These results show that GALV-pseudotyped vectors are capable of transducing baboon marrow repopulating cells and may allow more efficient gene transfer rates for human gene therapy directed at hematopoietic cells. In addition, our data show considerable differences in gene transfer efficiency between individual baboons, suggesting that a competitive repopulation assay will be critical for evaluation of methods designed to improve gene transfer into hematopoietic stem cells.
Collapse
|
39
|
Martineau D, Klump WM, McCormack JE, DePolo NJ, Kamantigue E, Petrowski M, Hanlon J, Jolly DJ, Mento SJ, Sajjadi N. Evaluation of PCR and ELISA assays for screening clinical trial subjects for replication-competent retrovirus. Hum Gene Ther 1997; 8:1231-41. [PMID: 9215740 DOI: 10.1089/hum.1997.8.10-1231] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gene delivery via murine-based recombinant retroviral vectors is currently widely used in gene therapy clinical trials. The vectors are engineered to be replication defective by replacing the structural and nonstructural genes of a cloned infectious retrovirus with a therapeutic gene of interest. The retroviral particles are currently generated in packaging cell lines, which supply all retroviral proteins in trans. Recombination between short homologous regions of the retroviral vector and packaging cell line elements can theoretically generate replication-competent retrovirus (RCR) and hence the Food and Drug Administration (FDA) requires the monitoring of clinical trial subjects for the presence of RCR. Sensitive polymerase chain reaction (PCR) assays have been used for the detection of murine leukemia virus (MLV) nucleotide sequences in peripheral blood mononuclear cells (PBMCs). A novel serological enzyme-linked immunosorbent assay (ELISA) for the detection of anti-MLV specific immunoglobulin (Ig) has been developed to be used as an alternative to the PCR assay. Both assays were used to monitor human immunodeficiency virus (HIV)-positive clinical trial subjects who had received multiple injections of HIV-IT (V), a retroviral vector encoding HIV-1 IIIBenv/rev. Western blot analysis and an in vitro vector neutralization assay were used to characterize further a subset of serum samples tested by ELISA. Results show no evidence of RCR infection in clinical trial subjects. PCR and ELISA assays are discussed in terms of their advantages and limitations as routine screening assays for RCR. The PCR assay is our current choice for monitoring clinical trial subjects receiving direct administration of vector, and the ELISA is our choice for those receiving ex vivo treatment regimens.
Collapse
Affiliation(s)
- D Martineau
- Chiron Technologies, Center for Gene Therapy, San Diego, CA 92121-1204, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bardy P, Conneally E, Emerman JT, Lansdorp PM, Goss G, Humphries RK, Eaves CJ. Isolation and analysis of different subpopulations of normal human breast epithelial cells after their infection with a retroviral vector encoding a cell surface marker. Breast Cancer Res Treat 1997; 44:153-65. [PMID: 9232274 DOI: 10.1023/a:1005713419023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The use of gene transfer procedures has greatly facilitated the investigation of cell lineage relationships and other developmental processes in a variety of primary tissues. In this report we described the infection and selection of primary human breast epithelial cells using retroviral vectors (Jzen-HSA-NEO and MSCV-HSA.NEO) containing the complete 228 bp coding sequence of a murine cell surface marker (Heat Stable Antigen, HSA) as well as the neomycin resistance (neo(r)) gene. Expression of the transduced HSA gene was detectable using either flow cytometry or immunohistochemistry after staining cells with an anti-murine HSA-specific antibody (M1/69). Expression of the transduced neo(r) gene conferred resistance to G418. In initial experiments with the MCF-7 breast cancer cell line, continued expression of both markers was demonstrated in a high proportion of cells for at least 4 weeks after their infection by positive M1/69 staining of cells that had been selected by prior incubation in G418. Evidence of gene transfer to early stage (< 9 days old) primary cultures of normal human breast epithelial cells (15 experiments with cells from 12 normal individuals) was also obtained using an infection protocol in which these calls were exposed to helper-free viral supernatants (2 incubations, 4 to 6 hr each) after being subcultured for 12 to 18 hr to increase their rate of proliferation. The presence of 5-50% (mean = 26%) HSA+ cells was demonstrated in these experiments within 5 days after their infection and the HSA+ populations included both myoepithelial and luminal phenotypes. The transduced (HSA+) cells within both of these subpopulations could also be separately isolated by FACS and subcultured. These results should provide an important starting point for future studies of genetically modified or marked primary human breast epithelial cell populations.
Collapse
Affiliation(s)
- P Bardy
- Terry Fox Laboratory, British Columbia Cancer Agency
| | | | | | | | | | | | | |
Collapse
|
41
|
Wilson CA, Ng TH, Miller AE. Evaluation of recommendations for replication-competent retrovirus testing associated with use of retroviral vectors. Hum Gene Ther 1997; 8:869-74. [PMID: 9143913 DOI: 10.1089/hum.1997.8.7-869] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
With input from the gene therapy community, CBER is actively examining the recommendations for RCR testing during retroviral vector production, production of ex vivo-transduced cells, and in patients who receive such material. Our initial recommendations were made at a time when our experience with RCR detection assays and clinical use of retroviral vectors was limited. As the gene therapy field has matured, there is an increasing amount of data available on RCR detection assays and from monitoring of patients in clinical trials. The cumulative data give assurance that RCR detection assays in use are of sufficient sensitivity to provide a margin of safety to patients: no patients to date have evidence of RCR infection. However, CBER encourages members of the gene therapy community to continue to submit data to the FDA or to publish data that will enhance the cumulative data base on RCR testing assays, experience with different VPC, and patient monitoring. Based on the analysis of data accumulated to data, and ongoing discussions with members of the gene therapy community, CBER is proposing to discuss changes to the current RCR testing recommendations, as summarized below. RCR testing during production of retroviral vector and ex vivo-transduced cells. Development of characterized standards for RCR testing of supernatant and cells should allow comparison of assay sensitivity. One proposal under consideration is to apply statistical methods to determine how much material needs to be tested independent of the size of the production lot. Data and discussion are still needed to define a limit concentration and a value for probability of detection for RCR testing, while maintaining an appropriate margin of safety. These modifications of RCR testing strategies could lead to improvements in assay sensitivity. Additional discussion and data are also needed to evaluate the current recommendations of the testing for ex vivo-transduced cells: should both cells and supernatant be tested in all cases? RCR testing during patient follow-up. The time points required for RCR testing during patient follow-up need examination. One proposal under consideration is to sample and assay at three time points during the first year of treatment (e.g., 4-6 weeks, 3 months, and 1 year post-treatment). Further discussion is needed to define appropriate additional follow-up. Choice of assays to detect surrogate markers for RCR infection (i.e., serologic or PCR-based assays) should consider mode of vector administration and the patient population. Positive results with such assays should be pursued by direct culture assay to obtain and characterize the infectious viral isolate. These proposals will be the focal point for the discussion at the Retroviral Vector Breakout Session at the 1997 FDA/NIH Gene Therapy Conference. After the 1997 FDA/NIH Gene Therapy Conference, CBR plans to propose revised recommendations for RCR testing for public comment.
Collapse
Affiliation(s)
- C A Wilson
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, FDA, Rockville, MD 20852, USA
| | | | | |
Collapse
|
42
|
Medin JA, Karlsson S. Viral vectors for gene therapy of hematopoietic cells. IMMUNOTECHNOLOGY : AN INTERNATIONAL JOURNAL OF IMMUNOLOGICAL ENGINEERING 1997; 3:3-19. [PMID: 9154464 DOI: 10.1016/s1380-2933(96)00059-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hematopoietic cells, in particular hematopoietic stem cells, are important targets for the development of gene therapy for hematological and other disorders. So far, simple retroviral vectors based on Murine Leukemia Virus (MLV) have been the main delivery vehicles for the transfer of corrective genes into primary hematopoietic cells. While the gene transfer efficiency of progenitor cells has been very efficient using these vectors, it has been much more problematic to obtain efficient gene transfer into repopulating human hematopoietic stem cells. The main reason for this is due to the quiescent nature of these cells and the fact that MLV-based vectors require dividing target cells. It may be that efficient gene transfer into hematopoietic stem cells can be accomplished by stimulating the cells to divide in vitro or by developing new vector systems that can isolate transduced cells or that can deliver genes permanently into nondividing target cells. This review will discuss the progress and problems of these approaches in developing effective gene therapy for hematopoietic cells.
Collapse
Affiliation(s)
- J A Medin
- Developmental and Metabolic Neurology Branch, NINDS, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
43
|
Yin PD, Pathak VK, Rowan AE, Teufel RJ, Hu WS. Utilization of nonhomologous minus-strand DNA transfer to generate recombinant retroviruses. J Virol 1997; 71:2487-94. [PMID: 9032388 PMCID: PMC191361 DOI: 10.1128/jvi.71.3.2487-2494.1997] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
During reverse transcription, minus-strand DNA transfer connects the sequences located at the two ends of the viral RNA to generate a long terminal repeat. It is thought that the homology in the repeat (R) regions located at the two ends of the viral RNA sequences facilitate minus-strand DNA transfer. In this report, the effects of diminished R-region homology on DNA synthesis and virus titer were examined. A retrovirus vector, PY31, was constructed to contain the 5' and 3' cis-acting elements from Moloney murine sarcoma virus and spleen necrosis virus. These two viruses are genetically distinct, and the two R regions contain little homology. In one round of replication, the PY31 titer was approximately 3,000-fold lower than that of a control vector with highly homologous R regions. The molecular characteristics of the junctions of minus-strand DNA transfer were analyzed in both unintegrated DNA and integrated proviruses. Short stretches of homology were found at the transfer junctions and were likely to be used to facilitate minus-strand DNA transfer. Both minus-strand strong-stop DNA and weak-stop DNA were observed to mediate strand transfer. The ability of PY31 to complete reverse transcription indicates that minus-strand DNA transfer can be used to join sequences from two different viruses to form recombinant viruses. These results suggest the provocative possibility that genetically distinct viruses can interact through this mechanism.
Collapse
Affiliation(s)
- P D Yin
- Department of Microbiology and Immunology, West Virginia University, Morgantown 26506, USA
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Licht T, Herrmann F, Gottesman MM, Pastan I. In vivo drug-selectable genes: a new concept in gene therapy. Stem Cells 1997; 15:104-11. [PMID: 9090786 DOI: 10.1002/stem.150104] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chemoresistance genes, initially considered to be a major impediment to the successful treatment of cancer, may become useful tools for gene therapy of cancer and of genetically determined disorders. Various target cells are rendered resistant to anticancer drugs by transfer of chemoresistance genes encoding P-glycoprotein, the multidrug resistance-associated protein-transporter, dihydrofolate reductase, glutathione-S-transferase, O6-alkylguanine DNA alkyltransferase, or aldehyde reductase. These genes can be used for selection in vivo because of the pharmacology and pharmacokinetics of their substrates. In contrast, several other selectable marker genes conferring resistance to substrates like neomycin or hygromycin can only be utilized in tissue culture. Possible applications for chemoresistance genes include protection of bone marrow and other organs from adverse effects caused by the toxicity of chemotherapy. Strategies have also been developed to introduce and overexpress nonselectable genes in target cells by cotransduction with chemoresistance genes. Thereby expression of both transgenes can be increased following selection with drugs. Moreover, treatment with chemotherapeutic agents should restore transgene expression when or if expression levels decrease after several weeks or months. This approach may improve the efficacy of somatic gene therapy of hematopoietic disorders which is hampered by low or unstable gene expression in progenitor cells. In this article we review preclinical studies in tissue culture and animal models, and ongoing clinical trials on transfer of chemoresistance genes to hematopoietic precursor cells of cancer patients.
Collapse
Affiliation(s)
- T Licht
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892-4255, USA
| | | | | | | |
Collapse
|
46
|
Affiliation(s)
- E Tzeng
- University of Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
47
|
Wang S, Vos JM. A hybrid herpesvirus infectious vector based on Epstein-Barr virus and herpes simplex virus type 1 for gene transfer into human cells in vitro and in vivo. J Virol 1996; 70:8422-30. [PMID: 8970963 PMCID: PMC190931 DOI: 10.1128/jvi.70.12.8422-8430.1996] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have developed a miniviral vector, pH300, based on the human herpesviruses 1 and 4, herpes simplex virus type 1 (HSV-1), and Epstein-Barr virus (EBV), carrying EBV sequences for plasmid episomal maintenance and HSV-1 sequences for amplification and packaging in multimeric form into HSV-1 capsids in the presence of a helper virus and helper cell line. A reporter gene, the bacterial lacZ gene, which expressed beta-galactosidase, was inserted into the multiple cloning site of pH300 to make pH300-lac. The packaged pH300-lac DNA was very efficient in infecting human cells in tissue culture. The pH300-lac miniviral stock was used to infect in vitro various human cell types derived from breast cancer, lung cancer, and liver cancer. Up to 95% of cells were infected and expressed beta-galactosidase activity after exposure to viral stock at a multiplicity of infection of 3. There was essentially no apparent cytotoxicity after infection of cultured cells in vitro. To test in vivo gene delivery, human liver tumor cells preimplanted subcutaneously in nude mice and injected in situ with pH300-lac showed high efficiency of ectopic gene expression. The pH300 miniviral vector is a simple and effective gene transfer system which shows potential for gene therapy of cancer and inherited diseases.
Collapse
Affiliation(s)
- S Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 27599-7295, USA
| | | |
Collapse
|
48
|
Van Beusechem VW, Valerio D. Gene transfer into hematopoietic stem cells of nonhuman primates. Hum Gene Ther 1996; 7:1649-68. [PMID: 8886837 DOI: 10.1089/hum.1996.7.14-1649] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nonhuman primates provide an appropriate preclinical large-animal model to test the efficacy of bone marrow gene therapy procedures. Successful retroviral vector-mediated gene transfer into monkey pluripotent hematopoietic stem cells (PHSC) has closed the gap between gene transfer experiments in mouse models and clinical application of bone marrow gene therapy. After initial bone marrow transplant failures, ex vivo bone marrow culture conditions were found that sufficiently supported maintenance of the long-term repopulating ability of genetically modified autologous monkey grafts. The efficiency of gene transfer into primate PHSC has, however, remained at least one order of magnitude lower than has been achieved in mice. Similar gene transfer efficiencies have been obtained with total bone marrow grafts, CD34+ bone marrow grafts, and mobilized peripheral blood progenitor cell grafts; however, various attempts to increase the transduction efficiency have been without significant success. Primate PHSC seem to require quite different culture conditions for their maintenance and transduction than mouse PHSC, in particular regarding hematopoietic growth factor addition. In contrast to observations in other species, some form of conditioning appeared essential for engraftment of transduced PHSC in monkeys. Although it has been shown that mouse retroviruses can replicate in monkeys and are capable of inducing neoplasms, experiments in monkeys have sufficiently confirmed the safety of current gene transfer procedures to allow their clinical application.
Collapse
|
49
|
Blömer U, Naldini L, Verma IM, Trono D, Gage FH. Applications of gene therapy to the CNS. Hum Mol Genet 1996; 5 Spec No:1397-404. [PMID: 8875243 DOI: 10.1093/hmg/5.supplement_1.1397] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Gene therapy is a new method with potential for treating a broad range of acquired and inherited neurologic diseases, where the causative gene defect or deletion has been identified. In addition to gene replacement the application of gene products that reduce cellular dysfunction or death represent new therapeutic options. Gene transfer techniques to express novel proteins using different viral vectors in vitro and in vivo, as well as animal models and human trials will be reviewed in this article. We will focus on a new lentiviral vector as a recent gene transfer method and degenerative disorders of the CNS, and their related model systems.
Collapse
Affiliation(s)
- U Blömer
- Salk Institute for Biological Studies, La Jolla, CA 92037-1099, USA
| | | | | | | | | |
Collapse
|
50
|
Miller AD, Chen F. Retrovirus packaging cells based on 10A1 murine leukemia virus for production of vectors that use multiple receptors for cell entry. J Virol 1996; 70:5564-71. [PMID: 8764070 PMCID: PMC190516 DOI: 10.1128/jvi.70.8.5564-5571.1996] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
10A1 murine leukemia virus can enter cells by using either of two different cell surface phosphate transport proteins, the gibbon ape leukemia virus receptor Glvr-1 (Pit-1) or the amphotropic retrovirus receptor Ram-1 (Pit-2). Glvr-1 and Ram-1 are widely expressed in different tissues, but the relative amounts of each are highly variable. We have developed retrovirus packaging cell lines based on 10A1 virus to take advantage of this dual receptor utilization to improve gene transfer rates in somatic cells of animals and humans, in which the relative levels of the two receptors are not always known. Optimization of the Env expression vector allowed the generation of packaging lines that produce helper-free vector titers up to 10(7)/ml. By interference analysis, we found that a 10A1 pseudotype retroviral vector can utilize Ram-1 for efficient entry into mouse, rat, and human cells and can utilize Glvr-1 for entry into mouse and human cells but not for entry into rat cells. The 10A1 pseudotype vector efficiently enters mouse cells by using Glvr-1, while entry into human cells is much less efficient. Thus, the 10A1 pseudotype packaging cells may be advantageous compared with the standard amphotropic packaging cells because vectors produced by the cells can use an additional receptor for cell entry. These packaging cells will also be useful to further explore the complicated pattern of receptor usage conferred by the 10A1 viral surface protein.
Collapse
Affiliation(s)
- A D Miller
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|