1
|
Aït Ghezali L, Arbabian A, Roudot H, Brouland JP, Baran-Marszak F, Salvaris E, Boyd A, Drexler HG, Enyedi A, Letestu R, Varin-Blank N, Papp B. Induction of endoplasmic reticulum calcium pump expression during early leukemic B cell differentiation. J Exp Clin Cancer Res 2017; 36:87. [PMID: 28651627 PMCID: PMC5485704 DOI: 10.1186/s13046-017-0556-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/18/2017] [Indexed: 11/15/2022] Open
Abstract
Background Endoplasmic reticulum (ER) calcium storage and release play important roles in B lymphocyte maturation, survival, antigen-dependent cell activation and immunoglobulin synthesis. Calcium is accumulated in the endoplasmic reticulum (ER) by Sarco/Endoplasmic Reticulum Calcium ATPases (SERCA enzymes). Because lymphocyte function is critically dependent on SERCA activity, it is important to understand qualitative and quantitative changes of SERCA protein expression that occur during B lymphoid differentiation and leukemogenesis. Methods In this work we investigated the modulation of SERCA expression during the pharmacologically induced differentiation of leukemic precursor B lymphoblast cell lines that carry the E2A-PBX1 fusion oncoprotein. Changes of SERCA levels during differentiation were determined and compared to those of established early B lymphoid differentiation markers. SERCA expression of the cells was compared to that of mature B cell lines as well, and the effect of the direct inhibition of SERCA-dependent calcium transport on the differentiation process was investigated. Results We show that E2A-PBX1+ leukemia cells simultaneously express SERCA2 and SERCA3-type calcium pumps; however, their SERCA3 expression is markedly inferior to that of mature B cells. Activation of protein kinase C enzymes by phorbol ester leads to phenotypic differentiation of the cells, and this is accompanied by the induction of SERCA3 expression. Direct pharmacological inhibition of SERCA-dependent calcium transport during phorbol ester treatment interferes with the differentiation process. Conclusion These data show that the calcium pump composition of the ER is concurrent with increased SERCA3 expression during the differentiation of precursor B acute lymphoblastic leukemia cells, that a cross-talk exists between SERCA function and the control of differentiation, and that SERCA3 may constitute an interesting new marker for the study of early B cell phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0556-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lamia Aït Ghezali
- Institut National de la Santé et de la Recherche Médicale, U978, Bobigny, France.,Université Paris-13, PRES Sorbonne Paris-Cité, 74, rue Marcel Cachin 93017, Bobigny, France
| | | | - Hervé Roudot
- Institut National de la Santé et de la Recherche Médicale, U978, Bobigny, France.,Université Paris-13, PRES Sorbonne Paris-Cité, 74, rue Marcel Cachin 93017, Bobigny, France.,Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Seine-Saint-Denis, AP-HP, Hôpital Avicenne, Bobigny, France
| | | | - Fanny Baran-Marszak
- Institut National de la Santé et de la Recherche Médicale, U978, Bobigny, France.,Université Paris-13, PRES Sorbonne Paris-Cité, 74, rue Marcel Cachin 93017, Bobigny, France.,Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Seine-Saint-Denis, AP-HP, Hôpital Avicenne, Bobigny, France
| | - Evelyn Salvaris
- Immunology Research Centre, St Vincent's Hospital, Melbourne, VIC, Australia
| | - Andrew Boyd
- Department of Medicine, University of Queensland, Queensland, Australia
| | - Hans G Drexler
- Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Brauschweig, Germany
| | - Agnes Enyedi
- Second Institute of Pathology, Semmelweis University Medical School, Budapest, Hungary
| | - Remi Letestu
- Institut National de la Santé et de la Recherche Médicale, U978, Bobigny, France.,Université Paris-13, PRES Sorbonne Paris-Cité, 74, rue Marcel Cachin 93017, Bobigny, France.,Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Seine-Saint-Denis, AP-HP, Hôpital Avicenne, Bobigny, France
| | - Nadine Varin-Blank
- Institut National de la Santé et de la Recherche Médicale, U978, Bobigny, France.,Université Paris-13, PRES Sorbonne Paris-Cité, 74, rue Marcel Cachin 93017, Bobigny, France
| | - Bela Papp
- Institut National de la Santé et de la Recherche Médicale, U978, Bobigny, France. .,Université Paris-13, PRES Sorbonne Paris-Cité, 74, rue Marcel Cachin 93017, Bobigny, France. .,U978 Inserm, UFR SMBH, Université Paris-13, 74, rue Marcel Cachin, 93017, Bobigny, France.
| |
Collapse
|
2
|
Yuan J, Wu C, Huang M, Zhou J, Ben W, Zhang G. TSP50 depends on its threonine protease activity and its interactions with TNF-α-induced NF-κB for its role in human cervical tumorigenesis. Cell Biochem Biophys 2015; 71:891-6. [PMID: 25312478 DOI: 10.1007/s12013-014-0279-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Testes-specific protease 50 (TSP50) has threonine activity and has homology to serine proteases. TSP50 protein, which is encoded by a possible proto-oncogene, is overexpressed in cervical tumor tissues. Through overexpression experiments using both TSP50 and a TSP50 mutant (TSP50 T310A), it is clear that this protein may play an important role in carcinogenesis and progression of cervical tumor. However, the mechanism underlying how TSP50 modulates cancer cell growth is still unclear. To examine the difference in TSP50 expression in cervical carcinoma tissues and in paracarcinoma tissues, we detected TSP50 mRNA and protein in ten paired tissues from patients with cervical cancer. To determine whether TSP50's threonine protease activity is crucial for its effects on tumor formation, we generated a mutant version of TSP50 (T310A). Via overexpression and silencing experiments, we identified a role for TSP50 in cell proliferation and migration. Furthermore, we examined the signaling pathway of TNF-α-induced NFκB activation to explain the mechanism by which TSP50 participates in tumorigenesis. Similarly, we found that all these effects could be abolished by the TSP50 T310A mutation. Our results suggest that the threonine 310 residue within TSP50 helps modulate its role in cervical tumorigenesis and indicates that TSP50's role in tumorigenesis may be dependent on its interaction with TNF-α-induced NF-κB.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | | | | | | | | | | |
Collapse
|
3
|
Liu YL, Sun YN. Down-regulation of testes-specific protease 50 induces apoptosis in human laryngocarcinoma HEp2 cells in a NF-κB-mediated pathway. Mol Biol Rep 2014; 41:7743-7. [PMID: 25399078 DOI: 10.1007/s11033-014-3634-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/21/2014] [Indexed: 11/26/2022]
Abstract
Testes-specific protease 50 is a newly reported threonine enzyme. It has similar amino acid sequences and enzymatic structures to some other serine proteases. It is proposed as a laryngocarcinoma-related gene in human beings. The physiological mechanism by which TSP50 exerts its promoting effects in laryngocarcinoma is not yet fully understood. The study investigated the function of TSP50 by suppressing its expression in the HEp2 cell line using a TSP50-specific short hairpin RNA (shRNA). Western bloting and real-time-PCR were used to detect the levels of TSP50. By using MTT, Wound healing, flow cytometric and tumorigenesis assays, the study tested the TSP50 role in human laryngocarcinoma cell growth and apoptosis. The results demonstrated that TSP50 knockdown could inhibit HEp2 cell proliferation and induce apoptosis in vitro in a NF-κB-mediated pathway. The tumorigenicity of TSP50 shRNA-expressing cells were decreased after inoculating into nude mice. The present results provide a new understanding of the TSP50 gene in the progression of laryngocarcinoma and put up a novel therapeutic target for treating this cancer.
Collapse
Affiliation(s)
- Yu-Lin Liu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | | |
Collapse
|
4
|
Abstract
Nuclear factor-kappa B (NF-κB) is a ubiquitous transcription factor that regulates immune and cell-survival signaling pathways. NF-κB has been reported to be present in neurons wherein it reportedly responds to immune and toxic stimuli, glutamate, and synaptic activity. However, because the brain contains many cell types, assays specifically measuring neuronal NF-κB activity are difficult to perform and interpret. To address this, we compared NF-κB activity in cultures of primary neocortical neurons, mixed brain cells, and liver cells, employing Western blot of NF-κB subunits, electrophoretic mobility shift assay (EMSA) of nuclear κB DNA binding, reporter assay of κB DNA binding, immunofluorescence of the NF-κB subunit protein p65, quantitative real-time polymerase chain reaction (PCR) of NF-κB-regulated gene expression, and enzyme-linked immunosorbent assay (ELISA) of produced proteins. Assay of p65 showed its constitutive presence in cytoplasm and nucleus of neurons at levels significantly lower than in mixed brain or liver cells. EMSA and reporter assays showed that constitutive NF-κB activity was nearly absent in neurons. Induced activity was minimal--many fold lower than in other cell types, as measured by phosphorylation and degradation of the inhibitor IκBα, nuclear accumulation of p65, binding to κB DNA consensus sites, NF-κB reporting, or induction of NF-κB-responsive genes. The most efficacious activating stimuli for neurons were the pro-inflammatory cytokines tumor necrosis factor α (TNFα) and interleukin-beta (IL-β). Neuronal NF-κB was not responsive to glutamate in most assays, and it was also unresponsive to hydrogen peroxide, lipopolysaccharide, norepinephrine, ATP, phorbol ester, and nerve growth factor. The chemokine gene transcripts CCL2, CXCL1, and CXCL10 were strongly induced via NF-κB activation by TNFα in neurons, but many candidate responsive genes were not, including the neuroprotective genes SOD2 and Bcl-xL. Importantly, the level of induced neuronal NF-κB activity in response to TNFα or any other stimulus was lower than the level of constitutive activity in non-neuronal cells, calling into question the functional significance of neuronal NF-κB activity.
Collapse
|
5
|
Li YY, Bao YL, Song ZB, Sun LG, Wu P, Zhang Y, Fan C, Huang YX, Wu Y, Yu CL, Sun Y, Zheng LH, Wang GN, Li YX. The threonine protease activity of testes-specific protease 50 (TSP50) is essential for its function in cell proliferation. PLoS One 2012; 7:e35030. [PMID: 22574111 PMCID: PMC3344824 DOI: 10.1371/journal.pone.0035030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 03/11/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Testes-specific protease 50 (TSP50), a newly discovered threonine enzyme, has similar amino acid sequences and enzymatic structures to those of many serine proteases. It may be an oncogene. TSP50 is up-regulated in breast cancer epithelial cells, and ectopic expression of TSP50 in TSP50-deficient Chinese hamster ovary (CHO) cells has been found to promote cell proliferation. However, the mechanisms by which TSP50 exerts its growth-promoting effects are not yet fully understood. METHODOLOGY/PRINCIPAL FINDINGS To delineate whether the threonine protease activity of TSP50 is essential to its function in cell proliferation, we constructed and characterized a mutant TSP50, called TSP50 T310A, which was identified as a protease-dead mutant of TSP50. By a series of proliferation analyses, colony formation assays and apoptosis analyses, we showed that T310A mutation significantly depresses TSP50-induced cell proliferation in vitro. Next, the CHO stable cell line expressing either wild-type or T310A mutant TSP50 was injected subcutaneously into nude mice. We found that the T310A mutation could abolish the tumorigenicity of TSP50 in vivo. A mechanism investigation revealed that the T310A mutation prevented interaction between TSP50 and the NF-κBIκBα complex, which is necessary for TSP50 to perform its function in cell proliferation. CONCLUSION Our data highlight the importance of threonine 310, the most critical protease catalytic site in TSP50, to TSP50-induced cell proliferation and tumor formation.
Collapse
Affiliation(s)
- Yu-Yin Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Yong-Li Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
- * E-mail: (YLB); (YXL)
| | - Zhen-Bo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lu-Guo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Ping Wu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Yu Zhang
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Cong Fan
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Yan-Xin Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Yin Wu
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Chun-Lei Yu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Ying Sun
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Li-Hua Zheng
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Guan-Nan Wang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yu-Xin Li
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- * E-mail: (YLB); (YXL)
| |
Collapse
|
6
|
Testes-specific protease 50 (TSP50) promotes cell proliferation through the activation of the nuclear factor κB (NF-κB) signalling pathway. Biochem J 2011; 436:457-67. [PMID: 21385156 DOI: 10.1042/bj20101780] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TSP50 (testes-specific protease 50) is a testis-specific expression protein, which is expressed abnormally at high levels in breast cancer tissues. This makes it an attractive molecular marker and a potential target for diagnosis and therapy; however, the biological function of TSP50 is still unclear. In the present study, we show that overexpression of TSP50 in CHO (Chinese-hamster ovary) cells markedly increased cell proliferation and colony formation. Mechanistic studies have revealed that TSP50 can enhance the level of TNFα (tumour necrosis factor α)- and PMA-induced NF-κB (nuclear factor κB)-responsive reporter activity, IκB (inhibitor of NF-κB) α degradation and p65 nuclear translocation. In addition, the knockdown of endogenous TSP50 in MDA-MB-231 cells greatly inhibited NF-κB activity. Co-immunoprecipitation studies demonstrated an interaction of TSP50 with the NF-κB-IκBα complex, but not with the IKK (IκB kinase) α/β-IKKγ complex, which suggested that TSP50, as a novel type of protease, promoted the degradation of IκBα proteins by binding to the NF-κB-IκBα complex. Our results also revealed that TSP50 can enhance the expression of NF-κB target genes involved in cell proliferation. Furthermore, overexpression of a dominant-negative IκB mutant that is resistant to proteasome-mediated degradation significantly reversed TSP50-induced cell proliferation, colony formation and tumour formation in nude mice. Taken together, the results of the present study suggest that TSP50 promotes cell proliferation, at least partially, through activation of the NF-κB signalling pathway.
Collapse
|
7
|
Yen JH, Weng CY, Li S, Lo YH, Pan MH, Fu SH, Ho CT, Wu MJ. Citrus flavonoid 5-demethylnobiletin suppresses scavenger receptor expression in THP-1 cells and alters lipid homeostasis in HepG2 liver cells. Mol Nutr Food Res 2011; 55:733-48. [PMID: 21225617 DOI: 10.1002/mnfr.201000226] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 10/23/2010] [Accepted: 11/05/2010] [Indexed: 12/13/2022]
Abstract
SCOPE Nobiletin, a polymethoxyflavone from the peel of citrus fruits, has been reported to inhibit modified LDL uptake in macrophages and enhance hepatic LDL receptor expression and activity. We report the anti-atherogenic effect and mechanism of 5-demethylnobiletin, an auto-hydrolysis product of nobiletin. METHODS AND RESULTS 5-Demethylnobiletin significantly attenuated phorbol 12-myristate 13-acetate-induced gene expression and activity of scavenger receptors, CD36, scavenger receptor-A and lectin-like oxidized LDL receptor-1. The inhibitory effect is partly associated with the inhibition of protein-kinase C activity and c-Jun NH(2) -terminal kinase 1/2 phosphorylation, thereby inhibiting the activation of activator protein-1 and nuclear factor-κB. 5-Demethylnobiletin treatment also led to reduction of oxidized LDL-induced CD36 mRNA expression and blockade of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanide perchlorate-modified LDL uptake in THP-1-derived macrophages. In the human hepatoma cell line HepG2, 5-demethylnobiletin significantly induced LDL receptor activity and transcription, at least in part, through steroid-response element-binding protein-2 activation. 5-Demethylnobiletin also decreased the mRNA expression of acyl CoA:diacylglycerol acyltransferase 2, the key enzyme involved in the hepatic triacylglycerol biosyntheses. CONCLUSION Current results suggest that 5-demethylnobiletin has diverse anti-atherogenic bioactivities. It is more potent in inhibiting monocyte-to-macrophage differentiation and foam cell formation than its permethoxylated counterpart, nobiletin. It exhibits similar hypolipidemic activity as nobiletin and both can enhance LDL receptor gene expression and activity and decreased acyl CoA:diacylglycerol acyltransferase 2 expression.
Collapse
Affiliation(s)
- Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Local immune regulatory effects of Bangdeyun on the endometrium of mice with embryo implantation dysfunction during the implantation time. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2009; 29:372-6. [PMID: 19513625 DOI: 10.1007/s11596-009-0322-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Indexed: 01/04/2023]
Abstract
This study examined the effects of Bangdeyun on the expressions of nuclear factor-kappaB (NF-kappaB), interferon-gamma (IFN-gamma) and interleukin-10 (IL-10) in the endometrium of mice with embryo implantation dysfunction (EID) during the implantation time (namely on pregnancy day 5, 6, 7 and 8) and explored the local immune regulatory effects of Bangdeyun. The gestational mice were randomly divided into normal group, model group and Bangdeyun-treated group. EID models of mice were established by using indomethacin. The endometrial expression of NF-kappaB was detected by immunohistochemistry and Western blotting. IFN-gamma and IL-10 were measured by enzyme-linked immunosorbent assay (ELISA). The results showed that in the normal group, NF-kappaB and IFN-gamma were weakly expressed and IL-10 was strongly expressed in the endometrium during the whole implantation period. In the model group, the expressions of NF-kappaB and IFN-gamma were increased on pregnancy day 5, 6 and 7, and IL-10 expression decreased during the whole implantation time when compared with those in the normal group (P<0.01 for all). In the Bangdeyun-treated group, little amount of NF-kappaB and IFN-gamma was expressed and IL-10 expression was strong, much the way they were expressed in the normal group (P>0.05). The expressions of NF-kappaB and IFN-gamma were much lower in the Bangdeyun-treated group than those in the model group on pregnancy day 5, 6 and 7 (P<0.01 for all), while the expression of IL-10 was much higher than in the model group during the whole implantation time (P<0.01). It was suggested Bangderun may favor a shift from Th1- to Th2-type immune response, therefore inhibiting the maternal immune rejection, inducing the immune tolerance and improving the fetal implantation.
Collapse
|
9
|
Pandey MK, Sung B, Ahn KS, Kunnumakkara AB, Chaturvedi MM, Aggarwal BB. Gambogic acid, a novel ligand for transferrin receptor, potentiates TNF-induced apoptosis through modulation of the nuclear factor-kappaB signaling pathway. Blood 2007; 110:3517-25. [PMID: 17673602 PMCID: PMC2077305 DOI: 10.1182/blood-2007-03-079616] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gambogic acid (GA), a xanthone derived from the resin of the Garcinia hanburyi, has been recently demonstrated to bind transferrin receptor and exhibit potential anticancer effects through a signaling mechanism that is not fully understood. Because of the critical role of NF-kappaB signaling pathway, we investigated the effects of GA on NF-kappaB-mediated cellular responses and NF-kappaB-regulated gene products in human leukemia cancer cells. Treatment of cells with GA enhanced apoptosis induced by tumor necrosis factor (TNF) and chemotherapeutic agents, inhibited the expression of gene products involved in antiapoptosis (IAP1 and IAP2, Bcl-2, Bcl-x(L), and TRAF1), proliferation (cyclin D1 and c-Myc), invasion (COX-2 and MMP-9), and angiogenesis (VEGF), all of which are known to be regulated by NF-kappaB. GA suppressed NF-kappaB activation induced by various inflammatory agents and carcinogens and this, accompanied by the inhibition of TAK1/TAB1-mediated IKK activation, inhibited IkappaBalpha phosphorylation and degradation, suppressed p65 phosphorylation and nuclear translocation, and finally abrogated NF-kappaB-dependent reporter gene expression. The NF-kappaB activation induced by TNFR1, TRADD, TRAF2, NIK, TAK1/TAB1, and IKKbeta was also inhibited. The effect of GA mediated through transferrin receptor as down-regulation of the receptor by RNA interference reversed its effects on NF-kappaB and apoptosis. Overall our results demonstrate that GA inhibits NF-kappaB signaling pathway and potentiates apoptosis through its interaction with the transferrin receptor.
Collapse
Affiliation(s)
- Manoj K Pandey
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
10
|
Sethi G, Ahn KS, Xia D, Kurie JM, Aggarwal BB. Targeted Deletion of MKK4 Gene Potentiates TNF-Induced Apoptosis through the Down-Regulation of NF-κB Activation and NF-κB-Regulated Antiapoptotic Gene Products. THE JOURNAL OF IMMUNOLOGY 2007; 179:1926-33. [PMID: 17641059 DOI: 10.4049/jimmunol.179.3.1926] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MAPK kinase 4 (MKK4) is a dual-specificity kinase that activates both JNK and p38 MAPK. However, the mechanism by which MKK4 regulates TNF-induced apoptosis is not fully understood. Therefore, we used fibroblasts derived from MKK4 gene-deleted (MKK4-KO) mice to determine the role of this kinase in TNF signaling. We found that when compared with the wild-type cells, deletion of MKK4 gene enhanced TNF-induced apoptosis, and this correlated with down-regulation of TNF-induced cell-proliferative (COX-2 and cyclin D1) and antiapoptotic (survivin, IAP1, XIAP, Bcl-2, Bcl-x(L), and cFLIP) gene products, all regulated by NF-kappaB. Indeed we found that TNF-induced NF-kappaB activation was abrogated in MKK4 gene-deleted cells, as determined by DNA binding. Further investigation revealed that TNF-induced I kappaB alpha kinase activation, I kappaB alpha phosphorylation, I kappaB alpha degradation, and p65 nuclear translocation were all suppressed in MKK4-KO cells. NF-kappaB reporter assay revealed that NF-kappaB activation induced by TNF, TNFR1, TRADD, TRAF2, NIK, and I kappaB alpha kinase was modulated in gene-deleted cells. Overall, our results indicate that MKK4 plays a central role in TNF-induced apoptosis through the regulation of NF-kappaB-regulated gene products.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Apoptosis/immunology
- Apoptosis Regulatory Proteins/antagonists & inhibitors
- Apoptosis Regulatory Proteins/biosynthesis
- Apoptosis Regulatory Proteins/genetics
- Cell Line
- Cyclin D1/biosynthesis
- Cyclin D1/genetics
- Cyclooxygenase 2/biosynthesis
- Cyclooxygenase 2/genetics
- Down-Regulation/genetics
- Down-Regulation/immunology
- Fibroblasts/cytology
- Fibroblasts/enzymology
- Fibroblasts/immunology
- Gene Deletion
- Gene Targeting
- MAP Kinase Kinase 4/deficiency
- MAP Kinase Kinase 4/genetics
- MAP Kinase Kinase 4/physiology
- Matrix Metalloproteinase 9/biosynthesis
- Matrix Metalloproteinase 9/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- NF-kappa B/physiology
- Receptors, Tumor Necrosis Factor, Type I/biosynthesis
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type II/biosynthesis
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- Gautam Sethi
- Cytokine Research Laboratory, Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
11
|
Mumtaz MM, Tully DB, El-Masri HA, De Rosa CT. Gene induction studies and toxicity of chemical mixtures. ENVIRONMENTAL HEALTH PERSPECTIVES 2002; 110 Suppl 6:947-56. [PMID: 12634124 PMCID: PMC1241277 DOI: 10.1289/ehp.02110s6947] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
As part of its mixtures program, the Agency for Toxic Substances and Disease Registry (ATSDR) supports in vitro and limited in vivo toxicity testing to further our understanding of the toxicity and health effects of chemical mixtures. There are increasing concerns that environmental chemicals adversely affect the health of humans and wildlife. These concerns have been augmented by the realization that exposure to chemicals often occurs to mixtures of these chemicals that may exhibit complex synergistic or antagonistic interactions. To address such concerns, we have conducted two studies with techniques that are being used increasingly in experimental toxicology. In the first study, six organochlorine pesticides (4,4 -DDT, 4,4 -DDD, 4,4 -DDE, aldrin, dieldrin, or endrin) were selected from the ATSDR Comprehensive Environmental Response, Compensation and Liability Act of 1980 (or Superfund) priority list and tested for their ability to modulate transcriptional activation of an estrogen-responsive reporter gene in transfected HeLa cells. In these assays, HeLa cells cotransfected with an expression vector encoding estrogen receptor and an estrogen-responsive chloramphenicol acetyltransferase (CAT) reporter plasmid were dosed with and without selected environmental chemicals either individually or in defined combinations. Estradiol consistently elicited 10- to 23-fold dose-dependent inductions in this assay. By contrast, all six of the organochlorine pesticides showed no detectable dose-related response when tested either individually or in binary combinations. Thus, these chemicals as binary mixtures do not exhibit any additional estrogenicity at the levels tested in these assays. In the second study, arsenic [As(V)], cadmium [Cd(II)], chromium [Cr(III, VI)], and lead [Pb(II)] were tested in a commercially developed assay system, CAT-Tox (L), to identify metal-responsive promoters and to determine whether the pattern of gene expression changed with a mixture of these metals. This assay employs a battery of recombinant HepG2 cell lines to test the transcriptional activation capacity of xenobiotics in any of 13 different signal-transduction pathways. Singly, As(V), Cd(II), Cr(III, VI), and Pb(II) produced complex induction profiles in these assays. However, no evidence of synergistic activity was detected with a mixture of Cd(II), Cr(III), and Pb(II). These results have shown metal activation of gene expression through several previously unreported signal-transduction pathways and thus suggest new directions for future studies into their biochemical mechanisms of toxicity. In conclusion, the (italic)in vitro(/italic) methods used in these studies provide insights into complex interactions that occur in cellular systems and could be used to identify biomarkers of exposure to other environmental chemical mixtures.
Collapse
Affiliation(s)
- M M Mumtaz
- Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Atlanta, Georgia, USA.
| | | | | | | |
Collapse
|
12
|
Differential Cytotoxicity and Gene Expression in Human Liver Carcinoma (HepG2) Cells Exposed to Arsenic Trioxide, and Monosodium Acid Methanearsonate (MSMA). Int J Mol Sci 2002. [DOI: 10.3390/i3111117] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
13
|
Breitenbach U, Tuckermann JP, Gebhardt C, Richter KH, Fürstenberger G, Christofori G, Angel P. Keratinocyte-specific onset of serine protease BSSP expression in experimental carcinogenesis. J Invest Dermatol 2001; 117:634-40. [PMID: 11564170 DOI: 10.1046/j.0022-202x.2001.01437.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Malignant transformation of mouse skin by chemical carcinogens and tumor promoters, such as the phorbol ester 12-O-tetradecanoylphorbol-13-acetate, is a multistage process leading to the formation of squamous cell carcinomas. In an effort to identify target genes whose expression is associated with skin tumorigenesis we combined elements of suppression subtractive hybridization with differential screening to isolate genes that are differentially upregulated in mouse skin after short-term treatment with 12-O-tetradecanoylphorbol-13-acetate and that exhibit a high constitutive expression in squamous cell carcinomas. Here, we report the detailed analysis of one of these cDNAs encoding the serine protease BSSP in mouse skin. Phorbol ester application increases BSSP expression in keratinocytes of the epidermis and the hair follicle several-fold starting 4 h post- treatment. Transcriptional activation of BSSP by 12-O-tetradecanoylphorbol-13-acetate was found to be independent of c-Fos expression and resistant to downregulation by glucocorticoids. By monitoring BSSP expression throughout experimental skin carcinogenesis we found strong constitutive expression in hyperplastic epidermis as well as in proliferatively active keratinocytes of benign and malignant skin tumors. These results establish a novel link between expression of an as yet ill-defined serine protease and skin carcinogenesis.
Collapse
Affiliation(s)
- U Breitenbach
- Division of Signal Transduction and Growth Control, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Tchounwou PB, Wilson BA, Ishaque AB, Schneider J. Atrazine potentiation of arsenic trioxide-induced cytotoxicity and gene expression in human liver carcinoma cells (HepG2). Mol Cell Biochem 2001; 222:49-59. [PMID: 11678611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Recent studies in our laboratory indicated that arsenic trioxide has the ability to cause significant cytotoxicity, and induction of a significant number of stress genes in human liver carcinoma cells, HepG2. However, similar investigations with atrazine did not show any significant effects of this chemical on HepG2 cells, even at its maximum solubility of 100 microg/mL in 1% dimethyl sulfoxide (DMSO). Further cytogenetic studies were therefore carried out to investigate the combined effects of arsenic trioxide and atrazine on cell viability and gene expression in immortalized human hepatocytes. Cytotoxicity was evaluated using the MTT-assay for cell viability, while the CAT-Tox (L) assay was performed to measure the induction of stress genes in thirteen different recombinant cell lines generated from human liver carcinoma cells (HepG2), by creating stable transfectants of different mammalian promoter-chloramphenicol acetyltransferase (CAT) gene fusions. Cytotoxicity experiments yielded LC50 values of 11.9 +/- 2.6 microg/mL for arsenic trioxide in de-ionized water, and 3.6 +/- 0.4 microg/mL for arsenic trioxide in 100 microg/mL atrazine; indicating a 3 fold increase in arsenic toxicity associated with the atrazine exposure. Co-exposure of HepG2 cells to atrazine also resulted in a significant increase in the potency of arsenic trioxide to upregulate a number of stress genes including those of the glutathione-S-transferase Ya subunit--GST Ya, metallothioneinIIa--HMTIIA, 70-kDa heat shock protein--HSP70, c-fos, 153-kDa growth arrest and DNA damage (GADD153), 45-kDa growth arrest and DNA damage (GADD45), and 78-kDa glucose regulated protein--GRP78 promoters, as well as the xenobiotic response element--XRE, tumor suppressor protein response element--p53RE, cyclic adenosine monophosphate response element--CRE, and retinoic acid response element--RARE. No significant changes were observed with respect to the influence of atrazine on the modulation of cytochrome P450 1A1-CYP 1A1, and nuclear factor kappa (B site) response element--NFkappaBRE by arsenic trioxide. These results indicate that co-exposure to atrazine strongly potentiates arsenic trioxide-induced cytotoxicity and transcriptional activation of stress genes in transformed human hepatocytes.
Collapse
Affiliation(s)
- P B Tchounwou
- NIH-Center for Environmental Health, School of Science and Technology, Jackson State University, MS 39217, USA
| | | | | | | |
Collapse
|
15
|
Tchounwou PB, Wilson BA, Ishaque AB, Schneider J. Transcriptional activation of stress genes and cytotoxicity in human liver carcinoma cells (HepG2) exposed to 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene. ENVIRONMENTAL TOXICOLOGY 2001; 16:209-216. [PMID: 11409192 DOI: 10.1002/tox.1026] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The CAT-Tox (L) assay has recently been developed and validated for detecting and quantifying the specific molecular mechanisms that underlie toxicity of various xenobotic chemicals. We performed this assay to measure the transcriptional responses associated with 2,4,6-trinitrotoluene (TNT) and 2 of its byproducts [2,4 and 2,6-dinitotoluenes (DNTs)] to 13 different recombinant cell lines generated from human liver carcinoma cells (HepG2) by creating stable transfectants of mammalian promoter chloramphenicol acetyltransferase (CAT) gene fusions. Cytoxicity test with the parental HepG2 cells, using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]-based assay for cell viability, yielded LC50 values of 105 +/- 6 mg/mL for TNT in 1% dimethyl sulfoxide (DMSO), and > 300 mg/mL for DNTs, upon 48 h of exposure. TNT appeared to be more toxic than 2,4-DNT, which also showed a higher toxicity compared to 2,6-DNT. Of the 13 recombinant constructs evaluated, 8 (CYP 1A1, GST Ya, XRE, HMTIIA, c-fos, HSP70, GADD153, and GADD45), 5 (c-fos, HSP70, GADD153, GADD45, and GRP78), and none showed inductions to significant levels (p < 0.05), for TNT, 2,4-DNT, and 2,6-DNT, respectively. For most constructs, the induction of stress genes was concentration-dependent. These results show the potential for TNT and 2,4-DNT to cause protein damage and/or perturbations of protein biosynthesis (HSP70 and GRP78), alterations in DNA sequence or its helical structure (c-fos, GADD153, GADD45), and the potential involvement of TNT in the biotransformation process (CYP 1A1, GST Ya, XRE), and in the toxicokinetics of metal ions (HMTIIA). Within the range of concentrations tested (0-300 mg TNT or DNT/mL in 1% DMSO), no significant inductions (p > 0.05) of NFKBRE, p53RE, CRE, and RARE were found.
Collapse
Affiliation(s)
- P B Tchounwou
- Molecular Toxicology Research Laboratory, NIH-Center for Environmental Health, School of Science and Technology, Jackson State University, 1400 Lynch Street, Box 18540, Jackson, Mississippi 39217, USA
| | | | | | | |
Collapse
|
16
|
Tully DB, Collins BJ, Overstreet JD, Smith CS, Dinse GE, Mumtaz MM, Chapin RE. Effects of arsenic, cadmium, chromium, and lead on gene expression regulated by a battery of 13 different promoters in recombinant HepG2 cells. Toxicol Appl Pharmacol 2000; 168:79-90. [PMID: 11032763 DOI: 10.1006/taap.2000.9014] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Toxic metals occur naturally at low concentrations throughout the environment, but are found in higher concentrations at many of the hazardous waste sites on the EPA Superfund list. As part of the Agency for Toxic Substances and Disease Registry (ATSDR) mandate to evaluate the toxicity of metals and mixtures, we chose four of the high-priority metal pollutants from ATSDR's HAZDAT list, including arsenic, cadmium, chromium, and lead, to test in a commercially developed assay system, CAT-Tox(L) (Xenometrix). This assay employs a battery of recombinant HepG2 cell lines to test the transcriptional activation capacity of xenobiotics in any of 13 different signal transduction pathways. Our specific aims were to identify metal-responsive promoters and determine whether the pattern of gene expression changed with a mixture of metals. Humic acid was used in all assays as a carrier to help solubilize the metals and, in all cases, the cells were exposed to the humic acid-metal mixture for 48 h. Humic acid alone, at 50-100 microM, showed moderate activation of the XRE promoter, but little other notable activity. As(V), at doses of 50-250 microM, produced a complex profile of activity showing significant dose-dependent induction of the hMTIIA, GST Ya, HSP70, FOS, XRE, NFkappaBRE, GADD153, p53RE, and CRE promoters. Pb(II) showed dose-related induction of the GST Ya, XRE, hMTIIA, GRP78, and CYP IA1 promoters at doses in the range of 12-100 microM. Cd(II), at 1.25-15 microM, yielded significant dose-dependent induction of hMTIIA, XRE, CYP IA1, GST Ya, HSP70, NFkappaBRE, and FOS. Whereas Cr(III) yielded small, though significant inductions of the CRE, FOS, GADD153, and XRE promoters only at the highest dose (750 microM), Cr(VI) produced significant dose-related inductions of the p53RE, FOS, NFkappaBRE, XRE, GADD45, HSP70, and CRE promoters at much lower doses, in the range of 5-10 microM. Assays testing serial dilutions of a mixture comprising 7.5 microM Cd(II), 750 microM Cr(III), and 100 microM Pb(II) (the combination of metals most frequently found at National Priority List sites) showed significant dose-dependent induction of the hMTIIA promoter, but failed to show dose-related induction of any other promoter and showed no evidence of synergistic activation of gene expression by the metals in this mixture. Our results thus show metal activation of gene expression through several previously unreported signal transduction pathways, including As(V) induction of GST Ya, FOS, XRE, NFkBRE, GADD153, p53RE, and CRE; Pb(II) induction of GST Ya, XRE, Cyp IA1, and GADD153; Cd(II) induction of NFkBRE, Cyp IA1, XRE, and GST Ya; and Cr(VI) induction of p53RE, XRE, GADD45, HSP70, and CRE promoters, and thus suggest new insights into the biochemical mechanisms of toxicity and carcinogenicity of metals. It is also an important finding that no evidence of synergistic activity was detected with the mixture of Cd(II), Cr(III), and Pb(II) tested in these assays.
Collapse
Affiliation(s)
- D B Tully
- Environmental Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Ye J, Xie X, Tarassishin L, Horwitz MS. Regulation of the NF-kappaB activation pathway by isolated domains of FIP3/IKKgamma, a component of the IkappaB-alpha kinase complex. J Biol Chem 2000; 275:9882-9. [PMID: 10734145 DOI: 10.1074/jbc.275.13.9882] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FIP3, isolated as a type 2 adenovirus E3-14.7-kDa interacting protein, is an essential component of the multimeric IkappaB-alpha kinase (IKK) complex and has been shown to interact with various components (Fas receptor-interacting protein, NF-kappaB-inducing kinase, IKKbeta) of the NF-kappaB activation pathway. FIP3 has also been shown to repress basal and tumor necrosis factor (TNF) alpha-induced NF-kappaB activity as well as to induce cell death when overexpressed. The adenovirus E3-14.7-kDa protein (E3-14.7K) is an inhibitor of TNFalpha-induced cell death. In the current study, we generated deletion mutants to map the domains of FIP3, which are responsible for its various functions. The NF-kappaB inhibitory activity and the E3-14.7K binding domains were mapped at the carboxyl half of the FIP3 protein. We also found that the carboxyl-terminal half of FIP3 blocked TNFalpha-induced IkappaB-alpha phosphorylation and subsequent degradation, which suggests that the stabilization of the cytoplasmic inhibitor of NF-kappaB underlies the FIP3 inhibition of NF-kappaB activity. The amino-terminal 119 amino acids were responsible for the FIP3-IKKbeta and FIP3-IKKalpha interaction, and the middle of the protein (amino acids 201-300) appeared to be both the FIP3 self-association domain as well as the FIP3-Fas receptor-interacting protein interaction domain. Thus, FIP3 might serve as a scaffold protein to organize the various components of the IkappaB-alpha kinase complex. Whereas the full-length protein is required for efficient cell death, the amino-terminal 200 amino acids are sufficient to cause rounding and detachment of the cells from the monolayer.
Collapse
Affiliation(s)
- J Ye
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
18
|
Tuckermann JP, Reichardt HM, Arribas R, Richter KH, Schütz G, Angel P. The DNA binding-independent function of the glucocorticoid receptor mediates repression of AP-1-dependent genes in skin. J Cell Biol 1999; 147:1365-70. [PMID: 10613894 PMCID: PMC2174255 DOI: 10.1083/jcb.147.7.1365] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The glucocorticoid receptor (GR) mediates the biological effects of glucocorticoids (GCs) through activation or repression of gene expression, either by DNA binding or via interaction with other transcription factors, such as AP-1. Work in tissue culture cells on the regulation of AP-1-dependent genes, such as collagenase (MMP-13) and stromelysin (MMP-3) has suggested that the antitumor and antiinflammatory activity of GCs is mediated, at least in part, by GR-mediated downmodulation of AP-1. Here, we have identified phorbol ester-induced expression of MMP-3 and MMP-13 in mouse skin as the first example of an in vivo system to measure negative interference between AP-1 and GR in the animal. Cell type-specific induction of these genes by tumor promoters is abolished by GCs. Importantly, this is also the case in GR(dim) mice expressing a DNA binding-defective mutant version of GR. In contrast, the newly identified target genes in skin, plasma glutathione peroxidase and HSP-27, were induced by GC in wild-type, but not in GR(dim) mice. Thus, these data suggest that the DNA binding-independent function of the GR is dispensable for repression of AP-1 activity in vivo and responsible for the antitumor promoting activity of GCs.
Collapse
Affiliation(s)
- Jan P. Tuckermann
- Division of Signal Transduction and Growth Control, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany
| | - Holger M. Reichardt
- Division of Molecular Biology of the Cell I, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany
| | - Rosa Arribas
- Division of Molecular Biology of the Cell I, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany
| | - K. Hartmut Richter
- Division of Signal Transduction and Growth Control, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany
| | - Günther Schütz
- Division of Molecular Biology of the Cell I, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany
| |
Collapse
|
19
|
Aubrecht J, Narla RK, Ghosh P, Stanek J, Uckun FM. Molecular genotoxicity profiles of apoptosis-inducing vanadocene complexes. Toxicol Appl Pharmacol 1999; 154:228-35. [PMID: 9931282 DOI: 10.1006/taap.1998.8592] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metallocene complexes containing vanadium induce apoptosis in human cancer cells by an as yet unknown mechanism and may therefore be useful as a new class of cytotoxic anticancer drugs. Ultrastructural studies showing the formation of metallocene-DNA complexes prompted the hypothesis that their mechanism of action may resemble the DNA damage induced by cisplatin. Molecular genotoxicity testing provides insights into the mechanisms of action of new chemotherapeutic agents. Therefore, we determined the effects of three cytotoxic vanadocene complexes, vanadocene dichloride, vanadocene dithiocyanate, and vanadocene dioxycyanate, on genomic stability using the yeast DEL recombination assay and transcriptional activation of genotoxic stress-specific promoters in human HepG2 cells using the CAT-Tox(L) assay. Cisplatin caused an 11-fold increase of recombination frequency in yeast and induced transcriptional activation of the DNA damage-associated promoters such as the minimum promoter containing p53 response elements and the GADD45 promoter in addition to activating the promoters for c-fos, heat shock protein 70, metallothionine IIa, and the minimum promoter containing nuclear factor kappa(kappa)B response elements. In contrast to cisplatin, vanadocene complexes did not increase the DEL recombination frequency in yeast nor did they activate any of the DNA damage-associated promoters in HepG2 cells. Vanadocene complexes triggered activation of the c-fos promoter without affecting the minimum promoter containing p53 response elements or the GADD45 promoter. These results indicate that the apoptotic signal of vanadocene complexes is not triggered by primary DNA damage and it does not require p53 induction, thereby disproving the hypothesis that it mechanistically resembles the cytotoxic action of cisplatin.
Collapse
Affiliation(s)
- J Aubrecht
- Hughes Institute, 2665 Long Lake Rd., St. Paul, Minnesota, 55113, USA
| | | | | | | | | |
Collapse
|
20
|
Grilli M, Chiu JJ, Lenardo MJ. NF-kappa B and Rel: participants in a multiform transcriptional regulatory system. INTERNATIONAL REVIEW OF CYTOLOGY 1993; 143:1-62. [PMID: 8449662 DOI: 10.1016/s0074-7696(08)61873-2] [Citation(s) in RCA: 741] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- M Grilli
- Laboratory of Immunology, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
21
|
Icard-Liepkalns C, Biguet NF, Vyas S, Robert JJ, Sassone-Corsi P, Mallet J. AP-1 complex and c-fos transcription are involved in TPA provoked and trans-synaptic inductions of the tyrosine hydroxylase gene: insights into long-term regulatory mechanisms. J Neurosci Res 1992; 32:290-8. [PMID: 1383560 DOI: 10.1002/jnr.490320219] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have previously shown that the phorbol ester, TPA, which activates protein kinase C, causes, in PC12 cells, a transcriptional activation of tyrosine hydroxylase (TH), the key enzyme in catecholamine synthesis. The study has now been extended to examine the processes that underlie this transcriptional stimulation and, in addition, to seek whether similar mechanisms are involved in long-term trans-synaptic induction of the TH gene in adrenal medullae of rats that have been given a single injection of reserpine. In both systems, it was found that the induction of c-fos gene transcription was associated with that of the TH gene but with different kinetics. The promoter of the TH gene contains (at position -207/-200) a sequence (TGATTCA) which differs from the consensus TRE or AP-1 site (TGACTCA) by one nucleotide. Experiments were carried out to investigate whether the AP-1 protein complex which is known to contain Fos and Jun binds to the putative TRE region of the TH promoter. In the gel shift assays, the nuclear protein extracts derived from TPA-treated PC12 cells and from AM of reserpine injected rats displayed a higher magnitude of binding to a 25-mer TRE-TH oligonucleotide as compared to controls. The results showed that the behaviour of TRE-TH was atypical in that two retarded complexes (A and B) were observed, which were displaced by specific competitors. Trans-activation experiments with plasmids TRE-TH/TK/CAT and -754/-19 TH/pUC18-CAT in PC12 cells showed an increase in CAT activity in response to TPA that correlates with the previously observed increase in TH transcriptional activity by TPA.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Icard-Liepkalns
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, Gif/Yvette, France
| | | | | | | | | | | |
Collapse
|
22
|
Gram H, Zenke G, Geisse S, Kleuser B, Bürki K. High-level expression of a human immunoglobulin gamma 1 transgene depends on switch region sequences. Eur J Immunol 1992; 22:1185-91. [PMID: 1577061 DOI: 10.1002/eji.1830220512] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We describe that chimeric mouse-human immunoglobulin heavy chain (IgH) genes lacking a switch region and controlled by an IgH promoter and the intronic enhancer are only weakly expressed in transgenic mice. Insertion of part of the human C gamma 1 or murine Cmu switch region into the major intron of the chimeric IgH gene results in a 10(2)-to 10(3)-fold increase in transgene expression. Analysis of B cell hybridoma clones from transgenic mice suggests that switch sequences influence IgH transgene expression at the cellular level. However, the effect of switch region sequences on IgH gene expression observed in vivo is not apparent in transfected B cell lines. These results indicate that switch region sequences which are located proximal to the constant part of the gene and which are normally present in a rearranged IgH gene after class switching represent a novel type of regulatory element that plays a critical role in IgH gene expression in vivo.
Collapse
Affiliation(s)
- H Gram
- Preclinical Research, Sandoz Pharma Ltd., Basel, Switzerland
| | | | | | | | | |
Collapse
|
23
|
Nelsen B, Sen R. Regulation of immunoglobulin gene transcription. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 133:121-49. [PMID: 1577586 DOI: 10.1016/s0074-7696(08)61859-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Analysis of the immunoglobulin gene suggests that their expression is controlled through the combinatorial action of tissue- and stage-specific factors (OTF-2, TF-microB, NF-kappa B), as well as more widely expressed E motif-binding factors such as E47/E12. Two basic issues cloud understanding of how these factors are involved in immunoglobulin gene regulation. First, cloning of these factors shows them to be members of families of proteins, all with similar DNA-binding specificities. OTF-2 is a member of the POU domain family, NF-kappa B is a related protein, and the microE5/kappa E2-binding factors are members of the bHLH family. Second, these binding sites and associated factors are involved in the regulation of many genes, not only the immunoglobulin genes, and in fact not only lymphoid-specific genes. These facts complicate understanding which member of a family is in fact responsible for interaction with, and activation of, a particular binding element in an enhancer/promoter. Recently, more detailed analysis of the interactions between such proteins and their related binding sites suggest that a certain level of specificity may in fact be encoded by the DNA element such that one family member of a protein is preferentially bound, or alternatively that the protein-DNA interactions that occur give subtle alterations in protein conformation that unmask an activation or protein-protein interactive domain. An additional level of regulation is imparted by combinatorial mechanisms such as adjacent DNA-binding elements and factors that may alter activity, as well as "cofactors" that, by forming a complex with the bound factor, affect its activation of a gene in a particular cell type. A third level of specificity may be obtained by factors such as NF-kappa B and the bHLH family due to their ability to create heterogeneous complexes, creating unique complexes in a tissue- or stage-specific manner. The multiple functions transcription factors such as NF-kappa B and OTF-2 play in the transcriptional regulation of multiple genes seems complex in contrast to a one factor, one gene regulation model. However, this type of organization may limit the number of factors lymphocytes would require if each lymphoid-specific gene were activated by a unique factor. Thus what appears to be complexity at the molecular level may reflect an economical organization at the cellular level. Investigation of the key factors controlling these genes suggests an ordered cascade of transcription factors becomes available in the cell during B cell differentiation.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- B Nelsen
- Rosenstiel Center, Department of Biology, Brandeis University, Waltham, Massachusetts 02254-9110
| | | |
Collapse
|
24
|
|
25
|
Vyas S, Faucon Biguet N, Mallet J. Transcriptional and post-transcriptional regulation of tyrosine hydroxylase gene by protein kinase C. EMBO J 1990. [PMID: 1976513 PMCID: PMC552126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The role played by protein kinase C (PKC) in TH gene regulation was investigated at transcriptional and post-transcriptional levels using PC12 cells. The cells were treated with the phorbol ester TPA, which not only activates PKC but also causes down-regulation. PKC levels were monitored by [3H]PDBU binding assay and by using an anti-PKC antibody that detected intact PKC (79 kd) as well as its catalytic and regulatory domains. The [3H]PDBU binding to the membrane-associated PKC increased within 15-30 min of TPA treatment; thereafter total cellular [3H]PDBU binding decreased to a minimum of 20% of the control at 8 h. The rate of decrease in binding was greater than the decrease in the intensity of the staining of PKC holo enzyme visualized by anti-PKC antibody. TH mRNA levels, measured over the same time period, rose within 15 min of TPA treatment to peak at 4 h and subsequently declined below control level, paralleling the depletion of PKC. If cells depleted of PKC were reincubated in the normal medium, a recovery in PKC level was seen and, in parallel, TH mRNA levels increased to above control level. Furthermore, if down-regulation of PKC was prevented by incubating the cells with the protease inhibitor leupeptin, a decrease beyond control level in TH mRNA was not observed. TPA rapidly induced TH gene transcription; a maximal increase of two-fold was observed at 15 min, but the transcriptional rate then declined although it did not decrease beyond control values after 8 and 24 h of TPA treatment.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
26
|
Laurence J, Sikder SK, Jhaveri S, Salmon JE. Phorbol ester-mediated induction of HIV-1 from a chronically infected promonocyte clone: blockade by protein kinase inhibitors and relationship to tat-directed trans-activation. Biochem Biophys Res Commun 1990; 166:349-57. [PMID: 2405849 DOI: 10.1016/0006-291x(90)91952-o] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Potent inhibitors of protein kinases C and A, including 1-(5 isoquinolinyl sulfonyl) 2-methyl piperazine (H7), staurosporine, and 2-aminopurine, depressed phorbol ester-induced HIV-1 virion production and HIV-specific transcripts by greater than 90% in chronically infected promonocytic cells. Suppression was dose-dependent and occurred at concentration that had little effect on cell growth. These effects appeared to be specific to activation of the PKC-diacylglycerol system. They did not alter IUdr-mediated induction of HIV. In addition, PMA enhancement of an HIV-LTR driven reporter gene was not blocked by H7 in the presence or absence of exogenous tat, at concentrations capable of inhibiting upregulation of virus at the cellular level. Insight into the biochemical mechanisms of these processes is critical to understanding interactions of HIV with the immune system, and may eventually uncover new therapeutic strategies.
Collapse
Affiliation(s)
- J Laurence
- Department of Medicine, New York Hospital-Cornell Medical Center, NY 10021
| | | | | | | |
Collapse
|
27
|
Reeves R, Magnuson NS. Mechanisms regulating transient expression of mammalian cytokine genes and cellular oncogenes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1990; 38:241-82. [PMID: 2183295 DOI: 10.1016/s0079-6603(08)60713-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- R Reeves
- Department of Microbiology, Washington State University, Pullman 99164
| | | |
Collapse
|
28
|
Abstract
We have identified a DNA binding protein, named BETA, that interacts with the same (B) transcriptional regulatory sequence as the known transcription factor NF-kappa B. BETA is found only in gray matter throughout the brain, and not in a variety of other rat tissues. Two binding sites for BETA are present adjacent to the promoter of the rat proenkephalin gene. Transfection of primary brain cultures that express BETA, with a reporter gene driven by the SV40 promoter linked to BETA DNA binding sites, results in transcriptional activation. We infer that BETA is a brain-specific transcription activator.
Collapse
Affiliation(s)
- M Korner
- Department of Hormone Research, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
29
|
Abstract
In this report, it is shown that the mRNA of the c-myc oncogene is capable of forming an extensive stem-and-loop structure, with a free energy of delta G (25 degrees C) = -34 kcal. This secondary structure is situated at the 3' end of the first exon, immediately upstream of an elongation block. It is shown that this region contains potential binding sites for 3 different activator proteins, namely AP-1, AP-2, and nuclear factor-kappa B (NF-kappa B). From an analysis of the properties of these proteins, NF-kappa B could be identified as a candidate for the trans-acting factor involved in relieving the block to transcription.
Collapse
Affiliation(s)
- M J Renan
- Division of Biophysical Sciences, National Accelerator Centre, Faure, South Africa
| |
Collapse
|