1
|
Patel M, Patel K. Emerging insights of Staphylococcus spp. in human mastitis. Microb Pathog 2025; 205:107685. [PMID: 40349998 DOI: 10.1016/j.micpath.2025.107685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 05/01/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Human mastitis represents a prevalent and intricate condition that significantly challenges breastfeeding women, often exacerbated by pathogenic bacteria such as Staphylococcus aureus. A deep understanding of the interplay between human mastitis, the breast milk microbiome, and causative agents is imperative. This understanding must focus on the bacterium's virulence and resistance genes, which critically influence the severity and persistence of mastitis. Current methods for detecting these genes, including Polymerase Chain Reaction (PCR), 16S rRNA gene sequencing, shotgun metagenomic sequencing, multiplex PCR, whole genome sequencing (WGS), loop-mediated isothermal amplification (LAMP), CRISPR-based assays, and microarray technology, are vital in elucidating bacterial pathogenicity and resistance profiles. However, advanced attention is required to refine diagnostic techniques, enabling earlier detection and more effective therapeutic approaches for human mastitis. The involvement of Staphylococcus aureus in human infection should be a prime focus, especially in women's health, which deals directly with neonates. Essential virulence genes in Staphylococcus species are instrumental in infection mechanisms and antibiotic resistance, serving as potential targets for personalized treatments. Thus, this review focuses on Staphylococcusaureus-induced mastitis, examining its virulence factors and detection techniques to advance diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mansi Patel
- Department of Medical Laboratory Technology, Bapubhai Desaibhai Patel Institute of Paramedical Sciences (BDIPS), Charotar University of Science and Technology (CHARUSAT), Anand, Gujarat, 388421, India
| | - Khushal Patel
- Department of Medical Laboratory Technology, Bapubhai Desaibhai Patel Institute of Paramedical Sciences (BDIPS), Charotar University of Science and Technology (CHARUSAT), Anand, Gujarat, 388421, India.
| |
Collapse
|
2
|
Longoria-Gonzalez L, Coburn PS, Astley R, Chen Y, Callegan MC. Contribution of Leukocidin ED to the Pathogenesis of Staphylococcus aureus Endophthalmitis. Invest Ophthalmol Vis Sci 2025; 66:11. [PMID: 40323270 PMCID: PMC12060071 DOI: 10.1167/iovs.66.5.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/12/2025] [Indexed: 05/10/2025] Open
Abstract
Purpose To test the hypothesis that leukocidin ED (LukED) contributes to the pathogenesis of experimental Staphylococcus aureus endophthalmitis. Methods Growth curves were generated for S. aureus strain JE2 and strain JE2 lukE::Tn, the transposon mutant of LukED, in brain heart infusion (BHI) and explanted rabbit vitreous. The expression of leukotoxins (lukSF-PV, lukED, hlgABC, and lukGH) was assessed in 18-hour overnight cultures in BHI, tryptic soy broth, and vitreous. S. aureus endophthalmitis was induced by intravitreal injection of 5000 colony-forming units of JE2 or JE2 lukE::Tn into C57BL/6J mice. At 6, 12, and 24 hours after infection, eyes were assessed for retinal function, intraocular colony-forming units and inflammation, and neutrophil infiltration by flow cytometry. RNA was isolated from infected eyes to assess leukotoxin expression. Results Strains JE2 and JE2 lukE::Tn grew similarly in BHI and vitreous. Transcript levels of leukotoxin subunits were lower in vitreous compared with laboratory media. In vivo, no differences in retinal function, intraocular growth, intraocular inflation, or neutrophil infiltration were observed in eyes infected with JE2 or JE2 lukE::Tn. During infection, other leukotoxins were expressed in vivo in the absence of LukED. Conclusions LukED does not seem to be essential for the pathogenesis of experimental S. aureus endophthalmitis. However, other leukotoxins are expressed in vivo, which may compensate for the effects of LukED during infection.
Collapse
Affiliation(s)
- Luis Longoria-Gonzalez
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Phillip S. Coburn
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Roger Astley
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Yan Chen
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Michelle C. Callegan
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| |
Collapse
|
3
|
Ma W, Huang Z, Zhang Y, Liu K, Li D, Liu Q. Interaction between inflammation and biofilm infection and advances in targeted biofilm therapy strategies. Microbiol Res 2025; 298:128199. [PMID: 40347631 DOI: 10.1016/j.micres.2025.128199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/25/2025] [Accepted: 04/27/2025] [Indexed: 05/14/2025]
Abstract
Biofilms are aggregates of bacteria, primarily regulated by quorum sensing (QS) and extracellular polymeric substances (EPS) mechanisms. Inflammation is the immune system's response to tissue damage and infection, which is regulated by a variety of cytokines and mediators. Bacterial biofilm intensified the development of inflammation, and inflammation of the microenvironment in turn promoted bacterial biofilm formation and diffusion, forming a positive feedback loop of "inflammation-biofilm", leading to the treatment-resistant of related infections. A deep understanding of the treatment of inflammatory and recalcitrant biofilm disease might offer important diagnostic and therapeutic perceptions. Therefore, this review summarizes the role of biofilm in different inflammatory diseases, and the complex interactions between bacterial biofilm infections and host inflammatory responses are emphasized. Finally, the current treatment methods for bacterial biofilm infection are also discussed, and specifically highlights biofilm infection treatments based on nanocomposite materials, aiming to provide insights and guidance for research and clinical management of biofilm-associated diseases.
Collapse
Affiliation(s)
- WenWen Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - ZhiQiang Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Ye Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Kun Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - DeZhi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
4
|
Jia Y, Li Y, Wang M, Wang F, Liu Q, Song Z. Lecithin-based mixed polymeric micelles for activity improvement of curcumin against Staphylococcus aureus. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:587-604. [PMID: 39460953 DOI: 10.1080/09205063.2024.2421089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Considering cellular uptake promotion of lecithin and high expression of phospholipase in S. aureus, we designed curcumin (Cur)-loaded soy lecithin-based mPEG-PVL copolymer micelles (MPPC). The effect of soy lecithin on the anti-S. aureus activity of the formulation was studied with cur-loaded mPEG-PVL micelles (MPC without soy lecithin) as control. It was found that MPPC enhanced the water-solubility of Cur, and showed slow and sustained release behavior of Cur. Although MPPC had the same anti-S. aureus activity as Cur, its activity was significantly higher than MPC due to the cellular uptake promotion of soybean lecithin. It was noted that MPPC had good inhibition or destruction effect on biofilm, significant cell membrane damage, strong inhibition effect on protease or lipase production, and obvious induction effect on ROS expression when compared with Cur and MPC. So, the introduction of soy lecithin could improve the antibacterial activity of Cur. The lecithin-based micelles would offer potential to deliver antibacterial drugs for improved therapeutic action.
Collapse
Affiliation(s)
- Yunjing Jia
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Yuli Li
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Mingzhu Wang
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Fuyou Wang
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Qingmin Liu
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Zhimei Song
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| |
Collapse
|
5
|
Speziale P, Foster TJ, Arciola CR. The endothelium at the interface between tissues and Staphylococcus aureus in the bloodstream. Clin Microbiol Rev 2025; 38:e0009824. [PMID: 39807893 PMCID: PMC11905367 DOI: 10.1128/cmr.00098-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
SUMMARYStaphylococcus aureus is a major human pathogen. It can cause many types of infections, in particular bacteremia, which frequently leads to infective endocarditis, osteomyelitis, sepsis, and other debilitating diseases. The development of secondary infections is based on the bacterium's ability to associate with endothelial cells lining blood vessels. The success of endothelial colonization and infection by S. aureus relies on its ability to express a wide array of cell wall-anchored and secreted virulence factors. Establishment of endothelial infection by the pathogen is a multistep process involving adhesion, invasion, extravasation, and dissemination of the bacterium into surrounding tissues. The process is dependent on the type of endothelium in different organs (tissues) and pathogenetic potential of the individual strains. In this review, we report an update on the organization of the endothelium in the vessels, the structure and function of the virulence factors of S. aureus, and the several aspects of bacteria-endothelial cell interactions. After these sections, we will discuss recent advances in understanding the specific mechanisms of infections that develop in the heart, bone and joints, lung, and brain. Finally, we describe how neutrophils bind to endothelial cells, migrate to the site of infection to kill bacteria in the tissues, and how staphylococci counteract neutrophils' actions. Knowledge of the molecular details of S. aureus-endothelial cell interactions will promote the development of new therapeutic strategies and tools to combat this formidable pathogen.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | | | - Carla Renata Arciola
- Laboratory of Pathology of Implant Infections, Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Rasquel-Oliveira FS, Ribeiro JM, Martelossi-Cebinelli G, Costa FB, Nakazato G, Casagrande R, Verri WA. Staphylococcus aureus in Inflammation and Pain: Update on Pathologic Mechanisms. Pathogens 2025; 14:185. [PMID: 40005560 PMCID: PMC11858194 DOI: 10.3390/pathogens14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive bacterium of significant clinical importance, known for its versatility and ability to cause a wide array of infections, such as osteoarticular, pulmonary, cardiovascular, device-related, and hospital-acquired infections. This review describes the most recent evidence of the pathogenic potential of S. aureus, which is commonly part of the human microbiota but can lead to severe infections. The prevalence of pathogenic S. aureus in hospital and community settings contributes to substantial morbidity and mortality, particularly in individuals with compromised immune systems. The immunopathogenesis of S. aureus infections involves intricate interactions with the host immune and non-immune cells, characterized by various virulence factors that facilitate adherence, invasion, and evasion of the host's defenses. This review highlights the complexity of S. aureus infections, ranging from mild to life-threatening conditions, and underscores the growing public health concern posed by multidrug-resistant strains, including methicillin-resistant S. aureus (MRSA). This article aims to provide an updated perspective on S. aureus-related infections, highlighting the main diseases linked to this pathogen, how the different cell types, virulence factors, and signaling molecules are involved in the immunopathogenesis, and the future perspectives to overcome the current challenges to treat the affected individuals.
Collapse
Affiliation(s)
- Fernanda S. Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Jhonatan Macedo Ribeiro
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Fernanda Barbosa Costa
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Gerson Nakazato
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| |
Collapse
|
7
|
Paiva T, Speziale P, Dufrêne YF. Force Nanoscopy Demonstrates Stress-Activated Adhesion between Staphylococcus aureus Iron-Regulated Surface Determinant Protein B and Host Toll-like Receptor 4. ACS NANO 2025; 19:989-998. [PMID: 39810370 PMCID: PMC11752402 DOI: 10.1021/acsnano.4c12648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025]
Abstract
The Staphylococcus aureus iron-regulated surface determinant protein B (IsdB) has recently been shown to bind to toll-like receptor 4 (TLR4), thereby inducing a strong inflammatory response in innate immune cells. Currently, two unsolved questions are (i) What is the molecular mechanism of the IsdB-TLR4 interaction? and (ii) Does it also play a role in nonimmune systems? Here, we use single-molecule experiments to demonstrate that IsdB binds TLR4 with both weak and extremely strong forces and that the mechanostability of the molecular complex is dramatically increased by physical stress, sustaining forces up to 2000 pN, at a loading rate of 105 pN/s. We also show that TLR4 binding by IsdB mediates time-dependent bacterial adhesion to endothelial cells, pointing to the role of this bond in cell invasion. Our findings point to a function for IsdB in pathogen-host interactions, that is, mediating strong bacterial adhesion to host endothelial cells under fluid shear stress, unknown until now. In nanomedicine, this stress-dependent adhesion represents a potential target for innovative therapeutics against S. aureus-resistant strains.
Collapse
Affiliation(s)
- Telmo
O. Paiva
- Louvain
Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Pietro Speziale
- Department
of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy
| | - Yves F. Dufrêne
- Louvain
Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
8
|
Jin Y, Zhou W, Ge Q, Shen P, Xiao Y. Epidemiology and clinical features of Skin and Soft Tissue Infections Caused by PVL-Positive and PVL-Negative Methicillin-Resistant Staphylococcus aureus Isolates in inpatients in China: a single-center retrospective 7-year study. Emerg Microbes Infect 2024; 13:2316809. [PMID: 38323591 PMCID: PMC10883109 DOI: 10.1080/22221751.2024.2316809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
Previous studies have mainly focused on outpatient cases of skin and soft tissue infections (SSTIs), with limited attention to inpatient occurrences. Thus, we aimed to compare the clinical parameters of inpatients with SSTIs, performed genomic characterization, and determined the subtypes of Panton-Valentine leucocidin (PVL) bacteriophages of methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from these patients. We found that PVL-positive patients had shorter hospital stays (mean, 9 vs. 24 days; p < 0.001) and abscess resolution durations (mean, 8 vs. 13 days; p < 0.01). PVL-positive MRSA-induced SSTIs were more frequently associated with abscesses [36/55 (65.5%) vs. 15/124 (12.1%), p < 0.001], with 52.7% undergoing incision and drainage; over 80% of PVL-negative patients received incision, drainage, and antibiotics. In PVL-positive patients receiving empirical antibiotics, anti-staphylococcal agents such as vancomycin and linezolid were administered less frequently (32.7%, 18/55) than in PVL-negative patients (74.2%, 92/124), indicating that patients with PVL-positive SSTIs are more likely to require surgical drainage rather than antimicrobial treatment. We also found that the ST59 lineage was predominant, regardless of PVL status (41.3%, 74/179). Additionally, we investigated the linear structure of the lukSF-PV gene, revealing that major clusters were associated with specific STs, suggesting independent acquisition of PVL by different strain types and indicating that significant diversity was observed even within PVL-positive strains detected in the same facility. Overall, our study provides comprehensive insights into the clinical, genetic, and phage-related aspects of MRSA-induced SSTIs in hospitalized patients and contributes to a more profound understanding of the epidemiology and evolution of these pathogens in the Chinese population.
Collapse
Affiliation(s)
- Ye Jin
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Key Laboratory of Early Warning and Intervention of Multiple Organ Failure, China National Ministry of Education, Hangzhou, Zhejiang, People's Republic of China
| | - Wangxiao Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Qi Ge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
9
|
Reisser Y, Hornung F, Häder A, Lauf T, Nietzsche S, Löffler B, Deinhardt-Emmer S. Telomerase RNA component knockout exacerbates Staphylococcus aureus pneumonia by extensive inflammation and dysfunction of T cells. eLife 2024; 13:RP100433. [PMID: 39607755 PMCID: PMC11604217 DOI: 10.7554/elife.100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
The telomerase RNA component (Terc) constitutes a non-coding RNA critical for telomerase function, commonly associated with aging and pivotal in immunomodulation during inflammation. Our study unveils heightened susceptibility to pneumonia caused by Staphylococcus aureus (S. aureus) in Terc knockout (Tercko/ko) mice compared to both young and old infected counterparts. The exacerbated infection in Tercko/ko mice correlates with heightened inflammation, manifested by elevated interleukin-1β (IL-1β) levels and activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome within the lung. Employing mRNA sequencing methods alongside in vitro analysis of alveolar macrophages (AMs) and T cells, our study elucidates a compelling correlation between Tercko/ko, inflammation, and impaired T cell functionality. Terc deletion results in compromised T cell function, characterized by dysregulation of the T cell receptor and absence of CD247, potentially compromising the host's capacity to mount an effective immune response against S. aureus. This investigation provides insights into the intricate mechanisms governing increased vulnerability to severe pneumonia in the context of Terc deficiency, which might also contribute to aging-related pathologies, while also highlighting the influence of Terc on T cell function.
Collapse
Affiliation(s)
- Yasmina Reisser
- Institute of Medical Microbiology, Jena University HospitalJenaGermany
| | - Franziska Hornung
- Institute of Medical Microbiology, Jena University HospitalJenaGermany
| | - Antje Häder
- Institute of Medical Microbiology, Jena University HospitalJenaGermany
| | - Thurid Lauf
- Institute of Medical Microbiology, Jena University HospitalJenaGermany
- Else Kröner Graduate School for Medical Students 'JSAM', Jena University HospitalJenaGermany
| | - Sandor Nietzsche
- Center for Electron Microscopy, Jena University HospitalJenaGermany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University HospitalJenaGermany
| | | |
Collapse
|
10
|
Korshoj LE, Kielian T. Bacterial single-cell RNA sequencing captures biofilm transcriptional heterogeneity and differential responses to immune pressure. Nat Commun 2024; 15:10184. [PMID: 39580490 PMCID: PMC11585574 DOI: 10.1038/s41467-024-54581-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
Biofilm formation is an important mechanism of survival and persistence for many bacterial pathogens. These multicellular communities contain subpopulations of cells that display metabolic and transcriptional diversity along with recalcitrance to antibiotics and host immune defenses. Here, we present an optimized bacterial single-cell RNA sequencing method, BaSSSh-seq, to study Staphylococcus aureus diversity during biofilm growth and transcriptional adaptations following immune cell exposure. BaSSSh-seq captures extensive transcriptional heterogeneity during biofilm compared to planktonic growth. We quantify and visualize transcriptional regulatory networks across heterogeneous biofilm subpopulations and identify gene sets that are associated with a trajectory from planktonic to biofilm growth. BaSSSh-seq also detects alterations in biofilm metabolism, stress response, and virulence induced by distinct immune cell populations. This work facilitates the exploration of biofilm dynamics at single-cell resolution, unlocking the potential for identifying biofilm adaptations to environmental signals and immune pressure.
Collapse
Affiliation(s)
- Lee E Korshoj
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
11
|
Khan S, Lin PR, Tan C. Engineering Cyborg Pathogens through Intracellular Hydrogelation. ACS Synth Biol 2024; 13:3609-3620. [PMID: 39413025 PMCID: PMC11748816 DOI: 10.1021/acssynbio.4c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Synthetic biology primarily focuses on two kinds of cell chassis: living cells and nonliving systems. Living cells are autoreplicating systems that have active metabolism. Nonliving systems, including artificial cells and nanoparticles, are nonreplicating systems typically lacking active metabolism. In recent work, Cyborg bacteria that are nonreplicating-but-metabolically active have been engineered through intracellular hydrogelation. Intracellular hydrogelation is conducted by infusing gel monomers and photoactivators into cells, followed by the activation of polymerization of the gel monomers inside the cells. However, the previous work investigated only Escherichia coli cells. Extending the Cyborg-Cell method to pathogenic bacteria could enable the exploitation of their pathogenic properties in biomedical applications. Here, we focus on different strains of Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae. To synthesize the Cyborg pathogens, we first reveal the impact of different hydrogel concentrations on the metabolism, replication, and intracellular gelation of Cyborg pathogens. Next, we demonstrate that the Cyborg pathogens are taken up by macrophages in a similar magnitude as wild-type pathogens through confocal microscopy and real-time PCR. Finally, we show that the macrophage that takes up the Cyborg pathogen exhibits a similar phenotypic response to the wild-type pathogen. Our work generalizes the intracellular hydrogelation approach from lab strains of E. coli to bacterial pathogens. The new Cyborg pathogens could be applied in biomedical applications ranging from drug delivery to immunotherapy.
Collapse
Affiliation(s)
- Shahid Khan
- Department of Biomedical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Pin-Ru Lin
- Department of Biomedical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
12
|
Xu WB, Wang YF, Meng SY, Zhang XT, Wang YR, Liu ZY. Effects of antibiotic and disinfectant exposure on the mouse gut microbiome and immune function. Microbiol Spectr 2024; 12:e0061124. [PMID: 39292002 PMCID: PMC11536992 DOI: 10.1128/spectrum.00611-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
This study explores the effects of disinfectant and antibiotic exposure on gut health, focusing on gut microbiota balance and gut immune function. Our analysis indicates that disinfectants increase the proportion of Gram-positive bacteria, particularly increasing Staphylococcus levels, while antibiotics increase the proportion of Gram-negative bacteria, especially Bacteroides levels. These changes disrupt microbial harmony and affect the gut microbiome's functional capacity. Additionally, our research reveals that both disinfectants and antibiotics reduce colon length and cause mucosal damage. A significant finding is the downregulation of NLRC4, a key immune system regulator in the gut, accompanied by changes in immune factor expression. This interaction between chemical exposure and immune system dysfunction increases susceptibility to inflammatory bowel disease and other gut conditions. Given the importance of disinfectants in disease prevention, this study advocates for a balanced approach to their use, aiming to protect public health while minimizing adverse effects on the gut microbiome and immune function. IMPORTANCE Disinfectants are extensively employed across various sectors, such as the food sector. Disinfectants are widely used in various sectors, including the food processing industry, animal husbandry, households, and pharmaceuticals. Their extensive application risks environmental contamination, impacting water and soil quality. However, the effect of disinfectant exposure on the gut microbiome and the immune function of animals remains a significant, unresolved issue with profound public health implications. This highlights the need for increased scrutiny and more regulated use of disinfectants to mitigate unintended consequences on gut health and maintain immune system integrity.
Collapse
Affiliation(s)
- Wen-Bo Xu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Yun-Fan Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Si-Yu Meng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Xiao-Tong Zhang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Yi-Rong Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| |
Collapse
|
13
|
Rodrigues SO, Santiago FR, Silva MS, Lima ASG, Godoy LE, De Waard M, Fouad D, Batiha GE, Santos TL, Pagnossa JP. Macrolide resistance outcomes after the Covid-19 pandemic: A one health approach investigation. Biomed Pharmacother 2024; 180:117437. [PMID: 39303450 DOI: 10.1016/j.biopha.2024.117437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
During the Covid-19 pandemic period, the indiscriminate use of macrolide-class antibiotics was frequent among the Brazilian population due to the lack of knowledge and information with a scientific basis. Thus, the class of drugs that includes azithromycin, clarithromycin, and erythromycin, which alter metabolic reactions in the body and act on the immune system, was widely used without medical prescription. Samples of bacterial strains from hospital environments were obtained during the most extensive spread of Covid-19 and studied in the present article, emphasizing the investigation for macrolide resistance genes (erm and msr) and bacteria of the genus Staphylococcus isolated from urinary tract infections. In addition, the physiological, genetic, immunological, and socio-epidemiological aspects were highlighted with a focus on the One Health approach and implications on the gut-brain axis in this integrative research, revealing that the inappropriate use of antibiotics directly affects entire communities, representing a significant concern for public and environmental health.
Collapse
Affiliation(s)
- Sarah O Rodrigues
- Department of Health and Biological Sciences, Pontifical Catholic University, Minas Gerais, Brazil.
| | - Felipe R Santiago
- Department of Health and Biological Sciences, Pontifical Catholic University, Minas Gerais, Brazil.
| | | | | | | | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, Saint-Egrève 38120, France; L'institut du thorax, INSERM, CNRS, UNIV NANTES, Nantes F-44007, France; Université de Nice Sophia-Antipolis, LabEx (Ion Channels, Science & Therapeutics), Valbonne F-06560, France.
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box 22452, Riyadh 11495, Saudi Arabia.
| | - Gaber E Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Egypt.
| | - Tamara L Santos
- Department of Health and Biological Sciences, Pontifical Catholic University, Minas Gerais, Brazil.
| | - Jorge P Pagnossa
- Department of Health and Biological Sciences, Pontifical Catholic University, Minas Gerais, Brazil.
| |
Collapse
|
14
|
Nguyen QH, Lai CHR, Norris MJ, Ng D, Shah M, Lai CCL, Isenman DE, Moraes TF. A surface lipoprotein on Pasteurella multocida binds complement factor I to promote immune evasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619360. [PMID: 39484374 PMCID: PMC11526892 DOI: 10.1101/2024.10.21.619360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Pasteurella multocida is the leading cause of wound infections in humans following animals' bites or scratches. This bacterium is also commonly found in the respiratory tract of many mammals and can cause serious diseases resulting in the brutal rapid death of infected animals, especially cattle. To prevent these infections in cattle, a subunit-based vaccine utilizing the surface lipoprotein PmSLP was developed and showed remarkable protection with a single dose administration. Here, we report that PmSLP binds host complement factor I (FI) and facilitates cleavage of complement components C3b and C4b independently of any cofactors (e.g FH, C4BP), thereby allowing the pathogen to evade host defence. Cryo-EM structure of PmSLP bound to FI reveals that PmSLP stimulates FI enzymatic activity by stabilizing the catalytic domain. This is the first time that a bacterial protein has been shown to directly activate FI independent of complement cofactors and target all arms of the complement cascade.
Collapse
Affiliation(s)
| | | | - Michael J Norris
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Dixon Ng
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Megha Shah
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | - David E Isenman
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Ighem Chi S, Flint A, Weedmark K, Pagotto F, Ramirez-Arcos S. Comparative genome analyses of Staphylococcus aureus from platelet concentrates reveal rearrangements involving loss of type VII secretion genes. Access Microbiol 2024; 6:000820.v4. [PMID: 39697362 PMCID: PMC11652724 DOI: 10.1099/acmi.0.000820.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/02/2024] [Indexed: 12/20/2024] Open
Abstract
Staphylococcus aureus has been involved in transfusion-transmitted fatalities associated with platelet concentrates (PCs) due to its heightened pathogenicity enhanced by genome-encoded virulence and antibiotic resistance genes. This may be facilitated by mobile genetic elements (MGEs) that can cause rearrangements. Several factors contribute to S. aureus virulence, including the type VII secretion system (T7SS), composed of six core genes conserved across S. aureus strains. In this study, we conducted comparative genome analyses of five S. aureus isolates from PCs (CI/BAC/25/13 /W, PS/BAC/169/17 /W and PS/BAC/317/16 /W were detected during PCs screening with the BACT/ALERT automated culture system, and ATR-20003 and CBS2016-05 were missed during screening and caused septic transfusion reactions). Multiple alignments of the genomes revealed evidence of rearrangements involving phage Sa3int in PS/BAC/169/17 /W and PS/BAC/317/16 /W. While the former had undergone translocation of its immune evasion cluster (IEC), the latter had lost part of the phage, leaving behind the IEC. This observation highlights S. aureus genome plasticity. Unexpectedly, strain CBS2016-05 was found to encode a pseudo-type VII secretion system (T7SS) that had lost five of the conserved core genes (esxA, esaA, essA, esaB and essB) and contained a 5' truncated essC. Since these genes are essential for the function of the T7SS protein transport machinery, which plays a key role in S. aureus virulence, CBS2016-05 probably compensates by recruiting other export mechanisms and/or alternative virulence factors, such as neu-tralizing immunity proteins. This study unravels genome rearrangements in S. aureus isolated from PCs and reports the first S. aureus isolate lacking conserved T7SS core genes.
Collapse
Affiliation(s)
- Sylvia Ighem Chi
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Annika Flint
- Listeriosis Reference Centre, Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Canada
- Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Canada
| | - Kelly Weedmark
- Listeriosis Reference Centre, Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Canada
- Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Canada
| | - Franco Pagotto
- Listeriosis Reference Centre, Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Canada
- Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Canada
| | - Sandra Ramirez-Arcos
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
16
|
Mishra N, Gido CD, Herdendorf TJ, Hammel M, Hura GL, Fu ZQ, Geisbrecht BV. S. aureus Eap is a polyvalent inhibitor of neutrophil serine proteases. J Biol Chem 2024; 300:107627. [PMID: 39098536 PMCID: PMC11420654 DOI: 10.1016/j.jbc.2024.107627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
Staphylococcus aureus expresses three high-affinity neutrophil serine protease (NSP) inhibitors known as the extracellular adherence protein domain (EAPs) proteins. Whereas EapH1 and EapH2 are comprised of a single EAP domain, the modular extracellular adherence protein (Eap) from S. aureus strain Mu50 consists of four EAP domains. We recently reported that EapH2 can simultaneously bind and inhibit cathepsin-G (CG) and neutrophil elastase (NE), which are the two most abundant NSPs. This unusual property of EapH2 arises from independent CG and NE-binding sites that lie on opposing faces of its EAP domain. Here we used X-ray crystallography and enzyme assays to show that all four individual domains of Eap (i.e. Eap1, Eap2, Eap3, and Eap4) exhibit an EapH2-like ability to form ternary complexes with CG and NE that inhibit both enzymes simultaneously. We found that Eap1, Eap2, and Eap3 have similar functional profiles insofar as NSP inhibition is concerned but that Eap4 displays an unexpected ability to inhibit two NE enzymes simultaneously. Using X-ray crystallography, we determined that this second NE-binding site in Eap4 arises through the same region of its EAP domain that also comprises its CG-binding site. Interestingly, small angle X-ray scattering data showed that stable tail-to-tail dimers of the NE/Eap4/NE ternary complex exist in solution. This arrangement is compatible with NSP-binding at all available sites in a two-domain fragment of Eap. Together, our work implies that Eap is a polyvalent inhibitor of NSPs. It also raises the possibility that higher-order structures of NSP-bound Eap may have unique functional properties.
Collapse
Affiliation(s)
- Nitin Mishra
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Carson D Gido
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Timothy J Herdendorf
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Gregory L Hura
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Zheng-Qing Fu
- SER-CAT, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, USA; Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Brian V Geisbrecht
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA.
| |
Collapse
|
17
|
Javed A, Oedairadjsingh T, Ludwig IS, Wood TM, Martin NI, Broere F, Weingarth MH, Veldhuizen EJA. Antimicrobial and immunomodulatory activities of porcine cathelicidin Protegrin-1. Mol Immunol 2024; 173:100-109. [PMID: 39094445 DOI: 10.1016/j.molimm.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Antimicrobial peptides (AMPs) are a promising alternative to antibiotics in the fight against multi-drug resistant and immune system-evading bacterial infections. Protegrins are porcine cathelicidins which have been identified in porcine leukocytes. Protegrin-1 is the best characterized family member and has broad antibacterial activity by interacting and permeabilizing bacterial membranes. Many host defense peptides (HDPs) like LL-37 or chicken cathelicidin 2 (CATH-2) have also been shown to have protective biological functions during infections. In this regard, it is interesting to study if Protegrin-1 has the immune modulating potential to suppress unnecessary immune activation by neutralizing endotoxins or by influencing the macrophage functionality in addition to its direct antimicrobial properties. This study showed that Protegrin-1 neutralized lipopolysaccharide- (LPS) and bacteria-induced activation of RAW macrophages by binding and preventing LPS from cell surface attachment. Furthermore, the peptide treatment not only inhibited bacterial phagocytosis by murine and porcine macrophages but also interfered with cell surface and intracellular bacterial survival. Lastly, Protegrin-1 pre-treatment was shown to inhibit the amastigote survival in Leishmania infected macrophages. These experiments describe an extended potential of Protegrin-1's protective role during microbial infections and add to the research towards clinical application of cationic AMPs.
Collapse
Affiliation(s)
- Ali Javed
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Immunology, Utrecht University, the Netherlands; NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, the Netherlands
| | - Trishana Oedairadjsingh
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Immunology, Utrecht University, the Netherlands
| | - Irene S Ludwig
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Immunology, Utrecht University, the Netherlands
| | - Thomas M Wood
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, the Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, the Netherlands
| | - Femke Broere
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Immunology, Utrecht University, the Netherlands
| | - Markus H Weingarth
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, the Netherlands
| | - Edwin J A Veldhuizen
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Immunology, Utrecht University, the Netherlands.
| |
Collapse
|
18
|
Ledger EVK, Edwards AM. Host-induced cell wall remodeling impairs opsonophagocytosis of Staphylococcus aureus by neutrophils. mBio 2024; 15:e0164324. [PMID: 39041819 PMCID: PMC11323798 DOI: 10.1128/mbio.01643-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
The bacterial pathogen Staphylococcus aureus responds to the host environment by increasing the thickness of its cell wall. However, the impact of cell wall thickening on susceptibility to host defenses is unclear. Using bacteria incubated in human serum, we show that host-induced increases in cell wall thickness led to a reduction in the exposure of bound antibody and complement and a corresponding reduction in phagocytosis and killing by neutrophils. The exposure of opsonins bound to protein antigens or lipoteichoic acid (LTA) was most significantly reduced, while opsonization by IgG against wall teichoic acid or peptidoglycan was largely unaffected. Partial digestion of accumulated cell wall using the enzyme lysostaphin restored opsonin exposure and promoted phagocytosis and killing. Concordantly, the antibiotic fosfomycin inhibited cell wall remodeling and maintained the full susceptibility of S. aureus to opsonophagocytic killing by neutrophils. These findings reveal that host-induced changes to the S. aureus cell wall reduce the ability of the immune system to detect and kill this pathogen through reduced exposure of protein- and LTA-bound opsonins. IMPORTANCE Understanding how bacteria adapt to the host environment is critical in determining fundamental mechanisms of immune evasion, pathogenesis, and the identification of targets for new therapeutic approaches. Previous work demonstrated that Staphylococcus aureus remodels its cell envelope in response to host factors and we hypothesized that this may affect recognition by antibodies and thus killing by immune cells. As expected, incubation of S. aureus in human serum resulted in rapid binding of antibodies. However, as bacteria adapted to the serum, the increase in cell wall thickness resulted in a significant reduction in exposure of bound antibodies. This reduced antibody exposure, in turn, led to reduced killing by human neutrophils. Importantly, while antibodies bound to some cell surface structures became obscured, this was not the case for those bound to wall teichoic acid, which may have important implications for vaccine design.
Collapse
Affiliation(s)
- Elizabeth V. K. Ledger
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Andrew M. Edwards
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
19
|
Korshoj LE, Kielian T. Bacterial single-cell RNA sequencing captures biofilm transcriptional heterogeneity and differential responses to immune pressure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601229. [PMID: 38979200 PMCID: PMC11230364 DOI: 10.1101/2024.06.28.601229] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Biofilm formation is an important mechanism of survival and persistence for many bacterial pathogens. These multicellular communities contain subpopulations of cells that display vast metabolic and transcriptional diversity along with high recalcitrance to antibiotics and host immune defenses. Investigating the complex heterogeneity within biofilm has been hindered by the lack of a sensitive and high-throughput method to assess stochastic transcriptional activity and regulation between bacterial subpopulations, which requires single-cell resolution. We have developed an optimized bacterial single-cell RNA sequencing method, BaSSSh-seq, to study Staphylococcus aureus diversity during biofilm growth and transcriptional adaptations following immune cell exposure. We validated the ability of BaSSSh-seq to capture extensive transcriptional heterogeneity during biofilm compared to planktonic growth. Application of new computational tools revealed transcriptional regulatory networks across the heterogeneous biofilm subpopulations and identification of gene sets that were associated with a trajectory from planktonic to biofilm growth. BaSSSh-seq also detected alterations in biofilm metabolism, stress response, and virulence that were tailored to distinct immune cell populations. This work provides an innovative platform to explore biofilm dynamics at single-cell resolution, unlocking the potential for identifying biofilm adaptations to environmental signals and immune pressure.
Collapse
|
20
|
Dorando HK, Mutic EC, Tomaszewski KL, Tian L, Stefanov MK, Quinn CC, Veis DJ, Wardenburg JB, Musiek AC, Mehta-Shah N, Payton JE. LAIR1 prevents excess inflammatory tissue damage in S. aureus skin infection and Cutaneous T-cell Lymphoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598864. [PMID: 38915487 PMCID: PMC11195265 DOI: 10.1101/2024.06.13.598864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Patients with cutaneous T cell lymphoma (CTCL) experience high morbidity and mortality due to S. aureus skin infections and sepsis, but the causative immune defect is unclear. We previously identified high levels of LAIR2, a decoy protein for the inhibitory receptor LAIR1, in advanced CTCL. Mice do not have a LAIR2 homolog, so we used Lair1 knock-out (KO) mice to model LAIR2 overexpression. In a model of subcutaneous S. aureus skin infection, Lair1 KO mice had significantly larger abscesses and areas of dermonecrosis compared to WT. Lair1 KO exhibited a pattern of increased inflammatory responses in infection and sterile immune stimulation, including increased production of proinflammatory cytokines and myeloid chemokines, neutrophil ROS, and collagen/ECM remodeling pathways. Notably, Lair1 KO infected skin had a similar bacterial burden and neutrophils and monocytes had equivalent S. aureus phagocytosis compared to WT. These findings support a model in which lack of LAIR1 signaling causes an excessive inflammatory response that does not improve infection control. CTCL skin lesions harbored similar patterns of increased expression in cytokine and collagen/ECM remodeling pathways, suggesting that high levels of LAIR2 in CTCL recapitulates Lair1 KO, causing inflammatory tissue damage and compromising host defense against S. aureus infection.
Collapse
Affiliation(s)
- Hannah K. Dorando
- Washington University School of Medicine, Department of Pathology and Immunology
| | - Evan C. Mutic
- Washington University School of Medicine, Department of Pathology and Immunology
| | | | - Ling Tian
- Washington University School of Medicine, Department of Pathology and Immunology
| | - Mellisa K. Stefanov
- Washington University School of Medicine, Department of Pathology and Immunology
| | - Chaz C. Quinn
- Washington University School of Medicine, Department of Pathology and Immunology
| | - Deborah J. Veis
- Washington University School of Medicine, Department of Medicine
| | | | - Amy C. Musiek
- Washington University School of Medicine, Department of Medicine
| | - Neha Mehta-Shah
- Washington University School of Medicine, Department of Medicine
| | - Jacqueline E. Payton
- Washington University School of Medicine, Department of Pathology and Immunology
| |
Collapse
|
21
|
Fatehi S, Herdendorf TJ, Ploscariu NT, Geisbrecht BV. Staphylococcal peroxidase inhibitor (SPIN): Residue-level investigation of the helical bundle domain. Arch Biochem Biophys 2024; 756:110023. [PMID: 38705227 PMCID: PMC11104426 DOI: 10.1016/j.abb.2024.110023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Myeloperoxidase is a critical component of the antibacterial arsenal of neutrophils, whereby it consumes H2O2 as an oxidant to convert halogen and pseudohalogen anions into cytotoxic hypohalous acids. Following phagocytosis by neutrophils, the human pathogen Staphylococcus aureus secretes a potent myeloperoxidase inhibitory protein, called SPIN, as part of its immune evasion repertoire. The matured S. aureus SPIN polypeptide consists of only 73 residues yet contains two functional domains: whereas the 60 residue C-terminal helical bundle domain is responsible for MPO binding, the 13 residue N-terminal domain is required to inhibit MPO. Previous studies have informed understanding of the SPIN N-terminal domain, but comparatively little is known about the helical domain insofar as the contribution of individual residues is concerned. To address this limitation, we carried out a residue-level structure/function investigation on the helical bundle domain of S. aureus SPIN. Using sequence conservation and existing structures of SPIN bound to human MPO as a guide, we selected residues L49, E50, H51, E52, Y55, and Y75 for interrogation by site-directed mutagenesis. We found that loss of L49 or E52 reduced SPIN activity by roughly an order of magnitude, but that loss of Y55 or H51 caused progressively greater loss of inhibitory potency. Direct binding studies by SPR showed that loss of inhibitory potency in these SPIN mutants resulted from a diminished initial interaction between the inhibitor and MPO. Together, our studies provide new insights into the structure/function relationships of SPIN and identify positions Y55 and H51 as critical determinants of SPIN function.
Collapse
Affiliation(s)
- Soheila Fatehi
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Timothy J Herdendorf
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Nicoleta T Ploscariu
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Brian V Geisbrecht
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
22
|
Kumari P, Banerjee SK, Murty US, Ravichandiran V, Mohan U. Harnessing the combined effect of antivirulence agent trans-chalcone with bactericidal curcumin against sortase A enzyme to tackle Gram-positive bacterial infections. Folia Microbiol (Praha) 2024; 69:639-652. [PMID: 37930610 DOI: 10.1007/s12223-023-01097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Gram-positive bacteria are responsible for a wide range of infections in humans. In most Gram-positive bacteria, sortase A plays a significant role in attaching virulence factors to the bacteria's cell wall. These cell surface proteins play a significant role in virulence and pathogenesis. Even though antibiotics are available to treat these infections, there is a continuous search for an alternative strategy due to an increase in antibiotic resistance. Thus, using anti-sortase drugs to combat these bacterial infections may be a promising approach. Here, we describe a method for targeting Gram-positive bacterial infection by combining curcumin and trans-chalcone as sortase A inhibitors. We have used curcumin and trans-chalcone alone and in combination as a sortase A inhibitor. We have seen ~78%, ~43%, and ~94% inhibition when treated with curcumin, trans-chalcone, and a combination of both compounds, respectively. The compounds have also shown a significant effect on biofilm formation, IgG binding, protein A recruitment, and IgG deposition. We discovered that combining curcumin and trans-chalcone is more effective against Gram-positive bacteria than either compound alone. The present work demonstrated that a combination of these natural compounds could be used as an antivirulence therapy against Gram-positive bacterial infection.
Collapse
Affiliation(s)
- Poonam Kumari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, 781101, India
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, 781101, India
| | | | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, 700054, India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, 700054, India.
| |
Collapse
|
23
|
Ahator SD, Hegstad K, Lentz CS, Johannessen M. Deciphering Staphylococcus aureus-host dynamics using dual activity-based protein profiling of ATP-interacting proteins. mSystems 2024; 9:e0017924. [PMID: 38656122 PMCID: PMC11097646 DOI: 10.1128/msystems.00179-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
The utilization of ATP within cells plays a fundamental role in cellular processes that are essential for the regulation of host-pathogen dynamics and the subsequent immune response. This study focuses on ATP-binding proteins to dissect the complex interplay between Staphylococcus aureus and human cells, particularly macrophages (THP-1) and keratinocytes (HaCaT), during an intracellular infection. A snapshot of the various protein activity and function is provided using a desthiobiotin-ATP probe, which targets ATP-interacting proteins. In S. aureus, we observe enrichment in pathways required for nutrient acquisition, biosynthesis and metabolism of amino acids, and energy metabolism when located inside human cells. Additionally, the direct profiling of the protein activity revealed specific adaptations of S. aureus to the keratinocytes and macrophages. Mapping the differentially activated proteins to biochemical pathways in the human cells with intracellular bacteria revealed cell-type-specific adaptations to bacterial challenges where THP-1 cells prioritized immune defenses, autophagic cell death, and inflammation. In contrast, HaCaT cells emphasized barrier integrity and immune activation. We also observe bacterial modulation of host processes and metabolic shifts. These findings offer valuable insights into the dynamics of S. aureus-host cell interactions, shedding light on modulating host immune responses to S. aureus, which could involve developing immunomodulatory therapies. IMPORTANCE This study uses a chemoproteomic approach to target active ATP-interacting proteins and examines the dynamic proteomic interactions between Staphylococcus aureus and human cell lines THP-1 and HaCaT. It uncovers the distinct responses of macrophages and keratinocytes during bacterial infection. S. aureus demonstrated a tailored response to the intracellular environment of each cell type and adaptation during exposure to professional and non-professional phagocytes. It also highlights strategies employed by S. aureus to persist within host cells. This study offers significant insights into the human cell response to S. aureus infection, illuminating the complex proteomic shifts that underlie the defense mechanisms of macrophages and keratinocytes. Notably, the study underscores the nuanced interplay between the host's metabolic reprogramming and immune strategy, suggesting potential therapeutic targets for enhancing host defense and inhibiting bacterial survival. The findings enhance our understanding of host-pathogen interactions and can inform the development of targeted therapies against S. aureus infections.
Collapse
Affiliation(s)
- Stephen Dela Ahator
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Kristin Hegstad
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Christian S. Lentz
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Mona Johannessen
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
24
|
Peri AM, Harris PNA, Paterson DL. Host response signature trends in bacteraemia - authors' response. Infect Dis (Lond) 2024; 56:418-420. [PMID: 38446497 DOI: 10.1080/23744235.2024.2326591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Affiliation(s)
- Anna Maria Peri
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Australia
| | - Patrick N A Harris
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Australia
- Herston Infectious Diseases Institute, Brisbane, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - David L Paterson
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Australia
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Damm AS, Reyer F, Langhoff L, Lin YP, Falcone FH, Kraiczy P. Multifunctional interaction of CihC/FbpC orthologs of relapsing fever spirochetes with host-derived proteins involved in adhesion, fibrinolysis, and complement evasion. Front Immunol 2024; 15:1390468. [PMID: 38726006 PMCID: PMC11079166 DOI: 10.3389/fimmu.2024.1390468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction Relapsing fever (RF) remains a neglected human disease that is caused by a number of diverse pathogenic Borrelia (B.) species. Characterized by high cell densities in human blood, relapsing fever spirochetes have developed plentiful strategies to avoid recognition by the host defense mechanisms. In this scenario, spirochetal lipoproteins exhibiting multifunctional binding properties in the interaction with host-derived molecules are known to play a key role in adhesion, fibrinolysis and complement activation. Methods Binding of CihC/FbpC orthologs to different human proteins and conversion of protein-bound plasminogen to proteolytic active plasmin were examined by ELISA. To analyze the inhibitory capacity of CihC/FbpC orthologs on complement activation, a microtiter-based approach was performed. Finally, AlphaFold predictions were utilized to identified the complement-interacting residues. Results and discussion Here, we elucidate the binding properties of CihC/FbpC-orthologs from distinct RF spirochetes including B. parkeri, B. hermsii, B. turicatae, and B. recurrentis to human fibronectin, plasminogen, and complement component C1r. All CihC/FbpC-orthologs displayed similar binding properties to fibronectin, plasminogen, and C1r, respectively. Functional studies revealed a dose dependent binding of plasminogen to all borrelial proteins and conversion to active plasmin. The proteolytic activity of plasmin was almost completely abrogated by tranexamic acid, indicating that lysine residues are involved in the interaction with this serine protease. In addition, a strong inactivation capacity toward the classical pathway could be demonstrated for the wild-type CihC/FbpC-orthologs as well as for the C-terminal CihC fragment of B. recurrentis. Pre-incubation of human serum with borrelial molecules except CihC/FbpC variants lacking the C-terminal region protected serum-susceptible Borrelia cells from complement-mediated lysis. Utilizing AlphaFold2 predictions and existing crystal structures, we mapped the putative key residues involved in C1r binding on the CihC/FbpC orthologs attempting to explain the relatively small differences in C1r binding affinity despite the substitutions of key residues. Collectively, our data advance the understanding of the multiple binding properties of structural and functional highly similar molecules of relapsing fever spirochetes proposed to be involved in pathogenesis and virulence.
Collapse
Affiliation(s)
- Ann-Sophie Damm
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Flavia Reyer
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Luisa Langhoff
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Yi-Pin Lin
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| | - Franco Harald Falcone
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
26
|
Kurz H, Lehmberg K, Farmand S. Inborn errors of immunity with susceptibility to S. aureus infections. Front Pediatr 2024; 12:1389650. [PMID: 38720948 PMCID: PMC11078099 DOI: 10.3389/fped.2024.1389650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a significant human pathogen, in particular in patients with an underlying medical condition. It is equipped with a large variety of virulence factors enabling both colonization and invasive disease. The spectrum of manifestation is broad, ranging from superficial skin infections to life-threatening conditions like pneumonia and sepsis. As a major cause of healthcare-associated infections, there is a great need in understanding staphylococcal immunity and defense mechanisms. Patients with inborn errors of immunity (IEI) frequently present with pathological infection susceptibility, however, not all of them are prone to S. aureus infection. Thus, enhanced frequency or severity of S. aureus infections can serve as a clinical indicator of a specific underlying immunological impairment. In addition, the analysis of immunological functions in patients with susceptibility to S. aureus provides a unique opportunity of understanding the complex interplay between staphylococcal virulence and host immune predisposition. While the importance of quantitatively and qualitatively normal neutrophils is widely known, less awareness exists about the role of specific cytokines such as functional interleukin (IL)-6 signaling. This review categorizes well-known IEI in light of their susceptibility to S. aureus and discusses the relevant associated pathomechanisms. Understanding host-pathogen-interactions in S. aureus infections in susceptible individuals can pave the way for more effective management and preventive treatment options. Moreover, these insights might help to identify patients who should be screened for an underlying IEI. Ultimately, enhanced understanding of pathogenesis and immune responses in S. aureus infections may also be of relevance for the general population.
Collapse
Affiliation(s)
- Hannah Kurz
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susan Farmand
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
Peri AM, Rafiei N, O'Callaghan K, Brischetto A, Graves B, Sinclair H, Eustace M, Lim K, Parkes-Smith J, Stewart A, Davidson N, Tabah A, Bergh H, Chatfield MD, Harris PNA, Paterson DL. Host response signature trends in persistent bacteraemia and metastatic infection due to Staphylococcus aureus and Gram-negative bacilli: a prospective multicentre observational study. Infect Dis (Lond) 2024; 56:268-276. [PMID: 38093600 DOI: 10.1080/23744235.2023.2294122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/06/2023] [Indexed: 03/16/2024] Open
Abstract
BACKGROUND A prompt diagnosis of bacteraemia and sepsis is essential. Markers to predict the risk of persistent bacteraemia and metastatic infection are lacking. SeptiCyte RAPID is a host response assay stratifying patients according to the risk of infectious vs sterile inflammation through a scoring system (SeptiScore). In this study we explore the association between SeptiScore and persistent bacteraemia as well as metastatic and persistent infection in the context of a proven bacteraemia episode. METHODS This is a prospective multicentre observational 14-month study on patients with proven bacteraemia caused by Staphylococcus aureus or Gram-negative bacilli. Samples for assessment by SeptiCyte were collected with paired blood cultures for 4 consecutive days after the index blood culture. RESULTS We included 86 patients in the study, 40 with S. aureus and 46 with Gram-negative bacilli bacteraemia. SeptiScores over the follow-up were higher in patients with Gram-negative compared to S. aureus bacteraemia (median 6.4, IQR 5.5-7.4 vs 5.6 IQR 5.1-6.2, p = 0.002). Higher SeptiScores were found to be associated with positive blood cultures at follow-up (AUC = 0.86, 95%CI 0.68-1.00) and with a diagnosis of metastatic infection at day 1 and 2 of follow-up (AUC = 0.79, 95%CI 0.57-1.00 and AUC = 0.82, 95%CI 0.63-1.00 respectively) in the context of Gram-negative bacteraemia while no association between SeptiScore and the outcomes of interest was observed in S. aureus bacteraemia. Mixed models confirmed the association of SeptiScore with positive blood cultures at follow-up (p = 0.04) and metastatic infection (p = 0.03) in the context of Gram-negative bacteraemia but not S. aureus bacteraemia after adjusting for confounders. CONCLUSIONS SeptiScores differ in the follow-up of S. aureus and Gram-negative bacteraemia. In the setting of Gram-negative bacteraemia SeptiScore demonstrated a good negative predictive value for the outcomes of interest and might help rule out the persistence of infection defined as metastatic spread, lack of source control or persistent bacteraemia.
Collapse
Affiliation(s)
- Anna Maria Peri
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Nastaran Rafiei
- Infectious Diseases Unit, Caboolture Hospital, Caboolture, Queensland, Australia
| | - Kevin O'Callaghan
- Infectious Diseases Unit, Redcliffe Hospital, Redcliffe, Queensland, Australia
| | - Anna Brischetto
- Infectious Diseases Unit, Redcliffe Hospital, Redcliffe, Queensland, Australia
| | - Bianca Graves
- Herston Infectious Diseases Institute, Herston, Brisbane, Queensland, Australia
| | - Holly Sinclair
- Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Matthew Eustace
- Infectious Diseases Unit, Redcliffe Hospital, Redcliffe, Queensland, Australia
| | - Karen Lim
- Infectious Diseases Unit, Redcliffe Hospital, Redcliffe, Queensland, Australia
| | - Jill Parkes-Smith
- Infectious Diseases Unit, Redcliffe Hospital, Redcliffe, Queensland, Australia
| | - Adam Stewart
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Queensland, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Natalie Davidson
- Infectious Diseases Unit, Redcliffe Hospital, Redcliffe, Queensland, Australia
| | - Alexis Tabah
- Intensive Care Unit, Redcliffe Hospital, Redcliffe, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Haakon Bergh
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Mark D Chatfield
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Patrick N A Harris
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Queensland, Australia
- Herston Infectious Diseases Institute, Herston, Brisbane, Queensland, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - David L Paterson
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Queensland, Australia
- Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
28
|
Maan M, Goyal H, Joshi S, Barman P, Sharma S, Kumar R, Saini A. DP1, a multifaceted synthetic peptide: Mechanism of action, activity and clinical potential. Life Sci 2024; 340:122458. [PMID: 38266815 DOI: 10.1016/j.lfs.2024.122458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
AIMS Microbial infections remain a leading cause of mortality worldwide, with Staphylococcus aureus (S. aureus) being a prominent etiological agent, responsible for causing persistent bacterial infections in humans. It is a nosocomial, opportunistic pathogen, capable to propagate within the bloodstream and withstand therapeutic interventions. In the current study, a novel, indigenously designed synthetic antimicrobial peptide (sAMP) has been evaluated for its antimicrobial potential to inhibit the growth and proliferation of S. aureus. MAIN METHODS The sAMP, designed peptide (DP1) was evaluated for its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against a panel of pathogenic bacterial strains. Membrane mechanistic studies were performed by measuring membrane conductivity via dielectric spectroscopy and visualizing changes in bacterial membrane structure through field emission scanning electron microscopy (FE-SEM). Further, DP1 was tested for its in vivo antimicrobial potential in an S. aureus-induced systemic infection model. KEY FINDINGS The results indicated that DP1 has the potential to inhibit the growth and proliferation of a broad spectrum of Gram-positive, Gram-negative and multidrug-resistant (MDR) bacterial strains. Strong bactericidal effect attributed to change in electrical conductivity of the bacterial cells leading to membrane disruption was observed through dielectric spectroscopy and FE-SEM micrographs. Further, in the in vivo murine systemic infection study, 50 % reduction in S. aureus bioburden was observed within 1 day of the administration of DP1. SIGNIFICANCE The results indicate that DP1 is a multifaceted peptide with potent bactericidal, antioxidant and therapeutic properties. It holds significance as a novel drug candidate to effectively combat S. aureus-mediated systemic infections.
Collapse
Affiliation(s)
- Mayank Maan
- Department of Biophysics, Panjab University, Chandigarh, U.T. 160014, India
| | - Hemant Goyal
- Department of Biophysics, Panjab University, Chandigarh, U.T. 160014, India
| | - Shubhi Joshi
- Department of Biophysics, Panjab University, Chandigarh, U.T. 160014, India
| | - Panchali Barman
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Chandigarh, U.T. 160014, India
| | - Sheetal Sharma
- Department of Biophysics, Panjab University, Chandigarh, U.T. 160014, India
| | - Rajesh Kumar
- Department of Physics, Panjab University, Chandigarh, U.T. 160014, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Chandigarh, U.T. 160014, India.
| |
Collapse
|
29
|
Varming AK, Huang Z, Hamad GM, Rasmussen KK, Ingmer H, Kilstrup M, Lo Leggio L. CI:Mor interactions in the lysogeny switches of Lactococcus lactis TP901-1 and Staphylococcus aureus φ13 bacteriophages. MICROBIOME RESEARCH REPORTS 2024; 3:15. [PMID: 38841409 PMCID: PMC11149083 DOI: 10.20517/mrr.2023.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 06/07/2024]
Abstract
Aim: To structurally characterize in detail the interactions between the phage repressor (CI) and the antirepressor (Mor) in the lysis-lysogeny switches of two Gram-positive bacteriophages, the lactococcal TP901-1 and staphylococcal φ13. Methods: We use crystallographic structure determination, computational structural modeling, and analysis, as well as biochemical methods, to elucidate similarities and differences in the CI:Mor interactions for the two genetic switches. Results: By comparing a newly determined and other available crystal structures for the N-terminal domain of CI (CI-NTD), we show that the CI interface involved in Mor binding undergoes structural changes upon binding in TP901-1. Most importantly, we show experimentally for the first time the direct interaction between CI and Mor for φ13, and model computationally the interaction interface. The computational modeling supports similar side chain rearrangements in TP901-1 and φ13. Conclusion: This study ascertains experimentally that, like in the TP901-1 lysogeny switch, staphylococcal φ13 CI and Mor interact with each other. The structural basis of the interaction of φ13 CI and Mor was computationally modeled and is similar to the interaction demonstrated experimentally between TP901-1 CI-NTD and Mor, likely involving similar rearrangement of residue side chains during the formation of the complex. The study identifies one CI residue, Glu69, which unusually interacts primarily through its aliphatic chain with an aromatic residue on Mor after changing its conformation compared to the un-complexed structure. This and other residues at the interface are suggested for investigation in future studies.
Collapse
Affiliation(s)
- Anders K. Varming
- Department of Chemistry, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Zhiyu Huang
- Department of Chemistry, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Ghofran M. Hamad
- Department of Chemistry, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Kim K. Rasmussen
- Department of Chemistry, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg DK-1870, Denmark
| | - Mogens Kilstrup
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Copenhagen DK-2100, Denmark
| |
Collapse
|
30
|
Martens CP, Peetermans M, Vanassche T, Verhamme P, Jacquemin M, Martinod K. Peptidylarginine deiminase 4 and ADAMTS13 activity in Staphylococcus aureus bacteraemia. Philos Trans R Soc Lond B Biol Sci 2023; 378:20230042. [PMID: 37778390 PMCID: PMC10542450 DOI: 10.1098/rstb.2023.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/05/2023] [Indexed: 10/03/2023] Open
Abstract
Staphylococcus aureus infection is associated with increased levels of neutrophil extracellular traps (NETs) and von Willebrand factor (VWF), and with reduced activity of ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13). Peptidylarginine deiminase 4 (PAD4) contributes to NET formation and inactivates ADAMTS13 in vitro. The role of PADs in the dynamics of NETs, VWF and ADAMTS13 has not yet been studied. We thus aimed to assess the longitudinal evolution of NETs, PADs, VWF and ADAMTS13 activity in S. aureus infection. Plasma samples from S. aureus bacteraemia patients were longitudinally collected and analysed for NETs, PAD4/PAD2, VWF and ADAMTS13 activity. Correlation analyses with clinical data were performed. Recombinant PAD4 and S. aureus were assessed in vitro for their potential to modulate ADAMTS13 activity. Sixty-seven patients were included. Plasma levels of NETs, VWF, PAD4 and PAD2 were increased and ADAMTS13 activity was decreased. Levels of PADs were negatively correlated with ADAMTS13 activity. NETs were positively correlated with PADs, and negatively with ADAMTS13 activity. In vitro, recombinant PAD4 but not S. aureus reduced ADAMTS13 activity in plasma. Levels of PAD4 and PAD2 correlate with reduced ADAMTS13 activity, with neutrophils as the likely source of PAD activity in S. aureus bacteraemia. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Collapse
Affiliation(s)
- Caroline P Martens
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Immunology and Transplantation, KU Leuven, Leuven, 3000, Belgium
| | - Marijke Peetermans
- Laboratory for Clinical Infectious and Inflammatory Diseases, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, 3000, Belgium
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Thomas Vanassche
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Immunology and Transplantation, KU Leuven, Leuven, 3000, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Peter Verhamme
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Immunology and Transplantation, KU Leuven, Leuven, 3000, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Marc Jacquemin
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Immunology and Transplantation, KU Leuven, Leuven, 3000, Belgium
| | - Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Immunology and Transplantation, KU Leuven, Leuven, 3000, Belgium
| |
Collapse
|
31
|
Pushpa, Magotra A, Kamaldeep, Sindhu V, Chaudhary P. Impact of temporal variations and risk factors associated with udder inflammation in Hardhenu cattle (Bos taurus × Bos indicus). Reprod Domest Anim 2023; 58:1612-1621. [PMID: 37800186 DOI: 10.1111/rda.14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
This study aimed to explore the occurrence and risk factors associated with clinical mastitis within the Hardhenu cattle herd over a span of 14 years (2008-2021). A comprehensive analysis of 1515 lactation records was conducted to ascertain the incidence of clinical mastitis. The investigation determined an overall incidence rate of 26.80% in the studied population. A significant relationship between the year and clinical mastitis incidence was established through Chi-square analysis (p < .05). Temporal variations in clinical mastitis odds were apparent, with the highest odds (ranging from 0.91 to 1.00) observed during the initial years of 2008-2009 and 2009-2010. Logistic regression revealed that odds values for clinical mastitis incidence were highest in 2008-2009 (1.00), succeeded by 2009-2010 (0.91), 2012-2013 (0.88), 2018-2019 (0.67) and reaching the lowest in 2021-2022 (0.35). Subsequent rankings included 2010-2011 (0.39), 2014-2015 (0.43) and 2019-2020 (0.45). Parity was found to be significantly associated with clinical mastitis occurrence. When compared to Parity 3, both Parity 1 (odds ratio: 1.516, 95% confidence interval: 0.881-2.612) and Parity 2 (odds ratio: 2.626, 95% confidence interval: 1.568-4.398) exhibited higher odds values for clinical mastitis incidence. While the period of calving did not exert a significant influence on clinical mastitis incidence, a heightened occurrence was observed during the rainy season within the targeted population. These findings offer valuable insights into the patterns of incidence, temporal fluctuations, and non-genetic determinants impacting clinical mastitis within the Hardhenu cattle. The implications of this study can facilitate the development of targeted strategies and management protocols aimed at enhancing udder health and overall productivity in dairy cattle.
Collapse
Affiliation(s)
- Pushpa
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Ankit Magotra
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Kamaldeep
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Vikas Sindhu
- Department of Animal Nutrition, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Pradeep Chaudhary
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| |
Collapse
|
32
|
Zaman A, Diago Navarro E, Fries BC, Kim HK, Carpino N. Inactivation of the Sts enzymes promotes resistance to lethal Staphylococcus aureus infection. Infect Immun 2023; 91:e0026023. [PMID: 37725063 PMCID: PMC10580875 DOI: 10.1128/iai.00260-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 09/21/2023] Open
Abstract
Staphylococcus aureus is a highly infective Gram-positive bacterial pathogen that causes a wide range of diseases in both healthy and immunocompromised individuals. It can evade host immune defenses by expressing numerous virulence factors and toxins. Coupled with the inability of the human host to develop protective immunity against S. aureus, the emergence of antibiotic-resistant strains complicates treatment options. The non-canonical Sts phosphatases negatively regulate signaling pathways in varied immune cell types. To determine the role of the Sts proteins in regulating host responses to a Gram-positive microorganism, we investigated the response of mice lacking Sts expression to S. aureus infection. Herein, we demonstrate that Sts -/- animals are significantly resistant to lethal intravenous doses of S. aureus strain USA300. Resistance is characterized by significantly enhanced survival and accelerated bacterial clearance in multiple peripheral organs. Infected Sts -/- animals do not display increased levels of cytokines TNFα, IFNγ, and IL-6 in the spleen, liver, and kidney during the early stages of the infection, suggesting that a heightened pro-inflammatory response does not underlie the resistance phenotype. In vivo ablation of mononuclear phagocytes compromises the Sts -/- enhanced CFU clearance phenotype. Additionally, Sts -/- bone marrow-derived macrophages demonstrate significantly enhanced restriction of intracellular S. aureus following ex vivo infection. These results reveal the Sts enzymes to be critical regulators of host immunity to a virulent Gram-positive pathogen and identify them as therapeutic targets for optimizing host anti-microbial responses.
Collapse
Affiliation(s)
- Anika Zaman
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, USA
| | - Elizabeth Diago Navarro
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Bettina C. Fries
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, USA
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Veterans Administration Medical Center, Northport, New York, USA
| | - Hwan Keun Kim
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
| | - Nick Carpino
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
33
|
Yadav R, Li QZ, Huang H, Bridges SL, Kahlenberg JM, Stecenko AA, Rada B. Cystic fibrosis autoantibody signatures associate with Staphylococcus aureus lung infection or cystic fibrosis-related diabetes. Front Immunol 2023; 14:1151422. [PMID: 37767091 PMCID: PMC10519797 DOI: 10.3389/fimmu.2023.1151422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction While cystic fibrosis (CF) lung disease is characterized by persistent inflammation and infections and chronic inflammatory diseases are often accompanied by autoimmunity, autoimmune reactivity in CF has not been studied in depth. Methods In this work we undertook an unbiased approach to explore the systemic autoantibody repertoire in CF using autoantibody microarrays. Results and discussion Our results show higher levels of several new autoantibodies in the blood of people with CF (PwCF) compared to control subjects. Some of these are IgA autoantibodies targeting neutrophil components or autoantigens linked to neutrophil-mediated tissue damage in CF. We also found that people with CF with higher systemic IgM autoantibody levels have lower prevalence of S. aureus infection. On the other hand, IgM autoantibody levels in S. aureus-infected PwCF correlate with lung disease severity. Diabetic PwCF have significantly higher levels of IgA autoantibodies in their circulation compared to nondiabetic PwCF and several of their IgM autoantibodies associate with worse lung disease. In contrast, in nondiabetic PwCF blood levels of IgA autoantibodies correlate with lung disease. We have also identified other autoantibodies in CF that associate with P. aeruginosa airway infection. In summary, we have identified several new autoantibodies and associations of autoantibody signatures with specific clinical features in CF.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hanwen Huang
- Department of Epidemiology & Biostatistics, College of Public Health, The University of Georgia, Athens, GA, United States
| | - S. Louis Bridges
- Department of Medicine, Hospital for Special Surgery, Division of Rheumatology, Weill Cornell Medical College, New York, NY, United States
| | - J. Michelle Kahlenberg
- Division of Rheumatology, University of Michigan, School of Medicine, Ann Arbor, MI, United States
| | - Arlene A. Stecenko
- Division of Pulmonology, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States
| |
Collapse
|
34
|
Fantone KM, Goldberg JB, Stecenko AA, Rada B. Sputum from People with Cystic Fibrosis Reduces the Killing of Methicillin-Resistant Staphylococcus aureus by Neutrophils and Diminishes Phagosomal Production of Reactive Oxygen Species. Pathogens 2023; 12:1148. [PMID: 37764956 PMCID: PMC10538153 DOI: 10.3390/pathogens12091148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Cystic fibrosis (CF) airway disease is characterized by chronic polymicrobial infections and an infiltration of neutrophils (PMNs). Staphylococcus aureus has been the most prevalent respiratory pathogen in CF. In particular, methicillin-resistant S. aureus (MRSA) represents a huge clinical burden in CF due to its association with lung disease and increased resistance to antibiotics. In CF, PMNs are unable to kill and clear MRSA. The reason for this remains largely unknown. Our study found that CF PMNs are as equally capable of killing MRSA as healthy PMNs. We show that the CF sputum, however, significantly impairs the ability of human PMNs to kill CF MRSA isolates. In the absence of CF sputum, PMNs kill MRSA via intracellular mechanisms mediated by phagocytosis, rather than extracellular mechanisms via NET formation. CF sputum does not affect the phagocytosis of MRSA via healthy or CF PMNs. Our results demonstrate that CF sputum exposure impairs phagosomal levels of reactive oxygen species (ROS) in MRSA-phagocytosing PMNs. While phagosomal co-localizations of MRSA with primary granule markers, myeloperoxidase and cathepsin D, were significantly reduced upon CF sputum exposure, that of a third azurophilic granule marker, neutrophil elastase, remained unaffected. This suggests that CF sputum does not compromise the fusion of primary granules with phagosomes but diminishes phagosomal ROS levels via another, likely more specific, mechanism. Overall, we identified the airway environment as an important factor that restricts neutrophils' oxidative microbicidal activities in CF against MRSA. These results deliver new details of the complex host-pathogen interactions present in the CF lung.
Collapse
Affiliation(s)
- Kayla M. Fantone
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA;
| | - Joanna B. Goldberg
- Division of Pulmonology, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30602, USA; (J.B.G.); (A.A.S.)
| | - Arlene A. Stecenko
- Division of Pulmonology, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30602, USA; (J.B.G.); (A.A.S.)
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
35
|
Li S, Bettoni S, Mohlin F, Geoghegan JA, Blom AM, Laabei M. Recruitment of C4b-binding protein is not a complement evasion strategy employed by Staphylococcus aureus. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001391. [PMID: 37668351 PMCID: PMC10569063 DOI: 10.1099/mic.0.001391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
Complement offers a first line of defence against infection through the opsonization of microbial pathogens, recruitment of professional phagocytes to the infection site and the coordination of inflammatory responses required for the resolution of infection. Staphylococcus aureus is a successful pathogen that has developed multiple mechanisms to thwart host immune responses. Understanding the precise strategies employed by S. aureus to bypass host immunity will be paramount for the development of vaccines and or immunotherapies designed to prevent or limit infection. To gain a better insight into the specific immune evasion mechanisms used by S. aureus we examined the pathogen's interaction with the soluble complement inhibitor, C4b-binding protein (C4BP). Previous studies indicated that S. aureus recruits C4BP using a specific cell-wall-anchored surface protein and that bound C4BP limits complement deposition on the staphylococcal surface. Using flow-cytometric-based bacterial-protein binding assays we observed no interaction between S. aureus and C4BP. Moreover, we offer a precautionary warning that C4BP isolated from plasma can be co-purified with minute quantities of human IgG, which can distort binding analysis between S. aureus and human-derived proteins. Combined our data indicates that recruitment of C4BP is not a complement evasion strategy employed by S. aureus.
Collapse
Affiliation(s)
- Shuxian Li
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Serena Bettoni
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Frida Mohlin
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Joan A. Geoghegan
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Anna M. Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Maisem Laabei
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
36
|
Roy S, Booth CE, Powell-Pierce AD, Schulz AM, Skare JT, Garcia BL. Conformational dynamics of complement protease C1r inhibitor proteins from Lyme disease- and relapsing fever-causing spirochetes. J Biol Chem 2023; 299:104972. [PMID: 37380082 PMCID: PMC10413161 DOI: 10.1016/j.jbc.2023.104972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
Borrelial pathogens are vector-borne etiological agents known to cause Lyme disease, relapsing fever, and Borrelia miyamotoi disease. These spirochetes each encode several surface-localized lipoproteins that bind components of the human complement system to evade host immunity. One borrelial lipoprotein, BBK32, protects the Lyme disease spirochete from complement-mediated attack via an alpha helical C-terminal domain that interacts directly with the initiating protease of the classical complement pathway, C1r. In addition, the B. miyamotoi BBK32 orthologs FbpA and FbpB also inhibit C1r, albeit via distinct recognition mechanisms. The C1r-inhibitory activities of a third ortholog termed FbpC, which is found exclusively in relapsing fever-causing spirochetes, remains unknown. Here, we report the crystal structure of the C-terminal domain of Borrelia hermsii FbpC to a limiting resolution of 1.5 Å. We used surface plasmon resonance and assays of complement function to demonstrate that FbpC retains potent BBK32-like anticomplement activities. Based on the structure of FbpC, we hypothesized that conformational dynamics of the complement inhibitory domains of borrelial C1r inhibitors may differ. To test this, we utilized the crystal structures of the C-terminal domains of BBK32, FbpA, FbpB, and FbpC to carry out molecular dynamics simulations, which revealed borrelial C1r inhibitors adopt energetically favored open and closed states defined by two functionally critical regions. Taken together, these results advance our understanding of how protein dynamics contribute to the function of bacterial immune evasion proteins and reveal a surprising plasticity in the structures of borrelial C1r inhibitors.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Charles E Booth
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Alexandra D Powell-Pierce
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas, USA
| | - Anna M Schulz
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Jon T Skare
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas, USA.
| | - Brandon L Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA.
| |
Collapse
|
37
|
Alanko I, Sandberg R, Brockmann E, de Haas CJC, van Strijp JAG, Lamminmäki U, Salo‐Ahen OMH. Isolation and functional analysis of phage-displayed antibody fragments targeting the staphylococcal superantigen-like proteins. Microbiologyopen 2023; 12:e1371. [PMID: 37642487 PMCID: PMC10350561 DOI: 10.1002/mbo3.1371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 08/31/2023] Open
Abstract
Staphylococcus aureus produces numerous virulence factors that manipulate the immune system, helping the bacteria avoid phagocytosis. In this study, we are investigating three immune evasion molecules called the staphylococcal superantigen-like proteins 1, 5, and 10 (SSL1, SSL5, and SSL10). All three SSLs inhibit vital host immune processes and contribute to S. aureus immune evasion. This study aimed to identify single-chain variable fragment (scFvs) antibodies from synthetic antibody phage libraries, which can recognize either of the three SSLs and could block the interaction between the SSLs and their respective human targets. The antibodies were isolated after three rounds of panning against SSL1, SSL5, and SSL10, and their ability to bind to the SSLs was studied using a time-resolved fluorescence-based immunoassay. We successfully obtained altogether 44 unique clones displaying binding activity to either SSL1, SSL5, or SSL10. The capability of the SSL-recognizing scFvs to inhibit the SSLs' function was tested in an MMP9 enzymatic activity assay, a P-selectin glycoprotein ligand 1 competitive binding assay, and an IgG1-mediated phagocytosis assay. We could show that one scFv was able to inhibit SSL1 and maintain MMP9 activity in a concentration-dependent manner. Finally, the structure of this inhibiting scFv was modeled and used to create putative scFv-SSL1-complex models by protein-protein docking. The complex models were subjected to a 100-ns molecular dynamics simulation to assess the possible binding mode of the antibody.
Collapse
Affiliation(s)
- Ida Alanko
- Faculty of Sciences and Engineering, Pharmaceutical Sciences Laboratory (Pharmacy) & Structural Bioinformatics Laboratory (Biochemistry) TurkuÅbo Akademi UniversityTurkuFinland
| | - Rebecca Sandberg
- Faculty of Sciences and Engineering, Pharmaceutical Sciences Laboratory (Pharmacy) & Structural Bioinformatics Laboratory (Biochemistry) TurkuÅbo Akademi UniversityTurkuFinland
| | | | - Carla J. C. de Haas
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Jos A. G. van Strijp
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Urpo Lamminmäki
- Department of Life TechnologiesUniversity of TurkuTurkuFinland
| | - Outi M. H. Salo‐Ahen
- Faculty of Sciences and Engineering, Pharmaceutical Sciences Laboratory (Pharmacy) & Structural Bioinformatics Laboratory (Biochemistry) TurkuÅbo Akademi UniversityTurkuFinland
| |
Collapse
|
38
|
Wu Y, Chen T, Wang Y, Huang M, Wang Y, Luo Z. New insight into the virulence and inflammatory response of Staphylococcus aureus strains isolated from diabetic foot ulcers. Front Cell Infect Microbiol 2023; 13:1234994. [PMID: 37577369 PMCID: PMC10416727 DOI: 10.3389/fcimb.2023.1234994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
Staphylococcus aureus strains isolated from diabetic foot ulcers (DFUs) have less virulence, but still cause severe infections. Furthermore, hypovirulent S. aureus strains appear to be localized in the deep tissues of diabetic foot osteomyelitis, indicating that the unique environment within DFUs affects the pathogenicity of S. aureus. In this study, the cell-free culture medium (CFCM) of S. aureus strains isolated from DFUs exhibited higher cytotoxicity to human erythrocytes than those isolated from non-diabetic patients with sepsis or wounds. Among these S. aureus strains isolated from DFUs, β-toxin negative strains have less virulence than β-toxin positive strains, but induced a higher expression of inflammatory cytokines. Our study and previous studies have shown that the synergistic effect of phenol-soluble modulin α and β-toxin contributes to the higher hemolytic activity of β-toxin positive strains. However, lysis of human erythrocytes by the CFCM of β-toxin negative strains was greatly inhibited by an autolysin inhibitor, sodium polyanethole sulfonate (SPS). A high level of glucose greatly reduced the hemolytic activity of S. aureus, but promoted the expression of interleukin-6 (IL-6) in human neutrophils. However, 5 mM glucose or glucose-6-phosphate (G6P) increased the hemolytic activity of SA118 (a β-toxin negative strain) isolated from DFUs. Additionally, patients with DFUs with growth of S. aureus had lower level of serum IL-6 than those with other bacteria, and the CFCM of S. aureus strains significantly reduced lipopolysaccharide-induced IL-6 expression in human neutrophils. Therefore, the virulence and inflammatory response of S. aureus strains isolated from DFUs are determined by the levels of glucose and its metabolites, which may explain why it is the predominant bacteria isolated from DFUs.
Collapse
Affiliation(s)
- Yuan Wu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ti Chen
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yanle Wang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mao Huang
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yurong Wang
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhen Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
39
|
Motta C, Pellegrini A, Camaione S, Geoghegan J, Speziale P, Barbieri G, Pietrocola G. von Willebrand factor-binding protein (vWbp)-activated factor XIII and transglutaminase 2 (TG2) promote cross-linking between FnBPA from Staphylococcus aureus and fibrinogen. Sci Rep 2023; 13:11683. [PMID: 37468579 DOI: 10.1038/s41598-023-38972-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/18/2023] [Indexed: 07/21/2023] Open
Abstract
The secreted von Willebrand factor-binding protein (vWbp) from Staphylococcus aureus interacts with the coagulation factors prothrombin and fibrinogen (Fbg), leading to the non-proteolytic transglutaminase activation of Factor XIII (FXIII). In this study we found that vWbp-activated FXIII catalyses the incorporation of amino-donor dansylcadaverine into region A of fibronectin-binding protein A (FnBPA). Incubation of Fbg with recombinant region A of S. aureus Fbg-binding proteins FnBPA, FnBPB, ClfA or ClfB in presence of vWbp-activated FXIII resulted in the formation of high molecular heteropolymers with FnBPA only, suggesting a specificity of the cross-linking reaction between fibrin(ogen) and the staphylococcal surface. As previously observed, cross-linking sites were mapped to the α-chain and the N1 subdomain of fibrin(ogen) and region A of FnBPA, respectively. Comparable results were obtained when tissue tranglutaminase-2 (TG2) was tested for cross-linking of FnBPA and Fbg. Of note, FnBPA-mediated covalent cross-linking promoted by vWbp-activated FXIII was also observed when bacteria were allowed to attach to fibrin(ogen). Together these findings suggest a novel pathogenetic mechanism by which the transglutaminase action of FXIII and/or TG2 contributes to entrapment and persistence of S. aureus in blood and host tissues.
Collapse
Affiliation(s)
- Chiara Motta
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Stefano Camaione
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Joan Geoghegan
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Pietro Speziale
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | | |
Collapse
|
40
|
Mariani F, Galvan EM. Staphylococcus aureus in Polymicrobial Skinand Soft Tissue Infections: Impact of Inter-Species Interactionsin Disease Outcome. Antibiotics (Basel) 2023; 12:1164. [PMID: 37508260 PMCID: PMC10376372 DOI: 10.3390/antibiotics12071164] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Polymicrobial biofilms provide a complex environment where co-infecting microorganisms can behave antagonistically, additively, or synergistically to alter the disease outcome compared to monomicrobial infections. Staphylococcus aureus skin and soft tissue infections (Sa-SSTIs) are frequently reported in healthcare and community settings, and they can also involve other bacterial and fungal microorganisms. This polymicrobial aetiology is usually found in chronic wounds, such as diabetic foot ulcers, pressure ulcers, and burn wounds, where the establishment of multi-species biofilms in chronic wounds has been extensively described. This review article explores the recent updates on the microorganisms commonly found together with S. aureus in SSTIs, such as Pseudomonas aeruginosa, Escherichia coli, Enterococcus spp., Acinetobacter baumannii, and Candida albicans, among others. The molecular mechanisms behind these polymicrobial interactions in the context of infected wounds and their impact on pathogenesis and antimicrobial susceptibility are also revised.
Collapse
Affiliation(s)
- Florencia Mariani
- Laboratorio de Patogénesis Bacteriana, Departamento de Investigaciones Bioquímicas y Farmacéuticas, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Hidalgo 775, Buenos Aires C1405, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires A4400, Argentina
| | - Estela Maria Galvan
- Laboratorio de Patogénesis Bacteriana, Departamento de Investigaciones Bioquímicas y Farmacéuticas, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Hidalgo 775, Buenos Aires C1405, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires A4400, Argentina
| |
Collapse
|
41
|
Mishra N, Herdendorf TJ, Prakash O, Geisbrecht BV. Simultaneous inhibition of two neutrophil serine proteases by the S. aureus innate immune evasion protein EapH2. J Biol Chem 2023; 299:104878. [PMID: 37269950 PMCID: PMC10339191 DOI: 10.1016/j.jbc.2023.104878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/06/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023] Open
Abstract
Extracellular adherence protein domain (EAP) proteins are high-affinity, selective inhibitors of neutrophil serine proteases (NSP), including cathepsin-G (CG) and neutrophil elastase (NE). Most Staphylococcus aureus isolates encode for two EAPs, EapH1 and EapH2, that contain a single functional domain and share 43% identity with one another. Although structure/function investigations from our group have shown that EapH1 uses a globally similar binding mode to inhibit CG and NE, NSP inhibition by EapH2 is incompletely understood due to a lack of NSP/EapH2 cocrystal structures. To address this limitation, we further studied NSP inhibition by EapH2 in comparison with EapH1. Like its effects on NE, we found that EapH2 is a reversible, time-dependent, and low nanomolar affinity inhibitor of CG. We characterized an EapH2 mutant which suggested that the CG binding mode of EapH2 is comparable to EapH1. To test this directly, we used NMR chemical shift perturbation to study EapH1 and EapH2 binding to CG and NE in solution. Although we found that overlapping regions of EapH1 and EapH2 were involved in CG binding, we found that altogether distinct regions of EapH1 and EapH2 experienced changes upon binding to NE. An important implication of this observation is that EapH2 might be capable of binding and inhibiting CG and NE simultaneously. We confirmed this unexpected feature by solving crystal structures of the CG/EapH2/NE complex and demonstrating their functional relevance through enzyme inhibition assays. Together, our work defines a new mechanism of simultaneous inhibition of two serine proteases by a single EAP protein.
Collapse
Affiliation(s)
- Nitin Mishra
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Timothy J Herdendorf
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Om Prakash
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Brian V Geisbrecht
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA.
| |
Collapse
|
42
|
Li Y, Pan T, Cao R, Li W, He Z, Sun B. Nitrate Reductase NarGHJI Modulates Virulence via Regulation of agr Expression in Methicillin-Resistant Staphylococcus aureus Strain USA300 LAC. Microbiol Spectr 2023; 11:e0359622. [PMID: 37199609 PMCID: PMC10269880 DOI: 10.1128/spectrum.03596-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Staphylococcus aureus is a pathogenic bacterium with a widespread distribution that can cause diverse severe diseases. The membrane-bound nitrate reductase NarGHJI serves respiratory function. However, little is known about its contribution to virulence. In this study, we demonstrated that narGHJI disruption results in the downregulation of virulence genes (e.g., RNAIII, agrBDCA, hla, psmα, and psmβ) and reduces the hemolytic activity of the methicillin-resistant S. aureus (MRSA) strain USA300 LAC. Moreover, we provided evidence that NarGHJI participates in regulating host inflammatory response. A mouse model of subcutaneous abscess and Galleria mellonella survival assay demonstrated that the ΔnarG mutant was significantly less virulent than the wild type. Interestingly, NarGHJI contributes to virulence in an agr-dependent manner, and the role of NarGHJI differs between different S. aureus strains. Our study highlights the novel role of NarGHJI in regulating virulence, thereby providing a new theoretical reference for the prevention and control of S. aureus infection. IMPORTANCE Staphylococcus aureus is a notorious pathogen that poses a great threat to human health. The emergence of drug-resistant strains has significantly increased the difficulty of preventing and treating S. aureus infection and enhanced the pathogenic ability of the bacterium. This indicates the importance of identifying novel pathogenic factors and revealing the regulatory mechanisms through which they regulate virulence. The nitrate reductase NarGHJI is mainly involved in bacterial respiration and denitrification, which can enhance bacterial survival. We demonstrated that narGHJI disruption results in the downregulation of the agr system and agr-dependent virulence genes, suggesting that NarGHJI participates in the regulation of S. aureus virulence in an agr-dependent manner. Moreover, the regulatory approach is strain specific. This study provides a new theoretical reference for the prevention and control of S. aureus infection and reveals new targets for the development of therapeutic drugs.
Collapse
Affiliation(s)
- Yujie Li
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Ting Pan
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Ruobing Cao
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Zhien He
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| |
Collapse
|
43
|
Li Q, Liu Q, Wang Z, Zhang X, Ma R, Hu X, Mei J, Su Z, Zhu W, Zhu C. Biofilm Homeostasis Interference Therapy via 1 O 2 -Sensitized Hyperthermia and Immune Microenvironment Re-Rousing for Biofilm-Associated Infections Elimination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300592. [PMID: 36850031 DOI: 10.1002/smll.202300592] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Indexed: 06/02/2023]
Abstract
The recurrence of biofilm-associated infections (BAIs) remains high after implant-associated surgery. Biofilms on the implant surface reportedly shelter bacteria from antibiotics and evade innate immune defenses. Moreover, little is currently known about eliminating residual bacteria that can induce biofilm reinfection. Herein, novel "interference-regulation strategy" based on bovine serum albumin-iridium oxide nanoparticles (BIONPs) as biofilm homeostasis interrupter and immunomodulator via singlet oxygen (1 O2 )-sensitized mild hyperthermia for combating BAIs is reported. The catalase-like BIONPs convert abundant H2 O2 inside the biofilm-microenvironment (BME) to sufficient oxygen gas (O2 ), which can efficiently enhance the generation of 1 O2 under near-infrared irradiation. The 1 O2 -induced biofilm homeostasis disturbance (e.g., sigB, groEL, agr-A, icaD, eDNA) can disrupt the sophisticated defense system of biofilm, further enhancing the sensitivity of biofilms to mild hyperthermia. Moreover, the mild hyperthermia-induced bacterial membrane disintegration results in protein leakage and 1 O2 penetration to kill bacteria inside the biofilm. Subsequently, BIONPs-induced immunosuppressive microenvironment re-rousing successfully re-polarizes macrophages to pro-inflammatory M1 phenotype in vivo to devour residual biofilm and prevent biofilm reconstruction. Collectively, this 1 O2 -sensitized mild hyperthermia can yield great refractory BAIs treatment via biofilm homeostasis interference, mild-hyperthermia, and immunotherapy, providing a novel and effective anti-biofilm strategy.
Collapse
Affiliation(s)
- Qianming Li
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Quan Liu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Zhengxi Wang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Xianzuo Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Ruixiang Ma
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Xianli Hu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Jiawei Mei
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Zheng Su
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Wanbo Zhu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| |
Collapse
|
44
|
Sipprell SE, Johnson MB, Leach W, Suptela SR, Marriott I. Staphylococcus aureus Infection Induces the Production of the Neutrophil Chemoattractants CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7 by Murine Osteoblasts. Infect Immun 2023; 91:e0001423. [PMID: 36880752 PMCID: PMC10112169 DOI: 10.1128/iai.00014-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Staphylococcus aureus is the principal causative agent of osteomyelitis, a serious bacterial infection of bone that is associated with progressive inflammatory damage. Bone-forming osteoblasts have increasingly been recognized to play an important role in the initiation and progression of detrimental inflammation at sites of infection and have been demonstrated to release an array of inflammatory mediators and factors that promote osteoclastogenesis and leukocyte recruitment following bacterial challenge. In the present study, we describe elevated bone tissue levels of the potent neutrophil-attracting chemokines CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7 in a murine model of posttraumatic staphylococcal osteomyelitis. RNA sequencing (RNA-Seq) gene ontology analysis of isolated primary murine osteoblasts showed enrichment in differentially expressed genes involved in cell migration and chemokine receptor binding and chemokine activity following S. aureus infection, and a rapid increase in the expression of mRNA encoding CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7, in these cells. Importantly, we have confirmed that such upregulated gene expression results in protein production with the demonstration that S. aureus challenge elicits the rapid and robust release of these chemokines by osteoblasts and does so in a bacterial dose-dependent manner. Furthermore, we have confirmed the ability of soluble osteoblast-derived chemokines to elicit the migration of a neutrophil-like cell line. As such, these studies demonstrate the robust production of CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7 by osteoblasts in response to S. aureus infection, and the release of such neutrophil-attracting chemokines provides an additional mechanism by which osteoblasts could drive the inflammatory bone loss associated with staphylococcal osteomyelitis.
Collapse
Affiliation(s)
- Sophie E. Sipprell
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - M. Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Whitney Leach
- Department of Molecular Biology, Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Samantha R. Suptela
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
45
|
Hung S, Kasperkowitz A, Kurz F, Dreher L, Diessner J, Ibrahim ES, Schwarz S, Ohlsen K, Hertlein T. Next-generation humanized NSG-SGM3 mice are highly susceptible to Staphylococcus aureus infection. Front Immunol 2023; 14:1127709. [PMID: 36969151 PMCID: PMC10037040 DOI: 10.3389/fimmu.2023.1127709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Humanized hemato-lymphoid system mice, or humanized mice, emerged in recent years as a promising model to study the course of infection of human-adapted or human-specific pathogens. Though Staphylococcus aureus infects and colonizes a variety of species, it has nonetheless become one of the most successful human pathogens of our time with a wide armory of human-adapted virulence factors. Humanized mice showed increased vulnerability to S. aureus compared to wild type mice in a variety of clinically relevant disease models. Most of these studies employed humanized NSG (NOD-scid IL2Rgnull) mice which are widely used in the scientific community, but show poor human myeloid cell reconstitution. Since this immune cell compartment plays a decisive role in the defense of the human immune system against S. aureus, we asked whether next-generation humanized mice, like NSG-SGM3 (NOD-scid IL2Rgnull-3/GM/SF) with improved myeloid reconstitution, would prove to be more resistant to infection. To our surprise, we found the contrary when we infected humanized NSG-SGM3 (huSGM3) mice with S. aureus: although they had stronger human immune cell engraftment than humanized NSG mice, particularly in the myeloid compartment, they displayed even more pronounced vulnerability to S. aureus infection. HuSGM3 mice had overall higher numbers of human T cells, B cells, neutrophils and monocytes in the blood and the spleen. This was accompanied by elevated levels of pro-inflammatory human cytokines in the blood of huSGM3 mice. We further identified that the impaired survival of huSGM3 mice was not linked to higher bacterial burden nor to differences in the murine immune cell repertoire. Conversely, we could demonstrate a correlation of the rate of humanization and the severity of infection. Collectively, this study suggests a detrimental effect of the human immune system in humanized mice upon encounter with S. aureus which might help to guide future therapy approaches and analysis of virulence mechanisms.
Collapse
Affiliation(s)
- Sophia Hung
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Amelie Kasperkowitz
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Florian Kurz
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Liane Dreher
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Joachim Diessner
- Department for Obstetrics and Gynecology, University Hospital of Würzburg, Würzburg, Germany
| | - Eslam S. Ibrahim
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Knut Ohlsen
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Tobias Hertlein
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- *Correspondence: Tobias Hertlein,
| |
Collapse
|
46
|
Gido CD, Herdendorf TJ, Geisbrecht BV. Characterization of two distinct neutrophil serine protease-binding modes within a Staphylococcus aureus innate immune evasion protein family. J Biol Chem 2023; 299:102969. [PMID: 36736422 PMCID: PMC9996362 DOI: 10.1016/j.jbc.2023.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Extracellular adherence protein domain (EAPs) proteins are a class of innate immune evasion proteins secreted by the human pathogen Staphylococcus aureus. EAPs are potent and selective inhibitors of cathepsin-G (CG) and neutrophil elastase (NE), which are the two most abundant neutrophil serine proteases (NSPs). Previous work from our group has shown that the prototypical EAP, EapH1, relies on plasticity within a single inhibitory site to block the activities of CG and NE. However, whether other EAPs follow similar structure-function relationships is unclear. To address this question, we studied the inhibitory properties of the first (Eap1) and second (Eap2) domains of the modular extracellular adherence protein of S. aureus and determined their structures when bound to CG and NE, respectively. We observed that both Eap1 and Eap2 displayed time-dependent inhibition of CG (on the order of 10-9 M) and of NE (on the order of 10-10 M). We also found that whereas the structures of Eap1 and Eap2 bound to CG showed an overall inhibitory mode like that seen previously for EapH1, the structures of Eap1 and Eap2 bound to NE revealed a new inhibitory mode involving a distal region of the EAP domain. Using site-directed mutagenesis of Eap1 and Eap2, along with enzyme assays, we confirmed the roles of interfacial residues in NSP inhibition. Taken together, our work demonstrates that EAPs can form structurally divergent complexes with two closely related serine proteases and further suggests that certain EAPs may be capable of inhibiting two NSPs simultaneously.
Collapse
Affiliation(s)
- Carson D Gido
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Timothy J Herdendorf
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Brian V Geisbrecht
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA.
| |
Collapse
|
47
|
Tomlinson KL, Riquelme SA, Baskota SU, Drikic M, Monk IR, Stinear TP, Lewis IA, Prince AS. Staphylococcus aureus stimulates neutrophil itaconate production that suppresses the oxidative burst. Cell Rep 2023; 42:112064. [PMID: 36724077 PMCID: PMC10387506 DOI: 10.1016/j.celrep.2023.112064] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/01/2022] [Accepted: 01/18/2023] [Indexed: 02/02/2023] Open
Abstract
Neutrophils are critical in the host defense against Staphylococcus aureus, a major human pathogen. However, even in the setting of a robust neutrophil response, S. aureus can evade immune clearance. Here, we demonstrate that S. aureus impairs neutrophil function by triggering the production of the anti-inflammatory metabolite itaconate. The enzyme that synthesizes itaconate, Irg1, is selectively expressed in neutrophils during S. aureus pneumonia. Itaconate inhibits neutrophil glycolysis and oxidative burst, which impairs survival and bacterial killing. In a murine pneumonia model, neutrophil Irg1 expression protects the lung from excessive inflammation but compromises bacterial clearance. S. aureus is thus able to evade the innate immune response by targeting neutrophil metabolism and inducing the production of the anti-inflammatory metabolite itaconate.
Collapse
Affiliation(s)
- Kira L Tomlinson
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | | | | | - Marija Drikic
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ian R Monk
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Ian A Lewis
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Alice S Prince
- Department of Pediatrics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
48
|
Kengmo Tchoupa A, Kretschmer D, Schittek B, Peschel A. The epidermal lipid barrier in microbiome-skin interaction. Trends Microbiol 2023:S0966-842X(23)00027-6. [PMID: 36822953 DOI: 10.1016/j.tim.2023.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/25/2023]
Abstract
The corneocyte layers forming the upper surface of mammalian skin are embedded in a lamellar-membrane matrix which repels harmful molecules while retaining solutes from subcutaneous tissues. Only certain bacterial and fungal taxa colonize skin surfaces. They have ways to use epidermal lipids as nutrients while resisting antimicrobial fatty acids. Skin microorganisms release lipophilic microbe-associated molecular pattern (MAMP) molecules which are largely retained by the epidermal lipid barrier. Skin barrier defects, as in atopic dermatitis, impair lamellar-membrane integrity, resulting in altered skin microbiomes, which then include the pathogen Staphylococcus aureus. The resulting increased penetration of MAMPs and toxins promotes skin inflammation. Elucidating how microorganisms manipulate the epidermal lipid barrier will be key for better ways of preventing inflammatory skin disorders.
Collapse
Affiliation(s)
- Arnaud Kengmo Tchoupa
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology Section, University of Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | - Dorothee Kretschmer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology Section, University of Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | - Birgit Schittek
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany; Dermatology Department, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology Section, University of Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), partner site Tübingen, Germany.
| |
Collapse
|
49
|
Haag AF, Liljeroos L, Donato P, Pozzi C, Brignoli T, Bottomley MJ, Bagnoli F, Delany I. In Vivo Gene Expression Profiling of Staphylococcus aureus during Infection Informs Design of Stemless Leukocidins LukE and -D as Detoxified Vaccine Candidates. Microbiol Spectr 2023; 11:e0257422. [PMID: 36688711 PMCID: PMC9927290 DOI: 10.1128/spectrum.02574-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/02/2023] [Indexed: 01/24/2023] Open
Abstract
Staphylococcus aureus is a clinically important bacterial pathogen that has become resistant to treatment with most routinely used antibiotics. Alternative strategies, such as vaccination and phage therapy, are therefore actively being investigated to prevent or combat staphylococcal infections. Vaccination requires that vaccine targets are expressed at sufficient quantities during infection so that they can be targeted by the host's immune system. While our knowledge of in vitro expression levels of putative vaccine candidates is comprehensive, crucial in vivo expression data are scarce and promising vaccine candidates during in vitro assessment often prove ineffective in preventing S. aureus infection. Here, we show how a newly developed high-throughput quantitative reverse transcription-PCR (qRT-PCR) assay monitoring the expression of 84 staphylococcal genes encoding mostly virulence factors can inform the selection and design of effective vaccine candidates against staphylococcal infections. We show that this assay can accurately quantify mRNA expression levels of these genes in several host organs relying only on very limited amounts of bacterial mRNA in each sample. We selected two highly expressed genes, lukE and lukD, encoding pore-forming leukotoxins, to inform the design of detoxified recombinant proteins and showed that immunization with recombinant genetically detoxified LukED antigens conferred protection against staphylococcal skin infection in mice. Consequently, knowledge of in vivo-expressed virulence determinants can be successfully deployed to identify and select promising candidates for optimized design of effective vaccine antigens against S. aureus. Notably, this approach should be broadly applicable to numerous other pathogens. IMPORTANCE Vaccination is an attractive strategy for preventing bacterial infections in an age of increased antimicrobial resistance. However, vaccine development frequently suffers significant setbacks when candidate antigens that show promising results in in vitro experimentation fail to protect from disease. An alluring strategy is to focus resources on developing bacterial virulence factors that are expressed during disease establishment or maintenance and are critical for bacterial in-host survival as vaccine targets. While expression profiles of many virulence factors have been characterized in detail in vitro, our knowledge of their in vivo expression profiles is still scarce. Here, using a high-throughput qRT-PCR approach, we identified two highly expressed leukotoxins in a murine infection model and showed that genetically detoxified derivatives of these elicited a protective immune response in a murine skin infection model. Therefore, in vivo gene expression can inform the selection of promising candidates for the design of effective vaccine antigens.
Collapse
Affiliation(s)
- Andreas F. Haag
- GSK, Siena, Italy
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| | | | | | | | - Tarcisio Brignoli
- GSK, Siena, Italy
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | | | | |
Collapse
|
50
|
Neutralization of Staphylococcus aureus Protein A Prevents Exacerbated Osteoclast Activity and Bone Loss during Osteomyelitis. Antimicrob Agents Chemother 2023; 67:e0114022. [PMID: 36533935 PMCID: PMC9872667 DOI: 10.1128/aac.01140-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Osteomyelitis caused by Staphylococcus aureus is an important and current health care problem worldwide. Treatment of this infection frequently fails not only due to the increasing incidence of antimicrobial-resistant isolates but also because of the ability of S. aureus to evade the immune system, adapt to the bone microenvironment, and persist within this tissue for decades. We have previously demonstrated the role of staphylococcal protein A (SpA) in the induction of exacerbated osteoclastogenesis and increased bone matrix degradation during osteomyelitis. The aim of this study was to evaluate the potential of using anti-SpA antibodies as an adjunctive therapy to control inflammation and bone damage. By using an experimental in vivo model of osteomyelitis, we demonstrated that the administration of an anti-SpA antibody by the intraperitoneal route prevented excessive inflammatory responses in the bone upon challenge with S. aureus. Ex vivo assays indicated that blocking SpA reduced the priming of osteoclast precursors and their response to RANKL. Moreover, the neutralization of SpA was able to prevent the differentiation and activation of osteoclasts in vivo, leading to reduced expression levels of cathepsin K, reduced expression of markers associated with abnormal bone formation, and decreased trabecular bone loss during osteomyelitis. Taken together, these results demonstrate the feasibility of using anti-SpA antibodies as an antivirulence adjunctive therapy that may prevent the development of pathological conditions that not only damage the bone but also favor bacterial escape from antimicrobials and the immune system.
Collapse
|