1
|
Aciole RCG, Lima MJS, de Oliveira EB, Santos DKDN, Aguiar JS, Alves S, dos Anjos JV. Development of Photopolymerizable Implants for Controlled Release of Pro-Apoptotic 1,2,4-Oxadiazoles. ACS OMEGA 2025; 10:19314-19325. [PMID: 40415809 PMCID: PMC12096222 DOI: 10.1021/acsomega.4c09142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 04/16/2025] [Accepted: 04/30/2025] [Indexed: 05/27/2025]
Abstract
We present a study on developing photopolymerizable implants for the controlled release of pro-apoptotic 1,2,4-oxadiazoles to enhance their efficacy and safety in cancer treatment. The research focuses on synthesizing, testing, and incorporating 3,5-diaryl-1,2,4-oxadiazoles into a polymeric matrix based on methacrylates and utilizing these photopolymerizable devices for cancer therapy. Swelling tests showed that while the resin swells in contact with liquids, the presence of oxadiazole slowed this swelling, leading to a prolonged drug release over 50 days. The implant retained the cytotoxic activity of the isolated drug, indicating its potential for cancer therapy.
Collapse
Affiliation(s)
- Rayane C. G. Aciole
- Departamento
de Química Fundamental, Universidade
Federal de Pernambuco, Recife, Pernambuco50740-560, Brazil
| | - Maria J. S. Lima
- Departamento
de Química Fundamental, Universidade
Federal de Pernambuco, Recife, Pernambuco50740-560, Brazil
| | - Erwelly B. de Oliveira
- Departamento
de Antibióticos, Universidade Federal
de Pernambuco, Recife, Pernambuco50740-560, Brazil
| | - Dayane K. D. N. Santos
- Departamento
de Química Fundamental, Universidade
Federal de Pernambuco, Recife, Pernambuco50740-560, Brazil
| | - Jaciana S. Aguiar
- Departamento
de Antibióticos, Universidade Federal
de Pernambuco, Recife, Pernambuco50740-560, Brazil
| | - Severino Alves
- Departamento
de Química Fundamental, Universidade
Federal de Pernambuco, Recife, Pernambuco50740-560, Brazil
| | - Janaína V. dos Anjos
- Departamento
de Química Fundamental, Universidade
Federal de Pernambuco, Recife, Pernambuco50740-560, Brazil
| |
Collapse
|
2
|
Yao M, Zhu X, Chen YC, Yang GH, Ao P. Exploring Multi-Target Therapeutic Strategies for Glioblastoma via Endogenous Network Modeling. Int J Mol Sci 2025; 26:3283. [PMID: 40244148 PMCID: PMC11989339 DOI: 10.3390/ijms26073283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/25/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
Medical treatment of glioblastoma presents a significant challenge. A conventional medication has limited effectiveness, and a single-target therapy is usually effective only in the early stage of the treatment. Recently, there has been increasing focus on multi-target therapies, but the vast range of possible combinations makes clinical experimentation and implementation difficult. From the perspective of systems biology, this study conducted simulations for multi-target glioblastoma therapy based on dynamic analysis of previously established endogenous networks, validated with glioblastoma single-cell RNA sequencing data. Several potentially effective target combinations were identified. The findings also highlight the necessity of multi-target rather than single-target intervention strategies in cancer treatment, as well as the promise in clinical applications and personalized therapies.
Collapse
Affiliation(s)
- Mengchao Yao
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai 200444, China;
| | - Xiaomei Zhu
- Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200444, China
| | - Yong-Cong Chen
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai 200444, China;
| | - Guo-Hong Yang
- Department of Physics, Shanghai University, Shanghai 200444, China;
| | - Ping Ao
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Pey Adum KS, Haron NH, Md Toha Z, Arsad H. Transcriptome analysis and molecular docking reveal the activation of FOXO4, TNFSF15 and CASP9 in HeLa cells treated with DCM fraction from Clinacanthus nutans ( C. nutans). JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-10. [PMID: 40094535 DOI: 10.1080/10286020.2025.2469691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 03/19/2025]
Abstract
Clinacanthus nutans (C. nutans) is a well-known herb in tropical Asia. Previous studies have reported the anticancer activity of C. nutans but the molecular mechanisms on cervical cancer are not fully understood. Therefore, our study aims to explore its effects on HeLa line and analyse the molecular interactions. Firstly, the RNA-Seq reads were processed for differentially expressed analyses. With Ingenuity Pathway Analysis (IPA) method, five cell death-related pathways with three significant genes (CASP9, FOXO4, TNFSF15) were identified. This study provides insight into the potential role of the DCM fraction of C. nutans mediating cell death mechanism in cervical cancer.
Collapse
Affiliation(s)
- Kristine Sandra Pey Adum
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Seberang Perai Utara, Pulau Pinang13200, Malaysia
| | - Nor Hasyimah Haron
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Seberang Perai Utara, Pulau Pinang13200, Malaysia
| | - Zaleha Md Toha
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Seberang Perai Utara, Pulau Pinang13200, Malaysia
| | - Hasni Arsad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Seberang Perai Utara, Pulau Pinang13200, Malaysia
| |
Collapse
|
4
|
Samarasekera G, Go NE, Choutka C, Xu J, Takemon Y, Chan J, Chan M, Perera S, Aparicio S, Morin GB, Marra MA, Chittaranjan S, Gorski SM. Caspase 3 and caspase 7 promote cytoprotective autophagy and the DNA damage response during non-lethal stress conditions in human breast cancer cells. PLoS Biol 2025; 23:e3003034. [PMID: 39982959 PMCID: PMC11882052 DOI: 10.1371/journal.pbio.3003034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/05/2025] [Accepted: 01/24/2025] [Indexed: 02/23/2025] Open
Abstract
Cell stress adaptation plays a key role in normal development and in various diseases including cancer. Caspases are activated in response to cell stress, and growing evidence supports their function in non-apoptotic cellular processes. A role for effector caspases in promoting stress-induced cytoprotective autophagy was demonstrated in Drosophila, but has not been explored in the context of human cells. We found a functionally conserved role for effector caspase 3 (CASP3) and caspase 7 (CASP7) in promoting starvation or proteasome inhibition-induced cytoprotective autophagy in human breast cancer cells. The loss of CASP3 and CASP7 resulted in an increase in PARP1 cleavage, reduction in LC3B and ATG7 transcript levels, and a reduction in H2AX phosphorylation, consistent with a block in autophagy and DNA damage-induced stress response pathways. Surprisingly, in non-lethal cell stress conditions, CASP7 underwent non-canonical processing at two calpain cleavage sites flanking a PARP1 exosite, resulting in stable CASP7-p29/p30 fragments. Expression of CASP7-p29/p30 fragment(s) could rescue H2AX phosphorylation in the CASP3 and CASP7 double knockout background. Strikingly, yet consistent with these phenotypes, the loss of CASP3 and CASP7 exhibited synthetic lethality with BRCA1 loss. These findings support a role for human caspases in stress adaptation through PARP1 modulation and reveal new therapeutic avenues for investigation.
Collapse
Affiliation(s)
- Gayathri Samarasekera
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nancy E. Go
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Courtney Choutka
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jing Xu
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Yuka Takemon
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer Chan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Michelle Chan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Shivani Perera
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Samuel Aparicio
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregg B. Morin
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Suganthi Chittaranjan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
5
|
Zhang W, Wu H, Liao Y, Zhu C, Zou Z. Caspase family in autoimmune diseases. Autoimmun Rev 2025; 24:103714. [PMID: 39638102 DOI: 10.1016/j.autrev.2024.103714] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Programmed cell death (PCD) plays a crucial role in maintaining tissue homeostasis, with its primary forms including apoptosis, pyroptosis, and necroptosis. The caspase family is central to these processes, and its complex functions across different cell death pathways and other non-cell death roles have been closely linked to the pathogenesis of autoimmune diseases. This article provides a comprehensive review of the role of the caspase family in autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), and multiple sclerosis (MS). It particularly emphasizes the intricate functions of caspases within various cell death pathways and their potential as therapeutic targets, thereby offering innovative insights and a thorough discussion in this field. In terms of therapy, strategies targeting caspases hold significant promise. We emphasize the importance of a holistic understanding of caspases in the overall concept of cell death, exploring their unique functions and interrelationships across multiple cell death pathways, including apoptosis, pyroptosis, necroptosis, and PANoptosis. This approach transcends the limitations of previous studies that focused on singular cell death pathways. Additionally, caspases play a key role in non-cell death functions, such as immune cell activation, cytokine processing, inflammation regulation, and tissue repair, thereby opening new avenues for the treatment of autoimmune diseases. Regulating caspase activity holds the potential to restore immune balance in autoimmune diseases. Potential therapeutic approaches include small molecule inhibitors (both reversible and irreversible), biological agents (such as monoclonal antibodies), and gene therapies. However, achieving specific modulation of caspases to avoid interference with normal physiological functions remains a major challenge. Future research must delve deeper into the regulatory mechanisms of caspases and their associated complexes linked to PANoptosis to facilitate precision medicine. In summary, this article offers a comprehensive and in-depth analysis, providing a novel perspective on the complex roles of caspases in autoimmune diseases, with the potential to catalyze breakthroughs in understanding disease mechanisms and developing therapeutic strategies.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Huang Wu
- Basic Medical University, Naval Medical University, Shanghai 200433, China
| | - Yan Liao
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
6
|
Bozok ÜG, Ergörün Aİ, Küçük A, Yığman Z, Dursun AD, Arslan M. Effects of Pomegranate Seed Oil on Lower Extremity Ischemia-Reperfusion Damage: Insights into Oxidative Stress, Inflammation, and Cell Death. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:212. [PMID: 40005329 PMCID: PMC11857112 DOI: 10.3390/medicina61020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025]
Abstract
Aim: This study sought to clarify the therapeutic benefits and mechanisms of action of pomegranate seed oil (PSO) in instances of ischemia-reperfusion (IR) damage in the lower extremities. Materials and Methods: The sample size was determined, then 32 rats were randomly allocated to four groups: Control (C), ischemia-reperfusion (IR), low-dose PSO (IR + LD, 0.15 mL/kg), and high-dose PSO (IR + HD, 0.30 mL/kg). The ischemia model in the IR group was established by occluding the infrarenal aorta for 120 min. Prior to reperfusion, PSO was delivered to the IR + LD and IR + HD groups at doses of 0.15 mL/kg and 0.30 mL/kg, respectively, followed by a 120 min reperfusion period. Subsequently, blood and tissue specimens were obtained. Statistical investigation was executed utilizing Statistical Package for the Social Sciences version 20.0 (SPSS, IBM Corp., Armonk, NY, USA). Results: Biochemical tests revealed significant variations in total antioxidant level (TAS), total oxidant level (TOS), and the oxidative stress index (OSI) across the groups (p < 0.0001). The IR group had elevated TOS and OSI levels, whereas PSO therapy resulted in a reduction in these values (p < 0.05). As opposed to the IR group, TASs were higher in the PSO-treated groups. Histopathological analysis demonstrated muscle fiber degeneration, interstitial edema, and the infiltration of cells associated with inflammation in the IR group, with analogous results noted in the PSO treatment groups. Immunohistochemical analysis revealed that the expressions of Tumor Necrosis Factor-alpha (TNF-α), Nuclear Factor kappa B (NF-κB), cytochrome C (CYT C), and caspase 3 (CASP3) were elevated in the IR group, while PSO treatment diminished these markers and attenuated inflammation and apoptosis (p < 0.05). The findings demonstrate that PSO has a dose-dependent impact on IR injury. Discussion: This research indicates that PSO has significant protective benefits against IR injury in the lower extremities. PSO mitigated tissue damage and maintained mitochondrial integrity by addressing oxidative stress, inflammation, and apoptotic pathways. Particularly, high-dose PSO yielded more substantial enhancements in these processes and exhibited outcomes most comparable to the control group in biochemical, histological, and immunohistochemical investigations. These findings underscore the potential of PSO as an efficacious natural treatment agent for IR injury. Nevertheless, additional research is required to articulate this definitively.
Collapse
Affiliation(s)
- Ümmü Gülşen Bozok
- Department of Physiology, Faculty of Medicine, Ankara Medipol University, Ankara 06230, Turkey;
| | - Aydan İremnur Ergörün
- Department of Anesthesiology and Reamination, Faculty of Medicine, Gazi University, Ankara 06510, Turkey;
| | - Ayşegül Küçük
- Department of Physiology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya 43020, Turkey;
| | - Zeynep Yığman
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara 06500, Turkey;
- Neuroscience and Neurotechnology Center of Excellence, NÖROM, Gazi University, Ankara 06560, Turkey
| | - Ali Doğan Dursun
- Department of Physiology, Faculty of Medicine, Atılım University, Ankara 06830, Turkey;
- Vocational School of Health Services, Atilim University, Cankaya, Ankara 06805, Turkey
- Home Care Services, Medicana International Ankara Hospital, Cankaya, Ankara 06520, Turkey
| | - Mustafa Arslan
- Department of Anesthesiology and Reamination, Faculty of Medicine, Gazi University, Ankara 06510, Turkey;
- Application and Research Centre for Life Sciences, Gazi University, Ankara 06830, Turkey
- Centre for Laboratory Animal Breeding and Experimental Research (GÜDAM), Gazi University, Ankara 06560, Turkey
| |
Collapse
|
7
|
Batiste M, Joy B, Yee CK, Cho L, Christensen A, Abed I, Nguyen K, Yanumula A, Chang H, Cho ED, Wang W, Chou E, Chang EH, Shyu YL, Abram A, Alcaide J, Zhou J, Gillespie B, Senderovich M, Cusick GA, Le AV, Hoang F, Shi Y, Mohamed E, Cusick JK. RELT Is Upregulated in Breast Cancer and Induces Death in Breast Cancer Cells. Biomedicines 2024; 12:2667. [PMID: 39767574 PMCID: PMC11727564 DOI: 10.3390/biomedicines12122667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Receptor Expressed in Lymphoid Tissues (RELT) is a TNFRSF member that has two paralogs, RELL1 and RELL2; the three proteins are collectively referred to as RELT family members (RELTfms). METHODS We sought to evaluate RELT expression in cancerous cells by using real-time PCR, western blotting, flow cytometry, and immunohistochemistry (IHC). The mechanism of RELT-induced cell death was assessed by western blotting, flow cytometry, luciferase assays, and morphology staining. RELT localization was detected through immunofluorescence and western blotting, and co-immunoprecipitation was used to test whether a mutated RELT interacts with the OXSR1 kinase. RESULTS RELT and RELL1 protein expression was significantly elevated in cell lines representing breast and lung cancer, whereas RELL2 protein expression was relatively consistent across different cell lines. The surface expression of RELT was highest in monocytes. IHC staining revealed increased RELT expression in malignant breast cancer biopsies compared to patient-matched benign tissue. RELTfm overexpression induced death in MDA-MB-231 (231) breast cancer cells, accompanied by increased phosphatidylserine externalization and Caspase-3/7 activation. The co-transfection of plasmids predicted to block the phosphorylation of RELT by the OXSR1 kinase did not abrogate RELT-induced apoptosis, indicating that the activation of p38 by RELT through the OXSR1 kinase is not required for RELT-induced cell death. Interestingly, nuclear localization of RELT was detected in 231 and HEK-293 cells. CONCLUSIONS These results demonstrate that RELT induces death in breast cancer cells through an apoptotic pathway that does not require OXSR1 phosphorylation and that RELT possesses the ability to translocate to the nucleus, a novel finding that warrants further investigation.
Collapse
Affiliation(s)
- Maryann Batiste
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Bethany Joy
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Cara K. Yee
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Luke Cho
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Ashley Christensen
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Ihab Abed
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Kailey Nguyen
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Anusri Yanumula
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Hannah Chang
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Evan D. Cho
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Wenjia Wang
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Emily Chou
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Esther H. Chang
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Yennie L. Shyu
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Alyssa Abram
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Jessa Alcaide
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - James Zhou
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Brittany Gillespie
- Masters of Pharmaceutical Sciences Department, College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
| | - Michelle Senderovich
- Masters of Pharmaceutical Sciences Department, College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
| | - Gianne Almeida Cusick
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Ai-Vy Le
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Frank Hoang
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Yihui Shi
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Eslam Mohamed
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
- Masters of Pharmaceutical Sciences Department, College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
| | - John K. Cusick
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| |
Collapse
|
8
|
Wong PY, Chan CYK, Xue HDG, Goh CC, Cheu JWS, Tse APW, Zhang MS, Zhang Y, Wong CCL. Cell cycle inhibitors activate the hypoxia-induced DDX41/STING pathway to mediate antitumor immune response in liver cancer. JCI Insight 2024; 9:e170532. [PMID: 39388278 PMCID: PMC11601891 DOI: 10.1172/jci.insight.170532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
Cell cycle inhibitors have a long history as cancer treatment. Here, we report that these inhibitors combated cancer partially via the stimulator of IFN genes (STING) signaling pathway. We demonstrated that paclitaxel (microtubule stabilizer), palbociclib (cyclin-dependent kinase 4/6 inhibitor), and AZD1152 and GSK1070916 (aurora kinase B inhibitors) have anticancer functions beyond arresting the cell cycle. They consistently caused cytosolic DNA accumulation and DNA damage, which inadvertently triggered the cytosolic DNA sensor DEAD-box helicase 41 (DDX41) and activated STING to secrete pro-inflammatory senescence-associated secretory phenotype factors (SASPs). Interestingly, we found that DDX41 was a transcriptional target of HIF. Hypoxia induced expression of DDX41 through HIF-1, making hypoxic hepatocellular carcinoma (HCC) cells more sensitive to the antimitotic agents in STING activation and SASP production. The SASPs triggered immune cell infiltration in tumors for cancer clearance. The treatment with cell cycle inhibitors, especially paclitaxel, extended survival by perturbing mouse HCC growth when used in combination with anti-PD-1. We observed a trend that paclitaxel suppressed Sting wild-type HCC more effectively than Sting-KO HCC, suggesting that STING might contribute to the antitumor effects of paclitaxel. Our study revealed the immune-mediated tumor-suppressing properties of cell cycle inhibitors and suggested combined treatment with immunotherapy as a potential therapeutic approach.
Collapse
Affiliation(s)
- Po Yee Wong
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Cerise Yuen Ki Chan
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Helen Do Gai Xue
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Chi Ching Goh
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Jacinth Wing Sum Cheu
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Aki Pui Wah Tse
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Misty Shuo Zhang
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yan Zhang
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Carmen Chak Lui Wong
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
9
|
Rojas M, Hernández H, Smok C, Pellón M, Sandoval C, Salvatierra R, Birditt K, Castro R. Effect of hypoxia in the post-hatching development of the salmon (Salmo salar L.) spinal cord. FRONTIERS IN MARINE SCIENCE 2024; 11. [DOI: 10.3389/fmars.2024.1451254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
IntroductionHypoxia has a teratogenic effect on the fish during embryonic development. Nevertheless, the effects on the larval stage are not yet known. Therefore, the aim of this study was to assess the effects of hypoxia on the number of neurons and their apoptotic rate in the spinal cord of Salmo salar alevins after hatching.MethodsWe used a total of 400 alevins, establishing both hypoxia and control (normoxia) groups (n = 8), considering post-hatching days 1, 3, 5, and 7, each with 50 individuals. Transversal sections of 50 μm thickness were cut from the alevin body. We performed cresyl-violet staining and counted the spinal cord neurons. Also, immunohistochemistry for HIF-1α and caspase-3 were used. For statistical analysis ANOVA one-way and Tukey's Test were used.ResultsHIF-1α was expressed in spinal neurons in both the hypoxic and normoxic groups, with the former being significantly higher. Both the hypoxic and normoxic groups evidenced the process of neuronal apoptosis, with the hypoxic groups demonstrating a higher significance. The number of neurons in the spinal cord was significantly lower in the hypoxic group.DiscussionWe found that when oxygen levels in the aquatic environment were low in Salmo salar farming alevins post-hatch, the number of spinal neurons dropped by half. These results contribute to increasing our knowledge of the biological development of salmon, in particular the genesis of the spinal cord, and the effects of hypoxic conditions on the development of this structure of the nervous system.
Collapse
|
10
|
Zhang W, Zhu C, Liao Y, Zhou M, Xu W, Zou Z. Caspase-8 in inflammatory diseases: a potential therapeutic target. Cell Mol Biol Lett 2024; 29:130. [PMID: 39379817 PMCID: PMC11463096 DOI: 10.1186/s11658-024-00646-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Caspase-8, a renowned cysteine-aspartic protease within its enzyme family, initially garnered attention for its regulatory role in extrinsic apoptosis. With advancing research, a growing body of evidence has substantiated its involvement in other cell death processes, such as pyroptosis and necroptosis, as well as its modulatory effects on inflammasomes and proinflammatory cytokines. PANoptosis, an emerging concept of cell death, encompasses pyroptosis, apoptosis, and necroptosis, providing insight into the often overlapping cellular mortality observed during disease progression. The activation or deficiency of caspase-8 enzymatic activity is closely linked to PANoptosis, positioning caspase-8 as a key regulator of cell survival or death across various physiological and pathological processes. Aberrant expression of caspase-8 is closely associated with the development and progression of a range of inflammatory diseases, including immune system disorders, neurodegenerative diseases (NDDs), sepsis, and cancer. This paper delves into the regulatory role and impact of caspase-8 in these conditions, aiming to elucidate potential therapeutic strategies for the future intervention.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yan Liao
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Miao Zhou
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, 210009, Jiangsu, China.
| | - Wenyun Xu
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
11
|
Kasana S, Kumar S, Patel P, Kurmi BD, Jain S, Sahu S, Vaidya A. Caspase inhibitors: a review on recently patented compounds (2016-2023). Expert Opin Ther Pat 2024; 34:1047-1072. [PMID: 39206873 DOI: 10.1080/13543776.2024.2397732] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Caspases are a family of protease enzymes that play a crucial role in apoptosis. Dysregulation of caspase activity has been implicated in various pathological conditions, making caspases an important focus of research in understanding cell death mechanisms and developing therapeutic strategies for diseases associated with abnormal apoptosis. AREAS COVERED It is a comprehensive review of caspase inhibitors that have been comprising recently granted patents from 2016 to 2023. It includes peptide and non-peptide caspase inhibitors with their application for different diseases. EXPERT OPINION This review categorizes and analyses recently patented caspase inhibitors on various diseases. Diseases linked to caspase dysregulation, including neurodegenerative disorders, and autoimmune conditions, are highlighted to accentuate the therapeutic relevance of the patented caspase inhibitors. This paper serves as a valuable resource for researchers, clinicians, and pharmaceutical developers seeking an up-to-date understanding of recently patented caspase inhibitors. The integration of recent patented compounds, structural insights, and mechanistic details provides a holistic view of the progress in caspase inhibitor research and its potential impact on addressing various diseases.
Collapse
Affiliation(s)
- Shivani Kasana
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, India
| | - Shivam Kumar
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Shweta Jain
- Sir Madanlal Institute of Pharmacy, Etawah, India
| | - Sanjeev Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ankur Vaidya
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Etawah, India
| |
Collapse
|
12
|
Hedayati N, Safaei Naeini M, Ale Sahebfosoul MM, Mafi A, Eshaghi Milasi Y, Rizaneh A, Nabavi N, Farahani N, Alimohammadi M, Ghezelbash B. MicroRNA dysregulation and its impact on apoptosis-related signaling pathways in myelodysplastic syndrome. Pathol Res Pract 2024; 261:155478. [PMID: 39079383 DOI: 10.1016/j.prp.2024.155478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/18/2024]
Abstract
Myelodysplastic syndrome (MDS) holds a unique position among blood cancers, encompassing a spectrum of blood-related disorders marked by impaired maturation of blood cell precursors, bone marrow abnormalities, genetic instability, and a higher likelihood of progressing to acute myeloid leukemia. MicroRNAs (miRNAs), short non-coding RNA molecules typically 18-24 nucleotides in length, are known to regulate gene expression and contribute to various biological processes, including cellular differentiation and programmed cell death. Additionally, miRNAs are involved in many aspects of cancer development, influencing cell growth, transformation, and apoptosis. In this study, we explore the impact of microRNAs on cellular apoptosis in MDS.
Collapse
Affiliation(s)
- Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mobina Safaei Naeini
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anahita Rizaneh
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Behrooz Ghezelbash
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
13
|
Li J, Jiang Q, Jiang J, Jiang R. Mode of cell death in the penile cavernous tissue of type 1 diabetes mellitus rats. J Sex Med 2024; 21:652-662. [PMID: 38972660 DOI: 10.1093/jsxmed/qdae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Diabetes mellitus commonly causes endothelial cell and smooth muscle cell death in penile cavernous tissue. AIM The study sought to study the mode of cell death in the penile cavernous tissue in type 1 diabetic rats. METHODS A total of 36 Sprague Dawley rats 10 weeks of age were randomly divided into 2 groups: a normoglycemic group and type 1 diabetic group (intraperitoneal injection of Streptozotocin (STZ), 60 mg/kg). We randomly selected 6 rats from each group for tests at the end of 11, 14, and 18 weeks of age, respectively. All rats were able to eat and drink freely. The ratio of maximum intracavernous pressure to mean arterial pressure, concentration of serum testosterone, level of nitric oxide in the penile cavernosum, and expression of active caspase-1 (pyroptosis) and active caspase-3 (apoptosis) were determined. OUTCOMES At the end of weeks 4 and 8 of type 1 diabetes, the proportions of endothelial cells and smooth muscle cells undergoing apoptosis and pyroptosis in penile cavernous tissue are different. RESULTS The ratio of maximum intracavernous pressure to mean arterial pressure and nitric oxide levels were significantly lower in the 4- and 8-week diabetic groups than in the normoglycemic group (P < .01). Penile endothelial cell pyroptosis (5.67 ± 0.81%), smooth muscle cell apoptosis (23.72 ± 0.48%), total cell pyroptosis (9.67 ± 0.73%), and total apoptosis (10.52 ± 1.45%) were significantly greater in the 4-week diabetic group than in the normoglycemic group (P < .01). The proportion of endothelial cell pyroptosis (24.4 ± 3.69%), endothelial cell apoptosis (22.13 ± 2.43%), total cell pyroptosis (14.75 ± 0.93%), and total apoptosis (14.82 ± 1.08%) in the penile tissues of the 8-week diabetic group were significantly greater than those in the normoglycemic group (P < .01).The 8-week survival proportions of diabetic endothelial cells (38.86 ± 8.85%) and smooth muscle cells (44.46 ± 2.94%) was significantly lower than the 4-week survival proportions of endothelial cells (93.17 ± 8.07%) and smooth muscle cells (75.12 ± 4.76%) (P < .05). CLINICAL TRANSLATION Inhibition of cell death by different methods at different stages may be the key to the treatment of type 1 diabetes-induced erectile dysfunction. STRENGTHS AND LIMITATIONS The effect of type 1 diabetes on other types of cell death in penile cavernous tissue needs further study. CONCLUSION The mode of death of endothelial cells in the cavernous tissue of the penis in the early stage in diabetic rats is dominated by pyroptosis, and the death of smooth muscle cells is dominated by apoptosis. Endothelial cell and smooth muscle cell death are not consistent at different stages of diabetes progression.
Collapse
Affiliation(s)
- Jing Li
- Department of Urology, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qilan Jiang
- Department of Clinical Nutrition, Affiliated Hospital, Southwest medical University, Luzhou, Sichuan 646000, China
| | - Jun Jiang
- Department of Thyroid Surgery, Affiliated Hospital, Southwest medical University, Taiping Road, Luzhou, Sichuan 646000, China
| | - Rui Jiang
- Department of Urology, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
14
|
Li Z, Jia B, Guo Z, Zhang K, Zhao D, Li Z, Fu Q. Therapeutic potential of salidroside in type I diabetic erectile dysfunction: Attenuation of oxidative stress and apoptosis via the Nrf2/HO-1 pathway. PLoS One 2024; 19:e0306926. [PMID: 38990890 PMCID: PMC11238988 DOI: 10.1371/journal.pone.0306926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024] Open
Abstract
The primary objective of this work was to delve into the potential therapeutic advantages and dissect the molecular mechanisms of salidroside in enhancing erectile function in rats afflicted with diabetic microvascular erectile dysfunction (DMED), addressing both the whole-animal and cellular dimensions.We established a DMED model in Sprague‒Dawley (SD) rats and conducted in vivo experiments. The DMED rats were administered varying doses of salidroside, the effects of which on DMED were compared. Erectile function was evaluated by applying electrical stimulation to the cavernous nerves and measuring intracavernous pressure in real time. The penile tissue underwent histological examination and Western blotting. Hydrogen peroxide (H2O2) was employed in the in vitro trial to induce an oxidative stress for the purpose of identifying alterations in cell viability. The CCK-8 assay was used to measure the viability of corpus cavernous smooth muscle cells (CCSMCs) treated with vs. without salidroside. Flow cytometry was utilized to detect alterations in intracellular reactive oxygen species (ROS). Apoptosis was assessed through Western blotting and TdT-mediated dUTP nick-end labelling (TUNEL). Animal and cellular experiments indicate that the Nrf2/HO-1 signalling pathway may be upregulated by salidroside, leading to the improvement of erectile function in diabetic male rats by alleviating oxidative stress and reducing apoptosis in corpus cavernosum tissue.
Collapse
Affiliation(s)
- Zhenghao Li
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Bin Jia
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhongkai Guo
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Keqin Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Danfeng Zhao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ziheng Li
- Second Department of Surgery, Shandong Rongjun General Hospital, Jinan, Shandong, China
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Key Laboratory of Urinary Diseases in Universities of Shandong (Shandong First Medical University), Jinan, Shandong, China
- Engineering Laboratory of Urinary Organ and Functional Reconstruction of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
15
|
Jan K, Hassan N, James A, Hussain I, Rashid SM. Exploring molecular targets in cancer: Unveiling the anticancer potential of Paeoniflorin through a comprehensive analysis of diverse signaling pathways and recent advances. J Biol Methods 2024; 11:e99010014. [PMID: 39323487 PMCID: PMC11423941 DOI: 10.14440/jbm.2024.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 09/27/2024] Open
Abstract
Tumors have posed significant threats to human health for over 250 years, emerging as the foremost cause of death. While chemotherapeutic drugs are effective in treating tumors, their side effects can sometimes be challenging to manage during therapy. Nonetheless, there is growing interest in exploring natural compounds as alternatives, which potentially achieve therapeutic outcomes comparable to conventional chemotherapeutics with fewer adverse effects. Paeoniflorin (PF), a monoterpene glycoside derived from the root of Paeonia lactiflora, has garnered significant attention lately due to its promising anti-cancer properties. This review offers an updated outline of the molecular mechanisms underlying PF's anti-tumor function, with a focus on its modulation of various signaling pathways. PF exerts its anti-tumor activity by regulating crucial cellular processes including apoptosis, angiogenesis, proliferation, and metastasis. We explored the multifaceted impact of PF while modulating through signaling pathways, encompassing nuclear factor kappa B, NOTCH, caspase cascade, transforming growth factor-β, NEDD4, P53/14-3-3, STAT 3, MAPK, MMP-9, and SKP2 signaling pathways, highlighting its versatility in targeting diverse malignancies. Furthermore, we discuss future research directions aimed at exploring innovative and targeted cancer therapies facilitated by PF.
Collapse
Affiliation(s)
- Kounser Jan
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, Srinagar, Jammu and Kashmir, 190006, India
| | - Neelofar Hassan
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, Srinagar, Jammu and Kashmir, 190006, India
| | - Antonisamy James
- Departments of Medicinal and Biological Chemistry, The University of Toledo, Toledo, Ohio, 43614, United States of America
| | - Ishraq Hussain
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, Srinagar, Jammu and Kashmir, 190006, India
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, Srinagar, Jammu and Kashmir, 190006, India
- Departments of Medicinal and Biological Chemistry, The University of Toledo, Toledo, Ohio, 43614, United States of America
| |
Collapse
|
16
|
Noh MR, Padanilam BJ. Cell death induced by acute renal injury: a perspective on the contributions of accidental and programmed cell death. Am J Physiol Renal Physiol 2024; 327:F4-F20. [PMID: 38660714 PMCID: PMC11390133 DOI: 10.1152/ajprenal.00275.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
The involvement of cell death in acute kidney injury (AKI) is linked to multiple factors including energy depletion, electrolyte imbalance, reactive oxygen species, inflammation, mitochondrial dysfunction, and activation of several cell death pathway components. Since our review in 2003, discussing the relative contributions of apoptosis and necrosis, several other forms of cell death have been identified and are shown to contribute to AKI. Currently, these various forms of cell death can be fundamentally divided into accidental cell death and regulated or programmed cell death based on functional aspects. Several death initiator and effector molecules switch molecules that may act as signaling components triggering either death or protective mechanisms or alternate cell death pathways have been identified as part of the machinery. Intriguingly, several of these cell death pathways share components and signaling pathways suggesting complementary or compensatory functions. Thus, defining the cross talk between distinct cell death pathways and identifying the unique molecular effectors for each type of cell death may be required to develop novel strategies to prevent cell death. Furthermore, depending on the multiple forms of cell death simultaneously induced in different AKI settings, strategies for combination therapies that block multiple cell death pathways need to be developed to completely prevent injury, cell death, and renal function. This review highlights the various cell death pathways, cross talk, and interactions between different cell death modalities in AKI.
Collapse
Affiliation(s)
- Mi Ra Noh
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Babu J Padanilam
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
17
|
Delibaş B, Kaplan AA, Marangoz AH, Eltahir MI, Altun G, Kaplan S. The effect of dietary sesame oil and ginger oil as antioxidants in the adult rat dorsal root ganglia after peripheral nerve crush injury. Int J Neurosci 2024; 134:714-724. [PMID: 36342428 DOI: 10.1080/00207454.2022.2145475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
AIM The purpose of this study was to investigate the effect of dietary sesame oil and ginger oil supplements on the dorsal root ganglia following a sciatic nerve crush model in male Wistar albino rats. MATERIALS AND METHODS Crush injury models have been done by means of graded forceps (50 Newton). The animals were given a daily sesame oil (4 ml/kg/day) and ginger oil (400 mg/kg/day) via oral gavage for a period of 28 days. Dorsal root ganglia from the L5 levels were harvested. Processing of tissues was done for electron microscopy and light microscopy. Immunohistochemical staining with active caspase-3 antibody and qualitative ultrastructural analyses of tissues were made by a light and a transmission electron microscope, respectively. RESULTS The results showed that crush injury leads to remarkable ultrastructural changes in sensory neurons, such as swollen mitochondria, disruption of cristae structure, glial cell proliferation and, consequently, phagocytosis of the damaged neuron. These ultrastructural changes were less evident in the treated groups, and both natural compounds reduced the expression of activated caspase-3, which may also affect ultrastructural changes. CONCLUSION The application of the natural products sesame oil and ginger oil may represent a supportive approach to the protection of sensory neurons against the destructive effects of peripheral nerve crush injury.
Collapse
Affiliation(s)
- Burcu Delibaş
- Departments of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Arife Ahsen Kaplan
- Department of Histology and Embryology, Faculty of Medicine, İstanbul Medipol University, İstanbul, Turkey
| | | | - Mohammed Issa Eltahir
- Departments of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
- Faculty of Medicine, National University, Khartoum, Sudan
| | - Gamze Altun
- Departments of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Suleyman Kaplan
- Departments of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
- Nelson Mandela African Institute of Science and Technology, Arusha, Tanzania
| |
Collapse
|
18
|
Truong VL, Bae YJ, Bang JH, Jeong WS. Combination of red ginseng and velvet antler extracts prevents skin damage by enhancing the antioxidant defense system and inhibiting MAPK/AP-1/NF-κB and caspase signaling pathways in UVB-irradiated HaCaT keratinocytes and SKH-1 hairless mice. J Ginseng Res 2024; 48:323-332. [PMID: 38707646 PMCID: PMC11068995 DOI: 10.1016/j.jgr.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/29/2023] [Accepted: 01/11/2024] [Indexed: 05/07/2024] Open
Abstract
Background Studies have reported that the combination of two or more therapeutic compounds at certain ratios has more noticeable pharmaceutical properties than single compounds and requires reduced dosage of each agent. Red ginseng and velvet antler have been extensively used in boosting immunity and physical strength and preventing diseases. Thus, this study was conducted to elucidate the skin-protective potentials of red ginseng extract (RGE) and velvet antler extract (VAE) alone or in combination on ultraviolet (UVB)-irradiated human keratinocytes and SKH-1 hairless mice. Methods HaCaT cells were preincubated with RGE/VAE alone or in combination for 2 h before UVB (30 mJ/cm2) irradiation. SKH-1 mice were orally given RGE/VAE alone or in combination for 15 days before exposure to single dose of UVB (600 mJ/cm2). Treated cells and treated skin tissues were collected and subjected to subsequent experiments. Results RGE/VAE pretreatment alone or in combination significantly prevented UVB-induced cell death, apoptosis, reactive oxygen species production, and DNA damage in keratinocytes and SKH-1 mouse skins by downregulating mitogen-activated protein kinases/activator protein 1/nuclear factor kappa B and caspase signaling pathways. These extracts also strengthened the antioxidant defense systems and skin barriers in UVB-irradiated HaCaT cells and SKH-1 mouse skins. Furthermore, RGE/VAE co-administration appeared to be more effective in preventing UVB-caused skin injury than these extracts used alone. Conclusion Overall, these findings suggest that the consumption of RGE/VAE, especially in combination, offers a protective ability against UVB-caused skin injury by preventing inflammation and apoptosis and enhancing antioxidant capacity.
Collapse
Affiliation(s)
| | | | | | - Woo-Sik Jeong
- Food and Bio-industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
19
|
Delibaş B, Kaplan S. The histomorphological and stereological assessment of rat dorsal root ganglion tissues after various types of sciatic nerve injury. Histochem Cell Biol 2024; 161:145-163. [PMID: 37855874 DOI: 10.1007/s00418-023-02242-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 10/20/2023]
Abstract
Peripheral nerve injuries lead to significant changes in the dorsal root ganglia, where the cell bodies of the damaged axons are located. The sensory neurons and the surrounding satellite cells rearrange the composition of the intracellular organelles to enhance their plasticity for adaptation to changing conditions and response to injury. Meanwhile, satellite cells acquire phagocytic properties and work with macrophages to eliminate degenerated neurons. These structural and functional changes are not identical in all injury types. Understanding the cellular response, which varies according to the type of injury involved, is essential in determining the optimal method of treatment. In this research, we investigated the numerical and morphological changes in primary sensory neurons and satellite cells in the dorsal root ganglion 30 days following chronic compression, crush, and transection injuries using stereology, high-resolution light microscopy, immunohistochemistry, and behavioral analysis techniques. Electron microscopic methods were employed to evaluate fine structural alterations in cells. Stereological evaluations revealed no statistically significant difference in terms of mean sensory neuron numbers (p > 0.05), although a significant decrease was observed in sensory neuron volumes in the transection and crush injury groups (p < 0.05). Active caspase-3 immunopositivity increased in the injury groups compared to the sham group (p < 0.05). While crush injury led to desensitization, chronic compression injury caused thermal hyperalgesia. Macrophage infiltrations were observed in all injury types. Electron microscopic results revealed that the chromatolysis response was triggered in the sensory neuron bodies from the transection injury group. An increase in organelle density was observed in the perikaryon of sensory neurons after crush-type injury. This indicates the presence of a more active regeneration process in crush-type injury than in other types. The effect of chronic compression injury is more devastating than that of crush-type injury, and the edema caused by compression significantly inhibits the regeneration process.
Collapse
Affiliation(s)
- Burcu Delibaş
- Faculty of Medicine, Department of Histology and Embryology, Recep Tayyip Erdoğan University, Rize, Türkiye
| | - Suleyman Kaplan
- Faculty of Medicine, Department of Histology and Embryology, Ondokuz Mayıs University, Samsun, Türkiye.
| |
Collapse
|
20
|
Zhang P, Zhou C, Jing Q, Gao Y, Yang L, Li Y, Du J, Tong X, Wang Y. Role of APR3 in cancer: apoptosis, autophagy, oxidative stress, and cancer therapy. Apoptosis 2023; 28:1520-1533. [PMID: 37634193 DOI: 10.1007/s10495-023-01882-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2023] [Indexed: 08/29/2023]
Abstract
APR3 (Apoptosis-related protein 3) is a gene that has recently been identified to be associated with apoptosis. The gene is located on human chromosome 2p22.3 and contains both transmembrane and EGF (epidermal growth factor)-like domains. Additionally, it has structural sites, including AP1, SP1, and MEF2D, that indicate NFAT (nuclear factor of activated T cells) and NF-κB (nuclear factor kappa-B) may be transcription factors for this gene. Functionally, APR3 participates in apoptosis due to the induction of mitochondrial damage to release mitochondrial cytochrome C. Concurrently, APR3 affects the cell cycle by altering the expression of Cyclin D1, which, in turn, affects the incidence and growth of malignancies and promotes cell differentiation. Previous reports indicate that APR3 is located in lysosomal membranes, where it contributes to lysosomal activity and participates in autophagy. While further research is required to determine the precise role and molecular mechanisms of APR3, earlier studies have laid the groundwork for APR3 research. There is growing evidence supporting the significance of APR3 in oncology. Therefore, this review aims to examine the current state of knowledge on the role of the newly discovered APR3 in tumorigenesis and to generate fresh insights and suggestions for future research.
Collapse
Affiliation(s)
- Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, Zhejiang, China
- School of Pharmacy, Hangzhou Medical College, 310000, Hangzhou, Zhejiang, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Yan Gao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
- School of Pharmacy, Hangzhou Medical College, 310000, Hangzhou, Zhejiang, China
| | - Lei Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Yanchun Li
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, Zhejiang, China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China.
| | - Xiangmin Tong
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, Zhejiang, China.
| | - Ying Wang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, Zhejiang, China.
- Department of Clinical Research Center, Luqiao Second People's Hospital, 317200, Taizhou, Zhejiang, China.
| |
Collapse
|
21
|
Kuzmich AS, Romanenko LA, Kokoulin MS. Cell-cycle arrest and mitochondria-dependent apoptosis induction in T-47D cells by the capsular polysaccharide from the marine bacterium Kangiella japonica KMM 3897. Carbohydr Polym 2023; 320:121237. [PMID: 37659798 DOI: 10.1016/j.carbpol.2023.121237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/29/2023] [Accepted: 07/25/2023] [Indexed: 09/04/2023]
Abstract
In this study, we reported the in vitro mechanisms of antiproliferative activity of capsular polysaccharide derived from marine Gram-negative bacteria Kangiella japonica KMM 3897 in human breast сarcinoma T-47D cells. Flow cytometric and Western blot analysis revealed that capsular polysaccharide effectively suppressed T-47D cell proliferation by inducing G0/G1 phase arrest and mitochondrial-dependent apoptosis. Moreover, polysaccharide influenced the ERK1/2 and p38 signaling pathways. The results of this study would enrich our understanding of the molecular mechanism of the anti-cancer activity of sulfated polysaccharides from marine Gram-negative bacteria.
Collapse
Affiliation(s)
- Alexandra S Kuzmich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Lyudmila A Romanenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Maxim S Kokoulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 let Vladivostoku, Vladivostok 690022, Russia.
| |
Collapse
|
22
|
Hu D, Yamada H, Yoshimura K, Ohta T, Tsuchiya K, Inoue Y, Funai K, Suda T, Iwashita Y, Watanabe T, Ogawa H, Kurono N, Shinmura K, Sugimura H. High Expression of Fas-Associated Factor 1 Indicates a Poor Prognosis in Non-Small-Cell Lung Cancer. Curr Oncol 2023; 30:9484-9500. [PMID: 37999107 PMCID: PMC10670600 DOI: 10.3390/curroncol30110687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Fas-associated factor 1 (FAF1) is a death-promoting protein identified as an interaction partner of the death receptor Fas. The downregulation and mutation of FAF1 have been reported in a variety of human tumors, but there have been few studies on lung cancer. Here, we investigated the prognostic significance of FAF1 expression in non-small-cell lung cancer (NSCLC), and whether aberrant FAF1 expression may be involved in the pathogenesis and prognosis of NSCLC. FAF1 expression was examined in NSCLC specimens as well as human lung cancer cell lines. In addition, changes in cell viability and apoptosis upon regulating FAF1 expression were investigated in lung cancer cell lines. As a result, high FAF1 expression was significantly associated with a poor prognosis in NSCLC. In lung cancer cell lines, FAF1 downregulation hindered cell viability and tended to promote early apoptosis. In conclusion, this is the first study of the clinical significance of FAF1 in NSCLC, showing that FAF1 overexpression is associated with a poor prognosis in NSCLC and that FAF1 acts as a dangerous factor rather than an apoptosis promoter in NSCLC.
Collapse
Affiliation(s)
- De Hu
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan; (D.H.); (K.Y.); (T.O.); (K.T.); (Y.I.); (Y.I.); (K.S.)
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan; (D.H.); (K.Y.); (T.O.); (K.T.); (Y.I.); (Y.I.); (K.S.)
| | - Katsuhiro Yoshimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan; (D.H.); (K.Y.); (T.O.); (K.T.); (Y.I.); (Y.I.); (K.S.)
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan;
| | - Tsutomu Ohta
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan; (D.H.); (K.Y.); (T.O.); (K.T.); (Y.I.); (Y.I.); (K.S.)
- Department of Physical Therapy, Faculty of Health and Medical Sciences, Tokoha University, Hamamatsu 431-2102, Shizuoka, Japan
| | - Kazuo Tsuchiya
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan; (D.H.); (K.Y.); (T.O.); (K.T.); (Y.I.); (Y.I.); (K.S.)
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan;
| | - Yusuke Inoue
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan; (D.H.); (K.Y.); (T.O.); (K.T.); (Y.I.); (Y.I.); (K.S.)
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan;
| | - Kazuhito Funai
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan;
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan;
| | - Yuji Iwashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan; (D.H.); (K.Y.); (T.O.); (K.T.); (Y.I.); (Y.I.); (K.S.)
| | - Takuya Watanabe
- Division of Thoracic Surgery, Department of Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu 433-8558, Shizuoka, Japan;
| | - Hiroshi Ogawa
- Department of Pathology, Seirei Mikatahara General Hospital, Hamamatsu 433-8558, Shizuoka, Japan;
| | - Nobuhito Kurono
- Department of Chemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan;
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan; (D.H.); (K.Y.); (T.O.); (K.T.); (Y.I.); (Y.I.); (K.S.)
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan; (D.H.); (K.Y.); (T.O.); (K.T.); (Y.I.); (Y.I.); (K.S.)
- Sasaki Institute, Sasaki Foundation, Tokyo 101-0062, Japan
| |
Collapse
|
23
|
Priya A, Chandel S, Joon A, Ghosh S. Molecular mechanism of Enteroaggregative Escherichia coli induced apoptosis in cultured human intestinal epithelial cells. J Med Microbiol 2023; 72. [PMID: 37846959 DOI: 10.1099/jmm.0.001760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Background. Enteroaggregative Escherichia coli (EAEC) is an evolving etiological agent of acute and persistent diarrhoea worldwide. The previous study from our laboratory has reported the apoptosis-inducing activity of EAEC in human small intestinal and colonic epithelial cell lines. In the present investigation, we have explored the underlying mechanism of EAEC-induced apoptosis in human intestinal epithelial cell lines.Methods. INT-407 and HCT-15 cells were infected with EAEC-T8 and EAEC-pT8 (plasmid cured strain of EAEC-T8) separately. Cells cultured in the absence of bacteria served as a negative control in all the experiments. For the subsequent experiments, the molecular mechanism(s) of epithelial cell aposptosis was measured in EAEC infecting both the cell lines by flow cytometry, real-time PCR and Western blotting.Results and conclusions. EAEC was found to activate the intrinsic/mitochondrial apoptotic pathway in both the cell lines through upregulation of pro-apoptotic Bax and Bak, un-alteration/reduction in the level of anti-apoptotic Bcl-2 and Bcl-XL, decrease in mitochondrial transmembrane potential, accumulation of cytosolic cytochrome c leading to activation of procaspase-9 and procaspase-3, which ultimately resulted in DNA fragmentation and apoptosis. Further, an increased expression of Fas, activation of procaspase-8 and upregulation of pro-apoptotic Bid in the EAEC-infected cells indicated the involvement of extrinsic apoptotic pathway too in this process. Our finding has undoubtedly led to an increased understanding of EAEC pathogenesis, which may be helpful to develop an improved strategy to combat the infection.
Collapse
Affiliation(s)
- Anshu Priya
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Shipra Chandel
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Archana Joon
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Sujata Ghosh
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
24
|
Pitsili E, Rodriguez-Trevino R, Ruiz-Solani N, Demir F, Kastanaki E, Dambire C, de Pedro-Jové R, Vercammen D, Salguero-Linares J, Hall H, Mantz M, Schuler M, Tuominen H, Van Breusegem F, Valls M, Munné-Bosch S, Holdsworth MJ, Huesgen PF, Rodriguez-Villalon A, Coll NS. A phloem-localized Arabidopsis metacaspase (AtMC3) improves drought tolerance. THE NEW PHYTOLOGIST 2023. [PMID: 37320971 DOI: 10.1111/nph.19022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/09/2023] [Indexed: 06/17/2023]
Abstract
Increasing drought phenomena pose a serious threat to agricultural productivity. Although plants have multiple ways to respond to the complexity of drought stress, the underlying mechanisms of stress sensing and signaling remain unclear. The role of the vasculature, in particular the phloem, in facilitating inter-organ communication is critical and poorly understood. Combining genetic, proteomic and physiological approaches, we investigated the role of AtMC3, a phloem-specific member of the metacaspase family, in osmotic stress responses in Arabidopsis thaliana. Analyses of the proteome in plants with altered AtMC3 levels revealed differential abundance of proteins related to osmotic stress pointing into a role of the protein in water-stress-related responses. Overexpression of AtMC3 conferred drought tolerance by enhancing the differentiation of specific vascular tissues and maintaining higher levels of vascular-mediated transportation, while plants lacking the protein showed an impaired response to drought and inability to respond effectively to the hormone abscisic acid. Overall, our data highlight the importance of AtMC3 and vascular plasticity in fine-tuning early drought responses at the whole plant level without affecting growth or yield.
Collapse
Affiliation(s)
- Eugenia Pitsili
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Department of Plant Systems Biology, Department of Plant Biotechnology and Bioinformatics, Flanders Institute for Biotechnology, Ghent University, 9052, Ghent, Belgium
| | - Ricardo Rodriguez-Trevino
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092, Zurich, Switzerland
| | - Nerea Ruiz-Solani
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), Department of Chemistry, University of Cologne, Medical Faculty and University Hospital, Institute of Biochemistry, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Elizabeth Kastanaki
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092, Zurich, Switzerland
| | - Charlene Dambire
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Roger de Pedro-Jové
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Dominique Vercammen
- Department of Plant Systems Biology, Department of Plant Biotechnology and Bioinformatics, Flanders Institute for Biotechnology, Ghent University, 9052, Ghent, Belgium
| | - Jose Salguero-Linares
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Hardy Hall
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 901 87, Umeå, Sweden
| | - Melissa Mantz
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), Department of Chemistry, University of Cologne, Medical Faculty and University Hospital, Institute of Biochemistry, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Martin Schuler
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092, Zurich, Switzerland
| | - Hannele Tuominen
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 901 87, Umeå, Sweden
| | - Frank Van Breusegem
- Department of Plant Systems Biology, Department of Plant Biotechnology and Bioinformatics, Flanders Institute for Biotechnology, Ghent University, 9052, Ghent, Belgium
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Department of Genetics, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
- Institute of Research in Biodiversity (IRBio-UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | | | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), Department of Chemistry, University of Cologne, Medical Faculty and University Hospital, Institute of Biochemistry, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Antia Rodriguez-Villalon
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092, Zurich, Switzerland
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), 08001, Barcelona, Spain
| |
Collapse
|
25
|
Landau D, Shukri N, Arazi E, Tobar A, Segev Y. Beneficiary Effects of Colchicine on Inflammation and Fibrosis in a Mouse Model of Kidney Injury. Nephron Clin Pract 2023; 147:693-700. [PMID: 37263257 DOI: 10.1159/000531313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/18/2023] [Indexed: 06/03/2023] Open
Abstract
INTRODUCTION Low-grade inflammation is seen in many chronic illnesses, including chronic kidney disease (CKD). We have recently reported on beneficiary effects of anti-inflammatory treatment in the interleukin (IL-) 1 pathway on anemia as well as CKD extent in a mouse model. Colchicine has been shown to have beneficiary effects in several inflammatory conditions through various mechanisms, including inhibition of tubulin polymerization as well as caspase-1-mediated IL-1 activation. METHODS Kidney injury (KI) was induced by administering an adenine diet to 8-week-old C57BL/6J mice treated with colchicine (Col) (30 µg/kg) or saline injections for 3 weeks, generating 4 groups: C, Ccol, KI, and KIcol. RESULTS KI animals had an increase in inflammation indices in the blood (neutrophils), liver, and kidneys (uromodulin, IL-6, pSTAT3). Increased kidney tubulin polymerization and caspase-1 in KI, as well as kidney Mid88 and IRAK4 (downstream of IL-1), were inhibited in KIcol. Kidney macrophage and polymorphonuclear infiltration (positive for F4/80 and MPO, respectively), the percentage of fibrotic area, and TGFβ mRNA levels were lower in KIcol versus KI. CONCLUSIONS Colchicine inhibited tubulin polymerization and caspase-1 activation and attenuated kidney inflammation and fibrosis in a mouse model of adenine-induced KI. Given its reported safety profile for long-term anti-inflammatory therapy without increasing infection tendency, it may serve as novel therapeutic approach in CKD.
Collapse
Affiliation(s)
- Daniel Landau
- Institute of Nephrology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nehoray Shukri
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Eden Arazi
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ana Tobar
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Pathology, Rabin Medical Center, Petach Tikva, Israel
| | - Yael Segev
- Institute of Pathology, Rabin Medical Center, Petach Tikva, Israel
| |
Collapse
|
26
|
Park HJ, Kim Y, Lee KW, Gwon M, Yoon HC, Yoo TH. Coupling hCG-based protease sensors with a commercial pregnancy test strip for simple analyses of protease activities. Biosens Bioelectron 2023; 235:115364. [PMID: 37207580 DOI: 10.1016/j.bios.2023.115364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/03/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023]
Abstract
Proteases play an essential role in many cellular processes, and consequently, abnormalities in their activities are related to various diseases. Methods have been developed to measure the activity of these enzymes, but most involve sophisticated instruments or complicated procedures, which hampers the development of a point-of-care test (POCT). Here, we propose a strategy for developing simple and sensitive methods to analyze protease activity using commercial pregnancy test strips that detect human chorionic gonadotropin (hCG). hCG was engineered to have site-specific conjugated biotin and a peptide sequence, which can be cleaved by a target protease, between hCG and biotin. hCG protein was immobilized on streptavidin-coated beads, resulting in a protease sensor. The hCG-immobilized beads were too large to flow through the membrane of the hCG test strip and yielded only one band in the control line. When the peptide linker was hydrolyzed by the target protease, hCG was released from the beads, and the signal appeared in both the control and test lines. Three protease sensors for matrix metalloproteinase-2, caspase-3, and thrombin were constructed by replacing the protease-cleavable peptide linker. The combination of the protease sensors and a commercial pregnancy strip enabled the specific detection of each protease in the picomolar range, with a 30-min incubation of the hCG-immobilized beads and samples. The modular design of the protease sensor and simple assay procedure will facilitate the development of POCTs for various protease disease markers.
Collapse
Affiliation(s)
- Hyeon Ji Park
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yengtong-gu, Suwon, 16499, South Korea
| | - Yuseon Kim
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yengtong-gu, Suwon, 16499, South Korea
| | - Kyung Won Lee
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yengtong-gu, Suwon, 16499, South Korea
| | - Minji Gwon
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yengtong-gu, Suwon, 16499, South Korea
| | - Hyun C Yoon
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yengtong-gu, Suwon, 16499, South Korea; Department of Applied Chemistry and Biological Engineering, Ajou University, 206 World cup-ro, Yengtong-gu, Suwon, 16499, South Korea.
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yengtong-gu, Suwon, 16499, South Korea; Department of Applied Chemistry and Biological Engineering, Ajou University, 206 World cup-ro, Yengtong-gu, Suwon, 16499, South Korea.
| |
Collapse
|
27
|
Dong CL, Zhu F, Du YZ, Lu MX. Depending on different apoptosis pathways, the effector Cscaspase-3 in Chilo suppressalis exposed to temperature and parasitic stress was induced. Int J Biol Macromol 2023; 238:124270. [PMID: 37003373 DOI: 10.1016/j.ijbiomac.2023.124270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Apoptosis is a form of programmed cell death (PCD) that is largely triggered by caspases through both the mitochondria-dependent and mitochondria-independent pathways. The rice stem borer, Chilo suppressalis, serves as an economically important pest of rice, which is often suffered by temperature and parasitic stress under natural conditions. In the present study, effector Cscaspase-3 encoding caspase was obtained from the rice pest Chilo suppressalis. CsCaspase-3 possesses p20 and p10 subunits, two active sites, four substrate-binding sites, and two cleavage motifs. Real-time quantitative PCR showed that Cscaspase-3 was expressed at maximal levels in hemocytes; furthermore, transcription was most highly in female adults. Expression of Cscaspase-3 was induced by hot and cold temperatures, with the highest expression at 39 °C. Cscaspase-3 expression was also significantly induced at 10 h, 2 d, 5 d, and 7 d of parasitism. Flow cytometry results showed that both temperature and parasitism trigger apoptosis, but only parasitism induces apoptosis via the mitochondrial apoptosis pathway in C. suppressalis. RNAi-mediated silencing of Cscaspase-3 expression reduced C. suppressalis survival at -3 °C. This study provides a foundation for further studies of caspases in insects during biotic and abiotic stress.
Collapse
Affiliation(s)
- Chuan-Lei Dong
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Feng Zhu
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing 210000, PR China
| | - Yu-Zhou Du
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China.
| | - Ming-Xing Lu
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
28
|
Abolfathi H, Arabi M, Sheikhpour M. A literature review of microRNA and gene signaling pathways involved in the apoptosis pathway of lung cancer. Respir Res 2023; 24:55. [PMID: 36800962 PMCID: PMC9938615 DOI: 10.1186/s12931-023-02366-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Lung cancer is one of the leading causes of death in the world and the deadliest of all cancers. Apoptosis is a key pathway in regulating the cell growth rate, proliferation, and occurrence of lung cancer. This process is controlled by many molecules, such as microRNAs and their target genes. Therefore, finding new medical approaches such as exploring diagnostic and prognostic biomarkers involved in apoptosis is needed for this disease. In the present study, we aimed to identify key microRNAs and their target genes that could be used in the prognosis and diagnosis of lung cancer. METHODS Signaling pathways, genes, and microRNAs involved in the apoptotic pathway were identified by bioinformatics analysis and recent clinical studies. Bioinformatics analysis was performed on databases including NCBI, TargetScan, UALCAN, UCSC, KEGG, miRPathDB, and Enrichr, and clinical studies were extracted from PubMed, web of science, and SCOPUS databases. RESULTS NF-κB, PI3K/AKT, and MAPK pathways play critical roles in the regulation of apoptosis. MiR-146b, 146a, 21, 23a, 135a, 30a, 202, and 181 were identified as the involved microRNAs in the apoptosis signaling pathway, and IRAK1, TRAF6, Bcl-2, PTEN, Akt, PIK3, KRAS, and MAPK1 were classified as the target genes of the mentioned microRNAs respectively. The essential roles of these signaling pathways and miRNAs/target genes were approved through both databases and clinical studies. Moreover, surviving, living, BRUCE, and XIAP was the main inhibitor of apoptosis which act by regulating the apoptosis-involved genes and miRNAs. CONCLUSION Identifying the abnormal expression and regulation of miRNAs and signaling pathways in apoptosis of lung cancer can represent a novel class of biomarkers that can facilitate the early diagnosis, personalized treatment, and prediction of drug response for lung cancer patients. Therefore, studying the mechanisms of apoptosis including signaling pathways, miRNAs/target genes, and the inhibitors of apoptosis are advantageous for finding the most practical approach and reducing the pathological demonstrations of lung cancer.
Collapse
Affiliation(s)
- Hanie Abolfathi
- grid.23856.3a0000 0004 1936 8390Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, Canada
| | - Mohadeseh Arabi
- grid.420169.80000 0000 9562 2611Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran. .,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
29
|
The gallium complex KP46 sensitizes resistant leukemia cells and overcomes Bcl-2-induced multidrug resistance in lymphoma cells via upregulation of Harakiri and downregulation of XIAP in vitro. Biomed Pharmacother 2022; 156:113974. [DOI: 10.1016/j.biopha.2022.113974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
|
30
|
Effect of mesoporous silica nanoparticles loaded with α-tomatine on HepG2 cancer cells studied in vitro. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Li Y, Li L, Liu H, Zhou T. CPNE1 silencing inhibits cell proliferation and accelerates apoptosis in human gastric cancer. Eur J Pharm Sci 2022; 177:106278. [PMID: 35985444 DOI: 10.1016/j.ejps.2022.106278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022]
Abstract
Gastric cancer is a heterogeneous disease accompanied by the alteration of various causative genes. The discovery of molecular targets and potential mechanisms of gastric cancer is valuable. Here we explored the biological function of CPNE1 and its molecular mechanisms in gastric cancer. Immunohistochemistry and Kaplan-Meier plotter database were used to identify that CPNE1 was upregulated in human gastric cancer and high expression of CPNE1 suggested a worse prognosis. Silencing CPNE1 could effectively suppress tumor proliferation, accelerate cell apoptosis and arrest cell cycle in vitro. CPNE1 knockdown mediating apoptosis by PARP-1 cleavage via caspase-3 and -7 activation through cytochrome c release from mitochondria in gastric cancer cells. Xenograft mouse model showed that targeted inhibition of CPNE1 slowed down the rate of tumor growth in vivo. We also verified that CPNE1 knockdown inhibited the activation of MAPK pathway mediated by DDIT3-FOS-MKNK2 axis. Specific inhibitor of DDIT3-FOS-MKNK2 axis could suppress gastric cancer cell proliferation, concomitant with knockdown of CPNE1. In conclusion, CPNE1 silencing inhibited gastric cancer growth via deactivating DDIT3-FOS-MKNK2 axis, which indicated that CPNE1 might serve as a therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Yan Li
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Department of Gastroenterology, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong 266035, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Han Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Tao Zhou
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
32
|
Porubský M, Řezníčková E, Křupková S, Kryštof V, Hlaváč J. Development of fluorescent dual-FRET probe for simultaneous detection of caspase-8 and caspase-9 activities and their relative quantification. Bioorg Chem 2022; 129:106151. [DOI: 10.1016/j.bioorg.2022.106151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 11/27/2022]
|
33
|
Vazeh H, Behboudi E, Hashemzadeh-Omran A, Moradi A. Live-attenuated poliovirus-induced extrinsic apoptosis through Caspase 8 within breast cancer cell lines expressing CD155. Breast Cancer 2022; 29:899-907. [PMID: 35641853 DOI: 10.1007/s12282-022-01372-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/06/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Breast cancer is one of the most common cancers among women in the world. Different therapeutic strategies such as radiotherapy, chemotherapy and surgery have been used either individually or in combination. Oncolytic virotherapy is a rising treatment methodology, which utilizes replicating viruses to eliminate tumor cells. The aim of this study was to investigate the oncolytic activity of live-attenuated poliovirus in breast cancer cell lines. MATERIALS AND METHODS The CD155 expression level in two human breast cancer cell lines and a normal breast cell line were evaluated using real-time PCR and flow cytometry. Virus titration was assessed by TCID50. The cytotoxicity of poliovirus on cell line and apoptosis response was investigated by MTT and Caspase 8 and Caspase 9 ELISA kits, respectively. RESULTS This study showed that CD155 gene was expressed significantly (p = 0.001) higher in both human breast cancer cell lines compared to the normal cell line. The protein expression level of CD155 was 98.1%, 96.7%, in MDA_MB231 and MCF_7 cell lines, respectively, whereas the CD155 expression level was 1.3% in MCF_10A. The cytopathic effect of poliovirus in breast cancer cell lines was significantly higher than normal cells (p < 0.05). Extrinsic apoptosis response was more effective than intrinsic apoptosis in both breast cancer cell lines (p < 0.05). CONCLUSION In summary, administration of live-attenuated poliovirus can be a promising treatment to breast cancer. However, in vitro and in vivo studies will be required to evaluate the safety of this strategy.
Collapse
Affiliation(s)
- Hossein Vazeh
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Emad Behboudi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Abdolvahab Moradi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
34
|
Wang XR, Shao Y, Wang C, Liu YQ. Effects of heat stress on virus transmission and virus-mediated apoptosis in whitefly Bemisia tabaci. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21857. [PMID: 34859483 DOI: 10.1002/arch.21857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV), a plant DNA virus of the genus Begomovirus, is transmitted by whiteflies of the Bemisia tabaci species complex in a persistent manner. Our previous study indicated that activation of the apoptosis pathway in whiteflies could facilitate TYLCV accumulation and transmission. Considering that temperature change can influence the spread of insect-borne plant viruses, we focused on plant virus induced-apoptosis to investigate the underlying mechanism of temperature regulation on plant virus transmission via an insect vector. We found that heat stress (40°C) on whiteflies could facilitate TYLCV accumulation and increase transmission to tomato plants. Despite upregulation of caspase-1 and caspase-3 gene expression, heat stress failed to induce an increase in the activation of cleaved caspase-3 and DNA fragmentation in TYLCV-infected whiteflies. However, our data failed to determine the role of heat stress in apoptosis modulation of insect-plant virus interplay while still providing clues to understand insect vectors and their transmitted plant viruses.
Collapse
Affiliation(s)
- Xin-Ru Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA
| | - Yue Shao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- The Plant Protection and Soil Fertilizer Management Station of Wenzhou, Wenzhou, Zhejiang, China
| | - Chao Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yin-Quan Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
35
|
Dietary restriction may attenuate the expression of cell death-related proteins in rats with acute spinal cord injury. World Neurosurg 2022; 162:e475-e483. [PMID: 35304344 DOI: 10.1016/j.wneu.2022.03.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE There is currently no effective treatment for spinal cord injuries (SCI). Previous studies have shown that every-other-day fasting (EODF), a dietary restriction method, can reduce SCI size and promote motor function recovery, making it a potential novel treatment. However, the mechanism that underlies the positive impact of EODF on SCI remains unclear. Caspase-dependent apoptosis and necroptosis, which involve receptor-interacting protein kinase (RIPK), drive the loss of nerve cells and restrict motor function recovery after SCI. Dietary restriction has a significant inhibitory effect on Caspase and RIPK expression. This study aimed to investigate whether the EODF diet achieves a neuroprotective effect by inhibiting Caspase-dependent apoptosis and RIPK-dependent necroptosis after SCI. METHODS The model rats underwent EODF for 4 weeks before SCI or started EODF diet immediately after SCI. Immunoblotting and immunohistochemical analyses were used to assess the impact of the intervention on protein expression. Apoptosis in the spinal cord was detected by TdT-mediated dUTP nick-end labeling (TUNEL). RESULTS Immunoblotting analysis results revealed that the levels of both RIPK1 and RIPK3 proteins in the injury zone were reduced at 6, 12, and 24 h, and at 3 and 7 days after SCI, respectively. Immunohistochemistry results showed that EODF reduced the expression of Caspase-3 and Bax proteins, while prophylactic EODF decreased the rate of apoptosis detected by TUNEL within 3 days after SCI. CONCLUSIONS These findings indicate that the mechanism by which EODF exerts neuroprotective effects may be related to the simultaneous inhibition of apoptosis and necroptosis in SCI.
Collapse
|
36
|
Pawar JS, Mustafa S, Ghosh I. Chrysin and Capsaicin Induces Premature Senescence and Apoptosis via Mitochondrial dysfunction and p53 elevation in Cervical Cancer cells. Saudi J Biol Sci 2022; 29:3838-3847. [PMID: 35844432 PMCID: PMC9280242 DOI: 10.1016/j.sjbs.2022.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/16/2022] [Accepted: 03/06/2022] [Indexed: 11/18/2022] Open
Abstract
Current studies are focusing on the anti-cancerous properties of natural bioactive compounds, primarily those included in the human diet. These compounds have the potential to alter the redox balance that can hinder cancer cell's growth. In cancer cells, an abnormal rate of ROS production is balanced with higher antioxidant activities, which if not maintained, results in cancer cells being prone to cell death due to oxidative stress. Here, we have analyzed the effects of Chrysin and Capsaicin on the HeLa cells viability and cellular redox signaling. Both these compounds stimulate cellular and mitochondrial ROS overproduction that perturbs the cellular redox state and results in mitochondrial membrane potential loss. Apart from this, these compounds induce cell cycle arrest and induce premature senescence, along with the overexpression of p21, p53, and p16 protein at lower concentration treatment of Chrysin or Capsaicin. Moreover, at higher concentration treatment with these compounds, pro-apoptotic activity was observed with the high level of Bax and cleaved caspase-3 along with suppression of the Bcl-2 protein levels. In-Silico analysis with STITCH v5 also confirms the direct interaction of Chrysin and Capsaicin with target protein p53. This suggests that Chrysin and Capsaicin trigger an increase in mitochondrial ROS, and p53 interaction leading to premature senescence and apoptosis in concentration dependent manner and have therapeutic potential for cancer treatment.
Collapse
|
37
|
Qi JY, Yang YK, Jiang C, Zhao Y, Wu YC, Han X, Jing X, Wu ZL, Chu L. Exploring the Mechanism of Danshensu in the Treatment of Doxorubicin-Induced Cardiotoxicity Based on Network Pharmacology and Experimental Evaluation. Front Cardiovasc Med 2022; 9:827975. [PMID: 35295262 PMCID: PMC8918531 DOI: 10.3389/fcvm.2022.827975] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/27/2022] [Indexed: 12/30/2022] Open
Abstract
Background Doxorubicin (DOX) is one of the most effective chemotherapeutic agents available; however, its use is limited by the risk of serious cardiotoxicity. Danshensu (DSS), an active ingredient in Salvia miltiorrhiza, has multiple cardioprotective effects, but the effect of DSS on DOX-induced cardiotoxicity has not been reported. Objectives Predicting the targets of DOX-induced cardiotoxicity and validating the protective effects and mechanisms of DSS. Methods (1) Using methods based on network pharmacology, DOX-induced cardiotoxicity was analyzed by data analysis, target prediction, PPI network construction and GO analysis. (2) The cardiotoxicity model was established by continuous intraperitoneal injection of 15 mg/kg of DOX into mice for 4 days and the protective effects and mechanism were evaluated by treatment with DSS. Results The network pharmacology results indicate that CAT, SOD, GPX1, IL-6, TNF, BAX, BCL-2, and CASP3 play an important role in this process, and Keap1 is the main target of DOX-induced cardiac oxidative stress. Then, based on the relationship between Keap1 and Nrf2, the Keap1-Nrf2/NQO1 pathway was confirmed by animal experiments. In the animal experiments, by testing the above indicators, we found that DSS effectively reduced oxidative stress, inflammation, and apoptosis in the damaged heart, and significantly alleviated the prolonged QTc interval caused by DOX. Moreover, compared with the DOX group, DSS elevated Keap1 content and inhibited Nrf2, HO-1, and NQO1. Conclusion The results of network pharmacology studies indicated that Keap1-Nrf2/NQO1 is an important pathway leading to DOX-induced cardiotoxicity, and the results of animal experiments showed that DSS could effectively exert anti-oxidative stress, anti-inflammatory and anti-apoptotic therapeutic effects on DOX-induced cardiotoxicity by regulating the expression of Keap1-Nrf2/NQO1.
Collapse
Affiliation(s)
- Jia-ying Qi
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ya-kun Yang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Chuan Jiang
- School of Preventive Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yang Zhao
- Department of Radiology and Interventional Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong-chao Wu
- Department of Radiology and Interventional Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xuan Jing
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Xuan Jing
| | - Zhong-lin Wu
- Department of Radiology and Interventional Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Zhong-lin Wu
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Li Chu
| |
Collapse
|
38
|
Clavé C, Dyrka W, Turcotte EA, Granger-Farbos A, Ibarlosa L, Pinson B, Vance RE, Saupe SJ, Daskalov A. Fungal gasdermin-like proteins are controlled by proteolytic cleavage. Proc Natl Acad Sci U S A 2022; 119:e2109418119. [PMID: 35135876 PMCID: PMC8851545 DOI: 10.1073/pnas.2109418119] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022] Open
Abstract
Gasdermins are a family of pore-forming proteins controlling an inflammatory cell death reaction in the mammalian immune system. The pore-forming ability of the gasdermin proteins is released by proteolytic cleavage with the removal of their inhibitory C-terminal domain. Recently, gasdermin-like proteins have been discovered in fungi and characterized as cell death-inducing toxins in the context of conspecific non-self-discrimination (allorecognition). Although functional analogies have been established between mammalian and fungal gasdermins, the molecular pathways regulating gasdermin activity in fungi remain largely unknown. Here, we characterize a gasdermin-based cell death reaction controlled by the het-Q allorecognition genes in the filamentous fungus Podospora anserina We show that the cytotoxic activity of the HET-Q1 gasdermin is controlled by proteolysis. HET-Q1 loses a ∼5-kDa C-terminal fragment during the cell death reaction in the presence of a subtilisin-like serine protease termed HET-Q2. Mutational analyses and successful reconstitution of the cell death reaction in heterologous hosts (Saccharomyces cerevisiae and human 293T cells) suggest that HET-Q2 directly cleaves HET-Q1 to induce cell death. By analyzing the genomic landscape of het-Q1 homologs in fungi, we uncovered that the vast majority of the gasdermin genes are clustered with protease-encoding genes. These HET-Q2-like proteins carry either subtilisin-like or caspase-related proteases, which, in some cases, correspond to the N-terminal effector domain of nucleotide-binding and oligomerization-like receptor proteins. This study thus reveals the proteolytic regulation of gasdermins in fungi and establishes evolutionary parallels between fungal and mammalian gasdermin-dependent cell death pathways.
Collapse
Affiliation(s)
- Corinne Clavé
- UMR 5095, CNRS, Non-self Recognition in Fungi, Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 33077 Bordeaux, France;
| | - Witold Dyrka
- Politechnika Wrocławska, Wydział Podstawowych Problemów Techniki, Katedra Inżynierii Biomedycznej, 50-370 Wrocław, Poland
| | - Elizabeth A Turcotte
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Alexandra Granger-Farbos
- UMR 5095, CNRS, Non-self Recognition in Fungi, Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 33077 Bordeaux, France
| | - Léa Ibarlosa
- UMR 5095, CNRS, Non-self Recognition in Fungi, Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 33077 Bordeaux, France
| | - Benoît Pinson
- UMR 5095, CNRS, Genetics of Metabolic Pathways, Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 33077 Bordeaux, France
| | - Russell E Vance
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- HHMI, University of California, Berkeley, CA 94720
- Immunotherapeutics and Vaccine Research Initiative, University of California, Berkeley, CA 94720
- Cancer Research Laboratory, University of California, Berkeley, CA 94720
| | - Sven J Saupe
- UMR 5095, CNRS, Non-self Recognition in Fungi, Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 33077 Bordeaux, France
| | - Asen Daskalov
- UMR 5095, CNRS, Non-self Recognition in Fungi, Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 33077 Bordeaux, France;
| |
Collapse
|
39
|
Karanam G, Arumugam MK. Potential anticancer effects of cyclo(-Pro-Tyr) against N-diethyl nitrosamine induced hepatocellular carcinoma in mouse through PI3K/AKT signaling. ENVIRONMENTAL TOXICOLOGY 2022; 37:256-269. [PMID: 34726822 DOI: 10.1002/tox.23395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The oceans are considered as magnificent source of bioactive metabolites, of which marine sponges associated organisms are being the most effective producers of various bioactive molecules. We previously reported that cyclo(-Pro-Tyr) (CPT), a dipeptide from marine sponge Callyspongia fistularis associated Bacillus pumilus AMK1 bacteria for its anti-proliferative activity through down regulating PI3K signaling and inducing mitochondrial mediated apoptosis in HepG2 cells. Further we emphasize to study the role of CPT against hepatocellular carcinoma (HCC) induced by N-diethylnitrosamine (DEN) in male swiss albino mice in vivo. In this study, HCC was induced by the administration of DEN (75 mg/kg b.wt) dissolved in saline once/week for 3 weeks, then 100 mg/kg b.wt for another successive 3 weeks and observed for 18 weeks. CPT (100 mg/kg b.wt) treatment was started after 14 weeks of DEN induction. The obtained results demonstrated that CPT altered DEN induced oxidative stress by decreasing serum SGOT and SGPT followed increment in the antioxidants such as superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. This was accompanied by decreased accumulation of glycoconjugates and argyophilic nucleolar organizing regions in the treatment groups. Further, CPT significantly reduced the levels of phospho-PI3Kinase p85 and phospho-AKT and upregulation of PTEN compared with DEN induced group. Besides this, decreased expression of Bcl-2 and increased expression of Bax, Caspase 3, and p53 was observed in CPT treated mice. Therefore, the anticancer mechanism of CPT against DEN induced HCC may be associated with the regulation of the PI3K/AKT signaling pathway, which ultimately stimulates apoptosis.
Collapse
Affiliation(s)
- Gayathri Karanam
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Madan Kumar Arumugam
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
40
|
Xie K, Yan Z, Wang W, Luo R, Gao X, Wang P, Yang Q, Huang X, Zhang J, Yang J, Gun S. ssc-microRNA-132 targets DACH1 to exert anti-inflammatory and anti-apoptotic effects in Clostridium perfringens beta2 toxin-treated porcine intestinal epithelial cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104270. [PMID: 34582881 DOI: 10.1016/j.dci.2021.104270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Clostridium perfringens (C. perfringens) type C (CPC) is one of the chief pathogens that causes diarrhea in piglets, and C. perfringens beta2 (CPB2) toxin is the main virulence factor of CPC. Our previous research demonstrated that ssc-microR-132 was differentially expressed in ileal tissues of CPC-mediated diarrheic piglets and healthy piglets, which implied a potential role of ssc-microR-132 in this process. Here, we found that ssc-microR-132 was notably down-regulated in CPB2-exposed intestinal porcine epithelial cells (IPEC-J2), which was consistent with the ileal tissue expression. Moreover, ssc-microR-132 upregulation alleviated CPB2-induced inflammatory damage and apoptosis in IPEC-J2, whereas ssc-microR-132 knockdown presented the opposite effects. Furthermore, the dual-luciferase reporter assay indicated that ssc-microR-132 directly targeted Dachshund homolog 1 (DACH1). Moreover, DACH1 overexpression intensified CPB2-induced inflammatory injury and apoptosis in IPEC-J2. Remarkably, the introduction of DACH1 weakened the anti-inflammatory and anti-apoptotic effects of ssc-microR-132 in CPB2-exposed IPEC-J2. Overall, the results reveal that ssc-microR-132 targeted DACH1 to alleviate CPB2-mediated inflammation and apoptosis in IPEC-J2.
Collapse
Affiliation(s)
- Kaihui Xie
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Wei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Ruirui Luo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Juanli Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Jiaojiao Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China; Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
41
|
Mukherjee S, Dutta A, Chakraborty A. The cross-talk between Bax, Bcl2, caspases, and DNA damage in bystander HepG2 cells is regulated by γ-radiation dose and time of conditioned media transfer. Apoptosis 2022; 27:184-205. [PMID: 35076828 DOI: 10.1007/s10495-022-01713-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2022] [Indexed: 01/25/2023]
Abstract
Although radiation-induced bystander effects have been broadly explored in various biological systems, the molecular mechanisms and the consequences of different regulatory factors (dose, time, cell type) on bystander responses are not clearly understood. This study investigates the effects of irradiated cell-conditioned media (ICCM) collected at different times post-irradiation on bystander cancer cells regarding DNA damage and apoptosis induction. Human hepatocellular carcinoma HepG2 cells were exposed to γ-ray doses of 2 Gy, 5 Gy, and 8 Gy. In the early and late stages (1 h, 2 h, and 24 h) after irradiation, the ICCM was collected and transferred to unirradiated cells. Compared to control, bystander cells showed an increased level of H2AX phosphorylation, mitochondrial membrane depolarization, and elevation of intrinsic apoptotic pathway mediators such as p53, Bax, cas9, cas-3, and PARP cleavage. These results were confirmed by phosphatidylserine (PS) externalization and scanning electron microscopic observations, suggesting a rise in bystander HepG2 cell apoptosis. Anti-apoptotic Bcl2-level and viability were lower in bystander cells compared to control. The highest effects were observed in 8 Gy γ radiation-induced bystander cells. Even though the bystander effect was persistent at all time points of the study, ICCM at the early time points (1 or 2 h) had the most significant impact on the apoptosis markers in bystander cells. Nevertheless, 24 h ICCM induced the highest increase in H2AX and p53 phosphorylation and Bax levels. The effects of ICCM of irradiated HepG2 cells were additionally studied in normal liver cells BRL-3A to simulate actual radiotherapy conditions. The outcomes suggest that the expression of the signaling mediators in bystander cells is highly dynamic. A cross-talk between those signaling mediators regulates bystander responses depending on the radiation dose and time of incubation post-irradiation.
Collapse
Affiliation(s)
- Sharmi Mukherjee
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Block-LB, Plot-8, Sector-III, Salt Lake, Kolkata, West Bengal, 700 106, India.
| | - Anindita Dutta
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Block-LB, Plot-8, Sector-III, Salt Lake, Kolkata, West Bengal, 700 106, India
| | - Anindita Chakraborty
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Block-LB, Plot-8, Sector-III, Salt Lake, Kolkata, West Bengal, 700 106, India
| |
Collapse
|
42
|
Awad MA, Ahmed ZSO, AbuBakr HO, Elbargeesy GAEFH, Moussa MHG. Oxidative stress, apoptosis and histopathological alterations in brain stem and diencephalon induced by subacute exposure to fipronil in albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:936-948. [PMID: 34345985 DOI: 10.1007/s11356-021-15537-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Fipronil (FIP) is a highly effective insecticide that has been used in agriculture and veterinary medicine. Its neurotoxic effect to insects and to non-target organisms, after nonintentional exposure, was reported. Many studies were conducted to evaluate FIP effects on mammals. However, slight is known about its effect on the brain stem and diencephalon. The current study was designed to investigate the ability of FIP to induce oxidative stress as a molecular mechanism of FIP neurotoxicity that resulted in apoptosis and neural tissue reactivity in these regions. Ten adult male rats received 10 mg/kg of FIP technical grade by oral gavage, daily for 45 days. Brain stem and diencephalon were processed to examine oxidative stress-induced macromolecular alteration (MDA, PCC and DNA fragmentation). Also, the histopathological assessment and immunoreactivity for caspase-3 (active form), iNOS and GFAP were performed on the thalamus, hypothalamus and medulla oblongata. Our results revealed that FIP significantly raised MDA, PCC and DNA fragmentation (p ≤ 0.05). In addition, significantly increased immunoreactivity to GFAP, iNOS and caspase-3 (active form) in the FIP-treated group was noticed (p ≤ 0.05). Moreover, alterations in the histoarchitecture of the neural tissue of these regions were observed. We conclude that FIP can induce oxidative stress, leading to apoptosis and tissue reaction in brain stem and diencephalon.
Collapse
Affiliation(s)
- Mohamed A Awad
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Zainab Sabry Othman Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Huda O AbuBakr
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | | | - Moukhtar H G Moussa
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
43
|
Huang S, Mei H, Lu L, Kuang Z, Heng Y, Xu L, Liang X, Qiu M, Pan X. Conformational transitions of caspase-6 in substrate-induced activation process explored by perturbation-response scanning combined with targeted molecular dynamics. Comput Struct Biotechnol J 2021; 19:4156-4164. [PMID: 34527189 PMCID: PMC8342898 DOI: 10.1016/j.csbj.2021.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 11/23/2022] Open
Abstract
Caspase-6 participates in a series of neurodegenerative pathways, and has aroused widespread attentions as a promising molecular target for the treatment of neurodegeneration. Caspase-6 is a homodimer with 6 central-stranded β-sheets and 5 α-helices in each monomer. Previous crystallographic studies suggested that the 60′s, 90′s and 130′s helices of caspase-6 undergo a distinctive conformational transition upon substrate binding. Although the caspase-6 structures in apo and active states have been determined, the conformational transition process between the two states remains poorly understood. In this work, perturbation-response scanning (PRS) combined with targeted molecular dynamics (TMD) simulations was employed to unravel the atomistic mechanism of the dynamic conformational transitions underlying the substrate-induced activation process of caspase-6. The results showed that the conformational transition of caspase-6 from apo to active states is mainly characterized by structural rearrangements of the substrate-binding site as well as the conformational changes of 60′s and 130′s extended helices. The H-bond interactions between L1, 130′s helix and 90′s helix are proved to be key determinant factors for substrate-induced conformational transition. These findings provide valuable insights into the activation mechanism of caspase-6 as well as the molecular design of caspase-6 inhibitors.
Collapse
Affiliation(s)
- Shuheng Huang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - Hu Mei
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - Laichun Lu
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - Zuyin Kuang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - Yu Heng
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - Lei Xu
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - Xiaoqi Liang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - Minyao Qiu
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - Xianchao Pan
- Department of Medicinal Chemistry, College of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
44
|
Malaikolundhan H, Mookkan G, Krishnamoorthi G, Matheswaran N, Alsawalha M, Veeraraghavan VP, Krishna Mohan S, Di A. Anticarcinogenic effect of gold nanoparticles synthesized from Albizia lebbeck on HCT-116 colon cancer cell lines. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:1206-1213. [PMID: 33016139 DOI: 10.1080/21691401.2020.1814313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colon cancer is one of the major prevailing types of cancer worldwide. It has been the most important public health difficulty. Thus, we planned phytoconstituents arbitrated synthesis of gold nanoparticles (AuNPs) and examined their curative efficacy against the colon cancer (HCT-116) cells. In this current study, we formulated the AuNPs by using Albizia lebbeck (AL) aqueous leaf extract by the green method and synthesized AL-AuNPs were distinguished by UV-visible spectroscopy (UV-vis), energy dispersive X-ray diffraction (XRD), selected area (electron) diffraction (SAED) pattern, Fourier transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HR-TEM). Synthesized AL-AuNPs confirmed by the UV absorption highest at 535 nm and the crystal structure of AL-AuNPs was additionally established by XRD and SAED pattern. HR-TEM images explained the size and morphology allocation of nanoparticles. FTIR analysis confirmed the presence of alkynes, aromatic compounds, and alkenes of biomolecules in AL-AuNPs. Furthermore, AL-AuNPs induced cytotoxicity at the IC50 concentration 48 µg/ml and also induced apoptosis by enhanced ROS production, decreased ΔΨm, apoptotic morphological changes by AO/EtBr and altering pro and anti-apoptotic protein expressions were analyzed in HCT-116 colon cancer cells. The findings of this investigation proved that the AL-AuNPs were revealed the potential anticancer activity against colon cancer (HCT-116) cells.
Collapse
Affiliation(s)
| | - Gowsik Mookkan
- Department of Biotechnology, Selvam College of Technology, Namakkal, India
| | | | | | - Murad Alsawalha
- Department of Chemical and Process Engineering Technology, Jubail Industrial College (JIC), Jubail Industrial City, Kingdom of Saudi Arabia
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Surapaneni Krishna Mohan
- Department of Medical Biochemistry, College of Applied Medical Sciences - Jubail (CAMSJ), Imam Abdulrahman Bin Faisal University, Jubail Industrial City, Kingdom of Saudi Arabia
| | - Aiting Di
- Anorectal Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
45
|
Palomino GJQ, Sá NARD, Guerreiro DD, Gomes FDR, da Silva RF, Lopes EPF, Paes VM, Gataí PHS, Alves BG, Pessoa ODL, Figueiredo JR, Rocha RMP, Rodrigues APR. Induced-damages on preantral follicles by withanolide D, a potent chemotherapy candidate are not attenuated by melatonin. Reprod Toxicol 2021; 104:125-133. [PMID: 34274432 DOI: 10.1016/j.reprotox.2021.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022]
Abstract
Withanolide D (WD) has been investigated as an antineoplastic drug. This study aimed to evaluate whether melatonin (MT) could attenuate toxic effects on preantral follicles enclosed in the ovarian cortex (experiment 1 - E1) or on isolated secondary follicles (experiment 2 - E2) exposed to WD. For E1, ovarian cortex was incubated for 48 h to: (1) α-MEM+; (2) α-MEM+ plus 6 μM WD; (3) α-MEM+ plus 3 mmol/L MT or (4) α-MEM+ plus WD and MT. For E2, secondary follicles were exposed for until 96 h in. (1) only to basic medium (α-MEM++/α-MEM++); (2) α-MEM++ plus 3 mmol/L MT (MT/MT); (3) α-MEM++ until 48 h, followed by more 48 h in 6 μM WD (α-MEM++/WD) or (4) a pre-exposure to MT for until 48 h, followed by more 48 h of exposure to WD plus MT (MT/MT + WD). The main results obtained showed that exposure to drugs caused damage to follicular morphology (WD or WD + MT) and diameter (WD) in the ovarian cortex or in isolated follicles. In pre-antral follicles in situ, ATM expression increased in the presence of WD, MT or association. As for the secondary follicles, ATM and γH2AX were immunostained in the granulosa and theca cells and oocytes in all treatments. TAp63α was immunostained in follicles included in the ovarian cortex and in isolated follicles. We conclude that melatonin did not provide protection and could have enhanced the toxic effect of WD to follicles surrounded or not by the ovarian cortex.
Collapse
Affiliation(s)
- Gaby Judith Quispe Palomino
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | - Naíza Arcângela Ribeiro de Sá
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | - Denise Damasceno Guerreiro
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | - Francisco Denilson Rodrigues Gomes
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | - Renato Félix da Silva
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | - Everton Pimentel Ferreira Lopes
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | - Victor Macedo Paes
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | | | - Benner Geraldo Alves
- Postgraduate Program in Animal Bioscience, Federal University of Goias, Jatai, GO, Brazil
| | | | - José Ricardo Figueiredo
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | | | - Ana Paula Ribeiro Rodrigues
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil.
| |
Collapse
|
46
|
Bhaktavalsala Suresh A, Kilingar Nadumane V. The metabolite 5-methyl-1,3-benzenediol and its derivative methyl-2,4-dihydroxy-6-methylbenzoate from the lichen Parmotrema tinctorum with potent apoptotic and anti-angiogenesis effects. 3 Biotech 2021; 11:346. [PMID: 34178568 PMCID: PMC8212346 DOI: 10.1007/s13205-021-02883-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/06/2021] [Indexed: 01/21/2023] Open
Abstract
Nature has been a rich resource of novel anticancer agents, one such source being lichens, which represent the symbiosis between algae and fungi with diverse range of secondary metabolites having therapeutic significance. With respect to this, the present study evaluates the in vitro apoptogenic profile of secondary metabolites from the lichen Parmotrema tinctorum towards cancer cell lines. Treatment with TLC-purified fraction 1 from P. tinctorum resulted in significant reduction in the cell viabilities of cancer cells with IC50 values ranging between 1.2 and 12.8 μg/ml. The potential anticancer effect of the bioactive fraction was further supported by Trypan blue cell viability, LDH and DNA fragmentation assays. At the cellular level, induction of apoptosis was confirmed through the activation of the caspase cascade and apoptotic cells accumulating in the Sub-G1 phase of cell cycle. Angiogenesis being one of the major characteristics needed for cancer growth, the ability of the lichen fraction to inhibit angiogenesis was checked through in ovo Yolk Sac Membrane (YSM) assay and was found to be significant. The study also verified the non-toxic nature of the bioactive fraction towards normal human peripheral lymphocytes. HPLC analysis and GC-MS characterisation of the bioactive fraction indicated the presence of 5-methyl-1,3-benzenediol and its derivative methyl-2,4-dihydroxy-6-methylbenzoate.
Collapse
Affiliation(s)
- Ashrini Bhaktavalsala Suresh
- Department of Biotechnology, School of Sciences, Block-I, Jain (Deemed-to-be-University), #18/3, 9th Main, III Block, Jayanagar, Bangalore, 560 011 India
| | - Varalakshmi Kilingar Nadumane
- Department of Biotechnology, School of Sciences, Block-I, Jain (Deemed-to-be-University), #18/3, 9th Main, III Block, Jayanagar, Bangalore, 560 011 India
| |
Collapse
|
47
|
Rahmani S, Bandani AR. Caspase gene silencing affects the growth and development of Tuta absoluta. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Havanapan PO, Taengchaiyaphum S, Paemanee A, Phungthanom N, Roytrakul S, Sritunyalucksana K, Krittanai C. Caspase-3, a shrimp phosphorylated hemocytic protein is necessary to control YHV infection. FISH & SHELLFISH IMMUNOLOGY 2021; 114:36-48. [PMID: 33864947 DOI: 10.1016/j.fsi.2021.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
By using immunohistochemistry detection, yellow head virus (YHV) was found to replicate in granule-containing hemocytes including semi-granular hemocytes (SGC) and granular hemocytes (GC) during the early phase (24 h post injection) of YHV-infected shrimp. Higher signal of YHV infection was found in GC more than in SGC. Comparative phosphoproteomic profiles between YHV-infected and non-infected GC reveal a number of phosphoproteins with different expression levels. The phosphoprotein spot with later on identified as caspase-3 in YHV-infected GC is most interesting. Blocking caspase-3 function using a specific inhibitor (Ac-DEVD-CMK) demonstrated high replication of YHV and consequently, high shrimp mortality. The immunohistochemistry results confirmed the high viral load in shrimp that caspase-3 activity was blocked. Caspase-3 is regulated through a variety of posttranslational modifications, including phosphorylation. Analysis of phosphorylation sites of shrimp caspase-3 revealed phosphorylation sites at serine residue. Taken together, caspase-3 is a hemocytic protein isolated from shrimp granular hemocytes with a role in anti-YHV response and regulated through the phosphorylation process.
Collapse
Affiliation(s)
- Phattara-Orn Havanapan
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Phutthamonthon 4 Rd, Salaya, Nakhon Pathom, 73170, Thailand
| | - Suparat Taengchaiyaphum
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Atchara Paemanee
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Nuanwan Phungthanom
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Phutthamonthon 4 Rd, Salaya, Nakhon Pathom, 73170, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kallaya Sritunyalucksana
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Chartchai Krittanai
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Phutthamonthon 4 Rd, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
49
|
Gao W, Jones TA, Rivas E. Discovery of 17 conserved structural RNAs in fungi. Nucleic Acids Res 2021; 49:6128-6143. [PMID: 34086938 PMCID: PMC8216456 DOI: 10.1093/nar/gkab355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/25/2021] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
Many non-coding RNAs with known functions are structurally conserved: their intramolecular secondary and tertiary interactions are maintained across evolutionary time. Consequently, the presence of conserved structure in multiple sequence alignments can be used to identify candidate functional non-coding RNAs. Here, we present a bioinformatics method that couples iterative homology search with covariation analysis to assess whether a genomic region has evidence of conserved RNA structure. We used this method to examine all unannotated regions of five well-studied fungal genomes (Saccharomyces cerevisiae, Candida albicans, Neurospora crassa, Aspergillus fumigatus, and Schizosaccharomyces pombe). We identified 17 novel structurally conserved non-coding RNA candidates, which include four H/ACA box small nucleolar RNAs, four intergenic RNAs and nine RNA structures located within the introns and untranslated regions (UTRs) of mRNAs. For the two structures in the 3' UTRs of the metabolic genes GLY1 and MET13, we performed experiments that provide evidence against them being eukaryotic riboswitches.
Collapse
Affiliation(s)
- William Gao
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA
| | - Thomas A Jones
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, USA
| | - Elena Rivas
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA
| |
Collapse
|
50
|
Abramyan J, Geetha-Loganathan P, Šulcová M, Buchtová M. Role of Cell Death in Cellular Processes During Odontogenesis. Front Cell Dev Biol 2021; 9:671475. [PMID: 34222243 PMCID: PMC8250436 DOI: 10.3389/fcell.2021.671475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/24/2021] [Indexed: 01/20/2023] Open
Abstract
The development of a tooth germ in a precise size, shape, and position in the jaw, involves meticulous regulation of cell proliferation and cell death. Apoptosis, as the most common type of programmed cell death during embryonic development, plays a number of key roles during odontogenesis, ranging from the budding of the oral epithelium during tooth initiation, to later tooth germ morphogenesis and removal of enamel knot signaling center. Here, we summarize recent knowledge about the distribution and function of apoptotic cells during odontogenesis in several vertebrate lineages, with a special focus on amniotes (mammals and reptiles). We discuss the regulatory roles that apoptosis plays on various cellular processes during odontogenesis. We also review apoptosis-associated molecular signaling during tooth development, including its relationship with the autophagic pathway. Lastly, we cover apoptotic pathway disruption, and alterations in apoptotic cell distribution in transgenic mouse models. These studies foster a deeper understanding how apoptotic cells affect cellular processes during normal odontogenesis, and how they contribute to dental disorders, which could lead to new avenues of treatment in the future.
Collapse
Affiliation(s)
- John Abramyan
- Department of Natural Sciences, University of Michigan–Dearborn, Dearborn, MI, United States
| | | | - Marie Šulcová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Marcela Buchtová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|