1
|
Han J, Zhao X, Zhao X, Li P, Gu Q. Insight into the structure, biosynthesis, isolation method and biological function of teichoic acid in different gram-positive microorganisms: A review. Int J Biol Macromol 2023; 253:126825. [PMID: 37696369 DOI: 10.1016/j.ijbiomac.2023.126825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
Teichoic acid (TA) is a weakly anionic polymer present in the cell walls of Gram-positive bacteria. It can be classified into wall teichoic acid (WTA) and lipoteichoic acid (LTA) based on its localization in the cell wall. The structure and biosynthetic pathway of TAs are strain-specific and have a significant role in maintaining cell wall stability. TAs have various beneficial functions, such as immunomodulatory, anticancer and antioxidant activities. However, the purity and yield of TAs are generally not high, and different isolation methods may even affect their structural integrity, which limits the research progress on the probiotic functions of TA. This paper reviews an overview of the structure and biosynthetic pathway of TAs in different strains, as well as the research progress of the isolation and purification methods of TAs. Furthermore, this review also highlights the current research status on the biological functions of TAs. Through a comprehensive understanding of this review, it is expected to pave the way for advancements in isolating and purifying high-quality TAs and, in turn, lay a foundation for contributing to the development of targeted probiotic therapies.
Collapse
Affiliation(s)
- Jiarun Han
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xin Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xilian Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China.
| |
Collapse
|
2
|
Maisat W, Yuki K. Volatile anesthetic isoflurane exposure facilitates Enterococcus biofilm infection. FASEB J 2023; 37:e23186. [PMID: 37665578 PMCID: PMC10495085 DOI: 10.1096/fj.202301128r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Enterococcus faecalis (E. faecalis) is one of the major pathogenic bacteria responsible for surgical site infections. Biofilm infections are major hospital-acquired infections. Previous studies suggested that ions could regulate biofilm formation in microbes. Volatile anesthetics, frequently administered in surgical setting, target ion channels. Here, we investigated the role of ion channels/transporters and volatile anesthetics in the biofilm formation by E. faecalis MMH594 strain and its ion transporter mutants. We found that a chloride transporter mutant significantly reduced biofilm formation compared to the parental strain. Downregulation of teichoic acid biosynthesis in the chloride transporter mutant impaired biofilm matrix formation and cellular adhesion, leading to mitigated biofilm formation. Among anesthetics, isoflurane exposure enhanced biofilm formation in vitro and in vivo. The upregulation of de novo purine biosynthesis pathway by isoflurane exposure potentially enhanced biofilm formation, an essential process for DNA, RNA, and ATP synthesis. We also demonstrated that isoflurane exposure to E. faecalis increased cyclic-di-AMP and extracellular DNA production, consistent with the increased purine biosynthesis. We further showed that isoflurane enhanced the enzymatic activity of phosphoribosyl pyrophosphate synthetase (PRPP-S). With the hypothesis that isoflurane directly bound to PRPP-S, we predicted isoflurane binding site on it using rigid docking. Our study provides a better understanding of the underlying mechanisms of E. faecalis biofilm formation and highlights the potential impact of an ion transporter and volatile anesthetic on this process. These findings may lead to the development of novel strategies for preventing E. faecalis biofilm formation and improving patient outcomes in clinical settings.
Collapse
Affiliation(s)
- Wiriya Maisat
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
3
|
Patel H, Rawat S. A genetic regulatory see-saw of biofilm and virulence in MRSA pathogenesis. Front Microbiol 2023; 14:1204428. [PMID: 37434702 PMCID: PMC10332168 DOI: 10.3389/fmicb.2023.1204428] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023] Open
Abstract
Staphylococcus aureus is one of the most common opportunistic human pathogens causing several infectious diseases. Ever since the emergence of the first methicillin-resistant Staphylococcus aureus (MRSA) strain decades back, the organism has been a major cause of hospital-acquired infections (HA-MRSA). The spread of this pathogen across the community led to the emergence of a more virulent subtype of the strain, i.e., Community acquired Methicillin resistant Staphylococcus aureus (CA-MRSA). Hence, WHO has declared Staphylococcus aureus as a high-priority pathogen. MRSA pathogenesis is remarkable because of the ability of this "superbug" to form robust biofilm both in vivo and in vitro by the formation of polysaccharide intercellular adhesin (PIA), extracellular DNA (eDNA), wall teichoic acids (WTAs), and capsule (CP), which are major components that impart stability to a biofilm. On the other hand, secretion of a diverse array of virulence factors such as hemolysins, leukotoxins, enterotoxins, and Protein A regulated by agr and sae two-component systems (TCS) aids in combating host immune response. The up- and downregulation of adhesion genes involved in biofilm formation and genes responsible for synthesizing virulence factors during different stages of infection act as a genetic regulatory see-saw in the pathogenesis of MRSA. This review provides insight into the evolution and pathogenesis of MRSA infections with a focus on genetic regulation of biofilm formation and virulence factors secretion.
Collapse
Affiliation(s)
| | - Seema Rawat
- Microbiology Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| |
Collapse
|
4
|
Multi-omics Study of Planobispora rosea, Producer of the Thiopeptide Antibiotic GE2270A. mSystems 2021; 6:e0034121. [PMID: 34156292 PMCID: PMC8269224 DOI: 10.1128/msystems.00341-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Planobispora rosea is the natural producer of the potent thiopeptide antibiotic GE2270A. Here, we present the results of a metabolomics and transcriptomics analysis of P. rosea during production of GE2270A. The data generated provides useful insights into the biology of this genetically intractable bacterium. We characterize the details of the shutdown of protein biosynthesis and the respiratory chain associated with the end of the exponential growth phase. We also provide the first description of the phosphate regulon in P. rosea. Based on the transcriptomics data, we show that both phosphate and iron are limiting P. rosea growth in our experimental conditions. Additionally, we identified and validated a new biosynthetic gene cluster associated with the production of the siderophores benarthin and dibenarthin in P. rosea. Together, the metabolomics and transcriptomics data are used to inform and refine the very first genome-scale metabolic model for P. rosea, which will be a valuable framework for the interpretation of future studies of the biology of this interesting but poorly characterized species. IMPORTANCEPlanobispora rosea is a genetically intractable bacterium used for the production of GE2270A on an industrial scale. GE2270A is a potent thiopeptide antibiotic currently used as a precursor for the synthesis of two compounds under clinical studies for the treatment of Clostridium difficile infection and acne. Here, we present the very first systematic multi-omics investigation of this important bacterium, which provides a much-needed detailed picture of the dynamics of metabolism of P. rosea while producing GE2270A. Author Video: An author video summary of this article is available.
Collapse
|
5
|
Khorsandi K, Keyvani-Ghamsari S, Khatibi Shahidi F, Hosseinzadeh R, Kanwal S. A mechanistic perspective on targeting bacterial drug resistance with nanoparticles. J Drug Target 2021; 29:941-959. [PMID: 33703979 DOI: 10.1080/1061186x.2021.1895818] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bacterial infections are an important cause of mortality worldwide owing to the prevalence of drug resistant bacteria. Bacteria develop resistance against antimicrobial drugs by several mechanisms such as enzyme inactivation, reduced cell permeability, modifying target site or enzyme, enhanced efflux because of high expression of efflux pumps, biofilm formation or drug-resistance gene expression. New and alternative ways such as nanoparticle (NP) applications are being established to overcome the growing multidrug-resistance in bacteria. NPs have unique antimicrobial characteristics that make them appropriate for medical application to overcome antibiotic resistance. The proposed antibacterial mechanisms of NPs are cell membrane damage, changing cell wall penetration, reactive oxygen species (ROS) production, effect on DNA and proteins, and impact on biofilm formation. The present review mainly focuses on discussing various mechanisms of bacterial drug resistance and the applications of NPs as alternative antibacterial systems. Combination therapy of NPs and antibiotics as a novel approach in medicine towards antimicrobial resistance is also discussed.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | | | - Fedora Khatibi Shahidi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Reza Hosseinzadeh
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Simab Kanwal
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, Thailand
| |
Collapse
|
6
|
Alves-Barroco C, Paquete-Ferreira J, Santos-Silva T, Fernandes AR. Singularities of Pyogenic Streptococcal Biofilms - From Formation to Health Implication. Front Microbiol 2021; 11:584947. [PMID: 33424785 PMCID: PMC7785724 DOI: 10.3389/fmicb.2020.584947] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/20/2020] [Indexed: 01/09/2023] Open
Abstract
Biofilms are generally defined as communities of cells involved in a self-produced extracellular matrix adhered to a surface. In biofilms, the bacteria are less sensitive to host defense mechanisms and antimicrobial agents, due to multiple strategies, that involve modulation of gene expression, controlled metabolic rate, intercellular communication, composition, and 3D architecture of the extracellular matrix. These factors play a key role in streptococci pathogenesis, contributing to therapy failure and promoting persistent infections. The species of the pyogenic group together with Streptococcus pneumoniae are the major pathogens belonging the genus Streptococcus, and its biofilm growth has been investigated, but insights in the genetic origin of biofilm formation are limited. This review summarizes pyogenic streptococci biofilms with details on constitution, formation, and virulence factors associated with formation.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - João Paquete-Ferreira
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Teresa Santos-Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| |
Collapse
|
7
|
Mikkola S. Nucleotide Sugars in Chemistry and Biology. Molecules 2020; 25:E5755. [PMID: 33291296 PMCID: PMC7729866 DOI: 10.3390/molecules25235755] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Nucleotide sugars have essential roles in every living creature. They are the building blocks of the biosynthesis of carbohydrates and their conjugates. They are involved in processes that are targets for drug development, and their analogs are potential inhibitors of these processes. Drug development requires efficient methods for the synthesis of oligosaccharides and nucleotide sugar building blocks as well as of modified structures as potential inhibitors. It requires also understanding the details of biological and chemical processes as well as the reactivity and reactions under different conditions. This article addresses all these issues by giving a broad overview on nucleotide sugars in biological and chemical reactions. As the background for the topic, glycosylation reactions in mammalian and bacterial cells are briefly discussed. In the following sections, structures and biosynthetic routes for nucleotide sugars, as well as the mechanisms of action of nucleotide sugar-utilizing enzymes, are discussed. Chemical topics include the reactivity and chemical synthesis methods. Finally, the enzymatic in vitro synthesis of nucleotide sugars and the utilization of enzyme cascades in the synthesis of nucleotide sugars and oligosaccharides are briefly discussed.
Collapse
Affiliation(s)
- Satu Mikkola
- Department of Chemistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
8
|
Baker BR, Ives CM, Bray A, Caffrey M, Cochrane SA. Undecaprenol kinase: Function, mechanism and substrate specificity of a potential antibiotic target. Eur J Med Chem 2020; 210:113062. [PMID: 33310291 DOI: 10.1016/j.ejmech.2020.113062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
The bifunctional undecaprenol kinase/phosphatase (UdpK) is a small, prokaryotic, integral membrane kinase, homologous with Escherichia coli diacylglycerol kinase and expressed by the dgkA gene. In Gram-positive bacteria, UdpK is involved in the homeostasis of the bacterial undecaprenoid pool, where it converts undecaprenol to undecaprenyl phosphate (C55P) and also catalyses the reverse process. C55P is the universal lipid carrier and critical to numerous glycopolymer and glycoprotein biosynthetic pathways in bacteria. DgkA gene expression has been linked to facilitating bacterial growth and survival in response to environmental stressors, as well being implicated as a resistance mechanism to the topical antibiotic bacitracin, by providing an additional route to C55P. Therefore, identification of UdpK inhibitors could lead to novel antibiotic treatments. A combination of homology modelling and mutagenesis experiments on UdpK have been used to identify residues that may be involved in kinase/phosphatase activity. In this review, we will summarise recent work on the mechanism and substrate specificity of UdpK.
Collapse
Affiliation(s)
- Brad R Baker
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - Callum M Ives
- School of Medicine and School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, D02 R590, Ireland; Division of Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Ashley Bray
- School of Medicine and School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, D02 R590, Ireland
| | - Martin Caffrey
- School of Medicine and School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, D02 R590, Ireland.
| | - Stephen A Cochrane
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK.
| |
Collapse
|
9
|
Disruption of l-Rhamnose Biosynthesis Results in Severe Growth Defects in Streptococcus mutans. J Bacteriol 2020; 202:JB.00728-19. [PMID: 31871035 DOI: 10.1128/jb.00728-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
The rhamnose-glucose cell wall polysaccharide (RGP) of Streptococcus mutans plays a significant role in cell division, virulence, and stress protection. Prior studies examined function of the RGP using strains carrying deletions in the machinery involved in RGP assembly. In this study, we explored loss of the substrate for RGP, l-rhamnose, via deletion of rmlD (encoding the protein responsible for the terminal step in l-rhamnose biosynthesis). We demonstrate that loss of rhamnose biosynthesis causes a phenotype similar to strains with disrupted RGP assembly (ΔrgpG and ΔrgpF strains). Deletion of rmlD not only caused a severe growth defect under nonstress growth conditions but also elevated susceptibility of the strain to acid and oxidative stress, common conditions found in the oral cavity. A genetic complement of the ΔrmlD strain completely restored wild-type levels of growth, whereas addition of exogenous rhamnose did not. The loss of rhamnose production also significantly disrupted biofilm formation, an important aspect of S. mutans growth in the oral cavity. Further, we demonstrate that loss of either rmlD or rgpG results in ablation of rhamnose content in the S. mutans cell wall. Taken together, these results highlight the importance of rhamnose production in both the fitness and the ability of S. mutans to overcome environmental stresses.IMPORTANCE Streptococcus mutans is a pathogenic bacterium that is the primary etiologic agent of dental caries, a disease that affects billions yearly. Rhamnose biosynthesis is conserved not only in streptococcal species but in other Gram-positive, as well as Gram-negative, organisms. This study highlights the importance of rhamnose biosynthesis in RGP production for protection of the organism against acid and oxidative stresses, the two major stressors that the organism encounters in the oral cavity. Loss of RGP also severely impacts biofilm formation, the first step in the onset of dental caries. The high conservation of the rhamnose synthesis enzymes, as well as their importance in S. mutans and other organisms, makes them favorable antibiotic targets for the treatment of disease.
Collapse
|
10
|
Lima BP, Kho K, Nairn BL, Davies JR, Svensäter G, Chen R, Steffes A, Vreeman GW, Meredith TC, Herzberg MC. Streptococcus gordonii Type I Lipoteichoic Acid Contributes to Surface Protein Biogenesis. mSphere 2019; 4:e00814-19. [PMID: 31801844 PMCID: PMC6893214 DOI: 10.1128/msphere.00814-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022] Open
Abstract
Lipoteichoic acid (LTA) is an abundant polymer of the Gram-positive bacterial cell envelope and is essential for many species. Whereas the exact function of LTA has not been elucidated, loss of LTA in some species affects hydrophobicity, biofilm formation, and cell division. Using a viable LTA-deficient strain of the human oral commensal Streptococcus gordonii, we demonstrated that LTA plays an important role in surface protein presentation. Cell wall fractions derived from the wild-type and LTA-deficient strains of S. gordonii were analyzed using label-free mass spectroscopy. Comparisons showed that the abundances of many proteins differed, including (i) SspA, SspB, and S. gordonii 0707 (SGO_0707) (biofilm formation); (ii) FtsE (cell division); (iii) Pbp1a and Pbp2a (cell wall biosynthesis and remodeling); and (iv) DegP (envelope stress response). These changes in cell surface protein presentation appear to explain our observations of altered cell envelope homeostasis, biofilm formation, and adhesion to eukaryotic cells, without affecting binding and coaggregation with other bacterial species, and provide insight into the phenotypes revealed by the loss of LTA in other species of Gram-positive bacteria. We also characterized the chemical structure of the LTA expressed by S. gordonii Similarly to Streptococcus suis, S. gordonii produced a complex type I LTA, decorated with multiple d-alanylations and glycosylations. Hence, the S. gordonii LTA appears to orchestrate expression and presentation of cell surface-associated proteins and functions.IMPORTANCE Discovered over a half-century ago, lipoteichoic acid (LTA) is an abundant polymer found on the surface of Gram-positive bacteria. Although LTA is essential for the survival of many Gram-positive species, knowledge of how LTA contributes to bacterial physiology has remained elusive. Recently, LTA-deficient strains have been generated in some Gram-positive species, including the human oral commensal Streptococcus gordonii The significance of our research is that we utilized an LTA-deficient strain of S. gordonii to address why LTA is physiologically important to Gram-positive bacteria. We demonstrate that in S. gordonii, LTA plays an important role in the presentation of many cell surface-associated proteins, contributing to cell envelope homeostasis, cell-to-cell interactions in biofilms, and adhesion to eukaryotic cells. These data may broadly reflect a physiological role of LTA in Gram-positive bacteria.
Collapse
Affiliation(s)
- Bruno P Lima
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kelvin Kho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Brittany L Nairn
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julia R Davies
- Department of Oral Biology, Faculty of Odontology, Malmo University, Malmo, Sweden
| | - Gunnel Svensäter
- Department of Oral Biology, Faculty of Odontology, Malmo University, Malmo, Sweden
| | - Ruoqiong Chen
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amanda Steffes
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gerrit W Vreeman
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Timothy C Meredith
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Mark C Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
11
|
Extracellular electron transfer features of Gram-positive bacteria. Anal Chim Acta 2019; 1076:32-47. [PMID: 31203962 DOI: 10.1016/j.aca.2019.05.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/23/2019] [Accepted: 05/05/2019] [Indexed: 12/20/2022]
Abstract
Electroactive microorganisms possess the unique ability to transfer electrons to or from solid phase electron conductors, e.g., electrodes or minerals, through various physiological mechanisms. The processes are commonly known as extracellular electron transfer and broadly harnessed in microbial electrochemical systems, such as microbial biosensors, microbial electrosynthesis, or microbial fuel cells. Apart from a few model microorganisms, the nature of the microbe-electrode conductive interaction is poorly understood for most of the electroactive species. The interaction determines the efficiency and a potential scaling up of bioelectrochemical systems. Gram-positive bacteria generally have a thick electron non-conductive cell wall and are believed to exhibit weak extracellular electron shuttling activity. This review highlights reported research accomplishments on electroactive Gram-positive bacteria. The use of electron-conducting polymers as mediators is considered as one promising strategy to enhance the electron transfer efficiency up to application scale. In view of the recent progress in understanding the molecular aspects of the extracellular electron transfer mechanisms of Enterococcus faecalis, the electron transfer properties of this bacterium are especially focused on. Fundamental knowledge on the nature of microbial extracellular electron transfer and its possibilities can provide insight in interspecies electron transfer and biogeochemical cycling of elements in nature. Additionally, a comprehensive understanding of cell-electrode interactions may help in overcoming insufficient electron transfer and restricted operational performance of various bioelectrochemical systems and facilitate their practical applications.
Collapse
|
12
|
A hyaluronan-based polysaccharide peptide generated by a genetically modified Streptococcus zooepidemicus. Carbohydr Res 2019; 478:25-32. [DOI: 10.1016/j.carres.2019.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/01/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
|
13
|
Desvaux M, Candela T, Serror P. Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display. Front Microbiol 2018; 9:100. [PMID: 29491848 PMCID: PMC5817068 DOI: 10.3389/fmicb.2018.00100] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria) is formed of a cytoplasmic membrane (CM) and a cell wall (CW). While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG) covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO) for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226), i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658), i.e., the lipoproteins. At the CW (GO: 0009275), cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, Clermont-Ferrand, France
| | - Thomas Candela
- EA4043 Unité Bactéries Pathogènes et Santé, Châtenay-Malabry, France
| | - Pascale Serror
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
14
|
Streptococcus pneumoniae capsular polysaccharide is linked to peptidoglycan via a direct glycosidic bond to β-D- N-acetylglucosamine. Proc Natl Acad Sci U S A 2017; 114:5695-5700. [PMID: 28495967 DOI: 10.1073/pnas.1620431114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For many bacteria, including those important in pathogenesis, expression of a surface-localized capsular polysaccharide (CPS) can be critical for survival in host environments. In Gram-positive bacteria, CPS linkage is to either the cytoplasmic membrane or the cell wall. Despite the frequent occurrence and essentiality of these polymers, the exact nature of the cell wall linkage has not been described in any bacterial species. Using the Streptococcus pneumoniae serotype 2 CPS, which is synthesized by the widespread Wzy mechanism, we found that linkage occurs via the reducing end glucose of CPS and the β-D-N-acetylglucosamine (GlcNAc) residues of peptidoglycan (PG). Hydrofluoric acid resistance, 31P-NMR, and 32P labeling demonstrated the lack of phosphodiester bonds, which typically occur in PG-polysaccharide linkages. Component sugar analysis of purified CPS-PG identified only CPS and PG sugars in the appropriate ratios, suggesting the absence of an oligosaccharide linker. Time of flight mass spectrometry confirmed a direct glycosidic linkage between CPS and PG and showed that a single CPS repeat unit can be transferred to PG. The linkage was acetolysis susceptible, indicative of a 1,6 glycosidic bond between CPS and the GlcNAc C-6. The acetylation state of GlcNAc did not affect linkage. A direct glycosidic linkage to PG was also demonstrated for serotypes 8 and 31, whose reducing end sugars are glucose and galactose, respectively. These results provide the most detailed descriptions of CPS-PG linkages for any microorganism. Identification of the linkage is a first step toward identifying the linking enzyme and potential inhibitors of its activity.
Collapse
|
15
|
Abstract
The dramatic rise in the incidence of antibiotic resistance demands that new therapeutic options will have to be developed. One potentially interesting class of antimicrobials are the modified bacteriocins termed lantibiotics, which are bacterially produced, posttranslationally modified, lanthionine/methyllanthionine-containing peptides. It is interesting that low levels of resistance have been reported for lantibiotics compared with commercial antibiotics. Given that there are very few examples of naturally occurring lantibiotic resistance, attempts have been made to deliberately induce resistance phenotypes in order to investigate this phenomenon. Mechanisms that hinder the action of lantibiotics are often innate systems that react to the presence of any cationic peptides/proteins or ones which result from cell well damage, rather than being lantibiotic specific. Such resistance mechanisms often arise due to altered gene regulation following detection of antimicrobials/cell wall damage by sensory proteins at the membrane. This facilitates alterations to the cell wall or changes in the composition of the membrane. Other general forms of resistance include the formation of spores or biofilms, which are a common mechanistic response to many classes of antimicrobials. In rare cases, bacteria have been shown to possess specific antilantibiotic mechanisms. These are often species specific and include the nisin lytic protein nisinase and the phenomenon of immune mimicry.
Collapse
Affiliation(s)
- Lorraine A Draper
- School of Microbiology, University College Cork, Cork, Ireland Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Paul D Cotter
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
16
|
Lipoteichoic acids, phosphate-containing polymers in the envelope of gram-positive bacteria. J Bacteriol 2014; 196:1133-42. [PMID: 24415723 DOI: 10.1128/jb.01155-13] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lipoteichoic acids (LTA) are polymers of alternating units of a polyhydroxy alkane, including glycerol and ribitol, and phosphoric acid, joined to form phosphodiester units that are found in the envelope of Gram-positive bacteria. Here we review four different types of LTA that can be distinguished on the basis of their chemical structure and describe recent advances in the biosynthesis pathway for type I LTA, d-alanylated polyglycerol-phosphate linked to di-glucosyl-diacylglycerol. The physiological functions of type I LTA are discussed in the context of inhibitors that block their synthesis and of mutants with discrete synthesis defects. Research on LTA structure and function represents a large frontier that has been investigated in only few Gram-positive bacteria.
Collapse
|
17
|
Abstract
The peptidoglycan layers of many gram-positive bacteria are densely functionalized with anionic glycopolymers known as wall teichoic acids (WTAs). These polymers play crucial roles in cell shape determination, regulation of cell division, and other fundamental aspects of gram-positive bacterial physiology. Additionally, WTAs are important in pathogenesis and play key roles in antibiotic resistance. We provide an overview of WTA structure and biosynthesis, review recent studies on the biological roles of these polymers, and highlight remaining questions. We also discuss prospects for exploiting WTA biosynthesis as a target for new therapies to overcome resistant infections.
Collapse
Affiliation(s)
- Stephanie Brown
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115;
| | | | | |
Collapse
|
18
|
Wall teichoic acids restrict access of bacteriophage endolysin Ply118, Ply511, and PlyP40 cell wall binding domains to the Listeria monocytogenes peptidoglycan. J Bacteriol 2012; 194:6498-506. [PMID: 23002226 DOI: 10.1128/jb.00808-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The C-terminal cell wall binding domains (CBDs) of phage endolysins direct the enzymes to their binding ligands on the bacterial cell wall with high affinity and specificity. The Listeria monocytogenes Ply118, Ply511, and PlyP40 endolysins feature related CBDs which recognize the directly cross-linked peptidoglycan backbone structure of Listeria. However, decoration with fluorescently labeled CBDs primarily occurs at the poles and septal regions of the rod-shaped cells. To elucidate the potential role of secondary cell wall-associated carbohydrates such as the abundant wall teichoic acid (WTA) on this phenomenon, we investigated CBD binding using L. monocytogenes serovar 1/2 and 4 cells deficient in WTA. Mutants were obtained by deletion of two redundant tagO homologues, whose products catalyze synthesis of the WTA linkage unit. While inactivation of either tagO1 (EGDe lmo0959) or tagO2 (EGDe lmo2519) alone did not affect WTA content, removal of both alleles following conditional complementation yielded WTA-deficient Listeria cells. Substitution of tagO from an isopropyl-β-d-thiogalactopyranoside-inducible single-copy integration vector restored the original phenotype. Although WTA-deficient cells are viable, they featured severe growth inhibition and an unusual coccoid morphology. In contrast to CBDs from other Listeria phage endolysins which directly utilize WTA as binding ligand, the data presented here show that WTAs are not required for attachment of CBD118, CBD511, and CBDP40. Instead, lack of the cell wall polymers enables unrestricted spatial access of CBDs to the cell wall surface, indicating that the abundant WTA can negatively regulate sidewall localization of the cell wall binding domains.
Collapse
|
19
|
Staphylococcus aureus and Bacillus subtilis W23 make polyribitol wall teichoic acids using different enzymatic pathways. ACTA ACUST UNITED AC 2011; 17:1101-10. [PMID: 21035733 DOI: 10.1016/j.chembiol.2010.07.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/17/2010] [Accepted: 07/16/2010] [Indexed: 12/22/2022]
Abstract
Wall teichoic acids (WTAs) are anionic polymers that play key roles in bacterial cell shape, cell division, envelope integrity, biofilm formation, and pathogenesis. B. subtilis W23 and S. aureus both make polyribitol-phosphate (RboP) WTAs and contain similar sets of biosynthetic genes. We use in vitro reconstitution combined with genetics to show that the pathways for WTA biosynthesis in B. subtilis W23 and S. aureus are different. S. aureus requires a glycerol-phosphate primase called TarF in order to make RboP-WTAs; B. subtilis W23 contains a TarF homolog, but this enzyme makes glycerol-phosphate polymers and is not involved in RboP-WTA synthesis. Instead, B. subtilis TarK functions in place of TarF to prime the WTA intermediate for chain extension by TarL. This work highlights the enzymatic diversity of the poorly characterized family of phosphotransferases involved in WTA biosynthesis in Gram-positive organisms.
Collapse
|
20
|
Abstract
Complex glycoconjugates play critical roles in the biology of microorganisms. Despite the remarkable diversity in glycan structures and the bacteria that produce them, conserved themes are evident in the biosynthesis-export pathways. One of the primary pathways involves representatives of the ATP-binding cassette (ABC) transporter superfamily. These proteins are responsible for the export of a wide variety of cell surface oligo- and polysaccharides in both Gram-positive and Gram-negative bacteria. Recent investigations of the structure and function of ABC transporters involved in the export of lipopolysaccharide O antigens have revealed two fundamentally different strategies for coupling glycan polymerization to export. These mechanisms are distinguished by the presence (or absence) of characteristic nonreducing terminal modifications on the export substrates, which serve as chain termination and/or export signals, and by the presence (or absence) of a discrete substrate-binding domain in the nucleotide-binding domain polypeptide of the ABC transporter. A bioinformatic survey examining ABC exporters from known oligo- and polysaccharide biosynthesis loci identifies conserved nucleotide-binding domain protein families that correlate well with themes in the structures and assembly of glycans. The familial relationships among the ABC exporters generate hypotheses concerning the biosynthesis of structurally diverse oligo- and polysaccharides, which play important roles in the biology of bacteria with different lifestyles.
Collapse
|
21
|
Fazio SA, Uhlinger DJ, Parker JH, White DC. Estimations of uronic acids as quantitative measures of extracellular and cell wall polysaccharide polymers from environmental samples. Appl Environ Microbiol 2010; 43:1151-9. [PMID: 16346012 PMCID: PMC244199 DOI: 10.1128/aem.43.5.1151-1159.1982] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracellular polysaccharide polymers can bind microbes to surfaces and can cause physical modification of the microenvironment. Since uronic acids appear to be the components of these extracellular films that are most concentrated in a location outside the cell membrane, a quantitative assay for uronic acids was developed. Polymers containing uronic acids are resistant to quantitative hydrolysis, and the uronic acids, once released, form lactones irreproducibly and are difficult to separate from the neutral sugars. These problems were obviated by the methylation of the uronic acids and their subsequent reduction with sodium borodeuteride to the corresponding alcohol while they were in the polymer and could not form lactones. This caused the polymers to lose the ability to adhere to their substrates, so they could be quantitatively recovered. The hydrolysis of the dideuterated sugars was reproducible and could be performed under conditions that were mild enough that other cellular and extracellular polymers were not affected. The resulting neutral sugars were readily derivatized and then were separated and assayed by glass capillary gas-liquid chromatography. The dideuterated portion of each pentose, hexose, or heptose, identified by combined capillary gas-liquid chromatography and mass spectrometry, accurately provided the proportion of each uronic acid in each carbohydrate of the polymer. Examples of the applications of this methodology include the composition of extracellular polymers in marine bacteria, invertebrate feeding tubes and fecal structures, and the microfouling films formed on titanium and aluminum surfaces exposed to seawater.
Collapse
Affiliation(s)
- S A Fazio
- Department of Biological Science and Oceanography, Florida State University, Tallahassee, Florida 32306
| | | | | | | |
Collapse
|
22
|
Lovering AL, Lin LYC, Sewell EW, Spreter T, Brown ED, Strynadka NCJ. Structure of the bacterial teichoic acid polymerase TagF provides insights into membrane association and catalysis. Nat Struct Mol Biol 2010; 17:582-9. [PMID: 20400947 DOI: 10.1038/nsmb.1819] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 03/02/2010] [Indexed: 12/23/2022]
Abstract
Teichoic acid polymers are composed of polyol-phosphate units and form a major component of Gram-positive bacterial cell walls. These anionic compounds perform a multitude of important roles in bacteria and are synthesized by monotopic membrane proteins of the TagF polymerase family. We have determined the structure of Staphylococcus epidermidis TagF to 2.7-A resolution from a construct that includes both the membrane-targeting region and the glycerol-phosphate polymerase domains. TagF possesses a helical region for interaction with the lipid bilayer, placing the active site at a suitable distance for access to the membrane-bound substrate. Characterization of active-site residue variants and analysis of a CDP-glycerol substrate complex suggest a mechanism for polymer synthesis. With the importance of teichoic acid in Gram-positive physiology, this elucidation of the molecular details of TagF function provides a critical new target in the development of novel anti-infectives.
Collapse
|
23
|
Swoboda JG, Campbell J, Meredith TC, Walker S. Wall teichoic acid function, biosynthesis, and inhibition. Chembiochem 2010; 11:35-45. [PMID: 19899094 DOI: 10.1002/cbic.200900557] [Citation(s) in RCA: 294] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jonathan G Swoboda
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
24
|
Swoboda JG, Meredith TC, Campbell J, Brown S, Suzuki T, Bollenbach T, Malhowski AJ, Kishony R, Gilmore MS, Walker S. Discovery of a small molecule that blocks wall teichoic acid biosynthesis in Staphylococcus aureus. ACS Chem Biol 2009; 4:875-83. [PMID: 19689117 DOI: 10.1021/cb900151k] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Both Gram-positive and Gram-negative bacteria contain bactoprenol-dependent biosynthetic pathways expressing non-essential cell surface polysaccharides that function as virulence factors. Although these polymers are not required for bacterial viability in vitro, genes in many of the biosynthetic pathways are conditionally essential: they cannot be deleted except in strains incapable of initiating polymer synthesis. We report a cell-based, pathway-specific strategy to screen for small molecule inhibitors of conditionally essential enzymes. The screen identifies molecules that prevent the growth of a wildtype bacterial strain but do not affect the growth of a mutant strain incapable of initiating polymer synthesis. We have applied this approach to discover inhibitors of wall teichoic acid (WTA) biosynthesis in Staphylococcus aureus. WTAs are anionic cell surface polysaccharides required for host colonization that have been suggested as targets for new antimicrobials. We have identified a small molecule, 7-chloro-N,N-diethyl-3-(phenylsulfonyl)-[1,2,3]triazolo[1,5-a]quinolin-5-amine (1835F03), that inhibits the growth of a panel of S. aureus strains (MIC = 1-3 microg mL(-1)), including clinical methicillin-resistant S. aureus (MRSA) isolates. Using a combination of biochemistry and genetics, we have identified the molecular target as TarG, the transmembrane component of the ABC transporter that exports WTAs to the cell surface. We also show that preventing the completion of WTA biosynthesis once it has been initiated triggers growth arrest. The discovery of 1835F03 validates our chemical genetics strategy for identifying inhibitors of conditionally essential enzymes, and the strategy should be applicable to many other bactoprenol-dependent biosynthetic pathways in the pursuit of novel antibacterials and probes of bacterial stress responses.
Collapse
Affiliation(s)
- Jonathan G. Swoboda
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Timothy C. Meredith
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Jennifer Campbell
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Stephanie Brown
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Takashi Suzuki
- The Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts 02114
| | - Tobias Bollenbach
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Amy J. Malhowski
- Department of Medicine, Tufts Medical Center, Boston, Massachusetts 02111
| | - Roy Kishony
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
| | - Michael S. Gilmore
- The Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts 02114
| | - Suzanne Walker
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
25
|
CDP-alcohol hydrolase, a very efficient activity of the 5'-nucleotidase/UDP-sugar hydrolase encoded by the ushA gene of Yersinia intermedia and Escherichia coli. J Bacteriol 2008; 190:6153-61. [PMID: 18641143 DOI: 10.1128/jb.00658-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleoside 5'-diphosphate-X hydrolases are interesting enzymes to study due to their varied activities and structure-function relationships and the roles they play in the disposal, assimilation, and modulation of the effects of their substrates. Few of these enzymes with a preference for CDP-alcohols are known. In Yersinia intermedia suspensions prepared from cultures on Columbia agar with 5% sheep blood, we found a CDP-alcohol hydrolase liberated to Triton X-100-containing medium. Growth at 25 degrees C was deemed optimum in terms of the enzyme-activity yield. The purified enzyme also displayed 5'-nucleotidase, UDP-sugar hydrolase, and dinucleoside-polyphosphate hydrolase activities. It was identified as the protein product (UshA(Yi)) of the Y. intermedia ushA gene (ushA(Yi)) by its peptide mass fingerprint and by PCR cloning and expression to yield active enzyme. All those activities, except CDP-alcohol hydrolase, have been shown to be the properties of UshA of Escherichia coli (UshA(Ec)). Therefore, UshA(Ec) was expressed from an appropriate plasmid and tested for CDP-alcohol hydrolase activity. UshA(Ec) and UshA(Yi) behaved similarly. Besides being the first study of a UshA enzyme in the genus Yersinia, this work adds CDP-alcohol hydrolase to the spectrum of UshA activities and offers a novel perspective on these proteins, which are viewed here for the first time as highly efficient enzymes with k(cat)/K(m) ratios near the theoretical maximum level of catalytic activities. The results are discussed in the light of the known structures of UshA(Ec) conformers and the respective homology models constructed for UshA(Yi), and also in relation to possible biological functions. Interestingly, every Yersinia species with a sequenced genome contains an intact ushA gene, except Y. pestis, which in all its sequenced biovars contains a ushA gene inactivated by frameshift mutations.
Collapse
|
26
|
Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol 2008; 6:276-87. [PMID: 18327271 DOI: 10.1038/nrmicro1861] [Citation(s) in RCA: 562] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most Gram-positive bacteria incorporate membrane- or peptidoglycan-attached carbohydrate-based polymers into their cell envelopes. Such cell-wall glycopolymers (CWGs) often have highly variable structures and have crucial roles in protecting, connecting and controlling the major envelope constituents. Further important roles of CWGs in host-cell adhesion, inflammation and immune activation have also been described in recent years. Identifying and harnessing highly conserved or species-specific structural features of CWGs offers excellent opportunities for developing new antibiotics, vaccines and diagnostics for use in the fight against severe infectious diseases, such as sepsis, pneumonia, anthrax and tuberculosis.
Collapse
|
27
|
Vergara-Irigaray M, Maira-Litrán T, Merino N, Pier GB, Penadés JR, Lasa I. Wall teichoic acids are dispensable for anchoring the PNAG exopolysaccharide to the Staphylococcus aureus cell surface. MICROBIOLOGY (READING, ENGLAND) 2008; 154:865-877. [PMID: 18310032 PMCID: PMC2292800 DOI: 10.1099/mic.0.2007/013292-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Biofilm formation in Staphylococcus aureus is usually associated with the production of the poly-N-acetylglucosamine (PNAG) exopolysaccharide, synthesized by proteins encoded by the icaADBC operon. PNAG is a linear beta-(1-6)-linked N-acetylglucosaminoglycan that has to be partially deacetylated and consequently positively charged in order to be associated with bacterial cell surfaces. Here, we investigated whether attachment of PNAG to bacterial surfaces is mediated by ionic interactions with the negative charge of wall teichoic acids (WTAs), which represent the most abundant polyanions of the Gram-positive bacterial envelope. We generated WTA-deficient mutants by in-frame deletion of the tagO gene in two genetically unrelated S. aureus strains. The DeltatagO mutants were more sensitive to high temperatures, showed a higher degree of cell aggregation, had reduced initial adherence to abiotic surfaces and had a reduced capacity to form biofilms under both steady-state and flow conditions. However, the levels as well as the strength of the PNAG interaction with the bacterial cell surface were similar between DeltatagO mutants and their corresponding wild-type strains. Furthermore, double DeltatagO DeltaicaADBC mutants displayed a similar aggregative phenotype to that of single DeltatagO mutants, indicating that PNAG is not responsible for the aggregative behaviour observed in DeltatagO mutants. Overall, the absence of WTAs in S. aureus had little effect on PNAG production or anchoring to the cell surface, but did affect the biofilm-forming capacity, cell aggregative behaviour and the temperature sensitivity/stability of S. aureus.
Collapse
Affiliation(s)
- Marta Vergara-Irigaray
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra. 31006 Pamplona, Spain
| | - Tomas Maira-Litrán
- Channing Laboratory, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nekane Merino
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra. 31006 Pamplona, Spain
| | - Gerald B. Pier
- Channing Laboratory, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - José R. Penadés
- Centro de Investigación y Tecnología animal. Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), Apdo 187, 12400 Segorbe, Castellón, Spain
| | - Iñigo Lasa
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra. 31006 Pamplona, Spain
| |
Collapse
|
28
|
Late-stage polyribitol phosphate wall teichoic acid biosynthesis in Staphylococcus aureus. J Bacteriol 2008; 190:3046-56. [PMID: 18281399 DOI: 10.1128/jb.01880-07] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wall teichoic acids are cell wall polymers that maintain the integrity of the cellular envelope and contribute to the virulence of Staphylococcus aureus. Despite the central role of wall teichoic acid in S. aureus virulence, details concerning the biosynthetic pathway of the predominant wall teichoic acid polymer are lacking, and workers have relied on a presumed similarity to the putative polyribitol phosphate wall teichoic acid pathway in Bacillus subtilis. Using high-resolution polyacrylamide gel electrophoresis for analysis of wall teichoic acid extracted from gene deletion mutants, a revised assembly pathway for the late-stage ribitol phosphate-utilizing enzymes is proposed. Complementation studies show that a putative ribitol phosphate polymerase, TarL, catalyzes both the addition of the priming ribitol phosphate onto the linkage unit and the subsequent polymerization of the polyribitol chain. It is known that the putative ribitol primase, TarK, is also a bifunctional enzyme that catalyzes both ribitol phosphate priming and polymerization. TarK directs the synthesis of a second, electrophoretically distinct polyribitol-containing teichoic acid that we designate K-WTA. The biosynthesis of K-WTA in S. aureus strain NCTC8325 is repressed by the accessory gene regulator (agr) system. The demonstration of regulated wall teichoic acid biosynthesis has implications for cell envelope remodeling in relation to S. aureus adhesion and pathogenesis.
Collapse
|
29
|
Brown S, Zhang YH, Walker S. A revised pathway proposed for Staphylococcus aureus wall teichoic acid biosynthesis based on in vitro reconstitution of the intracellular steps. CHEMISTRY & BIOLOGY 2008; 15:12-21. [PMID: 18215769 PMCID: PMC2266831 DOI: 10.1016/j.chembiol.2007.11.011] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 11/09/2007] [Accepted: 11/14/2007] [Indexed: 11/15/2022]
Abstract
Resistance to every family of clinically used antibiotics has emerged, and there is a pressing need to explore unique antibacterial targets. Wall teichoic acids (WTAs) are anionic polymers that coat the cell walls of many Gram-positive bacteria. Because WTAs play an essential role in Staphylococcus aureus colonization and infection, the enzymes involved in WTA biosynthesis are proposed to be targets for antibiotic development. To facilitate the discovery of WTA inhibitors, we have reconstituted the intracellular steps of S. aureus WTA biosynthesis. We show that two intracellular steps in the biosynthetic pathway are different from what was proposed. The work reported here lays the foundation for the discovery and characterization of inhibitors of WTA biosynthetic enzymes to assess their potential for treating bacterial infections.
Collapse
Affiliation(s)
- Stephanie Brown
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
30
|
Bhavsar AP, D'Elia MA, Sahakian TD, Brown ED. The Amino terminus of Bacillus subtilis TagB possesses separable localization and functional properties. J Bacteriol 2007; 189:6816-23. [PMID: 17660278 PMCID: PMC2045227 DOI: 10.1128/jb.00910-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The function(s) of gram-positive wall teichoic acid is emerging with recent findings that it is an important virulence factor in the pathogen Staphylococcus aureus and that it is crucial to proper rod-shaped cell morphology of Bacillus subtilis. Despite its importance, our understanding of teichoic acid biosynthesis remains incomplete. The TagB protein has been implicated in the priming step of poly(glycerol phosphate) wall teichoic acid synthesis in B. subtilis. Work to date indicates that the TagB protein is localized to the membrane, where it adds a single glycerol phosphate residue to the nonreducing end of the undecaprenol-phosphate-linked N-acetylmannosamine-beta(1,4)-N-acetylglucosamine-1-phosphate. Thus, membrane association is critical to TagB function. In this work we elucidate the mechanism of TagB membrane localization. We report the identification of a membrane targeting determinant at the amino terminus of TagB that is necessary and sufficient for membrane localization. The putative amphipathicity of this membrane targeting determinant was characterized and shown to be required for TagB function but not localization. This work shows for the first time that the amino terminus of TagB mediates membrane targeting and protein function.
Collapse
Affiliation(s)
- Amit P Bhavsar
- Antimicrobial Research Centre, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | |
Collapse
|
31
|
Brown ED, Wright GD. New Targets and Screening Approaches in Antimicrobial Drug Discovery. Chem Rev 2005; 105:759-74. [PMID: 15700964 DOI: 10.1021/cr030116o] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eric D Brown
- Antimicrobial Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
| | | |
Collapse
|
32
|
Neuhaus FC, Baddiley J. A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol Mol Biol Rev 2003; 67:686-723. [PMID: 14665680 PMCID: PMC309049 DOI: 10.1128/mmbr.67.4.686-723.2003] [Citation(s) in RCA: 757] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Teichoic acids (TAs) are major wall and membrane components of most gram-positive bacteria. With few exceptions, they are polymers of glycerol-phosphate or ribitol-phosphate to which are attached glycosyl and D-alanyl ester residues. Wall TA is attached to peptidoglycan via a linkage unit, whereas lipoteichoic acid is attached to glycolipid intercalated in the membrane. Together with peptidoglycan, these polymers make up a polyanionic matrix that functions in (i) cation homeostasis; (ii) trafficking of ions, nutrients, proteins, and antibiotics; (iii) regulation of autolysins; and (iv) presentation of envelope proteins. The esterification of TAs with D-alanyl esters provides a means of modulating the net anionic charge, determining the cationic binding capacity, and displaying cations in the wall. This review addresses the structures and functions of D-alanyl-TAs, the D-alanylation system encoded by the dlt operon, and the roles of TAs in cell growth. The importance of dlt in the physiology of many organisms is illustrated by the variety of mutant phenotypes. In addition, advances in our understanding of D-alanyl ester function in virulence and host-mediated responses have been made possible through targeted mutagenesis of dlt. Studies of the mechanism of D-alanylation have identified two potential targets of antibacterial action and provided possible screening reactions for designing novel agents targeted to D-alanyl-TA synthesis.
Collapse
Affiliation(s)
- Francis C Neuhaus
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208. USA.
| | | |
Collapse
|
33
|
Yagi T, Mahapatra S, Mikusova K, Crick DC, Brennan PJ. Polymerization of mycobacterial arabinogalactan and ligation to peptidoglycan. J Biol Chem 2003; 278:26497-504. [PMID: 12719430 DOI: 10.1074/jbc.m302216200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cell wall of Mycobacterium spp. consists predominately of arabinogalactan chains linked at the reducing ends to peptidoglycan via a P-GlcNAc-(alpha1-3)-Rha linkage unit (LU) and esterified to a variety of mycolic acids at the nonreducing ends. Several aspects of the biosynthesis of this complex have been defined, including the initial formation of the LU on a polyprenyl phosphate (Pol-P) molecule followed by the sequential addition of galactofuranosyl (Galf) units to generate Pol-P-P-LU-(Galf)1,2,3, etc. and Pol-P-P-LU-galactan, catalyzed by a bifunctional galactosyltransferase (Rv3808c) capable of adding alternating 5- and 6-linked Galf units. By applying cell-free extracts of Mycobacterium smegmatis, containing cell wall and membrane fragments, and differential labeling with UDP-[14C]Galp and recombinant UDP-Galp mutase as the source of [14C]Galf for galactan biosynthesis and 5-P-[14C]ribosyl-P-P as a donor of [14C]Araf for arabinan synthesis, we now demonstrate sequential synthesis of the simpler Pol-P-P-LU-(Galf)n glycolipid intermediates followed by the Pol-P-P-LU-arabinogalactan and, finally, ligation of the P-LU-arabinogalactan to peptidoglycan. This first time demonstration of in vitro ligation of newly synthesized P-LU-arabinogalactan to newly synthesized peptidoglycan is a necessary forerunner to defining the genetics and enzymology of cell wall polymer-peptidoglycan ligation in Mycobacterium spp. and examining this step as a target for new antibacterial drugs.
Collapse
Affiliation(s)
- Tetsuya Yagi
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, USA
| | | | | | | | | |
Collapse
|
34
|
Yokoyama Y, Harabuchi Y. Decreased serum and pharyngeal antibody levels specific to streptococcal lipoteichoic acid in children with recurrent tonsillitis. Int J Pediatr Otorhinolaryngol 2002; 63:199-207. [PMID: 11997155 DOI: 10.1016/s0165-5876(02)00009-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Streptococcus (S.) pyogenes is a common cause of primary as well as recurrent tonsillitis (RT). Lipoteichoic acid (LTA) has been proposed as a possible candidate for vaccine formulation against streptococcal infections, because LTA is a common constituent of streptococci and the antibody to LTA inhibits bacterial attachment to epithelial cells in vitro. Streptolysin-O and streptococcal whole cell body are highly immunogenic and the antibodies to these antigens are reported to be better parameters for streptococcal infections The objective of the present study is to investigate how systemic and local immune activities against S. pyogenes may be associated with RT. METHODS Sera from 178 children with or without RT aged 1-15 years with a median age of 5 years were investigated for the levels of total immunoglobulins and antibodies specific to streptococcal antigens such as whole cell body, LTA, and streptolysin-O. Pharyngeal secretions from 67 children with or without RT aged 2-14 years with a median age of 6 years were subjects to secretory IgA (SIgA) antibody levels to streptococcal LTA. The antibodies to whole cell body and LTA were measured by enzyme-linked immunosorbent assay. Total immunoglobins and the anti-streptolysin-O antibody were assayed by nephelometry. RESULTS An age-matched comparison revealed that either levels of serum IgG antibody or pharyngeal SIgA antibody to streptococcal LTA at 2-5 years of age were significantly lower in RT children than in non-RT children (1.39 vs. 5.14 microg/ml, P=0.001; 10.6 vs. 29.9 units/ng/ml total SIgA, P=0.015; respectively) and correlated inversely to episodes of tonsillitis (r=-0.242, P=0.024; r=-0.3, P=0.024; respectively). Either serum total immunoglobulin levels of IgG or IgA correlated positively to episodes of tonsillitis in children aged 2-5 years (r=0.293, P=0.011; r=0.361, P=0.002; respectively). No difference was found on either serum levels of IgG antibody to streptococcal whole cell body or antibody to streptolysin-O between RT and non-RT children in any age-matched comparisons. High serum antibody levels to whole cell body was associated with high antibody levels to streptococcal LTA in non-RT children (r=0.198, P<0.05), but no association was found between these antibody levels in RT children. CONCLUSIONS Selective immunologic failure in systemic and pharyngeal antibody response to streptococcal LTA may be a potential cause of RT in young children.
Collapse
Affiliation(s)
- Yuji Yokoyama
- Tomakomai Otolaryngology Clinic, Shin-nakano, Tomakomai 3-9-8, 053-0006, Japan
| | | |
Collapse
|
35
|
Yokoyama Y, Harabuchi Y. Intranasal immunization with lipoteichoic acid and cholera toxin evokes specific pharyngeal IgA and systemic IgG responses and inhibits streptococcal adherence to pharyngeal epithelial cells in mice. Int J Pediatr Otorhinolaryngol 2002; 63:235-41. [PMID: 11997159 DOI: 10.1016/s0165-5876(02)00021-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Streptococcus (S.) pyogenes is common cause of acute tonsillitis. Lipoteichoic acid (LTA), which is a common constitute of the cell surface of most gram positive bacteria, is known to act as a substance of bacterial site for adherence to epithelium and antiserum to LTA is reported to inhibit bacterial attachment to epithelial cells in vitro. Cholera toxin subunit B (CT-B) is known to be a mucosal adjuvant. The purpose of this study is to investigate whether intranasal immunization with LTA and CT-B may be a possible candidate for vaccine formulation. METHODS Six-week-old male BALB/c mice were assigned to three experimental groups, mice immunized with LTA and CT-B, with LTA alone and with phosphate buffered saline (PBS) as a control. Immunizations were performed intranasally every 2 days for 2 weeks in every group. At the 21 days after immunization, sera, pharyngeal washings and pharyngeal epithelial cells were taken. The levels of serum IgG and pharyngeal IgA antibodies to LTA were measured by enzyme-linked immunosorbent assay (ELISA). The adherence rates of S. pyogenes pretreated by pharyngeal washings to pharyngeal epithelial cells from the mice were determined by in vitro adherence assay. RESULTS The serum anti-LTA IgG antibody levels of either mice immunized with LTA and CT-B or mice immunized with LTA alone were significantly higher than those of mice administered with PBS alone. The pharyngeal anti-LTA IgA antibody levels of the mice immunized with LTA and CT-B were significantly higher than those of either mice with LTA alone or mice with PBS alone. The streptococcal adherence rates to pharyngeal epithelial cells were significantly decreased by pretreatment with pharyngeal washings from the mice immunized with LTA and CT-B as compared with pretreatment with those from either mice with PBS or mice with LTA alone. CONCLUSIONS These data shows that intranasal immunization with LTA and CT-B evokes a good pharyngeal IgA response as well as systemic IgG response to LTA and inhibits streptococcal adherence to pharyngeal epithelial cells, suggesting that intranasal immunization with LTA and CT-B may be an effective approach to prevent streptococcal tonsillitis.
Collapse
Affiliation(s)
- Yuji Yokoyama
- Tomakomai Otolaryngology Clinic, Shin-nakano 3-9-8, Tomakomai 053-0006, Japan
| | | |
Collapse
|
36
|
Stephenson K, Jensen CL, Jørgensen ST, Lakey JH, Harwood CR. The influence of secretory-protein charge on late stages of secretion from the Gram-positive bacterium Bacillus subtilis. Biochem J 2000; 350 Pt 1:31-9. [PMID: 10926823 PMCID: PMC1221221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Following their secretion across the cytoplasmic membrane, processed secretory proteins of Bacillus subtilis must fold into their native conformation prior to translocation through the cell wall and release into the culture medium. The rate and efficiency of folding are critical in determining the yields of intact secretory proteins. The B. subtilis membrane is surrounded by a thick cell wall comprising a heteropolymeric matrix of peptidoglycan and anionic polymers. The latter confer a high density of negative charge on the wall, endowing it with ion-exchange properties, and secretory proteins destined for the culture medium must traverse the wall as the last stage in the export process. To determine the influence of charge on late stages in the secretion of proteins from this bacterium, we have used sequence data from two related alpha-amylases, to engineer the net charge of AmyL, an alpha-amylase from Bacillus licheniformis that is normally secreted efficiently from B. subtilis. While AmyL has a pI of 7.0, chimaeric enzymes with pI values of 5.0 and 10.0 were produced and characterized. Despite the engineered changes to their physico-chemical properties, the chimaeric enzymes retained many of the enzymic characteristics of AmyL. We show that the positively charged protein interacts with the cell wall in a manner that influences its secretion.
Collapse
Affiliation(s)
- K Stephenson
- Department of Microbiology and Immunology, The Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne, NE24HH, U.K
| | | | | | | | | |
Collapse
|
37
|
Ashbaugh CD, Albertí S, Wessels MR. Molecular analysis of the capsule gene region of group A Streptococcus: the hasAB genes are sufficient for capsule expression. J Bacteriol 1998; 180:4955-9. [PMID: 9733702 PMCID: PMC107524 DOI: 10.1128/jb.180.18.4955-4959.1998] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/1998] [Accepted: 07/11/1998] [Indexed: 11/20/2022] Open
Abstract
Enzymes directing the biosynthesis of the group A streptococcal hyaluronic acid capsule are encoded in the hasABC gene cluster. Inactivation of hasC, encoding UDP-glucose pyrophosphorylase in the heavily encapsulated group A streptococcal strain 87-282, had no effect on capsule production, indicating that hasC is not required for hyaluronic acid synthesis and that an alternative source of UDP-glucose is available for capsule production. Nucleotide sequence and deletion mutation analysis of the 5.5 kb of DNA upstream of hasA revealed that this region is not required for capsule expression. Many (10 of 23) group A streptococcal strains were found to contain insertion element IS1239' approximately 50 nucleotides upstream of the -35 site of the hasA promoter. The presence of IS1239' upstream of hasA did not prevent capsule expression. These results elucidate the molecular architecture of the group A streptococcal chromosomal region upstream of the has operon, indicate that hasABC are the sole components of the capsule gene cluster, and demonstrate that hasAB are sufficient to direct capsule synthesis in group A streptococci.
Collapse
Affiliation(s)
- C D Ashbaugh
- Channing Laboratory, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
38
|
Qi Y, Hulett FM. Role of Pho-P in transcriptional regulation of genes involved in cell wall anionic polymer biosynthesis in Bacillus subtilis. J Bacteriol 1998; 180:4007-10. [PMID: 9683503 PMCID: PMC107390 DOI: 10.1128/jb.180.15.4007-4010.1998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
tagA, tagD, and tuaA operons are responsible for the synthesis of cell wall anionic polymer, teichoic acid, and teichuronic acid, respectively, in Bacillus subtilis. Under phosphate starvation conditions, teichuronic acid is synthesized while teichoic acid synthesis is inhibited. Expression of these genes is controlled by PhoP-PhoR, a two-component system. It has been proposed that Pho-P plays a key role in the activation of tuaA and the repression of tagA and tagD. In this study, we demonstrated the role of Pho-P in the switch process from teichoic acid synthesis to teichuronic acid synthesis, by using an in vitro transcription system. The results indicate that PhoP approximately P is sufficient to repress the transcription of the tagA and tagD promoters and also to activate the transcription of the tuaA promoter.
Collapse
Affiliation(s)
- Y Qi
- Laboratory for Molecular Biology, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | |
Collapse
|
39
|
Weber BA, Klein JR, Henrich B. The arbZ gene from Lactobacillus delbrueckii subsp. lactis confers to Escherichia coli the ability to utilize the beta-glucoside arbutin. Gene X 1998; 212:203-11. [PMID: 9611263 DOI: 10.1016/s0378-1119(98)00156-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
From a genomic library of the industrially used strain Lactobacillus delbrueckii subsp. lactis DSM7290, a gene designated arbZ (869bp; encoding a 33.5kDa protein) was isolated by screening E. coli transformants for the ability to utilize the beta-glucoside arbutin. Out of 9000 transformants nine were able to ferment arbutin, whereas no utilization of the beta-glucosides salicin, esculin or cellobiose could be detected. Overexpression of arbZ using the T7-polymerase-T7-promoter-system resulted in the formation of insoluble, catalytically inactive protein aggregates (inclusion bodies). Accordingly, overexpression was not accompanied by an increase in ArbZ activity. Induction of arbZ controlled by the lac promoter under conditions that reduce protein aggregation resulted in a 12-fold increase in arbutin hydrolyzing activity of intact cells and a 13-fold increase in phospho-beta-glycosidase activity in cell-free extracts of the respective transformants. Nucleotide sequence analysis revealed a second gene upstream of arbZ that was designated arbX (830bp). ArbX (32.6kDa) shared similarity with several glycosyltransferases involved in the biosynthesis of lipopolysaccharides in Gram-negative bacteria. In Lb. delbrueckii subsp. lactis DSM7290 two transcripts, one covering arbX together with arbZ and one covering arbZ alone were detected by Northern blot analysis.
Collapse
Affiliation(s)
- B A Weber
- Fachbereich Biologie, Abteilung Mikrobiologie, Universitaet Kaiserslautern, Postfach 3049, D-67653, Kaiserslautern, Germany.
| | | | | |
Collapse
|
40
|
Liu W, Eder S, Hulett FM. Analysis of Bacillus subtilis tagAB and tagDEF expression during phosphate starvation identifies a repressor role for PhoP-P. J Bacteriol 1998; 180:753-8. [PMID: 9457886 PMCID: PMC106950 DOI: 10.1128/jb.180.3.753-758.1998] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tagAB and tagDEF operons, which are adjacent and divergently transcribed, encode genes responsible for cell wall teichoic acid synthesis in Bacillus subtilis. The Bacillus data presented here suggest that PhoP and PhoR are required for direct repression of transcription of the two operons under phosphate starvation conditions but have no regulatory role under phosphate-replete conditions. These data identify for the first time that PhoP-P has a negative role in Pho regulon gene regulation.
Collapse
Affiliation(s)
- W Liu
- Laboratory for Molecular Biology, University of Illinois at Chicago, 60607, USA
| | | | | |
Collapse
|
41
|
Non-conventional surfactants from amino acids and glycolipids: Structure, preparation and properties. Colloids Surf A Physicochem Eng Asp 1997. [DOI: 10.1016/s0927-7757(96)03793-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Perego M, Glaser P, Minutello A, Strauch MA, Leopold K, Fischer W. Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation. J Biol Chem 1995; 270:15598-606. [PMID: 7797557 DOI: 10.1074/jbc.270.26.15598] [Citation(s) in RCA: 219] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Bacillus subtilis dlt operon (D-alanyl-lipoteichoic acid) is responsible for D-alanine esterification of both lipoteichoic acid (LTA) and wall teichoic acid (WTA). The dlt operon contains five genes, dltA-dltE. Insertional inactivation of dltA-dltD results in complete absence of D-alanine from both LTA and WTA. Based on protein sequence similarity with the Lactobacillus casei dlt gene products (Heaton, M. P., and Neuhaus, F. C. (1992) J. Bacteriol. 174, 4707-4717), we propose that dltA encodes the D-alanine-D-alanyl carrier protein ligase (Dcl) and dltC the D-alanyl carrier protein (Dcp). We further hypothesize that the products of dltB and dltD are concerned with the transport of activated D-alanine through the membrane and the final incorporation of D-alanine into LTA. The hydropathy profiles of the dltB and dltD gene products suggest a transmembrane location for the former and an amino-terminal signal peptide for the latter. The incorporation of D-alanine into LTA and WTA did not separate in any of the mutants studied which indicates that either one and the same enzyme is responsible for D-alanine incorporation into both polymers or a separate enzyme, encoded outside the dlt operon, transfers the D-alanyl residues from LTA to WTA (Haas, R., Koch, H.-U., and Fischer, W. (1984) FEMS Microbiol. Lett. 21, 27-31). Inactivation of dltE has no effect on D-alanine ester content of both LTA and WTA, and at present we cannot propose any function for its gene product. Transcription analysis shows that the dlt operon is transcribed from a sigma D-dependent promoter and follows the pattern of transcription of genes belonging to the sigma D regulon. However, the turn off of transcription observed before sporulation starts seems to be dependent on the Spo0A and AbrB sporulation proteins and results in a D-alanine-free purely anionic LTA in the spore membrane. The dlt operon is dispensable for cell growth; its inactivation does not affect cell growth or morphology as described for L. casei.
Collapse
Affiliation(s)
- M Perego
- Dipartimento Farmaceutico, Facolta' di Farmacia, Universita' degli Studi di Parma, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Bingham BR, Quinlan GJ, Tarelli E. Iron-binding affinity of bacterial vaccine polysaccharides which contain phosphodiester linkages as part of the polymer chain and of other polyphosphates, including DNA. J Pharm Pharmacol 1994; 46:1000-3. [PMID: 7714710 DOI: 10.1111/j.2042-7158.1994.tb03256.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The interaction of iron (II) with bacterial polysaccharides, possessing phosphodiester bonds as part of their polymer chain, has been studied by equilibrium binding dialysis using atomic absorption spectrophotometry. Ferrous ions were found to bind with a stoichiometry of one per two phosphates and with a binding constant of about 2.5 x 10(3) M-1. Similar results, but with larger (ca 1 x 10(4) M-1) binding constants were observed with DNA. This interaction helps explain the depolymerization of polyphosphates which has been observed in the presence of iron salts, and highlights the need to avoid iron contamination of vaccines (and other substances) which contain phosphodiester bonds. The interaction may also be a means of iron sequestration in bacteria which possess these cell-surface polyphosphates.
Collapse
Affiliation(s)
- B R Bingham
- Division of Chemistry, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, UK
| | | | | |
Collapse
|
44
|
Heaton MP, Neuhaus FC. Role of the D-alanyl carrier protein in the biosynthesis of D-alanyl-lipoteichoic acid. J Bacteriol 1994; 176:681-90. [PMID: 8300523 PMCID: PMC205105 DOI: 10.1128/jb.176.3.681-690.1994] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
D-Alanyl-lipoteichoic acid (D-alanyl-LTA) is a widespread macroamphiphile which plays a vital role in the growth and development of gram-positive organisms. The biosynthesis of this polymer requires the enzymic activation of D-alanine for its transfer to the membrane-associated LTA (mLTA). A small, heat-stable, and acidic protein that is required for this transfer was purified to greater than 98% homogeneity from Lactobacillus casei ATCC 7469. This protein, previously named the D-alanine-membrane acceptor ligase (V. M. Reusch, Jr., and F. C. Neuhaus, J. Biol. Chem. 246:6136-6143, 1971), functions as the D-alanyl carrier protein (Dcp). The amino acid composition, beta-alanine content, and N-terminal sequence of this protein are similar to those of the acyl carrier proteins (ACPs) of fatty acid biosynthesis. The isolation of Dcp and its derivative, D-alanyl approximately Dcp, has allowed the characterization of two novel reactions in the pathway for D-alanyl-mLTA biosynthesis: (i) the ligation of Dcp with D-alanine and (ii) the transfer of D-alanine from D-alanyl approximately Dcp to a membrane acceptor. It has not been established whether the membrane acceptor is mLTA or another intermediate in the pathway for D-alanyl-mLTA biosynthesis. Since the D-alanine-activating enzyme (EC 6.1.1.13) catalyzes the ligation reaction, this enzyme functions as the D-alanine-Dcp ligase (Dcl). Dcl also ligated the ACPs from Escherichia coli, Vibrio harveyi, and Saccharopolyspora erythraea with D-alanine. In contrast to the relaxed specificity of Dcl in the ligation reaction, the transfer of D-alanine to the membrane acceptor was highly specific for Dcp and did not occur with other ACPs. This transfer was observed by using only D-[14C]alanyl approximately Dcp and purified L. casei membranes. Thus, D-alanyl approximately Dcp is an essential intermediate in the transfer of D-alanine from Dcl to the membrane acceptor. The formation of D-alanine esters of mLTA provides a mechanism for modulating the net anionic charge in the cell wall.
Collapse
Affiliation(s)
- M P Heaton
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208
| | | |
Collapse
|
45
|
Schubert K, Reiml D, Accolas JP, Fiedler F. A novel type of meso-diaminopimelic acid-based peptidoglycan and novel poly(erythritol phosphate) teichoic acids in cell walls of two coryneform isolates from the surface flora of French cooked cheeses. Arch Microbiol 1993; 160:222-8. [PMID: 8215798 DOI: 10.1007/bf00249128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The primary structure of the peptidoglycan and the teichoic acids of two coryneform isolates from the surface flora of French cooked cheeses, CNRZ 925 and CNRZ 926, have been determined. In the peptidoglycan, meso-diaminopimelic acid was localized in position three of the peptide subunit. It contained an D-glutamyl-D-aspartyl interpeptide bridge, connecting meso-diaminopimelic acid and D-alanine residues of adjacent peptide subunits. The alpha-carboxyl group of D-glutamic acid in position two of peptide subunits was substituted with glycine amide. The teichoic acid pattern and composition differed between the strains: both contained an erythritol teichoic acid and strain CNRZ 925 also contained an N-acetylglucosaminylphosphate polymer. The erythritol teichoic acids differed in terms of the quality and quantity of substituents, but they both had N,N'-diacetyl-2,3-diamino-2,3-dideoxyglucuronic acid in common.
Collapse
Affiliation(s)
- K Schubert
- Institut für Genetik und Mikrobiologie der Universität München, Germany
| | | | | | | |
Collapse
|
46
|
Horne DS, Tomasz A. Possible role of a choline-containing teichoic acid in the maintenance of normal cell shape and physiology in Streptococcus oralis. J Bacteriol 1993; 175:1717-22. [PMID: 8449879 PMCID: PMC203966 DOI: 10.1128/jb.175.6.1717-1722.1993] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Streptococcus oralis ATCC 35037 took up radioactively labeled choline from growth medium. Most of the choline (80 to 90%) was incorporated into the cell wall teichoic acid, and about 10% was localized in the plasma membrane. While cells grew in choline-free medium, they did so at slow rates and produced cell walls with greatly reduced amounts of phosphate and no detectable choline. Cells grown in choline-free medium had grossly abnormal shape and size. Both biochemical and morphological abnormalities were reversible by addition of choline to the medium.
Collapse
Affiliation(s)
- D S Horne
- Department of Microbiology, Weber State University, Ogden, Utah 84408-2506
| | | |
Collapse
|
47
|
Abstract
The role of the rodC operon in Bacillus subtilis was investigated. The operon encodes two genes (rodD and rodC) necessary for the synthesis of the cell wall teichoic acid. Transcription of this operon is responsive to levels of phosphate and to concentrations of magnesium ions in the growth medium. This regulation of mRNA production corresponds to conditions that dictate the type of polymer that will be synthesized for the cell wall, i.e., teichoic or teichuronic acid. While the introduction of multiple copies of rodC was tolerated by the cells, multiple copies of rodD appeared to be lethal. The lethality of the rodD fragment was not exhibited if multiple copies of rodC were also present.
Collapse
Affiliation(s)
- P M Wagner
- Department of Microbiology, University of Kansas, Lawrence 66045
| | | |
Collapse
|
48
|
Wergeland HI, Haaheim LR, Natås OB, Wesenberg F, Oeding P. Antibodies to staphylococcal peptidoglycan and its peptide epitopes, teichoic acid, and lipoteichoic acid in sera from blood donors and patients with staphylococcal infections. J Clin Microbiol 1989; 27:1286-91. [PMID: 2473994 PMCID: PMC267543 DOI: 10.1128/jcm.27.6.1286-1291.1989] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Antibodies to the staphylococcal antigens peptidoglycan, beta-ribitol teichoic acid, and lipoteichoic acid, as well as to the peptidoglycan epitopes L-Lys-D-Ala-D-Ala, L-Lys-D-Ala, and pentaglycine, were found over a wide range of concentrations in sera from both blood donors and patients with verified or suspected staphylococcal infections. The patient group was heterogeneous with regard to both age and type of staphylococcal infections, being representative for sera sent to our laboratory. In single-antigen assays antibodies to pentaglycine had the highest predictive positive value (67%), although only 32% of the patients had elevated levels of such antibodies. Combinations of test antigens could yield positive predictive values as high as 100%, but then the fraction of positive sera was low. Indeed, the fraction of patient sera which was positive in multiple-antigen tests never exceeded 61%. The clinical usefulness of these seroassays for identifying Staphylococcus aureus as a causative agent was limited, owing to the considerable overlap in the range of antibody concentrations between patient and blood donor sera.
Collapse
Affiliation(s)
- H I Wergeland
- Department of Microbiology and Immunology, Gade Institute, Bergen, Norway
| | | | | | | | | |
Collapse
|
49
|
Shimada A, Tamatukuri J, Ito E. Function of alpha-D-glucosyl monophosphorylpolyprenol in biosynthesis of cell wall teichoic acids in Bacillus coagulans. J Bacteriol 1989; 171:2835-41. [PMID: 2708320 PMCID: PMC209971 DOI: 10.1128/jb.171.5.2835-2841.1989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
D-[alpha-14C]]glucosyl phosphorylpolyprenol ([ 14C]Glc-P-prenol) was formed from UDP-D-[14C]glucose in each of the membrane systems obtained from Bacillus coagulans AHU 1631 and AHU 1634 and two Bacillus megaterium strains. Membranes of these B. coagulans strains, which possess beta-D-glucosyl branches on the repeating units in their major cell wall teichoic acids, were shown to catalyze the transfer of the glucose residue from [14C]Glc-P-prenol to endogenous polymer. On the other hand, membranes of B. coagulans AHU 1366, which has no glucose substituents in the cell wall teichoic acid, exhibited neither [14C]Glc-P-prenol synthetase activity nor the activity of transferring glucose from [14C]Glc-P-prenol to endogenous acceptor. The enzyme which catalyzes the polymer glycosylation in the former two B. coagulans strains was most active at pH 5.5 and in the presence of the Mg2+ ion. The apparent Km for [14C]Glc-P-prenol was 0.6 microM. Hydrogen fluoride hydrolysis of the [14C]glucose-linked polymer product yielded a major fragment identical to D-galactosyl-alpha(1----2)(D-glucosyl-beta(1----1/3)) glycerol, the dephosphorylated repeating unit in the major cell wall teichoic acids of these B. coagulans strains. This result, together with the behavior of the radioactive polymer in chromatography on Sepharose CL-6B, DEAE-Sephacel, and Octyl-Sepharose CL-4B, led to the conclusion that [14C]Glc-P-prenol serves as an intermediate in the formation of beta-D-glucosyl branches on the polymer chains of cell wall teichoic acids in B. coagulans.
Collapse
Affiliation(s)
- A Shimada
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
50
|
Mauël C, Young M, Margot P, Karamata D. The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis. MOLECULAR & GENERAL GENETICS : MGG 1989; 215:388-94. [PMID: 2496299 DOI: 10.1007/bf00427034] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A 30 kb DNA segment from the region of the Bacillus subtilis strain 168 chromosome which contains most, if not all, loci specifically involved in teichoic acid biosynthesis, has been cloned. A restriction map was established to which genetic markers were assigned. Four loci, tagA, tagB, gtaA and gtaD, are located on a DNA segment of about 7 kb, whereas the gtaB locus lies some 10 kb distant. The tagA and tagB loci are apparently transcribed independently. Insertional mutagenesis, using integrational plasmids carrying relevant fragments from the tag region, provides strong evidence that biosynthesis of polyglycerol phosphate [poly(groP)], so far largely considered as a dispensable polymer, is in fact essential for growth.
Collapse
Affiliation(s)
- C Mauël
- Institut de Génétique et Biologie Microbiennes, Lausanne, Switzerland
| | | | | | | |
Collapse
|