1
|
Bogaert KA, Zakka EE, Coelho SM, De Clerck O. Polarization of brown algal zygotes. Semin Cell Dev Biol 2023; 134:90-102. [PMID: 35317961 DOI: 10.1016/j.semcdb.2022.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022]
Abstract
Brown algae are a group of multicellular, heterokont algae that have convergently evolved developmental complexity that rivals that of embryophytes, animals or fungi. Early in development, brown algal zygotes establish a basal and an apical pole, which will become respectively the basal system (holdfast) and the apical system (thallus) of the adult alga. Brown algae are interesting models for understanding the establishment of cell polarity in a broad evolutionary context, because they exhibit a large diversity of life cycles, reproductive strategies and, importantly, their zygotes are produced in large quantities free of parental tissue, with symmetry breaking and asymmetric division taking place in a highly synchronous manner. This review describes the current knowledge about the establishment of the apical-basal axis in the model brown seaweeds Ectocarpus, Dictyota, Fucus and Saccharina, highlighting the advantages and specific interests of each system. Ectocarpus is a genetic model system that allows access to the molecular basis of early development and life-cycle control over apical-basal polarity. The oogamous brown alga Fucus, together with emerging comparative models Dictyota and Saccharina, emphasize the diversity of strategies of symmetry breaking in determining a cell polarity vector in brown algae. A comparison with symmetry-breaking mechanisms in land plants, animals and fungi, reveals that the one-step zygote polarisation of Fucus compares well to Saccharomyces budding and Arabidopsis stomata development, while the two-phased symmetry breaking in the Dictyota zygote compares to Schizosaccharomyces fission, the Caenorhabditis anterior-posterior zygote polarisation and Arabidopsis prolate pollen polarisation. The apical-basal patterning in Saccharina zygotes on the other hand, may be seen as analogous to that of land plants. Overall, brown algae have the potential to bring exciting new information on how a single cell gives rise to an entire complex body plan.
Collapse
Affiliation(s)
- Kenny A Bogaert
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium.
| | - Eliane E Zakka
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Olivier De Clerck
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium
| |
Collapse
|
2
|
Calvo P, Baluška F, Trewavas A. Integrated information as a possible basis for plant consciousness. Biochem Biophys Res Commun 2020; 564:158-165. [PMID: 33081970 DOI: 10.1016/j.bbrc.2020.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/23/2020] [Accepted: 10/09/2020] [Indexed: 12/29/2022]
Abstract
It is commonly assumed that plants do not possess consciousness. Since the criterion for this assumption is usually human consciousness this assumption represents a top down attitude. It is obvious that plants are not animals and using animal criteria of consciousness will lead to its rejection in plants. However using a bottom up evolutionary approach and a leading theory of consciousness, Integrated Information Theory, we report that we find evidence that indicates that plant meristems act in a conscious fashion although probably at the level of minimal consciousness. Since many plants contain multiple meristems these observations highlight a very different evolutionary approach to consciousness in biological organisms.
Collapse
Affiliation(s)
- Paco Calvo
- Minimal Intelligence Laboratory, Universidad de Murcia, Murcia, Spain.
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Anthony Trewavas
- Institute of Molecular Plant Science, Kings Buildings, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
3
|
Tung A, Levin M. Extra-genomic instructive influences in morphogenesis: A review of external signals that regulate growth and form. Dev Biol 2020; 461:1-12. [PMID: 31981561 DOI: 10.1016/j.ydbio.2020.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
Abstract
Embryonic development and regeneration accomplish a remarkable feat: individual cells work together to create or repair complex anatomical structures. What is the source of the instructive signals that specify these invariant and robust organ-level outcomes? The most frequently studied source of morphogenetic control is the host genome and its transcriptional circuits. However, it is now apparent that significant information affecting patterning also arrives from outside of the body. Both biotic and physical factors, including temperature and various molecular signals emanating from pathogens, commensals, and conspecific organisms, affect developmental outcomes. Here, we review examples in which anatomical patterning decisions are strongly impacted by lateral signals that originate from outside of the zygotic genome. The endogenous pathways targeted by these influences often show transgenerational effects, enabling them to shape the evolution of anatomies even faster than traditional Baldwin-type assimilation. We also discuss recent advances in the biophysics of morphogenetic controls and speculate on additional sources of important patterning information which could be exploited to better understand the evolution of bodies and to design novel approaches for regenerative medicine.
Collapse
Affiliation(s)
- Angela Tung
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Michael Levin
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
4
|
Takahashi F. Blue-light-regulated transcription factor, Aureochrome, in photosynthetic stramenopiles. JOURNAL OF PLANT RESEARCH 2016; 129:189-197. [PMID: 26781435 DOI: 10.1007/s10265-016-0784-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/23/2015] [Indexed: 06/05/2023]
Abstract
During the course of evolution through various endosymbiotic processes, diverse photosynthetic eukaryotes acquired blue light (BL) responses that do not use photosynthetic pathways. Photosynthetic stramenopiles, which have red algae-derived chloroplasts through secondary symbiosis, are principal primary producers in aquatic environments, and play important roles in ecosystems and aquaculture. Through secondary symbiosis, these taxa acquired BL responses, such as phototropism, chloroplast photo-relocation movement, and photomorphogenesis similar to those which green plants acquired through primary symbiosis. Photosynthetic stramenopile BL receptors were undefined until the discovery in 2007, of a new type of BL receptor, the aureochrome (AUREO), from the photosynthetic stramenopile alga, Vaucheria. AUREO has a bZIP domain and a LOV domain, and thus BL-responsive transcription factor. AUREO orthologs are only conserved in photosynthetic stramenopiles, such as brown algae, diatoms, and red tide algae. Here, a brief review is presented of the role of AUREOs as photoreceptors for these diverse BL responses and their biochemical properties in photosynthetic stramenopiles.
Collapse
Affiliation(s)
- Fumio Takahashi
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
5
|
Rover T, Simioni C, Hable W, Bouzon ZL. Ultrastructural and structural characterization of zygotes and embryos during development in Sargassum cymosum (Phaeophyceae, Fucales). PROTOPLASMA 2015; 252:505-18. [PMID: 25252885 DOI: 10.1007/s00709-014-0696-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/26/2014] [Indexed: 06/03/2023]
Abstract
This study investigates the pattern and performance of cellular structures during the early development of zygotes and embryos of Sargassum cymosum. The early development S. cymosum germlings has already been characterized and compared with the pattern of development established for all fucoid algae, in which the zygote remains attached to the receptacle by mucilage during the establishment of polarity and early cell division. As in the algae Fucus and Silvetia, the first division is transverse across the longer axis of the zygote of S. cymosum. However, the cell that will give rise to the rhizoids is not determined in the first division; rather, the formation of this cell occurs with the second division, forming a small cell in the embryo shaded site. Stabilizing polarity during the process of forming a multicellular embryo occurs rapidly. During development, significant cytoplasmic alterations take place. Initially, the cytoplasm shows large clusters of phenolic compounds located in specific parts, but later, in the course of development, these compounds are dispersed in the cytoplasm, although a significant amount remains confined to the nucleus. Moreover, to produce more zygotes and higher growth rates for the germlings, the best conditions found for the species S. cymosum were 22 and 26 °C, respectively.
Collapse
Affiliation(s)
- Ticiane Rover
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina (UFSC), Trindade, 88040-900, Florianópolis, Santa Catarina, Brazil,
| | | | | | | |
Collapse
|
6
|
Hable WE. Rac1 signaling in the establishment of the fucoid algal body plan. FRONTIERS IN PLANT SCIENCE 2014; 5:690. [PMID: 25540648 PMCID: PMC4261725 DOI: 10.3389/fpls.2014.00690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/18/2014] [Indexed: 05/21/2023]
Abstract
Fucoid zygotes use environmental vectors, including sunlight, to initiate a growth axis a few hours after fertilization. The first division is then transversely oriented by the growth axis, producing daughter cells of distinct fates. The tip growing rhizoid cell gives rise to the holdfast, anchoring the alga to the intertidal substratum, while the opposite thallus cell mainly generates the photosynthetic and reproductive stipe and fronds. Elaboration of this simple growth axis thus establishes the basic body plan of the adult; and elucidating the mechanisms responsible for formation of the growth axis is paramount to understanding fucoid morphogenesis. Recent studies have culminated in a model whereby sunlight, and perhaps other environmental cues, activate the signaling protein Rac1 at the rhizoid pole. Here it sets in motion nucleation of a patch of actin filaments that in turn, targets ions, proteins, and cellular processes to the future growth site. At germination, Rac1 initiates morphogenesis by inducing transformation of the patch of actin filaments to a structure that delivers vesicles to the growing tip, and a few hours later orients the spindle and cytokinetic plate.
Collapse
Affiliation(s)
- Whitney E. Hable
- *Correspondence: Whitney E. Hable, Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA 02747, USA e-mail:
| |
Collapse
|
7
|
Hable WE, Nguyen X. Polychlorinated biphenyls disrupt cell division and tip growth in two species of fucoid algae. JOURNAL OF PHYCOLOGY 2013; 49:701-708. [PMID: 27007202 DOI: 10.1111/jpy.12078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 04/05/2013] [Indexed: 06/05/2023]
Abstract
Environmental contaminants, including poly-chlorinated biphenyls (PCBs), are enriched in coastal sediments, and despite a 1977 moratorium by the United States Environmental Protection Agency on the production of PCBs, levels remain high, more so near former industrial plants. The effects of these contaminants on sessile species in the intertidal zone, particularly nonanimal species such as the ubiquitous fucoid brown algae, are not well known. We investigated the developmental effects of chronic PCB treatment beginning at fertilization on two species of marine rockweed, Fucus vesiculosus Linnaeus and Silvetia compressa (J.Agardh) E.Serrão, T.O.Cho, S.M.Boo & Brawley. A mixture of the most widely used PCB congeners, Aroclors 1221, 1242, and 1254, was delivered at concentrations well below levels found in contaminated sediments, and resulted in severely delayed mitosis and cytokinesis in both species. In F. vesiculosus, this delay was accompanied by abnormal spindle morphology. PCB treatment also dramatically slowed or arrested rhizoid growth after 2-4 d, and by 7 d F. vesiculosus embryos were dead; in contrast, polar secretion of adhesive, germination, and photopolar germination were not affected. The dramatic delay in the first cell division and reduction in tip growth within the first week of development are likely to compromise S. compressa's ability to reproduce and establish new generations. Thus, the data presented here suggest that PCBs still present in coastal sediments may be inhibiting recruitment in these species. Moreover, as sediment dredging causes temporary spikes in PCB concentrations, these kinds of bioremediation steps may exacerbate the disruption of fucoid development.
Collapse
Affiliation(s)
- Whitney E Hable
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Rd, Dartmouth, MA, 02747, USA
| | - Xuan Nguyen
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Rd, Dartmouth, MA, 02747, USA
| |
Collapse
|
8
|
Le Bail A, Billoud B, Le Panse S, Chenivesse S, Charrier B. ETOILE regulates developmental patterning in the filamentous brown alga Ectocarpus siliculosus. THE PLANT CELL 2011; 23:1666-78. [PMID: 21478443 PMCID: PMC3101566 DOI: 10.1105/tpc.110.081919] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 01/14/2011] [Accepted: 03/18/2011] [Indexed: 05/06/2023]
Abstract
Brown algae are multicellular marine organisms evolutionarily distant from both metazoans and land plants. The molecular or cellular mechanisms that govern the developmental patterning in brown algae are poorly characterized. Here, we report the first morphogenetic mutant, étoile (etl), produced in the brown algal model Ectocarpus siliculosus. Genetic, cellular, and morphometric analyses showed that a single recessive locus, ETL, regulates cell differentiation: etl cells display thickening of the extracellular matrix (ECM), and the elongated, apical, and actively dividing E cells are underrepresented. As a result of this defect, the overrepresentation of round, branch-initiating R cells in the etl mutant leads to the rapid induction of the branching process at the expense of the uniaxial growth in the primary filament. Computational modeling allowed the simulation of the etl mutant phenotype by including a modified response to the neighborhood information in the division rules used to specify wild-type development. Microarray experiments supported the hypothesis of a defect in cell-cell communication, as primarily Lin-Notch-domain transmembrane proteins, which share similarities with metazoan Notch proteins involved in binary cell differentiation were repressed in etl. Thus, our study highlights the role of the ECM and of novel transmembrane proteins in cell-cell communication during the establishment of the developmental pattern in this brown alga.
Collapse
Affiliation(s)
- Aude Le Bail
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139 Végétaux Marins et Biomolécules, Station Biologique, F 29682 Roscoff, France
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche 7139 Végétaux Marins et Biomolécules, Station Biologique, F 29682 Roscoff, France
| | - Bernard Billoud
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139 Végétaux Marins et Biomolécules, Station Biologique, F 29682 Roscoff, France
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche 7139 Végétaux Marins et Biomolécules, Station Biologique, F 29682 Roscoff, France
| | - Sophie Le Panse
- Plateforme d’Imagerie, Fédération de Recherche 2424, Centre National de la Recherche Scientifique, Station Biologique, Place Georges Teissier, 29682 Roscoff Cedex, France
| | - Sabine Chenivesse
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139 Végétaux Marins et Biomolécules, Station Biologique, F 29682 Roscoff, France
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche 7139 Végétaux Marins et Biomolécules, Station Biologique, F 29682 Roscoff, France
| | - Bénédicte Charrier
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139 Végétaux Marins et Biomolécules, Station Biologique, F 29682 Roscoff, France
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche 7139 Végétaux Marins et Biomolécules, Station Biologique, F 29682 Roscoff, France
| |
Collapse
|
9
|
Petricka JJ, Van Norman JM, Benfey PN. Symmetry breaking in plants: molecular mechanisms regulating asymmetric cell divisions in Arabidopsis. Cold Spring Harb Perspect Biol 2010; 1:a000497. [PMID: 20066115 DOI: 10.1101/cshperspect.a000497] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Asymmetric cell division generates cell types with different specialized functions or fates. This type of division is critical to the overall cellular organization and development of many multicellular organisms. In plants, regulated asymmetric cell divisions are of particular importance because cell migration does not occur. The influence of extrinsic cues on asymmetric cell division in plants is well documented. Recently, candidate intrinsic factors have been identified and links between intrinsic and extrinsic components are beginning to be elucidated. A novel mechanism in breaking symmetry was revealed that involves the movement of typically intrinsic factors between plant cells. As we learn more about the regulation of asymmetric cell divisions in plants, we can begin to reflect on the similarities and differences between the strategies used by plants and animals. Focusing on the underlying molecular mechanisms, this article describes three selected cases of symmetry-breaking events in the model plant Arabidopsis thaliana. These examples occur in early embryogenesis, stomatal development, and ground tissue formation in the root.
Collapse
Affiliation(s)
- Jalean J Petricka
- Department of Biology and IGSP Center for Systems Biology, Duke University, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
10
|
Berger F, Taylor A, Brownlee C. Cell fate determination by the cell wall in early fucus development. Science 2010; 263:1421-3. [PMID: 17776514 DOI: 10.1126/science.263.5152.1421] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In multicellular plants, development starts with an asymmetric division of the zygote into two differentiated cells. The nature and distribution of fate-determining factors operating during embryogenesis remain largely obscure. Laser microsurgery was used here to dissect two-celled embryos of the alga Fucus spiralis. Removal of protoplasts from the cell wall induced dedifferentiation. However, isolated cells within the walls followed their restricted fate. Moreover, contact of one cell type with the isolated cell wall of the other cell type caused its fate to be switched. The cell wall thus appears to maintain the differentiated state and to direct cell fate in plant development.
Collapse
|
11
|
Nagasato C, Inoue A, Mizuno M, Kanazawa K, Ojima T, Okuda K, Motomura T. Membrane fusion process and assembly of cell wall during cytokinesis in the brown alga, Silvetia babingtonii (Fucales, Phaeophyceae). PLANTA 2010; 232:287-98. [PMID: 20473516 DOI: 10.1007/s00425-010-1188-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 04/29/2010] [Indexed: 05/07/2023]
Abstract
During cytokinesis in brown algal cells, Golgi-derived vesicles (GVs) and flat cisternae (FCs) are involved in building the new cell partition membrane. In this study, we followed the membrane fusion process in Silvetia babingtonii zygotes using electron microscopy together with rapid freezing and freeze substitution. After mitosis, many FCs were formed around endoplasmic reticulum clusters and these then spread toward the future cytokinetic plane. Actin depolymerization using latrunculin B prevented the appearance of the FCs. Fusion of GVs to FCs resulted in structures that were thicker and more elongated (EFCs; expanded flat cisternae). Some complicated membranous structures (MN; membranous network) were formed by interconnection of EFCs and following the arrival of additional GVs. The MN grew into membranous sacs (MSs) as gaps between the MNs disappeared. The MSs were observed in patches along the cytokinetic plane. Neighboring MSs were united to form the new cell partition membrane. An immunocytochemical analysis indicated that fucoidan was synthesized in Golgi bodies and transported by vesicles to the future cytokinetic plane, where the vesicles fused with the FCs. Alginate was not detected until the MS phase. Incubation of sections with cellulase-gold showed that the cellulose content of the new cross wall was not comparable to that of the parent cell wall.
Collapse
Affiliation(s)
- Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Le Bail A, Billoud B, Kowalczyk N, Kowalczyk M, Gicquel M, Le Panse S, Stewart S, Scornet D, Cock JM, Ljung K, Charrier B. Auxin metabolism and function in the multicellular brown alga Ectocarpus siliculosus. PLANT PHYSIOLOGY 2010; 153:128-44. [PMID: 20200071 PMCID: PMC2862433 DOI: 10.1104/pp.109.149708] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 02/17/2010] [Indexed: 05/20/2023]
Abstract
Ectocarpus siliculosus is a small brown alga that has recently been developed as a genetic model. Its thallus is filamentous, initially organized as a main primary filament composed of elongated cells and round cells, from which branches differentiate. Modeling of its early development suggests the involvement of very local positional information mediated by cell-cell recognition. However, this model also indicates that an additional mechanism is required to ensure proper organization of the branching pattern. In this paper, we show that auxin indole-3-acetic acid (IAA) is detectable in mature E. siliculosus organisms and that it is present mainly at the apices of the filaments in the early stages of development. An in silico survey of auxin biosynthesis, conjugation, response, and transport genes showed that mainly IAA biosynthesis genes from land plants have homologs in the E. siliculosus genome. In addition, application of exogenous auxins and 2,3,5-triiodobenzoic acid had different effects depending on the developmental stage of the organism, and we propose a model in which auxin is involved in the negative control of progression in the developmental program. Furthermore, we identified an auxin-inducible gene called EsGRP1 from a small-scale microarray experiment and showed that its expression in a series of morphogenetic mutants was positively correlated with both their elongated-to-round cell ratio and their progression in the developmental program. Altogether, these data suggest that IAA is used by the brown alga Ectocarpus to relay cell-cell positional information and induces a signaling pathway different from that known in land plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Bénédicte Charrier
- CNRS-Université Pierre et Marie Curie, UMR 7139 Marine Plants and Biomolecules (A.L.B., B.B., N.K., M.G., S.S., D.S., J.M.C., B.C.), and Platform of Cytology, CNRS FR2424 (S.L.P.), Station Biologique de Roscoff, 29682 Roscoff cedex, France; Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University for Agricultural Sciences, S–901 83 Umea, Sweden (M.K., K.L.)
| |
Collapse
|
13
|
Mikami K, Li L, Takahashi M, Saga N. Photosynthesis-dependent Ca2+ influx and functional diversity between phospholipases in the formation of cell polarity in migrating cells of red algae. PLANT SIGNALING & BEHAVIOR 2009; 4:911-913. [PMID: 19938378 PMCID: PMC2802806 DOI: 10.4161/psb.4.9.9534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 07/16/2009] [Indexed: 05/28/2023]
Abstract
Unicellular spore cells, designated as monospores (also called archeospores), are well known as migrating plant cells, in which establishment of the anterior-posterior axis directs asymmetrical distribution of F-actin. Since the mechanisms of cell polarity formation are not yet fully elucidated in monospores, we investigated the roles of phosphoinositide signaling systems and Ca2+ mobilization in migration. Although we have already found the critical involvement of phosphatidylinositol 3-kinase in the establishment of cell polarity, we recently demonstrated the important roles of extracellular Ca2+ influx, phospholipase C (PLC) and phospholipase D (PLD). The remarkable characteristics of these factors are that Ca2+ influx depends on photosynthetic activity and that PLC and PLD play roles in the establishment and maintenance of cell polarity, respectively. These findings could provide new insight into the regulation of migration in eukaryotic cells.
Collapse
Affiliation(s)
- Koji Mikami
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan.
| | | | | | | |
Collapse
|
14
|
Li L, Saga N, Mikami K. Ca2+ influx and phosphoinositide signalling are essential for the establishment and maintenance of cell polarity in monospores from the red alga Porphyra yezoensis. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3477-89. [PMID: 19531546 PMCID: PMC2724695 DOI: 10.1093/jxb/erp183] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 05/12/2009] [Accepted: 05/13/2009] [Indexed: 05/16/2023]
Abstract
The asymmetrical distribution of F-actin directed by cell polarity has been observed during the migration of monospores from the red alga Porphyra yezoensis. The significance of Ca2+ influx and phosphoinositide signalling during the formation of cell polarity in migrating monospores was analysed pharmacologically. The results indicate that the inhibition of the establishment of cell polarity, as judged by the ability of F-actin to localize asymmetrically, cell wall synthesis, and development into germlings, occurred when monospores were treated with inhibitors of the Ca2+ permeable channel, phospholipase C (PLC), diacylglycerol kinase, and inositol-1,4,5-trisphosphate receptor. Moreover, it was also found that light triggered the establishment of cell polarity via photosynthetic activity but not its direction, indicating that the Ca2+ influx and PLC activation required for the establishment of cell polarity are light dependent. By contrast, inhibition of phospholipase D (PLD) prevented the migration of monospores but not the asymmetrical localization of F-actin. Taken together, these findings suggest that there is functional diversity between the PLC and PLD signalling systems in terms of the formation of cell polarity; the former being critical for the light-dependent establishment of cell polarity and the latter playing a role in the maintenance of established cell polarity.
Collapse
Affiliation(s)
- Lin Li
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | - Naotsune Saga
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Koji Mikami
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| |
Collapse
|
15
|
Katsaros C, Karyophyllis D, Galatis B. Cytoskeleton and morphogenesis in brown algae. ANNALS OF BOTANY 2006; 97:679-93. [PMID: 16467352 PMCID: PMC2803427 DOI: 10.1093/aob/mcl023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2005] [Revised: 11/05/2005] [Accepted: 11/28/2005] [Indexed: 05/06/2023]
Abstract
BACKGROUND Morphogenesis on a cellular level includes processes in which cytoskeleton and cell wall expansion are strongly involved. In brown algal zygotes, microtubules (MTs) and actin filaments (AFs) participate in polarity axis fixation, cell division and tip growth. Brown algal vegetative cells lack a cortical MT cytoskeleton, and are characterized by centriole-bearing centrosomes, which function as microtubule organizing centres. SCOPE Extensive electron microscope and immunofluorescence studies of MT organization in different types of brown algal cells have shown that MTs constitute a major cytoskeletal component, indispensable for cell morphogenesis. Apart from participating in mitosis and cytokinesis, they are also involved in the expression and maintenance of polarity of particular cell types. Disruption of MTs after Nocodazole treatment inhibits cell growth, causing bulging and/or bending of apical cells, thickening of the tip cell wall, and affecting the nuclear positioning. Staining of F-actin using Rhodamine-Phalloidin, revealed a rich network consisting of perinuclear, endoplasmic and cortical AFs. AFs participate in mitosis by the organization of an F-actin spindle and in cytokinesis by an F-actin disc. They are also involved in the maintenance of polarity of apical cells, as well as in lateral branch initiation. The cortical system of AFs was found related to the orientation of cellulose microfibrils (MFs), and therefore to cell wall morphogenesis. This is expressed by the coincidence in the orientation between cortical AFs and the depositing MFs. Treatment with cytochalasin B inhibits mitosis and cytokinesis, as well as tip growth of apical cells, and causes abnormal deposition of MFs. CONCLUSIONS Both the cytoskeletal elements studied so far, i.e. MTs and AFs are implicated in brown algal cell morphogenesis, expressed in their relationship with cell wall morphogenesis, polarization, spindle organization and cytokinetic mechanism. The novelty is the role of AFs and their possible co-operation with MTs.
Collapse
Affiliation(s)
- Christos Katsaros
- University of Athens, Faculty of Biology, Department of Botany, Athens 157 84, Greece.
| | | | | |
Collapse
|
16
|
Hadley R, Hable WE, Kropf DL. Polarization of the endomembrane system is an early event in fucoid zygote development. BMC PLANT BIOLOGY 2006; 6:5. [PMID: 16504093 PMCID: PMC1397835 DOI: 10.1186/1471-2229-6-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 02/23/2006] [Indexed: 05/06/2023]
Abstract
BACKGROUND Fucoid zygotes are excellent experimental organisms for investigating mechanisms that establish cell polarity and determine the site of tip growth. A common feature of polarity establishment is targeting endocytosis and exocytosis (secretion) to localized cortical domains. We have investigated the spatiotemporal development of endomembrane asymmetry in photopolarizing zygotes, and examined the underlying cellular physiology. RESULTS The vital dye FM4-64 was used to visualize endomembranes. The endomembrane system preferentially accumulated at the rhizoid (growth) pole within 4 h of fertilization. The polarized endomembrane array was initially labile and reoriented when the developmental axis changed direction in response to changing light cues. Pharmacological studies indicated that vesicle trafficking, actin and microtubules were needed to maintain endomembrane polarity. In addition, endocytosis required a functional cortical actin cytoskeleton. CONCLUSION Endomembrane polarization is an early event in polarity establishment, beginning very soon after photolocalization of cortical actin to the presumptive rhizoid site. Targeting of endocytosis and secretion to the rhizoid cortex contributes to membrane asymmetry. We suggest that microtubule-actin interactions, possibly involving microtubule capture and stabilization at actin-rich sites in the rhizoid, may organize the endomembrane array.
Collapse
Affiliation(s)
- Rhett Hadley
- University of Utah, Department of Biology, 257 South 1400 East, Salt Lake City, Utah 84112-0840, USA
| | - Whitney E Hable
- University of Utah, Department of Biology, 257 South 1400 East, Salt Lake City, Utah 84112-0840, USA
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth MA 02747, USA
| | - Darryl L Kropf
- University of Utah, Department of Biology, 257 South 1400 East, Salt Lake City, Utah 84112-0840, USA
| |
Collapse
|
17
|
Pearson GA, Serrão EA, Dring M, Schmid R. Blue- and green-light signals for gamete release in the brown alga, Silvetia compressa. Oecologia 2004; 138:193-201. [PMID: 14605987 DOI: 10.1007/s00442-003-1424-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Accepted: 10/02/2003] [Indexed: 11/25/2022]
Abstract
The intertidal brown alga Silvetia compressa releases gametes from receptacles (the reproductive tissue) rapidly upon a dark transfer (following a photosynthesis-dependent period in the light, termed potentiation). In this study, the wavelength-dependence of this process was investigated. During the potentiation period in white light (WL), gametes are not released. However, gametes were released during potentiation in blue light (BL), or in low red light/blue light (RL/BL) ratios, but not in RL alone, high RL/BL ratios, or in broadband blue-green light (B-GL) (presence of BL, but absence of RL). RL was as effective as WL for potentiation, i.e., both lead to gamete release following transfer to darkness. Rates of linear photosynthetic electron transport were similar in RL and BL. Gamete release in BL was inhibited by equal amounts of additional narrow-waveband light between the green and red regions of the spectrum, with light-induced gamete release restricted between <491 nm and 509 nm. Very little light-induced gamete release occurred between 530 nm and 650 nm. It is proposed that a BL-responsive photoreceptor is responsible for light-induced gamete release. Transfer of WL-potentiated receptacles to GL near 530 nm resulted in significant de-potentiation and reduced gamete release during a subsequent dark transfer. This effect was not seen at 509 nm or 560 nm and revealed the presence of a second photoreceptor system repressing or counteracting potentiation in the light. We propose that the restriction of gamete release to periods when irradiance is blue-shifted may constitute a depth-sensing mechanism for this intertidal alga, allowing controlled release of gametes at high tide and/or less turbid periods, thus minimizing gamete dilution, and promoting fertilization success.
Collapse
Affiliation(s)
- Gareth A Pearson
- Center for Marine Sciences, Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, Gambelas, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|
18
|
Lamote M, Darko E, Schoefs B, Lemoine Y. Assembly of the photosynthetic apparatus in embryos from Fucus serratus L. PHOTOSYNTHESIS RESEARCH 2003; 77:45-52. [PMID: 16228383 DOI: 10.1023/a:1024999024157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The assembly of the photosynthetic apparatus was studied during the first six days of development of Fucus serratus L. embryos. HPLC analysis revealed that oospheres and zygotes contain the same photosynthetic pigments (i.e., chlorophyll a, chlorophyll c, fucoxanthin, violaxanthin, and beta-carotene) as fully developed thalli. Total pigment amount increased after fertilization, mainly due to an active synthesis of Chl a and fucoxanthin. Spectral modifications revealing the progressive integration of Chl a and Chl c in the photosynthetic units are described. In particular, a distinct emission at 705 nm, reflecting the accumulation of LHC I, was clearly detected. The emission bands at 705 nm and 725 nm were characterized by 77 K excitation fluorescence measurements. Their spectra differed by the presence of a large band at approximately 550 nm due to fucoxanthin in the excitation spectrum of F705 nm. Room temperature variable fluorescence was first observed 30 h after fertilization indicating a functional Photosystem II electron transfer at this developmental stage.
Collapse
Affiliation(s)
- Morgane Lamote
- Cytophysiologie Végétale et Phycologie, UPRESA-CNRS 8013, Université de Lille 1, 659655, Villeneuve d'Ascq, France
| | | | | | | |
Collapse
|
19
|
Corellou F, Bisgrove SR, Kropf DL, Meijer L, Kloareg B, Bouget FY. A S/M DNA replication checkpoint prevents nuclear and cytoplasmic events of cell division including centrosomal axis alignment and inhibits activation of cyclin-dependent kinase-like proteins in fucoid zygotes. Development 2000; 127:1651-60. [PMID: 10725241 DOI: 10.1242/dev.127.8.1651] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
S/M checkpoints prevent various aspects of cell division when DNA has not been replicated. Such checkpoints are stringent in yeast and animal somatic cells but are usually partial or not present in animal embryos. Because little is known about S/M checkpoints in plant cells and embryos, we have investigated the effect of aphidicolin, a specific inhibitor of DNA polymerases (alpha) and (delta), on cell division and morphogenesis in Fucus and Pelvetia zygotes. Both DNA replication and cell division were inhibited by aphidicolin, indicating the presence, in fucoid zygotes, of a S/M checkpoint. This checkpoint prevents chromatin condensation, spindle formation, centrosomal alignment with the growth axis and cytokinesis but has no effect on germination or rhizoid elongation. This S/M checkpoint also prevents tyrosine dephosphorylation of cyclin-dependent kinase-like proteins at the onset of mitosis. The kinase activity is restored in extracts upon incubation with cdc25A phosphatase. When added in S phase, olomoucine, a specific inhibitor of cyclin-dependent kinases, has similar effects as aphidicolin on cell division although alignment of the centrosomal axis still occurs. We propose a model involving the inactivation of CDK-like proteins to account for the S/M DNA replication checkpoint in fucoid zygotes and embryos.
Collapse
Affiliation(s)
- F Corellou
- UMR1931, CNRS and Laboratoires Goëmar, Station Biologique, France
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Fucoid zygotes establish a rhizoid-thallus growth axis in response to environmental signals; however, these extrinsic cues are not necessary for polarization, suggesting that zygotes may have inherent polarity. The hypothesis that sperm entry provides a default pathway for polarization of zygotes cultured in the absence of environmental signals was tested, and was supported by several lines of evidence. First, an F-actin patch, a cortical marker of the rhizoid pole, formed at the sperm entry site within minutes of fertilization. Second, the sperm entry site predicted the site of polar adhesive secretion (the first morphological manifestation of the rhizoid pole) and the position of rhizoid outgrowth. Third, when fertilization was restricted to one hemisphere of the egg, rhizoid outgrowth always occurred from that hemisphere. Fourth, delivery of sperm to one location within a population of eggs resulted in polarization of both adhesive secretion and rhizoid outgrowth toward the sperm source. Finally, induction of polyspermy using low sodium seawater increased the frequency of formation of two rhizoids. Sperm entry therefore provides an immediate default axis that can later be overridden by environmental cues.
Collapse
Affiliation(s)
- W E Hable
- University of Utah, Department of Biology, Salt Lake City, UT 84112-0840, USA.
| | | |
Collapse
|
21
|
Kropf DL, Bisgrove SR, Hable WE. Establishing a growth axis in fucoid algae. TRENDS IN PLANT SCIENCE 1999; 4:490-494. [PMID: 10562734 DOI: 10.1016/s1360-1385(99)01509-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recent studies indicate that fucoid zygotes establish developmental polarity much earlier than previously thought. A growth axis is first set in place at fertilization, with the site of sperm entry defining the rhizoid pole of the axis. This initial axis is a default axis, which is only used as the final growth axis if the zygote fails to detect spatial cues (such as sunlight) in its intertidal environment. However, the zygote usually senses vectorial information; it then abandons the sperm-induced axis and assembles a new axis de novo in accordance with the perceived vector(s).
Collapse
Affiliation(s)
- DL Kropf
- Dept of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | | | | |
Collapse
|
22
|
Chandra S, Leinhos GM, Morrison GH, Hoch HC. Imaging of total calcium in urediospore germlings of Uromyces by ion microscopy. Fungal Genet Biol 1999; 27:77-87. [PMID: 10413617 DOI: 10.1006/fgbi.1999.1135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calcium has been implicated in growth and appressorium formation of urediospore germlings of the bean rust fungus, Uromyces appendiculatus. Using ion microscopy, a mass spectrometry-based imaging technique, intracellular stores of calcium were analyzed by direct imaging of total calcium in frozen freeze-dried germlings. Calcium concentration was calculated by ratioing and spatially registering (40)Ca to (12)C signals. Intracellular distributions of total potassium, sodium, magnesium, and carbon were similarly imaged in the same germlings for a direct comparison of their localizations to total calcium. Calcium was remarkably heterogeneous with highest concentrations (2 to 10 mM) in the mid-region of the germling between the nuclei and the apex. A similar distribution of Ca(2+) (assessed using Fluo-3) was also noted sequestered in organelles in live germlings. Distributions of remaining elements (K, Na, Mg, and C) were mostly homogeneous throughout the cytoplasm and nuclei of the fungal cell. The K/Na ratio ranged from 17 to 31.
Collapse
Affiliation(s)
- S Chandra
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
23
|
Pickett-Heaps JD, Gunning BE, Brown RC, Lemmon BE, Cleary AL. The cytoplast concept in dividing plant cells: cytoplasmic domains and the evolution of spatially organized cell. AMERICAN JOURNAL OF BOTANY 1999. [PMID: 21680355 DOI: 10.2307/2656933] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The unique cytokinetic apparatus of higher plant cells comprises two cytoskeletal systems: a predictive preprophase band of microtubules (MTs), which defines the future division site, and the phragmoplast, which mediates crosswall formation after mitosis. We review features of plant cell division in an evolutionary context and from the viewpoint that the cell is a domain of cytoplasm (cytoplast) organized around the nucleus by a cytoskeleton consisting of a single "tensegral" unit. The term "tensegrity" is a contraction of "tensional integrity" and the concept proposes that the whole cell is organized by an integrated cytoskeleton of tension elements (e.g., actin fibers) extended over compression-resistant elements (e.g., MTs).During cell division, a primary role of the spindle is seen as generating two cytoplasts from one with separation of chromosomes a later, derived function. The telophase spindle separates the newly forming cytoplasts and the overlap between half spindles (the shared edge of two new domains) dictates the position at which cytokinesis occurs. Wall MTs of higher plant cells, like the MT cytoskeleton in animal and protistan cells, spatially define the interphase cytoplast. Redeployment of actin and MTs into the preprophase band (PPB) is the overt signal that the boundary between two nascent cytoplasts has been delineated. The "actin-depleted zone" that marks the site of the PPB throughout mitosis may be a more persistent manifestation of this delineation of two domains of cortical actin. The growth of the phragmoplast is controlled by these domains, not just by the spindle. These domains play a major role in controlling the path of phragmoplast expansion. Primitive land plants show different morphological changes that reveal that the plane of division, with or without the PPB, has been determined well in advance of mitosis.The green alga Spirogyra suggests how the phragmoplast system might have evolved: cytokinesis starts with cleavage and then actin-related determinants stimulate and positionally control cell-plate formation in a phragmoplast arising from interzonal MTs from the spindle. Actin in the PPB of higher plants may be assembling into a potential furrow, imprinting a cleavage site whose persistent determinants (perhaps actin) align the outgrowing edge of the phragmoplast, as in Spirogyra. Cytochalasin spatially disrupts polarized mitosis and positioning of the phragmoplast. Thus, the tensegral interaction of actin with MTs (at the spindle pole and in the phragmoplast) is critical to morphogenesis, just as they seem to be during division of animal cells. In advanced green plants, intercalary expansion driven by turgor is controlled by MTs, which in conjunction with actin, may act as stress detectors, thereby affecting the plane of division (a response clearly evident after wounding of tissue). The PPB might be one manifestation of this strain detection apparatus.
Collapse
Affiliation(s)
- J D Pickett-Heaps
- School of Botany, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | | | | | |
Collapse
|
24
|
Kakinuma Y. Inorganic cation transport and energy transduction in Enterococcus hirae and other streptococci. Microbiol Mol Biol Rev 1998; 62:1021-45. [PMID: 9841664 PMCID: PMC98938 DOI: 10.1128/mmbr.62.4.1021-1045.1998] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Energy metabolism by bacteria is well understood from the chemiosmotic viewpoint. We know that bacteria extrude protons across the plasma membrane, establishing an electrochemical potential that provides the driving force for various kinds of physiological work. Among these are the uptake of sugars, amino acids, and other nutrients with the aid of secondary porters and the regulation of the cytoplasmic pH and of the cytoplasmic concentration of potassium and other ions. Bacteria live in diverse habitats and are often exposed to severe conditions. In some circumstances, a proton circulation cannot satisfy their requirements and must be supplemented with a complement of primary transport systems. This review is concerned with cation transport in the fermentative streptococci, particularly Enterococcus hirae. Streptococci lack respiratory chains, relying on glycolysis or arginine fermentation for the production of ATP. One of the major findings with E. hirae and other streptococci is that ATP plays a much more important role in transmembrane transport than it does in nonfermentative organisms, probably due to the inability of this organism to generate a large proton potential. The movements of cations in streptococci illustrate the interplay between a variety of primary and secondary modes of transport.
Collapse
Affiliation(s)
- Y Kakinuma
- Faculty of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| |
Collapse
|
25
|
Bachewich C, Heath IB. Radial F-actin arrays precede new hypha formation in Saprolegnia: implications for establishing polar growth and regulating tip morphogenesis. J Cell Sci 1998; 111 ( Pt 14):2005-16. [PMID: 9645948 DOI: 10.1242/jcs.111.14.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The roles of cortical F-actin in initiating and regulating polarized cell expansion in the form of hyphal tip morphogenesis were investigated by analyzing long term effects of F-actin disruption by latrunculin B in the oomycete Saprolegnia ferax, and detecting localized changes in the cortical F-actin organization preceding hyphal formation. Tubular hyphal morphology was dependent on proper F-actin organization, since latrunculin induced dose-dependent actin disruption and corresponding changes in hyphal morphology and wall deposition. With long incubation times (1 to 3 hours), abundant subapical expansion occurred, the polar form of which was increasingly lost with increasing actin disruption, culminating in diffuse subapical expansion. These extreme effects were accompanied by disorganized cytoplasm, and novel reorganization of microtubules, characterized by star-burst asters. Upon removing latrunculin, hyperbranching produced abundant polar branches with normal F-actin organization throughout the colony. The results are consistent with F-actin regulating polar vesicle delivery and controlling vesicle fusion at the plasma membrane, and suggest that F-actin participates in establishing polar growth. To test this idea further, we utilized the hyperbranching growth form of Saprolegnia. Early during the recovery time, prior to multiple branch formation, radial arrays of filamentous F-actin were observed in regions with no detectable surface protrusion. Their locations were consistent with those of the numerous branches that formed with longer recovery times. Similar radial arrays preceded germ tube formation in asexual spores. The arrays were important for initiating polar growth since the spores lost their ability to polarize when the F-actin was disrupted with latrunculin, and increased isometrically in size rather than producing germ tubes. Therefore, F-actin participates in initiating tip formation in addition to its previously demonstrated participation in maintenance of hyphal tip growth. The cortical location and radial organization of the arrays suggest that they recruit and stabilize membrane-bound and cytosolic factors required to build a new tip.
Collapse
Affiliation(s)
- C Bachewich
- Department of Biology, York University, North York, Ontario, M3J 1P3, Canada
| | | |
Collapse
|
26
|
Roles of Secretion and the Cytoskeleton in Cell Adhesion and Polarity Establishment inPelvetia compressaZygotes. Dev Biol 1998. [DOI: 10.1006/dbio.1998.8890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Rose LS, Kemphues K. The let-99 gene is required for proper spindle orientation during cleavage of the C. elegans embryo. Development 1998; 125:1337-46. [PMID: 9477332 DOI: 10.1242/dev.125.7.1337] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The orientation of cell division is a critical aspect of development. In 2-cell C. elegans embryos, the spindle in the posterior cell is aligned along the long axis of the embryo and contributes to the unequal partitioning of cytoplasm, while the spindle in the anterior cell is oriented transverse to the long axis. Differing spindle alignments arise from blastomere-specific rotations of the nuclear-centrosome complex at prophase. We have found that mutations in the maternally expressed gene let-99 affect spindle orientation in all cells during the first three cleavages. During these divisions, the nuclear-centrosome complex appears unstable in position. In addition, in almost half of the mutant embryos, there are reversals of the normal pattern of spindle orientations at second cleavage: the spindle of the anterior cell is aligned with the long axis of the embryo and nuclear rotation fails in the posterior cell causing the spindle to form transverse to the long axis. In most of the remaining embryos, spindles in both cells are transverse at second cleavage. The distributions of several asymmetrically localized proteins, including P granules and PAR-3, are normal in early let-99 embryos, but are perturbed by the abnormal cell division orientations at second cleavage. The accumulation of actin and actin capping protein, which marks the site involved in nuclear rotation in 2-cell wild-type embryos, is abnormal but is not reversed in let-99 mutant embryos. Based on these data, we conclude that let-99(+) is required for the proper orientation of spindles after the establishment of polarity, and we postulate that let-99(+) plays a role in interactions between the astral microtubules and the cortical cytoskeleton.
Collapse
Affiliation(s)
- L S Rose
- Section of Genetics and Development, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
28
|
Fowler JE, Quatrano RS. Plant cell morphogenesis: plasma membrane interactions with the cytoskeleton and cell wall. Annu Rev Cell Dev Biol 1998; 13:697-743. [PMID: 9442885 DOI: 10.1146/annurev.cellbio.13.1.697] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Because plants are composed of immobile cells, plant morphogenesis requires mechanisms allowing precise control of cell expansion and cell division patterns. Cortical domains, localized in response to directional cues, are of central importance in establishing cell polarity, orienting cell division, and determining daughter cell fates in a wide variety of prokaryotic and eukaryotic organisms. Such domains consist of localized macromolecular complexes that, in plant cells, provide spatial control of cell expansion and cell division functions. The role of the cytoskeleton, plasma membrane, and targeted secretion to the cell wall in the spatial regulation of cell morphogenesis in plants is discussed in light of recent results from model organisms, including brown algal zygotes (e.g. Fucus). A general model, emphasizing the importance of cortical sites and targeted secretion, is proposed for morphogenesis in higher plant cells based on current knowledge and principles derived from analysis of the establishment of a stable cortical asymmetry in Fucus. The model illustrates mechanisms to direct the orientation of an asymmetric division resulting in daughter cells with different fates.
Collapse
Affiliation(s)
- J E Fowler
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA
| | | |
Collapse
|
29
|
Love J, Brownlee C, Trewavas AJ. Ca2+ and Calmodulin Dynamics during Photopolarization in Fucus serratus Zygotes. PLANT PHYSIOLOGY 1997; 115:249-261. [PMID: 12223805 PMCID: PMC158481 DOI: 10.1104/pp.115.1.249] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The role of Ca2+ in zygote polarization in fucoid algae (Fucus, Ascophyllum, and Pelvetia species) zygote polarization is controversial. Using a local source of Fucus serratus, we established that zygotes form a polar axis relative to unilateral light (photopolarization) between 8 and 14 h after fertilization (AF), and become committed to this polarity at approximately 15 to 18 h AF. We investigated the role of Ca2+, calmodulin, and actin during photopolarization by simultaneously exposing F. serratus zygotes to polarizing light and various inhibitors. Neither removal of Ca2+ from the culture medium or high concentrations of EGTA and LaCl3 had any effect on photopolarization. Bepridil, 3,4,5-trimethoxybenzoic acid 8-(diethylamino) octyl ester, nifedipine, and verapamil, all of which block intracellular Ca2 release, reduced photopolarization from 75 to 30%. The calmodulin antagonists N-(6-aminohexyl)-5-chloro-L-naphthalenesulfonamide and trifluoperazine inhibited photopolarization in all zygotes, whereas N-(6-aminohexyl)-L-naphthalenesulfonamide had no effect. Cytochalasin B, cytochalasin D, and latrunculin B, all of which inhibit actin polymerization, had no effect on photopolarization, but arrested polar axis fixation. The role of calmodulin during polarization was investigated further. Calmodulin mRNA from the closely related brown alga Macrocystis pyrifera was cloned and the protein was expressed in bacteria. Photopolarization was enhanced following microinjections of this recombinant calmodulin into developing zygotes. Confocal imaging of fluorescein isothiocyanate-labeled recombinant calmodulin in photopolarized zygotes showed a homogenous signal distribution at 13 h AF, which localized to the presumptive rhizoid site at 15 h AF.
Collapse
Affiliation(s)
- J. Love
- Institute of Cell and Molecular Biology, The University of Edinburgh, Daniel Rutherford Building, King's Buildings, Mayfield Road, Edinburgh EH9 3JH, United Kingdom (J.L., A.J.T.)
| | | | | |
Collapse
|
30
|
Zhang JZ, Somerville CR. Suspensor-derived polyembryony caused by altered expression of valyl-tRNA synthetase in the twn2 mutant of Arabidopsis. Proc Natl Acad Sci U S A 1997; 94:7349-55. [PMID: 9207094 PMCID: PMC23824 DOI: 10.1073/pnas.94.14.7349] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The twn2 mutant of Arabidopsis exhibits a defect in early embryogenesis where, following one or two divisions of the zygote, the decendents of the apical cell arrest. The basal cells that normally give rise to the suspensor proliferate abnormally, giving rise to multiple embryos. A high proportion of the seeds fail to develop viable embryos, and those that do, contain a high proportion of partially or completely duplicated embryos. The adult plants are smaller and less vigorous than the wild type and have a severely stunted root. The twn2-1 mutation, which is the only known allele, was caused by a T-DNA insertion in the 5' untranslated region of a putative valyl-tRNA synthetase gene, valRS. The insertion causes reduced transcription of the valRS gene in reproductive tissues and developing seeds but increased expression in leaves. Analysis of transcript initiation sites and the expression of promoter-reporter fusions in transgenic plants indicated that enhancer elements inside the first two introns interact with the border of the T-DNA to cause the altered pattern of expression of the valRS gene in the twn2 mutant. The phenotypic consequences of this unique mutation are interpreted in the context of a model, suggested by Vernon and Meinke [Vernon, D. M. & Meinke, D. W. (1994) Dev. Biol. 165, 566-573], in which the apical cell and its decendents normally suppress the embryogenic potential of the basal cell and its decendents during early embryo development.
Collapse
Affiliation(s)
- J Z Zhang
- Department of Plant Biology, Carnegie Institution of Washington, 290 Panama Street, Stanford CA 94305, USA
| | | |
Collapse
|
31
|
Sakaguchi S, Shibuya K, lida H, Anraku Y, Suzuki T. Roles of Ca2+ in hyphal and yeast-form growth in Candida albicans. Growth regulation by altered extracellular and intracellular free Ca2+ concentrations. MYCOSCIENCE 1997. [DOI: 10.1007/bf02460856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Affiliation(s)
- D. L. Kropf
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
33
|
|
34
|
Taylor AR, Manison NFH, Fernandez C, Wood J, Brownlee C. Spatial Organization of Calcium Signaling Involved in Cell Volume Control in the Fucus Rhizoid. THE PLANT CELL 1996; 8:2015-2031. [PMID: 12239374 PMCID: PMC161331 DOI: 10.1105/tpc.8.11.2015] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Subprotoplasts prepared from different regions of rhizoid and thallus cells of Fucus zygotes displayed mechanosensitive plasma membrane channels in cell-attached patch-clamp experiments by using laser microsurgery. In excised patches, this channel was found to be voltage gated, carrying K+ outward and Ca2+ inward, with a relative permeability of Ca2+/K+ of 0.35 to 0.5, and an increased open probability at membrane potentials more positive than -80 mV. No significant difference was found in the density of this channel type from different regions of rhizoid or thallus cells. Hypoosmotic treatment of intact zygotes induced dramatic transient elevations of cytoplasmic Ca2+, initiating at the rhizoid apex and propagating in a wavelike manner to subapical regions. Localized initiation of the Ca2+ transient correlated with greater osmotic swelling at the rhizoid apex compared with other regions of the zygote. Ca2+ transients exhibited a refractory period between successive hypoosmotic shocks, during which additional transients could not be elicited and the ability to osmoregulate was impaired. Buffering the Ca2+ transients with microinjected Br2BAPTA similarly reduced the ability of rhizoid cells to osmoregulate. Ca2+ influx was associated with the initiation of the Ca2+ transient in apical regions, whereas intracellular sources contributed to its propagation. Thus, localized signal transduction is patterned by interactions of the cell wall, plasma membrane, and intracellular Ca2+ stores.
Collapse
Affiliation(s)
- A. R. Taylor
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Shaw SL, Quatrano RS. The role of targeted secretion in the establishment of cell polarity and the orientation of the division plane in Fucus zygotes. Development 1996; 122:2623-30. [PMID: 8787737 DOI: 10.1242/dev.122.9.2623] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we investigate the role of polar secretion and the resulting asymmetry in the cell wall in establishing polarity in Fucus zygotes. We have utilized brefeldin-A to selectively interrupt secretion of Golgi-derived material into the cell wall as assayed by toluidine blue O staining of sulfated fucoidin. We show that the polar secretion of Golgi-derived material is targeted to a cortical site of the zygote identified by the localization of actin filaments and dihydropyridine receptors. The deposition of Golgi-derived material into the cell wall at this target site is temporally coincident with and required for polar axis fixation. We propose that local secretion of Golgi-derived material into the cell wall transforms the target site into the fixed site of polar growth. We also found that polar secretion of Golgi-derived material at the fixed site is essential for growth and differentiation of the rhizoid, as well as for the proper positioning of the first plane of cell division. We propose that the resulting asymmetry in the cell wall serves as positional information for the underlying cortex to initiate these polar events. Our data supports the hypothesis that cell wall factors in embryos, previously shown to be responsible for induction of rhizoid cell differentiation, are deposited simultaneously with and are responsible for polar axis fixation. Furthermore, the pattern of polar growth is attributable to a positional signal at the fixed site and appears to be independent of the orientation of the first cell division plane. Thus, the establishment of zygotic cell polarity and not the position of the first division plane, is critical for the formation of the initial embryonic pattern in Fucus.
Collapse
Affiliation(s)
- S L Shaw
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA
| | | |
Collapse
|
36
|
Shaw SL, Quatrano RS. Polar localization of a dihydropyridine receptor on living Fucus zygotes. J Cell Sci 1996; 109 ( Pt 2):335-42. [PMID: 8838657 DOI: 10.1242/jcs.109.2.335] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have used a fluorescently-labeled dihydropyridine (FL-DHP) to vitally stain living Fucus zygotes during the establishment of cell polarity. Localization of FL-DHP is primarily at the plasma membrane and FL-DHP binding is competitively blocked by an unlabeled dihydropyridine. Distribution of FL-DHP is initially symmetrical before fixation of the polar axis, but becomes asymmetrical in response to a unilateral light gradient. The distribution of FL-DHP receptors can be relocalized when the direction of the photopolarizing stimulus is changed. Treatment of cells with cytochalasin B prior to axis fixation reversibly prevents localization of FL-DHP receptors. Observation of FL-DHP labeling by time-lapse fluorescence microscopy indicates that the existing receptors are redistributed during polar axis formation. The asymmetric distribution of FL-DHP receptors coincides temporally and spatially with increased local intracellular calcium ion concentrations, as measured by calcium green dextran. Based on the site, timing, photo-reversibility, and actin dependence of the asymmetric localization of FL-DHP receptors, we conclude that FL-DHP is a vital probe for the later stage of polar axis formation in Fucus zygotes. Furthermore, we propose that FL-DHP receptors correspond to ion channels that are transported to the future site of polar growth to create the changes in local calcium concentration required for polarity establishment.
Collapse
Affiliation(s)
- S L Shaw
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA
| | | |
Collapse
|
37
|
Kaminskyj SG, Heath IB. Integrin and spectrin homologues, and cytoplasm-wall adhesion in tip growth. J Cell Sci 1995; 108 ( Pt 2):849-56. [PMID: 7769021 DOI: 10.1242/jcs.108.2.849] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saprolegnia ferax contains an integrin homologue, identified by crossreactivity with antiserum to the consensus sequence of human/chick/Xenopus cytoplasmic domain beta 1-integrin, which is highly conserved. In non-reduced samples, this integrin was larger than the reported size range for beta 1-integrins, at 178 kDa. In reduced samples, there was a reducing agent-concentration-dependent conversion from 178 kDa to 120 kDa, well within the reported size range for beta 1-integrins in other organisms. The integrin antiserum stained plasma membrane-associated patches, which had a shallow tip-high gradient. This population was reduced and its distribution perturbed in hyphae whose growth rate was reduced by half with tetrapentyl ammonium chloride. The expected integrin function in cytoplasm-cell wall attachment was shown by differential resistance to plasmolysis-induced separation, which positively correlated with integrin abundance. However, when there was separation, remnants of cytoplasm stayed attached to the wall. These were enriched in actin and integrin. Saprolegnia also has a spectrin homologue identified by crossreactivity with an erythrocyte spectin antibody, which has a size (246 kDa) similar to other organisms. This spectrin had a superficially similar distribution to that of integrin, but it did not participate in cytoplasm-wall anchoring. These data suggest that Saprolegnia hyphae have a plasma membrane which is strengthened by spectrin, and cytoplasm which is attached to the cell wall by integrin.
Collapse
Affiliation(s)
- S G Kaminskyj
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | | |
Collapse
|
38
|
Masucci JD, Schiefelbein JW. The rhd6 Mutation of Arabidopsis thaliana Alters Root-Hair Initiation through an Auxin- and Ethylene-Associated Process. PLANT PHYSIOLOGY 1994; 106:1335-1346. [PMID: 12232412 PMCID: PMC159671 DOI: 10.1104/pp.106.4.1335] [Citation(s) in RCA: 279] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Root-hair initiation in Arabidopsis thaliana provides a model for studying cell polarity and its role in plant morphogenesis. Root hairs normally emerge at the apical end of root epidermal cells, implying that these cells are polarized. We have identified a mutant, rhd6, that displays three defects: (a) a reduction in the number of root hairs, (b) an overall basal shift in the site of root-hair emergence, and (c) a relatively high frequency of epidermal cells with multiple root hairs. These defects implicate the RHD6 gene in root-hair initiation and indicate that RHD6 is normally associated with the establishment of, or response to, root epidermal cell polarity. Similar alterations in the site of root-hair emergence, although less extreme, were also discovered in roots of the auxin-, ethylene-, abscisic acid-resistant mutant axr2 and the ethylene-resistant mutant etr1. All three rhd6 mutant phenotypes were rescued when either auxin (indoleacetic acid) or an ethylene precursor (1-aminocyclopropane-1-carboxylic acid) was included in the growth medium. The rhd6 root phenotypes could be phenocopied by treating wild-type seedlings with an inhibitor of the ethylene pathway (aminoethoxyvinylglycine). These results indicate that RHD6 is normally involved in directing the selection or assembly of the root-hair initiation site through a process involving auxin and ethylene.
Collapse
Affiliation(s)
- J. D. Masucci
- Department of Biology, University of Michigan, Ann Arbor, Michigan 48109
| | | |
Collapse
|
39
|
Berger F, Brownlee C. Photopolarization of the Fucus sp. Zygote by Blue Light Involves a Plasma Membrane Redox Chain. PLANT PHYSIOLOGY 1994; 105:519-527. [PMID: 12232219 PMCID: PMC159389 DOI: 10.1104/pp.105.2.519] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Zygotes of fucoid algae are photopolarized by unidirectional blue light (BL). Polar axes are formed, fixed, and expressed by germination of a rhizoid. Hexacyanoferrate(III) ions (HCF) specifically inhibit transduction of the BL signal. HCF reduction by Fucus sp. zygotes occurs on the outer surface of the plasma membrane at higher rates in BL than in dark. These observations suggest that BL signal transduction involves a redox chain in the plasma membrane. Low doses of HCF (<50 pmol cell-1) inhibit photopolarization but not germination, hence uncoupling both processes. Exposure during the photosensitive period to higher doses of HCF together with BL significantly inhibits germination. Further results suggest that BL transduction is dependent on photosynthetic products that could also interact with redox processes.
Collapse
Affiliation(s)
- F. Berger
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, United Kingdom (F.B., C.B.)
| | | |
Collapse
|
40
|
Abstract
The presence of a cytosolic pH gradient and its relation to polar tip growth was investigated in rhizoid cells of Pelvetia embryos with the use of pH-sensitive microelectrodes and by ratio imaging. Growing rhizoid cells generated a longitudinal pH gradient in which the apical cytosol was 0.3 to 0.5 units more acidic than the cytosol at the base of the cell. Treatment with a membrane-permeant weak acid, propionic acid, dissipated the cytosolic pH gradient and inhibited growth. The magnitude of the pH gradient correlated well with the rate of tip elongation. The pH gradient spatially superimposed on the cytosolic calcium gradient, and inhibition of calcium fluxes by treatment with lanthanum abolished the pH gradient and inhibited growth.
Collapse
|
41
|
West MAL, Harada JJ. Embryogenesis in Higher Plants: An Overview. THE PLANT CELL 1993; 5:1361-1369. [PMID: 12271035 PMCID: PMC160368 DOI: 10.1105/tpc.5.10.1361] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- MAL. West
- Section of Plant Biology, Division of Biological Sciences, University of California, Davis, California 95616
| | | |
Collapse
|
42
|
West MAL, Harada JJ. Embryogenesis in Higher Plants: An Overview. THE PLANT CELL 1993. [PMID: 12271035 DOI: 10.2307/3869788] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- MAL. West
- Section of Plant Biology, Division of Biological Sciences, University of California, Davis, California 95616
| | | |
Collapse
|
43
|
Goodner B, Quatrano RS. Fucus Embryogenesis: A Model to Study the Establishment of Polarity. THE PLANT CELL 1993; 5:1471-1481. [PMID: 12271041 PMCID: PMC160377 DOI: 10.1105/tpc.5.10.1471] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- B. Goodner
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | | |
Collapse
|
44
|
Abstract
A role for Ca2+ in the tip growth process of fungal hyphae and other eukaryotic walled cells has been widely explored, following the earlier indications of their importance by Jaffe, Steer, and their colleagues. Analysis of the literature on fungi, with selected comparison with other tip-growing plant cells, shows that the growth rate and morphology of hyphae are sensitive to factors which influence intracellular Ca2+. These factors include variations in extracellular Ca2+ concentrations, Ca2+ ionophores, inhibitors of Ca2+ transport, and calmodulin- and Ca(2+)-binding dyes and buffers introduced into the cytoplasm. The effects of these agents appear to be mediated by a tip-high gradient of cytoplasmic free Ca2+ which is obligatorily present in all critically examined growing tips. Most recent observations agree that the gradient is very steep, declining rapidly within 10 to 20 microns of the tip. This gradient seems to be generated by the combined effects of an influx of Ca2+, via plasma membrane, possibly stretch-activated, channels localized in the hyphal tip, and subapical expulsion or sequestration of these ions. Expulsion probably involves a plasma membrane Ca(2+)-ATPase, but it is not yet possible to differentiate among mitochondria, endoplasmic reticulum, or vacuoles as the dominant sites of sequestration. It is suggested that regulation of the Ca2+ gradient in turn modulates the properties of the actin-based component of the cytoskeleton, which then controls the extensibility, and, possibly, the synthesis of the hyphal apex. Regulatory feedback mechanisms intrinsic to this model of tip growth regulation are briefly discussed, together with suggestions for future experiments which are crucial to its further elucidation and establishment.
Collapse
Affiliation(s)
- S L Jackson
- Research School for Biological Sciences, Australian National University, Canberra
| | | |
Collapse
|