1
|
Ostermann PN, Madden VJ, Kemp HI, Ciampi de Andrade D. Relevance of chronic pain related to infection for the ICD-11. Pain 2025:00006396-990000000-00849. [PMID: 40387220 DOI: 10.1097/j.pain.0000000000003596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/15/2025] [Indexed: 05/20/2025]
Affiliation(s)
- Philipp Niklas Ostermann
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Victoria J Madden
- African Pain Research Initiative, Department of Anaesthesia and Perioperative Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- HIV Mental Health Research Unit, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Harriet I Kemp
- Pain Research Group, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
2
|
Ostermann PN, Evering TH. The impact of aging on HIV-1-related neurocognitive impairment. Ageing Res Rev 2024; 102:102513. [PMID: 39307316 DOI: 10.1016/j.arr.2024.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Depending on the population studied, HIV-1-related neurocognitive impairment is estimated to impact up to half the population of people living with HIV (PLWH) despite the availability of combination antiretroviral therapy (cART). Various factors contribute to this neurocognitive impairment, which complicates our understanding of the molecular mechanisms involved. Biological aging has been implicated as one factor possibly impacting the development and progression of HIV-1-related neurocognitive impairment. This is increasingly important as the life expectancy of PLWH with virologic suppression on cART is currently projected to be similar to that of individuals not living with HIV. Based on our increasing understanding of the biological aging process on a cellular level, we aim to dissect possible interactions of aging- and HIV-1 infection-induced effects and their role in neurocognitive decline. Thus, we begin by providing a brief overview of the clinical aspects of HIV-1-related neurocognitive impairment and review the accumulating evidence implicating aging in its development (Part I). We then discuss potential interactions between aging-associated pathways and HIV-1-induced effects at the molecular level (Part II).
Collapse
Affiliation(s)
- Philipp Niklas Ostermann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Teresa Hope Evering
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
3
|
Groß R, Reßin H, von Maltitz P, Albers D, Schneider L, Bley H, Hoffmann M, Cortese M, Gupta D, Deniz M, Choi JY, Jansen J, Preußer C, Seehafer K, Pöhlmann S, Voelker DR, Goffinet C, Pogge-von Strandmann E, Bunz U, Bartenschlager R, El Andaloussi S, Sparrer KMJ, Herker E, Becker S, Kirchhoff F, Münch J, Müller JA. Phosphatidylserine-exposing extracellular vesicles in body fluids are an innate defence against apoptotic mimicry viral pathogens. Nat Microbiol 2024; 9:905-921. [PMID: 38528146 PMCID: PMC10994849 DOI: 10.1038/s41564-024-01637-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 02/14/2024] [Indexed: 03/27/2024]
Abstract
Some viruses are rarely transmitted orally or sexually despite their presence in saliva, breast milk, or semen. We previously identified that extracellular vesicles (EVs) in semen and saliva inhibit Zika virus infection. However, the antiviral spectrum and underlying mechanism remained unclear. Here we applied lipidomics and flow cytometry to show that these EVs expose phosphatidylserine (PS). By blocking PS receptors, targeted by Zika virus in the process of apoptotic mimicry, they interfere with viral attachment and entry. Consequently, physiological concentrations of EVs applied in vitro efficiently inhibited infection by apoptotic mimicry dengue, West Nile, Chikungunya, Ebola and vesicular stomatitis viruses, but not severe acute respiratory syndrome coronavirus 2, human immunodeficiency virus 1, hepatitis C virus and herpesviruses that use other entry receptors. Our results identify the role of PS-rich EVs in body fluids in innate defence against infection via viral apoptotic mimicries, explaining why these viruses are primarily transmitted via PS-EV-deficient blood or blood-ingesting arthropods rather than direct human-to-human contact.
Collapse
Affiliation(s)
- Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Hanna Reßin
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Pascal von Maltitz
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Dan Albers
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Laura Schneider
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Hanna Bley
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Georg-August University Göttingen, Göttingen, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Dhanu Gupta
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Miriam Deniz
- Clinic for Gynecology and Obstetrics, Ulm University Medical Center, Ulm, Germany
| | - Jae-Yeon Choi
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Jenny Jansen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Preußer
- Core Facility Extracellular Vesicles, Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität, Heidelberg, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Georg-August University Göttingen, Göttingen, Germany
| | | | - Christine Goffinet
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Elke Pogge-von Strandmann
- Core Facility Extracellular Vesicles, Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Uwe Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Samir El Andaloussi
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Eva Herker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
- Institute of Virology, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
4
|
Deshetty UM, Ray S, Singh S, Buch S, Periyasamy P. Opioid abuse and SIV infection in non-human primates. J Neurovirol 2023; 29:377-388. [PMID: 37418108 PMCID: PMC10729652 DOI: 10.1007/s13365-023-01153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 07/08/2023]
Abstract
Human immunodeficiency virus (HIV) and drug abuse are intertwined epidemics, leading to compromised adherence to combined antiretroviral therapy (cART) and exacerbation of NeuroHIV. As opioid abuse causes increased viral replication and load, leading to a further compromised immune system in people living with HIV (PLWH), it is paramount to address this comorbidity to reduce the NeuroHIV pathogenesis. Non-human primates are well-suited models to study mechanisms involved in HIV neuropathogenesis and provide a better understanding of the underlying mechanisms involved in the comorbidity of HIV and drug abuse, leading to the development of more effective treatments for PLWH. Additionally, using broader behavioral tests in these models can mimic mild NeuroHIV and aid in studying other neurocognitive diseases without encephalitis. The simian immunodeficiency virus (SIV)-infected rhesus macaque model is instrumental in studying the effects of opioid abuse on PLWH due to its similarity to HIV infection. The review highlights the importance of using non-human primate models to study the comorbidity of opioid abuse and HIV infection. It also emphasizes the need to consider modifiable risk factors such as gut homeostasis and pulmonary pathogenesis associated with SIV infection and opioid abuse in this model. Moreover, the review suggests that these non-human primate models can also be used in developing effective treatment strategies for NeuroHIV and opioid addiction. Therefore, non-human primate models can significantly contribute to understanding the complex interplay between HIV infection, opioid abuse, and associated comorbidities.
Collapse
Affiliation(s)
- Uma Maheswari Deshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Sudipta Ray
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Seema Singh
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
5
|
Abbasi SAA, Noor T, Mylavarapu M, Sahotra M, Bashir HA, Bhat RR, Jindal U, Amin U, V A, Siddiqui HF. Double Trouble Co-Infections: Understanding the Correlation Between COVID-19 and HIV Viruses. Cureus 2023; 15:e38678. [PMID: 37288215 PMCID: PMC10243673 DOI: 10.7759/cureus.38678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2023] [Indexed: 06/09/2023] Open
Abstract
A global outbreak of coronavirus disease 2019 (COVID-19), an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), mounted a substantial threat to public health worldwide. It initially emerged as a mere outbreak in Wuhan, China, in December 2019 and quickly engulfed the entire world, evolving into a global pandemic, consuming millions of lives and leaving a catastrophic effect on our lives in ways unimaginable. The entire healthcare system was significantly impacted and HIV healthcare was not spared. In this article, we reviewed the effect of HIV on COVID-19 disease and the ramifications of the recent COVID-19 pandemic over HIV management strategies. Our review highlights that contrary to the instinctive belief that HIV should render patients susceptible to COVID-19 infection, the studies depicted mixed results, although comorbidities and other confounders greatly affected the results. Few studies showed a higher rate of in-hospital mortality due to COVID-19 among HIV patients; however, the use of antiretroviral therapy had no consequential effect. COVID-19 vaccination was deemed safe among HIV patients in general. The recent pandemic can destabilize the HIV epidemic control as it hugely impacted access to care and preventive services and led to a marked reduction in HIV testing. The collision of these two disastrous pandemics warrants the need to materialize rigorous epidemiological measures and health policies, but most importantly, brisk research in prevention strategies to mitigate the combined burden of the two viruses and to battle similar future pandemics.
Collapse
Affiliation(s)
| | - Tarika Noor
- Department of Medicine, Government Medical College, Patiala, Ludhiana, IND
| | | | - Monika Sahotra
- Department of Medicine, Bukovinian State Medical University, Chernivtsi, UKR
| | - Hunmble A Bashir
- Forensic Medicine, Combined Military Hospital (CMH) Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | - Rakshita Ramesh Bhat
- Medical Oncology, Mangalore Institute of Oncology, Mangalore, IND
- Internal Medicine, Bangalore Medical College and Research Institute, Bangalore, IND
| | - Urmi Jindal
- Department of Medicine, Karamshi Jethabhai Somaiya Medical College, Mumbai, IND
| | - Uzma Amin
- Pathology, Rawalpindi Medical University, Rawalpindi, PAK
| | - Anushree V
- Department of Medicine, Jagadguru Jayadeva Murugarajendra (JJM) Medical College, Davangere, IND
| | - Humza F Siddiqui
- Department of Medicine, Jinnah Sindh Medical University, Karachi, PAK
| |
Collapse
|
6
|
Crater JM, Nixon DF, Furler O’Brien RL. HIV-1 replication and latency are balanced by mTOR-driven cell metabolism. Front Cell Infect Microbiol 2022; 12:1068436. [PMID: 36467738 PMCID: PMC9712982 DOI: 10.3389/fcimb.2022.1068436] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022] Open
Abstract
Human Immunodeficiency virus type 1 (HIV-1) relies on host cell metabolism for all aspects of viral replication. Efficient HIV-1 entry, reverse transcription, and integration occurs in activated T cells because HIV-1 proteins co-opt host metabolic pathways to fuel the anabolic requirements of virion production. The HIV-1 viral life cycle is especially dependent on mTOR, which drives signaling and metabolic pathways required for viral entry, replication, and latency. As a central regulator of host cell metabolism, mTOR and its downstream effectors help to regulate the expression of enzymes within the glycolytic and pentose phosphate pathways along with other metabolic pathways regulating amino acid uptake, lipid metabolism, and autophagy. In HIV-1 pathogenesis, mTOR, in addition to HIF-1α and Myc signaling pathways, alter host cell metabolism to create an optimal environment for viral replication. Increased glycolysis and pentose phosphate pathway activity are required in the early stages of the viral life cycle, such as providing sufficient dNTPs for reverse transcription. In later stages, fatty acid synthesis is required for creating cholesterol and membrane lipids required for viral budding. Epigenetics of the provirus fueled by metabolism and mTOR signaling likewise controls active and latent infection. Acetyl-CoA and methyl group abundance, supplied by the TCA cycle and amino acid uptake respectively, may regulate latent infection and reactivation. Thus, understanding and exploring new connections between cellular metabolism and HIV-1 pathogenesis may yield new insights into the latent viral reservoirs and fuel novel treatments and cure strategies.
Collapse
Affiliation(s)
| | | | - Robert L. Furler O’Brien
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
7
|
Ayyagari KR, Karra KK, Birra V, S Triveni VV, Sreedevi J, Peela P. "Oral manifestations of HIV in accordance with CD4 count" - A cross-sectional study. Indian J Dent Res 2022; 33:408-412. [PMID: 37006006 DOI: 10.4103/ijdr.ijdr_627_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Aims and Objectives Mouth acts as a mirror for most of the underlying systemic diseases. Very few studies were done in south Indian population to observe the oral manifestations of human immunodeficiency virus (HIV) in relation to the cluster of differentiation 4 (CD4) count, and this study mainly highlights the presenting complaint of HIV patients during their dental visit. The study was aimed to determine the chief complaints of patients along with oral manifestations of HIV and correlate them to CD4 count. Materials and Methods One hundred consecutive HIV-positive patients were considered for the study. All the oral manifestations and the chief complaints along with the calculated CD4 counts were noted and the results were correlated. Spearman correlation was used for CD4 count and other oral manifestations. Results The mean CD4 counts were 421 cells/mm3 with a standard deviation (SD) of 404.34 for the most common oral manifestation of burning mouth and 176.5 cells/mm3 for the least common manifestation of malignancies. The CD4 count ranged from 120 to 1100 cells/mm3. The mean age and CD4 count were 38 years and 398.86, respectively. There was a statistically significant correlation with candidiasis and gingivitis, and the rest of the conditions were insignificant. Conclusion The study results suggest that the chief complaint of presentation of an HIV-positive patient is pain due to carious teeth/abscess followed by burning mouth, with candidiasis being the most common disease.
Collapse
Affiliation(s)
- Kameswara R Ayyagari
- Department of Dental Surgery, Andhra Medical College, Visakhapatnam, Andhra Pradesh, India
| | - Kalyan K Karra
- Department of Oral and Maxillofacial Surgery, Sri Sai Dental College and Research Institute, Srikakulam, Andhra Pradesh, India
| | - Vinod Birra
- Department of Dental Surgery, Andhra Medical College, Visakhapatnam, Andhra Pradesh, India
| | - V V S Triveni
- Department of Dental Surgery, Andhra Medical College, Visakhapatnam, Andhra Pradesh, India
| | - Janapareddi Sreedevi
- Department of Oral and Maxillofacial Surgery, Government Dental College and Hospital, Vijayawada, Andhra Pradesh, India
| | - Parameswar Peela
- Department of Oral Pathology, ANIDS, Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
8
|
Tatar G, Çermik T, Alçın G, Erol Fenercioğlu Ö, İnci A, Beyhan E, Ergül N. Contribución de las imágenes PET/TC con 18F-FDG en el diagnóstico y manejo de pacientes VIH positivos. Rev Esp Med Nucl Imagen Mol 2022. [DOI: 10.1016/j.remn.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Fortner A, Bucur O. mRNA-based vaccine technology for HIV. Discoveries (Craiova) 2022; 10:e150. [PMID: 36438441 PMCID: PMC9683993 DOI: 10.15190/d.2022.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/14/2022] Open
Abstract
Human immunodeficiency virus (HIV) poses a major health problem around the globe, resulting in hundred-thousands of deaths from AIDS and over a million new infections annually. Although the standard treatment of HIV infection, antiretroviral therapy, has proven effective in preventing HIV transmission, it is unsuitable for worldwide use due to its substantial costs and frequent adverse effects. Besides promoting HIV/AIDS awareness through education, there is hardly an alternative for inhibiting the spread of the disease. One promising approach is the development of an HIV vaccine. Unfortunately, the high variability of envelope proteins from HIV subtypes, their frequency of mutation and the lack of fully understanding the mechanisms of protection against the virus constitute an obstacle for vaccine development. Efforts for developing successful anti-HIV vaccines have been underway for decades now, with little success. Lately, significant progress has been made in adopting the novel mRNA vaccine approach as an anti-HIV strategy. mRNA vaccines received a great thrust during the COVID-19 pandemic. Now, several mRNA-based HIV vaccines are undergoing clinical trials to evaluate their safety and efficacy. This review offers an overview of the pathogenesis and treatment of HIV / AIDS, previous efforts of HIV vaccine development and introduces mRNA vaccines as a promising and potential game changing platform for HIV vaccination.
Collapse
Affiliation(s)
- Andra Fortner
- Albert-Ludwigs-Universitat Freiburg, Germany,Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Octavian Bucur
- Victor Babes National Institute of Pathology, Bucharest, Romania,Viron Molecular Medicine Institute, Boston, MA 02108, USA,* Corresponding authors: Octavian Bucur, MD, PhD, Next Generation Pathology Group, Victor Babes National Institute of Pathology, Bucharest, Romania and Viron Molecular Medicine Institute, Boston, MA 02108, USA; ;
| |
Collapse
|
10
|
Bellinger DL, Lorton D. Sympathetic Nerves and Innate Immune System in the Spleen: Implications of Impairment in HIV-1 and Relevant Models. Cells 2022; 11:cells11040673. [PMID: 35203323 PMCID: PMC8870141 DOI: 10.3390/cells11040673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
The immune and sympathetic nervous systems are major targets of human, murine and simian immunodeficiency viruses (HIV-1, MAIDS, and SIV, respectively). The spleen is a major reservoir for these retroviruses, providing a sanctuary for persistent infection of myeloid cells in the white and red pulps. This is despite the fact that circulating HIV-1 levels remain undetectable in infected patients receiving combined antiretroviral therapy. These viruses sequester in immune organs, preventing effective cures. The spleen remains understudied in its role in HIV-1 pathogenesis, despite it hosting a quarter of the body’s lymphocytes and diverse macrophage populations targeted by HIV-1. HIV-1 infection reduces the white pulp, and induces perivascular hyalinization, vascular dysfunction, tissue infarction, and chronic inflammation characterized by activated epithelial-like macrophages. LP-BM5, the retrovirus that induces MAIDS, is a well-established model of AIDS. Immune pathology in MAIDs is similar to SIV and HIV-1 infection. As in SIV and HIV, MAIDS markedly changes splenic architecture, and causes sympathetic dysfunction, contributing to inflammation and immune dysfunction. In MAIDs, SIV, and HIV, the viruses commandeer splenic macrophages for their replication, and shift macrophages to an M2 phenotype. Additionally, in plasmacytoid dendritic cells, HIV-1 blocks sympathetic augmentation of interferon-β (IFN-β) transcription, which promotes viral replication. Here, we review viral–sympathetic interactions in innate immunity and pathophysiology in the spleen in HIV-1 and relevant models. The situation remains that research in this area is still sparse and original hypotheses proposed largely remain unanswered.
Collapse
|
11
|
Sachdeva M, Sra HK, Agarwal A, Chauhan A, Pradhan P, Singh M, Singh M. Effect of Probiotics on the Frequency of CD4+ T-Cells in HIV-Infected Children and Adolescents: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Trop Pediatr 2022; 68:6523053. [PMID: 35137236 DOI: 10.1093/tropej/fmac006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Depletion of CD4+ T-cells in the gut-associated lymphoid tissue is the hallmark of HIV infection, with only partial restoration by potent antiretroviral therapy (ART). Gut dysbiosis, together with disruption of mucosal integrity contributes to chronic immune activation that further exacerbates the disease. Data from randomized controlled trials in pediatric HIV patients have indicated potential of probiotics in complementing routine ART in managing HIV-associated gastrointestinal complications. We have systematically extracted data from these trials and performed meta-analysis to quantify the effect of probiotics on CD4+ T-cell counts and any adverse events associated with their supplementation. METHODS A systematic search through multiple databases yielded three studies that were pooled using fixed-effect model. Risk of bias assessment was done by the Cochrane risk of bias tool and publication bias was assessed by Egger's test. RESULTS Included studies had moderate risk of bias and Egger's statistics revealed no publication bias (p > 0.05). Pooled analysis showed significant improvement in CD4+ T-cell counts, with mean difference, 123.92 (95% CI: 104.36-143.48), p < 0.0001, no heterogeneity (I2=0) among the included trials. Subgroup analysis also depicted improvement in CD4+ T-cell counts irrespective of treatment duration, in both ART naïve and treated patients. No adverse effects with probiotic consumption were reported. CONCLUSIONS Probiotics supplementation led to an improvement in CD4+ T-cell counts among HIV-infected children with no observed adverse effects. Despite the inherent limitations of included studies, our systematic review would justify more well-designed, large-scale trials in children, which may guide pediatricians on whether to incorporate probiotics as an adjunct therapy to routine ART.
Collapse
Affiliation(s)
- Meenakshi Sachdeva
- Advanced Pediatric Center, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Harnoor K Sra
- Advanced Pediatric Center, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Amit Agarwal
- Department of Telemedicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anil Chauhan
- Department of Telemedicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Pranita Pradhan
- Advanced Pediatric Center, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Manvi Singh
- Department of Telemedicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Meenu Singh
- Advanced Pediatric Center, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.,Department of Telemedicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
12
|
Identification of HIV Rapid Mutations Using Differences in Nucleotide Distribution over Time. Genes (Basel) 2022; 13:genes13020170. [PMID: 35205215 PMCID: PMC8872422 DOI: 10.3390/genes13020170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023] Open
Abstract
Mutation is the driving force of species evolution, which may change the genetic information of organisms and obtain selective competitive advantages to adapt to environmental changes. It may change the structure or function of translated proteins, and cause abnormal cell operation, a variety of diseases and even cancer. Therefore, it is particularly important to identify gene regions with high mutations. Mutations will cause changes in nucleotide distribution, which can be characterized by natural vectors globally. Based on natural vectors, we propose a mathematical formula for measuring the difference in nucleotide distribution over time to investigate the mutations of human immunodeficiency virus. The studied dataset is from public databases and includes gene sequences from twenty HIV-infected patients. The results show that the mutation rate of the nine major genes or gene segment regions in the genome exhibits discrepancy during the infected period, and the Env gene has the fastest mutation rate. We deduce that the peak of virus mutation has a close temporal relationship with viral divergence and diversity. The mutation study of HIV is of great significance to clinical diagnosis and drug design.
Collapse
|
13
|
Shah D, Chauhan A, Yadav N, Shah A, Maheshwari D, Shah J. Response surface methodology-based quantification of lamivudine and zidovudine using reverse-phase high-performance liquid chromatography in pharmaceutical formulation. ASIAN JOURNAL OF PHARMACEUTICAL RESEARCH AND HEALTH CARE 2022. [DOI: 10.4103/ajprhc.ajprhc_74_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Tatar G, Çermik TF, Alçın G, Erol Fenercioglu O, İnci A, Beyhan E, Ergül N. Contribution of 18F-FDG PET/CT imaging in the diagnosis and management of HIV-positive patients. Rev Esp Med Nucl Imagen Mol 2021; 41:275-283. [PMID: 34794914 DOI: 10.1016/j.remnie.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION AND OBJECTIVES The human immunodeficiency virus [HIV] is a lentevirus, primarily infects certain cells of the immune system, thereby greatly weakens the body's own defenses against diseases. This study was aimed to explore the value and significance of 18F-FDG PET/CT in the assessment of patients with HIV infection and to examine the presence of quantitative alterations in 18F-FDG uptake among patients with HIV-related infections or malignant diseases in HIV-positive patients. PATIENTS AND METHODS Forty patients with HIV infection were scanned on PET/CT system. The data were registered according to immune status, antiretroviral therapy, and definitive diagnosis. All pathologic lesions and disease related areas were described, 18F-FDG uptake patterns were evaluated. Semiquantitative analysis of 18F-FDG uptake was performed and SUVmax were calculated. RESULTS Twenty-eight patients [70%] were diagnosed with HIV-related infection or malignant diseases. The sensitivity of PET/CT was shown to be 100% and the specificity 92% for concomitant diseases requiring additional treatment to antiretroviral therapy. The SUVmax and CD4 counts were not statistically different between HIV-related reactive lymphadenopathy, HIV-related malignancy, and HIV-related infections. CONCLUSIONS The pattern of distribution of nodal/extranodal uptake on 18F-FDG PET/CT may facilitate distinction between HIV-related generalized lymphadenopathies, HIV-related opportunistic infections, and malignancies. In this context, 18F-FDG PET/CT should be preferred for routine use in the management of patients infected with HIV.
Collapse
Affiliation(s)
- Gamze Tatar
- University of Health Sciences, Istanbul Bagcılar Training and Research Hospital, Department of Nuclear Medicine, Istanbul, Turkey.
| | - Tevfik Fikret Çermik
- University of Health Sciences, Istanbul Training and Research Hospital, Department of Nuclear Medicine, Istanbul, Turkey
| | - Göksel Alçın
- University of Health Sciences, Istanbul Training and Research Hospital, Department of Nuclear Medicine, Istanbul, Turkey
| | - Ozge Erol Fenercioglu
- University of Health Sciences, Istanbul Training and Research Hospital, Department of Nuclear Medicine, Istanbul, Turkey
| | - Ayşe İnci
- University of Health Sciences, Istanbul Training and Research Hospital, Department of Infectious Disease, Istanbul, Turkey
| | - Ediz Beyhan
- University of Health Sciences, Istanbul Training and Research Hospital, Department of Nuclear Medicine, Istanbul, Turkey
| | - Nurhan Ergül
- University of Health Sciences, Istanbul Training and Research Hospital, Department of Nuclear Medicine, Istanbul, Turkey
| |
Collapse
|
15
|
Romero‐Cordero S, Noguera‐Julian A, Cardellach F, Fortuny C, Morén C. Mitochondrial changes associated with viral infectious diseases in the paediatric population. Rev Med Virol 2021; 31:e2232. [PMID: 33792105 PMCID: PMC9286481 DOI: 10.1002/rmv.2232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/24/2022]
Abstract
Infectious diseases occur worldwide with great frequency in both adults and children, causing 350,000 deaths in 2017, according to the latest World Health Organization reports. Both infections and their treatments trigger mitochondrial interactions at multiple levels: (i) incorporation of damaged or mutated proteins into the complexes of the electron transport chain; (ii) impact on mitochondrial genome (depletion, deletions and point mutations) and mitochondrial dynamics (fusion and fission); (iii) membrane potential impairment; (iv) apoptotic regulation; and (v) generation of reactive oxygen species, among others. Such alterations may result in serious adverse clinical events with considerable impact on the quality of life of the children and could even cause death. Herein, we use a systematic review to explore the association between mitochondrial alterations in paediatric infections including human immunodeficiency virus, cytomegalovirus, herpes viruses, various forms of hepatitis, adenovirus, T-cell lymphotropic virus and influenza. We analyse how these paediatric viral infectious processes may cause mitochondrial deterioration in this especially vulnerable population, with consideration for the principal aspects of research and diagnosis leading to improved disease understanding, management and surveillance.
Collapse
Affiliation(s)
- Sonia Romero‐Cordero
- Faculty of MedicinePompeu Fabra UniversityBarcelonaSpain
- Faculty of MedicineUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Antoni Noguera‐Julian
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en PediatriaUnitat d´InfeccionsServei de PediatriaInstitut de Recerca Pediàtrica Hospital Sant Joan de DéuBarcelonaSpain
- Departament de PediatriaUniversitat de BarcelonaBarcelonaSpain
- CIBER de Epidemiología y Salud Pública, CIBERESP (ISCIII)MadridSpain
- Red de Investigación Translacional en Infectología PediátricaRITIPMadridSpain
| | - Francesc Cardellach
- Faculty of Medicine and Health SciencesMuscle Research and Mitochondrial Function LaboratoryCellex‐IDIBAPSUniversity of BarcelonaBarcelonaSpain
- CIBER de Enfermedades RarasCIBERER (ISCIII)MadridSpain
- Internal Medicine DepartmentHospital Clínic of Barcelona (HCB)BarcelonaSpain
| | - Clàudia Fortuny
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en PediatriaUnitat d´InfeccionsServei de PediatriaInstitut de Recerca Pediàtrica Hospital Sant Joan de DéuBarcelonaSpain
- Departament de PediatriaUniversitat de BarcelonaBarcelonaSpain
- CIBER de Epidemiología y Salud Pública, CIBERESP (ISCIII)MadridSpain
- Red de Investigación Translacional en Infectología PediátricaRITIPMadridSpain
| | - Constanza Morén
- Faculty of Medicine and Health SciencesMuscle Research and Mitochondrial Function LaboratoryCellex‐IDIBAPSUniversity of BarcelonaBarcelonaSpain
- CIBER de Enfermedades RarasCIBERER (ISCIII)MadridSpain
- Internal Medicine DepartmentHospital Clínic of Barcelona (HCB)BarcelonaSpain
| |
Collapse
|
16
|
Pires C, Silva IC. Initial review on medicinal preparations of undetermined constitution containing natural materials for the treatment of HIV or AIDS. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Chen Y, Liu F, Yu Q, Li T. Review of fractional epidemic models. APPLIED MATHEMATICAL MODELLING 2021; 97:281-307. [PMID: 33897091 PMCID: PMC8056944 DOI: 10.1016/j.apm.2021.03.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 05/10/2023]
Abstract
The global impact of corona virus (COVID-19) has been profound, and the public health threat it represents is the most serious seen in a respiratory virus since the 1918 influenza A(H1N1) pandemic. In this paper, we have focused on reviewing the results of epidemiological modelling especially the fractional epidemic model and summarized different types of fractional epidemic models including fractional Susceptible-Infective-Recovered (SIR), Susceptible-Exposed-Infective-Recovered (SEIR), Susceptible-Exposed-Infective-Asymptomatic-Recovered (SEIAR) models and so on. Furthermore, we propose a general fractional SEIAR model in the case of single-term and multi-term fractional differential equations. A feasible and reliable parameter estimation method based on modified hybrid Nelder-Mead simplex search and particle swarm optimisation is also presented to fit the real data using fractional SEIAR model. The effective methods to solve the fractional epidemic models we introduced construct a simple and effective analytical technique that can be easily extended and applied to other fractional models, and can help guide the concerned bodies in preventing or controlling, even predicting the infectious disease outbreaks.
Collapse
Affiliation(s)
- Yuli Chen
- Fuzhou University Zhicheng College, Fujian 350001, China
| | - Fawang Liu
- School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
- College of Mathematics and Computer Science, Fuzhou University, Fujian 350116, China
| | - Qiang Yu
- School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Tianzeng Li
- School of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong 643000, China
| |
Collapse
|
18
|
Li M, Brokaw A, Furuta AM, Coler B, Obregon-Perko V, Chahroudi A, Wang HY, Permar SR, Hotchkiss CE, Golos TG, Rajagopal L, Adams Waldorf KM. Non-human Primate Models to Investigate Mechanisms of Infection-Associated Fetal and Pediatric Injury, Teratogenesis and Stillbirth. Front Genet 2021; 12:680342. [PMID: 34290739 PMCID: PMC8287178 DOI: 10.3389/fgene.2021.680342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
A wide array of pathogens has the potential to injure the fetus and induce teratogenesis, the process by which mutations in fetal somatic cells lead to congenital malformations. Rubella virus was the first infectious disease to be linked to congenital malformations due to an infection in pregnancy, which can include congenital cataracts, microcephaly, hearing impairment and congenital heart disease. Currently, human cytomegalovirus (HCMV) is the leading infectious cause of congenital malformations globally, affecting 1 in every 200 infants. However, our knowledge of teratogenic viruses and pathogens is far from complete. New emerging infectious diseases may induce teratogenesis, similar to Zika virus (ZIKV) that caused a global pandemic in 2016-2017; thousands of neonates were born with congenital microcephaly due to ZIKV exposure in utero, which also included a spectrum of injuries to the brain, eyes and spinal cord. In addition to congenital anomalies, permanent injury to fetal and neonatal organs, preterm birth, stillbirth and spontaneous abortion are known consequences of a broader group of infectious diseases including group B streptococcus (GBS), Listeria monocytogenes, Influenza A virus (IAV), and Human Immunodeficiency Virus (HIV). Animal models are crucial for determining the mechanism of how these various infectious diseases induce teratogenesis or organ injury, as well as testing novel therapeutics for fetal or neonatal protection. Other mammalian models differ in many respects from human pregnancy including placentation, labor physiology, reproductive tract anatomy, timeline of fetal development and reproductive toxicology. In contrast, non-human primates (NHP) most closely resemble human pregnancy and exhibit key similarities that make them ideal for research to discover the mechanisms of injury and for testing vaccines and therapeutics to prevent teratogenesis, fetal and neonatal injury and adverse pregnancy outcomes (e.g., stillbirth or spontaneous abortion). In this review, we emphasize key contributions of the NHP model pre-clinical research for ZIKV, HCMV, HIV, IAV, L. monocytogenes, Ureaplasma species, and GBS. This work represents the foundation for development and testing of preventative and therapeutic strategies to inhibit infectious injury of human fetuses and neonates.
Collapse
Affiliation(s)
- Miranda Li
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Alyssa Brokaw
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Anna M. Furuta
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Brahm Coler
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Veronica Obregon-Perko
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Charlotte E. Hotchkiss
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Thaddeus G. Golos
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Lakshmi Rajagopal
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Kristina M. Adams Waldorf
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Kok YL, Vongrad V, Chaudron SE, Shilaih M, Leemann C, Neumann K, Kusejko K, Di Giallonardo F, Kuster H, Braun DL, Kouyos RD, Günthard HF, Metzner KJ. HIV-1 integration sites in CD4+ T cells during primary, chronic, and late presentation of HIV-1 infection. JCI Insight 2021; 6:143940. [PMID: 33784259 PMCID: PMC8262285 DOI: 10.1172/jci.insight.143940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/25/2021] [Indexed: 12/29/2022] Open
Abstract
HIV-1 is capable of integrating its genome into that of its host cell. We examined the influence of the activation state of CD4+ T cells, the effect of antiretroviral therapy (ART), and the clinical stage of HIV-1 infection on HIV-1 integration site features and selection. HIV-1 integration sites were sequenced from longitudinally sampled resting and activated CD4+ T cells from 12 HIV-1–infected individuals. In total, 589 unique HIV-1 integration sites were analyzed: 147, 391, and 51 during primary, chronic, and late presentation of HIV-1 infection, respectively. As early as during primary HIV-1 infection and independent of the activation state of CD4+ T cells collected on and off ART, HIV-1 integration sites were preferentially detected in recurrent integration genes, genes associated with clonal expansion of latently HIV-1–infected CD4+ T cells, cancer-related genes, and highly expressed genes. The preference for cancer-related genes was more pronounced at late stages of HIV-1 infection. Host genomic features of HIV-1 integration site selection remained stable during HIV-1 infection in both resting and activated CD4+ T cells. In summary, characteristic HIV-1 integration site features are preestablished as early as during primary HIV-1 infection and are found in both resting and activated CD4+ T cells.
Collapse
Affiliation(s)
- Yik Lim Kok
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Valentina Vongrad
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Sandra E Chaudron
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Mohaned Shilaih
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Christine Leemann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Kathrin Neumann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Katharina Kusejko
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Francesca Di Giallonardo
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Herbert Kuster
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Dominique L Braun
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger D Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Karin J Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Vivithanaporn P, Kongratanapasert T, Suriyapakorn B, Songkunlertchai P, Mongkonariyawong P, Limpikirati PK, Khemawoot P. Potential drug-drug interactions of antiretrovirals and antimicrobials detected by three databases. Sci Rep 2021; 11:6089. [PMID: 33731842 PMCID: PMC7971054 DOI: 10.1038/s41598-021-85586-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Standard treatment for HIV infection involves a combination of antiretrovirals. Additionally, opportunistic infections in HIV infected patients require further antimicrobial medications that might cause drug-drug interactions (DDIs). The objective of this study was to to compare the recognition of DDIs between antiretrovirals and antimicrobials by three proprietary databases and evaluate their concordance. 114 items of antiretrovirals and antimicrobials from the National List of Essential Medicines of Thailand 2018 were used in the study. However, 21 items were not recognised by Micromedex, Drugs.com, and Liverpool HIV interactions. Only 93 items were available for the detection of potential DDIs by the three databases. Potential DDIs detected from the three databases included 292 pairs. Liverpool showed the highest number of DDIs with 285 pairs compared with 259 pairs by drugs.com and 133 pairs by Micromedex. Regarding the severity classifications, Liverpool reported 10% Contraindicated; Micromedex reported 14% contraindicated and 59% major; Drugs.com reported 21% major. The Fleiss’ kappa agreements were fair to poor among the three databases, higher agreement was observed for DDIs classified as severe. This study highlights the need to harmonize the evaluation and interpretation of DDI risk in order to produce standardized information to support prescribers.
Collapse
Affiliation(s)
- Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, 10540, Thailand
| | - Teetat Kongratanapasert
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Bovornpat Suriyapakorn
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pichayut Songkunlertchai
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Patpicha Mongkonariyawong
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Patanachai K Limpikirati
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Phisit Khemawoot
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, 10540, Thailand. .,Preclinical Pharmacokinetics and Interspecies Scaling for Drug Development Research Unit, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
21
|
Gálvez NMS, Bohmwald K, Pacheco GA, Andrade CA, Carreño LJ, Kalergis AM. Type I Natural Killer T Cells as Key Regulators of the Immune Response to Infectious Diseases. Clin Microbiol Rev 2021; 34:e00232-20. [PMID: 33361143 PMCID: PMC7950362 DOI: 10.1128/cmr.00232-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The immune system must work in an orchestrated way to achieve an optimal response upon detection of antigens. The cells comprising the immune response are traditionally divided into two major subsets, innate and adaptive, with particular characteristics for each type. Type I natural killer T (iNKT) cells are defined as innate-like T cells sharing features with both traditional adaptive and innate cells, such as the expression of an invariant T cell receptor (TCR) and several NK receptors. The invariant TCR in iNKT cells interacts with CD1d, a major histocompatibility complex class I (MHC-I)-like molecule. CD1d can bind and present antigens of lipid nature and induce the activation of iNKT cells, leading to the secretion of various cytokines, such as gamma interferon (IFN-γ) and interleukin 4 (IL-4). These cytokines will aid in the activation of other immune cells following stimulation of iNKT cells. Several molecules with the capacity to bind to CD1d have been discovered, including α-galactosylceramide. Likewise, several molecules have been synthesized that are capable of polarizing iNKT cells into different profiles, either pro- or anti-inflammatory. This versatility allows NKT cells to either aid or impair the clearance of pathogens or to even control or increase the symptoms associated with pathogenic infections. Such diverse contributions of NKT cells to infectious diseases are supported by several publications showing either a beneficial or detrimental role of these cells during diseases. In this article, we discuss current data relative to iNKT cells and their features, with an emphasis on their driving role in diseases produced by pathogenic agents in an organ-oriented fashion.
Collapse
Affiliation(s)
- Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gaspar A Pacheco
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A Andrade
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
22
|
Nilavar NM, Raghavan SC. HIV integrase inhibitors that inhibit strand transfer interact with RAG1 and hamper its activities. Int Immunopharmacol 2021; 95:107515. [PMID: 33735713 DOI: 10.1016/j.intimp.2021.107515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022]
Abstract
Multiple steps of the retroviral infection process have been targeted over the years to develop therapeutic approaches, starting from the entry of the virus into the cell till the viral DNA integration to host genome. Inhibitors against the Human Immunodeficiency Virus (HIV) integrase is the newest among the therapies employed against HIV. Recombination activating gene 1 (RAG1) is an integral protein involved in the generation of diversity of antibodies and T-cell receptors and is one of the partners of the RAG complex. Studies have shown structural and functional similarities between the HIV integrase and RAG1. Recently, we and others have shown that some of the integrase inhibitors can interfere with RAG binding and cleavage, hindering its physiological functions. This mini review focuses on the HIV integrase, integrase inhibitors and their effect on RAG activities.
Collapse
Affiliation(s)
- Namrata M Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
23
|
Imani A, Soleymani S, Vahabpour R, Hajimahdi Z, Zarghi A. Piroxicam Analogs: Design, Synthesis, Docking Study and Biological Evaluation as Promising Anti-HIV-1 agents. Med Chem 2021; 18:209-219. [PMID: 33550978 DOI: 10.2174/1573406417666210125141639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/19/2020] [Accepted: 12/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Taking the well-known drug, Piroxicam as a lead compound, we designed and synthesized two series of 1,2-benzothiazines 1,1-dioxide derivatives to assay their ability in inhibition of HIV-1 replication in cell culture. OBJECTIVE In this study, we describe the synthesis, docking study and biological evaluation of 1,2-benzothiazines 1,1- dioxide derivatives. RESULTS Most of the new compounds were active in the cell-based anti-HIV-1 assay with EC50 < 50 M. Among them, compounds 7g was found to be the most active molecule. Docking study using 3OYA pdb code on the most active molecule 7g with EC50 values of 10 M showed a similar binding mode to the HIV integrase inhibitors. CONCLUSION Since all the compounds showed no remarkable cytotoxicity (CC50> 500 M), the designed scaffold is promising structure for development of new anti-HIV-1 agents.
Collapse
Affiliation(s)
- Ali Imani
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Sepehr Soleymani
- Hepatitis and AIDS department, Pasteur institute of Iran, Tehran. Iran
| | - Rouhollah Vahabpour
- Medical Lab Technology Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Zahra Hajimahdi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| |
Collapse
|
24
|
Corduas F, Mancuso E, Lamprou DA. Long-acting implantable devices for the prevention and personalised treatment of infectious, inflammatory and chronic diseases. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Reyes A, Corrales N, Gálvez NMS, Bueno SM, Kalergis AM, González PA. Contribution of hypoxia inducible factor-1 during viral infections. Virulence 2020; 11:1482-1500. [PMID: 33135539 PMCID: PMC7605355 DOI: 10.1080/21505594.2020.1836904] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/15/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that plays critical roles during the cellular response to hypoxia. Under normoxic conditions, its function is tightly regulated by the degradation of its alpha subunit (HIF-1α), which impairs the formation of an active heterodimer in the nucleus that otherwise regulates the expression of numerous genes. Importantly, HIF-1 participates in both cancer and infectious diseases unveiling new therapeutic targets for those ailments. Here, we discuss aspects related to the activation of HIF-1, the effects of this transcription factor over immune system components, as well as the involvement of HIF-1 activity in response to viral infections in humans. Although HIF-1 is currently being assessed in numerous clinical settings as a potential therapy for different diseases, up to date, there are no clinical studies evaluating the pharmacological modulation of this transcription factor as a possible new antiviral treatment. However, based on the available evidence, clinical trials targeting this molecule are likely to occur soon. In this review we discuss the role of HIF-1 in viral immunity, the modulation of HIF-1 by different types of viruses, as well as the effects of HIF-1 over their life cycle and the potential use of HIF-1 as a new target for the treatment of viral infections.
Collapse
Affiliation(s)
- Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Corrales
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M. S. Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento De Endocrinología, Facultad De Medicina, Escuela De Medicina, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
26
|
Gamboa E, Duran M, Gathe JC, Surani S, Varon J. COVID-19 Coexisting With the Human Immunodeficiency Virus: A Case Report. Cureus 2020; 12:e11007. [PMID: 33214937 PMCID: PMC7671084 DOI: 10.7759/cureus.11007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2020] [Indexed: 11/05/2022] Open
Abstract
The newly discovered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has impacted the world dramatically, forcing the medical community to quickly and effectively find ways to manage coronavirus disease 2019 (COVID-19). The COVID-19 pandemic has shown many similarities to the human immunodeficiency virus pandemic in 1981, from the fear of treating patients for a virus we have little knowledge of, to analyzing how the levels of CD4+ are affected in both diseases. Declining numbers of CD4+ levels are classically seen with HIV patients, however, given the immune response of our bodies, these levels have also been seen to decrease during an active COVID-19 infection. Besides, there is speculation that people living with HIV are at a higher risk for mortality if infected with SARS-CoV-2. Therefore, the interaction of these two viruses can create a syndemic culture, and thus, the need to monitor and treat patients with human immunodeficiency virus and COVID-19 cautiously.
Collapse
Affiliation(s)
| | - Melanie Duran
- Internal Medicine, United Memorial Medical Center, Houston, USA
| | - Joseph C Gathe
- Infectious Disease, United Memorial Medical Center, Houston, USA
| | - Salim Surani
- Internal Medicine, Corpus Christi Medical Center, Corpus Christi, USA
- Internal Medicine, University of North Texas, Dallas, USA
| | - Joseph Varon
- Critical Care, United Memorial Medical Center, Houston, USA
| |
Collapse
|
27
|
Niedźwiedzka-Rystwej P, Grywalska E, Hrynkiewicz R, Wołącewicz M, Becht R, Roliński J. The Double-Edged Sword Role of Viruses in Gastric Cancer. Cancers (Basel) 2020; 12:cancers12061680. [PMID: 32599870 PMCID: PMC7352989 DOI: 10.3390/cancers12061680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Due to its high morbidity and mortality, gastric cancer is a topic of a great concern throughout the world. Major ways of treatment are gastrectomy and chemotherapy, unfortunately they are not always successful. In a search for more efficient therapy strategies, viruses and their potential seem to be an important issue. On one hand, several oncogenic viruses have been noticed in the case of gastric cancer, making the positive treatment even more advantageous, but on the other, viruses exist with a potential therapeutic role in this malignancy.
Collapse
Affiliation(s)
- Paulina Niedźwiedzka-Rystwej
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (M.W.)
- Correspondence:
| | - Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (E.G.); (J.R.)
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (M.W.)
| | - Mikołaj Wołącewicz
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (M.W.)
| | - Rafał Becht
- Clinical Department of Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University of Szczecin, 70-204 Szczecin, Poland;
| | - Jacek Roliński
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (E.G.); (J.R.)
| |
Collapse
|
28
|
Sarma A, Das MK. Nose to brain delivery of antiretroviral drugs in the treatment of neuroAIDS. MOLECULAR BIOMEDICINE 2020; 1:15. [PMID: 34765998 PMCID: PMC7725542 DOI: 10.1186/s43556-020-00019-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
NeuroAIDS (Neuro Acquired Immunodeficiency Syndrome) or HIV (Human Immunodeficiency Virus) associated neuronal abnormality is continuing to be a significant health issue among AIDS patients even under the treatment of combined antiretroviral therapy (cART). Injury and damage to neurons of the brain are the prime causes of neuroAIDS, which happens due to the ingress of HIV by direct permeation across the blood-brain barrier (BBB) or else via peripherally infected macrophage into the central nervous system (CNS). The BBB performs as a stringent barricade for the delivery of therapeutics drugs. The intranasal route of drug administration exhibits as a non-invasive technique to bypass the BBB for the delivery of antiretroviral drugs and other active pharmaceutical ingredients inside the brain and CNS. This method is fruitful for the drugs that are unable to invade the BBB to show its action in the CNS and thus erase the demand of systemic delivery and thereby shrink systemic side effects. Drug delivery from the nose to the brain/CNS takes very less time through both olfactory and trigeminal nerves. Intranasal delivery does not require the involvement of any receptor as it occurs by an extracellular route. Nose to brain delivery also involves nasal associated lymphatic tissues (NALT) and deep cervical lymph nodes. However, very little research has been done to explore the utility of nose to brain delivery of antiretroviral drugs in the treatment of neuroAIDS. This review focuses on the potential of nasal route for the effective delivery of antiretroviral nanoformulations directly from nose to the brain.
Collapse
Affiliation(s)
- Anupam Sarma
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India.,Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam 781026 India
| | - Malay K Das
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
29
|
Discovery of 2-isoxazol-3-yl-acetamide analogues as heat shock protein 90 (HSP90) inhibitors with significant anti-HIV activity. Eur J Med Chem 2019; 183:111699. [PMID: 31561045 DOI: 10.1016/j.ejmech.2019.111699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022]
Abstract
The recent burst of explorations on heat shock protein 90 (HSP90) in virus research supports its emergence as a promising target to overcome the drawbacks of current antiviral therapeutic regimen. In continuation of our efforts towards the discovery of novel anti-retroviral molecules, we designed, synthesized fifteen novels 2-isoxazol-3-yl-acetamide based compounds (2a-o) followed by analysis of their anti-HIV activity and cytotoxicity studies. 2a-b, 2e, 2j, and 2l-m were found to be active with inhibitory potentials >80% at their highest non-cytotoxic concentration (HNC). Further characterization of anti-HIV activity of these molecules suggests that 2l has ∼3.5 fold better therapeutic index than AUY922, the second generation HSP90 inhibitor. The anti-HIV activity of 2l is a cell type, virus isolate and viral load independent phenomena. Interestingly, 2l does not significantly modulate viral enzymes like Reverse Transcriptase (RT), Integrase (IN) and Protease (PR) as compared to their known inhibitors in a cell free in vitro assay system at its HNC. Further, 2l mediated inhibition of HSP90 attenuates HIV-1 LTR driven gene expression. Taken together, structural rationale, modeling studies and characterization of biological activities suggest that this novel scaffold can attenuate HIV-1 replication significantly within the host and thus opens a new horizon to develop novel anti-HIV therapeutic candidates.
Collapse
|
30
|
Pharmacological effects of ginseng on infectious diseases. Inflammopharmacology 2019; 27:871-883. [PMID: 31407196 DOI: 10.1007/s10787-019-00630-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/03/2019] [Indexed: 12/11/2022]
Abstract
Ginseng has been traditionally used as an herbal nutritional supplement in Asian countries, including Korea, China, Japan, and Vietnam for several millennia. Most studies have focused on the role of ginseng on anti-oxidative stress, anti-inflammatory, and anti-cancer activities. Recently, modulator activities of ginseng on the immune responses during pathogenic bacterial and viral infections and beneficial effects of ginseng in infectious diseases have been elucidated. In vivo and in vitro studies revealed the potential of ginseng extracts and ginsenosides Rg1, Rg3, Rb1, Rb2, Rb3, compound K, Re, Rd, Rh2 for treatment of several infectious diseases. The molecular mechanisms of these effects mainly involve inflammatory cytokines (TNF-α, IL-6, IL-1β, IFN-γ, IL-10), apoptotic pathway (bcl-2, bcl-xL), PI3K/Akt pathway, MAPKs pathway, JAK2/STAT5, NF-κB pathway, and the inflammasome. In this review, we will summarize the current knowledge on the effects of ginseng in the immune responses during the infections and its bioactivities on the prevention of infectious diseases as well as its underlying mechanisms. Moreover, the therapeutic potential of ginseng as an anti-bacterial and anti-viral medication and vaccine adjuvant will be discussed as well.
Collapse
|
31
|
Gu CJ, Borjabad A, Hadas E, Kelschenbach J, Kim BH, Chao W, Arancio O, Suh J, Polsky B, McMillan J, Edagwa B, Gendelman HE, Potash MJ, Volsky DJ. EcoHIV infection of mice establishes latent viral reservoirs in T cells and active viral reservoirs in macrophages that are sufficient for induction of neurocognitive impairment. PLoS Pathog 2018; 14:e1007061. [PMID: 29879225 PMCID: PMC5991655 DOI: 10.1371/journal.ppat.1007061] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/29/2018] [Indexed: 02/06/2023] Open
Abstract
Suppression of HIV replication by antiretroviral therapy (ART) or host immunity can prevent AIDS but not other HIV-associated conditions including neurocognitive impairment (HIV-NCI). Pathogenesis in HIV-suppressed individuals has been attributed to reservoirs of latent-inducible virus in resting CD4+ T cells. Macrophages are persistently infected with HIV but their role as HIV reservoirs in vivo has not been fully explored. Here we show that infection of conventional mice with chimeric HIV, EcoHIV, reproduces physiological conditions for development of disease in people on ART including immunocompetence, stable suppression of HIV replication, persistence of integrated, replication-competent HIV in T cells and macrophages, and manifestation of learning and memory deficits in behavioral tests, termed here murine HIV-NCI. EcoHIV established latent reservoirs in CD4+ T lymphocytes in chronically-infected mice but could be induced by epigenetic modulators ex vivo and in mice. In contrast, macrophages expressed EcoHIV constitutively in mice for up to 16 months; murine leukemia virus (MLV), the donor of gp80 envelope in EcoHIV, did not infect macrophages. Both EcoHIV and MLV were found in brain tissue of infected mice but only EcoHIV induced NCI. Murine HIV-NCI was prevented by antiretroviral prophylaxis but once established neither persistent EcoHIV infection in mice nor NCI could be reversed by long-acting antiretroviral therapy. EcoHIV-infected, athymic mice were more permissive to virus replication in macrophages than were wild-type mice, suffered cognitive dysfunction, as well as increased numbers of monocytes and macrophages infiltrating the brain. Our results suggest an important role of HIV expressing macrophages in HIV neuropathogenesis in hosts with suppressed HIV replication.
Collapse
Affiliation(s)
- Chao-Jiang Gu
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Alejandra Borjabad
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Eran Hadas
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jennifer Kelschenbach
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Boe-Hyun Kim
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Wei Chao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Jin Suh
- Department of Medicine, St. Joseph’s Regional Medical Center, Paterson, New Jersey, United States of America
| | - Bruce Polsky
- Department of Medicine, NYU Winthrop Hospital, Mineola, New York, United States of America
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Mary Jane Potash
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - David J. Volsky
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
32
|
Changes in the cellular microRNA profile by the intracellular expression of HIV-1 Tat regulator: A potential mechanism for resistance to apoptosis and impaired proliferation in HIV-1 infected CD4+ T cells. PLoS One 2017; 12:e0185677. [PMID: 28968466 PMCID: PMC5624617 DOI: 10.1371/journal.pone.0185677] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 08/28/2017] [Indexed: 12/13/2022] Open
Abstract
HIV-1 induces changes in the miRNA expression profile of infected CD4+ T cells that could improve viral replication. HIV-1 regulator Tat modifies the cellular gene expression and has been appointed as an RNA silencing suppressor. Tat is a 101-residue protein codified by two exons that regulates the elongation of viral transcripts. The first exon of Tat (amino acids 1–72) forms the transcriptionally active protein Tat72, but the presence of the second exon (amino acids 73–101) results in a more competent regulatory protein (Tat101) with additional functions. Intracellular, full-length Tat101 induces functional and morphological changes in CD4+ T cells that contribute to HIV-1 pathogenesis such as delay in T-cell proliferation and protection against FasL-mediated apoptosis. But the precise mechanism by which Tat produces these changes remains unknown. We analyzed how the stable expression of intracellular Tat101 and Tat72 modified the miRNA expression profile in Jurkat cells and if this correlated with changes in apoptotic pathways and cell cycle observed in Tat-expressing cells. Specifically, the enhanced expression of hsa-miR-21 and hsa-miR-222 in Jurkat-Tat101 cells was associated with the reduced expression of target mRNAs encoding proteins related to apoptosis and cell cycle such as PTEN, PDCD4 and CDKN1B. We developed Jurkat cells with stable expression of hsa-miR-21 or hsa-miR-222 and observed a similar pattern to Jurkat-Tat101 in resistance to FasL-mediated apoptosis, cell cycle arrest in G2/M and altered cell morphology. Consequently, upregulation of hsa-miR-21 and hsa-miR-222 by Tat may contribute to protect against apoptosis and to anergy observed in HIV-infected CD4+ T cells.
Collapse
|
33
|
Haworth KG, Peterson CW, Kiem HP. CCR5-edited gene therapies for HIV cure: Closing the door to viral entry. Cytotherapy 2017; 19:1325-1338. [PMID: 28751153 DOI: 10.1016/j.jcyt.2017.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
Human immunodeficiency virus (HIV) was first reported and characterized more than three decades ago. Once thought of as a death sentence, HIV infection has become a chronically manageable disease. However, it is estimated that a staggering 0.8% of the world's population is infected with HIV, with more than 1 million deaths reported in 2015 alone. Despite the development of effective anti-retroviral drugs, a permanent cure has only been documented in one patient to date. In 2007, an HIV-positive patient received a bone marrow transplant to treat his leukemia from an individual who was homozygous for a mutation in the CCR5 gene. This mutation, known as CCR5Δ32, prevents HIV replication by inhibiting the early stage of viral entry into cells, resulting in resistance to infection from the majority of HIV isolates. More than 10 years after his last dose of anti-retroviral therapy, the transplant recipient remains free of replication-competent virus. Multiple groups are now attempting to replicate this success through the use of other CCR5-negative donor cell sources. Additionally, developments in the use of lentiviral vectors and targeted nucleases have opened the doors of precision medicine and enabled new treatment methodologies to combat HIV infection through targeted ablation or down-regulation of CCR5 expression. Here, we review historical cases of CCR5-edited cell-based therapies, current clinical trials and future benefits and challenges associated with this technology.
Collapse
Affiliation(s)
- Kevin G Haworth
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Christopher W Peterson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA; Department of Pathology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
34
|
Nanoflow-Nanospray Mass Spectrometry Metabolomics Reveals Disruption of the Urinary Metabolite Profiles of HIV-Positive Patients on Combination Antiretroviral Therapy. J Acquir Immune Defic Syndr 2017; 74:e45-e53. [DOI: 10.1097/qai.0000000000001159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Wahid B, Ali A, Idrees M, Rafique S. Immunotherapeutic strategies for sexually transmitted viral infections: HIV, HSV and HPV. Cell Immunol 2016; 310:1-13. [PMID: 27514252 PMCID: PMC7124316 DOI: 10.1016/j.cellimm.2016.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/22/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022]
Abstract
More than 1 million sexually transmitted infections (STIs) are acquired each day globally. Etiotropic drugs cannot effectively control infectious diseases therefore, there is a dire need to explore alternative strategies especially those based on the regulation of immune system. The review discusses all rational approaches to develop better understanding towards immunotherapeutic strategies based on modulation of immune system in an attempt to curb the elevating risk of infectious diseases such as HIV, HPV and HSV because of their high prevalence. Development of monoclonal antibodies, vaccines and several other immune based treatments are promising alternative strategies that are offering new opportunities to eradicate pathogens.
Collapse
Affiliation(s)
- Braira Wahid
- Centre for Applied Molecular Biology, 87-West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| | - Amjad Ali
- Centre for Applied Molecular Biology, 87-West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| | - Muhammad Idrees
- Centre for Applied Molecular Biology, 87-West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan; Vice Chancellor Hazara University Mansehra, Pakistan.
| | - Shazia Rafique
- Centre for Applied Molecular Biology, 87-West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
36
|
Haddox HK, Dingens AS, Bloom JD. Experimental Estimation of the Effects of All Amino-Acid Mutations to HIV's Envelope Protein on Viral Replication in Cell Culture. PLoS Pathog 2016; 12:e1006114. [PMID: 27959955 PMCID: PMC5189966 DOI: 10.1371/journal.ppat.1006114] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/27/2016] [Accepted: 12/07/2016] [Indexed: 11/18/2022] Open
Abstract
HIV is notorious for its capacity to evade immunity and anti-viral drugs through rapid sequence evolution. Knowledge of the functional effects of mutations to HIV is critical for understanding this evolution. HIV's most rapidly evolving protein is its envelope (Env). Here we use deep mutational scanning to experimentally estimate the effects of all amino-acid mutations to Env on viral replication in cell culture. Most mutations are under purifying selection in our experiments, although a few sites experience strong selection for mutations that enhance HIV's replication in cell culture. We compare our experimental measurements of each site's preference for each amino acid to the actual frequencies of these amino acids in naturally occurring HIV sequences. Our measured amino-acid preferences correlate with amino-acid frequencies in natural sequences for most sites. However, our measured preferences are less concordant with natural amino-acid frequencies at surface-exposed sites that are subject to pressures absent from our experiments such as antibody selection. Our data enable us to quantify the inherent mutational tolerance of each site in Env. We show that the epitopes of broadly neutralizing antibodies have a significantly reduced inherent capacity to tolerate mutations, rigorously validating a pervasive idea in the field. Overall, our results help disentangle the role of inherent functional constraints and external selection pressures in shaping Env's evolution.
Collapse
Affiliation(s)
- Hugh K. Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, Washington, United States of America
| | - Adam S. Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, Washington, United States of America
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
37
|
Identification of interaction between HIV-1 glycoprotein 41 and integrase. Virol Sin 2016; 31:415-424. [PMID: 27681265 DOI: 10.1007/s12250-016-3820-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/30/2016] [Indexed: 10/20/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) encodes 15 viral proteins. Protein-protein interactions play a large role in the function of these proteins. In this study, we attempted to identify novel interactions between the HIV-1 proteins to better understand the role played by viral protein-protein interactions in the life cycle of HIV-1. Genes encoding the 15 viral proteins from the HIV-1 strain AD8 were inserted into the plasmids of a yeast two-hybrid system. By screening 120 pairs of proteins, interactions between seven pairs were found. This led to the discovery of an interaction between the HIV-1 proteins integrase (IN) and glycoprotein 41 (gp41), which was confirmed by both co-immunoprecipitation (Co-IP) assays and fluorescence resonance energy transfer (FRET) imaging in live cells. In addition, it was found that the amino acids at positions 76-100 of gp41 are required for it to bind to IN. Deletion of this region from gp41 prevented its interaction with IN and reduced the production of HIV-1 in 293T cells. This study provides new information on HIV-1 protein-protein interactions which improves the understanding of the biological functions of gp41 and IN during the virus life cycle.
Collapse
|
38
|
The Role of Nuclear Medicine in the Staging and Management of Human Immune Deficiency Virus Infection and Associated Diseases. Nucl Med Mol Imaging 2016; 51:127-139. [PMID: 28559937 DOI: 10.1007/s13139-016-0422-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/25/2016] [Accepted: 05/02/2016] [Indexed: 02/07/2023] Open
Abstract
Human immune deficiency virus (HIV) is a leading cause of death. It attacks the immune system, thereby rendering the infected host susceptible to many HIV-associated infections, malignancies and neurocognitive disorders. The altered immune system affects the way the human host responds to disease, resulting in atypical presentation of these disorders. This presents a diagnostic challenge and the clinician must use all diagnostic avenues available to diagnose and manage these conditions. The advent of highly active antiretroviral therapy (HAART) has markedly reduced the mortality associated with HIV infection but has also brought in its wake problems associated with adverse effects or drug interaction and may even modulate some of the HIV-associated disorders to the detriment of the infected human host. Nuclear medicine techniques allow non-invasive visualisation of tissues in the body. By using this principle, pathophysiology in the body can be targeted and the treatment of diseases can be monitored. Being a functional imaging modality, it is able to detect diseases at the molecular level, and thus it has increased our understanding of the immunological changes in the infected host at different stages of the HIV infection. It also detects pathological changes much earlier than conventional imaging based on anatomical changes. This is important in the immunocompromised host as in some of the associated disorders a delay in diagnosis may have dire consequences. Nuclear medicine has played a huge role in the management of many HIV-associated disorders in the past and continues to help in the diagnosis, prognosis, staging, monitoring and assessing the response to treatment of many HIV-associated disorders. As our understanding of the molecular basis of disease increases nuclear medicine is poised to play an even greater role. In this review we highlight the functional basis of the clinicopathological correlation of HIV from a metabolic view and discuss how the use of nuclear medicine techniques, with particular emphasis of F-18 fluorodeoxyglucose, may have impact in the setting of HIV. We also provide an overview of the role of nuclear medicine techniques in the management of HIV-associated disorders.
Collapse
|
39
|
Abstract
Transcription activator-like effector nucleases (TALENs) are one of several types of programmable, engineered nucleases that bind and cleave specific DNA sequences. Cellular machinery repairs the cleaved DNA by introducing indels. In this review, we emphasize the potential, explore progress, and identify challenges in using TALENs as a therapeutic tool to treat HIV infection. TALENs have less off-target editing and can be more effective at tolerating HIV escape mutations than CRISPR/Cas-9. Scientists have explored TALEN-mediated editing of host genes such as viral entry receptors (CCR5 and CXCR4) and a protein involved in proviral integration (LEDGF/p75). Viral targets include the proviral DNA, particularly focused on the long terminal repeats. Major challenges with translating gene therapy from bench to bedside are improving cleavage efficiency and delivery, while minimizing off-target editing, cytotoxicity, and immunogenicity. However, rapid improvements in TALEN technology are enhancing cleavage efficiency and specificity. Therapeutic testing in animal models of HIV infection will help determine whether TALENs are a viable HIV treatment therapy. TALENs or other engineered nucleases could shift the therapeutic paradigm from life-long antiretroviral therapy toward eradication of HIV infection.
Collapse
|
40
|
Hajimahdi Z, Zarghi A. Progress in HIV-1 Integrase Inhibitors: A Review of their Chemical Structure Diversity. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2016; 15:595-628. [PMID: 28243261 PMCID: PMC5316242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
HIV-1 integrase (IN) enzyme, one of the three main enzymes of HIV-1, catalyzed the insertion of the viral DNA into the genome of host cells. Because of the lack of its homologue in human cells and its essential role in HIV-1 replication, IN inhibition represents an attractive therapeutic target for HIV-1 treatment. Since identification of IN as a promising therapeutic target, a major progress has been made, which has facilitated and led to the approval of three drugs. This review focused on the structural features of the most important IN inhibitors and categorized them structurally in 10 scaffolds. We also briefly discussed the structural and functional properties of HIV-1 IN and binding modes of IN inhibitors. The SAR analysis of the known IN inhibitors provides some useful clues to the possible future discovery of novel IN inhibitors.
Collapse
|
41
|
Rodríguez-Mora S, Mateos E, Moran M, Martín MÁ, López JA, Calvo E, Terrón MC, Luque D, Muriaux D, Alcamí J, Coiras M, López-Huertas MR. Intracellular expression of Tat alters mitochondrial functions in T cells: a potential mechanism to understand mitochondrial damage during HIV-1 replication. Retrovirology 2015; 12:78. [PMID: 26376973 PMCID: PMC4571071 DOI: 10.1186/s12977-015-0203-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 08/26/2015] [Indexed: 01/22/2023] Open
Abstract
Background HIV-1 replication results in mitochondrial damage that is enhanced during antiretroviral therapy (ART). The onset of HIV-1 replication is regulated by viral protein Tat, a 101-residue protein codified by two exons that elongates viral transcripts. Although the first exon of Tat (aa 1–72) forms itself an active protein, the presence of the second exon (aa 73–101) results in a more competent transcriptional protein with additional functions. Results Mitochondrial overall functions were analyzed in Jurkat cells stably expressing full-length Tat (Tat101) or one-exon Tat (Tat72). Representative results were confirmed in PBLs transiently expressing Tat101 and in HIV-infected Jurkat cells. The intracellular expression of Tat101 induced the deregulation of metabolism and cytoskeletal proteins which remodeled the function and distribution of mitochondria. Tat101 reduced the transcription of the mtDNA, resulting in low
ATP production. The total amount of mitochondria increased likely to counteract their functional impairment. These effects were enhanced when Tat second exon was expressed. Conclusions Intracellular Tat altered mtDNA transcription, mitochondrial content and distribution in CD4+ T cells. The importance of Tat second exon in non-transcriptional functions was confirmed. Tat101 may be responsible for mitochondrial dysfunctions found in HIV-1 infected patients. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0203-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Rodríguez-Mora
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - Elena Mateos
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - María Moran
- Laboratorio de Enfermedades Raras: mitocondriales y neuromusculares, Instituto de Investigación Hospital 12 de Octubre, "i + 12", Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) U723, Madrid, Spain.
| | - Miguel Ángel Martín
- Laboratorio de Enfermedades Raras: mitocondriales y neuromusculares, Instituto de Investigación Hospital 12 de Octubre, "i + 12", Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) U723, Madrid, Spain.
| | - Juan Antonio López
- Unidad de Proteómica, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
| | - Enrique Calvo
- Unidad de Proteómica, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
| | - María Carmen Terrón
- Unidad de Microscopía Electrónica y Confocal, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - Daniel Luque
- Unidad de Microscopía Electrónica y Confocal, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - Delphine Muriaux
- Unité de Virologie Humaine - INSERM U758/École Normale Supérieure, Lyon, France. .,Laboratoire de Domaines Membranaires et Assemblage Viral, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Montpellier, France.
| | - José Alcamí
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - Mayte Coiras
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - María Rosa López-Huertas
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain. .,Unité de Virologie Humaine - INSERM U758/École Normale Supérieure, Lyon, France.
| |
Collapse
|
42
|
Edagwa BJ, Zhou T, McMillan JM, Liu XM, Gendelman HE. Development of HIV reservoir targeted long acting nanoformulated antiretroviral therapies. Curr Med Chem 2015; 21:4186-98. [PMID: 25174930 DOI: 10.2174/0929867321666140826114135] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 11/22/2022]
Abstract
Human immunodeficiency virus (HIV) infection commonly results in a myriad of comorbid conditions secondary to immune deficiency. Infection also affects broad organ system function. Although current antiretroviral therapy (ART) reduces disease morbidity and mortality through effective control of peripheral viral load, restricted infection in HIV reservoirs including gut, lymphoid and central nervous system tissues, is not eliminated. What underlies these events is, in part, poor ART penetrance into each organ across tissue barriers, viral mutation and the longevity of infected cells. We posit that one means to improve these disease outcomes is through nanotechnology. To this end, this review discusses a broad range of cutting-edge nanomedicines and nanomedicine platforms that are or can be used to improve ART delivery. Discussion points include how polymer-drug conjugates, dendrimers, micelles, liposomes, solid lipid nanoparticles and polymeric nanoparticles can be harnessed to best yield cell-based delivery systems. When completely developed, such nanomedicine platforms have the potential to clear reservoirs of viral infection.
Collapse
Affiliation(s)
| | | | | | | | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
43
|
Miller MM, Akaronu N, Thompson EM, Hood SF, Fogle JE. Modulating DNA methylation in activated CD8+ T cells inhibits regulatory T cell-induced binding of Foxp3 to the CD8+ T Cell IL-2 promoter. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:990-8. [PMID: 25548225 PMCID: PMC4297683 DOI: 10.4049/jimmunol.1401762] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously demonstrated that CD4(+)CD25(+) regulatory T cells (Tregs) activated during the course of feline immunodeficiency virus (FIV) infection suppress CD8(+) CTL function in a TGF-β-dependent fashion, inhibiting IFN-γ and IL-2 production and inducing G1 cell-cycle arrest. In this article, we describe the molecular events occurring at the IL-2 promoter leading to suppression of IL-2 production. These experiments demonstrate that Foxp3 induced by lentivirus-activated Tregs in the CD8(+) target cells binds to the IL-2 promoter, actively repressing IL-2 transcription. We further demonstrate that the chronic activation of CD8(+) T cells during FIV infection results in chromatin remodeling at the IL-2 promoter, specifically, demethylation of CpG residues. These DNA modifications occur during active transcription and translation of IL-2; however, these changes render the IL-2 promoter permissive to Foxp3-induced transcriptional repression. These data help explain, in part, the seemingly paradoxical observations that CD8(+) T cells displaying an activation phenotype exhibit altered antiviral function. Further, we demonstrate that blocking demethylation of CpG residues at the IL-2 promoter inhibits Foxp3 binding, suggesting a potential mechanism for rescue and/or reactivation of CD8(+) T cells. Using the FIV model for lentiviral persistence, these studies provide a framework for understanding how immune activation combined with Treg-mediated suppression may affect CD8(+) T cell IL-2 transcription, maturation, and antiviral function.
Collapse
Affiliation(s)
- Michelle M Miller
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607
| | - Nnenna Akaronu
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607
| | - Elizabeth M Thompson
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607
| | - Sylvia F Hood
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607
| | - Jonathan E Fogle
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607
| |
Collapse
|
44
|
Hajimahdi Z, Ranjbar A, Abolfazl Suratgar A, Zarghi A. QSAR Study on Anti-HIV-1 Activity of 4-Oxo-1,4-dihydroquinoline and 4-Oxo-4H-pyrido[1,2-a]pyrimidine Derivatives Using SW-MLR, Artificial Neural Network and Filtering Methods. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2015; 14:69-75. [PMID: 26185507 PMCID: PMC4499428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Predictive quantitative structure-activity relationship was performed on the novel4-oxo-1,4-dihydroquinoline and 4-oxo-4H-pyrido[1,2-a]pyrimidine derivatives to explore relationship between the structure of synthesized compounds and their anti-HIV-1 activities. In this way, the suitable set of the molecular descriptors was calculated and the important descriptors using the variable selections of the stepwise technique were selected. Multiple linear regression (MLR) and artificial neural network (ANN) as nonlinear system were used for constructing QSAR models. The predictive quality of the quantitative structure-activity relationship models was tested for an external set of five compounds, randomly chosen out of 25 compounds. The findings exhibited that stepwise-ANN model was more efficient at prediction activity of both training and test sets with high statistical qualities. Based on QSAR models results, electronegativity, the atomic masses, the atomic van der Waals volumes, the molecular symmetry and polarizability were found to be important factors controlling the anti-HIV-1 activity.
Collapse
Affiliation(s)
- Zahra Hajimahdi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amin Ranjbar
- Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran. ,The Center of Excellence on Control and Robotics, Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| | - Amir Abolfazl Suratgar
- Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran. ,The Center of Excellence on Control and Robotics, Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ,Corresponding author: E-mail:
| |
Collapse
|
45
|
Pacheco PAF, Faria RX, Ferreira LGB, Paixão ICNP. Putative roles of purinergic signaling in human immunodeficiency virus-1 infection. Biol Direct 2014; 9:21. [PMID: 25351961 PMCID: PMC4218944 DOI: 10.1186/1745-6150-9-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/09/2014] [Indexed: 02/07/2023] Open
Abstract
Reviewers This article was reviewed by Neil S. Greenspan and Rachel Gerstein. Nucleotides and nucleosides act as potent extracellular messengers via the activation of the family of cell-surface receptors termed purinergic receptors. These receptors are categorized into P1 and P2 receptors (P2Rs). P2Rs are further classified into two distinct families, P2X receptors (P2XRs) and P2Y receptors (P2YRs). These receptors display broad tissue distribution throughout the body and are involved in several biological events. Immune cells express various P2Rs, and purinergic signaling mechanisms have been shown to play key roles in the regulation of many aspects of immune responses. Researchers have elucidated the involvement of these receptors in the host response to infections. The evidences indicate a dual function of these receptors, depending on the microorganism and the cellular model involved. Three recent reports have examined the relationship between the level of extracellular ATP, the mechanisms underlying purinergic receptors participating in the infection mechanism of HIV-1 in the cell. Although preliminary, these results indicate that purinergic receptors are putative pharmacological targets that should be further explored in future studies.
Collapse
Affiliation(s)
| | - Robson X Faria
- Laboratory of Cellular Communication, Oswaldo Cruz Foundation, Av, Brazil, 4365 Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
46
|
Arnolds KL, Spencer JV. CXCR4: a virus's best friend? INFECTION GENETICS AND EVOLUTION 2014; 25:146-56. [PMID: 24793563 DOI: 10.1016/j.meegid.2014.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 10/25/2022]
Abstract
Viruses are dependent on their hosts for replication and dispersal in the environment; thus, the most successful viruses are those that co-evolve with their hosts. CXCR4 is a cellular chemokine receptor that plays central roles in development, hematopoiesis, and immune surveillance through signaling induced by its ligand, CXCL12. The CXCR4-CXCL12 axis has been besieged by many pathogens that employ a range of strategies to modify or exploit CXCR4 activity. While CXCR4 was identified as a critical co-factor for entry of HIV into CD4+ T cells early on, other viruses may utilize CXCR4 to gain cell entry as well. Moreover, several viruses have been found to modulate CXCR4 expression or alter its functional activity, with direct effects on cell trafficking, immune responses, cell proliferation, and cell survival. Because CXCR4 is targeted by a diverse group of viral pathogens, modification of host CXCR4 signaling activity is emerging as a common theme in virus persistence and is likely to be important for subversion of the host immune system. This review highlights major viral pathogens that use and abuse CXCR4 and explores the possible reasons why this chemokine receptor has become "a virus's best friend".
Collapse
Affiliation(s)
- Kathleen L Arnolds
- Department of Biology, University of San Francisco, 2130 Fulton Street, San Francisco, CA 94403, United States
| | - Juliet V Spencer
- Department of Biology, University of San Francisco, 2130 Fulton Street, San Francisco, CA 94403, United States.
| |
Collapse
|
47
|
Clark GF. The role of glycans in immune evasion: the human fetoembryonic defence system hypothesis revisited. Mol Hum Reprod 2014; 20:185-99. [PMID: 24043694 PMCID: PMC3925329 DOI: 10.1093/molehr/gat064] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/15/2013] [Accepted: 09/03/2013] [Indexed: 02/06/2023] Open
Abstract
Emerging data suggest that mechanisms to evade the human immune system may be shared by the conceptus, tumour cells, persistent pathogens and viruses. It is therefore timely to revisit the human fetoembryonic defense system (Hu-FEDS) hypothesis that was proposed in two papers in the 1990s. The initial paper suggested that glycoconjugates expressed in the human reproductive system inhibited immune responses directed against gametes and the developing human by employing their carbohydrate sequences as functional groups. These glycoconjugates were proposed to block specific binding interactions and interact with lectins linked to signal transduction pathways that modulated immune cell functions. The second article suggested that aggressive tumour cells and persistent pathogens (HIV, H. pylori, schistosomes) either mimicked or acquired the same carbohydrate functional groups employed in this system to evade immune responses. This subterfuge enabled these pathogens and tumour cells to couple their survival to the human reproductive imperative. The Hu-FEDS model has been repeatedly tested since its inception. Data relevant to this model have also been obtained in other studies. Herein, the Hu-FEDS hypothesis is revisited in the context of these more recent findings. Far more supportive evidence for this model now exists than when it was first proposed, and many of the original predictions have been validated. This type of subterfuge by pathogens and tumour cells likely applies to all sexually reproducing metazoans that must protect their gametes from immune responses. Intervention in these pathological states will likely remain problematic until this system of immune evasion is fully understood and appreciated.
Collapse
Affiliation(s)
- Gary F. Clark
- Department of Obstetrics, Gynecology and Women's Health, Division of Reproductive and Perinatal Research and Division of Reproductive Medicine and Fertility, University of Missouri School of Medicine, Columbia, MO 65211, USA
| |
Collapse
|
48
|
Turpin JA. The next generation of HIV/AIDS drugs: novel and developmental antiHIV drugs and targets. Expert Rev Anti Infect Ther 2014; 1:97-128. [PMID: 15482105 DOI: 10.1586/14787210.1.1.97] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There are presently 42 million people worldwide living with HIV/AIDS, the majority of which have limited access to antiretrovirals. Even if worldwide penetration was possible, our current chemotherapeutic strategies still suffer from issues of cost, patient compliance, deleterious acute and chronic side effects, emerging single and multidrug resistance, and generalized treatment and economic issues. Even our best antiretroviral therapeutic strategy, highly active antiretroviral therapy (HAART), falls short of completely suppressing HIV replication. Therefore, expansion of current therapeutic options by discovering new antiretrovirals and targets will be critical in the coming years. This review addresses the current status of reverse transcriptase and protease inhibitor development, and summarizes the progress in emerging classes of HIV inhibitors, including entry (T-20, T-1249), coreceptor (SCH-C, SCH-D), integrase (beta-Diketos) and p7 nucleocapsid Zn finger inhibitors (thioesters and PATEs). In addition, the processes of virus entry, PIC transport to the nucleus, HIV interaction with nuclear pores, Tat function, Rev function and virus budding (Tsg101 and ubiquitination) are examined, and proof of concept inhibitors and potential antiviral targets discussed.
Collapse
Affiliation(s)
- Jim A Turpin
- HowPin Consulting International, PO Box B Frederick, MD 21705, USA.
| |
Collapse
|
49
|
Paterson Y, Johnson RS. Progress towards the use of Listeria monocytogenes as a live bacterial vaccine vector for the delivery of HIV antigens. Expert Rev Vaccines 2014; 3:S119-34. [PMID: 15285711 DOI: 10.1586/14760584.3.4.s119] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Listeria monocytogenes is a facultative intracellular bacterium that enters the cell by phagocytosis after which it colonizes the cytosol of the host cell. It is thus a potent vaccine vector for the presentation of passenger antigens to the major histocompatability complex class II and class I pathways of antigen processing and presentation. This article shall review the progress made in developing this unusual bacterium as a vaccine vector. In mouse models, recombinant Listeria carrying a number of different antigens have been shown to provide protective immunity against infectious organisms and therapeutic immunity directed towards tumor-associated antigens. Listeria has been engineered to express a number of HIV/SIV antigens. Measurements of immune responses using these recombinant strains in the mouse, after oral and parenteral immunization, and in the rhesus macaque after oral immunization indicate that strong cell-mediated immunity can be induced against these antigens. This review also discusses safety issues associated with live bacterial vaccine vectors and problems to be overcome in developing Listeria as a HIV vaccine for human use.
Collapse
Affiliation(s)
- Yvonne Paterson
- University of Pennsylvania, 323 Johnson Pavilion, 36th St. and Hamilton Walk, Philadelphia, PA 19104-6076, USA.
| | | |
Collapse
|
50
|
Younai FS. Thirty years of the human immunodeficiency virus epidemic and beyond. Int J Oral Sci 2013; 5:191-9. [PMID: 24136672 PMCID: PMC3967318 DOI: 10.1038/ijos.2013.76] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 07/16/2013] [Indexed: 11/30/2022] Open
Abstract
After more than 30 years of battling a global epidemic, the prospect of eliminating human immunodeficiency virus (HIV) as the most challenging infectious disease of the modern era is within our reach. Major scientific discoveries about the virus responsible for this immunodeficiency disease state, including its pathogenesis, transmission patterns and clinical course, have led to the development of potent antiretroviral drugs that offer great hopes in HIV treatment and prevention. Although these agents and many others still in development and testing are capable of effectively suppressing viral replication and survival, the medical management of HIV infection at the individual and the population levels remains challenging. Timely initiation of antiretroviral drugs, adherence to the appropriate therapeutic regimens, effective use of these agents in the pre and post-exposure prophylaxis contexts, treatment of comorbid conditions and addressing social and psychological factors involved in the care of individuals continue to be important considerations.
Collapse
|