1
|
Abbo SR, Yan K, Geertsema C, Hick TAH, Altenburg JJ, Nowee G, van Toor C, van Lent JW, Nakayama E, Tang B, Metz SW, Bhowmik R, de Silva AM, Prow NA, Correia R, Alves PM, Roldão A, Martens DE, van Oers MM, Suhrbier A, Pijlman GP. Virus-like particle vaccine with authentic quaternary epitopes protects against Zika virus-induced viremia and testicular damage. J Virol 2025; 99:e0232224. [PMID: 40013767 PMCID: PMC11998496 DOI: 10.1128/jvi.02322-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
Zika virus (ZIKV) caused unprecedented outbreaks in South America and the Caribbean in 2015-2016, leading primarily to a series of abnormalities in neonates termed congenital Zika syndrome. The threat of ZIKV reemergence has seen the development of multiple ZIKV vaccines that are at the preclinical stage or in early-stage clinical trials. Herein, we describe a pathway to the development of ZIKV vaccines generated using a baculovirus-insect cell expression system, which is widely applied for the manufacture of biologics for human use. Virus-like particle (VLP) vaccines comprising CprME and subviral particle (SVP) vaccines comprising prME were evaluated for their ability to mediate protection against ZIKV challenge in Ifnar1-/- mice. Initial attempts resulted in VLP and SVP vaccines that failed to present quaternary epitopes and did not provide effective protection. To improve the SVP vaccine, two modifications were introduced: firstly, an alanine to cysteine substitution (A264C) in the E domain II region to promote the formation of stabilized E homodimers and, secondly, the use of Spodoptera frugiperda Sf9 insect cells that had been adapted to grow and produce vaccine at a neutral pH of 7. E homodimers largely retain their pre-fusion conformation at pH 7, which is a requirement for the induction of effective neutralizing antibody responses. The stabilized SVP-A26C vaccine induced high levels of neutralizing antibodies and protected male Ifnar1-/- mice against viremia and testicular damage. Our study reiterates the need to present the immune system with E dimers arranged in authentic quaternary conformations and provides a scalable production method for this novel ZIKV vaccine.IMPORTANCEWe describe the generation of a subviral particle (SVP) vaccine comprising prME proteins of ZIKV, with an envelope protein substitution, A264C, that stabilizes E dimer formation. The SVP vaccine was produced in a novel Sf9 insect cell line adapted to grow in suspension at pH 7. The study highlights the importance of challenge experiments to ascertain whether the responses induced by an experimental vaccine actually mediate protection against virus infection and disease. The study also reiterates the contention that effective flavivirus vaccines need to present the immunogen in an authentic tertiary and quaternary structure with a pre-fusion conformation.
Collapse
Affiliation(s)
- Sandra R. Abbo
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Corinne Geertsema
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Tessy A. H. Hick
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Jort J. Altenburg
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Gwen Nowee
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Chris van Toor
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jan W. van Lent
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Eri Nakayama
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Stefan W. Metz
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ryan Bhowmik
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Aravinda M. de Silva
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Natalie A. Prow
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ricardo Correia
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M. Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António Roldão
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Dirk E. Martens
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
2
|
Lei Z, Gu Y, Liu Y, Liu H, Lu X, Chen W, Zhou L, Pan P, Chen Z, Yue Z, Ruan J, Zhu L, Li G, Xia X, Yu Y, Dai J, Chen X. Identification of antiviral RNAi regulators, ILF3/DHX9, recruit at ZIKV stem loop B to protect against ZIKV induced microcephaly. Nat Commun 2025; 16:1991. [PMID: 40011444 DOI: 10.1038/s41467-025-56859-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/04/2025] [Indexed: 02/28/2025] Open
Abstract
Zika virus (ZIKV) is a member of the Flaviviridae family and causes congenital microcephaly and Guillain-Barré syndrome. Currently, there is a lack of approved vaccines or therapies against ZIKV infection. In this study, we profile vRNA‒host protein interactomes at ZIKV stem‒loop B (SLB) and reveal that interleukin enhancer binding factor 3 (ILF3) and DEAH-box helicase 9 (DHX9) form positive regulators of antiviral RNA inference in undifferentiated human neuroblastoma cells and induced pluripotent stem cell-derived human neural stem cells (iPSC-NSCs). Functionally, ablation of ILF3 in brain organoids and Nestin-Cre ILF3 cKO foetal mice significantly enhance ZIKV replication and aggravated ZIKV-induced microcephalic phenotypes. Mechanistically, ILF3/DHX9 enhance DICER processing of ZIKV vRNA-derived siRNAs (vsiR-1 and vsiR-2) to exert anti-flavivirus activity. VsiR-1 strongly inhibits ZIKV NS5 polymerase activity and RNA translation. Treatment with the vsiR-1 mimic inhibits ZIKV replication in vitro and in vivo and protected mice from ZIKV-induced microcephaly. Overall, we propose a novel therapeutic strategy to combat flavivirus infection.
Collapse
Affiliation(s)
- Zhiwei Lei
- Guangdong Provincial Key Laboratory of Virology, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Department of Gastroenterology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Yu Gu
- Guangdong Provincial Key Laboratory of Virology, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Ying Liu
- Guangdong Provincial Key Laboratory of Virology, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Hailiang Liu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaohua Lu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Weijie Chen
- Guangdong Provincial Key Laboratory of Virology, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Lu Zhou
- Guangdong Provincial Key Laboratory of Virology, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Pan Pan
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhuohong Chen
- Guangdong Provincial Key Laboratory of Virology, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Zhaoyang Yue
- Guangdong Provincial Key Laboratory of Virology, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Jinhui Ruan
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Leqing Zhu
- Guangzhou Laboratory, Bioland, Guangzhou, China
| | - Guangqiang Li
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Xichun Xia
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Yang Yu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Jianfeng Dai
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China.
| | - Xin Chen
- Guangdong Provincial Key Laboratory of Virology, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Torii S, Lord JS, Lavina M, Prot M, Lecuyer A, Diagne CT, Faye O, Faye O, Sall AA, Bonsall MB, Simon-Lorière E, Montagutelli X, Lambrechts L. Polygenic viral factors enable efficient mosquito-borne transmission of African Zika virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634482. [PMID: 39896559 PMCID: PMC11785240 DOI: 10.1101/2025.01.23.634482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus primarily transmitted among humans by Aedes aegypti. Over the past two decades, it has caused significant outbreaks associated with birth defects and neurological disorders. Phylogenetically, ZIKV consists of two main genotypes referred to as the African and Asian lineages, each exhibiting distinct biological properties. African lineage strains are transmitted more efficiently by mosquitoes, but pinpointing the genetic basis of this difference has remained challenging. Here, we address this question by comparing recent African and Asian strains using chimeric viruses, in which segments of the parental genomes are swapped. Our results show that the structural genes from the African strain enhance viral internalization, while the non-structural genes improve genome replication and infectious particle production in mosquito cells. In vivo mosquito transmission is most significantly influenced by the structural genes, although no single viral gene alone determines this effect. Additionally, we develop a stochastic model of in vivo viral dynamics in mosquitoes that mirrors the observed patterns, suggesting that the primary difference between the African and Asian strains lies in their ability to traverse the mosquito salivary glands. Overall, our findings suggest that the polygenic nature of ZIKV transmissibility has prevented Asian lineage strains from achieving the same epidemic potential as African lineage strains, underscoring the importance of lineage-specific adaptive landscapes in shaping ZIKV evolution and emergence.
Collapse
Affiliation(s)
- Shiho Torii
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Jennifer S. Lord
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Morgane Lavina
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Matthieu Prot
- Institut Pasteur, Université Paris Cité, Paris, Evolutionary Genomics of RNA Viruses Unit, Paris France
| | - Alicia Lecuyer
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Cheikh T. Diagne
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Oumar Faye
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Ousmane Faye
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Amadou A. Sall
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | | | - Etienne Simon-Lorière
- Institut Pasteur, Université Paris Cité, Paris, Evolutionary Genomics of RNA Viruses Unit, Paris France
| | - Xavier Montagutelli
- Institut Pasteur, Université Paris Cité, Mouse Genetics Laboratory, Paris, France
| | - Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| |
Collapse
|
4
|
Darmuzey M, Touret F, Slowikowski E, Gladwyn-Ng I, Ahuja K, Sanchez-Felipe L, de Lamballerie X, Verfaillie C, Marques PE, Neyts J, Kaptein SJF. Epidemic Zika virus strains from the Asian lineage induce an attenuated fetal brain pathogenicity. Nat Commun 2024; 15:10870. [PMID: 39738084 DOI: 10.1038/s41467-024-55155-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
The 2015-2016 Zika virus (ZIKV) outbreak in the Americas revealed the ability of ZIKV from the Asian lineage to cause birth defects, generically called congenital Zika syndrome (CZS). Notwithstanding the long circulation history of Asian ZIKV, no ZIKV-associated CZS cases were reported prior to the outbreaks in French Polynesia (2013) and Brazil (2015). Whether the sudden emergence of CZS resulted from an evolutionary event of Asian ZIKV has remained unclear. We performed a comparative analysis of the pathogenicity of pre-epidemic and epidemic Asian ZIKV strains in mouse embryonic brains using a female immunocompetent intraplacental infection mouse model. All studied Asian ZIKV strains are neurovirulent, but pre-epidemic strains are consistently more pathogenic in the embryos than their epidemic equivalents. Pathogenicity is not directly linked to viral replication. By contrast, an influx of macrophages/microglial cells is noted in infected fetal brains for both pre-epidemic and epidemic ZIKV strains. Moreover, all tested ZIKV strains trigger an immunological response, whereby the intensity of the response differs between strains, and with epidemic ZIKV strains generally mounting a more attenuated immunostimulatory response. Our study reveals that Asian ZIKV strains evolved towards pathogenic attenuation, potentially resulting in CZS emergence in neonates rather than premature death in utero.
Collapse
Affiliation(s)
- Maïlis Darmuzey
- Virology and Immunology Unit, GIGA-Infection, Immunity and Inflammation, University of Liège, Liège, Belgium
- KU Leuven Department of Microbiology, Immunology and Transplantation, Virology, Antiviral Drug & Vaccine Research Group, Rega Institute for Medical Research, Leuven, Belgium
| | - Franck Touret
- Unité Des Virus Émergents (UVE: Aix-Marseille University - IRD 190 - Inserm 1207), Marseille, France
| | - Emily Slowikowski
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Ivan Gladwyn-Ng
- Department of Application Scientists, Taconic Biosciences, Leverkusen, Germany
| | - Karan Ahuja
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Lorena Sanchez-Felipe
- KU Leuven Department of Microbiology, Immunology and Transplantation, Virology, Antiviral Drug & Vaccine Research Group, Rega Institute for Medical Research, Leuven, Belgium
| | - Xavier de Lamballerie
- Unité Des Virus Émergents (UVE: Aix-Marseille University - IRD 190 - Inserm 1207), Marseille, France
| | - Catherine Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Pedro E Marques
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Virology, Antiviral Drug & Vaccine Research Group, Rega Institute for Medical Research, Leuven, Belgium.
| | - Suzanne J F Kaptein
- KU Leuven Department of Microbiology, Immunology and Transplantation, Virology, Antiviral Drug & Vaccine Research Group, Rega Institute for Medical Research, Leuven, Belgium.
| |
Collapse
|
5
|
Abdelbasset M, Saron WAA, Ma D, Rathore APS, Kozaki T, Zhong C, Mantri CK, Tan Y, Tung CC, Tey HL, Chu JJH, Chen J, Ng LG, Wang H, Ginhoux F, St John AL. Differential contributions of fetal mononuclear phagocytes to Zika virus neuroinvasion versus neuroprotection during congenital infection. Cell 2024; 187:7511-7532.e20. [PMID: 39532096 DOI: 10.1016/j.cell.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Fetal immune cell functions during congenital infections are poorly understood. Zika virus (ZIKV) can vertically transmit from mother to fetus, causing nervous system infection and congenital ZIKV syndrome (CZS). We identified differential functional roles for fetal monocyte/macrophage cell types and microglia in ZIKV dissemination versus clearance using mouse models. Trafficking of ZIKV-infected primitive macrophages from the yolk sac allowed initial fetal virus inoculation, while recruited monocytes promoted non-productive neuroinflammation. Conversely, brain-resident differentiated microglia were protective, limiting infection and neuronal death. Single-cell RNA sequencing identified transcriptional profiles linked to the protective versus detrimental contributions of mononuclear phagocyte subsets. In human brain organoids, microglia also promoted neuroprotective transcriptional changes and infection clearance. Thus, microglia are protective before birth, contrasting with the disease-enhancing roles of primitive macrophages and monocytes. Differential modulation of myeloid cell phenotypes by genetically divergent ZIKVs underscores the potential of immune cells to regulate diverse outcomes during fetal infections.
Collapse
Affiliation(s)
- Muhammad Abdelbasset
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wilfried A A Saron
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Dongliang Ma
- Neuroscience & Behavioral Disorders Programme, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Abhay P S Rathore
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA
| | - Tatsuya Kozaki
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Chengwei Zhong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Chinmay Kumar Mantri
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Yingrou Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore; National Skin Centre, National Healthcare Group, Singapore, Singapore
| | - Chi-Ching Tung
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Hong Liang Tey
- National Skin Centre, National Healthcare Group, Singapore, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine affiliated Renji Hospital, Shanghai, China
| | - Hongyan Wang
- Neuroscience & Behavioral Disorders Programme, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore; INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France; Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Ashley L St John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA; SingHealth Duke-NUS Global Health Institute, Singapore, Singapore.
| |
Collapse
|
6
|
Palmero Casanova B, Albentosa González L, Maringer K, Sabariegos R, Mas A. A conserved role for AKT in the replication of emerging flaviviruses in vertebrates and vectors. Virus Res 2024; 348:199447. [PMID: 39117146 PMCID: PMC11364138 DOI: 10.1016/j.virusres.2024.199447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
One third of all emerging infectious diseases are vector-borne, with no licensed antiviral therapies available against any vector-borne viruses. Zika virus and Usutu virus are two emerging flaviviruses transmitted primarily by mosquitoes. These viruses modulate different host pathways, including the PI3K/AKT/mTOR pathway. Here, we report the effect on ZIKV and USUV replication of two AKT inhibitors, Miransertib (ARQ-092, allosteric inhibitor) and Capivasertib (AZD5363, competitive inhibitor) in different mammalian and mosquito cell lines. Miransertib showed a stronger inhibitory effect against ZIKV and USUV than Capivasertib in mammalian cells, while Capivasertib showed a stronger effect in mosquito cells. These findings indicate that AKT plays a conserved role in flavivirus infection, in both the vertebrate host and invertebrate vector. Nevertheless, the specific function of AKT may vary depending on the host species. These findings indicate that AKT may be playing a conserved role in flavivirus infection in both, the vertebrate host and the invertebrate vector. However, the specific function of AKT may vary depending on the host species. A better understanding of virus-host interactions is therefore required to develop new treatments to prevent human disease and new approaches to control transmission by insect vectors.
Collapse
Affiliation(s)
- Blanca Palmero Casanova
- Instituto de Investigación Biomédica de la UCLM (IB-UCLM), C/Almansa 14, 02008 Albacete, Spain
| | - Laura Albentosa González
- Instituto de Investigación Biomédica de la UCLM (IB-UCLM), C/Almansa 14, 02008 Albacete, Spain; Facultad de farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02008 Albacete, Spain
| | - Kevin Maringer
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Rosario Sabariegos
- Instituto de Investigación Biomédica de la UCLM (IB-UCLM), C/Almansa 14, 02008 Albacete, Spain; Unidad asociada de Biomedicina UCLM-CSIC. Universidad de Castilla-La Mancha. C/Altagracia 50, 13071 Ciudad Real, Spain; Facultad de Medicina, Universidad de Castilla-La Mancha. C/Almansa 14, 02008 Albacete, Spain
| | - Antonio Mas
- Instituto de Investigación Biomédica de la UCLM (IB-UCLM), C/Almansa 14, 02008 Albacete, Spain; Facultad de farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02008 Albacete, Spain; Unidad asociada de Biomedicina UCLM-CSIC. Universidad de Castilla-La Mancha. C/Altagracia 50, 13071 Ciudad Real, Spain.
| |
Collapse
|
7
|
Sherwood M, Zhou Y, Sui Y, Wang Y, Skipp P, Kaid C, Gray J, Okamoto K, Ewing RM. Integrated re-analysis of transcriptomic and proteomic datasets reveals potential mechanisms for Zika viral-based oncolytic therapy in neuroblastoma. F1000Res 2024; 12:719. [PMID: 38903860 PMCID: PMC11187533 DOI: 10.12688/f1000research.132627.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Background Paediatric neuroblastoma and brain tumours account for a third of all childhood cancer-related mortality. High-risk neuroblastoma is highly aggressive and survival is poor despite intensive multi-modal therapies with significant toxicity. Novel therapies are desperately needed. The Zika virus (ZIKV) can access the nervous system and there is growing interest in employing ZIKV as a potential therapy against paediatric nervous system tumours, including neuroblastoma. Methods Here, we perform extensive data mining, integration and re-analysis of ZIKV infection datasets to highlight molecular mechanisms that may govern the oncolytic response in neuroblastoma cells. We collate infection data of multiple neuroblastoma cell lines by different ZIKV strains from a body of published literature to inform the susceptibility of neuroblastoma to the ZIKV oncolytic response. Integrating published transcriptomics, interaction proteomics, dependency factor and compound datasets we propose the involvement of multiple host systems during ZIKV infection. Results Through data mining of published literature, we observed most paediatric neuroblastoma cell lines to be highly susceptible to ZIKV infection and propose the PRVABC59 ZIKV strain to be the most promising candidate for neuroblastoma oncolytic virotherapy. ZIKV induces TNF signalling, lipid metabolism, the Unfolded Protein Response (UPR), and downregulates cell cycle and DNA replication processes. ZIKV infection is dependent on sterol regulatory element binding protein (SREBP)-regulated lipid metabolism and three protein complexes; V-ATPase, ER Membrane Protein Complex (EMC) and mammalian translocon. We propose ZIKV non-structural protein 4B (NS4B) as a likely mediator of ZIKVs interaction with IRE1-mediated UPR, lipid metabolism and mammalian translocon. Conclusions Our work provides a significant understanding of ZIKV infection in neuroblastoma cells, which will facilitate the progression of ZIKV-based oncolytic virotherapy through pre-clinical research and clinical trials.
Collapse
Affiliation(s)
- Matt Sherwood
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Yilu Zhou
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Yi Sui
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Yihua Wang
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Paul Skipp
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Carolini Kaid
- Human Genome and Stem-Cell Center (HUG-CELL), Biosciences Institute, Universidade de Sao Paulo, São Paulo, State of São Paulo, Brazil
| | - Juliet Gray
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, England, UK
| | - Keith Okamoto
- Human Genome and Stem-Cell Center (HUG-CELL), Biosciences Institute, Universidade de Sao Paulo, São Paulo, State of São Paulo, Brazil
| | - Rob M. Ewing
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| |
Collapse
|
8
|
Ferreira JCCG, Christoff RR, Rabello T, Ferreira RO, Batista C, Mourão PJP, Rossi ÁD, Higa LM, Bellio M, Tanuri A, Garcez PP. Postnatal Zika virus infection leads to morphological and cellular alterations within the neurogenic niche. Dis Model Mech 2024; 17:dmm050375. [PMID: 38415826 PMCID: PMC10924234 DOI: 10.1242/dmm.050375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
The Zika virus received significant attention in 2016, following a declaration by the World Health Organization of an epidemic in the Americas, in which infections were associated with microcephaly. Indeed, prenatal Zika virus infection is detrimental to fetal neural stem cells and can cause premature cell loss and neurodevelopmental abnormalities in newborn infants, collectively described as congenital Zika syndrome. Contrastingly, much less is known about how neonatal infection affects the development of the newborn nervous system. Here, we investigated the development of the dentate gyrus of wild-type mice following intracranial injection of the virus at birth (postnatal day 0). Through this approach, we found that Zika virus infection affected the development of neurogenic regions within the dentate gyrus and caused reactive gliosis, cell death and a decrease in cell proliferation. Such infection also altered volumetric features of the postnatal dentate gyrus. Thus, we found that Zika virus exposure to newborn mice is detrimental to the subgranular zone of the dentate gyrus. These observations offer insight into the cellular mechanisms that underlie the neurological features of congenital Zika syndrome in children.
Collapse
Affiliation(s)
- Jéssica C. C. G. Ferreira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Raissa R. Christoff
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Tailene Rabello
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Raiane O. Ferreira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Carolina Batista
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Pedro Junior Pinheiro Mourão
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Átila D. Rossi
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Luiza M. Higa
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Maria Bellio
- Microbiology Institute Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Amilcar Tanuri
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Patricia P. Garcez
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| |
Collapse
|
9
|
Camacho-Concha N, Santana-Román ME, Sánchez NC, Velasco I, Pando-Robles V, Pedraza-Alva G, Pérez-Martínez L. Insights into Zika Virus Pathogenesis and Potential Therapeutic Strategies. Biomedicines 2023; 11:3316. [PMID: 38137537 PMCID: PMC10741857 DOI: 10.3390/biomedicines11123316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 12/24/2023] Open
Abstract
Zika virus (ZIKV) has emerged as a significant public health threat, reaching pandemic levels in 2016. Human infection with ZIKV can manifest as either asymptomatic or as an acute illness characterized by symptoms such as fever and headache. Moreover, it has been associated with severe neurological complications in adults, including Guillain-Barre syndrome, and devastating fetal abnormalities, like microcephaly. The primary mode of transmission is through Aedes spp. mosquitoes, and with half of the world's population residing in regions where Aedes aegypti, the principal vector, thrives, the reemergence of ZIKV remains a concern. This comprehensive review provides insights into the pathogenesis of ZIKV and highlights the key cellular pathways activated upon ZIKV infection. Additionally, we explore the potential of utilizing microRNAs (miRNAs) and phytocompounds as promising strategies to combat ZIKV infection.
Collapse
Affiliation(s)
- Nohemi Camacho-Concha
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - María E. Santana-Román
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - Nilda C. Sánchez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - Iván Velasco
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Ciudad de México 14269, Mexico
| | - Victoria Pando-Robles
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Morelos, Mexico;
| | - Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| |
Collapse
|
10
|
Song GY, Huang XY, He MJ, Zhou HY, Li RT, Tian Y, Wang Y, Cheng ML, Chen X, Zhang RR, Zhou C, Zhou J, Fang XY, Li XF, Qin CF. A single amino acid substitution in the capsid protein of Zika virus contributes to a neurovirulent phenotype. Nat Commun 2023; 14:6832. [PMID: 37884553 PMCID: PMC10603150 DOI: 10.1038/s41467-023-42676-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Increasing evidence shows the African lineage Zika virus (ZIKV) displays a more severe neurovirulence compared to the Asian ZIKV. However, viral determinants and the underlying mechanisms of enhanced virulence phenotype remain largely unknown. Herein, we identify a panel of amino acid substitutions that are unique to the African lineage of ZIKVs compared to the Asian lineage by phylogenetic analysis and sequence alignment. We then utilize reverse genetic technology to generate recombinant ZIKVs incorporating these lineage-specific substitutions based on an infectious cDNA clone of Asian ZIKV. Through in vitro characterization, we discover a mutant virus with a lysine to arginine substitution at position 101 of capsid (C) protein (termed K101R) displays a larger plaque phenotype, and replicates more efficiently in various cell lines. Moreover, K101R replicates more efficiently in mouse brains and induces stronger inflammatory responses than the wild type (WT) virus in neonatal mice. Finally, a combined analysis reveals the K101R substitution promotes the production of mature C protein without affecting its binding to viral RNA. Our study identifies the role of K101R substitution in the C protein in contributing to the enhanced virulent phenotype of the African lineage ZIKV, which expands our understanding of the complexity of ZIKV proteins.
Collapse
Affiliation(s)
- Guang-Yuan Song
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Xing-Yao Huang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Meng-Jiao He
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Hang-Yu Zhou
- Suzhou Institute of System Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 215123, Suzhou, Jiangsu, China
| | - Rui-Ting Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Ying Tian
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Yan Wang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Meng-Li Cheng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Xiang Chen
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Rong-Rong Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Chao Zhou
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Jia Zhou
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Xian-Yang Fang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xiao-Feng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China.
| | - Cheng-Feng Qin
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China.
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China.
| |
Collapse
|
11
|
Durgam L, Pagag J, Indra Neela Y, Guruprasad L. Mutational analyses, pharmacophore-based inhibitor design and in silico validation for Zika virus NS3-helicase. J Biomol Struct Dyn 2023; 42:9873-9891. [PMID: 37712848 DOI: 10.1080/07391102.2023.2252929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
Zika virus is responsible for causing Zika infections and was declared as a public health emergency of international concern in February 2016. The Zika virus NS3-helicase is a viable drug target for the design of inhibitors due to its essential role in the replication of viral genome. The viral RNA is unwound by the NS3-helicase in order to enable the reproduction of viral genome by the NS5 protein. Zika virus infections in humans are being reported for the last 15 years. We have therefore carried out amino acid mutational analyses of NS3-helicase. NS3-helicase has two crucial binding sites: the ATP and RNA binding sites. The cofactor-ATP based pharmacophore was generated for virtual screening of ZINC database using Pharmit server, that is followed by molecular docking and molecular dynamics simulations of potential hits as probable Zika virus NS3-helicase inhibitors at the cofactor binding site. The drug-like properties of the molecules were analysed and, DFT calculations were performed on the five best molecules to reveal their stability in solvent phase compared to gas phase, the HOMO and LUMO and electrostatic potential maps to analyze the electronic and geometric characteristics. These are significant findings towards the discovery of new inhibitors of Zika virus NS3-helicase, a promising drug target to treat the Zika virus infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Laxman Durgam
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | - Jishu Pagag
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | - Y Indra Neela
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|
12
|
Rengifo AC, Rivera J, Álvarez-Díaz DA, Naizaque J, Santamaria G, Corchuelo S, Gómez CY, Torres-Fernández O. Morphological and Molecular Changes in the Cortex and Cerebellum of Immunocompetent Mice Infected with Zika Virus. Viruses 2023; 15:1632. [PMID: 37631975 PMCID: PMC10458311 DOI: 10.3390/v15081632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Zika virus (ZIKV) disease continues to be a threat to public health, and it is estimated that millions of people have been infected and that there have been more cases of serious complications than those already reported. Despite many studies on the pathogenesis of ZIKV, several of the genes involved in the malformations associated with viral infection are still unknown. In this work, the morphological and molecular changes in the cortex and cerebellum of mice infected with ZIKV were evaluated. Neonatal BALB/c mice were inoculated with ZIKV intraperitoneally, and the respective controls were inoculated with a solution devoid of the virus. At day 10 postinoculation, the mice were euthanized to measure the expression of the markers involved in cortical and cerebellar neurodevelopment. The infected mice presented morphological changes accompanied by calcifications, as well as a decrease in most of the markers evaluated in the cortex and cerebellum. The modifications found could be predictive of astrocytosis, dendritic pathology, alterations in the regulation systems of neuronal excitation and inhibition, and premature maturation, conditions previously described in other models of ZIKV infection and microcephaly.
Collapse
Affiliation(s)
- Aura Caterine Rengifo
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| | - Jorge Rivera
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| | - Diego Alejandro Álvarez-Díaz
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
- Genómica de Microorganismos Emergentes, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia
| | - Julián Naizaque
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| | - Gerardo Santamaria
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| | - Sheryll Corchuelo
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| | - Claudia Yadira Gómez
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| | - Orlando Torres-Fernández
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| |
Collapse
|
13
|
Lu AY, Gustin A, Newhouse D, Gale M. Viral Protein Accumulation of Zika Virus Variants Links with Regulation of Innate Immunity for Differential Control of Viral Replication, Spread, and Response to Interferon. J Virol 2023; 97:e0198222. [PMID: 37162358 PMCID: PMC10231147 DOI: 10.1128/jvi.01982-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/13/2023] [Indexed: 05/11/2023] Open
Abstract
Asian lineage Zika virus (ZIKV) strains emerged globally, causing outbreaks linked with critical clinical disease outcomes unless the virus is effectively restricted by host immunity. We have previously shown that retinoic acid-inducible gene-I (RIG-I) senses ZIKV to trigger innate immunity to direct interferon (IFN) production and antiviral responses that can control ZIKV infection. However, ZIKV proteins have been demonstrated to antagonize IFN. Here, we conducted in vitro analyses to assess how divergent prototypic ZIKV variants differ in virologic properties, innate immune regulation, and infection outcome. We comparatively assessed African lineage ZIKV/Dakar/1984/ArD41519 (ZIKV/Dakar) and Asian lineage ZIKV/Malaysia/1966/P6740 (ZIKV/Malaysia) in a human epithelial cell infection model. De novo viral sequence determination identified amino acid changes within the ZIKV/Dakar genome compared to ZIKV/Malaysia. Viral growth analyses revealed that ZIKV/Malaysia accumulated viral proteins and genome copies earlier and to higher levels than ZIKV/Dakar. Both ZIKV strains activated RIG-I/IFN regulatory factor (IRF3) and NF-κB pathways to induce inflammatory cytokine expression and types I and III IFNs. However, ZIKV/Malaysia, but not ZIKV/Dakar, potently blocked downstream IFN signaling. Remarkably, ZIKV/Dakar protein accumulation and genome replication were rescued in RIG-I knockout (KO) cells late in acute infection, resulting in ZIKV/Dakar-mediated blockade of IFN signaling. We found that RIG-I signaling specifically restricts viral protein accumulation late in acute infection where early accumulation of viral proteins in infected cells confers enhanced ability to limit IFN signaling, promoting viral replication and spread. Our results demonstrate that RIG-I-mediated innate immune signaling imparts restriction of ZIKV protein accumulation, which permits IFN signaling and antiviral actions controlling ZIKV infection. IMPORTANCE ZIKV isolates are classified under African or Asian lineages. Infection with emerging Asian lineage-derived ZIKV strains is associated with increased incidence of neurological symptoms that were not previously reported during infection with African or preemergent Asian lineage viruses. In this study, we utilized in vitro models to compare the virologic properties of and innate immune responses to two prototypic ZIKV strains from distinct lineages: African lineage ZIKV/Dakar and Asian lineage ZIKV/Malaysia. Compared to ZIKV/Dakar, ZIKV/Malaysia accumulates viral proteins earlier, replicates to higher levels, and robustly blocks IFN signaling during acute infection. Early accumulation of ZIKV/Malaysia NS5 protein confers enhanced ability to antagonize IFN signaling, dampening innate immune responses to promote viral spread. Our data identify the kinetics of viral protein accumulation as a major regulator of host innate immunity, influencing host-mediated control of ZIKV replication and spread. Importantly, these findings provide a novel framework for evaluating the virulence of emerging variants.
Collapse
Affiliation(s)
- Amy Y. Lu
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Andrew Gustin
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Daniel Newhouse
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
14
|
Oliveira FBCD, Freire VPASDS, Coelho SVA, Meuren LM, Palmeira JDF, Cardoso AL, Neves FDAR, Ribeiro BM, Argañaraz GA, Arruda LBD, Argañaraz ER. ZIKV Strains Elicit Different Inflammatory and Anti-Viral Responses in Microglia Cells. Viruses 2023; 15:1250. [PMID: 37376550 DOI: 10.3390/v15061250] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, the Zika Virus (ZIKV) has caused pandemic outbreaks associated with a high rate of congenital ZIKV syndrome (CZS). Although all strains associated with worldwide outbreaks derive from the Asian lineage, the reasons for their enhanced spread and severity are not fully understood. In this study, we conducted a comparative analysis of miRNAs (miRNA-155/146a/124) and their cellular targets (SOCS1/3, SHP1, TRAF6, IRAK1), as well as pro- and anti-inflammatory and anti-viral cytokines (IL-6, TNF-α, IFN-γ, IL-10, and IFN-β) and peroxisome proliferator-activated receptor γ (PPAR-γ) expression in BV2 microglia cells infected with ZIKV strains derived from African and Asian lineages (ZIKVMR766 and ZIKVPE243). BV2 cells were susceptible to both ZIKV strains, and showed discrete levels of viral replication, with delayed release of viral particles without inducing significant cytopathogenic effects. However, the ZIKVMR766 strain showed higher infectivity and replicative capacity, inducing a higher expression of microglial activation markers than the ZIKVPE243 strain. Moreover, infection with the ZIKVMR766 strain promoted both a higher inflammatory response and a lower expression of anti-viral factors compared to the ZIKVPE243 strain. Remarkably, the ZIKKPE243 strain induced significantly higher levels of the anti-inflammatory nuclear receptor-PPAR-γ. These findings improve our understanding of ZIKV-mediated modulation of inflammatory and anti-viral innate immune responses and open a new avenue to explore underlining mechanisms involved in the pathogenesis of ZIKV-associated diseases.
Collapse
Affiliation(s)
| | | | - Sharton Vinicius Antunes Coelho
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Lana Monteiro Meuren
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Julys da Fonseca Palmeira
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasília 70910-900, DF, Brazil
| | - Ana Luísa Cardoso
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | - Bergmann Morais Ribeiro
- Laboratory of Bacuolovirus, Cell Biology Department, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Gustavo Adolfo Argañaraz
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasília 70910-900, DF, Brazil
| | - Luciana Barros de Arruda
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Enrique Roberto Argañaraz
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasília 70910-900, DF, Brazil
| |
Collapse
|
15
|
Mancini MV, Tandavanitj R, Ant TH, Murdochy SM, Gingell DD, Setthapramote C, Natsrita P, Kohl A, Sinkins SP, Patel AH, De Lorenzo G. Evaluation of an Engineered Zika Virus-Like Particle Vaccine Candidate in a Mosquito-Mouse Transmission Model. mSphere 2023; 8:e0056422. [PMID: 36840596 PMCID: PMC10117074 DOI: 10.1128/msphere.00564-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
The primary route of Zika virus (ZIKV) transmission is through the bite of an infected Aedes mosquito, when it probes the skin of a vertebrate host during a blood meal. Viral particles are injected into the bite site together with mosquito saliva and a complex mixture of other components. Some of them are known to play a key role in the augmentation of the arbovirus infection in the host, with increased viremia and/or morbidity. This vector-derived contribution to the infection is not usually considered when vaccine candidates are tested in preclinical animal models. In this study, we performed a preclinical validation of a promising ZIKV vaccine candidate in a mosquito-mouse transmission model using both Asian and African ZIKV lineages. Mice were immunized with engineered ZIKV virus-like particles and subsequently infected through the bite of ZIKV-infected Aedes aegypti mosquitoes. Despite a mild increase in viremia in mosquito-infected mice compared to those infected through traditional needle injection, the vaccine protected the animals from developing the disease and strongly reduced viremia. In addition, during peak viremia, naive mosquitoes were allowed to feed on infected vaccinated and nonvaccinated mice. Our analysis of viral titers in mosquitos showed that the vaccine was able to inhibit virus transmission from the host to the vector. IMPORTANCE Zika is a mosquito-borne viral disease, causing acute debilitating symptoms and complications in infected individuals and irreversible neuronal abnormalities in newborn children. The primary vectors of ZIKV are Aedes aegypti mosquitoes. Despite representing a significant public health burden with a widespread transmission in many regions of the world, Zika remains a neglected disease with no effective antiviral therapies or approved vaccines. It is known that components of the mosquito bite lead to an enhancement of viral infection and spread, but this aspect is often overlooked when vaccine candidates undergo preclinical validation. In this study, we included mosquitoes as viral vectors, demonstrating the ability of a promising vaccine candidate to protect animals against ZIKV infections after the bite of an infected mosquito and to also prevent its further transmission. These findings represent an additional crucial step for the development of an effective prevention tool for clinical use.
Collapse
Affiliation(s)
| | - Rapeepat Tandavanitj
- MRC–University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
- Biologicals Research Group, Research and Development Institute, Government Pharmaceutical Organization, Bangkok, Thailand
| | - Thomas H. Ant
- MRC–University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Shivan M. Murdochy
- MRC–University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Daniel D. Gingell
- MRC–University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Chayanee Setthapramote
- MRC–University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Piyatida Natsrita
- MRC–University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Alain Kohl
- MRC–University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Steven P. Sinkins
- MRC–University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Arvind H. Patel
- MRC–University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Giuditta De Lorenzo
- MRC–University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| |
Collapse
|
16
|
He MJ, Wang HJ, Yan XL, Lou YN, Song GY, Li RT, Zhu Z, Zhang RR, Qin CF, Li XF. Key Residue in the Precursor Region of M Protein Contributes to the Neurovirulence and Neuroinvasiveness of the African Lineage of Zika Virus. J Virol 2023; 97:e0180122. [PMID: 36840584 PMCID: PMC10062131 DOI: 10.1128/jvi.01801-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
The Zika virus (ZIKV) represents an important global health threat due to its unusual association with congenital Zika syndrome. ZIKV strains are phylogenetically grouped into the African and Asian lineages. However, the viral determinants underlying the phenotypic differences between the lineages remain unknown. Here, multiple sequence alignment revealed a highly conserved residue at position 21 of the premembrane (prM) protein, which is glutamic acid and lysine in the Asian and African lineages, respectively. Using reverse genetics, we generated a recombinant virus carrying an E21K mutation based on the genomic backbone of the Asian lineage strain FSS13025 (termed E21K). The E21K mutation significantly increased viral replication in multiple neural cell lines with a higher ratio of M to prM production. Animal studies showed E21K exhibited increased neurovirulence in suckling mice, leading to more severe defects in mouse brains by causing more neural cell death and destruction of hippocampus integrity. Moreover, the E21K substitution enhanced neuroinvasiveness in interferon alpha/beta (IFN-α/β) receptor knockout mice, as indicated by the increased mortality, and enhanced replication in mouse brains. The global transcriptional analysis showed E21K infection profoundly altered neuron development networks and induced stronger antiviral immune response than wild type (WT) in both neural cells and mouse brains. More importantly, the reverse K21E mutation based on the genomic backbone of the African strain MR766 caused less mouse neurovirulence. Overall, our findings support the 21st residue of prM functions as a determinant for neurovirulence and neuroinvasiveness of the African lineage of ZIKV. IMPORTANCE The suspected link of Zika virus (ZIKV) to birth defects led the World Health Organization to declare ZIKV a Public Health Emergency of International Concern. ZIKV has been identified to have two dominant phylogenetic lineages, African and Asian. Significant differences exist between the two lineages in terms of neurovirulence and neuroinvasiveness in mice. However, the viral determinants underlying the phenotypic differences are still unknown. Here, combining reverse genetics, animal studies, and global transcriptional analysis, we provide evidence that a single E21K mutation of prM confers to the Asian lineage strain FSS130125 significantly enhanced replication in neural cell lines and more neurovirulent and neuroinvasiveness phenotypes in mice. Our findings support that the highly conserved residue at position 21 of prM functions as a determinant of neurovirulence and neuroinvasiveness of the African lineage of ZIKV in mice.
Collapse
Affiliation(s)
- Meng-Jiao He
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Hong-Jiang Wang
- Department of Research, The Chinese People’s Liberation Army Strategic Support Force Medical Center, Beijing, China
| | - Xiu-Li Yan
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Ya-Nan Lou
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Guang-Yuan Song
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Rui-Ting Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhu Zhu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Rong-Rong Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Xiao-Feng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Chan YT, Cheok YY, Cheong HC, Tang TF, Sulaiman S, Hassan J, Looi CY, Tan KK, AbuBakar S, Wong WF. Immune Recognition versus Immune Evasion Systems in Zika Virus Infection. Biomedicines 2023; 11:biomedicines11020642. [PMID: 36831177 PMCID: PMC9952926 DOI: 10.3390/biomedicines11020642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/22/2023] Open
Abstract
The reemergence of the Zika virus (ZIKV) infection in recent years has posed a serious threat to global health. Despite being asymptomatic or mildly symptomatic in a majority of infected individuals, ZIKV infection can result in severe manifestations including neurological complications in adults and congenital abnormalities in newborns. In a human host, ZIKV is primarily recognized by RIG-like receptors and Toll-like receptors that elicit anti-viral immunity through the secretion of type I interferon (IFN) to limit viral survival, replication, and pathogenesis. Intriguingly, ZIKV evades its host immune system through various immune evasion strategies, including suppressing the innate immune receptors and signaling pathways, mutation of viral structural and non-structural proteins, RNA modulation, or alteration of cellular pathways. Here, we present an overview of ZIKV recognition by the host immune system and the evasion strategies employed by ZIKV. Characterization of the host-viral interaction and viral disease mechanism provide a platform for the rational design of novel prophylactic and therapeutic strategies against ZIKV infection.
Collapse
Affiliation(s)
- Yee Teng Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Sofiah Sulaiman
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Jamiyah Hassan
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1, Jalan Taylors, Subang Jaya 47500, Malaysia
| | - Kim-Kee Tan
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Higher Education Center of Excellence (HICoE), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Higher Education Center of Excellence (HICoE), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: ; Tel.: +60-(3)-7967-6672
| |
Collapse
|
18
|
Mumtaz N, Koedam M, van Leeuwen JPTM, Koopmans MPG, van der Eerden BCJ, Rockx B. Zika virus infects human osteoclasts and blocks differentiation and bone resorption. Emerg Microbes Infect 2022; 11:1621-1634. [PMID: 35670284 PMCID: PMC9225750 DOI: 10.1080/22221751.2022.2086069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bone-related complications are commonly reported following arbovirus infection. These arboviruses are known to disturb bone-remodeling and induce inflammatory bone loss via increased activity of bone resorbing osteoclasts (OCs). We previously showed that Zika virus (ZIKV) could disturb the function of bone forming osteoblasts, but the susceptibility of OCs to ZIKV infection is not known. Here, we investigated the effect of ZIKV infection on osteoclastogenesis and report that infection of pre- and early OCs with ZIKV significantly reduced the osteoclast formation and bone resorption. Interestingly, infection of pre-OCs with a low dose ZIKV infection in the presence of flavivirus cross-reacting antibodies recapitulated the phenotype observed with a high viral dose, suggesting a role for antibody-dependent enhancement in ZIKV-associated bone pathology. In conclusion, we have characterized a primary in vitro model to study the role of osteoclastogenesis in ZIKV pathogenesis, which will help to identify possible new targets for developing therapeutic and preventive measures.
Collapse
Affiliation(s)
- Noreen Mumtaz
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Marijke Koedam
- Department of Internal Medicine, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | | | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Barry Rockx
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| |
Collapse
|
19
|
Jung HG, Cho H, Kim M, Jung H, Bak Y, Lee SY, Seo HY, Son YM, Woo H, Yoon G, Kim SJ, Oh JW. Influence of Zika virus 3'-end sequence and nonstructural protein evolution on the viral replication competence and virulence. Emerg Microbes Infect 2022; 11:2447-2465. [PMID: 36149812 PMCID: PMC9621255 DOI: 10.1080/22221751.2022.2128433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022]
Abstract
Zika virus (ZIKV) has been circulating in human networks over 70 years since its first appearance in Africa, yet little is known about whether the viral 3'-terminal sequence and nonstructural (NS) protein diverged genetically from ancient ZIKV have different effects on viral replication and virulence in currently prevailing Asian lineage ZIKV. Here we show, by a reverse genetics approach using an infectious cDNA clone for a consensus sequence (Con1) of ZIKV, which represents Asian ZIKV strains, and another clone derived from the MR766 strain isolated in Uganda, Africa in 1947, that the 3'-end sequence -UUUCU-3' homogeneously present in MR766 genome and the -GUCU-3' sequence strictly conserved in Asian ZIKV isolates are functionally equivalent in viral replication and gene expression. By gene swapping experiments using the two infectious cDNA clones, we show that the NS1-5 proteins of MR766 enhance replication competence of ZIKV Con1. The Con1, which was less virulent than MR766, acquired severe bilateral hindlimb paralysis when its NS1-5 genes were replaced by the counterparts of MR766 in type I interferon receptor (IFNAR1)-deficient A129 mice. Moreover, MR766 NS5 RNA-dependent RNA polymerase (RdRp) alone also rendered the Con1 virulent, despite there being no difference in RdRp activity between MR766 and Con1 NS5 proteins. By contrast, the Con1 derivatives expressing MR766 Nsps, like Con1, did not develop severe disease in wild-type mice treated with an IFNAR1 blocking antibody. Together, our findings uncover an unprecedented role for ZIKV NS proteins in determining viral pathogenicity in immunocompromised hosts.
Collapse
Affiliation(s)
- Hae-Gwang Jung
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Hee Cho
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Minwoo Kim
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Haewon Jung
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Yeonju Bak
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Se-Young Lee
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Han Young Seo
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Yu-Min Son
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Hawon Woo
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Gone Yoon
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Jong-Won Oh
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| |
Collapse
|
20
|
Watts JL, Ralston A. The fetal lineage is susceptible to Zika virus infection within days of fertilization. Development 2022; 149:276104. [PMID: 35900100 PMCID: PMC9382896 DOI: 10.1242/dev.200501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/09/2022] [Indexed: 11/20/2022]
Abstract
Adults contracting Zika virus (ZIKV) typically exhibit mild symptoms, yet ZIKV infection of pregnant individuals can cause miscarriage or birth defects in their offspring. Many studies have focused on maternal-to-fetal ZIKV transmission via blood and placenta. Notably, however, ZIKV is also transmitted sexually, raising the possibility that ZIKV could infect the embryo shortly after fertilization, long before the placenta is established. Here, we evaluate the consequences of ZIKV infection in mouse embryos during the first few days of embryogenesis. We show that divergent strains of ZIKV can infect the fetal lineage and can cause developmental arrest, raising concern for the developmental consequences of sexual ZIKV transmission. This article has an associated ‘The people behind the papers’ interview. Summary: Mouse preimplantation embryos are vulnerable to Zika virus-induced lethality even in the presence of the zona pellucida, highlighting a potential risk of sexually transmitted infection in early pregnancy.
Collapse
Affiliation(s)
- Jennifer L. Watts
- Molecular, Cellular and Integrative Physiology Graduate Program, Michigan State University 1 , East Lansing , MI 48824 , USA
- Michigan State University 2 Reproductive and Developmental Biology Training Program , , East Lansing , MI 48824 , USA
- Michigan State University 3 Department of Biochemistry and Molecular Biology , , East Lansing , MI 48824 , USA
| | - Amy Ralston
- Michigan State University 2 Reproductive and Developmental Biology Training Program , , East Lansing , MI 48824 , USA
- Michigan State University 3 Department of Biochemistry and Molecular Biology , , East Lansing , MI 48824 , USA
| |
Collapse
|
21
|
Nascimento JM, Gouvêa-Junqueira D, Zuccoli GS, Pedrosa CDSG, Brandão-Teles C, Crunfli F, Antunes ASLM, Cassoli JS, Karmirian K, Salerno JA, de Souza GF, Muraro SP, Proenca-Módena JL, Higa LM, Tanuri A, Garcez PP, Rehen SK, Martins-de-Souza D. Zika Virus Strains and Dengue Virus Induce Distinct Proteomic Changes in Neural Stem Cells and Neurospheres. Mol Neurobiol 2022; 59:5549-5563. [PMID: 35732867 DOI: 10.1007/s12035-022-02922-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 06/05/2022] [Indexed: 11/30/2022]
Abstract
Brain abnormalities and congenital malformations have been linked to the circulating strain of Zika virus (ZIKV) in Brazil since 2016 during the microcephaly outbreak; however, the molecular mechanisms behind several of these alterations and differential viral molecular targets have not been fully elucidated. Here we explore the proteomic alterations induced by ZIKV by comparing the Brazilian (Br ZIKV) and the African (MR766) viral strains, in addition to comparing them to the molecular responses to the Dengue virus type 2 (DENV). Neural stem cells (NSCs) derived from induced pluripotent stem (iPSCs) were cultured both as monolayers and in suspension (resulting in neurospheres), which were then infected with ZIKV (Br ZIKV or ZIKV MR766) or DENV to assess alterations within neural cells. Large-scale proteomic analyses allowed the comparison not only between viral strains but also regarding the two- and three-dimensional cellular models of neural cells derived from iPSCs, and the effects on their interaction. Altered pathways and biological processes were observed related to cell death, cell cycle dysregulation, and neurogenesis. These results reinforce already published data and provide further information regarding the biological alterations induced by ZIKV and DENV in neural cells.
Collapse
Affiliation(s)
- Juliana Minardi Nascimento
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil.,D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30, Rio de Janeiro, RJ, 22281-100, Brazil.,Department of Biosciences, Federal University of São Paulo, Santos, Brazil
| | - Danielle Gouvêa-Junqueira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | | | - Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - André S L M Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Juliana S Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil.,Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Karina Karmirian
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30, Rio de Janeiro, RJ, 22281-100, Brazil
| | - José Alexandre Salerno
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30, Rio de Janeiro, RJ, 22281-100, Brazil
| | - Gabriela Fabiano de Souza
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Stéfanie Primon Muraro
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Jose Luiz Proenca-Módena
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Luiza M Higa
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Patricia P Garcez
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30, Rio de Janeiro, RJ, 22281-100, Brazil.,Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Stevens K Rehen
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30, Rio de Janeiro, RJ, 22281-100, Brazil. .,Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil. .,D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30, Rio de Janeiro, RJ, 22281-100, Brazil. .,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil. .,Instituto Nacional de Biomarcadores Em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico E Tecnológico, São Paulo, Brazil.
| |
Collapse
|
22
|
Abstract
Zika virus is a mosquito-borne flavivirus known to cause severe birth defects and neuroimmunological disorders. We have previously demonstrated that mosquito transmission of Zika virus decreases with temperature. While transmission was optimized at 29°C, it was limited at cool temperatures (<22°C) due to poor virus establishment in the mosquitoes. Temperature is one of the strongest drivers of vector-borne disease transmission due to its profound effect on ectothermic mosquito vectors, viruses, and their interaction. Although there is substantial evidence of temperature effects on arbovirus replication and dissemination inside mosquitoes, little is known about whether temperature affects virus replication directly or indirectly through mosquito physiology. In order to determine the mechanisms behind temperature-induced changes in Zika virus transmission potential, we investigated different steps of the virus replication cycle in mosquito cells (C6/36) at optimal (28°C) and cool (20°C) temperatures. We found that the cool temperature did not alter Zika virus entry or translation, but it affected genome replication and reduced the amount of double-stranded RNA replication intermediates. If replication complexes were first formed at 28°C and the cells were subsequently shifted to 20°C, the late steps in the virus replication cycle were efficiently completed. These data suggest that cool temperature decreases the efficiency of Zika virus genome replication in mosquito cells. This phenotype was observed in the Asian lineage of Zika virus, while the African lineage Zika virus was less restricted at 20°C. IMPORTANCE With half of the human population at risk, arboviral diseases represent a substantial global health burden. Zika virus, previously known to cause sporadic infections in humans, emerged in the Americas in 2015 and quickly spread worldwide. There was an urgent need to better understand the disease pathogenesis and develop therapeutics and vaccines, as well as to understand, predict, and control virus transmission. In order to efficiently predict the seasonality and geography for Zika virus transmission, we need a deeper understanding of the host-pathogen interactions and how they can be altered by environmental factors such as temperature. Identifying the step in the virus replication cycle that is inhibited under cool conditions can have implications in modeling the temperature suitability for arbovirus transmission as global environmental patterns change. Understanding the link between pathogen replication and environmental conditions can potentially be exploited to develop new vector control strategies in the future.
Collapse
|
23
|
King EL, Irigoyen N. Zika Virus and Neuropathogenesis: The Unanswered Question of Which Strain Is More Prone to Causing Microcephaly and Other Neurological Defects. Front Cell Neurosci 2021; 15:695106. [PMID: 34658789 PMCID: PMC8514627 DOI: 10.3389/fncel.2021.695106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Despite being perceived to be a relatively innocuous pathogen during its circulation in Africa in the 20th century, consequent outbreaks in French Polynesia and Latin America revealed the Zika virus (ZIKV) to be capable of causing severe neurological defects. Foetuses infected with the virus during pregnancy developed a range of pathologies including microcephaly, cerebral calcifications and macular scarring. These are now collectively known as Congenital Zika syndrome (CZS). It has been established that the neuropathogenesis of ZIKV results from infection of neural progenitor cells in the developing cerebral cortex. Following this, two main hypotheses have emerged: the virus causes either apoptosis or premature differentiation of neural progenitor cells, reducing the final number of mature neurons in the cerebral cortex. This review describes the cellular processes which could potentially cause virus induced apoptosis or premature differentiation, leading to speculation that a combination of the two may be responsible for the pathologies associated with ZIKV. The review also discusses which specific lineages of the ZIKV can employ these mechanisms. It has been unclear in the past whether the virus evolved its neurotropic capability following circulation in Africa, or if the virus has always caused microcephaly but public health surveillance in Africa had failed to detect it. Understanding the true neuropathogenesis of ZIKV is key to being prepared for further outbreaks in the future, and it will also provide insight into how neurotropic viruses can cause profound and life-long neurological defects.
Collapse
Affiliation(s)
- Emily Louise King
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Nerea Irigoyen
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Francipane MG, Douradinha B, Chinnici CM, Russelli G, Conaldi PG, Iannolo G. Zika Virus: A New Therapeutic Candidate for Glioblastoma Treatment. Int J Mol Sci 2021; 22:10996. [PMID: 34681654 PMCID: PMC8537796 DOI: 10.3390/ijms222010996] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/29/2021] [Accepted: 10/09/2021] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive among the neurological tumors. At present, no chemotherapy or radiotherapy regimen is associated with a positive long-term outcome. In the majority of cases, the tumor recurs within 32-36 weeks of initial treatment. The recent discovery that Zika virus (ZIKV) has an oncolytic action against GBM has brought hope for the development of new therapeutic approaches. ZIKV is an arbovirus of the Flaviviridae family, and its infection during development has been associated with central nervous system (CNS) malformations, including microcephaly, through the targeting of neural stem/progenitor cells (NSCs/NPCs). This finding has led various groups to evaluate ZIKV's effects against glioblastoma stem cells (GSCs), supposedly responsible for GBM onset, progression, and therapy resistance. While preliminary data support ZIKV tropism toward GSCs, a more accurate study of ZIKV mechanisms of action is fundamental in order to launch ZIKV-based clinical trials for GBM patients.
Collapse
Affiliation(s)
- Maria Giovanna Francipane
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.G.F.); (B.D.); (C.M.C.)
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Bruno Douradinha
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.G.F.); (B.D.); (C.M.C.)
- Department of Research, Istituto di Ricovero e Cura a Carattere Scientifico—Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS ISMETT), 90127 Palermo, Italy; (G.R.); (P.G.C.)
| | - Cinzia Maria Chinnici
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.G.F.); (B.D.); (C.M.C.)
- Department of Research, Istituto di Ricovero e Cura a Carattere Scientifico—Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS ISMETT), 90127 Palermo, Italy; (G.R.); (P.G.C.)
| | - Giovanna Russelli
- Department of Research, Istituto di Ricovero e Cura a Carattere Scientifico—Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS ISMETT), 90127 Palermo, Italy; (G.R.); (P.G.C.)
| | - Pier Giulio Conaldi
- Department of Research, Istituto di Ricovero e Cura a Carattere Scientifico—Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS ISMETT), 90127 Palermo, Italy; (G.R.); (P.G.C.)
| | - Gioacchin Iannolo
- Department of Research, Istituto di Ricovero e Cura a Carattere Scientifico—Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS ISMETT), 90127 Palermo, Italy; (G.R.); (P.G.C.)
| |
Collapse
|
25
|
Tebas P, Roberts CC, Muthumani K, Reuschel EL, Kudchodkar SB, Zaidi FI, White S, Khan AS, Racine T, Choi H, Boyer J, Park YK, Trottier S, Remigio C, Krieger D, Spruill SE, Kobinger GP, Weiner DB, Maslow JN. Safety and Immunogenicity of an Anti-Zika Virus DNA Vaccine. N Engl J Med 2021; 385:e35. [PMID: 34525286 PMCID: PMC6824915 DOI: 10.1056/nejmoa1708120] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Although Zika virus (ZIKV) infection is typically self-limiting, other associated complications such as congenital birth defects and the Guillain-Barré syndrome are well described. There are no approved vaccines against ZIKV infection. METHODS In this phase 1, open-label clinical trial, we evaluated the safety and immunogenicity of a synthetic, consensus DNA vaccine (GLS-5700) encoding the ZIKV premembrane and envelope proteins in two groups of 20 participants each. The participants received either 1 mg or 2 mg of vaccine intradermally, with each injection followed by electroporation (the use of a pulsed electric field to introduce the DNA sequence into cells) at baseline, 4 weeks, and 12 weeks. RESULTS The median age of the participants was 38 years, and 60% were women; 78% were White and 22% Black; in addition, 30% were Hispanic. At the interim analysis at 14 weeks (i.e., after the third dose of vaccine), no serious adverse events were reported. Local reactions at the vaccination site (e.g., injection-site pain, redness, swelling, and itching) occurred in approximately 50% of the participants. After the third dose of vaccine, binding antibodies (as measured on enzyme-linked immunosorbent assay) were detected in all the participants, with geometric mean titers of 1642 and 2871 in recipients of 1 mg and 2 mg of vaccine, respectively. Neutralizing antibodies developed in 62% of the samples on Vero-cell assay. On neuronal-cell assay, there was 90% inhibition of ZIKV infection in 70% of the serum samples and 50% inhibition in 95% of the samples. The intraperitoneal injection of postvaccination serum protected 103 of 112 IFNAR knockout mice (bred with deletion of genes encoding interferon-α and interferon-β receptors) (92%) that were challenged with a lethal dose of ZIKV-PR209 strain; none of the mice receiving baseline serum survived the challenge. Survival was independent of the neutralization titer. CONCLUSIONS In this phase 1, open-label clinical trial, a DNA vaccine elicited anti-ZIKV immune responses. Further studies are needed to better evaluate the safety and efficacy of the vaccine. (Funded by GeneOne Life Science and others; ZIKA-001 ClinicalTrials.gov number, NCT02809443.).
Collapse
Affiliation(s)
- Pablo Tebas
- Divison of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | | | | | | | | - Scott White
- Inovio Pharmaceuticals, Plymouth Meeting, PA
| | | | - Trina Racine
- Infectious Diseases Research Centre-Université Laval, Québec City, QC, Canada
| | | | - Jean Boyer
- Inovio Pharmaceuticals, Plymouth Meeting, PA
| | | | - Sylvie Trottier
- Infectious Diseases Research Centre-Université Laval, Québec City, QC, Canada
| | | | | | | | - Gary P. Kobinger
- Infectious Diseases Research Centre-Université Laval, Québec City, QC, Canada
| | | | - Joel N. Maslow
- GeneOne Life Science Inc., Seoul, Korea
- Department of Medicine, Morristown Medical Center, Morristown NJ
| |
Collapse
|
26
|
de Matos SMS, Hennigen AF, Wachholz GE, Rengel BD, Schuler-Faccini L, Roehe PM, Varela APM, Fraga LR. Possible Emergence of Zika Virus of African Lineage in Brazil and the Risk for New Outbreaks. Front Cell Infect Microbiol 2021; 11:680025. [PMID: 34368011 PMCID: PMC8342935 DOI: 10.3389/fcimb.2021.680025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Sophia Martins Simon de Matos
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - André Ferreira Hennigen
- Laboratory of Virology, Department of Microbiology, Immunology and Parasitology, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriela Elis Wachholz
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Teratogen Information Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bruna Duarte Rengel
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Teratogen Information Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Lavinia Schuler-Faccini
- Postgraduate Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Teratogen Information Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Paulo Michel Roehe
- Laboratory of Virology, Department of Microbiology, Immunology and Parasitology, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Paula Muterle Varela
- Postgraduate Program in Bioscience, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Lucas Rosa Fraga
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Teratogen Information Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
27
|
Shi H, Yin J. Kinetics of Asian and African Zika virus lineages over single-cycle and multi-cycle growth in culture: Gene expression, cell killing, virus production, and mathematical modeling. Biotechnol Bioeng 2021; 118:4231-4245. [PMID: 34270089 DOI: 10.1002/bit.27892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 11/07/2022]
Abstract
Since 2014, an Asian lineage of Zika virus has caused outbreaks, and it has been associated with neurological disorders in adults and congenital defects in newborns. The resulting threat of the Zika virus to human health has prompted the development of new vaccines, which have yet to be approved for human use. Vaccines based on the attenuated or chemically inactivated virus will require large-scale production of the intact virus to meet potential global demands. Intact viruses are produced by infecting cultures of susceptible cells, a dynamic process that spans from hours to days and has yet to be optimized. Here, we infected Vero cells adhesively cultured in well-plates with two Zika virus strains: a recently isolated strain from the Asian lineage, and a cell-culture-adapted strain from the African lineage. At different time points post-infection, virus particles in the supernatant were quantified; further, microscopy images were used to quantify cell density and the proportion of cells expressing viral protein. These measurements were performed across multiple replicate samples of one-step infections every four hours over 60 h and for multi-step infections every four to 24 h over 144 h, generating a rich data set. For each set of data, mathematical models were developed to estimate parameters associated with cell infection and virus production. The African-lineage strain was found to produce a 14-fold higher yield than the Asian-lineage strain in one-step growth and a sevenfold higher titer in multi-step growth, suggesting a benefit of cell-culture adaptation for developing a vaccine strain. We found that image-based measurements were critical for discriminating among different models, and different parameters for the two strains could account for the experimentally observed differences. An exponential-distributed delay model performed best in accounting for multi-step infection of the Asian strain, and it highlighted the significant sensitivity of virus titer to the rate of viral degradation, with implications for optimization of vaccine production. More broadly, this study highlights how image-based measurements can contribute to the discrimination of virus-culture models for the optimal production of inactivated and attenuated whole-virus vaccines.
Collapse
Affiliation(s)
- Huicheng Shi
- Department of Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John Yin
- Department of Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
28
|
Nakayama E, Kato F, Tajima S, Ogawa S, Yan K, Takahashi K, Sato Y, Suzuki T, Kawai Y, Inagaki T, Taniguchi S, Le TT, Tang B, Prow NA, Uda A, Maeki T, Lim CK, Khromykh AA, Suhrbier A, Saijo M. Neuroinvasiveness of the MR766 strain of Zika virus in IFNAR-/- mice maps to prM residues conserved amongst African genotype viruses. PLoS Pathog 2021; 17:e1009788. [PMID: 34310650 PMCID: PMC8341709 DOI: 10.1371/journal.ppat.1009788] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 08/05/2021] [Accepted: 07/07/2021] [Indexed: 12/23/2022] Open
Abstract
Zika virus (ZIKV) strains are classified into the African and Asian genotypes. The higher virulence of the African MR766 strain, which has been used extensively in ZIKV research, in adult IFNα/β receptor knockout (IFNAR-/-) mice is widely viewed as an artifact associated with mouse adaptation due to at least 146 passages in wild-type suckling mouse brains. To gain insights into the molecular determinants of MR766's virulence, a series of genes from MR766 were swapped with those from the Asian genotype PRVABC59 isolate, which is less virulent in IFNAR-/- mice. MR766 causes 100% lethal infection in IFNAR-/- mice, but when the prM gene of MR766 was replaced with that of PRVABC59, the chimera MR/PR(prM) showed 0% lethal infection. The reduced virulence was associated with reduced neuroinvasiveness, with MR766 brain titers ≈3 logs higher than those of MR/PR(prM) after subcutaneous infection, but was not significantly different in brain titers of MR766 and MR/PR(prM) after intracranial inoculation. MR/PR(prM) also showed reduced transcytosis when compared with MR766 in vitro. The high neuroinvasiveness of MR766 in IFNAR-/- mice could be linked to the 10 amino acids that differ between the prM proteins of MR766 and PRVABC59, with 5 of these changes affecting positive charge and hydrophobicity on the exposed surface of the prM protein. These 10 amino acids are highly conserved amongst African ZIKV isolates, irrespective of suckling mouse passage, arguing that the high virulence of MR766 in adult IFNAR-/- mice is not the result of mouse adaptation.
Collapse
Affiliation(s)
- Eri Nakayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Fumihiro Kato
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shigeru Tajima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinya Ogawa
- Department of Applied Biological Chemistry, School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kenta Takahashi
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuhiro Kawai
- Management Department of Biosafety and Laboratory Animal, Division of Biosafety Control and Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuya Inagaki
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satoshi Taniguchi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Thuy T. Le
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Natalie A. Prow
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takahiro Maeki
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Chang-Kweng Lim
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Alexander A. Khromykh
- Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
29
|
Jiolle D, Moltini-Conclois I, Obame-Nkoghe J, Yangari P, Porciani A, Scheid B, Kengne P, Ayala D, Failloux AB, Paupy C. Experimental infections with Zika virus strains reveal high vector competence of Aedes albopictus and Aedes aegypti populations from Gabon (Central Africa) for the African virus lineage. Emerg Microbes Infect 2021; 10:1244-1253. [PMID: 34085899 PMCID: PMC8216262 DOI: 10.1080/22221751.2021.1939167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The two main Zika virus (ZIKV) vectors, Aedes albopictus and Aedes aegypti (invasive and native species, respectively), are present in Gabon (Central Africa). The aim of this study was to determine the entomological ZIKV risk associated with these mosquito species in Gabon by evaluating their vector competence for an African (i.e. representative of the endemic strains circulating in sub-Saharan Africa) and two Asian (i.e. representatives of exogenous epidemic strains that could be introduced) ZIKV strains. The transmission efficiency of one Ae. aegypti and two Ae. albopictus field-collected populations from Libreville and Franceville was assayed at day 7, 14 and 21 after experimental oral infection. The two mosquito species could transmit all three ZIKV strains already at day 7 post-infection, but transmission efficiency was higher for the African strain than the non-African strains (>60% versus <14%; incubation period of 14–21 days). The two mosquito species exhibited comparable vector competence for ZIKV, although the amount of viral particles (African strain) in saliva was significantly higher in Ae. albopictus than Ae. aegypti at day 14 post-infection. These findings suggest that overall, ZIKV risk in Gabon is mainly related to virus strains that circulate endemically across sub-Saharan Africa, although the transmission of non-African strains remain possible in case of introduction. Due to its high infestation indexes and ecological/geographical ranges, this risk appears mainly associated with Ae. albopictus. Vector surveillance and control methods against this invasive mosquito must be strengthened in the region to limit the risk of future outbreaks.
Collapse
Affiliation(s)
- Davy Jiolle
- MIVEGEC Laboratory, Montpellier University, IRD, CNRS, Montpellier, France
| | | | - Judicaël Obame-Nkoghe
- Ecologie des Systèmes Vectoriels, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon.,Laboratoire de Biologie Moléculaire et Cellulaire, Département de Biologie, Université des Sciences et Techniques de Masuku, Franceville, Gabon
| | - Patrick Yangari
- Ecologie des Systèmes Vectoriels, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Angélique Porciani
- MIVEGEC Laboratory, Montpellier University, IRD, CNRS, Montpellier, France
| | - Bethsabée Scheid
- MIVEGEC Laboratory, Montpellier University, IRD, CNRS, Montpellier, France
| | - Pierre Kengne
- MIVEGEC Laboratory, Montpellier University, IRD, CNRS, Montpellier, France.,Ecologie des Systèmes Vectoriels, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Diego Ayala
- MIVEGEC Laboratory, Montpellier University, IRD, CNRS, Montpellier, France.,Ecologie des Systèmes Vectoriels, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | | | - Christophe Paupy
- MIVEGEC Laboratory, Montpellier University, IRD, CNRS, Montpellier, France
| |
Collapse
|
30
|
Seong RK, Lee JK, Cho GJ, Kumar M, Shin OS. mRNA and miRNA profiling of Zika virus-infected human umbilical cord mesenchymal stem cells identifies miR-142-5p as an antiviral factor. Emerg Microbes Infect 2021; 9:2061-2075. [PMID: 32902370 PMCID: PMC7534337 DOI: 10.1080/22221751.2020.1821581] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zika virus (ZIKV) infection during pregnancy is associated with congenital brain abnormalities, a finding that highlights the urgent need to understand mother-to-fetus transmission mechanisms. Human umbilical cord mesenchymal stem cells (hUCMSCs) are susceptible to ZIKV infection but the underlying mechanisms of viral susceptibility remain largely unexplored. In this study, we have characterized and compared host mRNA and miRNA expression profiles in hUCMSCs after infection with two lineages of ZIKV, African (MR766) and Asian (PRVABC59). RNA sequencing analysis identified differentially expressed genes involved in anti-viral immunity and mitochondrial dynamics following ZIKV infection. In particular, ZIKV-infected hUCMSCs displayed mitochondrial elongation and the treatment of hUCMSCs with mitochondrial fission inhibitor led to a dose-dependent increase in ZIKV gene expression and decrease in anti-viral signalling pathways. Moreover, small RNA sequencing analysis identified several significantly up- or down-regulated microRNAs. Interestingly, miR-142-5p was significantly downregulated upon ZIKV infection, whereas cellular targets of miR-142-5p, IL6ST and ITGAV, were upregulated. Overexpression of miR-142-5p resulted in the suppression of ZIKV replication. Furthermore, blocking ITGAV expression resulted in a significant suppression of ZIKV binding to cells, suggesting a potential role of ITGAV in ZIKV entry. In conclusion, these results demonstrate both common and specific host responses to African and Asian ZIKV lineages and indicate miR-142-5p as a key regulator of ZIKV replication in the umbilical cords.
Collapse
Affiliation(s)
- Rak-Kyun Seong
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jae Kyung Lee
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Geum Joon Cho
- Department of Obstetrics and Gynaecology, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Mukesh Kumar
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Ok Sarah Shin
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| |
Collapse
|
31
|
Ou TP, Auerswald H, In S, Peng B, Pang S, Boyer S, Choeung R, Dupont-Rouzeyrol M, Dussart P, Duong V. Replication Variance of African and Asian Lineage Zika Virus Strains in Different Cell Lines, Mosquitoes and Mice. Microorganisms 2021; 9:microorganisms9061250. [PMID: 34207488 PMCID: PMC8230095 DOI: 10.3390/microorganisms9061250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/20/2022] Open
Abstract
Since the epidemic in 2007, studies on vector competence for Zika virus (ZIKV) have intensified, showing that the transmission efficiency varies depending on the vector population, ZIKV strain, and dose of the infectious blood meal. In this study, we aimed to investigate the replication of African and Asian ZIKV strains in vitro and in vivo in order to reveal their phenotypic differences. In addition, we investigated the vector competence of Cambodian Aedes aegypti (Ae. aegypti) mosquitoes (urban and rural) for these ZIKV strains. We observed a significantly higher pathogenicity of the African ZIKV strain in vitro (in mosquito and mammalian cells), and in vivo in both Ae. aegypti and mice. Both mosquito populations were competent to transmit ZIKV as early as 7 days p.i., depending on the population and the ZIKV strain. Ae. aegypti from rural habitats showed significant higher transmission and survival rates than those from urban. We observed the highest transmission efficiency for the African ZIKV isolate (93.3% 14 days p.i.) and for the Cambodian ZIKV isolate (80% 14 days p.i.). Overall, our results highlight the phenotypic differences of the ZIKV lineages and the potential risk of ZIKV transmission by Ae. aegypti mosquitoes. Further investigations of Cambodian mosquito species and ZIKV specific surveillance in humans is necessary in order to improve the local risk assessment.
Collapse
Affiliation(s)
- Tey Putita Ou
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 12156, Cambodia; (T.P.O.); (H.A.); (S.I.); (B.P.); (S.P.); (R.C.); (P.D.)
| | - Heidi Auerswald
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 12156, Cambodia; (T.P.O.); (H.A.); (S.I.); (B.P.); (S.P.); (R.C.); (P.D.)
| | - Saraden In
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 12156, Cambodia; (T.P.O.); (H.A.); (S.I.); (B.P.); (S.P.); (R.C.); (P.D.)
| | - Borin Peng
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 12156, Cambodia; (T.P.O.); (H.A.); (S.I.); (B.P.); (S.P.); (R.C.); (P.D.)
| | - Senglong Pang
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 12156, Cambodia; (T.P.O.); (H.A.); (S.I.); (B.P.); (S.P.); (R.C.); (P.D.)
| | - Sébastien Boyer
- Medical Entomology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 12156, Cambodia;
| | - Rithy Choeung
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 12156, Cambodia; (T.P.O.); (H.A.); (S.I.); (B.P.); (S.P.); (R.C.); (P.D.)
| | - Myrielle Dupont-Rouzeyrol
- URE Dengue and Arboviruses, Institut Pasteur in New Caledonia, Institut Pasteur International Network, Nouméa 98800, New Caledonia;
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 12156, Cambodia; (T.P.O.); (H.A.); (S.I.); (B.P.); (S.P.); (R.C.); (P.D.)
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 12156, Cambodia; (T.P.O.); (H.A.); (S.I.); (B.P.); (S.P.); (R.C.); (P.D.)
- Correspondence:
| |
Collapse
|
32
|
Hung SJ, Huang SW. Contributions of Genetic Evolution to Zika Virus Emergence. Front Microbiol 2021; 12:655065. [PMID: 34025610 PMCID: PMC8137341 DOI: 10.3389/fmicb.2021.655065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Mosquito-borne Zika virus (ZIKV) was considered an obscure virus causing only mild or self-limited symptoms until the explosive outbreaks in French Polynesia in 2013–2014 and in the Americas in 2015–2016, resulting in more than 700,000 cases of the disease, with occasional miscarriage and severe congenital birth defects, such as intrauterine growth restriction, fetal microcephaly, and other neurodevelopmental malformations. In this review, we summarized the evolution of ZIKV from a mundane virus to an epidemic virus. ZIKV has acquired a panel of amino acid substitutions during evolution when the virus spread from Africa, Asia, Pacific, through to the Americas. Robust occurrence of mutations in the evolution of ZIKV has increased its epidemic potential. Here we discussed the contributions of these evolutionary mutations to the enhancement of viral pathogenicity and host-mosquito transmission. We further explored the potential hypotheses for the increase in ZIKV activity in recent decades. Through this review, we also explored the hypotheses for the occurrence of the recent ZIKV epidemics and highlighted the potential roles of various factors including pathogen-, host-, vector-related, and environmental factors, which may have synergistically contributed to the ZIKV epidemics.
Collapse
Affiliation(s)
- Su-Jhen Hung
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Sheng-Wen Huang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| |
Collapse
|
33
|
Xu P, Gao J, Shan C, Dunn TJ, Xie X, Xia H, Zou J, Thames BH, Sajja A, Yu Y, Freiberg AN, Vasilakis N, Shi PY, Weaver SC, Wu P. Inhibition of innate immune response ameliorates Zika virus-induced neurogenesis deficit in human neural stem cells. PLoS Negl Trop Dis 2021; 15:e0009183. [PMID: 33657175 PMCID: PMC7959377 DOI: 10.1371/journal.pntd.0009183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/15/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
Global Zika virus (ZIKV) outbreaks and their strong link to microcephaly have raised major public health concerns. ZIKV has been reported to affect the innate immune responses in neural stem/progenitor cells (NS/PCs). However, it is unclear how these immune factors affect neurogenesis. In this study, we used Asian-American lineage ZIKV strain PRVABC59 to infect primary human NS/PCs originally derived from fetal brains. We found that ZIKV overactivated key molecules in the innate immune pathways to impair neurogenesis in a cell stage-dependent manner. Inhibiting the overactivated innate immune responses ameliorated ZIKV-induced neurogenesis reduction. This study thus suggests that orchestrating the host innate immune responses in NS/PCs after ZIKV infection could be promising therapeutic approach to attenuate ZIKV-associated neuropathology.
Collapse
Affiliation(s)
- Pei Xu
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Junling Gao
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Chao Shan
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tiffany J. Dunn
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jing Zou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Beatriz H. Thames
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Amulya Sajja
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yongjia Yu
- Department of Radiology and Oncology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Scott C. Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ping Wu
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
34
|
Zika virus is transmitted in neural progenitor cells via cell-to-cell spread and infection is inhibited by the autophagy inducer trehalose. J Virol 2021; 95:JVI.02024-20. [PMID: 33328307 PMCID: PMC8092816 DOI: 10.1128/jvi.02024-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne human pathogen that causes congenital Zika syndrome and neurological symptoms in some adults. There are currently no approved treatments or vaccines for ZIKV, and exploration of therapies targeting host processes could avoid viral development of drug resistance. The purpose of our study was to determine if the non-toxic and widely used disaccharide trehalose, which showed antiviral activity against Human Cytomegalovirus (HCMV) in our previous work, could restrict ZIKV infection in clinically relevant neural progenitor cells (NPCs). Trehalose is known to induce autophagy, the degradation and recycling of cellular components. Whether autophagy is proviral or antiviral for ZIKV is controversial and depends on cell type and specific conditions used to activate or inhibit autophagy. We show here that trehalose treatment of NPCs infected with recent ZIKV isolates from Panama and Puerto Rico significantly reduces viral replication and spread. In addition, we demonstrate that ZIKV infection in NPCs spreads primarily cell-to-cell as an expanding infectious center, and NPCs are infected via contact with infected cells far more efficiently than by cell-free virus. Importantly, ZIKV was able to spread in NPCs in the presence of neutralizing antibody.Importance Zika virus causes birth defects and can lead to neurological disease in adults. While infection rates are currently low, ZIKV remains a public health concern with no treatment or vaccine available. Targeting a cellular pathway to inhibit viral replication is a potential treatment strategy that avoids development of antiviral resistance. We demonstrate in this study that the non-toxic autophagy-inducing disaccharide trehalose reduces spread and output of ZIKV in infected neural progenitor cells (NPCs), the major cells infected in the fetus. We show that ZIKV spreads cell-to-cell in NPCs as an infectious center and that NPCs are more permissive to infection by contact with infected cells than by cell-free virus. We find that neutralizing antibody does not prevent the spread of the infection in NPCs. These results are significant in demonstrating anti-ZIKV activity of trehalose and in clarifying the primary means of Zika virus spread in clinically relevant target cells.
Collapse
|
35
|
Aubry F, Jacobs S, Darmuzey M, Lequime S, Delang L, Fontaine A, Jupatanakul N, Miot EF, Dabo S, Manet C, Montagutelli X, Baidaliuk A, Gámbaro F, Simon-Lorière E, Gilsoul M, Romero-Vivas CM, Cao-Lormeau VM, Jarman RG, Diagne CT, Faye O, Faye O, Sall AA, Neyts J, Nguyen L, Kaptein SJF, Lambrechts L. Recent African strains of Zika virus display higher transmissibility and fetal pathogenicity than Asian strains. Nat Commun 2021; 12:916. [PMID: 33568638 PMCID: PMC7876148 DOI: 10.1038/s41467-021-21199-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/16/2021] [Indexed: 11/09/2022] Open
Abstract
The global emergence of Zika virus (ZIKV) revealed the unprecedented ability for a mosquito-borne virus to cause congenital birth defects. A puzzling aspect of ZIKV emergence is that all human outbreaks and birth defects to date have been exclusively associated with the Asian ZIKV lineage, despite a growing body of laboratory evidence pointing towards higher transmissibility and pathogenicity of the African ZIKV lineage. Whether this apparent paradox reflects the use of relatively old African ZIKV strains in most laboratory studies is unclear. Here, we experimentally compare seven low-passage ZIKV strains representing the recently circulating viral genetic diversity. We find that recent African ZIKV strains display higher transmissibility in mosquitoes and higher lethality in both adult and fetal mice than their Asian counterparts. We emphasize the high epidemic potential of African ZIKV strains and suggest that they could more easily go unnoticed by public health surveillance systems than Asian strains due to their propensity to cause fetal loss rather than birth defects. Here, the authors compare seven low passage Zika virus (ZIKV) strains representing the recently circulating viral genetic diversity of African and Asian strains and find that African ZIKV strains have higher transmissibility in mosquitoes and higher lethality in both adult and fetal mice.
Collapse
Affiliation(s)
- Fabien Aubry
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Sofie Jacobs
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Maïlis Darmuzey
- GIGA-Stem Cells/GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), C.H.U. Sart Tilman, University of Liège, Liège, Belgium
| | - Sebastian Lequime
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium.,Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Leen Delang
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Albin Fontaine
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France.,IRD, SSA, AP-HM, UMR Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Aix Marseille University, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Natapong Jupatanakul
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France.,National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - Elliott F Miot
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Stéphanie Dabo
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Caroline Manet
- Mouse Genetics Laboratory, Institut Pasteur, Paris, France
| | | | - Artem Baidaliuk
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France.,Evolutionary Genomics of RNA Viruses Group, Institut Pasteur, Paris, France
| | - Fabiana Gámbaro
- Evolutionary Genomics of RNA Viruses Group, Institut Pasteur, Paris, France
| | | | - Maxime Gilsoul
- GIGA-Stem Cells/GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), C.H.U. Sart Tilman, University of Liège, Liège, Belgium
| | - Claudia M Romero-Vivas
- Laboratorio de Enfermedades Tropicales, Departamento de Medicina, Fundación Universidad del Norte, Barranquilla, Colombia
| | | | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Cheikh T Diagne
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, Dakar, Senegal
| | - Oumar Faye
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, Dakar, Senegal
| | - Ousmane Faye
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, Dakar, Senegal
| | - Amadou A Sall
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, Dakar, Senegal
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Laurent Nguyen
- GIGA-Stem Cells/GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), C.H.U. Sart Tilman, University of Liège, Liège, Belgium
| | - Suzanne J F Kaptein
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium.
| | - Louis Lambrechts
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France.
| |
Collapse
|
36
|
Best K, Barouch DH, Guedj J, Ribeiro RM, Perelson AS. Zika virus dynamics: Effects of inoculum dose, the innate immune response and viral interference. PLoS Comput Biol 2021; 17:e1008564. [PMID: 33471814 PMCID: PMC7817008 DOI: 10.1371/journal.pcbi.1008564] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Experimental Zika virus infection in non-human primates results in acute viral load dynamics that can be well-described by mathematical models. The inoculum dose that would be received in a natural infection setting is likely lower than the experimental infections and how this difference affects the viral dynamics and immune response is unclear. Here we study a dataset of experimental infection of non-human primates with a range of doses of Zika virus. We develop new models of infection incorporating both an innate immune response and viral interference with that response. We find that such a model explains the data better than models with no interaction between virus and the immune response. We also find that larger inoculum doses lead to faster dynamics of infection, but approximately the same total amount of viral production. The relationship between the infecting dose of a pathogen and the subsequent viral dynamics is unclear in many disease settings, and this relationship has implications for both the timing and the required efficacy of antiviral therapy. Since experimental challenge studies often employ higher doses of virus than would generally be present in natural infection assessment of this relationship is particularly important for translation of findings. In this study we used mathematical modelling of viral load data from a multi-dose study of Zika virus infection in a macaque model to describe the impact of varying the dose of Zika virus on model parameters, and developed a novel mathematical model incorporating viral interference with the innate immune response.
Collapse
Affiliation(s)
- Katharine Best
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | | | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Laboratório de Biomatemática, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
37
|
Alzhanova D, Corcoran K, Bailey AG, Long K, Taft-Benz S, Graham RL, Broussard GS, Heise M, Neumann G, Halfmann P, Kawaoka Y, Baric RS, Damania B, Dittmer DP. Novel modulators of p53-signaling encoded by unknown genes of emerging viruses. PLoS Pathog 2021; 17:e1009033. [PMID: 33411764 PMCID: PMC7790267 DOI: 10.1371/journal.ppat.1009033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
The p53 transcription factor plays a key role both in cancer and in the cell-intrinsic response to infections. The ORFEOME project hypothesized that novel p53-virus interactions reside in hitherto uncharacterized, unknown, or hypothetical open reading frames (orfs) of human viruses. Hence, 172 orfs of unknown function from the emerging viruses SARS-Coronavirus, MERS-Coronavirus, influenza, Ebola, Zika (ZIKV), Chikungunya and Kaposi Sarcoma-associated herpesvirus (KSHV) were de novo synthesized, validated and tested in a functional screen of p53 signaling. This screen revealed novel mechanisms of p53 virus interactions and two viral proteins KSHV orf10 and ZIKV NS2A binding to p53. Originally identified as the target of small DNA tumor viruses, these experiments reinforce the notion that all viruses, including RNA viruses, interfere with p53 functions. These results validate this resource for analogous systems biology approaches to identify functional properties of uncharacterized viral proteins, long non-coding RNAs and micro RNAs. New viruses are constantly emerging. The ORFEOME project was based on the hypothesis that every virus, regardless of its molecular makeup and biology should encode functions that intersect the p53 signaling network, since p53 guards the cell from genomic insults, of which depositing a foreign, viral nucleic acid is one. The result of the ORFEOME screen of proteins without any known function, of predicted open reading frames and of suspected non-coding RNAs is the identification of two viral proteins that interact with p53. The first one, orf10, is encoded by Kaposi Sarcoma-associated herpesvirus and the second one, NS2A, is encoded by the Zika virus.
Collapse
Affiliation(s)
- Dina Alzhanova
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kathleen Corcoran
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Aubrey G. Bailey
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kristin Long
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Sharon Taft-Benz
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Rachel L. Graham
- Department of Epidemiology, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Grant S. Broussard
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark Heise
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Peter Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Epidemiology, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Blossom Damania
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dirk P. Dittmer
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
38
|
Nunes BTD, Fontes-Garfias CR, Shan C, Muruato AE, Nunes JGC, Burbano RMR, Vasconcelos PFC, Shi PY, Medeiros DBA. Zika structural genes determine the virulence of African and Asian lineages. Emerg Microbes Infect 2020; 9:1023-1033. [PMID: 32419649 PMCID: PMC8284969 DOI: 10.1080/22221751.2020.1753583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Asian lineage of Zika virus (ZIKV) is responsible for the recent epidemics in the Americas and severe disease, whereas the African lineage of ZIKV has not been reported to cause epidemics or severe disease. We constructed a cDNA infectious clone (IC) of an African ZIKV strain, which, together with our previously developed Asian ZIKV strain IC, allowed us to engineer chimeric viruses by swapping the structural and non-structural genes between the two lineages. Recombinant parental and chimeric viruses were analyzed in A129 and newborn CD1 mouse models. In the A129 mice, the African strain developed higher viremia, organ viral loading, and mortality rate. In CD1 mice, the African strain exhibited a higher neurovirulence than the Asian strain. A chimeric virus containing the structural genes from the African strain is more virulent than the Asian strain, whereas a chimeric virus containing the non-structural genes from the African strain exhibited a virulence comparable to the Asian strain. These results suggest that (i) African strain is more virulent than Asian strain and (ii) viral structural genes primarily determine the virulence difference between the two lineages in mouse models. Other factors may contribute to the discrepancy between the mouse and epidemic results.
Collapse
Affiliation(s)
- Bruno T D Nunes
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil.,Department of Biochemistry & Molecular Biology, Galveston, TX, USA.,Health Sciences Institute, Belem, Brazil
| | | | - Chao Shan
- Department of Biochemistry & Molecular Biology, Galveston, TX, USA
| | - Antonio E Muruato
- Department of Biochemistry & Molecular Biology, Galveston, TX, USA.,Department of Microbiology & Immunology, Galveston, TX, USA
| | - Jannyce G C Nunes
- Department of Biochemistry & Molecular Biology, Galveston, TX, USA.,Health Sciences Institute, Belem, Brazil
| | - Rommel M R Burbano
- Health Sciences Institute, Belem, Brazil.,Biological Sciences Institute - ICS, Federal University of Pará, Belem, Brazil
| | - Pedro F C Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil.,Department of Pathology, Pará State University Belém, Brazil
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, Galveston, TX, USA.,Institute for Human Infections & Immunity, Galveston, TX, USA.,Institute for Translational Science, Galveston, TX, USA.,Sealy Institute of Vaccine Sciences, Galveston, TX, USA.,Sealy Center for Structural Biology & Molecular Biophysics, Texas Medical Branch, Galveston, TX, USA
| | - Daniele B A Medeiros
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil.,Department of Biochemistry & Molecular Biology, Galveston, TX, USA.,Post Graduation Program in Virology, Evandro Chagas Institute Ministry of Health, Ananindeua, Brazil.,Health Sciences Institute, Belem, Brazil
| |
Collapse
|
39
|
Lee JK, Kim JA, Oh SJ, Lee EW, Shin OS. Zika Virus Induces Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL)-Mediated Apoptosis in Human Neural Progenitor Cells. Cells 2020; 9:cells9112487. [PMID: 33207682 PMCID: PMC7697661 DOI: 10.3390/cells9112487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) remains as a public health threat due to the congenital birth defects the virus causes following infection of pregnant women. Congenital microcephaly is among the neurodevelopmental disorders the virus can cause in newborns, and this defect has been associated with ZIKV-mediated cytopathic effects in human neural progenitor cells (hNPCs). In this study, we investigated the cellular changes that occur in hNPCs in response to ZIKV (African and Asian lineages)-induced cytopathic effects. Transmission electron microscopy showed the progress of cell death as well as the formation of numerous vacuoles in the cytoplasm of ZIKV-infected hNPCs. Infection with both African and Asian lineages of ZIKV induced apoptosis, as demonstrated by the increased activation of caspase 3/7, 8, and 9. Increased levels of proinflammatory cytokines and chemokines (IL-6, IL-8, IL-1β) were also detected in ZIKV-infected hNPCs, while z-VAD-fmk-induced inhibition of cell death suppressed ZIKV-mediated cytokine production in a dose-dependent manner. ZIKV-infected hNPCs also displayed significantly elevated gene expression levels of the pro-apoptotic Bcl2-mediated family, in particular, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Furthermore, TRAIL signaling led to augmented ZIKV-mediated cell death and the knockdown of TRAIL-mediated signaling adaptor, FADD, resulted in enhanced ZIKV replication. In conclusion, our findings provide cellular insights into the cytopathic effects induced by ZIKV infection of hNPCs.
Collapse
Affiliation(s)
- Jae Kyung Lee
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 08308, Korea; (J.K.L.); (J.-A.K.); (S.-J.O.)
| | - Ji-Ae Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 08308, Korea; (J.K.L.); (J.-A.K.); (S.-J.O.)
| | - Soo-Jin Oh
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 08308, Korea; (J.K.L.); (J.-A.K.); (S.-J.O.)
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Correspondence: (E.-W.L.); (O.S.S.); Tel.: +82-42-860-4294 (E.-W.L.); +82-2-2626-3280 (O.S.S.)
| | - Ok Sarah Shin
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 08308, Korea; (J.K.L.); (J.-A.K.); (S.-J.O.)
- Correspondence: (E.-W.L.); (O.S.S.); Tel.: +82-42-860-4294 (E.-W.L.); +82-2-2626-3280 (O.S.S.)
| |
Collapse
|
40
|
Biological Characteristics and Patterns of Codon Usage Evolution for the African Genotype Zika Virus. Viruses 2020; 12:v12111306. [PMID: 33202554 PMCID: PMC7696518 DOI: 10.3390/v12111306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022] Open
Abstract
We investigated temporal trends of codon usage changes for different host species to determine their importance in Zika virus (ZIKV) evolution. Viral spillover resulting from the potential of codon adaptation to host genome was also assessed for the African genotype ZIKV in comparison to the Asian genotype. To improve our understanding on its zoonotic maintenance, we evaluated in vitro the biological properties of the African genotype ZIKV in vertebrate and mosquito cell lines. Analyses were performed in comparison to Yellow fever virus (YFV). Despite significantly lower codon adaptation index trends than YFV, ZIKV showed evident codon adaptation to vertebrate hosts, particularly for the green African monkey Chlorocebus aethiops. PCA and CAI analyses at the individual ZIKV gene level for both human and Aedes aegypti indicated a clear distinction between the two genotypes. African ZIKV isolates showed higher virulence in mosquito cells than in vertebrate cells. Their higher replication in mosquito cells than African YFV confirmed the role of mosquitoes in the natural maintenance of the African genotype ZIKV. An analysis of individual strain growth characteristics indicated that the widely used reference strain MR766 replicates poorly in comparison to African ZIKV isolates. The recombinant African Zika virus strain ArD128000*E/NS5 may be a good model to include in studies on the mechanism of host tropism, as it cannot replicate in the tested vertebrate cell line.
Collapse
|
41
|
Tabari D, Scholl C, Steffens M, Weickhardt S, Elgner F, Bender D, Herrlein ML, Sabino C, Semkova V, Peitz M, Till A, Brüstle O, Hildt E, Stingl J. Impact of Zika Virus Infection on Human Neural Stem Cell MicroRNA Signatures. Viruses 2020; 12:E1219. [PMID: 33121145 PMCID: PMC7693339 DOI: 10.3390/v12111219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne virus, which can cause brain abnormalities in newborns, including microcephaly. MicroRNAs (miRNAs) are small non-coding RNAs, which post- transcriptionally regulate gene expression. They are involved in various processes including neurological development and host responses to viral infection, but their potential role in ZIKV pathogenesis remains poorly understood. MiRNAs can be incorporated into extracellular vesicles (EVs) and mediate cell-to-cell communication. While it is well known that in viral infections EVs carrying miRNAs can play a crucial role in disease pathogenesis, ZIKV effects on EV-delivered miRNAs and their contribution to ZIKV pathogenesis have not been elucidated. In the present study, we profiled intracellular and EV-derived miRNAs by next generation sequencing and analyzed the host mRNA transcriptome of neural stem cells during infection with ZIKV Uganda and French Polynesia strains. We identified numerous miRNAs, including miR-4792, which were dysregulated at the intracellular level and had altered levels in EVs during ZIKV infection. Integrated analyses of differentially expressed genes and miRNAs showed that ZIKV infection had an impact on processes associated with neurodevelopment and oxidative stress. Our results provide insights into the roles of intracellular and EV-associated host miRNAs in ZIKV pathogenesis.
Collapse
Affiliation(s)
- Denna Tabari
- Research Division, Federal Institute for Drugs and Medical Devices, 53175 Bonn, Germany; (D.T.); (M.S.); (S.W.)
| | - Catharina Scholl
- Research Division, Federal Institute for Drugs and Medical Devices, 53175 Bonn, Germany; (D.T.); (M.S.); (S.W.)
| | - Michael Steffens
- Research Division, Federal Institute for Drugs and Medical Devices, 53175 Bonn, Germany; (D.T.); (M.S.); (S.W.)
| | - Sandra Weickhardt
- Research Division, Federal Institute for Drugs and Medical Devices, 53175 Bonn, Germany; (D.T.); (M.S.); (S.W.)
| | - Fabian Elgner
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (F.E.); (D.B.); (M.-L.H.); (C.S.); (E.H.)
| | - Daniela Bender
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (F.E.); (D.B.); (M.-L.H.); (C.S.); (E.H.)
| | - Marie-Luise Herrlein
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (F.E.); (D.B.); (M.-L.H.); (C.S.); (E.H.)
| | - Catarina Sabino
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (F.E.); (D.B.); (M.-L.H.); (C.S.); (E.H.)
| | - Vesselina Semkova
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany; (V.S.); (M.P.); (A.T.); (O.B.)
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany; (V.S.); (M.P.); (A.T.); (O.B.)
- Cell Programming Core Facility, Medical Faculty, University of Bonn, 53172 Bonn, Germany
| | - Andreas Till
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany; (V.S.); (M.P.); (A.T.); (O.B.)
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany; (V.S.); (M.P.); (A.T.); (O.B.)
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (F.E.); (D.B.); (M.-L.H.); (C.S.); (E.H.)
| | - Julia Stingl
- Department of Clinical Pharmacology, University Hospital, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
42
|
Thomas SJ, Barrett A. Zika vaccine pre-clinical and clinical data review with perspectives on the future development. Hum Vaccin Immunother 2020; 16:2524-2536. [PMID: 32702260 PMCID: PMC7644220 DOI: 10.1080/21645515.2020.1730657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/13/2020] [Indexed: 01/07/2023] Open
Abstract
Zika is an arboviral illness caused by infection with the Zika flavivirus. Transmission most commonly occurs during a feeding event involving an infected Aedes mosquito or vertical transmission between an infected mother to her fetus. Infection outcomes range from asymptomatic to devastating neurologic injuries in children infected in utero. The recognition of Congenital Zika Syndrome prompted the declaration of an international health emergency and a call to rapidly develop medical countermeasures such as vaccines and therapeutics. A flurry of research and development activity in industry, government, non-governmental organizations, and academia during the most recent Zika epidemic (2015) stimulated the development of a number of vaccine candidate prototypes, generation of pre-clinical data, and the conduct of early phase human trials. The safety and immunogenicity of different vaccine platforms were demonstrated and mouse and non-human primate passive transfer studies hinted at the potential for clinical benefit in humans and defining an immune correlate of protection. A rapid decline in regional transmission, however, prevented the conduct a clinical endpoint efficacy trial. The pathway to licensure of a Zika vaccine remains unclear.
Collapse
Affiliation(s)
- Stephen J. Thomas
- Institute for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Alan Barrett
- Department of Pathology and Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
43
|
Karuppan MKM, Ojha CR, Rodriguez M, Lapierre J, Aman MJ, Kashanchi F, Toborek M, Nair M, El-Hage N. Reduced-Beclin1-Expressing Mice Infected with Zika-R103451 and Viral-Associated Pathology during Pregnancy. Viruses 2020; 12:v12060608. [PMID: 32498399 PMCID: PMC7354588 DOI: 10.3390/v12060608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/24/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022] Open
Abstract
Here, we used a mouse model with defective autophagy to further decipher the role of Beclin1 in the infection and disease of Zika virus (ZIKV)-R103451. Hemizygous (Becn1+/−) and wild-type (Becn1+/+) pregnant mice were transiently immunocompromised using the anti-interferon alpha/beta receptor subunit 1 monoclonal antibody MAR1-5A3. Despite a low mortality rate among the infected dams, 25% of Becn1+/− offspring were smaller in size and had smaller, underdeveloped brains. This phenotype became apparent after 2-to 3-weeks post-birth. Furthermore, the smaller-sized pups showed a decrease in the mRNA expression levels of insulin-like growth factor (IGF)-1 and the expression levels of several microcephaly associated genes, when compared to their typical-sized siblings. Neuronal loss was also noticeable in brain tissues that were removed postmortem. Further analysis with murine mixed glia, derived from ZIKV-infected Becn1+/− and Becn1+/+ pups, showed greater infectivity in glia derived from the Becn1+/− genotype, along with a significant increase in pro-inflammatory molecules. In the present study, we identified a link by which defective autophagy is causally related to increased inflammatory molecules, reduced growth factor, decreased expression of microcephaly-associated genes, and increased neuronal loss. Specifically, we showed that a reduced expression of Beclin1 aggravated the consequences of ZIKV infection on brain development and qualifies Becn1 as a susceptibility gene of ZIKV congenital syndrome.
Collapse
Affiliation(s)
- Mohan Kumar Muthu Karuppan
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.K.M.K.); (C.R.O.); (M.R.); (J.L.); (M.N.)
| | - Chet Raj Ojha
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.K.M.K.); (C.R.O.); (M.R.); (J.L.); (M.N.)
| | - Myosotys Rodriguez
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.K.M.K.); (C.R.O.); (M.R.); (J.L.); (M.N.)
| | - Jessica Lapierre
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.K.M.K.); (C.R.O.); (M.R.); (J.L.); (M.N.)
| | - M. Javad Aman
- Integrated Biotherapeutics, Rockville, MD 20850, USA;
| | - Fatah Kashanchi
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA 20110, USA;
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Madhavan Nair
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.K.M.K.); (C.R.O.); (M.R.); (J.L.); (M.N.)
| | - Nazira El-Hage
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.K.M.K.); (C.R.O.); (M.R.); (J.L.); (M.N.)
- Correspondence: ; Tel.: +1-(305)-348-4346; Fax: +1-(305)-348-1109
| |
Collapse
|
44
|
Rashid MU, Zahedi-Amiri A, Glover KKM, Gao A, Nickol ME, Kindrachuk J, Wilkins JA, Coombs KM. Zika virus dysregulates human Sertoli cell proteins involved in spermatogenesis with little effect on tight junctions. PLoS Negl Trop Dis 2020; 14:e0008335. [PMID: 32511241 PMCID: PMC7279580 DOI: 10.1371/journal.pntd.0008335] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV), a neglected tropical disease until its re-emergence in 2007, causes microcephaly in infants and Guillain-Barré syndrome in adults. Its re-emergence and spread to more than 80 countries led the World Health Organization in 2016 to declare a Public Health Emergency. ZIKV is mainly transmitted by mosquitos, but can persist in infected human male semen for prolonged periods and may be sexually transmitted. Testicular Sertoli cells support ZIKV replication and may be a reservoir for persistent ZIKV infection. Electrical impedance analyses indicated ZIKV infection rapidly disrupted Vero cell monolayers but had little effect upon human Sertoli cells (HSerC). We determined ZIKV-induced proteomic changes in HSerC using an aptamer-based multiplexed technique (SOMAscan) targeting >1300 human proteins. ZIKV infection caused differential expression of 299 proteins during three different time points, including 5 days after infection. Dysregulated proteins are involved in different bio-functions, including cell death and survival, cell cycle, maintenance of cellular function, cell signaling, cellular assembly, morphology, movement, molecular transport, and immune response. Many signaling pathways important for maintenance of HSerC function and spermatogenesis were highly dysregulated. These included IL-6, IGF1, EGF, NF-κB, PPAR, ERK/MAPK, and growth hormone signaling. Down-regulation of the PPAR signaling pathway might impact cellular energy supplies. Upstream molecule analysis also indicated microRNAs involved in germ cell development were downregulated by infection. Overall, this study leads to a better understanding of Sertoli cellular mechanisms used by ZIKV during persistent infection and possible ZIKV impacts on spermatogenesis.
Collapse
Affiliation(s)
- Mahamud-ur Rashid
- University of Manitoba, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Manitoba, Canada
- Manitoba Centre for Proteomics & Systems Biology, Winnipeg, Manitoba, Canada
| | - Ali Zahedi-Amiri
- University of Manitoba, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Manitoba, Canada
- Manitoba Centre for Proteomics & Systems Biology, Winnipeg, Manitoba, Canada
| | - Kathleen K. M. Glover
- University of Manitoba, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Manitoba, Canada
- Manitoba Centre for Proteomics & Systems Biology, Winnipeg, Manitoba, Canada
| | - Ang Gao
- Manitoba Centre for Proteomics & Systems Biology, Winnipeg, Manitoba, Canada
| | - Michaela E. Nickol
- University of Manitoba, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Manitoba, Canada
| | - Jason Kindrachuk
- University of Manitoba, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Manitoba, Canada
| | - John A. Wilkins
- Manitoba Centre for Proteomics & Systems Biology, Winnipeg, Manitoba, Canada
- University of Manitoba, Department of Internal Medicine, Health Sciences Centre, Winnipeg, Manitoba, Canada
| | - Kevin M. Coombs
- University of Manitoba, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Manitoba, Canada
- Manitoba Centre for Proteomics & Systems Biology, Winnipeg, Manitoba, Canada
- Children’s Hospital Research Institute of Manitoba, John Buhler Research Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
45
|
Gobillot TA, Humes D, Sharma A, Kikawa C, Overbaugh J. The Robust Restriction of Zika Virus by Type-I Interferon in A549 Cells Varies by Viral Lineage and Is Not Determined by IFITM3. Viruses 2020; 12:v12050503. [PMID: 32370187 PMCID: PMC7290589 DOI: 10.3390/v12050503] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
Type-I interferon (IFN-I) is a major antiviral host response but its impact on Zika virus (ZIKV) replication is not well defined, particularly as it relates to different circulating strains. Interferon stimulated genes (ISGs) that inhibit ZIKV, such as IFITM3, have been identified largely using overexpression studies. Here, we tested whether diverse ZIKV strains differed in their susceptibility to IFN-I-mediated restriction and the contribution of IFITM3 to this restriction. We identified a robust IFN-I-mediated antiviral effect on ZIKV replication (>100-fold reduction) in A549 cells, a commonly used cell line to study ZIKV replication. The extent of inhibition depended on the IFN-I type and the virus strain tested. Viruses from the American pathogenic outbreak were more sensitive to IFNα (p = 0.049) and IFNβ (p = 0.09) than African-lineage strains, which have not been linked to severe pathogenesis. Knocking out IFITM3 expression did not dampen the IFN-I antiviral effect and only high overexpression of IFITM3 led to ZIKV inhibition. Moreover, IFITM3 expression levels in different cells were not associated with IFN-mediated ZIKV inhibition. Taken together, our findings indicate that there is a robust IFN-I-mediated antiviral effect on ZIKV infection, particularly for American viruses, that is not due to IFITM3. A549 cells, which are a commonly used cell line to study ZIKV replication, present an opportunity for the discovery of novel antiviral ISGs against ZIKV.
Collapse
Affiliation(s)
- Theodore A. Gobillot
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (T.A.G.); (D.H.); (A.S.); (C.K.)
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Daryl Humes
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (T.A.G.); (D.H.); (A.S.); (C.K.)
| | - Amit Sharma
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (T.A.G.); (D.H.); (A.S.); (C.K.)
| | - Caroline Kikawa
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (T.A.G.); (D.H.); (A.S.); (C.K.)
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (T.A.G.); (D.H.); (A.S.); (C.K.)
- Correspondence:
| |
Collapse
|
46
|
Bhushan G, Lim L, Bird I, Chothe SK, Nissly RH, Kuchipudi SV. Iminosugars With Endoplasmic Reticulum α-Glucosidase Inhibitor Activity Inhibit ZIKV Replication and Reverse Cytopathogenicity in vitro. Front Microbiol 2020; 11:531. [PMID: 32373079 PMCID: PMC7179685 DOI: 10.3389/fmicb.2020.00531] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/12/2020] [Indexed: 11/26/2022] Open
Abstract
Zika virus (ZIKV), a vector-borne virus of the family Flaviviridae, continues to spread and remains a significant global public health threat. Currently, there are no approved vaccines or antivirals against ZIKV. We investigated the anti-ZIKV ability of three iminosugars with endoplasmic reticulum α-glucosidase inhibitor (ER-AGI) activity, namely deoxynojirimycin (DNJ), castanospermine, and celgosivir. None of the three iminosugars showed any significant cytotoxicity in Vero or human microglia CHME3 cells when applied for 72 h at concentrations up to 100 μM. Iminosugar treatment of Vero or CHME3 cells prior to ZIKV infection resulted in significant inhibition of ZIKV replication over 48 h. Reduction in ZIKV replication in iminosugar-treated cells was not associated with any significant change in the expression levels of key antiviral genes. Following infection with three different strains of ZIKV, iminosugar-treated Vero or CHME3 cells showed no cell death, whereas vehicle-treated control cells exhibited 50–60% cell death at 72 h post-infection (hpi). While there was no significant difference in apoptosis between iminosugar-treated and control cells, iminosugar-treated cells exhibited a substantial reduction of necrosis at 72 hpi following ZIKV infection. In summary, iminosugars with ER-AGI activity inhibit ZIKV replication and significantly reduce necrosis without altering the antiviral gene expression and apoptosis of infected human cells. The results of this study strongly suggest that iminosugars are promising anti-ZIKV antiviral agents and such warrant further in vivo studies.
Collapse
Affiliation(s)
- Gitanjali Bhushan
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Levina Lim
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Ian Bird
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Shubhada K Chothe
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Ruth H Nissly
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Suresh V Kuchipudi
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
47
|
Udenze D, Trus I, Berube N, Gerdts V, Karniychuk U. The African strain of Zika virus causes more severe in utero infection than Asian strain in a porcine fetal transmission model. Emerg Microbes Infect 2019; 8:1098-1107. [PMID: 31340725 PMCID: PMC6711198 DOI: 10.1080/22221751.2019.1644967] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Studies in mice showed that African Zika virus (ZIKV) strains cause more damage in embryos. These studies, however, were limited to the mouse-adapted African MR766 strain or infection at early gestation. Here, we compared infection of Asian and African strains in the fetal pig model at midgestation. Both strains caused fetal infection. ZIKV was detected in placenta, amniotic membrane, amniotic fluid, fetal blood, and brain. The African strain produced more vigorous in utero infection as represented by more efficient virus transmission between siblings, and higher viral loads in fetal organs and membranes. Infection with both strains was associated with reduced fetal brain weight and increased number of placental CD163-positive cells, as well as elevated in utero interferon alpha and cortisol levels. This is the first large animal model study which demonstrated that African strain of ZIKV, with no passage history in experimental animals, can cause persistent infection in fetuses and fetal membranes at midgestation. Our studies also suggest that similar to Asian strains, ZIKV of African lineage might cause silent pathology which is difficult to identify in deceptively healthy fetuses. The findings emphasize the need for further studies to highlight the impact of ZIKV heterogeneity on infection outcomes during pregnancy.
Collapse
Affiliation(s)
- Daniel Udenze
- a Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan , Saskatoon , Canada.,b School of Public Health, University of Saskatchewan , Saskatoon , Canada
| | - Ivan Trus
- a Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan , Saskatoon , Canada
| | - Nathalie Berube
- a Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan , Saskatoon , Canada
| | - Volker Gerdts
- a Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan , Saskatoon , Canada.,c Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon , Canada
| | - Uladzimir Karniychuk
- a Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan , Saskatoon , Canada.,b School of Public Health, University of Saskatchewan , Saskatoon , Canada.,c Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon , Canada
| |
Collapse
|
48
|
Atlastin Endoplasmic Reticulum-Shaping Proteins Facilitate Zika Virus Replication. J Virol 2019; 93:JVI.01047-19. [PMID: 31534046 DOI: 10.1128/jvi.01047-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/08/2019] [Indexed: 01/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is the site for Zika virus (ZIKV) replication and is central to the cytopathic effects observed in infected cells. ZIKV induces the formation of ER-derived large cytoplasmic vacuoles followed by "implosive" cell death. Little is known about the nature of the ER factors that regulate flavivirus replication. Atlastins (ATL1, -2, and -3) are dynamin-related GTPases that control the structure and the dynamics of the ER membrane. We show here that ZIKV replication is significantly decreased in the absence of ATL proteins. The appearance of infected cells is delayed, the levels of intracellular viral proteins and released virus are reduced, and the cytopathic effects are strongly impaired. We further show that ATL3 is recruited to viral replication sites and interacts with the nonstructural viral proteins NS2A and NS2B3. Thus, proteins that shape and maintain the ER tubular network ensure efficient ZIKV replication.IMPORTANCE Zika virus (ZIKV) is an emerging virus associated with Guillain-Barré syndrome, and fetal microcephaly as well as other neurological complications. There is no vaccine or specific antiviral treatment against ZIKV. We found that endoplasmic reticulum (ER)-shaping atlastin proteins (ATL1, -2, and -3), which induce ER membrane fusion, facilitate ZIKV replication. We show that ATL3 is recruited to the viral replication site and colocalize with the viral proteins NS2A and NS2B3. The results provide insights into host factors used by ZIKV to enhance its replication.
Collapse
|
49
|
Sutarjono B. Can We Better Understand How Zika Leads to Microcephaly? A Systematic Review of the Effects of the Zika Virus on Human Brain Organoids. J Infect Dis 2019; 219:734-745. [PMID: 30256965 DOI: 10.1093/infdis/jiy572] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/22/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The innovative human brain organoid model represents a unique opportunity to better understand the genesis of congenital brain abnormalities, particularly microcephaly, caused by Zika virus (ZIKV) infection during early pregnancy. METHODS A systematic review was conducted to investigate how ZIKV leads to microcephaly in a novel experimental model that mimics early brain development. Studies were gathered by searching MEDLINE/Pubmed, LILACS, and LiSSa for reports on effects of ZIKV infection on human brain organoids. From 146 identified papers, 13 articles were selected for review. RESULTS This review found that ZIKV of African, Latin American, and Asian lineages caused productive replication after 72 hours, preferentially infected neural progenitor cells over mature neurons, reduced both cell populations, and caused premature differentiation. Limited data involving only African and Latin American lineages showed a reduction in populations of proliferating cells and intermediate cells, and overall decreased viability. Furthermore, all 3 lineages caused heightened apoptosis and reduced organoid size. CONCLUSIONS This review concludes that, in organoids, ZIKV causes productive replication, infects neural progenitor cells over mature neurons, decreases both populations, causes premature differentiation, induces apoptosis, and reduces size.
Collapse
Affiliation(s)
- Bayu Sutarjono
- Saba University School of Medicine, Devens, Massachusetts
| |
Collapse
|
50
|
Nelson BR, Roby JA, Dobyns WB, Rajagopal L, Gale M, Adams Waldorf KM. Immune Evasion Strategies Used by Zika Virus to Infect the Fetal Eye and Brain. Viral Immunol 2019; 33:22-37. [PMID: 31687902 PMCID: PMC6978768 DOI: 10.1089/vim.2019.0082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-transmitted flavivirus that caused a public health emergency in the Americas when an outbreak in Brazil became linked to congenital microcephaly. Understanding how ZIKV could evade the innate immune defenses of the mother, placenta, and fetus has become central to determining how the virus can traffic into the fetal brain. ZIKV, like other flaviviruses, evades host innate immune responses by leveraging viral proteins and other processes that occur during viral replication to allow spread to the placenta. Within the placenta, there are diverse cell types with coreceptors for ZIKV entry, creating an opportunity for the virus to establish a reservoir for replication and infect the fetus. The fetal brain is vulnerable to ZIKV, particularly during the first trimester, when it is beginning a dynamic process, to form highly complex and specialized regions orchestrated by neuroprogenitor cells. In this review, we provide a conceptual framework to understand the different routes for viral trafficking into the fetal brain and the eye, which are most likely to occur early and later in pregnancy. Based on the injury profile in human and nonhuman primates, ZIKV entry into the fetal brain likely occurs across both the blood/cerebrospinal fluid barrier in the choroid plexus and the blood/brain barrier. ZIKV can also enter the eye by trafficking across the blood/retinal barrier. Ultimately, the efficient escape of innate immune defenses by ZIKV is a key factor leading to viral infection. However, the host immune response against ZIKV can lead to injury and perturbations in developmental programs that drive cellular division, migration, and brain growth. The combined effect of innate immune evasion to facilitate viral propagation and the maternal/placental/fetal immune response to control the infection will determine the extent to which ZIKV can injure the fetal brain.
Collapse
Affiliation(s)
- Branden R. Nelson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Justin A. Roby
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Immunology, University of Washington, Seattle, Washington
| | - William B. Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Lakshmi Rajagopal
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Immunology, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
| | - Kristina M. Adams Waldorf
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington
- Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|