1
|
Sabatke B, Rossi IV, Ramirez MI. Interaction vesicles as emerging mediators of host-pathogen molecular crosstalk and their implications for infection dynamics. FEBS Lett 2025. [PMID: 40313034 DOI: 10.1002/1873-3468.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/08/2025] [Accepted: 04/12/2025] [Indexed: 05/03/2025]
Abstract
Extracellular vesicles (EVs) are critical in cell communication, transfer of biomolecules, and host-pathogen interaction. A newly identified subset, "interaction vesicles" (iEVs), forms through host-pathogen contact, merging membrane elements from both. These iEVs may arise through multiple mechanisms, including direct cell-cell contact, membrane contact sites, uptake and repackaging of foreign EVs, and post-release fusion of EVs. These hybrid vesicles enable pathogens to modify host environments, aiding immune evasion and infection persistence. However, iEVs may also act in favor of the host, contributing to pathogen recognition and elimination. Advanced techniques, including proteomics and high-resolution microscopy, are beginning to clarify their composition and fusion. Yet, isolating these hybrid EVs remains challenging. Overcoming these barriers could enhance understanding of infection mechanisms and support diagnostic and therapeutic innovation.
Collapse
Affiliation(s)
- Bruna Sabatke
- Graduate Program in Microbiology, Pathology and Parasitology, Federal University of Paraná, Curitiba, Brazil
- EVAHPI - Extracellular Vesicles and Host-Parasite Interactions Research Group, Carlos Chagas Institute (Fiocruz-PR), Curitiba, Brazil
| | - Izadora Volpato Rossi
- Graduate Program in Microbiology, Pathology and Parasitology, Federal University of Paraná, Curitiba, Brazil
- EVAHPI - Extracellular Vesicles and Host-Parasite Interactions Research Group, Carlos Chagas Institute (Fiocruz-PR), Curitiba, Brazil
| | - Marcel I Ramirez
- Graduate Program in Microbiology, Pathology and Parasitology, Federal University of Paraná, Curitiba, Brazil
- EVAHPI - Extracellular Vesicles and Host-Parasite Interactions Research Group, Carlos Chagas Institute (Fiocruz-PR), Curitiba, Brazil
- Graduate Program in Cell and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
2
|
da Silva JL, Ikeda MAK, Albuquerque RC, de Almeida SR, Ferreira KS. Extracellular Vesicles from Dendritic Cells Protect Against Sporothrix brasiliensis Yeast Cells. Mycopathologia 2025; 190:35. [PMID: 40202614 DOI: 10.1007/s11046-025-00943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/18/2025] [Indexed: 04/10/2025]
Abstract
Sporotrichosis is an emerging subcutaneous mycotic zoonosis that affects the skin, lymphatic system, and other organs of humans and animals. Like other infectious fungal diseases, it becomes even more severe when it affects immunosuppressed patients. This infection has a global distribution and is endemic in some regions of Brazil and it is an important zoonotic public health problem. The disease is caused by a complex of at least four pathogenic species, including Sporothrix brasiliensis. The immunological response against these species has not yet been completely elucidated. Still, structures such as extracellular vesicles could carry important components that can contribute to the modulation and control of this significant infection. Thus, this work aims to analyze the participation of EVs from naïve dendritic cells and EVs from DCs previously primed with S. brasiliensis yeast and primed with EVs from the fungus in the immune response against experimental sporotrichosis in murine models. The groups that received EVs from DCs primed with S. brasiliensis or their EVs showed a significant decrease in fungal load compared to the negative control group. When we analyzed the cytokine profile in the skin of mice treated with EVs before infection, we observed an increase in IFN-ℽ, TNF-α, IL-17, and IL-10, mainly in animals previously treated with EVs from DCs cultivated with yeast cells. It is worth highlighting that all prophylactic protocols modulated and minimized fungal growth compared to the control; that is, EVs contributed to the control of the infection and acted in favor of the host, demonstrating a protective character.
Collapse
Affiliation(s)
- Jennifer Lacerda da Silva
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas da Universidade Federal de São Paulo, São Paulo, Brazil
- Faculdade de Ciências Farmacêuticas da, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo Augusto Kazuo Ikeda
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas da Universidade Federal de São Paulo, São Paulo, Brazil
- Faculdade de Ciências Farmacêuticas da, Universidade de São Paulo, São Paulo, Brazil
| | - Renata Chaves Albuquerque
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas da Universidade Federal de São Paulo, São Paulo, Brazil
- Faculdade de Ciências Farmacêuticas da, Universidade de São Paulo, São Paulo, Brazil
| | - Sandro Rogério de Almeida
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas da Universidade Federal de São Paulo, São Paulo, Brazil
- Faculdade de Ciências Farmacêuticas da, Universidade de São Paulo, São Paulo, Brazil
| | - Karen Spadari Ferreira
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas da Universidade Federal de São Paulo, São Paulo, Brazil.
- Faculdade de Ciências Farmacêuticas da, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Chen S, Yi M, Yi X, Zhou Y, Song H, Zeng M. Unveiling the fungal frontier: mycological insights into inflammatory bowel disease. Front Immunol 2025; 16:1551289. [PMID: 40207229 PMCID: PMC11979276 DOI: 10.3389/fimmu.2025.1551289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent gastrointestinal disease that seriously affects the quality of life of patients around the world. It is characterized by recurrent abdominal pain, diarrhea, and mucous bloody stools. There is an urgent need for more accurate diagnosis and effective treatment of IBD. Accumulated evidence suggests that gut microbiota plays an important role in the occurrence and development of gut inflammation. However, most studies on the role of gut microbiota in IBD have focused on bacteria, while fungal microorganisms have been neglected. Fungal dysbiosis can activate the host protective immune pathway related to the integrity of the epithelial barrier and release a variety of pro-inflammatory cytokines to trigger the inflammatory response. Dectin-1, CARD9, and IL-17 signaling pathways may be immune drivers of fungal dysbacteriosis in the development of IBD. In addition, fungal-bacterial interactions and fungal-derived metabolites also play an important role. Based on this information, we explored new strategies for IBD treatment targeting the intestinal fungal group and its metabolites, such as fungal probiotics, antifungal drugs, diet therapy, and fecal microbiota transplantation (FMT). This review aims to summarize the fungal dysbiosis and pathogenesis of IBD, and provide new insights and directions for further research in this emerging field.
Collapse
Affiliation(s)
- Silan Chen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Meijing Yi
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinying Yi
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuxuan Zhou
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Houpan Song
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Meiyan Zeng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
4
|
Valente MR, Martins Alcântara L, Cintra DS, Mendoza SR, Medeiros EG, Gomes KX, Honorato L, Almeida MDA, Vieira CB, Nosanchuk JD, Sgarbi DBDG, Pinto MR, Nimrichter L, Guimarães AJ. Interactions of the emerging fungus Candida auris with Acanthamoeba castellanii reveal phenotypic changes with direct implications on the response to stress and virulence. Microbiol Spectr 2025; 13:e0174624. [PMID: 39688412 PMCID: PMC11792492 DOI: 10.1128/spectrum.01746-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Candida auris is an emerging fungal pathogen notable for its resistance to multiple antifungals and ability to survive in various environments. Understanding the interactions between C. auris and environmental protozoa, such as Acanthamoeba castellanii, could provide insights into fungal adaptability and pathogenicity. Two C. auris isolates (MMC1 and MMC2) were co-cultured with A. castellanii to examine interaction dynamics, survival, stress responses, growth, virulence, biofilm formation, and antifungal susceptibility. The association of C. auris-A. castellanii varied with a multiplicity of infection (MOI), with MMC2 exhibiting higher association rates at increased MOI than MMC1. Both isolates survived distinctly within A. castellanii, as the MMC1 showed an initial decline and subsequent increase in viability, while MMC2 maintained higher viability for up to 24 h, decreasing afterward. Both isolates exhibited accelerated growth when recovered from A. castellanii. The MMC2 isolate displayed increased resistance to oxidative, osmotic, and thermal stresses upon interaction with A. castellanii, whereas MMC1 showed limited changes. Exposure to A. castellanii also influenced the expression of virulence factors differently, with MMC1 increasing phospholipase and peptidase, while MMC2 upregulated phytase, esterase, hemolysin, and siderophores. Upon contact with A. castellanii, MMC2 enhanced biofilm formation, unlike MMC1. Both isolates increased ergosterol upon interactions, enhancing susceptibility to amphotericin B. However, both isolates were more tolerant to itraconazole and caspofungin, particularly MMC2, which showed differential expression of ergosterol biosynthesis enzymes and increased cell wall polysaccharides. This study reveals that interactions with A. castellanii modulate C. auris physiology and virulence, contributing to its environmental adaptability and resistance to antifungals. IMPORTANCE Candida auris has emerged as a critical public health concern due to its resistance to multiple antifungal drugs and ability to survive on surfaces under harsh conditions, mainly due to biofilm formation. The precise origin of this emerging pathogen still awaits elucidation, but interactions with environmental protozoa may have helped C. auris to develop such virulence and resistance traits. In this work, we precisely characterize the interactions of C. auris with the free-living amoeba Acanthamoeba castellanii and how these protozoa may alter the fungal behavior in terms of virulence, thermotolerance, biofilm formation capacity, and drug resistance. It may be essential to understand the various interactions C. auris could perform in the environment, directly impacting the outcome of human infections under the One Health approach.
Collapse
Affiliation(s)
- Michele Ramos Valente
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Lucas Martins Alcântara
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Deborah Santos Cintra
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Susana Ruiz Mendoza
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Elisa Gonçalves Medeiros
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Kamilla Xavier Gomes
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Leandro Honorato
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcos de Abreu Almeida
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Carmen Baur Vieira
- Núcleo de Pesquisa de Virologia, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Joshua Daniel Nosanchuk
- Infectious Diseases, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, USA
| | - Diana Bridon da Graça Sgarbi
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Marcia Ribeiro Pinto
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Leonardo Nimrichter
- Programa de Pós-Graduação em Imunologia e Inflamação, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Rede Micologia RJ – Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
- National Institute of Science and Technology (INCT) in Human Pathogenic Fungi, São Paulo, Brazil
| | - Allan Jefferson Guimarães
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Rede Micologia RJ – Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
- National Institute of Science and Technology (INCT) in Human Pathogenic Fungi, São Paulo, Brazil
| |
Collapse
|
5
|
Kulig K, Wronowska E, Juszczak M, Zawrotniak M, Karkowska-Kuleta J, Rapala-Kozik M. Host cell responses to Candida albicans biofilm-derived extracellular vesicles. Front Cell Infect Microbiol 2025; 14:1499461. [PMID: 39877654 PMCID: PMC11772320 DOI: 10.3389/fcimb.2024.1499461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025] Open
Abstract
Candida albicans is a prevalent fungal pathogen responsible for infections in humans. As described recently, nanometer-sized extracellular vesicles (EVs) produced by C. albicans play a crucial role in the pathogenesis of infection by facilitating host inflammatory responses and intercellular communication. This study investigates the functional properties of EVs released by biofilms formed by two C. albicans strains-3147 (ATCC 10231) and SC5314-in eliciting host responses. We demonstrate the capability of C. albicans EVs to trigger reactions in human epithelial and immune cells. The involvement of EVs in pathogenesis was evidenced from the initial stages of infection, specifically in adherence to epithelial cells. We further established the capacity of these EVs to induce cytokine production in the epithelial A549 cell line, THP-1 macrophage-like cells, and blood-derived monocytes differentiated into macrophages. Internalization of EVs by THP-1 macrophage-like cells was confirmed, identifying macropinocytosis and phagocytosis as the most probable mechanisms, as demonstrated using various inhibitors that target potential vesicle uptake pathways in human cells. Additionally, C. albicans EVs and their cargo were identified as chemoattractants for blood-derived neutrophils. After verification of the in vivo effect of biofilm-derived EVs on the host, using Galleria mellonella larvae as an alternative model, it was demonstrated that vesicles from C. albicans SC5314 increased mortality in the injected larvae. In conclusion, for both types of EVs a predominantly pro-inflammatory effect on host was observed, highlighting their significant role in the inflammatory response during C. albicans infection.
Collapse
Affiliation(s)
- Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Magdalena Juszczak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
6
|
Amoriello R, Nenciarini S, Cavalieri D, Ballerini C. In Vitro Interaction Between Yeast Extracellular Vesicles and Human Monocyte-Derived Dendritic Cells. Methods Mol Biol 2025; 2857:137-146. [PMID: 39348062 DOI: 10.1007/978-1-0716-4128-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Extracellular vesicles (EVs) are lipid-bound particles produced by a wide variety of cells from different biological species. EVs can carry molecules, such as nucleic acids and metabolites, and are involved in cell functioning, communication, and signaling. Recent literature reported that pathogenic or commensal yeast strains can produce EVs targeting the host's immune system and exerting immunomodulatory actions. In humans, yeast EVs can be endocytosed by dendritic cells (DCs), characterized by phagocyting and migrating capabilities with the role of capturing antigens to present to T lymphocytes, triggering the immune response. Physiological or disease-associated immunosenescence impairs both DC functionality and gut microbiota; thus investigating the interaction between commensal microorganisms and the host's immune system would help elucidate the impact of aging on the immune system-microbiota interplay. We hereby present a protocol for the incubation of in vitro-generated human monocyte-derived DCs with EVs purified from different yeast strains isolated from fermented milk. The protocol includes flow cytometry analysis on DC activation markers and endocytosis assay.
Collapse
Affiliation(s)
- Roberta Amoriello
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | | | | | - Clara Ballerini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
7
|
Ahmad M, Liu Y, Huang S, Huo Y, Yi G, Liu C, Jamil W, Yang X, Zhang W, Li Y, Xiang D, Huoqing H, Liu S, Wang W, Li C. Isolation, Characterization, and Proteomic Analysis of Crude and Purified Extracellular Vesicles Extracted from Fusarium oxysporum f. sp. cubense. PLANTS (BASEL, SWITZERLAND) 2024; 13:3534. [PMID: 39771233 PMCID: PMC11679526 DOI: 10.3390/plants13243534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025]
Abstract
Extracellular vesicles (EVs) produced by Fusarium oxysporum f. sp. cubense (Foc) play vital roles in plant-pathogen interactions; however, the isolation of purified Foc TR4-EVs and their pathogenicity and proteomic profiles are not well studied. This study aims to isolate and characterize purified Foc TR4-EVs and compare their pathogenic effects and protein profiles with crude TR4-EVs. Foc TR4-EVs were isolated using ultracentrifugation and purified by iodixanol gradient centrifugation. After characterization and evaluation of the pathogenicity effects on banana leaves, LC-MS/MS was performed to conduct the proteomics assay. Results indicated that Fraction 2 EVs exhibited clearer spherical structures (TEM), excessive abundance (1.70 × 109 particles/mL), greater intensity (400 a.u), mean size (154.5 nm), moderate protein content (333.16 ng/µL), and protein profile (25-77 kDa), which were superior to Fractions 1, 3, and crude EVs. Crude EVs displayed significant background interference with EV structures (TEM), highest abundance (2.11 × 109 particles/mL), lower intensity (7.0 a.u), higher protein content (528.33 ng/µL), and higher molecular weight proteins (55-70 kDa) compared to gradient EVs. A non-significant biocontrol effect of Foc-EVs on the growth of TR4 spores was observed. Pathogenicity assays revealed that crude EVs caused the largest (2.805 cm2), while Fraction 2 (1.386 cm2) and Fraction 3 (1.255 cm2) resulted in moderate lesions on banana leaves. Proteomic analysis identified 807 unique proteins in Fraction 2, enriched in pathways related to EV trafficking and signaling. In comparison, crude EVs contained 179 unique non-EV proteins related to metabolism and secondary metabolites, indicating that non-EV proteins of crude EVs also influence the pathogenicity observed in banana leaves. This study emphasizes the importance of EV purification, with Fraction 2 being a critical focus for future research on Foc EV pathogenicity.
Collapse
Affiliation(s)
- Mudassar Ahmad
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yushan Liu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shiyi Huang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yile Huo
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ganjun Yi
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chongfei Liu
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Wajeeha Jamil
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiaofang Yang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Wei Zhang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yuqing Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Dandan Xiang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Huang Huoqing
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Siwen Liu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Wei Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Chunyu Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
8
|
Brandt P, Singha R, Ene IV. Hidden allies: how extracellular vesicles drive biofilm formation, stress adaptation, and host-immune interactions in human fungal pathogens. mBio 2024; 15:e0304523. [PMID: 39555918 PMCID: PMC11633191 DOI: 10.1128/mbio.03045-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Pathogenic fungi pose a significant threat to human health, especially given the rising incidence of invasive fungal infections and the emergence of drug-resistant strains. This requires the development of vaccines and the advancement of antifungal strategies. Recent studies have focused on the roles of fungal extracellular vesicles (EVs) in intercellular communication and host-pathogen interactions. EVs are nanosized, lipid membrane-bound particles that facilitate the transfer of proteins, lipids, and nucleic acids. Here, we review the multifaceted functions of EVs produced by different human fungal pathogens, highlighting their importance in the response of fungal cells to different environmental cues and their interactions with host immune cells. We summarize the current state of research on EVs and how leveraging this knowledge can lead to innovative approaches in vaccine development and antifungal treatment.
Collapse
Affiliation(s)
- Philipp Brandt
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| | - Rima Singha
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| | - Iuliana V. Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| |
Collapse
|
9
|
Gurajala S. Unveiling the rise of Candida auris: Latest developments and healthcare implications. IP INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY AND TROPICAL DISEASES 2024; 10:196-205. [DOI: 10.18231/j.ijmmtd.2024.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Indexed: 01/02/2025]
Abstract
, a fungus that is resistant to multiple drugs, has become a major global healthcare concern in recent years. The pathogen quickly disseminates within healthcare facilities, colonizes many surfaces, and leads to recurrent infections despite frequent disinfection measures. Automated systems frequently misidentify it, resulting in a delayed diagnosis. Inadequate hand hygiene, the use of multiple antibiotics, and contaminated medical equipment are the main causes of infections that primarily target critically ill patients in hospital intensive care units (ICUs). isolates are resistant to commonly used antifungal drugs like fluconazole, amphotericin, and echinocandins. This review article thoroughly examines the current understanding of infections, encompassing its epidemiology, clinical symptoms, diagnosis, treatment options, and prevention measures. It additionally summarizes a recent literature review on emerging diagnostic techniques and treatment options. Gaining a comprehensive understanding of the difficulties presented by this pathogen and staying informed of the most recent developments is essential for healthcare providers and policymakers in order to efficiently counteract its transmission and limit its detrimental impact on patient health
Collapse
Affiliation(s)
- Swathi Gurajala
- College of Applied Medical Sciences in Jubail, , Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Honorato L, Bonilla JJA, Valdez AF, Frases S, Araújo GRDS, Sabino ALRDN, da Silva NM, Ribeiro L, Ferreira MDS, Kornetz J, Rodrigues ML, Cunningham I, Gow NAR, Gacser A, Guimarães AJ, Dutra FF, Nimrichter L. Toll-like receptor 4 (TLR4) is the major pattern recognition receptor triggering the protective effect of a Candida albicans extracellular vesicle-based vaccine prototype in murine systemic candidiasis. mSphere 2024; 9:e0046724. [PMID: 39037263 PMCID: PMC11351041 DOI: 10.1128/msphere.00467-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024] Open
Abstract
Systemic candidiasis remains a significant public health concern worldwide, with high mortality rates despite available antifungal drugs. Drug-resistant strains add to the urgency for alternative therapies. In this context, vaccination has reemerged as a prominent immune-based strategy. Extracellular vesicles (EVs), nanosized lipid bilayer particles, carry a diverse array of native fungal antigens, including proteins, nucleic acids, lipids, and glycans. Previous studies from our laboratory demonstrated that Candida albicans EVs triggered the innate immune response, activating bone marrow-derived dendritic cells (BMDCs) and potentially acting as a bridge between innate and adaptive immunity. Vaccination with C. albicans EVs induced the production of specific antibodies, modulated cytokine production, and provided protection in immunosuppressed mice infected with lethal C. albicans inoculum. To elucidate the mechanisms underlying EV-induced immune activation, our study investigated pathogen-associated molecular patterns (PAMPs) and pattern recognition receptors (PRRs) involved in EVs-phagocyte engagement. EVs from wild-type and mutant C. albicans strains with truncated mannoproteins were compared for their ability to stimulate BMDCs. Our findings revealed that EV decoration with O- and N-linked mannans and the presence of β-1,3-glucans and chitin oligomers may modulate the activation of specific PRRs, in particular Toll-like receptor 4 (TLR4) and dectin-1. The protective effect of vaccination with wild-type EVs was found to be dependent on TLR4. These results suggest that fungal EVs can be harnessed in vaccine formulations to selectively activate PRRs in phagocytes, offering potential avenues for combating or preventing candidiasis.IMPORTANCESystemic candidiasis is a serious global health concern with high mortality rates and growing drug resistance. Vaccination offers a promising solution. A unique approach involves using tiny lipid-coated particles called extracellular vesicles (EVs), which carry various fungal components. Previous studies found that Candida albicans EVs activate the immune response and may bridge the gap between innate and adaptive immunity. To understand this better, we investigated how these EVs activate immune cells. We demonstrated that specific components on EV surfaces, such as mannans and glucans, interact with receptors on immune cells, including Toll-like receptor 4 (TLR4) and dectin-1. Moreover, vaccinating with these EVs led to strong immune responses and full protection in mice infected with Candida. This work shows how harnessing fungal EVs might lead to effective vaccines against candidiasis.
Collapse
Affiliation(s)
- Leandro Honorato
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jhon J. Artunduaga Bonilla
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro F. Valdez
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filhos (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rede Micologia, RJ, FAPERJ, Rio de Janeiro, Brazil
| | - Glauber Ribeiro de Sousa Araújo
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filhos (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Natalia Martins da Silva
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Ribeiro
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marina da Silva Ferreira
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Julio Kornetz
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcio L. Rodrigues
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Carlos Chagas (ICC), Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
| | - Iain Cunningham
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Attila Gacser
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Allan J. Guimarães
- Rede Micologia, RJ, FAPERJ, Rio de Janeiro, Brazil
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Fabianno F. Dutra
- Rede Micologia, RJ, FAPERJ, Rio de Janeiro, Brazil
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rede Micologia, RJ, FAPERJ, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Holt AM, Nett JE. Innate immune response to Candida auris. Curr Opin Microbiol 2024; 80:102510. [PMID: 38964276 PMCID: PMC11323126 DOI: 10.1016/j.mib.2024.102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
Candida auris, a newly emergent fungal species, has been spreading in health care systems and causing life-threatening infections. Intact innate immunity is essential for protection against many invasive fungal infections, including candidiasis. Here, we highlight recent studies exploring immune interactions with C. auris, including investigations using animal models and ex vivo immune cells. We summarize innate immune studies comparing C. auris and the common fungal pathogen Candida albicans. We also discuss how structures of the C. auris cell wall influence immune recognition, the role of soluble host factors in immune recognition, and areas of future study.
Collapse
Affiliation(s)
- Ashley M Holt
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Jeniel E Nett
- Department of Medicine, University of Wisconsin, Madison, WI, USA; Department of Medical Microbiology & Immunology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
12
|
Fayed B, Shakartalla SB, Sabbah H, Dalle H, Tannira M, Senok A, Soliman SSM. Transcriptome Analysis of Human Dermal Cells Infected with Candida auris Identified Unique Pathogenesis/Defensive Mechanisms Particularly Ferroptosis. Mycopathologia 2024; 189:65. [PMID: 38990436 DOI: 10.1007/s11046-024-00868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
Candida auris is an emerging multi-drug resistant yeast that can cause life-threatening infections. A recent report clarified the ability of C. auris to form a biofilm with enhanced drug resistance properties in the host skin's deep layers. The formed biofilm may initiate further bloodstream spread and immune escape. Therefore, we propose that secreted chemicals from the biofilm may facilitate fungal pathogenesis. In response to this interaction, the host skin may develop potential defensive mechanisms. Comparative transcriptomics was performed on the host dermal cells in response to indirect interaction with C. auris biofilm through Transwell inserts compared to planktonic cells. Furthermore, the effect of antifungals including caspofungin and fluconazole was studied. The obtained data showed that the dermal cells exhibited different transcriptional responses. Kyoto Encyclopedia of Genes and Genomes and Reactome analyses identified potential defensive responses employed by the dermal cells and potential toxicity induced by C. auris. Additionally, our data indicated that the dominating toxic effect was mediated by ferroptosis; which was validated by qRT-PCR, cytotoxicity assay, and flow cytometry. On the other hand, the viability of C. auris biofilm was enhanced and accompanied by upregulation of MDR1, and KRE6 upon interaction with dermal cells; both genes play significant roles in drug resistance and biofilm maturation, respectively. This study for the first-time shed light on the dominating defensive responses of human dermal cells, microbe colonization site, to C. auris biofilm and its toxic effects. Further, it demonstrates how C. auris biofilm responds to the defensive mechanisms developed by the human dermal cells.
Collapse
Affiliation(s)
- Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Chemistry of Natural and Microbial Products, National Research Centre, Cairo, Egypt
| | - Sarra B Shakartalla
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Faculty of Pharmacy, University of Gezira, P.O.Box. 21111, Wad Medani, Sudan
| | - Hassan Sabbah
- AbbVie BioPharmaceuticals, P.O. Box 118052, Dubai, UAE
| | - Hala Dalle
- AbbVie BioPharmaceuticals, Kuwait City, Kuwait
| | | | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Building 14 Dubai Healthcare City, P.O.Box 505055, Dubai, UAE
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
| |
Collapse
|
13
|
Kulig K, Rapala-Kozik M, Karkowska-Kuleta J. Extracellular vesicle production: A bidirectional effect in the interplay between host and Candida fungi. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100255. [PMID: 39040088 PMCID: PMC11260599 DOI: 10.1016/j.crmicr.2024.100255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Candida fungi exploit various virulence strategies to invade the human host, while host cells employ diverse mechanisms to maintain homeostasis and respond to infection. Extracellular vesicles (EVs) are integral components of the multifaceted landscape of host-pathogen interactions, with their abundant production by all contributors involved in these complex and dynamic relations. Herein, we present the current state of knowledge regarding the host response by releasing EVs in reaction to Candida, as well as the influence of fungal EVs on the functionality of the confronted host cells. Fungal vesicles contribute to enhanced adhesion of pathogens to human cells as evidenced for C. auris, and may modulate the production of several cytokines, including IL-6, IL-8, IL-10, IL-12p40, TGF-β and TNF-α, thereby exerting pro-infective and pro-inflammatory effects, as described for C. albicans and other Candida species. Whereas the biosynthesis of EVs by host cells can dynamically modulate the proliferation and viability of fungal cells and affect the candidacidal functionality of other effector cells. The reciprocal influence of EVs from host cells and Candida pathogens is a key focus, explaining their significant role in cell signaling and interkingdom communication.
Collapse
Affiliation(s)
- Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
14
|
Medeiros EG, Valente MR, Honorato L, Ferreira MDS, Mendoza SR, Gonçalves DDS, Martins Alcântara L, Gomes KX, Pinto MR, Nakayasu ES, Clair G, da Rocha IFM, dos Reis FCG, Rodrigues ML, Alves LR, Nimrichter L, Casadevall A, Guimarães AJ. Comprehensive characterization of extracellular vesicles produced by environmental (Neff) and clinical (T4) strains of Acanthamoeba castellanii. mSystems 2024; 9:e0122623. [PMID: 38717186 PMCID: PMC11237502 DOI: 10.1128/msystems.01226-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/01/2024] [Indexed: 06/19/2024] Open
Abstract
We conducted a comprehensive comparative analysis of extracellular vesicles (EVs) from two Acanthamoeba castellanii strains, Neff (environmental) and T4 (clinical). Morphological analysis via transmission electron microscopy revealed slightly larger Neff EVs (average = 194.5 nm) compared to more polydisperse T4 EVs (average = 168.4 nm). Nanoparticle tracking analysis (NTA) and dynamic light scattering validated these differences. Proteomic analysis of the EVs identified 1,352 proteins, with 1,107 common, 161 exclusive in Neff, and 84 exclusively in T4 EVs. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping revealed distinct molecular functions and biological processes and notably, the T4 EVs enrichment in serine proteases, aligned with its pathogenicity. Lipidomic analysis revealed a prevalence of unsaturated lipid species in Neff EVs, particularly triacylglycerols, phosphatidylethanolamines (PEs), and phosphatidylserine, while T4 EVs were enriched in diacylglycerols and diacylglyceryl trimethylhomoserine, phosphatidylcholine and less unsaturated PEs, suggesting differences in lipid metabolism and membrane permeability. Metabolomic analysis indicated Neff EVs enrichment in glycerolipid metabolism, glycolysis, and nucleotide synthesis, while T4 EVs, methionine metabolism. Furthermore, RNA-seq of EVs revealed differential transcript between the strains, with Neff EVs enriched in transcripts related to gluconeogenesis and translation, suggesting gene regulation and metabolic shift, while in the T4 EVs transcripts were associated with signal transduction and protein kinase activity, indicating rapid responses to environmental changes. In this novel study, data integration highlighted the differences in enzyme profiles, metabolic processes, and potential origins of EVs in the two strains shedding light on the diversity and complexity of A. castellanii EVs and having implications for understanding host-pathogen interactions and developing targeted interventions for Acanthamoeba-related diseases.IMPORTANCEA comprehensive and fully comparative analysis of extracellular vesicles (EVs) from two Acanthamoeba castellanii strains of distinct virulence, a Neff (environmental) and T4 (clinical), revealed striking differences in their morphology and protein, lipid, metabolites, and transcripts levels. Data integration highlighted the differences in enzyme profiles, metabolic processes, and potential distinct origin of EVs from both strains, shedding light on the diversity and complexity of A. castellanii EVs, with direct implications for understanding host-pathogen interactions, disease mechanisms, and developing new therapies for the clinical intervention of Acanthamoeba-related diseases.
Collapse
Affiliation(s)
- Elisa Gonçalves Medeiros
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Michele Ramos Valente
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Leandro Honorato
- Departamento de Microbiologia Geral, Laboratório de Glicobiologia de Eucariotos, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marina da Silva Ferreira
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Susana Ruiz Mendoza
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diego de Souza Gonçalves
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Lucas Martins Alcântara
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Kamilla Xavier Gomes
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Departamento de Microbiologia Geral, Laboratório de Glicobiologia de Eucariotos, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcia Ribeiro Pinto
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Ernesto S. Nakayasu
- Biological Science Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Geremy Clair
- Biological Science Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | - Flavia C. G. dos Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Fiocruz, Curitiba, Paraná, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fiocruz, Rio de Janeiro, Brazil
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Fiocruz, Curitiba, Paraná, Brazil
- Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| | - Lysangela R. Alves
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Fiocruz, Curitiba, Paraná, Brazil
| | - Leonardo Nimrichter
- Departamento de Microbiologia Geral, Laboratório de Glicobiologia de Eucariotos, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Rede Micologia RJ–Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Allan Jefferson Guimarães
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Rede Micologia RJ–Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| |
Collapse
|
15
|
De Gaetano S, Midiri A, Mancuso G, Avola MG, Biondo C. Candida auris Outbreaks: Current Status and Future Perspectives. Microorganisms 2024; 12:927. [PMID: 38792757 PMCID: PMC11123812 DOI: 10.3390/microorganisms12050927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Candida auris has been identified by the World Health Organization (WHO) as a critical priority pathogen on its latest list of fungi. C. auris infections are reported in the bloodstream and less commonly in the cerebrospinal fluid and abdomen, with mortality rates that range between 30% and 72%. However, no large-scale epidemiology studies have been reported until now. The diagnosis of C. auris infections can be challenging, particularly when employing conventional techniques. This can impede the early detection of outbreaks and the implementation of appropriate control measures. The yeast can easily spread between patients and in healthcare settings through contaminated environments or equipment, where it can survive for extended periods. Therefore, it would be desirable to screen patients for C. auris colonisation. This would allow facilities to identify patients with the disease and take appropriate prevention and control measures. It is frequently unsusceptible to drugs, with varying patterns of resistance observed among clades and geographical regions. This review provides updates on C. auris, including epidemiology, clinical characteristics, genomic analysis, evolution, colonisation, infection, identification, resistance profiles, therapeutic options, prevention, and control.
Collapse
Affiliation(s)
| | | | | | | | - Carmelo Biondo
- Mycology Laboratory, Department of Human Pathology, University of Messina, 98125 Messina, Italy; (S.D.G.); (A.M.); (G.M.); (M.G.A.)
| |
Collapse
|
16
|
Aor AC, Sangenito LS, Mello TP, Joffe LS, Rizzo J, Veiga VF, da Silva RN, Pereira MD, Fonseca BB, Rozental S, Haido RMT, Rodrigues ML, Branquinha MH, Santos ALS. Extracellular Vesicles from Scedosporium apiospermum Mycelial Cells: Implication for Fungal-Host Interplays. J Fungi (Basel) 2024; 10:277. [PMID: 38667948 PMCID: PMC11051067 DOI: 10.3390/jof10040277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The release of extracellular vesicles (EVs) has been implicated as an alternative transport mechanism for the passage of macromolecules through the fungal cell wall, a phenomenon widely reported in yeasts but poorly explored in mycelial cells. In the present work, we have purified and characterized the EVs released by mycelia of the emerging, opportunistic, widespread and multidrug-resistant filamentous fungus Scedosporium apiospermum. Transmission electron microscopy images and light scattering measurements revealed the fungal EVs, which were observed individually or grouped with heterogeneous morphology, size and electron density. The mean diameter of the EVs, evaluated by the light scattering technique, was 179.7 nm. Overall, the structural stability of S. apiospermum EVs was preserved during incubation under various storage conditions. The lipid, carbohydrate and protein contents were quantified, and the EVs' protein profile was evidenced by SDS-PAGE, revealing proteins with molecular masses ranging from 20 to 118 kDa. Through immunoblotting, ELISA and immunocytochemistry assays, antigenic molecules were evidenced in EVs using a polyclonal serum (called anti-secreted molecules) from a rabbit inoculated with conditioned cell-free supernatant obtained from S. apiospermum mycelial cells. By Western blotting, several antigenic proteins were identified. The ELISA assay confirmed that the anti-secreted molecules exhibited a positive reaction up to a serum dilution of 1:3200. Despite transporting immunogenic molecules, S. apiospermum EVs slightly induced an in vitro cytotoxicity effect after 48 h of contact with either macrophages or lung epithelial cells. Interestingly, the pretreatment of both mammalian cells with purified EVs significantly increased the association index with S. apiospermum conidia. Furthermore, EVs were highly toxic to Galleria mellonella, leading to larval death in a typically dose- and time-dependent manner. Collectively, the results represent the first report of detecting EVs in the S. apiospermum filamentous form, highlighting a possible implication in fungal pathogenesis.
Collapse
Affiliation(s)
- Ana Carolina Aor
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
- Departamento de Microbiologia e Parasitologia (MIP), Instituto Biomédico (CMB), Universidade Federal Fluminense (UFF), Niterói 24210-130, RJ, Brazil
| | - Leandro S. Sangenito
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Campus Nilópolis, Rio de Janeiro 26530-060, RJ, Brazil
| | - Thaís P. Mello
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
| | - Luna S. Joffe
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
| | - Juliana Rizzo
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-170, RJ, Brazil (S.R.)
| | - Venício F. Veiga
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
| | - Renata N. da Silva
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil; (R.N.d.S.); (M.D.P.)
| | - Marcos D. Pereira
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil; (R.N.d.S.); (M.D.P.)
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Beatriz B. Fonseca
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-170, RJ, Brazil (S.R.)
| | - Sonia Rozental
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-170, RJ, Brazil (S.R.)
| | - Rosa Maria T. Haido
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-010, RJ, Brazil;
| | - Marcio L. Rodrigues
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba 81310-020, PR, Brazil
| | - Marta H. Branquinha
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - André L. S. Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil; (R.N.d.S.); (M.D.P.)
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
17
|
Meng F, Liu X, Duan H, Li C, Hu Y, Peng X, Zhao G, Lin J. Aspergillus fumigatus-Derived Extracellular Vesicles Mitigate Fungal Keratitis by Modulating the Immune Cell Function. ACS Infect Dis 2024; 10:500-512. [PMID: 38175918 DOI: 10.1021/acsinfecdis.3c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Fungal keratitis (FK) is a refractory global disease characterized by a high incidence of blindness and a lack of effective therapeutic options, and Aspergillus fumigatus (A. fumigatus, AF) is one of the most common causative fungi. This study aimed to investigate the role of extracellular vesicles (EVs) from A. fumigatus in the immune cell function and their protective role in A. fumigatus keratitis in order to explore their therapeutic potential. First, we isolated and characterized the EVs (AF-derived EVs). In vitro, we stimulated RAW264.7 cells and polymorphonuclear cells with AF-derived EVs. The expression levels of inflammatory factors increased in both immune cells along with an M1 polarization variation of RAW264.7 cells. After being incubated with AF-derived EVs, both immune cells exhibited an increased conidia-phagocytic index and a decreased conidia survival rate. In vivo, we injected EVs subconjunctivally on mice resulting in a heightened production of secretory immunoglobulin A (sIgA) in tear fluid. By the injection of EVs on mice in advance, a significant reduction in severity of A. fumigatus FK was witnessed by lower clinical scores, inflammatory appearances, and mitigated fungal load. Collectively, these results positioned AF-derived EVs as a promising and innovative immune therapy for combating FK, while also providing a platform for further investigation into developing an optimal formulation for modulating inflammation in the context of FK.
Collapse
Affiliation(s)
- Fanyue Meng
- The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao City 266000, Shandong Province, China
| | - Xing Liu
- The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao City 266000, Shandong Province, China
| | - Huijin Duan
- The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao City 266000, Shandong Province, China
| | - Cui Li
- The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao City 266000, Shandong Province, China
| | - Yingzhe Hu
- The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao City 266000, Shandong Province, China
| | - Xudong Peng
- The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao City 266000, Shandong Province, China
| | - Guiqiu Zhao
- The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao City 266000, Shandong Province, China
| | - Jing Lin
- The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao City 266000, Shandong Province, China
| |
Collapse
|
18
|
Imparato M, Maione A, Buonanno A, Gesuele R, Gallucci N, Corsaro MM, Paduano L, Casillo A, Guida M, Galdiero E, de Alteriis E. Extracellular Vesicles from a Biofilm of a Clinical Isolate of Candida albicans Negatively Impact on Klebsiella pneumoniae Adherence and Biofilm Formation. Antibiotics (Basel) 2024; 13:80. [PMID: 38247639 PMCID: PMC10812662 DOI: 10.3390/antibiotics13010080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
The opportunistic human fungal pathogen Candida albicans produces and releases into the surrounding medium extracellular vesicles (EVs), which are involved in some processes as communication between fungal cells and host-pathogen interactions during infection. Here, we have conducted the isolation of EVs produced by a clinical isolate of C. albicans during biofilm formation and proved their effect towards the ability of the Gram-negative bacterial pathogen Klebsiella pneumoniae to adhere to HaCaT cells and form a biofilm in vitro. The results represent the first evidence of an antagonistic action of fungal EVs against bacteria.
Collapse
Affiliation(s)
- Marianna Imparato
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.I.); (A.M.); (A.B.); (R.G.); (M.G.); (E.d.A.)
| | - Angela Maione
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.I.); (A.M.); (A.B.); (R.G.); (M.G.); (E.d.A.)
| | - Annalisa Buonanno
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.I.); (A.M.); (A.B.); (R.G.); (M.G.); (E.d.A.)
| | - Renato Gesuele
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.I.); (A.M.); (A.B.); (R.G.); (M.G.); (E.d.A.)
| | - Noemi Gallucci
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, 80126 Naples, Italy; (N.G.); (M.M.C.); (L.P.); (A.C.)
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, 80126 Naples, Italy; (N.G.); (M.M.C.); (L.P.); (A.C.)
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, 80126 Naples, Italy; (N.G.); (M.M.C.); (L.P.); (A.C.)
| | - Angela Casillo
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, 80126 Naples, Italy; (N.G.); (M.M.C.); (L.P.); (A.C.)
| | - Marco Guida
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.I.); (A.M.); (A.B.); (R.G.); (M.G.); (E.d.A.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Portici, Italy
| | - Emilia Galdiero
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.I.); (A.M.); (A.B.); (R.G.); (M.G.); (E.d.A.)
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Portici, Italy
| | - Elisabetta de Alteriis
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.I.); (A.M.); (A.B.); (R.G.); (M.G.); (E.d.A.)
| |
Collapse
|
19
|
Brown Harding H, Kwaku GN, Reardon CM, Khan NS, Zamith-Miranda D, Zarnowski R, Tam JM, Bohaen CK, Richey L, Mosallanejad K, Crossen AJ, Reedy JL, Ward RA, Vargas-Blanco DA, Basham KJ, Bhattacharyya RP, Nett JE, Mansour MK, van de Veerdonk FL, Kumar V, Kagan JC, Andes DR, Nosanchuk JD, Vyas JM. Candida albicans extracellular vesicles trigger type I IFN signalling via cGAS and STING. Nat Microbiol 2024; 9:95-107. [PMID: 38168615 PMCID: PMC10959075 DOI: 10.1038/s41564-023-01546-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
The host type I interferon (IFN) pathway is a major signature of inflammation induced by the human fungal pathogen, Candida albicans. However, the molecular mechanism for activating this pathway in the host defence against C. albicans remains unknown. Here we reveal that mice lacking cyclic GMP-AMP synthase (cGAS)-stimulator of IFN genes (STING) pathway components had improved survival following an intravenous challenge by C. albicans. Biofilm-associated C. albicans DNA packaged in extracellular vesicles triggers the cGAS-STING pathway as determined by induction of interferon-stimulated genes, IFNβ production, and phosphorylation of IFN regulatory factor 3 and TANK-binding kinase 1. Extracellular vesicle-induced activation of type I IFNs was independent of the Dectin-1/Card9 pathway and did not require toll-like receptor 9. Single nucleotide polymorphisms in cGAS and STING potently altered inflammatory cytokine production in human monocytes challenged by C. albicans. These studies provide insights into the early innate immune response induced by a clinically significant fungal pathogen.
Collapse
Affiliation(s)
- Hannah Brown Harding
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Geneva N Kwaku
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher M Reardon
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nida S Khan
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel Zamith-Miranda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert Zarnowski
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA
| | - Jenny M Tam
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Collins K Bohaen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lauren Richey
- Tufts Comparative Medicine Services, Tufts University, Boston, MA, USA
| | - Kenta Mosallanejad
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Arianne J Crossen
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jennifer L Reedy
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Rebecca A Ward
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Diego A Vargas-Blanco
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kyle J Basham
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Roby P Bhattacharyya
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jeniel E Nett
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA
| | - Michael K Mansour
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- University Medical Center Groningen, Department of Genetics, University of Groningen, Groningen, the Netherlands
- Nitte University Centre for Science Education and Research, Medical Sciences Complex, Mangaluru, India
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David R Andes
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA
| | - Joshua D Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jatin M Vyas
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
20
|
Rodrigues ML, May RC, Janbon G. The multiple frontiers in the study of extracellular vesicles produced by fungi. Microbes Infect 2024; 26:105233. [PMID: 37805124 DOI: 10.1016/j.micinf.2023.105233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
The production of extracellular vesicles (EVs) by fungi has been recognized for about a decade. Here we discuss the roles played by fungal EVs in biofilm formation, antifungal resistance, and release of immunogens with vaccine potential. We also explore their significance in promoting international collaboration and understanding of fungal biology.
Collapse
Affiliation(s)
- Marcio L Rodrigues
- Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, PR, 81310-020, Brazil; Microbiology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Robin C May
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
| | - Guilhem Janbon
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France.
| |
Collapse
|
21
|
Kulig K, Bednaruk K, Rudolphi-Szydło E, Barbasz A, Wronowska E, Barczyk-Woznicka O, Karnas E, Pyza E, Zuba-Surma E, Rapala-Kozik M, Karkowska-Kuleta J. Stress Conditions Affect the Immunomodulatory Potential of Candida albicans Extracellular Vesicles and Their Impact on Cytokine Release by THP-1 Human Macrophages. Int J Mol Sci 2023; 24:17179. [PMID: 38139005 PMCID: PMC10742962 DOI: 10.3390/ijms242417179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Human immune cells possess the ability to react complexly and effectively after contact with microbial virulence factors, including those transported in cell-derived structures of nanometer sizes termed extracellular vesicles (EVs). EVs are produced by organisms of all kingdoms, including fungi pathogenic to humans. In this work, the immunomodulatory properties of EVs produced under oxidative stress conditions or at host concentrations of CO2 by the fungal pathogen Candida albicans were investigated. The interaction of EVs with human pro-monocytes of the U-937 cell line was established, and the most notable effect was attributed to oxidative stress-related EVs. The immunomodulatory potential of tested EVs against human THP-1 macrophages was verified using cytotoxicity assay, ROS-production assay, and the measurement of cytokine production. All fungal EVs tested did not show a significant cytotoxic effect on THP-1 cells, although a slight pro-oxidative impact was indicated for EVs released by C. albicans cells grown under oxidative stress. Furthermore, for all tested types of EVs, the pro-inflammatory properties related to increased IL-8 and TNF-α production and decreased IL-10 secretion were demonstrated, with the most significant effect observed for EVs released under oxidative stress conditions.
Collapse
Affiliation(s)
- Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Katarzyna Bednaruk
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Elzbieta Rudolphi-Szydło
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorazych 2, 30-084 Kraków, Poland
| | - Anna Barbasz
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorazych 2, 30-084 Kraków, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Olga Barczyk-Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Elzbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
22
|
Abstract
Candida auris recently emerged as an urgent public health threat, causing outbreaks of invasive infections in healthcare settings throughout the world. This fungal pathogen persists on the skin of patients and on abiotic surfaces despite antiseptic and decolonization attempts. The heightened capacity for skin colonization and environmental persistence promotes rapid nosocomial spread. Following skin colonization, C. auris can gain entrance to the bloodstream and deeper tissues, often through a wound or an inserted medical device, such as a catheter. C. auris possesses a variety of virulence traits, including the capacity for biofilm formation, production of adhesins and proteases, and evasion of innate immune responses. In this review, we highlight the interactions of C. auris with the host, emphasizing the intersection of laboratory studies and clinical observations.
Collapse
Affiliation(s)
- Mark V. Horton
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Medical Microbiology & Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ashley M. Holt
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Medical Microbiology & Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jeniel E. Nett
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Medical Microbiology & Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
23
|
Karkowska-Kuleta J, Kulig K, Bras G, Stelmaszczyk K, Surowiec M, Kozik A, Karnas E, Barczyk-Woznicka O, Zuba-Surma E, Pyza E, Rapala-Kozik M. Candida albicans Biofilm-Derived Extracellular Vesicles Are Involved in the Tolerance to Caspofungin, Biofilm Detachment, and Fungal Proteolytic Activity. J Fungi (Basel) 2023; 9:1078. [PMID: 37998883 PMCID: PMC10672323 DOI: 10.3390/jof9111078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
It has been repeatedly reported that the cells of organisms in all kingdoms of life produce nanometer-sized lipid membrane-enveloped extracellular vesicles (EVs), transporting and protecting various substances of cellular origin. While the composition of EVs produced by human pathogenic fungi has been studied in recent decades, another important challenge is the analysis of their functionality. Thus far, fungal EVs have been shown to play significant roles in intercellular communication, biofilm production, and modulation of host immune cell responses. In this study, we verified the involvement of biofilm-derived EVs produced by two different strains of Candida albicans-C. albicans SC5314 and 3147 (ATCC 10231)-in various aspects of biofilm function by examining its thickness, stability, metabolic activity, and cell viability in the presence of EVs and the antifungal drug caspofungin. Furthermore, the proteolytic activity against the kininogen-derived antimicrobial peptide NAT26 was confirmed by HPLC analysis for C. albicans EVs that are known to carry, among others, particular members of the secreted aspartic proteinases (Saps) family. In conclusion, EVs derived from C. albicans biofilms were shown to be involved in biofilm tolerance to caspofungin, biofilm detachment, and fungal proteolytic activity.
Collapse
Affiliation(s)
- Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Karolina Stelmaszczyk
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Magdalena Surowiec
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Elzbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Olga Barczyk-Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
24
|
Nenciarini S, Cavalieri D. Immunomodulatory Potential of Fungal Extracellular Vesicles: Insights for Therapeutic Applications. Biomolecules 2023; 13:1487. [PMID: 37892168 PMCID: PMC10605264 DOI: 10.3390/biom13101487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Extracellular vesicles (EVs) are membranous vesicular organelles that perform a variety of biological functions including cell communication across different biological kingdoms. EVs of mammals and, to a lesser extent, bacteria have been deeply studied over the years, whereas investigations of fungal EVs are still in their infancy. Fungi, encompassing both yeast and filamentous forms, are increasingly recognized for their production of extracellular vesicles (EVs) containing a wealth of proteins, lipids, and nucleic acids. These EVs play pivotal roles in orchestrating fungal communities, bolstering pathogenicity, and mediating interactions with the environment. Fungal EVs have emerged as promising candidates for innovative applications, not only in the management of mycoses but also as carriers for therapeutic molecules. Yet, numerous questions persist regarding fungal EVs, including their mechanisms of generation, release, cargo regulation, and discharge. This comprehensive review delves into the present state of knowledge regarding fungal EVs and provides fresh insights into the most recent hypotheses on the mechanisms driving their immunomodulatory properties. Furthermore, we explore the considerable potential of fungal EVs in the realms of medicine and biotechnology. In the foreseeable future, engineered fungal cells may serve as vehicles for tailoring cargo- and antigen-specific EVs, positioning them as invaluable biotechnological tools for diverse medical applications, such as vaccines and drug delivery.
Collapse
Affiliation(s)
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy;
| |
Collapse
|
25
|
Liu J, Hu X. Fungal extracellular vesicle-mediated regulation: from virulence factor to clinical application. Front Microbiol 2023; 14:1205477. [PMID: 37779707 PMCID: PMC10540631 DOI: 10.3389/fmicb.2023.1205477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Invasive fungal disease (IFD) poses a significant threat to immunocompromised patients and remains a global challenge due to limited treatment options, high mortality and morbidity rates, and the emergence of drug-resistant strains. Despite advancements in antifungal agents and diagnostic techniques, the lack of effective vaccines, standardized diagnostic tools, and efficient antifungal drugs contributes to the ongoing impact of invasive fungal infections (IFI). Recent studies have highlighted the presence of extracellular vesicles (EVs) released by fungi carrying various components such as enzymes, lipids, nucleic acids, and virulence proteins, which play roles in both physiological and pathological processes. These fungal EVs have been shown to interact with the host immune system during the development of fungal infections whereas their functional role and potential application in patients are not yet fully understood. This review summarizes the current understanding of the biologically relevant findings regarding EV in host-pathogen interaction, and aim to describe our knowledge of the roles of EV as diagnostic tools and vaccine vehicles, offering promising prospects for the treatment of IFI patients.
Collapse
Affiliation(s)
| | - Xiaoping Hu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
26
|
Lai Y, Jiang B, Hou F, Huang X, Ling B, Lu H, Zhong T, Huang J. The emerging role of extracellular vesicles in fungi: a double-edged sword. Front Microbiol 2023; 14:1216895. [PMID: 37533824 PMCID: PMC10390730 DOI: 10.3389/fmicb.2023.1216895] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023] Open
Abstract
Fungi are eukaryotic microorganisms found in nature, which can invade the human body and cause tissue damage, inflammatory reactions, organ dysfunctions, and diseases. These diseases can severely damage the patient's body systems and functions, leading to a range of clinical symptoms that can be life-threatening. As the incidence of invasive fungal infections has progressively increased in the recent years, a wealth of evidence has confirmed the "double-edged sword" role of fungal extracellular vesicles (EVs) in intercellular communication and pathogen-host interactions. Fungal EVs act as mediators of cellular communication, affecting fungal-host cell interactions, delivering virulence factors, and promoting infection. Fungal EVs can also have an induced protective effect, affecting fungal growth and stimulating adaptive immune responses. By integrating recent studies, we discuss the role of EVs in fungi, providing strong theoretical support for the early prevention and treatment of invasive fungal infections. Finally, we highlight the feasibility of using fungal EVs as drug carriers and in vaccine development.
Collapse
Affiliation(s)
- Yi Lai
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bowei Jiang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fangpeng Hou
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinhong Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Baodian Ling
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hongfei Lu
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tianyu Zhong
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junyun Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
27
|
Zeng H, Stadler M, Abraham WR, Müsken M, Schrey H. Inhibitory Effects of the Fungal Pigment Rubiginosin C on Hyphal and Biofilm Formation in Candida albicans and Candida auris. J Fungi (Basel) 2023; 9:726. [PMID: 37504715 PMCID: PMC10381533 DOI: 10.3390/jof9070726] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
The two fungal human pathogens, Candida auris and Candida albicans, possess a variety of virulence mechanisms. Among them are the formation of biofilms to protect yeast against harsh conditions through the development of (pseudo)hyphae whilst also facilitating the invasion of host tissues. In recent years, increased rates of antifungal resistance have been associated with C. albicans and C. auris, posing a significant challenge for the effective treatment of fungal infections. In the course of our ongoing search for novel anti-infectives, six selected azaphilones were tested for their cytotoxicity and antimicrobial effects as well as for their inhibitory activity against biofilm and hyphal formation. This study revealed that rubiginosin C, derived from stromata of the ascomycete Hypoxylon rubiginosum, effectively inhibited the formation of biofilms, pseudohyphae, and hyphae in both C. auris and C. albicans without lethal effects. Crystal violet staining assays were utilized to assess the inhibition of biofilm formation, while complementary microscopic techniques, such as confocal laser scanning microscopy, scanning electron microscopy, and optical microscopy, were used to investigate the underlying mechanisms. Rubiginosin C is one of the few substances known to effectively target both biofilm formation and the yeast-to-hyphae transition of C. albicans and C. auris within a concentration range not affecting host cells, making it a promising candidate for therapeutic intervention in the future.
Collapse
Affiliation(s)
- Haoxuan Zeng
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Wolf-Rainer Abraham
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research GmbH, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Hedda Schrey
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
28
|
Pechacek J, Lionakis MS. Host defense mechanisms against Candida auris. Expert Rev Anti Infect Ther 2023; 21:1087-1096. [PMID: 37753840 DOI: 10.1080/14787210.2023.2264500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Candida auris is a pathogen of growing public health concern given its rapid spread across the globe, its propensity for long-term skin colonization and healthcare-related outbreaks, its resistance to a variety of antifungal medications, and the high morbidity and mortality associated with invasive disease. Despite that, the host immune response mechanisms that operate during C. auris skin colonization and invasive infection remains poorly understood. AREAS COVERED In this manuscript, we review the available literature in the growing research field pertaining to C. auris host defenses and we discuss what is known about the ability of C. auris to thrive on mammalian skin, the role of lymphoid cell-mediated, IL-17-dependent defenses in controlling cutaneous colonization, and the contribution of myeloid phagocytes in curtailing systemic infection. EXPERT OPINION Understanding the mechanisms by which the host immune system responds to and controls colonization and infection with C. auris and developing a deeper knowledge of tissue-specific host-C. auris interactions and of C. auris immune-evading mechanisms may help devise improved strategies for decolonization, prognostication, prevention, vaccination, and/or directed antifungal treatment in vulnerable patient populations.
Collapse
Affiliation(s)
- Joseph Pechacek
- From the Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michail S Lionakis
- From the Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Oliveira BTM, Dourado TMH, Santos PWS, Bitencourt TA, Tirapelli CR, Colombo AL, Almeida F. Extracellular Vesicles from Candida haemulonii var. vulnera Modulate Macrophage Oxidative Burst. J Fungi (Basel) 2023; 9:jof9050562. [PMID: 37233272 DOI: 10.3390/jof9050562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Members of the Candida haemulonii species complex are multidrug-resistant emergent yeast pathogens able to cause superficial and invasive infections in risk populations. Fungal extracellular vesicles (EVs) play a critical role in the pathogenicity and virulence of several species and may perform essential functions during infections, such as carrying virulence factors that behave in two-way communications with the host, affecting survival and fungal resistance. Our study aimed to describe EV production from Candida haemulonii var. vulnera and evaluate whether murine macrophage RAW 264.7 cells respond to their stimuli by generating an oxidative response after 24 h. For this purpose, reactive oxygen species detection assays demonstrated that high concentrations of yeast and EVs (1010 particles/mL) of Candida haemulonii did not change macrophage viability. However, the macrophages recognized these EVs and triggered an oxidative response through the classical NOX-2 pathway, increasing O2•- and H2O2 levels. However, this stress did not cause lipid peroxidation in the RAW 264.7 cells and neither lead to the activation of the COX-2-PGE2 pathway. Thus, our data suggest that low concentrations of C. haemulonii EVs are not recognized by the classical pathway of the oxidative burst generated by macrophages, which might be an advantage allowing the transport of virulence factors via EVs, not identified by the host immune system that could work as fine tube regulators during infections caused by C. haemulonii. In contrast, C. haemulonii var. vulnera and high EV concentrations activated microbicidal actions in macrophages. Therefore, we propose that EVs could participate in the virulence of the species and that these particles could be a source of antigens to be exploited as new therapeutic targets.
Collapse
Affiliation(s)
- Bianca T M Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Thales M H Dourado
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Patrick W S Santos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Tamires A Bitencourt
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Carlos R Tirapelli
- Laboratory of Pharmacology, Department of Psychiatric Nursing and Human Sciences, College of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-902, SP, Brazil
| | - Arnaldo L Colombo
- Special Laboratory of Mycology, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| |
Collapse
|
30
|
Freitas MS, Bitencourt TA, Rezende CP, Martins NS, Dourado TDMH, Tirapelli CR, Almeida F. Aspergillus fumigatus Extracellular Vesicles Display Increased Galleria mellonella Survival but Partial Pro-Inflammatory Response by Macrophages. J Fungi (Basel) 2023; 9:jof9050541. [PMID: 37233252 DOI: 10.3390/jof9050541] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Fungal extracellular vesicles (EVs) mediate intra- and interspecies communication and are critical in host-fungus interaction, modulating inflammation and immune responses. In this study, we evaluated the in vitro pro- and anti-inflammatory properties of Aspergillus fumigatus EVs over innate leukocytes. A. fumigatus EVs induced a partial proinflammatory response by macrophages, characterized by increased tumor necrosis factor-alpha production, and increased gene expression of induced nitric oxide synthase and adhesion molecules. EVs induce neither NETosis in human neutrophils nor cytokine secretion by peripheral mononuclear cells. However, prior inoculation of A. fumigatus EVs in Galleria mellonella larvae resulted in increased survival after the fungal challenge. Taken together, these findings show that A. fumigatus EVs play a role in protection against fungal infection, although they induce a partial pro-inflammatory response.
Collapse
Affiliation(s)
- Mateus Silveira Freitas
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Tamires Aparecida Bitencourt
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Caroline Patini Rezende
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Nubia Sabrina Martins
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | | | - Carlos R Tirapelli
- Laboratory of Pharmacology, Department of Psychiatric Nursing and Human Sciences, College of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-902, SP, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| |
Collapse
|
31
|
McKenna JA, Garcia‐Ceron D, Bleackley MR, Yu L, Bulone V, Anderson MA. SUR7 deletion in Candida albicans impacts extracellular vesicle features and delivery of virulence factors. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e82. [PMID: 38938278 PMCID: PMC11080841 DOI: 10.1002/jex2.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) from human fungal pathogens have been implicated in fungal virulence, yet little is known about their role in the host-pathogen interaction. Progress has been hampered by the lack of a specific marker for fungal EVs that can be used to monitor EV isolation and tracking in biological systems. Here we report the effect of a SUR7 gene knockout on the production, properties, and role of EVs in the virulence of Candida albicans. Sur7 is a component of the membrane compartment of Can1 (MCC) complex and is enriched in the EVs from C. albicans and other fungal species. MCC is a plasma membrane complex which together with the eisosome, a cytoplasmic protein complex, is a key regulator in plasma membrane organisation and plasma membrane associated processes. The SUR7 knockout strain produces smaller EVs than the wild-type (WT) with different protein and carbohydrate cargos. Furthermore, proteins with known roles in Candida pathogenesis were present in WT EVs and absent or diminished in the sur7Δ EVs. We demonstrate that the reduced virulence of the sur7Δ cells can be partially restored with EVs from a WT strain. These findings demonstrate the importance of Sur7-like proteins in the biogenesis of EVs in fungi and enhance our understanding of the role of fungal EVs in human pathogenesis.
Collapse
Affiliation(s)
- James A. McKenna
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular Science, La Trobe UniversityVICAustralia
| | - Donovan Garcia‐Ceron
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular Science, La Trobe UniversityVICAustralia
| | - Mark R. Bleackley
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular Science, La Trobe UniversityVICAustralia
| | - Long Yu
- School of Agriculture Food and WineThe University of Adelaide Waite CampusSAAustralia
- Centre for Marine Bioproducts Development, College of Medicine & Public HealthFlinders UniversitySAAustralia
| | - Vincent Bulone
- School of Agriculture Food and WineThe University of Adelaide Waite CampusSAAustralia
- Centre for Marine Bioproducts Development, College of Medicine & Public HealthFlinders UniversitySAAustralia
- Division of GlycoscienceDepartment of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH)AlbaNova University CentreStockholmSweden
| | - Marilyn A. Anderson
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular Science, La Trobe UniversityVICAustralia
| |
Collapse
|
32
|
Suprewicz Ł, Skłodowski K, Walewska A, Deptuła P, Sadzyńska A, Eljaszewicz A, Moniuszko M, Janmey PA, Bucki R. Plasma Gelsolin Enhances Phagocytosis of Candida auris by Human Neutrophils through Scavenger Receptor Class B. Microbiol Spectr 2023; 11:e0408222. [PMID: 36802172 PMCID: PMC10101141 DOI: 10.1128/spectrum.04082-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
In addition to its role as an actin-depolymerizing factor in the blood, plasma gelsolin (pGSN) binds bacterial molecules and stimulates the phagocytosis of bacteria by macrophages. Here, using an in vitro system, we assessed whether pGSN could also stimulate phagocytosis of the fungal pathogen Candida auris by human neutrophils. The extraordinary ability of C. auris to evade immune responses makes it particularly challenging to eradicate in immunocompromised patients. We demonstrate that pGSN significantly enhances C. auris uptake and intracellular killing. Stimulation of phagocytosis was accompanied by decreased neutrophil extracellular trap (NET) formation and reduced secretion of proinflammatory cytokines. Gene expression studies revealed pGSN-dependent upregulation of scavenger receptor class B (SR-B). Inhibition of SR-B using sulfosuccinimidyl oleate (SSO) and block lipid transport-1 (BLT-1) decreased the ability of pGSN to enhance phagocytosis, indicating that pGSN potentiates the immune response through an SR-B-dependent pathway. These results suggest that the response of the host's immune system during C. auris infection may be enhanced by the administration of recombinant pGSN. IMPORTANCE The incidence of life-threatening multidrug-resistant Candida auris infections is rapidly growing, causing substantial economic costs due to outbreaks in hospital wards. Primary and secondary immunodeficiencies in susceptible individuals, such as those with leukemia, solid organ transplants, diabetes, and ongoing chemotherapy, often correlate with decreased plasma gelsolin concentration (hypogelsolinemia) and impairment of innate immune responses due to severe leukopenia. Immunocompromised patients are predisposed to superficial and invasive fungal infections. Morbidity caused by C. auris among immunocompromised patients can be as great as 60%. In the era of ever-growing fungal resistance in an aging society, it is critical to seek novel immunotherapies that may help combat these infections. The results reported here suggest the possibility of using pGSN as an immunomodulator of the immune response by neutrophils during C. auris infection.
Collapse
Affiliation(s)
- Łukasz Suprewicz
- Department of Medical Microbiology and Biomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Karol Skłodowski
- Department of Medical Microbiology and Biomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Alicja Walewska
- Department of Regenerative Medicine and Immune Regulation, Medical University of Białystok, Białystok, Poland
| | - Piotr Deptuła
- Department of Medical Microbiology and Biomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Alicja Sadzyńska
- Prof. Edward F. Szczepanik State Vocational University—Suwałki, Suwałki, Poland
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Białystok, Białystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Białystok, Białystok, Poland
| | - Paul A. Janmey
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert Bucki
- Department of Medical Microbiology and Biomedical Engineering, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
33
|
Smith DFQ, Mudrak NJ, Zamith-Miranda D, Honorato L, Nimrichter L, Chrissian C, Smith B, Gerfen G, Stark RE, Nosanchuk JD, Casadevall A. Melanization of Candida auris Is Associated with Alteration of Extracellular pH. J Fungi (Basel) 2022; 8:1068. [PMID: 36294632 PMCID: PMC9604884 DOI: 10.3390/jof8101068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
Candida auris is a recently emerged global fungal pathogen, which causes life-threatening infections, often in healthcare settings. C. auris infections are worrisome because the fungus is often resistant to multiple antifungal drug classes. Furthermore, C. auris forms durable and difficult to remove biofilms. Due to the relatively recent, resilient, and resistant nature of C. auris, we investigated whether it produces the common fungal virulence factor melanin. Melanin is a black-brown pigment typically produced following enzymatic oxidation of aromatic precursors, which promotes fungal virulence through oxidative stress resistance, mammalian immune response evasion, and antifungal peptide and pharmaceutical inactivation. We found that certain strains of C. auris oxidized L-DOPA and catecholamines into melanin. Melanization occurred extracellularly in a process mediated by alkalinization of the extracellular environment, resulting in granule-like structures that adhere to the fungus' external surface. C. auris had relatively high cell surface hydrophobicity, but there was no correlation between hydrophobicity and melanization. Melanin protected the fungus from oxidative damage, but we did not observe a protective role during infection of macrophages or Galleria mellonella larvae. In summary, C. auris alkalinizes the extracellular medium, which promotes the non-enzymatic oxidation of L-DOPA to melanin that attaches to its surface, thus illustrating a novel mechanism for fungal melanization.
Collapse
Affiliation(s)
- Daniel F. Q. Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Nathan J. Mudrak
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Krieger School of Arts & Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Daniel Zamith-Miranda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Leandro Honorato
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Christine Chrissian
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, The City University of New York, New York, NY 10031, USA
| | - Barbara Smith
- Institute for Basic Biomedical Sciences Microscope Facility, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Gary Gerfen
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Ruth E. Stark
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, The City University of New York, New York, NY 10031, USA
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
34
|
Amatuzzi RF, Zamith-Miranda D, Munhoz da Rocha IF, Lucena ACR, de Toledo Martins S, Streit R, Staats CC, Trentin G, Almeida F, Rodrigues ML, Nosanchuk JD, Alves LR. Caspofungin Affects Extracellular Vesicle Production and Cargo in Candida auris. J Fungi (Basel) 2022; 8:990. [PMID: 36294557 PMCID: PMC9605528 DOI: 10.3390/jof8100990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022] Open
Abstract
Antifungal resistance has become more frequent, either due to the emergence of naturally resistant species or the development of mechanisms that lead to resistance in previously susceptible species. Among these fungal species of global threat, Candida auris stands out for commonly being highly resistant to antifungal drugs, and some isolates are pan-resistant. The rate of mortality linked to C. auris infections varies from 28% to 78%. In this study, we characterized C. auris extracellular vesicles (EVs) in the presence of caspofungin, an echinocandin, which is the recommended first line antifungal for the treatment of infections due to this emerging pathogen. Furthermore, we also analyzed the protein and RNA content of EVs generated by C. auris cultivated with or without treatment with caspofungin. We observed that caspofungin led to the increased production of EVs, and treatment also altered the type and quantity of RNA molecules and proteins enclosed in the EVs. There were distinct classes of RNAs in the EVs with ncRNAs being the most identified molecules, and tRNA-fragments (tRFs) were abundant in each of the strains studied. We also identified anti-sense RNAs, varying from 21 to 55 nt in length. The differentially abundant mRNAs detected in EVs isolated from yeast subjected to caspofungin treatment were related to translation, nucleosome core and cell wall. The differentially regulated proteins identified in the EVs produced during caspofungin treatment were consistent with the results observed with the RNAs, with the enriched terms being related to translation and cell wall. Our study adds new information on how an echinocandin can affect the EV pathway, which is associated with the yeast cell being able to evade treatment and persist in the host. The ability of C. auris to efficiently alter the composition of EVs may represent a mechanism for the fungus to mitigate the effects of antifungal agents.
Collapse
Affiliation(s)
- Rafaela F. Amatuzzi
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ PR, Curitiba 81350-010, Brazil
| | - Daniel Zamith-Miranda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Aline C. R. Lucena
- Laboratory for Applied Sciences and Technology in Health, Carlos Chagas Institute, FIOCRUZ PR, Curitiba 81350-010, Brazil
| | - Sharon de Toledo Martins
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ PR, Curitiba 81350-010, Brazil
| | - Rodrigo Streit
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, Brazil
| | - Charley C. Staats
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, Brazil
| | - Gabriel Trentin
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto 14040-900, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto 14040-900, Brazil
| | - Marcio L. Rodrigues
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ PR, Curitiba 81350-010, Brazil
- Microbiology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lysangela R. Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ PR, Curitiba 81350-010, Brazil
| |
Collapse
|
35
|
Abstract
Candida species are commensal organisms commonly interacting in the same host niche. In the pathogenic state, they frequently grow as a biofilm, often in mixed infections. The present studies observe a reliance upon common extracellular vesicle cargo for biofilm structure and function supporting interactions among species. The results reveal a vesicle cargo-driven coordination among Candida species during biofilm formation. Extracellular vesicles mediate community interactions among cells ranging from unicellular microbes to complex vertebrates. Extracellular vesicles of the fungal pathogen Candida albicans are vital for biofilm communities to produce matrix, which confers environmental protection and modulates community dispersion. Infections are increasingly due to diverse Candida species, such as the emerging pathogen Candida auris, as well as mixed Candida communities. Here, we define the composition and function of biofilm-associated vesicles among five species across the Candida genus. We find similarities in vesicle size and release over the biofilm lifespan. Whereas overall cargo proteomes differ dramatically among species, a group of 36 common proteins is enriched for orthologs of C. albicans biofilm mediators. To understand the function of this set of proteins, we asked whether mutants in select components were important for key biofilm processes, including drug tolerance and dispersion. We found that the majority of these cargo components impact one or both biofilm processes across all five species. Exogenous delivery of wild-type vesicle cargo returned mutant phenotypes toward wild type. To assess the impact of vesicle cargo on interspecies interactions, we performed cross-species vesicle addition and observed functional complementation for both biofilm phenotypes. We explored the biologic relevance of this cross-species biofilm interaction in mixed species and mutant studies examining the drug-resistance phenotype. We found a majority of biofilm interactions among species restored the community’s wild-type behavior. Our studies indicate that vesicles influence the development of protective monomicrobial and mixed microbial biofilm communities.
Collapse
|
36
|
Protein content of the Oenococcus oeni extracellular vesicles-enriched fraction. Food Microbiol 2022; 106:104038. [DOI: 10.1016/j.fm.2022.104038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/04/2022] [Accepted: 04/10/2022] [Indexed: 11/23/2022]
|
37
|
Jenull S, Shivarathri R, Tsymala I, Penninger P, Trinh PC, Nogueira F, Chauhan M, Singh A, Petryshyn A, Stoiber A, Chowdhary A, Chauhan N, Kuchler K. Transcriptomics and Phenotyping Define Genetic Signatures Associated with Echinocandin Resistance in Candida auris. mBio 2022; 13:e0079922. [PMID: 35968956 PMCID: PMC9426441 DOI: 10.1128/mbio.00799-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
Candida auris emerged as a human fungal pathogen only during the past decade. Remarkably, C. auris displays high degrees of genomic diversity and phenotypic plasticity, with four major clades causing hospital outbreaks with high mortality and morbidity rates. C. auris can show clinical resistance to all classes of antifungal drugs, including echinocandins that are usually recommended as first-line therapies for invasive candidiasis. Here, we exploit transcriptomics coupled with phenotypic profiling to characterize a set of clinical C. auris isolates displaying pronounced echinocandin resistance (ECN-R). A hot spot mutation in the echinocandin FKS1 target gene is present in all resistant isolates. Moreover, ECN-R strains share a core signature set of 362 genes differentially expressed in ECN-R isolates. Among others, mitochondrial gene expression and genes affecting cell wall function appear to be the most prominent, with the latter correlating well with enhanced adhesive traits, increased cell wall mannan content, and altered sensitivity to cell wall stress of ECN-R isolates. Moreover, ECN-R phenotypic signatures were also linked to pathogen recognition and interaction with immune cells. Hence, transcriptomics paired with phenotyping is a suitable tool to predict resistance and fitness traits as well as treatment outcomes in pathogen populations with complex phenotypic diversity. IMPORTANCE The surge in antimicrobial drug resistance in some bacterial and fungal pathogens constitutes a significant challenge to health care facilities. The emerging human fungal pathogen Candida auris has been particularly concerning, as isolates can display pan-antifungal resistance traits against all drugs, including echinocandins. However, the mechanisms underlying this phenotypic diversity remain poorly understood. We identify transcriptomic signatures in C. auris isolates resistant to otherwise fungicidal echinocandins. We identify a set of differentially expressed genes shared by resistant strains compared to unrelated susceptible isolates. Moreover, phenotyping demonstrates that resistant strains show distinct behaviors, with implications for host-pathogen interactions. Hence, this work provides a solid basis to identify the mechanistic links between antifungal multidrug resistance and fitness costs that affect the interaction of C. auris with host immune defenses.
Collapse
Affiliation(s)
- Sabrina Jenull
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Raju Shivarathri
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Irina Tsymala
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Philipp Penninger
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Phan-Canh Trinh
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Filomena Nogueira
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
- CCRI-St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Manju Chauhan
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Ashutosh Singh
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Andriy Petryshyn
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Anton Stoiber
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Anuradha Chowdhary
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Neeraj Chauhan
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Karl Kuchler
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| |
Collapse
|
38
|
The RNA Content of Fungal Extracellular Vesicles: At the “Cutting-Edge” of Pathophysiology Regulation. Cells 2022; 11:cells11142184. [PMID: 35883627 PMCID: PMC9318717 DOI: 10.3390/cells11142184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
The role of extracellular vesicles (EVs) in interkingdom communication is widely accepted, and their role in intraspecies communication has been strengthened by recent research. Based on the regulation promoted by EV-associated molecules, the interactions between host and pathogens can reveal different pathways that ultimately affect infection outcomes. As a great part of the regulation is ascribable to RNA contained in EVs, many studies have focused on profiling RNAs in fungal and host EVs, tracking their accumulation during infection, and identifying potential target genes. Herein, we overview the main classes of RNA contained in fungal EVs and the biological processes regulated by these molecules, portraying a state-of-the-art picture of RNAs loaded in fungal EVs, while also raising several questions to drive future investigations. Our compiled data show unambiguously that EVs act as key elements in signaling pathways, and play a crucial role in pathosystems. A complete understanding of the processes that govern RNA content loading and trafficking, and its effect on recipient cells, will lead to improved technologies to ward off infectious agents that threaten human health.
Collapse
|
39
|
Chan W, Chow FWN, Tsang CC, Liu X, Yao W, Chan TTY, Siu GKH, Ho AYM, Luk KS, Lau SKP, Woo PCY. Induction of amphotericin B resistance in susceptible Candida auris by extracellular vesicles. Emerg Microbes Infect 2022; 11:1900-1909. [PMID: 35786393 PMCID: PMC9341352 DOI: 10.1080/22221751.2022.2098058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drug resistance derived from extracellular vesicles (EVs) is an increasingly important research area but has seldom been described regarding fungal pathogens. Here, we characterized EVs derived from a triazole-resistant but amphotericin B-susceptible strain of Candida auris. Nano- to microgram concentrations of C. auris EVs prepared from both broth and solid agar cultures could robustly increase the yeast’s survival against both pure and clinical amphotericin B formulations in a dose-dependent manner, resulting in up to 16-fold changes of minimum inhibitory concentration. Meanwhile, this effect was not observed upon addition of these EVs to C. albicans, nor upon addition of C. albicans EVs to C. auris. No change in susceptibilities was observed upon EV treatment for fluconazole, voriconazole, micafungin, and flucytosine. Mass spectrometry indicated the presence of immunogenic-/drug resistance-implicated proteins in C. auris EVs, including alcohol dehydrogenase 1 as well as C. albicans Mp65-like and Xog1-like proteins in high quantities. Based on these observations, we propose a potential species-specific role for EVs in amphotericin B resistance in C. auris. These observations may provide critical insights into treatment of multidrug-resistant C. auris.
Collapse
Affiliation(s)
- Walton Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Franklin Wang-Ngai Chow
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hunghom, Hong Kong
| | - Chi-Ching Tsang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,School of Medical and Health Sciences, Tung Wah College, Homantin, Hong Kong
| | - Xueyan Liu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Weiming Yao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Tony Tat-Yin Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Gilman Kit-Hang Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hunghom, Hong Kong
| | - Alex Yat-Man Ho
- Department of Pathology, Princess Margaret Hospital, Kwai Chung, Hong Kong
| | - Kristine Shik Luk
- Department of Pathology, Princess Margaret Hospital, Kwai Chung, Hong Kong
| | - Susanna Kar-Pui Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Patrick Chiu-Yat Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,PhD Program in Translational Medicine and Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.,The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
40
|
Martínez-López R, Hernáez ML, Redondo E, Calvo G, Radau S, Pardo M, Gil C, Monteoliva L. Candida albicans Hyphal Extracellular Vesicles Are Different from Yeast Ones, Carrying an Active Proteasome Complex and Showing a Different Role in Host Immune Response. Microbiol Spectr 2022; 10:e0069822. [PMID: 35604172 PMCID: PMC9241596 DOI: 10.1128/spectrum.00698-22] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
Candida albicans is the principal causative agent of lethal fungal infections, predominantly in immunocompromised hosts. Extracellular vesicles (EVs) have been described as crucial in the interaction of microorganisms with their host. Since the yeast-to-hypha transition is an important virulence trait with great impact in invasive candidiasis (IC), we have addressed the characterization of EVs secreted by hyphal cells (HEVs) from C. albicans, comparing them to yeast EVs (YEVs). YEVs comprised a larger population of bigger EVs with mainly cell wall proteins, while HEVs were smaller, in general, and had a much higher protein diversity. YEVs were able to rescue the sensitivity of a cell wall mutant against calcofluor white, presumably due to the larger amount of cell wall proteins they contained. On the other hand, HEVs also contained many cytoplasmic proteins related to protein metabolism and intracellular protein transport and the endosomal sorting complexes required for transport (ESCRT) pathway related to exosome biogenesis, pointing to an intracellular origin of HEVs. Interestingly, an active 20S proteasome complex was secreted exclusively in HEVs. Moreover, HEVs contained a greater number of virulence-related proteins. As for their immunogenic role, both types of EV presented immune reactivity with human sera from patients suffering invasive candidiasis; however, under our conditions, only HEVs showed a cytotoxic effect on human macrophages and could elicit the release of tumor necrosis factor alpha (TNF-α) by these macrophages. IMPORTANCE This first analysis of HEVs of C. albicans has shown clear differences between them and the YEVs of C. albicans, showing their relevance and possible use in the discovery of new diagnostic markers and treatment targets against C. albicans infections. The data obtained point to different mechanisms of biogenesis of YEVs and HEVs, as well as different involvements in cell biology and host interaction. YEVs played a more relevant role in cell wall maintenance, while HEVs were more closely related to virulence, as they had greater effects on human immune cells. Importantly, an active 20S proteosome complex was described as a fungal-EV cargo. A deeper study of its role and those of many other proteins exclusively detected in HEVs and involved in different relevant biological processes of this fungus could open up interesting new areas of research in the battle against C. albicans.
Collapse
Affiliation(s)
- Raquel Martínez-López
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, Spain
- Ramon y Cajal Health Research Institute (IRYCIS), Madrid, Spain
| | | | - Esther Redondo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, Spain
| | - Guillermo Calvo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, Spain
| | - Sonja Radau
- Thermo Fisher Scientific GmbH, Dreieich, Germany
| | - Mercedes Pardo
- Functional Proteomics, The Institute of Cancer Research, London, United Kingdom
| | - Concha Gil
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, Spain
- Ramon y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Proteomics Unit, Complutense University of Madrid, Madrid, Spain
| | - Lucía Monteoliva
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, Spain
- Ramon y Cajal Health Research Institute (IRYCIS), Madrid, Spain
| |
Collapse
|
41
|
Kulig K, Karnas E, Woznicka O, Kuleta P, Zuba-Surma E, Pyza E, Osyczka A, Kozik A, Rapala-Kozik M, Karkowska-Kuleta J. Insight Into the Properties and Immunoregulatory Effect of Extracellular Vesicles Produced by Candida glabrata, Candida parapsilosis, and Candida tropicalis Biofilms. Front Cell Infect Microbiol 2022; 12:879237. [PMID: 35734578 PMCID: PMC9207348 DOI: 10.3389/fcimb.2022.879237] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/11/2022] [Indexed: 01/12/2023] Open
Abstract
Currently, non-albicans Candida species, including C. tropicalis, C. glabrata, and C. parapsilosis, are becoming an increasing epidemiological threat, predominantly due to the distinct collection of virulence mechanisms, as well as emerging resistance to antifungal drugs typically used in the treatment of candidiasis. They can produce biofilms that release extracellular vesicles (EVs), which are nanometric spherical structures surrounded by a lipid bilayer, transporting diversified biologically active cargo, that may be involved in intercellular communication, biofilm matrix production, and interaction with the host. In this work, we characterize the size and protein composition of these structures for three species of non-albicans Candida fungi forming biofilm, indicating considerable heterogeneity of the investigated population of fungal EVs. Examination of the influence of EVs on cytokine production by the human monocytic cell line THP-1 differentiated into macrophage-like cells revealed that the tested vesicles have a stimulating effect on the secretion of tumor necrosis factor α and interleukin 8, while they reduce the production of interleukin 10. This may indicate the proinflammatory nature of the effect of EVs produced by these species on the host immune cells. Moreover, it has been indicated that vesicles may be involved in C. tropicalis biofilm resistance to fluconazole and caspofungin. This reveals the important role of EVs not only in the physiology of C. tropicalis, C. glabrata, and C. parapsilosis fungi but also in the pathogenesis of infections associated with the production of fungal biofilm.
Collapse
Affiliation(s)
- Kamila Kulig
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Elzbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Olga Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Patryk Kuleta
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- *Correspondence: Justyna Karkowska-Kuleta,
| |
Collapse
|
42
|
Octaviano CE, Abrantes NE, Puccia R. Extracellular Vesicles From Paracoccidioides brasiliensis Can Induce the Expression of Fungal Virulence Traits In Vitro and Enhance Infection in Mice. Front Cell Infect Microbiol 2022; 12:834653. [PMID: 35295759 PMCID: PMC8918656 DOI: 10.3389/fcimb.2022.834653] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) are cellular components involved in cargo delivery to the extracellular environment, including the fungal cell wall. Their importance in cell–cell communication, cell wall remodeling, and fungal virulence is starting to be better explored. In the human pathogenic Paracoccidioides spp., our group has pioneered the description of the EV secretome, carbohydrate cargo, surface oligosaccharide ligands, lipid, and RNA content. Presently, we studied the role of fungal EVs in the context of the virulent/attenuated model of the P. brasiliensis Pb18 isolate, which consists of variants transiently displaying higher (vPb18) or attenuated (aPb18) virulence capacity. In this model, the virulence traits can be recovered through passages of aPb18 in mice. Here, we have been able to revert the aPb18 sensitivity to growth under oxidative and nitrosative stress upon previous co-incubation with vEVs from virulent vPb18. That was probably due to the expression of antioxidant molecules, considering that we observed increased gene expression of the alternative oxidase AOX and peroxiredoxins HYR1 and PRX1, in addition to higher catalase activity. We showed that aEVs from aPb18 stimulated macrophages of the RAW 264.7 and bone marrow-derived types to express high levels of inflammatory mediators, specifically, TNF-α, IL-6, MCP-1, and NO. In our experimental conditions, subcutaneous treatment with EVs (three doses, 7-day intervals) before vPb18 challenge exacerbated murine PCM, as concluded by higher colony-forming units in the lungs after 30 days of infection and histopathology analysis. That effect was largely pronounced after treatment with aEVs, probably because the lung TNF-α, IFN-γ, IL-6, and MCP-1 concentrations were specially increased in aEV-treated when compared with vEV-treated mice. Our present studies were performed with EVs isolated from yeast cell washes of confluent cultures in Ham’s F-12 defined medium. Under these conditions, vEVs and aEVs have similar sizes but probably distinct cargo, considering that vEVs tended to aggregate upon storage at 4°C and −20°C. Additionally, aEVs have decreased amounts of carbohydrate and protein. Our work brings important contribution to the understanding of the role of fungal EVs in cell–cell communication and on the effect of EVs in fungal infection, which clearly depends on the experimental conditions because EVs are complex and dynamic structures.
Collapse
|