1
|
Marsal A, Frau L, Chaperot L, Amine I, Lyon-Caen S, Boudier A, Jaffrezo JL, Elazzouzi R, Philippat C, Supernant K, Lepeule J, Quentin J, Chartier R, Bayat S, Slama R, Uzu G, Siroux V. Personal exposure to air pollutants and immune system biomarkers in pregnant women. Sci Rep 2025; 15:17672. [PMID: 40399383 PMCID: PMC12095663 DOI: 10.1038/s41598-025-98712-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 04/14/2025] [Indexed: 05/23/2025] Open
Abstract
The immune function is suspected to play an important role in the health effects of air pollution but it remains poorly investigated in pregnant women. One-week personal measurements of exposure to nitrogen dioxide (NO2), particulate matter with an aerodynamic diameter of ≤ 2.5 µm mass concentration (PM2.5) and PM2.5 oxidative potential (OP) were assessed in 270 pregnant women from the French cohort SEPAGES. PM filters were analyzed for PM2.5 OP using the dithiothreitol (DTT) and the ascorbic acid (AA) assays. From a blood sample withdrawn at the end of the exposure measurement week, levels of 29 cytokines and chemokines were measured at baseline and after T cell and dendritic cell activation with phytohemagglutinin (PHA) and resiquimod (R848), respectively. Associations between each air pollutant and each cytokine were assessed using adjusted linear regression models. An increase in NO2 exposure was associated with higher interleukin 10 (IL-10) and lower PHA-activated tumor necrosis factor (TNF). No association with PM2.5 concentration was observed, but increased exposure to PMOP AA was associated with lower baseline and R848-activated IL-8 and increased exposure to PMOP DTT was associated with higher PHA-activated IL-17A. Our study provides insights into the relationships between air pollution exposure and immune function among pregnant women.
Collapse
Affiliation(s)
- Anouk Marsal
- University Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 38000, Grenoble, France
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
- Agence de L'environnement Et de La Maîtrise de L'Energie, 20, Avenue du Grésillé, BP 90406, 49004, Angers Cedex 01, France
| | - Laurene Frau
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
| | - Laurence Chaperot
- EFS, Recherche Et Développement, 38000, Grenoble, France
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences, Team of Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, 38000, Grenoble, France
| | - Ines Amine
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
| | - Sarah Lyon-Caen
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
| | - Anne Boudier
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
- Pediatric Department, CHU Grenoble Alpes, Grenoble, France
| | - Jean-Luc Jaffrezo
- University Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 38000, Grenoble, France
| | - Rhabira Elazzouzi
- University Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 38000, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
| | - Karine Supernant
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
| | - Johanna Lepeule
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
| | - Joane Quentin
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
| | - Ryan Chartier
- RTI International, Research Triangle Park, Durham, N.C., USA
| | - Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
- Inserm UA07 STROBE Laboratory, University Grenoble Alpes, Grenoble, France
| | - Remy Slama
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
| | - Gaelle Uzu
- University Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 38000, Grenoble, France
| | - Valérie Siroux
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France.
| |
Collapse
|
2
|
Bouma F, Janssen NA, Wesseling J, van Ratingen S, Kerckhoffs J, Gehring U, Hendricx W, de Hoogh K, Vermeulen R, Hoek G. Comparison of air pollution mortality effect estimates using different long-term exposure assessment modelling methods. ENVIRONMENTAL RESEARCH 2025; 279:121832. [PMID: 40368044 DOI: 10.1016/j.envres.2025.121832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 05/08/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
INTRODUCTION Epidemiological studies have used different approaches to assess long-term exposure to ambient air pollution. Little is known about how different exposure models affect health effect estimates in these studies. The aim of this study was to compare air pollution mortality effect estimates in an administrative cohort in the Netherlands based on different exposure assessment methods for black carbon (BC), nitrogen dioxide (NO2), ultrafine particles (UFP), and particulate matter <2.5 μm (PM2.5). METHODS Annual average air pollution exposure estimates using eight methods, differing in modelling and monitoring strategy, were applied to a Dutch national cohort of 10.7 million adults aged ≥30 years. Dispersion and land-use regression models based on mobile and fixed-site monitoring were evaluated. Follow-up was from 2013 to 2019. Hazard ratios (HR) for natural and cause-specific mortality were estimated using Cox proportional hazards models. RESULTS Exposure estimates from different models were highly correlated. Even though the direction of mortality effect estimates was similar between methods, their magnitude differed substantially, e.g. the HR for BC with natural mortality ranged from 1.01 to 1.09 per increment of 1 μg/m3. No consistent differences in effect estimates were found between deterministic and empirical fixed-site and mobile models. Model predictions over a 10-year period correlated highly and resulted in similar HRs. DISCUSSION Different exposure models resulted in similar conclusions about the presence of associations with mortality, but HRs differed up to a ratio of 1.27. Differences in exposure assessment may therefore contribute to the observed heterogeneity of mortality estimates in systematic reviews of epidemiological studies.
Collapse
Affiliation(s)
- Femke Bouma
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Nicole Ah Janssen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Joost Wesseling
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Sjoerd van Ratingen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jules Kerckhoffs
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Wouter Hendricx
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
3
|
Patton AP, Boogaard H, Vienneau D, Brook JR, Smargiassi A, Kutlar Joss M, Szpiro AA, Sagiv SK, Samoli E, Hoffmann B, Chang HH, Atkinson RW, Weuve J, Forastiere F, Lurmann FW, Hoek G. Assessment of long-term exposure to traffic-related air pollution: An exposure framework. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025; 35:493-501. [PMID: 39550493 DOI: 10.1038/s41370-024-00731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Exposure to ambient air pollution is associated with morbidity and mortality, making it an important public health concern. Emissions from motorized traffic are a common source of air pollution but evaluating the contribution of traffic-related air pollution (TRAP) emissions to health risks is challenging because it is difficult to disentangle the contribution of individual air pollution sources to exposure contrasts in an epidemiological study. OBJECTIVE This paper describes a new framework to identify whether air pollution differences reflect contrasts in TRAP exposures. Because no commonly measured pollutant is entirely specific to on-road motor vehicles, this exposure framework combined information on pollutants, spatial scale (i.e., geographic extent), and exposure assessment methods and their spatial scale to determine whether the estimated effect of air pollution in a given study was related to differences in TRAP. METHODS The exposure framework extended beyond the near-road environment to include differences in exposure to TRAP at neighborhood resolution ( ≤ 5 km) across urban, regional, and national scales. It also embedded a stricter set of criteria to identify studies that provided the strongest evidence that exposure contrasts were related to differences in traffic emissions. RESULTS Application of the framework to the transparent selection of epidemiological studies for a systematic review produced insights on assessing and improving comparability of TRAP exposure measures, particularly for indirect measures such as distances from roads. It also highlighted study design challenges related to the duration of measurements and the structure of epidemiological models. IMPACT STATEMENT This manuscript describes a new exposure framework to identify studies of traffic-related air pollution, a case study of its application in an HEI systematic review, and its implications for exposure science and air pollution epidemiology experts. It identifies challenges and provides recommendations for the field going forward. It is important to bring this information to the attention of researchers in air pollution exposure science and epidemiology because applying the broader lessons learned will improve the conduct and reporting of studies going forward.
Collapse
Affiliation(s)
| | | | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jeffrey R Brook
- Dalla Lana School of Public Health and Dept. of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Audrey Smargiassi
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, QC, Canada
- Centre de recherche en santé publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal (CReSP), Montréal, QC, Canada
| | - Meltem Kutlar Joss
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Adam A Szpiro
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Sharon K Sagiv
- Center for Environmental Research and Children's Health, Division of Epidemiology, University of California Berkeley School of Public Health, Berkeley, CA, USA
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Howard H Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Richard W Atkinson
- Population Health Research Institute, St. George's University of London, London, UK
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Francesco Forastiere
- Environmental Health Group, School of Public Health, Imperial College, London, UK
| | | | - Gerard Hoek
- Institute for Risk Assessment Sciences, Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
4
|
Marín D, Herrera V, Piñeros-Jiménez JG, Rojas-Sánchez OA, Mangones SC, Rojas Y, Cáceres J, Agudelo-Castañeda DM, Rojas NY, Belalcazar-Ceron LC, Ochoa-Villegas J, Montes-Mejía ML, Lopera-Velasquez VM, Castillo-Navarro SM, Torres-Prieto A, Baumgartner J, Rodríguez-Villamizar LA. Long-term exposure to PM2.5 and cardiorespiratory mortality: an ecological small-area study in five cities in Colombia. CAD SAUDE PUBLICA 2025; 41:e00071024. [PMID: 40298681 PMCID: PMC12037112 DOI: 10.1590/0102-311xen071024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/02/2024] [Accepted: 01/02/2025] [Indexed: 04/30/2025] Open
Abstract
Long-term exposure to the fine particulate matter (PM2.5) is a risk factor for cardiorespiratory mortality. However, little is known about its distribution and health impact in large cities in low-middle-income countries where population exposure has increased during the last decades. This ecological study evaluated the association between PM2.5 concentration and adult cardiorespiratory mortality at the intraurban census sector (CS) level of Colombia's five most populated cities (2015-2019). We estimated incidence rate ratios (IRR; per 5µg/m3) by fitting negative binomial regressions to smoothed Bayesian mortality rates (BMR) on PM2.5 predicted from land use regression (LUR) models, adjusting for CS demographic structure, multidimensional poverty index, and spatial autocorrelation. CS median PM2.5 ranged from 8.1µg/m3 in Bucaramanga to 18.7µg/m3 in Medellín, whereas Bogotá had the highest variability (IQR = 29.5µg/m3) and cardiorespiratory mortality (BMR = 2,560 per 100,000). Long-term exposure to PM2.5 increased cardiorespiratory mortality in Bucaramanga (IRR = 1.15; 95%CI: 1.02; 1.31), without evidence of spatial clustering, and cardiovascular (IRR = 1.06; 95%CI: 1.01; 1.12) and respiratory (IRR = 1.07; 95%CI: 1.02; 1.13) mortality in Medellín. Cardiorespiratory mortality spatially clustered in some Colombian cities and was associated with long-term exposure to PM2.5 in urban areas where the LUR models had the highest predictive accuracy. These findings highlight the need to incorporate high-quality, high-resolution exposure assessments to better understand the health impact of air pollution and inform public health interventions in urban environments.
Collapse
Affiliation(s)
- Diana Marín
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Víctor Herrera
- Universidad Industrial de Santander, Bucaramanga, Colombia
| | | | | | | | - Yurley Rojas
- Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Jhon Cáceres
- Universidad Industrial de Santander, Bucaramanga, Colombia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Chang H, Pan K, Zhang X, Lu Z, Wang Y, Liu D, Lin Y, Wu Y, Lin Y, Huang Q, Duan J, Sun Z, Zhao J, Shen H. Ambient PM 2.5 exposure, physical activity, and cardiovascular dysfunction: Analysis of CHARLS data and experimental study in mice. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138377. [PMID: 40280061 DOI: 10.1016/j.jhazmat.2025.138377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/03/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Previous studies have confirmed ambient fine particulate matter (PM2.5) as a major environmental risk factor for cardiovascular diseases (CVDs), yet the specific molecular pathways remain poorly understood. Furthermore, while physical activity benefits cardiovascular health, its protective effects against PM2.5-induced damage need further explored. We aimed to investigate the relationship between long-term PM2.5 exposure, physical activity, and cardiovascular health, and explore the potential molecular mechanisms. This research combined epidemiological and experimental approaches. The epidemiological study analyzed data from the China Health and Retirement Longitudinal Study (CHARLS) to investigate the associations among long-term PM2.5 exposure, physical activity, and CVDs. For the experimental study, C57BL/6 male mice were assigned to either regular physical activity or sedentary behavior, and were exposed to PM2.5 or filtered air (FA) for 2, 4, and 6 months. We observed that long-term PM2.5 exposure significantly increased cardiovascular disease risk, while physical activity exhibited protective effects and can partially mitigate the adverse impacts of PM2.5 on heart disease and dyslipidemia. In animal study, mice with long-term exposure to PM2.5 demonstrated elevated blood pressure, disrupted adipokine levels, altered lipid profiles, and mitochondrial damage. Regular physical activity partially mitigated these adverse effects. Lipidomics and proteomics analyses revealed that PM2.5 exposure disrupted lipid metabolism networks and protein regulatory pathways, while regular physical activity mitigated these perturbations through the modulation of lipid metabolism, the coagulation cascade, and immune responses. These findings underscore the importance of regular physical activity in public health strategies, while prioritizing PM2.5 reduction measures for cardiovascular disease prevention.
Collapse
Affiliation(s)
- Hao Chang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kun Pan
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200030, China; Hangzhou Shangcheng District Center for Disease Control and Prevention (Hangzhou Shangcheng District Health Supervision Institution), Hangzhou 310043, PR China
| | - Xi Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhonghua Lu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yihui Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Di Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yafen Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yan Wu
- Department of Health Inspection and Quarantine, The School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yi Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jinzhuo Zhao
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200030, China.
| | - Heqing Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; Department of Obstetrics and Gynecology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen university, Xiamen 361102, China.
| |
Collapse
|
6
|
Ndiaye A, Vienneau D, Flückiger B, Probst-Hensch N, Jeong A, Imboden M, Schmitz O, Lu M, Vermeulen R, Kyriakou K, Shen Y, Karssenberg D, de Hoogh K, Hoek G. Associations between long-term air pollution exposure and mortality and cardiovascular morbidity: A comparison of mobility-integrated and residential-only exposure assessment. ENVIRONMENT INTERNATIONAL 2025; 198:109387. [PMID: 40117687 DOI: 10.1016/j.envint.2025.109387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/07/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025]
Abstract
Epidemiological studies investigating the health effects of long-term air pollution exposure typically only consider the participants' residential addresses when determining exposure. Neglecting mobility may introduce measurement error, potentially leading to bias or reduced precision of exposure-health relationships in epidemiological studies. In this study we compared the exposure-health associations between residential-only and mobility-integrated air pollution exposures. We evaluated two major pollutants, NO2 and PM2.5, and four health outcomes, natural and cause-specific mortality and coronary and cerebrovascular events. Agent-based modeling (ABM) was used to simulate the mobility patterns of the participants in the EPIC-NL cohort in the Netherlands and the Swiss National Cohort (SNC) in Switzerland, based on travel survey information. To obtain mobility-integrated exposures, hourly air pollution surfaces were developed and overlaid with the time-dependent location data from the ABM. We used Cox proportional hazards models within each cohort separately to evaluate the association between residential-only and mobility-integrated exposure and mortality and cardiovascular events, adjusting for major individual and area-level covariates. The mobility-integrated exposure and the residential exposure showed very high correlations for both pollutants and cohorts (R2 > 0.97). The mean exposure was 1-2 % and the exposure contrast 10-20 % lower for the mobility-integrated exposure. For all health outcomes, both pollutants and both cohorts, there were only small differences between residential-only and mobility-integrated exposure effect estimates. For the SNC, Hazard ratios (HRs) for natural mortality were 1.04 (1.03 - 1.04) and 1.03 (1.03 - 1.04) per interquartile range (IQR) increase in NO2 for residential and mobility-integrated exposure, respectively. For PM2.5 the corresponding estimates were 1.01 (1.01 - 1.02) per IQR increase for both approaches. Our findings support the growing evidence that assessment of long-term air pollution exposure at the residential address only in epidemiological studies may not lead to substantial bias and loss of precision in health effects estimates.
Collapse
Affiliation(s)
- Aisha Ndiaye
- Institute of Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Benjamin Flückiger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Ayoung Jeong
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Oliver Schmitz
- Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
| | - Meng Lu
- Department of Geography, University of Bayreuth, Bayreuth, Germany
| | - Roel Vermeulen
- Institute of Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Kalliopi Kyriakou
- Institute of Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Youchen Shen
- Institute of Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Derek Karssenberg
- Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Gerard Hoek
- Institute of Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
7
|
Bouma F, Hoek G, Koppelman GH, Vonk JM, Janssen NA, van Ratingen S, Hendricx W, Wesseling J, Kerckhoffs J, Vermeulen R, de Hoogh K, Gehring U. Comparison of air pollution exposure assessment methods and the association with children's respiratory health. ENVIRONMENT INTERNATIONAL 2025; 198:109407. [PMID: 40157023 DOI: 10.1016/j.envint.2025.109407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/27/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
INTRODUCTION Epidemiological studies of the associations of long-term exposure to outdoor air pollution with asthma onset and lung function in children have used different exposure assessment methods. Little is known about how these different methods affect the magnitude of the effect estimates. The aim of this study was to compare associations of long-term air pollution exposures, estimated with different exposure assessment methods, with asthma incidence and lung function. METHODS Eight exposure assessment methods, differing in modelling (dispersion, empirical) and monitoring strategy (fixed site, mobile), were applied to estimate annual average air pollution levels at the residential addresses of 3,687 participants of the Dutch PIAMA birth cohort. Associations of air pollution exposure with asthma and lung function were assessed and compared between methods. Heterogeneity in the associations was assessed with meta-analyses. RESULTS Estimated exposure levels and contrasts differed substantially between methods. Exposure estimates from the different methods were moderately to highly correlated, with Pearson correlations ranging from 0.5 to 0.9. Higher air pollution levels were consistently associated with higher asthma incidence and lower FEV1. However, the magnitude of the association differed between methods (e.g. the ORs (95 % CI) for asthma incidence ranged from 1.09 (0.99; 1.21) to 2.56 (1.50; 4.36) for BC per 1 µg/m3 increment). CONCLUSION Different air pollution exposure assessment methods resulted in consistent conclusions about the presence and direction of associations with asthma incidence and lung function in children, but associations differed in magnitude. Differences in exposure assessment methods may partially drive heterogeneity in associations between different studies.
Collapse
Affiliation(s)
- Femke Bouma
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, the Netherlands
| | - Judith M Vonk
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, the Netherlands; Department of Epidemiology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Nicole Ah Janssen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Sjoerd van Ratingen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Wouter Hendricx
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Joost Wesseling
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jules Kerckhoffs
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
8
|
Xu S, Marcon A, Bertelsen RJ, Benediktsdottir B, Brandt J, Frohn LM, Geels C, Gislason T, Heinrich J, Holm M, Janson C, Markevych I, Modig L, Orru H, Schlünssen V, Sigsgaard T, Johannessen A. Long-term exposure to air pollution and greenness in association with respiratory emergency room visits and hospitalizations: The Life-GAP project. ENVIRONMENTAL RESEARCH 2025; 270:120938. [PMID: 39862954 DOI: 10.1016/j.envres.2025.120938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/06/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Air pollution has been linked to respiratory diseases, while the effects of greenness remain inconclusive. OBJECTIVE We investigated the associations between exposure to particulate matter (PM2.5 and PM10), black carbon (BC), nitrogen dioxide (NO2), ozone (O3), and greenness (normalized difference vegetation index, NDVI) with respiratory emergency room visits and hospitalizations across seven Northern European centers in the European Community Respiratory Health Survey (ECRHS) study. METHODS We used modified mixed-effects Poisson regression to analyze associations of exposure in 1990, 2000 and mean exposure 1990-2000 with respiratory outcomes recorded duing ECRHS phases II and III. We assessed interactions of air pollution and greenness, and of atopic status (defined by nasal allergies and hay fever status) and greenness, on these outcomes. RESULTS The analysis included 1675 participants, resulting in 119 emergency visits and 48 hospitalizations. Increased PM2.5 by 5 μg/m³ was associated with higher relative risk (RR) of emergency visits (1990: RR 1.16, 95% CI: 1.00-1.35; 2000: RR 1.24, 95% CI: 0.98-1.57; 1990-2000: RR 1.17, 95% CI: 0.97-1.41) and hospitalizations (1990: RR 1.42, 95% CI: 1.00-2.01; 2000: RR 2.20, 95% CI: 1.43-3.38; 1990-2000: RR 1.44, 95% CI: 1.04-2.00). Similar trends were observed for PM10, BC, and NO2, with only PM10 showing significant associations with hospitalizations across all periods. No associations were found for O3. Greenness exposure was linked to more emergency visits in 2000 but to fewer hospitalizations in 1990. Significant interactions were observed between greenness and atopic status for emergency visits, and between NDVI with O3 and BC for some time windows. CONCLUSION Long-term exposure to particulate matter was associated with increased emergency room visits and hospitalizations. Significant associations were observed for BC and NO2 with hospitalizations. No link was found with O3. Greenness indicated a lower risk of hospitalizations, but increased risks for emergency visits for those with atopic status.
Collapse
Affiliation(s)
- Shanshan Xu
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.
| | - Alessandro Marcon
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | | | - Bryndis Benediktsdottir
- Department of Respiratory Medicine and Sleep, Landspitali - the National University Hospital of Iceland, Reykjavik, Iceland; Medical Faculty, University of Iceland, Iceland
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Lise Marie Frohn
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Camilla Geels
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Thorarinn Gislason
- Department of Respiratory Medicine and Sleep, Landspitali - the National University Hospital of Iceland, Reykjavik, Iceland; Medical Faculty, University of Iceland, Iceland
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany; Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Mathias Holm
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Iana Markevych
- Institute of Psychology, Jagiellonian University, Krakow, Poland; Health and Quality of Life in a Green and Sustainable Environment", Strategic Research and Innovation Program for the Development of MU - Plovdiv, Medical University of Plovdiv, Plovdiv, Bulgaria; Environmental Health Division, Research Institute at Medical University of Plovdiv, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Lars Modig
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Hans Orru
- Department of Public Health, Institute of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Vivi Schlünssen
- Department of Public Health, Research Unit for Environment Occupation and Health, Danish Ramazzini Center, Aarhus University, Aarhus, Denmark
| | - Torben Sigsgaard
- Department of Public Health, Research Unit for Environment Occupation and Health, Danish Ramazzini Center, Aarhus University, Aarhus, Denmark
| | - Ane Johannessen
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Joshi M, Joshi A, Bartter T. The impact of climate change on respiratory health: current understanding and knowledge gaps. Curr Opin Pulm Med 2025; 31:79-88. [PMID: 39620702 DOI: 10.1097/mcp.0000000000001145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
PURPOSE OF REVIEW To present an overview of the impact of climate change upon human respiratory health. RECENT FINDINGS Climate change is directly impacting air quality. Particulate matter clearly increases mortality rates. Ozone, a longstanding suspect in climate-related injury, turns out not to have the major impact that had been projected at current levels of exposure. The key factors in global warming have been clearly identified, but while these factors collectively cause deleterious changes, a close look at the literature shows that it is unclear to what extent each factor individually is a driver of a specific process. This article summarizes some of those studies. SUMMARY A better understanding of which components of climate change most impact human health is needed in order to re-define environmental standards. PM 2.5 needs to be broken down by chemical composition to study the differential impacts of different sources of PM 2.5 . The detection and study of climate-related changes in respiratory infectious diseases is in a state of relative infancy.
Collapse
Affiliation(s)
- Manish Joshi
- University of Arkansas for Medical Sciences
- Central Arkansas Veterans Healthcare System
| | - Anita Joshi
- Fay W Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Thaddeus Bartter
- University of Arkansas for Medical Sciences
- Central Arkansas Veterans Healthcare System
| |
Collapse
|
10
|
Szwed M, de Jesus AV, Kossowski B, Ahmadi H, Rutkowska E, Mysak Y, Baumbach C, Kaczmarek-Majer K, Degórska A, Skotak K, Sitnik-Warchulska K, Lipowska M, Grellier J, Markevych I, Herting MM. Air pollution and cortical myelin T1w/T2w ratio estimates in school-age children from the ABCD and NeuroSmog studies. Dev Cogn Neurosci 2025; 73:101538. [PMID: 40086410 PMCID: PMC11952023 DOI: 10.1016/j.dcn.2025.101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/16/2025] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
Air pollution affects human health and may disrupt brain maturation, including axon myelination, critical for efficient neural signaling. Here, we assess the impact of prenatal and current long-term particulate matter (PM) and nitrogen dioxide (NO2) exposure on cortical T1w/T2w ratios - a proxy for myelin content - in school-age children from the Adolescent Brain Cognitive Development (ABCD) Study (United States; N = 2021) and NeuroSmog study (Poland; N = 577), using Siemens scanners. Across both samples, we found that NO2 and PM were not significantly associated with cortical T1w/T2w except for one association of PM10 with lower T1w/T2w in the precuneus in NeuroSmog. Superficially, ABCD Study analyses including data from all scanner types (Siemens, GE, Philips; N = 3089) revealed a negative association between NO₂ exposure and T1w/T2w ratios. However, this finding could be an artifact of between-site sociodemographic differences and large scanner-type-related measurement differences. While significant associations between air pollution and cortical myelin were largely absent, these findings do not rule out the possibility that air pollution affects cortical myelin during other exposure periods/stages of neurodevelopment. Future research should examine these relationships across diverse populations and developmental periods using unified analysis methods to better understand the potential neurotoxic effects of air pollution.
Collapse
Affiliation(s)
- Marcin Szwed
- Institute of Psychology, Jagiellonian University, Kraków, Poland.
| | - Alethea V de Jesus
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Bartosz Kossowski
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Emilia Rutkowska
- Institute of Psychology, Jagiellonian University, Kraków, Poland
| | - Yarema Mysak
- Institute of Psychology, Jagiellonian University, Kraków, Poland
| | - Clemens Baumbach
- Institute of Psychology, Jagiellonian University, Kraków, Poland; Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Katarzyna Kaczmarek-Majer
- Institute of Environmental Protection-National Research Institute, Warsaw, Poland; Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Degórska
- Institute of Environmental Protection-National Research Institute, Warsaw, Poland
| | - Krzysztof Skotak
- Institute of Environmental Protection-National Research Institute, Warsaw, Poland
| | - Katarzyna Sitnik-Warchulska
- Institute of Applied Psychology, Faculty of Management and Social Communication, Jagiellonian University, Krakow, Poland
| | - Małgorzata Lipowska
- Institute of Psychology, Jagiellonian University, Kraków, Poland; Institute of Psychology, University of Gdansk, Gdansk, Poland
| | - James Grellier
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn, United Kingdom
| | - Iana Markevych
- Institute of Psychology, Jagiellonian University, Kraków, Poland; Health and quality of life in a green and sustainable environment, SRIPD, Medical University of Plovdiv, Plovdiv, Bulgaria; Environmental Health Division, Research Institute at Medical University of Plovdiv, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Megan M Herting
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA; Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.
| |
Collapse
|
11
|
Yang S, Li M, Guo C, Requia WJ, Sakhvidi MJZ, Lin K, Zhu Q, Chen Z, Cao P, Yang L, Luo D, Yang J. Associations of long-term exposure to nitrogen oxides with all-cause and cause-specific mortality. Nat Commun 2025; 16:1730. [PMID: 39966376 PMCID: PMC11836065 DOI: 10.1038/s41467-025-56963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Associations between long-term exposure to nitrogen oxides (NOx) and cause-specific mortality remain insufficiently explored. This study utilizes data from 502,040 participants registered in the UK Biobank. Time-varying Cox regression is used to estimate mortality risks associated with NOx. Cause-specific mortality risks, including non-accidental, accidental and 15 major disease categories across 103 subcategories, are assessed for each 10 μg/m3 increase in NOx. Positive associations are observed between NOx and mortality from all-cause (HR: 1.036; 95% CI: 1.024, 1.049) and non-accidental diseases (HR: 1.032; 95% CI: 1.019, 1.045). We further identify 20 specific diseases related to NOx, notably respiratory diseases, mental and behavioral disorders, and circulatory diseases, with generally linear exposure-response relationships. Sex and residential areas are potential modifiers of the observed associations. Our findings suggest long-term exposure to NOx may increase mortality risks from a range of diseases, emphasizing the urgent need for clean air policies to alleviate the health burden.
Collapse
Affiliation(s)
- Siru Yang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mengmeng Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cui Guo
- Department of Urban Planning and Design, Faculty of Architecture, the University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Weeberb J Requia
- Center for Environment and Public Health Studies, School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Distrito Federal, Brazil
| | | | - Kaili Lin
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qiongyu Zhu
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | | | - Peihua Cao
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lei Yang
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Dan Luo
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jun Yang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
12
|
Savouré M, Jacquemin B. [The effects of air pollution on health, state of epidemiological knowledge]. Biol Aujourdhui 2025; 218:83-90. [PMID: 39868707 DOI: 10.1051/jbio/2024014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Indexed: 01/28/2025]
Abstract
The health effects of air pollution have been recognized for many years. However, this area of research continues to receive increasing attention from both the scientific community and civil society. The aim of this article is to review the main epidemiological findings on the effects of outdoor air pollution. First, we will define outdoor air pollution, then describe how the exposure to different pollutants is estimated in epidemiology. Finally, we will present three examples of epidemiological studies on the effects of air pollution.
Collapse
Affiliation(s)
- Marine Savouré
- Univ. Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 9 avenue du Professeur Léon Bernard, F-35000 Rennes, France
| | - Bénédicte Jacquemin
- Univ. Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 9 avenue du Professeur Léon Bernard, F-35000 Rennes, France
| |
Collapse
|
13
|
Beegam S, Zaaba NE, Elzaki O, Nemmar A. α-Bisabolol alleviates diesel exhaust particle-induced lung injury and mitochondrial dysfunction by regulating inflammatory, oxidative stress, and apoptotic biomarkers through the c-Jun N-terminal kinase signaling pathway. Front Pharmacol 2025; 15:1485101. [PMID: 39830335 PMCID: PMC11738621 DOI: 10.3389/fphar.2024.1485101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/11/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Exposure to particulate matter ≤2.5 μm in diameter (PM2.5) is associated with adverse respiratory outcomes, including alterations to lung morphology and function. These associations were reported even at concentrations lower than the current annual limit of PM2.5. Inhalation of PM2.5, of which diesel exhaust particles (DEPs) is a major component, induces lung inflammation and oxidative stress. α-Bisabolol (BIS) is a bioactive dietary phytochemical with various pharmacological properties, including anti-inflammatory and antioxidant actions. Here, we evaluated the possible protective effects of BIS on DEP-induced lung injury. Methods Mice were exposed to DEPs (20 µg/mouse) or saline (control) by intratracheal instillation. BIS was administered orally at two doses (25 and 50 mg/kg) approximately 1 h before DEP exposure. Twenty-four hours after DEP administration, multiple respiratory endpoints were evaluated. Results BIS administration was observed to prevent DEP-induced airway hyperreactivity to methacholine; influx of macrophages, neutrophils, and lymphocytes in the bronchoalveolar lavage fluid; and increases in epithelial and endothelial permeabilities. DEP exposure caused increases in the levels of myeloperoxidase, proinflammatory cytokines, and oxidative stress markers in lung tissue homogenates, and all these effects were abated by BIS treatment. The activities of mitochondrial complexes I, II, III, and IV were markedly increased in the lungs of mice exposed to DEPs, and these effects were significantly reduced in the BIS-treated group. Intratracheal instillation of DEPs induced DNA damage and increase in the apoptotic marker cleaved caspase-3. The latter effects were prevented in mice treated with BIS and exposed to DEPs. Moreover, BIS mitigated DEP-induced increase in the expression of phospho-c-Jun N-terminal kinase (JNK) in a dose-dependent manner. Discussion BIS markedly alleviated DEP-induced lung injury by regulating the inflammatory, oxidative stress, and apoptotic biomarkers through the JNK signaling pathway. Following additional studies, BIS may be considered as a plausible protective agent against inhaled-particle-induced pulmonary adverse effects.
Collapse
Affiliation(s)
| | | | | | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
14
|
Velásquez AR, Guevara M, Armengol JM, Rodríguez-Rey D, Mueller N, Cirach M, Khomenko S, Nieuwenhuijsen M. Health impact assessment of urban and transport developments in Barcelona: A case study. Health Place 2025; 91:103406. [PMID: 39764878 DOI: 10.1016/j.healthplace.2024.103406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/15/2024] [Accepted: 12/19/2024] [Indexed: 02/03/2025]
Abstract
BACKGROUND Urban spaces need to be rethought to address growing health and environmental challenges. Urban density and transport systems contribute significantly to air pollution, negatively impacting public health. Barcelona has begun a transformation by introducing the Superblock model, an urban development with proven health benefits. However, there is a lack of understanding of the health impacts of various planned urban and transport interventions. This study aims to explore planned urban and transport developments in Barcelona (e.g. Superblocks, Low emission zone, tactical urban planning, port electrification) and estimates the health impacts of their related exposures. METHODS We utilized modelled NO2 reduction scenarios, which considered changes from implementing Barcelona's Urban Mobility Plan (UMP) of 2018-2024 and the Port electrification project. The UMP includes different interventions such as the low emission zones, tactical urban planning (reducing car traffic lanes), existing superblocks, and street greening. We established a baseline scenario for the year 2019, with no implementation of UMP or Port electrification. We devised three scenarios implementing the UMP: a) no change in private car use b) a 25% reduction in private car use, and c) a 25% reduction in private car use with port electrification. We estimated the effect on NO2 levels and conducted a health impact assessment following a comparative risk assessment methodology to demonstrate the impacts of these scenarios on natural cause of adult mortality. RESULTS The scenario with no change in private car use resulted in a 5.9 % reduction in NO2, preventing 67 (34-133 95% CI) premature deaths annually. The scenario with a 25% reduction in private car use led to a 17.6% reduction in NO2, preventing 199 (101-392 95% CI) premature deaths annually. Adding port electrification to the 25% reduction in private car use scenario resulted in a 19.4% reduction in NO2, preventing 228 (115-447 95% CI) premature deaths annually. CONCLUSION Our findings suggest that implementing measures to reduce car use and electrifying the port in Barcelona can significantly reduce air pollution and prevent premature deaths in adults. This emphasizes the relevance of ambitious urban and transport policies in improving public health. Policymakers should consider assertive actions and broader implementation of such measures for greater health benefits. Further research is needed to explore additional measures and their potential impacts, facilitating the development of comprehensive urban and transport strategies.
Collapse
Affiliation(s)
- Ana Ramos Velásquez
- Barcelona Institute for Global Health (ISGlobal), Doctor Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Department of Experimental and Health Sciences, Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Marc Guevara
- Barcelona Supercomputing Center, Barcelona, Spain
| | | | | | - Natalie Mueller
- Barcelona Institute for Global Health (ISGlobal), Doctor Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Department of Experimental and Health Sciences, Doctor Aiguader 88, 08003, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Melchor Fernández Almagro, 3-5, 28029, Madrid, Spain
| | - Marta Cirach
- Barcelona Institute for Global Health (ISGlobal), Doctor Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Department of Experimental and Health Sciences, Doctor Aiguader 88, 08003, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Melchor Fernández Almagro, 3-5, 28029, Madrid, Spain
| | - Sasha Khomenko
- Barcelona Institute for Global Health (ISGlobal), Doctor Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Department of Experimental and Health Sciences, Doctor Aiguader 88, 08003, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Melchor Fernández Almagro, 3-5, 28029, Madrid, Spain
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Doctor Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Department of Experimental and Health Sciences, Doctor Aiguader 88, 08003, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Melchor Fernández Almagro, 3-5, 28029, Madrid, Spain.
| |
Collapse
|
15
|
Hua Q, Meng X, Gong J, Qiu X, Shang J, Xue T, Zhu T. Ozone exposure and cardiovascular disease: A narrative review of epidemiology evidence and underlying mechanisms. FUNDAMENTAL RESEARCH 2025; 5:249-263. [PMID: 40166088 PMCID: PMC11955045 DOI: 10.1016/j.fmre.2024.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2025] Open
Abstract
Ozone (O3) poses a significant global public health concern as it exerts adverse effects on human cardiovascular health. Nevertheless, there remains a lack of comprehensive understanding regarding the relationships between O3 exposure and the risk of cardiovascular diseases (CVD), as well as the underlying biological mechanisms. To address this knowledge gap, this narrative review meticulously summarizes the existing epidemiological evidence, susceptibility, and potential underlying biological mechanisms linking O3 exposure with CVD. An increasing body of epidemiological studies has demonstrated that O3 exposure heightens the incidence and mortality of CVD, including specific subtypes such as ischemic heart disease, hypertension, and heart failure. Certain populations display heightened vulnerability to these effects, particularly children, the elderly, obese individuals, and those with pre-existing conditions. Proposed biological mechanisms suggest that O3 exposure engenders respiratory and systemic inflammation, oxidative stress, disruption of autonomic nervous and neuroendocrine systems, as well as impairment of coagulation function, glucose, and lipid metabolism. Ultimately, these processes contribute to vascular dysfunction and the development of CVD. However, some studies have reported the absence of associations between O3 and CVD, or even potentially protective effects of O3. Inconsistencies among the literature may be attributed to inaccurate assessment of personal O3 exposure levels in epidemiologic studies, as well as confounding effects stemming from co-pollutants and temperature. Consequently, our findings underscore the imperative for further research, including the development of reliable methodologies for assessing personal O3 exposure, exploration of O3 exposure's impact on cardiovascular health, and elucidation of its biological mechanisms. These endeavors will consolidate the causal relationship between O3 and cardiovascular diseases, subsequently aiding efforts to mitigate the risks associated with O3 exposure.
Collapse
Affiliation(s)
- Qiaoyi Hua
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xin Meng
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jicheng Gong
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jing Shang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Tao Xue
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100871, China
| | - Tong Zhu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Vanoli J, de la Cruz Libardi A, Sera F, Stafoggia M, Masselot P, Mistry MN, Rajagopalan S, Quint JK, Ng CFS, Madaniyazi L, Gasparrini A. Long-term Associations Between Time-varying Exposure to Ambient PM 2.5 and Mortality: An Analysis of the UK Biobank. Epidemiology 2025; 36:1-10. [PMID: 39435892 DOI: 10.1097/ede.0000000000001796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
BACKGROUND Evidence for long-term mortality risks of PM 2.5 comes mostly from large administrative studies with incomplete individual information and limited exposure definitions. Here we assess PM 2.5 -mortality associations in the UK Biobank cohort using detailed information on confounders and exposure. METHODS We reconstructed detailed exposure histories for 498,090 subjects by linking residential data with high-resolution PM 2.5 concentrations from spatiotemporal machine-learning models. We split the time-to-event data and assigned yearly exposures over a lag window of 8 years. We fitted Cox proportional hazard models with time-varying exposure controlling for contextual- and individual-level factors, as well as trends. In secondary analyses, we inspected the lag structure using distributed lag models and compared results with alternative exposure sources and definitions. RESULTS In fully adjusted models, an increase of 10 μg/m³ in PM 2.5 was associated with hazard ratios of 1.27 (95% confidence interval: 1.06, 1.53) for all-cause, 1.24 (1.03, 1.50) for nonaccidental, 2.07 (1.04, 4.10) for respiratory, and 1.66 (0.86, 3.19) for lung cancer mortality. We found no evidence of association with cardiovascular deaths (hazard ratio = 0.88, 95% confidence interval: 0.59, 1.31). We identified strong confounding by both contextual- and individual-level lifestyle factors. The distributed lag analysis suggested differences in relevant exposure windows across mortality causes. Using more informative exposure summaries and sources resulted in higher risk estimates. CONCLUSIONS We found associations of long-term PM 2.5 exposure with all-cause, nonaccidental, respiratory, and lung cancer mortality, but not with cardiovascular mortality. This study benefits from finely reconstructed time-varying exposures and extensive control for confounding, further supporting a plausible causal link between long-term PM 2.5 and mortality.
Collapse
Affiliation(s)
- Jacopo Vanoli
- From the Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Arturo de la Cruz Libardi
- From the Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Francesco Sera
- From the Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Statistics, Computer Science and Applications "G. Parenti," University of Florence, Florence, Italy
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Region Health Service, ASL Roma 1, Rome, Italy
| | - Pierre Masselot
- From the Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Malcolm N Mistry
- From the Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Economics, Ca' Foscari University of Venice, Venice, Italy
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH
- School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Jennifer K Quint
- School of Public Health, Imperial College London, London, United Kingdom
| | - Chris Fook Sheng Ng
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Lina Madaniyazi
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Antonio Gasparrini
- From the Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
17
|
Abed Al Ahad M, Demšar U, Sullivan F, Kulu H. Long term exposure to ambient air pollution and hospital admission burden in Scotland: 16 year prospective population cohort study. BMJ Open 2024; 14:e084032. [PMID: 39694698 DOI: 10.1136/bmjopen-2024-084032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVES Air pollution is considered a major threat for global health and is associated with various health outcomes. Previous research on long term exposure to ambient air pollution and health placed more emphasis on mortality rather than hospital admission outcomes and was characterised by heterogeneities in the size of effect estimates between studies, with less focus on mental/behavioural or infectious diseases outcomes. In this study, we investigated the association between long term exposure to ambient air pollution and all cause and cause specific hospital admissions. DESIGN This was a prospective cohort study. SETTING Individual level data from the Scottish Longitudinal Study (SLS) were linked to yearly concentrations of four pollutants (nitrogen dioxide (NO2), sulphur dioxide (SO2), particulate matter diameter ≤10 µm (PM10) and particulate matter diameter ≤2.5 µm (PM2.5)) at 1 km2 spatial resolution using the individual's residential postcode for each year between 2002 and 2017. PARTICIPANTS The study included 202 237 adult individuals aged ≥17 years. OUTCOME MEASURES The associations between air pollution and all cause, cardiovascular, respiratory, infectious, mental/behavioural disorders and other cause hospital admissions were examined using multi-level, mixed effects, negative binomial regression. RESULTS Higher exposure to NO2, PM10 and PM2.5 was associated with a higher incidence of all cause, cardiovascular, respiratory and infectious hospital admissions before adjusting for the area of residence, and in fully adjusted models when considering cumulative exposure across time. In fully adjusted models, the incidence rate for respiratory hospital admissions increased by 4.2% (95% CI 2.1% to 6.3%) and 1.2% (95% CI 0.8% to 1.7%) per 1 µg/m3 increase in PM2.5 and NO2 pollutants, respectively. SO2 was mainly associated with respiratory hospital admissions (incidence rate ratio (IRR)=1.016; 95% CI 1.004 to 1.027) and NO2 was related to a higher incidence of hospital admissions for mental/behavioural disorders (IRR=1.021; 95% CI 1.011 to 1.031). Average cumulative exposure to air pollution showed stronger positive associations with higher rates of hospital admissions. CONCLUSIONS The results of this study support an association between long term (16 years) exposure to ambient air pollution and increased all cause and cause specific hospital admissions for both physical and mental/behavioural illnesses. The results suggest that interventions on air pollution through stricter environmental regulations could help ease the hospital care burden in Scotland in the long term.
Collapse
Affiliation(s)
- Mary Abed Al Ahad
- School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK
| | - Urška Demšar
- School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK
| | - Frank Sullivan
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Hill Kulu
- School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK
| |
Collapse
|
18
|
Hystad P, Hill EL, Larkin A, Schrank D, Harleman M, Volkin E, Campbell EJ, Molitor J, Harris L, Ritz BR, Willis MD. Changes in traffic-related air pollution exposures and associations with adverse birth outcomes over 20 years in Texas. Int J Epidemiol 2024; 54:dyae178. [PMID: 39761605 PMCID: PMC11703368 DOI: 10.1093/ije/dyae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Billions of dollars have been spent implementing regulations to reduce traffic-related air pollution (TRAP) from exhaust pipe emissions. However, few health studies have evaluated the change in TRAP emissions and associations with infant health outcomes. We hypothesize that the magnitude of association between vehicle exposure measures and adverse birth outcomes has decreased over time, parallelling regulatory improvements in exhaust pipe emissions. METHODS Using birth records in Texas from 1996 to 2016, we calculated residential exposure measures related to TRAP: nitrogen dioxide (NO2, a marker of the TRAP mixture), vehicle miles travelled within 500 m of homes (VMT500), a measure of traffic volume, and highway proximity. Using an accountability study framework, our analysis examined term birthweight, term low birthweight (TLBW) (<2500 g), preterm birth (PTB) (<37 weeks) and very preterm birth (VPTB) (<32 weeks). We implemented linear and logistic regression models to examine overall and time-stratified associations, including trends by race/ethnicity and socioeconomic groups. RESULTS Among exposures for 6 158 518 births, NO2 exposures decreased 59% over time but VMT500 remained relatively stable. TRAP-related exposure measures were persistently associated with harmful birth outcomes [e.g. OR1996-2016 of 1.07 (95% CI: 1.04, 1.08) for TLBW comparing the highest vs lowest NO2 quintile]. The magnitude of associations decreased for total VMT500 and TLBW (-60%, OR1996: 1.08 to OR2016: 1.03 for the highest vs lowest quintile) and PTB (-65%) and VTPT (-61%), but not for term birthweight. CONCLUSIONS We observed evidence of small improvements in birth outcomes associated with reductions in exhaust pipe emissions over a 20-year period in Texas.
Collapse
Affiliation(s)
- Perry Hystad
- School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR, USA
| | - Elaine L Hill
- Department of Economics, School of Arts and Sciences, University of Rochester, Rochester, NY, USA
| | - Andrew Larkin
- School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR, USA
| | - David Schrank
- Texas Transportation Institute, Texas A&M, Bryan, TX, USA
| | - Max Harleman
- Department of Government and Sociology, College of Arts and Sciences, Georgia College & State University, Milledgeville, GA, USA
| | - Evan Volkin
- Department of Economics, School of Arts and Sciences, University of Rochester, Rochester, NY, USA
| | - Erin J Campbell
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA
| | - John Molitor
- School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR, USA
| | - Lena Harris
- Department of Economics, School of Arts and Sciences, University of Rochester, Rochester, NY, USA
| | - Beate R Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mary D Willis
- School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR, USA
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA
| |
Collapse
|
19
|
Lim H, Choi J, Bae S, Choi KH, Han X, Ha M, Kim JH, Kim S, Kwon HJ. Confounding effects of socioeconomic status on the association between long-term PM2.5 exposure and mortality in Korea. Int J Epidemiol 2024; 54:dyaf001. [PMID: 39886997 DOI: 10.1093/ije/dyaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND This study assesses the national distribution of ambient fine particulate matter (PM2.5) exposure across socioeconomic status (SES) and its confounding on long-term PM2.5 mortality in Korea, aiming to minimize SES influence. METHODS A nationwide cohort of 5% of Koreans, aged 30 or older, from 2007 to 2019, from the National Health Information Database, was analysed. PM2.5 exposure levels were estimated at the city level using the Community Multiscale Air Quality system. Mortality data were obtained from Statistics Korea. The study examined annual PM2.5 exposure by SES indicators and its confounding on mortality risks associated with PM2.5, using time-varying Cox proportional hazards models. RESULTS The study followed 1 453 036 individuals from 2007 to 2019, totalling 17 760 227 person-years (PYs). The non-accidental (A00-R99), cardiovascular (I00-I99) and respiratory (J00-J99) mortality rates per 1000 PY were 7.6, 1.9 and 0.8, respectively. We observed a trend of decreasing PM2.5 exposure levels but increased mortality among medical aid beneficiaries, those with lower household incomes and those residing in neighbourhoods with a higher area deprivation index. When adjusting for these SES covariates, the long-term mortality effects of PM2.5 shifted in the direction of increased risk [hazard ratio (HR) for cardiovascular mortality in the unadjusted model = 0.968 (95% CI: 0.909-0.959); HR in the fully adjusted model = 1.053 (95% CI: 1.004-1.105)]. CONCLUSION In regions where SES and PM2.5 concentrations are positively correlated, as in Korea, it is crucial to rigorously control for SES confounding to avoid underestimating the mortality effects associated with PM2.5.
Collapse
Affiliation(s)
- Hyungryul Lim
- Department of Preventive Medicine and Public Health, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jonghyuk Choi
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Sanghyuk Bae
- Department of Preventive Medicine, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung-Hwa Choi
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Xue Han
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Mina Ha
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Jong-Hun Kim
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Soontae Kim
- Department of Environmental and Safety Engineering, Ajou University, Suwon, Republic of Korea
| | - Ho-Jang Kwon
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| |
Collapse
|
20
|
Wang Y, Yuan Y, Mo S, Wang F, Wei J, Yao Y, Zeng Y, Zhang Y. Individual and joint exposures to PM 2.5 constituents and mortality risk among the oldest-old in China. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2692-2700. [PMID: 39400872 DOI: 10.1007/s11427-024-2718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024]
Abstract
Cohort evidence linking long-term survival of older adults with exposure to fine particulate matter (PM2.5) constituents remains scarce in China. By constructing a dynamic cohort based on the Chinese Longitudinal Healthy Longevity Study, we aimed to assess the individual and joint associations of major PM2.5 constituents with all-cause death in Chinese oldest-old (.80 years) adults. Time-dependent Cox proportional hazards models were adopted to estimate death risks of long-term exposure to PM2.5 constituents. Among 14,884 participants, totaling 56,342 person-years of follow-up, 12,346 deaths were identified. The highest mortality risk associated with an interquartile range (IQR) increase in exposure was 1.081 (95% confidence interval [CI]: 1.055-1.108) for sulfate (IQR=4.1 μg m-3), followed by 1.078 (95% CI: 1.056-1.101) for black carbon (IQR=1.6 μg m-3), 1.056 (95% CI: 1.028-1.084) for ammonium (IQR=3.2 μg m-3), 1.050 (95% CI: 1.021-1.080) for nitrate (IQR=5.8 μg m-3), and 1.049 (95% CI: 1.024-1.074) for organic matter (IQR=10.3 μg m-3). In joint exposure, each IQRequivalent rise of all five PM2.5 constituents was associated with an 8.2% (95% CI: 4.0%-12.6%) increase in mortality risk. The weight analysis indicated the predominant role of sulfate and black carbon in driving PM2.5-related mortality. Octogenarians (aged 80-89 years) and rural dwellers were at significantly greater risk of mortality from individual and joint exposures to PM2.5 constituents. This study suggests that later-life exposure to PM2.5 constituents, particularly sulfate and black carbon, may curtail long-term survival of the oldest-old in China.
Collapse
Affiliation(s)
- Yaqi Wang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yang Yuan
- Shenzhen Bao'an District Songgang People's Hospital, Shenzhen, 518100, China
| | - Shaocai Mo
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Fang Wang
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, 20742, USA
| | - Yao Yao
- China Center for Health Development Studies, Peking University, Beijing, 100871, China.
- Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing, 100871, China.
| | - Yi Zeng
- China Center for Health Development Studies, Peking University, Beijing, 100871, China.
| | - Yunquan Zhang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
21
|
Rajovic N, Grubor N, Cirkovic A, Maheswaran R, Bath PA, Green D, Bellantuono I, Milicevic O, Kanazir S, Miljus D, Zivkovic S, Vidojevic D, Mickovski N, Rakocevic I, Ivanovic I, Mladenovic A, Goyder E, Milic N. Insights into relationship of environmental inequalities and multimorbidity: a population-based study. Environ Health 2024; 23:99. [PMID: 39543597 PMCID: PMC11566910 DOI: 10.1186/s12940-024-01133-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Substantial inequalities in the overall prevalence and patterns of multimorbidity have been widely reported, but the causal mechanisms are complex and not well understood. This study aimed to identify common patterns of multimorbidity in Serbia and assess their relationship with air pollutant concentrations and water quality indicators. METHODS This ecological study was conducted on a nationally representative sample of the Serbian population. Data were obtained from the European Health Interview (EHIS) Survey, a periodic study designed to assess population health using widely recognized standardized instruments. The study included 13,069 participants aged 15 and older, randomly selected through a multistage stratified sampling design. Multimorbidity was defined as having two or more self-reported diagnoses of chronic non-communicable diseases. Latent class analysis (LCA) was performed to identify clusters of multimorbidity. Concentrations of particulate matter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3), as well as water quality indicators, were obtained from the Serbian Environmental Protection Agency. RESULTS The overall prevalence of multimorbidity was 33.4% [32.6%-34.2%]. Six latent classes of multimorbidity were identified: Healthy, Multicondition, Cardiovascular, Metabolic syndrome, Respiratory, and Musculoskeletal. Annual increases in PM10 and SO2 concentrations, as well as daily increases in O3 concentrations, significantly raised the odds of having multimorbidity (OR = 1.02, 95% CI 1.02-1.03; OR = 1.01, 95% CI 1.00-1.02 and OR = 1.03, 95% CI 1.02-1.03, respectively). A pattern of increased risk was observed with rising levels of water contamination. Exposure to physico-chemical, microbiological and combined contamination was associated with a 3.92%, 5.17% and 5.54% higher probability, respectively, of having multiple chronic conditions. There was strong evidence that air pollutants, as well as chemical and microbial water contamination, were significantly associated with higher odds of the most common clusters of multimorbidity identified by LCA. CONCLUSION There is compelling evidence of an association between multimorbidity and environmental pollution, suggesting that exposure to air pollutants and water contaminants may contribute to disease accumulation and help explain geographically and socioeconomically patterned inequalities. These findings underscore the need for extensive studies that simultaneously measure both multimorbidity and pollution to explore their complex interrelationships.
Collapse
Affiliation(s)
- Nina Rajovic
- Institute for Medical Statistics and Informatics, University of Belgrade Faculty of Medicine, Belgrade, 11000, Serbia
| | - Nikola Grubor
- Institute for Medical Statistics and Informatics, University of Belgrade Faculty of Medicine, Belgrade, 11000, Serbia
| | - Andja Cirkovic
- Institute for Medical Statistics and Informatics, University of Belgrade Faculty of Medicine, Belgrade, 11000, Serbia
| | - Ravindra Maheswaran
- School of Medicine & Population Health, University of Sheffield, Sheffield, S1 4DA, UK
| | - Peter A Bath
- Information School, University of Sheffield, Sheffield, S10 2AH, UK
| | - Dan Green
- College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Ilaria Bellantuono
- Healthy Lifespan Institute, University of Sheffield, Sheffield, S1 4DA, UK
| | - Ognjen Milicevic
- Institute for Medical Statistics and Informatics, University of Belgrade Faculty of Medicine, Belgrade, 11000, Serbia
| | - Selma Kanazir
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, 11000, Serbia
| | - Dragan Miljus
- Institute of Public Health of Serbia "Dr Milan Jovanović Batut", Belgrade, 11000, Serbia
| | - Snezana Zivkovic
- Institute of Public Health of Serbia "Dr Milan Jovanović Batut", Belgrade, 11000, Serbia
| | - Dragana Vidojevic
- Serbian Environmental Protection Agency, Ministry of Environmental Protection, Belgrade, 11000, Serbia
| | - Natasa Mickovski
- Institute of Public Health of Serbia "Dr Milan Jovanović Batut", Belgrade, 11000, Serbia
| | - Ivana Rakocevic
- Institute of Public Health of Serbia "Dr Milan Jovanović Batut", Belgrade, 11000, Serbia
| | - Ivan Ivanovic
- Institute of Public Health of Serbia "Dr Milan Jovanović Batut", Belgrade, 11000, Serbia
| | - Aleksandra Mladenovic
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, 11000, Serbia
| | - Elizabeth Goyder
- School of Medicine & Population Health, University of Sheffield, Sheffield, S1 4DA, UK
- Healthy Lifespan Institute, University of Sheffield, Sheffield, S1 4DA, UK
| | - Natasa Milic
- Institute for Medical Statistics and Informatics, University of Belgrade Faculty of Medicine, Belgrade, 11000, Serbia.
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
22
|
Vanoli J, Mistry MN, De La Cruz Libardi A, Masselot P, Schneider R, Ng CFS, Madaniyazi L, Gasparrini A. Reconstructing individual-level exposures in cohort analyses of environmental risks: an example with the UK Biobank. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:1012-1017. [PMID: 38191925 PMCID: PMC11618064 DOI: 10.1038/s41370-023-00635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Recent developments in linkage procedures and exposure modelling offer great prospects for cohort analyses on the health risks of environmental factors. However, assigning individual-level exposures to large population-based cohorts poses methodological and practical problems. In this contribution, we illustrate a linkage framework to reconstruct environmental exposures for individual-level epidemiological analyses, discussing methodological and practical issues such as residential mobility and privacy concerns. The framework outlined here requires the availability of individual residential histories with related time periods, as well as high-resolution spatio-temporal maps of environmental exposures. The linkage process is carried out in three steps: (1) spatial alignment of the exposure maps and residential locations to extract address-specific exposure series; (2) reconstruction of individual-level exposure histories accounting for residential changes during the follow-up; (3) flexible definition of exposure summaries consistent with alternative research questions and epidemiological designs. The procedure is exemplified by the linkage and processing of daily averages of air pollution for the UK Biobank cohort using gridded spatio-temporal maps across Great Britain. This results in the extraction of exposure summaries suitable for epidemiological analyses of both short and long-term risk associations and, in general, for the investigation of temporal dependencies. The linkage framework presented here is generally applicable to multiple environmental stressors and can be extended beyond the reconstruction of residential exposures. IMPACT: This contribution describes a linkage framework to assign individual-level environmental exposures to population-based cohorts using high-resolution spatio-temporal exposure. The framework can be used to address current limitations of exposure assessment for the analysis of health risks associated with environmental stressors. The linkage of detailed exposure information at the individual level offers the opportunity to define flexible exposure summaries tailored to specific study designs and research questions. The application of the framework is exemplified by the linkage of fine particulate matter (PM2.5) exposures to the UK Biobank cohort.
Collapse
Affiliation(s)
- Jacopo Vanoli
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.
- Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, UK.
| | - Malcolm N Mistry
- Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
- Department of Economics, Ca' Foscari University of Venice, Venice, Italy
| | - Arturo De La Cruz Libardi
- Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - Pierre Masselot
- Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - Rochelle Schneider
- Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
- Φ-lab, European Space Agency, Frascati, Italy
| | - Chris Fook Sheng Ng
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Lina Madaniyazi
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Antonio Gasparrini
- Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
23
|
Froeling F, Chen J, Meliefste K, Oldenwening M, Lenssen E, Vermeulen R, Gerlofs-Nijland M, van Triel J, Woutersen A, de Jonge D, Groenwold H, Bronsveld P, van Dinther D, Blom M, Hoek G. A co-created citizen science project on the short term effects of outdoor residential woodsmoke on the respiratory health of adults in the Netherlands. Environ Health 2024; 23:90. [PMID: 39443904 PMCID: PMC11515534 DOI: 10.1186/s12940-024-01124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND AND AIM Woodsmoke from household fireplaces contributes significantly to outdoor air pollution in the Netherlands. The current understanding of the respiratory health effects of exposure to smoke from residential wood burning is limited. This study investigated the association between short-term changes in outdoor woodsmoke exposure and lung function, respiratory symptoms, and medication use in adults in the Netherlands. METHODS This study was co-created with citizen scientists and other relevant stakeholders. A panel study was conducted with repeated observations in 46 adults between February and May 2021 in four Dutch towns. Participants recorded their symptoms and medication use in daily diaries, and conducted morning and evening home spirometry measurements. Woodsmoke exposure was characterized by measuring levoglucosan (most specific marker for woodsmoke exposure), black/brown carbon, fine and ultrafine particulate matter at central monitoring sites. Individual woodsmoke perception (smell) was recorded in daily diaries. Linear and logistic regression models were used to investigate the association between respiratory health and woodsmoke exposure. Models were adjusted for time-varying confounders and accounted for repeated observations within participants. RESULTS Consistent positive associations were found between levoglucosan and shortness of breath (SOB) during rest and extra respiratory medication use. Odds ratios for current day exposure to levoglucosan were 1.12 (95% CI: 0.97, 1.30) for SOB during rest and 1.19 (95% CI: 1.07, 1.33) for extra medication use, expressed per interquartile range of levoglucosan concentrations (69.16 ng/m3). Positive non-significant associations were found between levoglucosan and nasal symptoms, cough and waking up with SOB. No consistent association was found between levoglucosan and lung function. Associations found between woodsmoke markers, SOB during rest and extra medication use remained after the inclusion of PM2.5 and UFP in two-pollutant models. CONCLUSIONS Adults experienced more SOB during rest, nasal symptoms and used more medication to treat respiratory symptoms on days with higher levels of outdoor woodsmoke concentrations.
Collapse
Affiliation(s)
- Frederique Froeling
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM, Utrecht, The Netherlands.
| | - Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM, Utrecht, The Netherlands
| | - Kees Meliefste
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM, Utrecht, The Netherlands
| | - Marieke Oldenwening
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM, Utrecht, The Netherlands
| | - Esther Lenssen
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM, Utrecht, The Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM, Utrecht, The Netherlands
| | - Miriam Gerlofs-Nijland
- National Institute for Public Health and the Environment, RIVM, 3721 MA, Bilthoven, The Netherlands
| | - Jos van Triel
- National Institute for Public Health and the Environment, RIVM, 3721 MA, Bilthoven, The Netherlands
| | - Amber Woutersen
- National Institute for Public Health and the Environment, RIVM, 3721 MA, Bilthoven, The Netherlands
| | - Dave de Jonge
- Public Health Service of Amsterdam, GGD Amsterdam, 1018 WT, Amsterdam, The Netherlands
| | - Henke Groenwold
- Public Health Service of Amsterdam, GGD Amsterdam, 1018 WT, Amsterdam, The Netherlands
| | - Paula Bronsveld
- Institute for Applied Scientific Research (Netherlands), TNO, 1755, Petten, The Netherlands
| | - Danielle van Dinther
- Institute for Applied Scientific Research (Netherlands), TNO, 1755, Petten, The Netherlands
| | - Marcus Blom
- Institute for Applied Scientific Research (Netherlands), TNO, 1755, Petten, The Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM, Utrecht, The Netherlands
| |
Collapse
|
24
|
Kasdagli MI, Orellano P, Pérez Velasco R, Samoli E. Long-Term Exposure to Nitrogen Dioxide and Ozone and Mortality: Update of the WHO Air Quality Guidelines Systematic Review and Meta-Analysis. Int J Public Health 2024; 69:1607676. [PMID: 39494092 PMCID: PMC11527649 DOI: 10.3389/ijph.2024.1607676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Objectives We performed a systematic review and meta-analysis on long-term exposure to nitrogen dioxide (NO2) and ozone (O3) with mortality, to expand evidence that informed 2021 the WHO Air Quality Guidelines and guide the Health Risks of Air Pollution in Europe project. Methods We included cohorts investigating NO2 and O3 mortality from all-causes, respiratory diseases, chronic obstructive pulmonary disease (COPD), acute lower respiratory infections (ALRI); and NO2 mortality from circulatory, ischemic heart, cerebrovascular diseases and lung cancer. We pooled estimates by random-effects models and investigated heterogeneity. We assessed the certainty of the evidence using the Grading of Recommendations Assessment Development approach and Evaluation (GRADE). Results We selected 83 studies for NO2 and 26 for O3 for the meta-analysis. NO2 was associated with all outcomes, except for cerebrovascular mortality. O3 was associated with respiratory mortality following annual exposure. There was high heterogeneity, partly explained by region and pollutant levels. Certainty was high for NO2 with COPD and ALRI, and annual O3 with respiratory mortality. Conclusion An increasing body of evidence, with new results from countrywide areas and the Western Pacific, supports certainty, including new outcomes.
Collapse
Affiliation(s)
- Maria-Iosifina Kasdagli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Pablo Orellano
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Universidad Tecnologica Nacional, Facultad Regional San Nicolas, San Nicolas, Argentina
| | - Román Pérez Velasco
- World Health Organization (WHO) Regional Office for Europe, European Centre for Environment and Health, Bonn, Germany
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
25
|
Peters S, Bouma F, Hoek G, Janssen N, Vermeulen R. Air pollution exposure and mortality from neurodegenerative diseases in the Netherlands: A population-based cohort study. ENVIRONMENTAL RESEARCH 2024; 259:119552. [PMID: 38964584 DOI: 10.1016/j.envres.2024.119552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Long-term exposure to ambient air pollution has been linked with all-cause mortality and cardiovascular and respiratory diseases. Suggestive associations between ambient air pollutants and neurodegeneration have also been reported, but due to the small effect and relatively rare outcomes evidence is yet inconclusive. Our aim was to investigate the associations between long-term air pollution exposure and mortality from neurodegenerative diseases. METHODS A Dutch national cohort of 10.8 million adults aged ≥30 years was followed from 2013 until 2019. Annual average concentrations of air pollutants (ultra-fine particles (UFP), nitrogen dioxide (NO2), fine particles (PM2.5 and PM10) and elemental carbon (EC)) were estimated at the home address at baseline, using land-use regression models. The outcome variables were mortality due to amyotrophic lateral sclerosis (ALS), Parkinson's disease, non-vascular dementia, Alzheimer's disease, and multiple sclerosis (MS). Hazard ratios (HR) were estimated using Cox models, adjusting for individual and area-level socio-economic status covariates. RESULTS We had a follow-up of 71 million person-years. The adjusted HRs for non-vascular dementia were significantly increased for NO2 (1.03; 95% confidence interval (CI) 1.02-1.05) and PM2.5 (1.02; 95%CI 1.01-1.03) per interquartile range (IQR; 6.52 and 1.47 μg/m3, respectively). The association with PM2.5 was also positive for ALS (1.02; 95%CI 0.97-1.07). These associations remained positive in sensitivity analyses and two-pollutant models. UFP was not associated with any outcome. No association with air pollution was found for Parkinson's disease and MS. Inverse associations were found for Alzheimer's disease. CONCLUSION Our findings, using a cohort of more than 10 million people, provide further support for associations between long-term exposure to air pollutants (PM2.5 and particularly NO2) and mortality of non-vascular dementia. No associations were found for Parkinson and MS and an inverse association was observed for Alzheimer's disease.
Collapse
Affiliation(s)
- Susan Peters
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands.
| | - Femke Bouma
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands
| | - Nicole Janssen
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| |
Collapse
|
26
|
Kilbo Edlund K, Andersson EM, Asker C, Barregard L, Bergström G, Eneroth K, Jernberg T, Ljunggren S, Molnár P, Sommar JN, Oudin A, Pershagen G, Persson Å, Pyko A, Spanne M, Tondel M, Ögren M, Ljungman P, Stockfelt L. Long-term ambient air pollution and coronary atherosclerosis: Results from the Swedish SCAPIS study. Atherosclerosis 2024; 397:117576. [PMID: 38797616 DOI: 10.1016/j.atherosclerosis.2024.117576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND AND AIMS Despite firm evidence for an association between long-term ambient air pollution exposure and cardiovascular morbidity and mortality, results from epidemiological studies on the association between air pollution exposure and atherosclerosis have not been consistent. We investigated associations between long-term low-level air pollution exposure and coronary atherosclerosis. METHODS We performed a cross-sectional analysis in the large Swedish CArdioPulmonary bioImaging Study (SCAPIS, n = 30 154), a random general population sample. Concentrations of total and locally emitted particulate matter <2.5 μm (PM2.5), <10 μm (PM10), and nitrogen oxides (NOx) at the residential address were modelled using high-resolution dispersion models. We estimated associations between air pollution exposures and segment involvement score (SIS), coronary artery calcification score (CACS), number of non-calcified plaques (NCP), and number of significant stenoses, using ordinal regression models extensively adjusted for potential confounders. RESULTS Median 10-year average PM2.5 exposure was 6.2 μg/m3 (range 3.5-13.4 μg/m3). 51 % of participants were women and 51 % were never-smokers. None of the assessed pollutants were associated with a higher SIS or CACS. Exposure to PM2.5 was associated with NCP (adjusted OR 1.34, 95 % CI 1.13, 1.58, per 2.05 μg/m3). Associations with significant stenoses were inconsistent. CONCLUSIONS In this large, middle-aged general population sample with low exposure levels, air pollution was not associated with measures of total burden of coronary atherosclerosis. However, PM2.5 appeared to be associated with a higher prevalence of non-calcified plaques. The results suggest that increased risk of early-stage atherosclerosis or rupture, but not increased total atherosclerotic burden, may be a pathway for long-term air pollution effects on cardiovascular disease.
Collapse
Affiliation(s)
- Karl Kilbo Edlund
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
| | - Eva M Andersson
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Christian Asker
- Swedish Meteorological & Hydrological Institute, Norrköping, Sweden
| | - Lars Barregard
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Clinical Physiology Sahlgrenska University Hospital, Göteborg, Sweden
| | - Kristina Eneroth
- SLB-analys, Environment and Health Administration, Stockholm, Sweden
| | - Tomas Jernberg
- Department of Clinical Sciences, Danderyd University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Ljunggren
- Occupational and Environmental Medicine Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Peter Molnár
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Johan Nilsson Sommar
- Department of Public Health and Clinical Medicine, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Faculty of Medicine, Umeå University, Umeå, Sweden; Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Åsa Persson
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Andrei Pyko
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Mårten Spanne
- Environmental Department, City of Malmö, Malmö, Sweden
| | - Martin Tondel
- Occupational and Environmental Medicine, Department of Medical Sciences, Medical Faculty, Uppsala University, Sweden; Occupational and Environmental Medicine, Uppsala University Hospital, Uppsala, Sweden
| | - Mikael Ögren
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; Department of Cardiology, Danderyd Hospital, Stockholm, Sweden
| | - Leo Stockfelt
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| |
Collapse
|
27
|
Orellano P, Kasdagli MI, Pérez Velasco R, Samoli E. Long-Term Exposure to Particulate Matter and Mortality: An Update of the WHO Global Air Quality Guidelines Systematic Review and Meta-Analysis. Int J Public Health 2024; 69:1607683. [PMID: 39399882 PMCID: PMC11466858 DOI: 10.3389/ijph.2024.1607683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024] Open
Abstract
Objectives For the development of the 2021 global air quality guidelines, the World Health Organization (WHO) commissioned a series of systematic reviews and meta-analyses to assess the association between exposure to air pollution and all-cause and cause-specific mortality. One of these reviews, which we aim to update, focused on the effects of long-term exposure to PM2.5 and PM10 on all-cause and cause-specific mortality. Methods The protocol for this study was registered in PROSPERO (CRD42023425327). We searched the PubMed and Embase databases for studies published between September 2018 and May 2023. Study-specific effects were pooled using random-effects models. Results We included 106 studies in the meta-analysis, 46 studies from the previous review and 60 from this update. All exposure-outcome pairs analysed showed positive and significant associations, except for PM10 and cerebrovascular mortality. The certainty of the evidence was rated as high for the majority of exposure-outcome pairs. Conclusion We included a large number of new cohorts, and provided new concentration-response functions that will inform WHO advice on the use of this information for air pollution health risk assessments.
Collapse
Affiliation(s)
- Pablo Orellano
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Universidad Tecnologica Nacional, Facultad Regional San Nicolas, San Nicolas, Argentina
| | - Maria-Iosifina Kasdagli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Román Pérez Velasco
- World Health Organization (WHO) Regional Office for Europe, European Centre for Environment and Health, Bonn, Germany
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
28
|
Chen G, Qian Z(M, Zhang J, Wang X, Zhang Z, Cai M, Arnold LD, Abresch C, Wang C, Liu Y, Fan Q, Lin H. Associations between Changes in Exposure to Air Pollutants due to Relocation and the Incidence of 14 Major Disease Categories and All-Cause Mortality: A Natural Experiment Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:97012. [PMID: 39348288 PMCID: PMC11441638 DOI: 10.1289/ehp14367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/15/2024] [Accepted: 09/06/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND Though observational studies have widely linked air pollution exposure to various chronic diseases, evidence comparing different exposures in the same people is limited. This study examined associations between changes in air pollution exposure due to relocation and the incidence and mortality of 14 major diseases. METHODS We included 50,522 participants enrolled in the UK Biobank from 2006 to 2010. Exposures to particulate matter with a diameter ≤ 2.5 μ m (PM 2.5 ), particulate matter with a diameter ≤ 10 μ m (PM 10 ), nitrogen oxides (NO x ), nitrogen dioxide (NO 2 ), and sulfur dioxide (SO 2 ) were estimated for each participant based on their residential address and relocation experience during the follow-up. Nine exposure groups were classified based on changes in long-term exposures due to residential mobility. Incidence and mortality of 14 major diseases were identified through linkages to hospital inpatient records and death registries. Cox proportional hazard models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for incidence and mortality of the 14 diseases of interest. RESULTS During a median follow-up of 12.6 years, 29,869 participants were diagnosed with any disease of interest, and 3,144 died. Significantly increased risk of disease and all-cause mortality was observed among individuals who moved from a lower to higher air polluted area. Compared with constantly low exposure, moving from low to moderate PM 2.5 exposure was associated with increased risk of all 14 diseases but not for all-cause mortality, with adjusted HRs (95% CIs) ranging from 1.18 (1.05, 1.33) to 1.48 (1.30, 1.69); moving from low to high PM 2.5 areas increased risk of all 14 diseases: infections [1.37 (1.19, 1.58)], blood diseases [1.57 (1.34, 1.84)], endocrine diseases [1.77 (1.50, 2.09)], mental and behavioral disorders [1.93 (1.68, 2.21)], nervous system diseases [1.51 (1.32, 1.74)], ocular diseases [1.76 (1.56, 1.98)], ear disorders [1.58 (1.35, 1.86)], circulatory diseases [1.59 (1.42, 1.78)], respiratory diseases [1.51 (1.33, 1.72)], digestive diseases [1.74 (1.58, 1.92)], skin diseases [1.39 (1.22, 1.58)], musculoskeletal diseases [1.62 (1.45, 1.81)], genitourinary diseases [1.54 (1.36, 1.74)] and cancer [1.42 (1.24, 1.63)]. We observed similar associations for PM 10 and SO 2 with 14 diseases (but not with all-cause mortality); increases in NO 2 and NO x were positively associated with 14 diseases and all-cause mortality. CONCLUSIONS This study supports potential associations between ambient air pollution exposure and morbidity as well as mortality. Findings also emphasize the importance of maintaining consistently low levels of air pollution to protect the public's health. https://doi.org/10.1289/EHP14367.
Collapse
Affiliation(s)
- Ge Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhengmin (Min) Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, Missouri, USA
| | - Junguo Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xiaojie Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zilong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Lauren D. Arnold
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, Missouri, USA
| | - Chad Abresch
- Department of Health Promotion, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Chuangshi Wang
- Medical Research and Biometrics Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yiming Liu
- School of Atmospheric Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangzhou, China
- Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-Sen University, Zhuhai, China
| | - Qi Fan
- School of Atmospheric Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangzhou, China
- Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-Sen University, Zhuhai, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
29
|
Chao TH, Lin TH, Cheng CI, Wu YW, Ueng KC, Wu YJ, Lin WW, Leu HB, Cheng HM, Huang CC, Wu CC, Lin CF, Chang WT, Pan WH, Chen PR, Ting KH, Su CH, Chu CS, Chien KL, Yen HW, Wang YC, Su TC, Liu PY, Chang HY, Chen PW, Juang JMJ, Lu YW, Lin PL, Wang CP, Ko YS, Chiang CE, Hou CJY, Wang TD, Lin YH, Huang PH, Chen WJ. 2024 Guidelines of the Taiwan Society of Cardiology on the Primary Prevention of Atherosclerotic Cardiovascular Disease --- Part I. ACTA CARDIOLOGICA SINICA 2024; 40:479-543. [PMID: 39308649 PMCID: PMC11413940 DOI: 10.6515/acs.202409_40(5).20240724a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/24/2024] [Indexed: 09/25/2024]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is one of the leading causes of death worldwide and in Taiwan. It is highly prevalent and has a tremendous impact on global health. Therefore, the Taiwan Society of Cardiology developed these best-evidence preventive guidelines for decision-making in clinical practice involving aspects of primordial prevention including national policies, promotion of health education, primary prevention of clinical risk factors, and management and control of clinical risk factors. These guidelines cover the full spectrum of ASCVD, including chronic coronary syndrome, acute coronary syndrome, cerebrovascular disease, peripheral artery disease, and aortic aneurysm. In order to enhance medical education and health promotion not only for physicians but also for the general public, we propose a slogan (2H2L) for the primary prevention of ASCVD on the basis of the essential role of healthy dietary pattern and lifestyles: "Healthy Diet and Healthy Lifestyles to Help Your Life and Save Your Lives". We also propose an acronym of the modifiable risk factors/enhancers and relevant strategies to facilitate memory: " ABC2D2EFG-I'M2 ACE": Adiposity, Blood pressure, Cholesterol and Cigarette smoking, Diabetes mellitus and Dietary pattern, Exercise, Frailty, Gout/hyperuricemia, Inflammation/infection, Metabolic syndrome and Metabolic dysfunction-associated fatty liver disease, Atmosphere (environment), Chronic kidney disease, and Easy life (sleep well and no stress). Some imaging studies can be risk enhancers. Some risk factors/clinical conditions are deemed to be preventable, and healthy dietary pattern, physical activity, and body weight control remain the cornerstone of the preventive strategy.
Collapse
Affiliation(s)
- Ting-Hsing Chao
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
- Division of Cardiology, Department of Internal Medicine, Chung-Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung
| | - Tsung-Hsien Lin
- Division of Cardiology, Department of Internal Medicine Kaohsiung Medical University Hospital
- Faculty of Medicine and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University
| | - Cheng-I Cheng
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung; School of Medicine, College of Medicine, Chang Gung University, Taoyuan
| | - Yen-Wen Wu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City
- School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan
| | - Kwo-Chang Ueng
- Division of Cardiology, Department of Internal Medicine, Chung-Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung
| | - Yih-Jer Wu
- Department of Medicine and Institute of Biomedical Sciences, MacKay Medical College, New Taipei City
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital, Taipei
| | - Wei-Wen Lin
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung
| | - Hsing-Ban Leu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Cardiovascular Research Center, National Yang Ming Chiao Tung University
- Healthcare and Management Center
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
| | - Hao-Min Cheng
- Ph.D. Program of Interdisciplinary Medicine (PIM), National Yang Ming Chiao Tung University College of Medicine; Division of Faculty Development; Center for Evidence-based Medicine, Taipei Veterans General Hospital; Institute of Public Health; Institute of Health and Welfare Policy, National Yang Ming Chiao Tung University College of Medicine
| | - Chin-Chou Huang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei
| | - Chih-Cheng Wu
- Center of Quality Management, National Taiwan University Hospital Hsinchu Branch, Hsinchu; College of Medicine, National Taiwan University, Taipei; Institute of Biomedical Engineering, National Tsing-Hua University, Hsinchu; Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan
| | - Chao-Feng Lin
- Department of Medicine, MacKay Medical College, New Taipei City; Department of Cardiology, MacKay Memorial Hospital, Taipei
| | - Wei-Ting Chang
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung; Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan
| | - Wen-Han Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei; Institute of Population Health Sciences, National Health Research Institutes, Miaoli; and Institute of Biochemistry and Biotechnology, National Taiwan University
| | - Pey-Rong Chen
- Department of Dietetics, National Taiwan University Hospital, Taipei
| | - Ke-Hsin Ting
- Division of Cardiology, Department of Internal Medicine, Yunlin Christian Hospital, Yunlin
| | - Chun-Hung Su
- Division of Cardiology, Department of Internal Medicine, Chung-Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung
| | - Chih-Sheng Chu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung
| | - Kuo-Liong Chien
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University; Department of Internal Medicine, National Taiwan University Hospital and College of Medicine; Population Health Research Center, National Taiwan University, Taipei
| | - Hsueh-Wei Yen
- Division of Cardiology, Department of Internal Medicine Kaohsiung Medical University Hospital
| | - Yu-Chen Wang
- Division of Cardiology, Asia University Hospital; Department of Medical Laboratory Science and Biotechnology, Asia University; Division of Cardiology, China Medical University College of Medicine and Hospital, Taichung
| | - Ta-Chen Su
- Cardiovascular Center, Department of Internal Medicine, National Taiwan University Hospital
- Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine
| | - Pang-Yen Liu
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center
| | - Hsien-Yuan Chang
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Po-Wei Chen
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Jyh-Ming Jimmy Juang
- Heart Failure Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine, and National Taiwan University Hospital
| | - Ya-Wen Lu
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung
- Cardiovascular Research Center, National Yang Ming Chiao Tung University
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei
| | - Po-Lin Lin
- Division of Cardiology, Department of Internal Medicine, Hsinchu MacKay Memorial Hospital, Hsinchu
| | - Chao-Ping Wang
- Division of Cardiology, E-Da Hospital; School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung
| | - Yu-Shien Ko
- Cardiovascular Division, Chang Gung Memorial Hospital; College of Medicine, Chang Gung University, Taoyuan
| | - Chern-En Chiang
- General Clinical Research Center and Division of Cardiology, Taipei Veterans General Hospital and National Yang Ming Chiao Tung University
| | - Charles Jia-Yin Hou
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital, Taipei
| | - Tzung-Dau Wang
- Cardiovascular Center and Divisions of Hospital Medicine and Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine
| | - Yen-Hung Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei
| | - Po-Hsun Huang
- Cardiovascular Research Center, National Yang Ming Chiao Tung University
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
| | - Wen-Jone Chen
- Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
30
|
He C, Liu J, Zhou Y, Zhou J, Zhang L, Wang Y, Liu L, Peng S. Synergistic PM 2.5 and O 3 control to address the emerging global PM 2.5-O 3 compound pollution challenges. ECO-ENVIRONMENT & HEALTH 2024; 3:325-337. [PMID: 39281068 PMCID: PMC11400616 DOI: 10.1016/j.eehl.2024.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 09/18/2024]
Abstract
In recent years, the issue of PM2.5-O3 compound pollution has become a significant global environmental concern. This study examines the spatial and temporal patterns of global PM2.5-O3 compound pollution and exposure risks, firstly at the global and urban scale, using spatial statistical regression, exposure risk assessment, and trend analyses based on the datasets of daily PM2.5 and surface O3 concentrations monitored in 120 cities around the world from 2019 to 2022. Additionally, on the basis of the common emission sources, spatial heterogeneity, interacting chemical mechanisms, and synergistic exposure risk levels between PM2.5 and O3 pollution, we proposed a synergistic PM2.5-O3 control framework for the joint control of PM2.5 and O3. The results indicated that: (1) Nearly 50% of cities worldwide were affected by PM2.5-O3 compound pollution, with China, South Korea, Japan, and India being the global hotspots for PM2.5-O3 compound pollution; (2) Cities with PM2.5-O3 compound pollution have exposure risk levels dominated by ST + ST (Stabilization) and ST + HR (High Risk). Exposure risk levels of compound pollution in developing countries are significantly higher than those in developed countries, with unequal exposure characteristics; (3) The selected cities showed significant positive spatial correlations between PM2.5 and O3 concentrations, which were consistent with the spatial distribution of the precursors NOx and VOCs; (4) During the study period, 52.5% of cities worldwide achieved synergistic reductions in annual average PM2.5 and O3 concentrations. The average PM2.5 concentration in these cities decreased by 13.97%, while the average O3 concentration decreased by 19.18%. This new solution offers the opportunity to construct intelligent and healthy cities in the upcoming low-carbon transition.
Collapse
Affiliation(s)
- Chao He
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan 430100, China
| | - Jianhua Liu
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan 430100, China
| | - Yiqi Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Jingwei Zhou
- Hydrology and Environmental Hydraulics Group, Wageningen University and Research, Wageningen 6700 HB, the Netherlands
| | - Lu Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yifei Wang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, School of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Lu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Sha Peng
- Collaborative Innovation Center for Emissions Trading System Co-constructed by the Province and Ministry, Hubei University of Economics, Wuhan 430205, China
| |
Collapse
|
31
|
Amegbor PM, Sabel CE, Mortensen LH, Mehta AJ, Rosenberg MW. Early-life air pollution and green space exposures as determinants of stunting among children under age five in Sub-Saharan Africa. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:787-801. [PMID: 37386059 DOI: 10.1038/s41370-023-00572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Childhood malnutrition is a major public health issue in Sub-Saharan Africa (SSA) and 61.4 million children under the age of five years in the region are stunted. Although insight from existing studies suggests plausible pathways between ambient air pollution exposure and stunting, there are limited studies on the effect of different ambient air pollutants on stunting among children. OBJECTIVE Explore the effect of early-life environmental exposures on stunting among children under the age of five years. METHODS In this study, we used pooled health and population data from 33 countries in SSA between 2006 and 2019 and environmental data from the Atmospheric Composition Analysis Group and NASA's GIOVANNI platform. We estimated the association between early-life environmental exposures and stunting in three exposure periods - in-utero (during pregnancy), post-utero (after pregnancy to current age) and cumulative (from pregnancy to current age), using Bayesian hierarchical modelling. We also visualise the likelihood of stunting among children based on their region of residence using Bayesian hierarchical modelling. RESULTS The findings show that 33.6% of sampled children were stunted. In-utero PM2.5 was associated with a higher likelihood of stunting (OR = 1.038, CrI = 1.002-1.075). Early-life exposures to nitrogen dioxide and sulphate were robustly associated with stunting among children. The findings also show spatial variation in a high and low likelihood of stunting based on a region of residence. IMPACT STATEMENT This study explores the effect of early-life environmental exposures on child growth or stunting among sub-Saharan African children. The study focuses on three exposure windows - pregnancy, after birth and cumulative exposure during pregnancy and after birth. The study also employs spatial analysis to assess the spatial burden of stunted growth in relation to environmental exposures and socioeconomic factors. The findings suggest major air pollutants are associated with stunted growth among children in sub-Saharan Africa.
Collapse
Affiliation(s)
- Prince M Amegbor
- School of Gobal Public Health, New York University, 708 Broadway, New York, NY, 10003, USA.
- Denmark Statistics, Sejrøgade 11, DK-2100, Copenhagen, Denmark.
| | - Clive E Sabel
- Department of Public Health, Bartholins Allé 2, 8000, Aarhus C, Denmark
- The Big Data Centre for Environment and Health (BERTHA), Aarhus University, Bartholins Allé 2, 8000, Aarhus C, Denmark
| | - Laust H Mortensen
- Denmark Statistics, Sejrøgade 11, DK-2100, Copenhagen, Denmark
- Section of Epidemiology, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amar J Mehta
- Section of Epidemiology, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| | - Mark W Rosenberg
- Department of Geography & Planning, Queen's University, Kingston, ON, Canada
| |
Collapse
|
32
|
Tao C, Liu Z, Fan Y, Yuan Y, Wang X, Qiao Z, Li Z, Xu Q, Lou Z, Wang H, Li X, Li R, Lu C. Estimating neighborhood-based mortality risk associated with air pollution: A prospective study. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134861. [PMID: 38870855 DOI: 10.1016/j.jhazmat.2024.134861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Effect modification of integrated neighborhood environment on associations of air pollution with mortality remained unclear. We analyzed data from UK biobank prospective study (n = 421,650, median 12.5 years follow-up) to examine disparities of mortality risk associated with air pollution among varied neighborhood settings. Fine particulate matter (PM2.5), PM10 and nitrogen dioxide (NO2) were measured and assigned to each participants' address. Diverse ecological and societal settings of neighborhoods were integrated with principal component analysis and categorized into disadvantaged, intermediate and advantaged levels. We estimated mortality risk associated with air pollution across diverse neighborhoods using Cox regression. We calculated community-level proportions of mortality attributable to air pollutants. There was evidence of higher all-cause and respiratory disease mortality risk associated with PM2.5 and NO2 among those in disadvantaged neighborhoods. In disadvantaged communities, air pollutants explained larger proportions of deaths and such disparities persisted over past decades. Across 2010-2021, reducing PM2.5 and NO2 to 10 μg/m3 (World Health Organization limits) would save 87,000 (52,000-120,000) and 91,000 (37,000-145,000) deaths of populations aged ≥ 40 years, with 150 000 deaths occurred in disadvantaged neighborhood settings. These findings suggested that disadvantaged neighborhoods can exacerbate mortality risk associated with air pollution.
Collapse
Affiliation(s)
- Chengzhe Tao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhaoyin Liu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yun Fan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yiting Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ziyan Qiao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhi Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhe Lou
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Haowei Wang
- School of Public Health, Imperial College London, UK; MRC Centre for Global Infectious Disease Analysis and Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, UK
| | - Xiang Li
- School of Public Health, Imperial College London, UK; MRC Centre for Global Infectious Disease Analysis and Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, UK
| | - Ruiyun Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
33
|
Qiang N, Bao Y, Li Y, Zhang N, Zhou Y, Deng X, Han L, Ran J. Associations of long-term exposure to low-level PM 2.5 and brain disorders in 260,922 middle-aged and older adults. CHEMOSPHERE 2024; 362:142703. [PMID: 38925519 DOI: 10.1016/j.chemosphere.2024.142703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Long-term exposure to high-level ambient PM2.5 was associated with increased risks of brain disorders, while the associations remain uncertain when the exposure is lower than current air quality standards in numerous countries. This study aimed to assess the effects of PM2.5 exposure on the brain system in the population with annual mean concentrations ≤15 μg/m3. We analyzed data from 260,922 participants without preexisting brain diseases at baseline in the UK Biobank. The geographical distribution of PM2.5 in 2010 was estimated by a land use regression model and linked with individual residential address. We investigated associations of ambient PM2.5 with incident neurological (dementia, Parkinson's diseases [PD], epilepsy, and migraine) and psychiatric (major depressive disorder [MDD] and anxiety disorder) diseases through Cox proportional hazard models. We further estimated the links with brain imaging phenotypes by neuroimaging analysis. Results showed that in the population with PM2.5 concentrations ≤15 μg/m3, each interquartile range (IQR, 1.28 μg/m3) increment in PM2.5 was related to incidence risks of dementia, epilepsy, migraine, MDD, and anxiety disorder with hazard ratios of 1.08 (95% confidence interval [CI]: 1.03, 1.13), 1.12 (1.05, 1.20), 1.07 (1.00, 1.13), 1.06 (1.03, 1.09), and 1.05 (1.02, 1.08), respectively. We did not observe a significant association with PD. The association with dementia was stronger among the population with poor cardiovascular health (measured by Life's Essential 8) than the counterpart (P for interaction = 0.037). Likewise, per IQR increase was associated with specific brain imaging phenotypes, including volumes of total brain (β = -0.036; 95% CI: -0.050, -0.022), white matter (-0.030; -0.046, -0.014), grey matter (-0.030; -0.042, -0.017), respectively. The findings suggest long-term exposure to ambient PM2.5 at low-level still has an adverse impact on the neuro-psychiatric systems. The brain-relevant epidemiological assessment suggests that each country should update the standard for ambient PM2.5 following the World Health Organization Air Quality Guidelines 2021.
Collapse
Affiliation(s)
- Ne Qiang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yujia Bao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yongxuan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Na Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanqiu Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaobei Deng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lefei Han
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
34
|
Huang W, Xu H, Wu J, Ren M, Ke Y, Qiao J. Toward cleaner air and better health: Current state, challenges, and priorities. Science 2024; 385:386-390. [PMID: 39052781 DOI: 10.1126/science.adp7832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
The most up-to-date estimate of the global burden of disease indicates that ambient air pollution, including fine particulate matter and ozone, contributes to an estimated 5.2 million deaths each year. In this review, we highlight the challenges in estimating population exposure to air pollution and attributable health risks, particularly in low- and middle-income countries and among vulnerable populations. To protect public health, the evidence so far confirms urgent needs to prioritize interdisciplinary research on air pollution exposure and risk assessment and to develop evidence-based intervention policies and risk communication strategies. Here, we synthesize the emerging evidence supporting the monitoring and evaluation of the progress in implementation of the Global Air Quality Guidelines prepared by the World Health Organization.
Collapse
Affiliation(s)
- Wei Huang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Peking University Institute for Global Health, Beijing, China
| | - Hongbing Xu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Jing Wu
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Minghui Ren
- Peking University Institute for Global Health, Beijing, China
- Department of Global Health, Peking University School of Public Health, and China Center for Health Development Studies, Peking University, Beijing, China
| | - Yang Ke
- Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
35
|
Boogaard H, Crouse DL, Tanner E, Mantus E, van Erp AM, Vedal S, Samet J. Assessing Adverse Health Effects of Long-Term Exposure to Low Levels of Ambient Air Pollution: The HEI Experience and What's Next? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12767-12783. [PMID: 38991107 PMCID: PMC11270999 DOI: 10.1021/acs.est.3c09745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024]
Abstract
Although concentrations of ambient air pollution continue to decline in high-income regions, epidemiological studies document adverse health effects at levels below current standards in many countries. The Health Effects Institute (HEI) recently completed a comprehensive research initiative to investigate the health effects of long-term exposure to low levels of air pollution in the United States (U.S.), Canada, and Europe. We provide an overview and synthesis of the results of this initiative along with other key research, the strengths and limitations of the research, and remaining research needs. The three studies funded through the HEI initiative estimated the effects of long-term ambient exposure to fine particulate matter (PM2.5), nitrogen dioxide, ozone, and other pollutants on a broad range of health outcomes, including cause-specific mortality and cardiovascular and respiratory morbidity. To ensure high quality research and comparability across studies, HEI worked actively with the study teams and engaged independent expert panels for project oversight and review. All three studies documented positive associations between mortality and exposure to PM2.5 below the U.S. National Ambient Air Quality Standards and current and proposed European Union limit values. Furthermore, the studies observed nonthreshold linear (U.S.), or supra-linear (Canada and Europe) exposure-response functions for PM2.5 and mortality. Heterogeneity was found in both the magnitude and shape of this association within and across studies. Strengths of the studies included the large populations (7-69 million), state-of-the-art exposure assessment methods, and thorough statistical analyses that applied novel methods. Future work is needed to better understand potential sources of heterogeneity in the findings across studies and regions. Other areas of future work include the changing and evolving nature of PM components and sources, including wildfires, and the role of indoor environments. This research initiative provided important new evidence of the adverse effects of long-term exposures to low levels of air pollution at and below current standards, suggesting that further reductions could yield larger benefits than previously anticipated.
Collapse
Affiliation(s)
- Hanna Boogaard
- Health
Effects Institute, 75 Federal Street, Boston, Massachusetts 02110-1940, United States
| | - Dan L. Crouse
- Health
Effects Institute, 75 Federal Street, Boston, Massachusetts 02110-1940, United States
| | - Eva Tanner
- Health
Effects Institute, 75 Federal Street, Boston, Massachusetts 02110-1940, United States
| | - Ellen Mantus
- Health
Effects Institute, 75 Federal Street, Boston, Massachusetts 02110-1940, United States
| | - Annemoon M. van Erp
- Health
Effects Institute, 75 Federal Street, Boston, Massachusetts 02110-1940, United States
| | - Sverre Vedal
- Department
of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way N.E., Seattle, Washington 98105, United States
| | - Jonathan Samet
- Department
of Environmental & Occupational Health, Department of Epidemiology, Colorado School of Public Health, 13001 East 17th Place, Aurora, Colorado 80045, United States
| |
Collapse
|
36
|
Li C, Martin RV, van Donkelaar A. Understanding Reductions of PM 2.5 Concentration and Its Chemical Composition in the United States: Implications for Mitigation Strategies. ACS ES&T AIR 2024; 1:637-645. [PMID: 39021669 PMCID: PMC11251419 DOI: 10.1021/acsestair.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 07/20/2024]
Abstract
Motivated by the recent tightening of the US annual standard of fine particulate matter (PM2.5) concentrations from 12 to 9 μg/m3, there is a need to understand the spatial variation and drivers of historical PM2.5 reductions. We evaluate and interpret the variability of PM2.5 reductions across the contiguous US using high-resolution estimates of PM2.5 and its chemical composition over 1998-2019, inferred from satellite observations, air quality modeling, and ground-based measurements. We separated the 3092 counties into four characteristic regions sorted by PM2.5 trends. Region 1 (primarily Central Atlantic states, 25.9% population) exhibits the strongest population-weighted annual PM2.5 reduction (-3.6 ± 0.4%/yr) versus Region 2 (primarily rest of the eastern US, -3.0 ± 0.3%/yr, 39.7% population), Region 3 (primarily western Midwest, -1.9 ± 0.3%/yr, 25.6% population), and Region 4 (primarily the Mountain West, -0.4 ± 0.5%/yr, 8.9% population). Decomposition of these changes by chemical composition elucidates that sulfate exhibits the fastest reductions among all components in 2720 counties (76% of population), mostly over Regions 1-3, with the 1998-2019 mean sulfate mass fraction in PM2.5 decreasing from Region 1 (29.5%) to Region 4 (11.8%). Complete elimination of the remaining sulfate may be insufficient to meet the new standard for many regions in exceedance. Additional measures are needed to reduce other PM2.5 sources and components for further progress.
Collapse
Affiliation(s)
- Chi Li
- Department of Energy, Environmental
& Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Randall V. Martin
- Department of Energy, Environmental
& Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Aaron van Donkelaar
- Department of Energy, Environmental
& Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
37
|
Kuntic M, Hahad O, Al-Kindi S, Oelze M, Lelieveld J, Daiber A, Münzel T. Pathomechanistic Synergy Between Particulate Matter and Traffic Noise-Induced Cardiovascular Damage and the Classical Risk Factor Hypertension. Antioxid Redox Signal 2024. [PMID: 38874533 DOI: 10.1089/ars.2024.0659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Affiliation(s)
- Marin Kuntic
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Omar Hahad
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Sadeer Al-Kindi
- Cardiovascular Prevention & Wellness and Center for CV Computational & Precision Health, Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, USA
| | - Matthias Oelze
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| |
Collapse
|
38
|
Wei X, Ho KF, Yu T, Lin C, Chang LY, Chen D, Tam T, Huang B, Lau AKH, Lao XQ. The joint effect of long-term exposure to multiple air pollutants on non-accidental and cause-specific mortality: A longitudinal cohort study. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134507. [PMID: 38718510 DOI: 10.1016/j.jhazmat.2024.134507] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The long-term joint impacts of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) on mortality are inconclusive. To bridge this research gap, we included 283,568 adults from the Taiwan MJ cohort between 2005 and 2016 and linked with the mortality data until 31 May 2019. Participants' annual average exposures to PM2.5, NO2, and O3 were estimated using satellite-based spatial-temporal models. We applied elastic net-regularised Cox models to construct a weighted environmental risk score (WERS) for the joint effects of three pollutants on non-accidental, cardiovascular, and cancer mortality and evaluated the contribution of each pollutant. The three pollutants jointly raised non-accidental mortality risk with a WERS hazard ratio (HR) of 1.186 (95% CI: 1.118-1.259) per standard deviation increase in each pollutant and weights of 72.8%, 15.2%, and 12.0% for PM2.5, NO2, and O3, respectively. The WERS increased cardiovascular death risk [HR: 1.248 (1.042-1.496)], with PM2.5 as the first contributor and O3 as the second. The WERS also elevated the cancer death risk [HR: 1.173 (1.083-1.270)], where PM2.5 played the dominant role and NO2 ranked second. Coordinated control of these three pollutants can optimise the health benefits of air quality improvements.
Collapse
Affiliation(s)
- Xianglin Wei
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Kin Fai Ho
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Tsung Yu
- Department of Public Health, College of Medicine, National Cheng Kung University, Taiwan
| | - Changqing Lin
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region of China
| | - Ly-Yun Chang
- Institute of Sociology, Academia Sinica, Taipei, Taiwan
| | - Dezhong Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Tony Tam
- Department of Sociology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Bo Huang
- Department of Geography, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Alexis K H Lau
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region of China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region of China
| | - Xiang Qian Lao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
39
|
Zhang J, Ai B, Guo Y, Chen L, Chen G, Li H, Lin H, Zhang Z. Long-term exposure to ambient ozone and adult-onset asthma: A prospective cohort study. ENVIRONMENTAL RESEARCH 2024; 252:118962. [PMID: 38642637 DOI: 10.1016/j.envres.2024.118962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND The association between long-term exposure to ozone (O3) and adult-onset asthma (AOA) remains inconclusive, and analysis of causality is lacking. OBJECTIVES To examine the causal association between long-term O3 exposure and AOA. METHODS A prospective cohort study of 362,098 participants was conducted using the UK Biobank study. Incident cases of AOA were identified using health administrative data of the National Health Services. O3 exposure at participants' residential addresses was estimated by a spatio-temporal model. Instrumental variable (IV) modelling was used to analyze the causal association between O3 exposure and AOA, by incorporating wind speed and planetary boundary layer height as IVs into time-dependent Cox model. Negative control outcome (accidental injury) was also used to additionally evaluate unmeasured confounding. RESULTS During a mean follow-up of 11.38 years, a total of 10,973 incident AOA cases were identified. A U-shaped concentration-response relationship was observed between O3 exposure and AOA in the traditional Cox models with HR of 0.916 (95% CI: 0.888, 0.945) for O3 at low levels (<38.17 ppb), and 1.204 (95% CI: 1.168, 1.242) for O3 at high levels (≥38.17 ppb). However, in the IV analysis we only found a statistically significant association between high-level O3 exposure and AOA risk, but not for low-level O3 exposure. No significant associations between O3 exposure and accidental injury were observed. CONCLUSION Our findings suggest a potential causal relationship between long-term exposure to high-level ambient O3 and increased risks of AOA.
Collapse
Affiliation(s)
- Jiayue Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Baozhuo Ai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Lan Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ge Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haitao Li
- Department of Social Medicine and Health Service Management, Health Science Center, Shenzhen University, Shenzhen, 518055, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Zilong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
40
|
Link MF, Robertson RL, Shore A, Hamadani BH, Cecelski CE, Poppendieck DG. Ozone generation and chemistry from 222 nm germicidal ultraviolet light in a fragrant restroom. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1090-1106. [PMID: 38787731 PMCID: PMC11421862 DOI: 10.1039/d4em00144c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Devices using 222 nm germicidal ultraviolet light (GUV222) have been marketed to reduce virus transmission indoors with low risk of occupant harm from direct UV exposure. GUV222 generates ozone, an indoor air pollutant and oxidant, under constrained laboratory conditions, but the chemistry byproducts of GUV222-generated ozone in real indoor spaces is uncharacterized. We deployed GUV222 in a public restroom, with an air change rate of 1 h-1 one weekend and 2 h-1 the next, to measure ozone formation and byproducts generated from ozone chemistry indoors. Ozone from GUV222 increased background concentrations by 5 ppb on average for both weekends and reacted rapidly (e.g., at rates of 3.7 h-1 for the first weekend and 2.0 h-1 for the second) with gas-phase precursors emitted by urinal screens and on surfaces. These ozone reactions generated volatile organic compound and aerosol byproducts (e.g., up to 2.6 μg m-3 of aerosol mass). We find that GUV222 is enhancing indoor chemistry by at least a factor of two for this restroom. The extent of this enhanced chemistry will likely be different for different indoor spaces and is dependent upon ventilation rates, species and concentrations of precursor VOCs, and surface reactivity. Informed by our measurements of ozone reactivity and background aerosol concentrations, we present a framework for predicting aerosol byproduct formation from GUV222 that can be extended to other indoor spaces. Further research is needed to understand how typical uses of GUV222 could impact air quality in chemically diverse indoor spaces and generate indoor air chemistry byproducts that can affect human health.
Collapse
Affiliation(s)
- Michael F Link
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| | - Rileigh L Robertson
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| | - Andrew Shore
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| | - Behrang H Hamadani
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| | | | | |
Collapse
|
41
|
Karimi B, Samadi S. Long-term exposure to air pollution on cardio-respiratory, and lung cancer mortality: a systematic review and meta-analysis. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:75-95. [PMID: 38887768 PMCID: PMC11180069 DOI: 10.1007/s40201-024-00900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 04/02/2024] [Indexed: 06/20/2024]
Abstract
Air pollution is a major cause of specific deaths worldwide. This review article aimed to investigate the results of cohort studies for air pollution connected with the all-cause, cardio-respiratory, and lung cancer mortality risk by performing a meta-analysis. Relevant cohort studies were searched in electronic databases (PubMed/Medline, Web of Science, and Scopus). We used a random effect model to estimate the pooled relative risks (RRs) and their 95% CIs (confidence intervals) of mortality. The risk of bias for each included study was also assessed by Office of Health Assessment and Translation (OHAT) checklists. We applied statistical tests for heterogeneity and sensitivity analyses. The registration code of this study in PROSPERO was CRD42023422945. A total of 88 cohort studies were eligible and included in the final analysis. The pooled relative risk (RR) per 10 μg/m3 increase of fine particulate matter (PM2.5) was 1.080 (95% CI 1.068-1.092) for all-cause mortality, 1.058 (95% CI 1.055-1.062) for cardiovascular mortality, 1.066 (95%CI 1.034-1.097) for respiratory mortality and 1.118 (95% CI 1.076-1.159) for lung cancer mortality. We observed positive increased associations between exposure to PM2.5, PM10, black carbon (BC), and nitrogen dioxide (NO2) with all-cause, cardiovascular and respiratory diseases, and lung cancer mortality, but the associations were not significant for nitrogen oxides (NOx), sulfur dioxide (SO2) and ozone (O3). The risk of mortality for males and the elderly was higher compared to females and younger age. The pooled effect estimates derived from cohort studies provide substantial evidence of adverse air pollution associations with all-cause, cardiovascular, respiratory, and lung cancer mortality. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-024-00900-6.
Collapse
Affiliation(s)
- Behrooz Karimi
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Sadegh Samadi
- Department of Occupational Health and safety, School of Health, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
42
|
Nobile F, Dimakopoulou K, Åström C, Coloma F, Dadvand P, de Bont J, de Hoogh K, Ibi D, Katsouyanni K, Ljungman P, Melén E, Nieuwenhuijsen M, Pickford R, Sommar JN, Tonne C, Vermeulen RCH, Vienneau D, Vlaanderen JJ, Wolf K, Samoli E, Stafoggia M. External exposome and all-cause mortality in European cohorts: the EXPANSE project. FRONTIERS IN EPIDEMIOLOGY 2024; 4:1327218. [PMID: 38863881 PMCID: PMC11165119 DOI: 10.3389/fepid.2024.1327218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Background Many studies reported associations between long-term exposure to environmental factors and mortality; however, little is known on the combined effects of these factors and health. We aimed to evaluate the association between external exposome and all-cause mortality in large administrative and traditional adult cohorts in Europe. Methods Data from six administrative cohorts (Catalonia, Greece, Rome, Sweden, Switzerland and the Netherlands, totaling 27,913,545 subjects) and three traditional adult cohorts (CEANS-Sweden, EPIC-NL-the Netherlands, KORA-Germany, totaling 57,653 participants) were included. Multiple exposures were assigned at the residential addresses, and were divided into three a priori defined domains: (1) air pollution [fine particulate matter (PM2.5), nitrogen dioxide (NO₂), black carbon (BC) and warm-season Ozone (warm-O3)]; (2) land/built environment (Normalized Difference Vegetation Index-NDVI, impervious surfaces, and distance to water); (3) air temperature (cold- and warm-season mean and standard deviation). Each domain was synthesized through Principal Component Analysis (PCA), with the aim of explaining at least 80% of its variability. Cox proportional-hazards regression models were applied and the total risk of the external exposome was estimated through the Cumulative Risk Index (CRI). The estimates were adjusted for individual- and area-level covariates. Results More than 205 million person-years at risk and more than 3.2 million deaths were analyzed. In single-component models, IQR increases of the first principal component of the air pollution domain were associated with higher mortality [HRs ranging from 1.011 (95% CI: 1.005-1.018) for the Rome cohort to 1.076 (1.071-1.081) for the Swedish cohort]. In contrast, lower levels of the first principal component of the land/built environment domain, pointing to reduced vegetation and higher percentage of impervious surfaces, were associated with higher risks. Finally, the CRI of external exposome increased mortality for almost all cohorts. The associations found in the traditional adult cohorts were generally consistent with the results from the administrative ones, albeit without reaching statistical significance. Discussion Various components of the external exposome, analyzed individually or in combination, were associated with increased mortality across European cohorts. This sets the stage for future research on the connections between various exposure patterns and human health, aiding in the planning of healthier cities.
Collapse
Affiliation(s)
- Federica Nobile
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Konstantina Dimakopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christofer Åström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Fabián Coloma
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Payam Dadvand
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jeroen de Bont
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kees de Hoogh
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Dorina Ibi
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Danderyd Hospital, Stockholm, Sweden
| | - Erik Melén
- Department of Clinical Sciences and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachś Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Regina Pickford
- Institute of Epidemiology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Johan Nilsson Sommar
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Cathryn Tonne
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Roel C. H. Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Danielle Vienneau
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jelle J. Vlaanderen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Kathrin Wolf
- Institute of Epidemiology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
Feng H, Yang Y, Ye H, Xu J, Zhao M, Jin Y, Zhang S. Associations between PM 2.5 Components and Mortality of Ischemic Stroke, Chronic Obstructive Pulmonary Disease and Diabetes in Beijing, China. TOXICS 2024; 12:381. [PMID: 38922061 PMCID: PMC11209520 DOI: 10.3390/toxics12060381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Abstract
Ischemic stroke (IS), chronic obstructive pulmonary disease (COPD) and diabetes mellitus (DM) account for a large burden of premature deaths. However, few studies have investigated the associations between fine particular matter (PM2.5) components and mortality of IS, COPD and DM. We aimed to examine these associations in Beijing, China. Data on daily mortality, air pollutants and meteorological factors from 2008 to 2011 in Beijing were collected. Daily concentrations of five PM2.5 components, namely, sulfate ion (SO42-), ammonium ion (NH4+), nitrate ion (NO3-), organic matter (OM) and black carbon (BC), were obtained from the Tracking Air Pollution (TAP) database in China. The association between PM2.5 components and daily deaths was explored using a quasi-Poisson regression with the distributed lag nonlinear model (DLNM). The average daily concentrations of SO42-, NH4+, NO3-, OM and BC were 11.24, 8.37, 12.00, 17.34 and 3.32 μg/m3, respectively. After adjusting for temperature, relative humidity, pressure, particulate matter less than 10 μm in aerodynamic diameter (PM10), nitrogen dioxide (NO2) and sulfur dioxide (SO2), an IQR increase in OM at lag day 2 and lag day 6 was associated with an increased DM mortality risk (RR 1.038; 95% CI: 1.005-1.071) and COPD mortality risk (RR 1.013; 95% CI: 1.001-1.026). An IQR increase in BC at lag day 0 and lag day 6 was associated with increased COPD mortality risk (RR 1.228; 95% CI: 1.017-1.48, RR 1.059; 95% CI: 1.001-1.121). Cumulative exposure to SO42- and NH4+ was associated with an increased mortality risk for IS, with the highest effect found for lag of 0-7 days (RR 1.085; 95% CI: 1.010-1.167, RR 1.083; 95% CI: 1.003-1.169). These effects varied by sex and age group. This study demonstrated associations of short-term exposure to PM2.5 components with increased risk of IS, COPD and DM mortality in the general population. Our study also highlighted susceptible subgroups.
Collapse
Affiliation(s)
- Hao Feng
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China;
| | - Yisen Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; (Y.Y.); (H.Y.); (J.X.); (M.Z.)
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Hong Ye
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; (Y.Y.); (H.Y.); (J.X.); (M.Z.)
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; (Y.Y.); (H.Y.); (J.X.); (M.Z.)
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; (Y.Y.); (H.Y.); (J.X.); (M.Z.)
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Ye Jin
- Center for Digital Medicine and Artificial Intelligence, Institute of Clinical Medicine, Peking Union Medical College Hospital, Beijing 100730, China
- Department of Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Shuyang Zhang
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China;
- Department of Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
44
|
Cheng SL, Hedges M, Keski-Rahkonen P, Chatziioannou AC, Scalbert A, Chung KF, Sinharay R, Green DC, de Kok TMCM, Vlaanderen J, Kyrtopoulos SA, Kelly F, Portengen L, Vineis P, Vermeulen RCH, Chadeau-Hyam M, Dagnino S. Multiomic Signatures of Traffic-Related Air Pollution in London Reveal Potential Short-Term Perturbations in Gut Microbiome-Related Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8771-8782. [PMID: 38728551 PMCID: PMC11112755 DOI: 10.1021/acs.est.3c09148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
This randomized crossover study investigated the metabolic and mRNA alterations associated with exposure to high and low traffic-related air pollution (TRAP) in 50 participants who were either healthy or were diagnosed with chronic pulmonary obstructive disease (COPD) or ischemic heart disease (IHD). For the first time, this study combined transcriptomics and serum metabolomics measured in the same participants over multiple time points (2 h before, and 2 and 24 h after exposure) and over two contrasted exposure regimes to identify potential multiomic modifications linked to TRAP exposure. With a multivariate normal model, we identified 78 metabolic features and 53 mRNA features associated with at least one TRAP exposure. Nitrogen dioxide (NO2) emerged as the dominant pollutant, with 67 unique associated metabolomic features. Pathway analysis and annotation of metabolic features consistently indicated perturbations in the tryptophan metabolism associated with NO2 exposure, particularly in the gut-microbiome-associated indole pathway. Conditional multiomics networks revealed complex and intricate mechanisms associated with TRAP exposure, with some effects persisting 24 h after exposure. Our findings indicate that exposure to TRAP can alter important physiological mechanisms even after a short-term exposure of a 2 h walk. We describe for the first time a potential link between NO2 exposure and perturbation of the microbiome-related pathways.
Collapse
Affiliation(s)
- Sibo Lucas Cheng
- NIHR
HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, U.K.
- MRC
Centre for Environment and Health, Department of Epidemiology and
Biostatistics, School of Public Health, Imperial College London, London W12 7TA, U.K.
| | - Michael Hedges
- MRC
Centre for Environment and Health, Environmental Research Group, Imperial College London, London W12 0BZ, U.K.
| | | | | | - Augustin Scalbert
- International
Agency for Research on Cancer (IARC), Lyon 69366 Cedex, France
| | - Kian Fan Chung
- National
Heart & Lung Institute, Imperial College
London, London SW7 2AZ, U.K.
- Royal Brompton
& Harefield NHS Trust, London SW3 6NP, U.K.
| | - Rudy Sinharay
- National
Heart & Lung Institute, Imperial College
London, London SW7 2AZ, U.K.
- Imperial
College Healthcare NHS Trust, London W2 1NY, U.K.
| | - David C. Green
- NIHR
HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, U.K.
- MRC
Centre for Environment and Health, Environmental Research Group, Imperial College London, London W12 0BZ, U.K.
| | - Theo M. C. M. de Kok
- Department
of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University, Maastricht 6229 ER, The Netherlands
| | - Jelle Vlaanderen
- Division
of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht 3584 CS, The Netherlands
| | | | - Frank Kelly
- NIHR
HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, U.K.
- MRC
Centre for Environment and Health, Environmental Research Group, Imperial College London, London W12 0BZ, U.K.
| | - Lützen Portengen
- Division
of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht 3584 CS, The Netherlands
| | - Paolo Vineis
- MRC
Centre for Environment and Health, Department of Epidemiology and
Biostatistics, School of Public Health, Imperial College London, London W12 7TA, U.K.
| | - Roel C. H. Vermeulen
- Division
of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht 3584 CS, The Netherlands
- Julius Centre for Health Sciences and Primary Care, University
Medical
Centre, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Marc Chadeau-Hyam
- NIHR
HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, U.K.
- MRC
Centre for Environment and Health, Department of Epidemiology and
Biostatistics, School of Public Health, Imperial College London, London W12 7TA, U.K.
| | - Sonia Dagnino
- MRC
Centre for Environment and Health, Department of Epidemiology and
Biostatistics, School of Public Health, Imperial College London, London W12 7TA, U.K.
- Transporters
in Imaging and Radiotherapy in Oncology (TIRO), School
of Medicine, Direction de la Recherche Fondamentale (DRF), Institut
des Sciences du Vivant Fréderic Joliot, Commissariat à
l’Energie Atomique et aux Énergies Alternatives (CEA), Université Côte d’Azur (UniCA), Nice 06107, France
| |
Collapse
|
45
|
Cummins MR, Shishupal S, Wong B, Wan N, Han J, Johnny JD, Mhatre-Owens A, Gouripeddi R, Ivanova J, Ong T, Soni H, Barrera J, Wilczewski H, Welch BM, Bunnell BE. Travel Distance Between Participants in US Telemedicine Sessions With Estimates of Emissions Savings: Observational Study. J Med Internet Res 2024; 26:e53437. [PMID: 38536065 PMCID: PMC11137427 DOI: 10.2196/53437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/22/2023] [Accepted: 01/26/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Digital health and telemedicine are potentially important strategies to decrease health care's environmental impact and contribution to climate change by reducing transportation-related air pollution and greenhouse gas emissions. However, we currently lack robust national estimates of emissions savings attributable to telemedicine. OBJECTIVE This study aimed to (1) determine the travel distance between participants in US telemedicine sessions and (2) estimate the net reduction in carbon dioxide (CO2) emissions attributable to telemedicine in the United States, based on national observational data describing the geographical characteristics of telemedicine session participants. METHODS We conducted a retrospective observational study of telemedicine sessions in the United States between January 1, 2022, and February 21, 2023, on the doxy.me platform. Using Google Distance Matrix, we determined the median travel distance between participating providers and patients for a proportional sample of sessions. Further, based on the best available public data, we estimated the total annual emissions costs and savings attributable to telemedicine in the United States. RESULTS The median round trip travel distance between patients and providers was 49 (IQR 21-145) miles. The median CO2 emissions savings per telemedicine session was 20 (IQR 8-59) kg CO2). Accounting for the energy costs of telemedicine and US transportation patterns, among other factors, we estimate that the use of telemedicine in the United States during the years 2021-2022 resulted in approximate annual CO2 emissions savings of 1,443,800 metric tons. CONCLUSIONS These estimates of travel distance and telemedicine-associated CO2 emissions costs and savings, based on national data, indicate that telemedicine may be an important strategy in reducing the health care sector's carbon footprint.
Collapse
Affiliation(s)
- Mollie R Cummins
- College of Nursing, University of Utah, Salt Lake City, UT, United States
- Spencer Fox Eccles School of Medicine, Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, United States
- Doxy.me Inc, Charleston, SC, United States
| | - Sukrut Shishupal
- Spencer Fox Eccles School of Medicine, Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, United States
| | - Bob Wong
- College of Nursing, University of Utah, Salt Lake City, UT, United States
| | - Neng Wan
- Department of Geography, University of Utah, Salt Lake City, UT, United States
| | - Jiuying Han
- Department of Geography, University of Utah, Salt Lake City, UT, United States
| | - Jace D Johnny
- College of Nursing, University of Utah, Salt Lake City, UT, United States
| | - Amy Mhatre-Owens
- College of Nursing, University of Utah, Salt Lake City, UT, United States
| | - Ramkiran Gouripeddi
- Spencer Fox Eccles School of Medicine, Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, United States
| | | | - Triton Ong
- Doxy.me Inc, Charleston, SC, United States
| | - Hiral Soni
- Doxy.me Inc, Charleston, SC, United States
| | - Janelle Barrera
- Doxy.me Inc, Charleston, SC, United States
- Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Salt Lake City, UT, United States
| | | | - Brandon M Welch
- Doxy.me Inc, Charleston, SC, United States
- Medical University of South Carolina, Charleston, SC, United States
| | - Brian E Bunnell
- Doxy.me Inc, Charleston, SC, United States
- Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Salt Lake City, UT, United States
| |
Collapse
|
46
|
Song J, Wang BH, Gao Y, Chen Y, Sun X, Zhang Z, Wu IXY, Dai W. Interaction of physical activity and low-level air pollution on cardiovascular disease: a prospective cohort study in UK Biobank. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:188. [PMID: 38696021 DOI: 10.1007/s10653-024-01922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/19/2024] [Indexed: 06/17/2024]
Abstract
To investigate the associations of physical activity (PA), low-level air pollution, and interaction on cardiovascular diseases (CVD) incidence based on the UK Biobank. PA was measured by the International Physical Activity Questionnaire and five air pollutants were estimated using Land Use Regression. All association estimates were based on Cox regression. Dose-response relationship was explored by restricted cubic spline, while multiplicative and additive interaction were examined by Pinteraction and relative excess risk due to interaction (RERI). As deviating proportional hazards assumption, we analyzed data as follow-up < 4 years and ≥ 4 years, separately. PA with 1000-4000 Metabolic Equivalent Task (MET) min/week showed the strongest protective impact on CVD incidence, while only low-level nitrogen dioxides (NO2) showed negative impact among five air pollutants and was considered for further analysis. Multiplicative interaction between PA and NO2 was observed during ≥ 4 years follow-up (Pinteraction = 0.049) while not during < 4 years (Pinteraction = 0.290). Positive additive interactions were found for high PA and low NO2 (< 20 μg/m3) group (RERI: 0.07, 95% confidence intervals: 0.02-0.11) during < 4 years, and for moderate PA with NO2 at 40- μg/m3 (0.07, 0.02-0.13) and < 20 μg/m3 (0.07, 0.02-0.12), while high PA showed similar results with NO2 at 40-, 20- and < 20 μg/m3 during ≥ 4 years. PA about 1000-4000 METs min/week showed the lowest CVD risk. Possibility of interaction with PA and NO2 is more likely to present with the increase in follow-up duration. We call for the optimal thresholds of PA, and exploring interaction thoroughly by considering types of PA.
Collapse
Affiliation(s)
- Jinlu Song
- Xiangya School of Public Health, Central South University, 4/F, Xiangya School of Public Health, No.172, Tongzipo Road, Yuelu District, Changsha, Hunan, China
| | - Betty H Wang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong
| | - Yinyan Gao
- Xiangya School of Public Health, Central South University, 4/F, Xiangya School of Public Health, No.172, Tongzipo Road, Yuelu District, Changsha, Hunan, China
| | - Yancong Chen
- Xiangya School of Public Health, Central South University, 4/F, Xiangya School of Public Health, No.172, Tongzipo Road, Yuelu District, Changsha, Hunan, China
- Changsha Center for Disease Control and Prevention, Changsha, Hunan, China
| | - Xuemei Sun
- Xiangya School of Public Health, Central South University, 4/F, Xiangya School of Public Health, No.172, Tongzipo Road, Yuelu District, Changsha, Hunan, China
| | - Zixuan Zhang
- Xiangya School of Public Health, Central South University, 4/F, Xiangya School of Public Health, No.172, Tongzipo Road, Yuelu District, Changsha, Hunan, China
- Changsha Center for Disease Control and Prevention, Changsha, Hunan, China
| | - Irene X Y Wu
- Xiangya School of Public Health, Central South University, 4/F, Xiangya School of Public Health, No.172, Tongzipo Road, Yuelu District, Changsha, Hunan, China.
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, Hunan, China.
| | - Wenjie Dai
- Xiangya School of Public Health, Central South University, 4/F, Xiangya School of Public Health, No.172, Tongzipo Road, Yuelu District, Changsha, Hunan, China.
| |
Collapse
|
47
|
Liu J, He C, Si Y, Li B, Wu Q, Ni J, Zhao Y, Hu Q, Du S, Lu Z, Jin J, Xu C. Toward Better and Healthier Air Quality: Global PM 2.5 and O 3 Pollution Status and Risk Assessment Based on the New WHO Air Quality Guidelines for 2021. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300258. [PMID: 38617028 PMCID: PMC11009431 DOI: 10.1002/gch2.202300258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/14/2023] [Indexed: 04/16/2024]
Abstract
To reduce the high burden of disease caused by air pollution, the World Health Organization (WHO) released new Air Quality Guidelines (AQG) on September 22, 2021. In this study, the daily fine particulate matter (PM2.5) and surface ozone (O3) data of 618 cities around the world is collected from 2019 to 2022. Based on the new AQG, the number of attainment days for daily average concentrations of PM2.5 (≤ 15 µg m-3) and O3 (≤ 100 µg m-3) is approximately 10% and 90%, respectively. China and India exhibit a decreasing trend in the number of highly polluted days (> 75 µg m-3) for PM. Every year over 68% and 27% of cities in the world are exposed to harmful PM2.5 (> 35 µg m-3) and O3 (> 100 µg m-3) pollution, respectively. Combined with the United Nations Sustainable Development Goals (SDGs), it is found that more than 35% of the world's cities face PM2.5-O3 compound pollution. Furthermore, the exposure risks in these cities (China, India, etc.) are mainly categorized as "High Risk", "Risk", and "Stabilization". In contrast, economically developed cities are mainly categorized as "High Safety", "Safety", and "Deep Stabilization." These findings indicate that global implementation of the WHO's new AQG will minimize the inequitable exposure risk from air pollution.
Collapse
Affiliation(s)
- Jianhua Liu
- College of Resources and EnvironmentYangtze UniversityWuhan430100China
- Hubei Key Laboratory of Petroleum Geochemistry and EnvironmentYangtze UniversityWuhan430100China
| | - Chao He
- College of Resources and EnvironmentYangtze UniversityWuhan430100China
- Hubei Key Laboratory of Petroleum Geochemistry and EnvironmentYangtze UniversityWuhan430100China
| | - Yajun Si
- College of Water Resources and Architectural EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Bin Li
- College of Resources and EnvironmentYangtze UniversityWuhan430100China
- Hubei Key Laboratory of Petroleum Geochemistry and EnvironmentYangtze UniversityWuhan430100China
| | - Qian Wu
- School of Resource and Environmental ScienceWuhan UniversityWuhanHubei430079China
| | - Jinmian Ni
- College of Resources and EnvironmentYangtze UniversityWuhan430100China
- Hubei Key Laboratory of Petroleum Geochemistry and EnvironmentYangtze UniversityWuhan430100China
| | - Yue Zhao
- College of Resources and EnvironmentYangtze UniversityWuhan430100China
- Hubei Key Laboratory of Petroleum Geochemistry and EnvironmentYangtze UniversityWuhan430100China
| | - Qixin Hu
- College of Resources and EnvironmentYangtze UniversityWuhan430100China
- Hubei Key Laboratory of Petroleum Geochemistry and EnvironmentYangtze UniversityWuhan430100China
| | - Shenwen Du
- College of Resources and EnvironmentYangtze UniversityWuhan430100China
- Hubei Key Laboratory of Petroleum Geochemistry and EnvironmentYangtze UniversityWuhan430100China
| | - Zhendong Lu
- Interdisciplinary Graduate Program in InformaticsThe University of IowaIowa CityIA52242USA
| | - Jiming Jin
- College of Resources and EnvironmentYangtze UniversityWuhan430100China
- Hubei Key Laboratory of Petroleum Geochemistry and EnvironmentYangtze UniversityWuhan430100China
| | - Chao Xu
- College of Resource and EnvironmentXinjiang Agricultural UniversityUrumqi830052China
- Xinjiang Key Laboratory of Soil and Plant Ecological ProcessesUrumqi830052China
| |
Collapse
|
48
|
Shen Y, de Hoogh K, Schmitz O, Clinton N, Tuxen-Bettman K, Brandt J, Christensen JH, Frohn LM, Geels C, Karssenberg D, Vermeulen R, Hoek G. Monthly average air pollution models using geographically weighted regression in Europe from 2000 to 2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170550. [PMID: 38320693 DOI: 10.1016/j.scitotenv.2024.170550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/02/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Detailed spatial models of monthly air pollution levels at a very fine spatial resolution (25 m) can help facilitate studies to explore critical time-windows of exposure at intermediate term. Seasonal changes in air pollution may affect both levels and spatial patterns of air pollution across Europe. We built Europe-wide land-use regression (LUR) models to estimate monthly concentrations of regulated air pollutants (NO2, O3, PM10 and PM2.5) between 2000 and 2019. Monthly average concentrations were collected from routine monitoring stations. Including both monthly-fixed and -varying spatial variables, we used supervised linear regression (SLR) to select predictors and geographically weighted regression (GWR) to estimate spatially-varying regression coefficients for each month. Model performance was assessed with 5-fold cross-validation (CV). We also compared the performance of the monthly LUR models with monthly adjusted concentrations. Results revealed significant monthly variations in both estimates and model structure, particularly for O3, PM10, and PM2.5. The 5-fold CV showed generally good performance of the monthly GWR models across months and years (5-fold CV R2: 0.31-0.66 for NO2, 0.4-0.79 for O3, 0.4-0.78 for PM10, 0.46-0.87 for PM2.5). Monthly GWR models slightly outperformed monthly-adjusted models. Correlations between monthly GWR model were generally moderate to high (Pearson correlation >0.6). In conclusion, we are the first to develop robust monthly LUR models for air pollution in Europe. These monthly LUR models, at a 25 m spatial resolution, enhance epidemiologists to better characterize Europe-wide intermediate-term health effects related to air pollution, facilitating investigations into critical exposure time windows in birth cohort studies.
Collapse
Affiliation(s)
- Youchen Shen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Kees de Hoogh
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Oliver Schmitz
- Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
| | - Nick Clinton
- Google, Inc, Mountain View, California, United States
| | | | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | | | - Lise M Frohn
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Camilla Geels
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Derek Karssenberg
- Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Julius Centre for Health Sciences and Primary Care, University Medical Centre, Utrecht University, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
49
|
Lim YH, Bilsteen JF, Mortensen LH, Lanzky LRM, Zhang J, Tuffier S, Brandt J, Ketzel M, Flensborg-Madsen T, Wimmelmann CL, Okholm GT, Hegelund ER, Napolitano GM, Andersen ZJ, Loft S. Lifetime exposure to air pollution and academic achievement: A nationwide cohort study in Denmark. ENVIRONMENT INTERNATIONAL 2024; 185:108500. [PMID: 38430583 DOI: 10.1016/j.envint.2024.108500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 03/04/2024]
Abstract
Recent research suggests a link between air pollution and cognitive development in children, and studies on air pollution and academic achievement are emerging. We conducted a nationwide cohort study in Denmark to explore the associations between lifetime exposure to air pollution and academic performance in 9th grade. The study encompassed 785,312 children born in Denmark between 1989 and 2005, all of whom completed 9th-grade exit examinations. Using linear mixed models with a random intercept for each school, we assessed the relationship between 16 years of exposure to PM2.5, PM10, and gaseous pollutants and Grade Point Averages (GPA) in exit examinations, covering subjects such as Danish literature, Danish writing, English, mathematics, and natural sciences. The study revealed that a 5 µg/m3 increase in PM2.5 and PM10 was associated with a decrease of 0.99 (95 % Confidence Intervals: -1.05, -0.92) and 0.46 (-0.50, -0.41) in GPA, respectively. Notably, these negative associations were more pronounced in mathematics and natural sciences compared to language-related subjects. Additionally, girls and children with non-Danish mothers were found to be particularly susceptible to the adverse effects of air pollution exposure. These results underscore the potential long-term consequences of air pollution on academic achievement, emphasizing the significance of interventions that foster healthier environments for children's cognitive development.
Collapse
Affiliation(s)
- Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Josephine Funck Bilsteen
- Ministry of Children and Education, National Agency for Education and Quality, Copenhagen, Denmark
| | | | | | - Jiawei Zhang
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Stéphane Tuffier
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Brandt
- Department of Environmental Science, Faculty of Technical Sciences, Aarhus University, Roskilde, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Faculty of Technical Sciences, Aarhus University, Roskilde, Denmark; Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, United Kingdom
| | - Trine Flensborg-Madsen
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | | | - Gunhild Tidemann Okholm
- Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Frederiksberg, Denmark
| | | | - George Maria Napolitano
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Zorana Jovanovic Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Loft
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
Guyatt AL, Cai YS, Doiron D, Tobin MD, Hansell AL. Air pollution, lung function and mortality: survival and mediation analyses in UK Biobank. ERJ Open Res 2024; 10:00093-2024. [PMID: 38686181 PMCID: PMC11057504 DOI: 10.1183/23120541.00093-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 05/02/2024] Open
Abstract
Background Air pollution is associated with lower lung function, and both are associated with premature mortality and cardiovascular disease (CVD). Evidence remains scarce on the potential mediating effect of impaired lung function on the association between air pollution and mortality or CVD. Methods We used data from UK Biobank (n∼200 000 individuals) with 8-year follow-up to mortality and incident CVD. Exposures to particulate matter <10 µm (PM10), particulate matter <2.5 µm (PM2.5) and nitrogen dioxide (NO2) were assessed by land-use regression modelling. Lung function (forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and the FEV1/FVC ratio) was measured between 2006 and 2010 and transformed to Global Lung Function Initiative (GLI) z-scores. Adjusted Cox proportional hazards and causal proportional hazards mediation analysis models were fitted, stratified by smoking status. Results Lower FEV1 and FVC were associated with all-cause and CVD mortality, and incident CVD, with larger estimates in ever- than never-smokers (all-cause mortality hazard ratio per FEV1 GLI z-score decrease 1.29 (95% CI 1.24-1.34) for ever-smokers and 1.16 (95% CI 1.12-1.21) for never-smokers). Long-term exposure to PM2.5 or NO2 was associated with incident CVD, with similar effect sizes for ever- and never-smokers. Mediated proportions of the air pollution-all-cause mortality estimates driven by FEV1 were 18% (95% CI 2-33%) for PM2.5 and 27% (95% CI 3-51%) for NO2. Corresponding mediated proportions for incident CVD were 9% (95% CI 4-13%) for PM2.5 and 16% (95% CI 6-25%) for NO2. Conclusions Lung function may mediate a modest proportion of associations between air pollution and mortality and CVD outcomes. Results likely reflect the extent of either shared mechanisms or direct effects relating to lower lung function caused by air pollution.
Collapse
Affiliation(s)
- Anna L. Guyatt
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- These authors are joint first authors
| | - Yutong Samuel Cai
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
- National Institute for Health and Care Research Health Protection Research Unit in Environmental Exposures and Health, University of Leicester, Leicester, UK
- National Institute for Health and Care Research Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust, Research & Innovation, Leicester General Hospital, Leicester, UK
- These authors are joint first authors
| | - Dany Doiron
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University, Montréal, QC, Canada
| | - Martin D. Tobin
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- National Institute for Health and Care Research Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust, Research & Innovation, Leicester General Hospital, Leicester, UK
| | - Anna L. Hansell
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
- National Institute for Health and Care Research Health Protection Research Unit in Environmental Exposures and Health, University of Leicester, Leicester, UK
- National Institute for Health and Care Research Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust, Research & Innovation, Leicester General Hospital, Leicester, UK
| |
Collapse
|