1
|
Sanchez JM, Favaro MTP, López-Laguna H, Parladé E, Di Somma A, Casanova I, Unzueta U, Mangues R, Vazquez E, Voltà-Durán E, Villaverde A. Trans-Mediated, Cis-Inhibited Paradoxal Activity of Clostridium perfringens Enterotoxin (c-CPE) in Modulating Epithelial Permeability. Mol Pharm 2025; 22:1973-1982. [PMID: 40067325 DOI: 10.1021/acs.molpharmaceut.4c01205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
In the context of transdermal delivery, favoring the drug permeability of epithelia through convenient formulations would open new opportunities for local versus systemic drug delivery, envisaging higher patient comfort and an enhanced therapeutic effect. Ligands of tight junctions are interesting agents that enhance epithelial permeability by relaxing the protein complexes that form them. The C-terminal domain of Clostridium perfringens enterotoxin (c-CPE), which binds claudins, one of the tight junction (TJ) components, has been explored here as a functional domain in modular recombinant proteins, to evaluate its ability to self-promote its paracellular epithelial passage in a Caco-2 cell monolayer model. c-CPE-containing fusion proteins bind cells in the absence of internalization and cytotoxicity and support the passage, in trans, of other fusion proteins devoid of c-CPE. However, c-CPE-carrying proteins fail to cross the epithelia by themselves, probably because their affinity for TJs immobilizes them in the intercellular space. Therefore, while recombinant c-CPE versions have been here confirmed as convenient epithelial-permeabilizing agents, a paradoxical behavior has been observed where this effect is only successful when applied in trans, specifically on entities that lack c-CPE. Then, c-CPE itself inhibits the paracellular mobility of carrier molecules, not being suited as a self-driver (in c-CPE-drug complexes) for drug delivery through epithelia.
Collapse
Affiliation(s)
- Julieta M Sanchez
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08034, Spain
- Departamento de Química, Cátedra de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA, Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611, Córdoba 5016, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Marianna T P Favaro
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08034, Spain
| | - Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08034, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08034, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Angela Di Somma
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Department of Chemical Sciences, University of Naples "Federico II", Vicinale Cupa Cintia 26, Naples 80126, Italy
| | - Isolda Casanova
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08034, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona 08041, Spain
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Ugutz Unzueta
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08034, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona 08041, Spain
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Ramón Mangues
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08034, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona 08041, Spain
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Esther Vazquez
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08034, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08034, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08034, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| |
Collapse
|
2
|
Wang J, Seo JW, Kare AJ, Schneider M, Pandrala M, Tumbale SK, Raie MN, Engudar G, Zhang N, Guo Y, Zhong X, Ferreira S, Wu B, Attardi LD, Pratx G, Iagaru A, Brunsing RL, Charville GW, Park WG, Ferrara KW. Spatial transcriptomic analysis drives PET imaging of tight junction protein expression in pancreatic cancer theranostics. Nat Commun 2024; 15:10751. [PMID: 39737976 DOI: 10.1038/s41467-024-54761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 11/19/2024] [Indexed: 01/01/2025] Open
Abstract
Molecular imaging using positron emission tomography (PET) provides sensitive detection and mapping of molecular targets. While cancer-associated fibroblasts and integrins have been proposed as targets for imaging of pancreatic ductal adenocarcinoma (PDAC), herein, spatial transcriptomics and proteomics of human surgical samples are applied to select PDAC targets. We find that selected cancer cell surface markers are spatially correlated and provide specific cancer localization, whereas the spatial correlation between cancer markers and immune-related or fibroblast markers is low. Claudin-4 expression increases ~16 fold in cancer as compared with normal pancreas, and tight junction localization confers low background for imaging in normal tissue. We develop a peptide-based molecular imaging agent targeted to claudin-4 with accumulation to ~25% injected activity per cubic centimeter (IA/cc) in metastases and ~18% IA/cc in tumors. Our work motivates a data-driven approach to selection of molecular targets.
Collapse
Affiliation(s)
- James Wang
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Jai Woong Seo
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Aris J Kare
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA, USA
| | - Martin Schneider
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Mallesh Pandrala
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Spencer K Tumbale
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Marina N Raie
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Gokce Engudar
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Nisi Zhang
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Yutong Guo
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Xiaoxu Zhong
- Department of Radiation Oncology, Stanford University, 857 Blake Wilbur Drive, Stanford, CA, USA
| | - Sofia Ferreira
- Department of Radiation Oncology, Stanford University, 857 Blake Wilbur Drive, Stanford, CA, USA
| | - Bo Wu
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Laura D Attardi
- Department of Radiation Oncology, Stanford University, 857 Blake Wilbur Drive, Stanford, CA, USA
- Department of Genetics, Stanford University, 291 Campus Drive, Stanford, CA, USA
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, 857 Blake Wilbur Drive, Stanford, CA, USA
| | - Andrei Iagaru
- Nuclear Medicine and Molecular Imaging Division, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Ryan L Brunsing
- Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Gregory W Charville
- Department of Pathology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Walter G Park
- Department of Medicine-Gastroenterology & Hepatology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Katherine W Ferrara
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA.
| |
Collapse
|
3
|
Jeon H, Sterpi M, Mo C, Bteich F. Claudins: from gatekeepers of epithelial integrity to potential targets in hepato-pancreato-biliary cancers. Front Oncol 2024; 14:1454882. [PMID: 39391254 PMCID: PMC11464258 DOI: 10.3389/fonc.2024.1454882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024] Open
Abstract
Claudins, a family of tetraspan transmembrane proteins, are critical to the integrity of tight junctions in epithelia and endothelia, influencing cellular processes such as development, differentiation, and apoptosis. Abnormal claudin expression is associated with various malignancies, particularly affecting tissue architecture and potentially facilitating tumor invasion and metastasis. In this comprehensive review, we explore the multifaceted functions of claudins: their expression, specific roles in cancer with a focus on hepato-pancreato-biliary malignancies and highlight their potential as therapeutic targets. We discuss current claudin-targeted therapies, including monoclonal antibodies, antibody-drug conjugates, bispecific T-cell engager and chimeric antigen receptor T-cell therapies. These approaches show promise in pre-clinical and clinical studies, particularly in hepato-pancreato-biliary cancers with large unmet needs. Despite these early signs of efficacy, challenges remain in effectively targeting these proteins due to their structural resemblance and overlapping functions.
Collapse
Affiliation(s)
- Hyein Jeon
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| | - Michelle Sterpi
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| | - Christiana Mo
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| | - Fernand Bteich
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
4
|
Du F, Xie Y, Wu S, Ji M, Dong B, Zhu C. Expression and Targeted Application of Claudins Family in Hepatobiliary and Pancreatic Diseases. J Hepatocell Carcinoma 2024; 11:1801-1821. [PMID: 39345937 PMCID: PMC11439345 DOI: 10.2147/jhc.s483861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Hepatobiliary and pancreatic diseases are becoming increasingly common worldwide and associated cancers are prone to recurrence and metastasis. For a more accurate treatment, new therapeutic strategies are urgently needed. The claudins (CLDN) family comprises a class of membrane proteins that are the main components of tight junctions, and are essential for forming intercellular barriers and maintaining cellular polarity. In mammals, the claudin family contains at least 27 transmembrane proteins and plays a major role in mediating cell adhesion and paracellular permeability. Multiple claudin proteins are altered in various cancers, including gastric cancer (GC), esophageal cancer (EC), hepatocellular carcinoma (HCC), pancreatic cancer (PC), colorectal cancer (CRC) and breast cancer (BC). An increasing number of studies have shown that claudins are closely associated with the occurrence and development of hepatobiliary and pancreatic diseases. Interestingly, claudin proteins exhibit different effects on cancer progression in different tumor tissues, including tumor suppression and promotion. In addition, various claudin proteins are currently being studied as potential diagnostic and therapeutic targets, including claudin-3, claudin-4, claudin-18.2, etc. In this article, the functional phenotype, molecular mechanism, and targeted application of the claudin family in hepatobiliary and pancreatic diseases are reviewed, with an emphasis on claudin-1, claudin-4, claudin-7 and claudin-18.2, and the current situation and future prospects are proposed.
Collapse
Affiliation(s)
- Fangqian Du
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yuwei Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Shengze Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Mengling Ji
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
5
|
Waldow A, Beier LS, Arndt J, Schallenberg S, Vollbrecht C, Bischoff P, Farrera-Sal M, Loch FN, Bojarski C, Schumann M, Winkler L, Kamphues C, Ehlen L, Piontek J. cCPE Fusion Proteins as Molecular Probes to Detect Claudins and Tight Junction Dysregulation in Gastrointestinal Cell Lines, Tissue Explants and Patient-Derived Organoids. Pharmaceutics 2023; 15:1980. [PMID: 37514167 PMCID: PMC10385049 DOI: 10.3390/pharmaceutics15071980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/24/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Claudins regulate paracellular permeability, contribute to epithelial polarization and are dysregulated during inflammation and carcinogenesis. Variants of the claudin-binding domain of Clostridium perfringens enterotoxin (cCPE) are highly sensitive protein ligands for generic detection of a broad spectrum of claudins. Here, we investigated the preferential binding of YFP- or GST-cCPE fusion proteins to non-junctional claudin molecules. Plate reader assays, flow cytometry and microscopy were used to assess the binding of YFP- or GST-cCPE to non-junctional claudins in multiple in vitro and ex vivo models of human and rat gastrointestinal epithelia and to monitor formation of a tight junction barrier. Furthermore, YFP-cCPE was used to probe expression, polar localization and dysregulation of claudins in patient-derived organoids generated from gastric dysplasia and gastric cancer. Live-cell imaging and immunocytochemistry revealed cell polarity and presence of tight junctions in glandular organoids (originating from intestinal-type gastric cancer and gastric dysplasia) and, in contrast, a disrupted diffusion barrier for granular organoids (originating from discohesive tumor areas). In sum, we report the use of cCPE fusion proteins as molecular probes to specifically and efficiently detect claudin expression, localization and tight junction dysregulation in cell lines, tissue explants and patient-derived organoids of the gastrointestinal tract.
Collapse
Affiliation(s)
- Ayk Waldow
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Laura-Sophie Beier
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Janine Arndt
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Simon Schallenberg
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Berlin Institute of Health, Institute of Pathology, 10117 Berlin, Germany
| | - Claudia Vollbrecht
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Berlin Institute of Health, Institute of Pathology, 10117 Berlin, Germany
| | - Philip Bischoff
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Berlin Institute of Health, Institute of Pathology, 10117 Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Martí Farrera-Sal
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
| | - Florian N Loch
- Department of General and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Christian Bojarski
- Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Michael Schumann
- Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Lars Winkler
- Experimental Pharmacology & Oncology Berlin-Buch GmbH, 13125 Berlin, Germany
| | - Carsten Kamphues
- Park-Klinik Weißensee, Department of General-Visceral and Minimally-Invasive Surgery, 13086 Berlin, Germany
| | - Lukas Ehlen
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| |
Collapse
|
6
|
Beier LS, Waldow A, Khomeijani Farahani S, Mannweiler R, Vidal-Y-Sy S, Brandner JM, Piontek J, Günzel D. Claudin targeting as an effective tool for directed barrier modulation of the viable epidermis. Ann N Y Acad Sci 2022; 1517:251-265. [PMID: 35994210 DOI: 10.1111/nyas.14879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tight junction (TJ) formation is vital for epidermal barrier function. We aimed to specifically manipulate TJ barriers in the reconstructed human epidermis (RHE) by claudin-1 and -4 knockdown (KD) and by claudin-binding fusion proteins of glutathione S-transferase and modified C-terminal fragments of Clostridium perfringens enterotoxin (GST-cCPE). Impedance spectroscopy and tracer permeability imaging were employed for functional barrier assessment and investigation of claudin contribution. KD of claudin-1, but not claudin-4, impaired the paracellular barrier in vitro. Similarly, claudin-binding GST-cCPE variants weakened the paracellular but not the stratum corneum barrier. Combining both TJ targeting methods, we found that claudin-1 targeting by GST-cCPE after claudin-4 KD led to a marked decrease in paracellular barrier properties. Conversely, after claudin-1 KD, GST-cCPE did not further impair the barrier. Comparison of GST-cCPE variants with different claudin-1/claudin-4 affinities, NHS-fluorescein tracer detection, and immunostaining of RHE paraffin sections showed that GST-cCPE variants bind to extrajunctional claudin-1 and -4, which are differentially distributed along the stratum basale-stratum granulosum axis. GST-cCPE binding blocks these claudins, thereby specifically opening the paracellular barrier of RHE. The data indicate a critical role for claudin-1 in regulating paracellular permeability for ions and small molecules in the viable epidermis. Claudin targeting is presented as a proof-of-concept for precise barrier modulation.
Collapse
Affiliation(s)
- Laura-Sophie Beier
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ayk Waldow
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Saeed Khomeijani Farahani
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Roman Mannweiler
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sabine Vidal-Y-Sy
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna M Brandner
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Disruption of Claudin-Made Tight Junction Barriers by Clostridium perfringens Enterotoxin: Insights from Structural Biology. Cells 2022; 11:cells11050903. [PMID: 35269525 PMCID: PMC8909277 DOI: 10.3390/cells11050903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Claudins are a family of integral membrane proteins that enable epithelial cell/cell interactions by localizing to and driving the formation of tight junctions. Via claudin self-assembly within the membranes of adjoining cells, their extracellular domains interact, forming barriers to the paracellular transport of small molecules and ions. The bacterium Clostridium perfringens causes prevalent gastrointestinal disorders in mammals by employing an enterotoxin (CpE) that targets claudins. CpE binds to claudins at or near tight junctions in the gut and disrupts their barrier function, potentially by disabling their assembly or via cell signaling means—the mechanism(s) remain unclear. CpE ultimately destroys claudin-expressing cells through the formation of a cytotoxic membrane-penetrating β-barrel pore. Structures obtained by X-ray crystallography of CpE, claudins, and claudins in complex with CpE fragments have provided the structural bases of claudin and CpE functions, revealing potential mechanisms for the CpE-mediated disruption of claudin-made tight junctions. This review highlights current progress in this space—what has been discovered and what remains unknown—toward efforts to elucidate the molecular mechanism of CpE disruption of tight junction barriers. It further underscores the key insights obtained through structure that are being applied to develop CpE-based therapeutics that combat claudin-overexpressing cancers or modulate tight junction barriers.
Collapse
|
8
|
Beier LS, Piontek J, Piontek A, Protze J, Kobelt D, Walther W. Claudin-Targeted Suicide Gene Therapy for Claudin-Overexpressing Tumor Cells by Using Modified Clostridium perfringens Enterotoxin (CPE). Methods Mol Biol 2022; 2521:173-188. [PMID: 35732998 DOI: 10.1007/978-1-0716-2441-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacterial toxins gain growing attention as potential cancer treatment due to their potent cytotoxic effects. Among the very different toxins with diverse modes of action, the Clostridium perfringens enterotoxin (CPE) is in focus to treat solid cancers. This toxin targets the tight junction proteins claudin-3 and -4 (Cldn-3/4), which are frequently overexpressed in solid cancers. Binding to these claudins induces pore formation in the host cell plasma membrane leading to rapid oncoleaking cell death of tumor cells. Based on this, extending the targeting of CPE beyond Cldn-3/4 is of interest, since other claudins, such as claudin-1 or -5 are often overexpressed in various cancer entities such as non-small-cell lung cancer (NSCLC) or papillary thyroid carcinoma. In this chapter we describe the modification of a CPE-encoding vector by structure-directed mutagenesis to either preferentially target Cldn-1 and -5 or to expand targeting to Cldn1-9 for improved broadened cytotoxic targeting of claudin-overexpressing tumors such as but not limited to lung cancer via CPE gene transfer.
Collapse
Affiliation(s)
- Laura-Sophie Beier
- Division of Gastroenterology, Infectiology, Rheumatology, Clinical Physiology/Nutritional Medicine, Medical Department, Charitè - Universitätsmedizin Berlin, Berlin, Germany
- Division of Cell and Developmental Biology, Institute of Biology, University of Leipzig, Leipzig, Germany
| | - Jörg Piontek
- Division of Gastroenterology, Infectiology, Rheumatology, Clinical Physiology/Nutritional Medicine, Medical Department, Charitè - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Piontek
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Jonas Protze
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Dennis Kobelt
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Wolfgang Walther
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
9
|
Henry KE, Shaffer TM, Mack KN, Ring J, Ogirala A, Klein-Scory S, Eilert-Micus C, Schmiegel W, Bracht T, Sitek B, Clyne M, Reid CJ, Sipos B, Lewis JS, Kalthoff H, Grimm J. Exploiting the MUC5AC Antigen for Noninvasive Identification of Pancreatic Cancer. J Nucl Med 2021; 62:1384-1390. [PMID: 33712530 PMCID: PMC8724889 DOI: 10.2967/jnumed.120.256776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/13/2021] [Indexed: 12/31/2022] Open
Abstract
Pancreatic cancer (PC) remains the fourth leading cause of cancer death; therefore, there is a clinically unmet need for novel therapeutics and diagnostic markers to treat this devastating disease. Physicians often rely on biopsy or CT for diagnosis, but more specific protein biomarkers are highly desired to assess the stage and severity of PC in a noninvasive manner. Serum biomarkers such as carbohydrate antigen 19-9 are of particular interest as they are commonly elevated in PC but have exhibited suboptimal performance in the clinic. MUC5AC has emerged as a useful serum biomarker that is specific for PC versus inflammation. We developed RA96, an anti-MUC5AC antibody, to gauge its utility in PC diagnosis through immunohistochemical analysis and whole-body PET in PC. Methods: In this study, extensive biochemical characterization determined MUC5AC as the antigen for RA96. We then determined the utility of RA96 for MUC5AC immunohistochemistry on clinical PC and preclinical PC. Finally, we radiolabeled RA96 with 89Zr to assess its application as a whole-body PET radiotracer for MUC5AC quantification in PC. Results: Immunohistochemical staining with RA96 distinguished chronic pancreatitis, pancreatic intraepithelial neoplasia, and varying grades of pancreatic ductal adenocarcinoma in clinical samples. 89Zr-desferrioxamine-RA96 was able to detect MUC5AC with high specificity in mice bearing capan-2 xenografts. Conclusion: Our study demonstrated that RA96 can differentiate between inflammation and PC, improving the fidelity of PC diagnosis. Our immuno-PET tracer 89Zr-desferrioxamine-RA96 shows specific detection of MUC5AC-positive tumors in vivo, highlighting the utility of MUC5AC targeting for diagnosis of PC.
Collapse
Affiliation(s)
- Kelly E Henry
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York;
| | - Travis M Shaffer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York;
- Department of Radiology, Stanford University, Stanford, California
| | - Kyeara N Mack
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Janine Ring
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anuja Ogirala
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | - Wolff Schmiegel
- Department of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Thilo Bracht
- Medical Proteome Center, Ruhr University Bochum, Bochum, Germany
| | - Barbara Sitek
- Medical Proteome Center, Ruhr University Bochum, Bochum, Germany
| | - Marguerite Clyne
- School of Medicine, Health Sciences Centre, University College Dublin, Dublin, Ireland
| | - Colm J Reid
- School of Medicine, Health Sciences Centre, University College Dublin, Dublin, Ireland
| | - Bence Sipos
- Department of Medical Oncology and Pneumology, University Hospital Tübingen, Tübingen, Germany
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Departments of Pharmacology and Radiology, Weill Cornell Medical College, New York, New York
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Holger Kalthoff
- Institute for Experimental Cancer Research, Christian-Albrechts University, Kiel, Germany
| | - Jan Grimm
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York;
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Departments of Pharmacology and Radiology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
10
|
Mashayekhi V, Mocellin O, Fens MH, Krijger GC, Brosens LA, Oliveira S. Targeting of promising transmembrane proteins for diagnosis and treatment of pancreatic ductal adenocarcinoma. Theranostics 2021; 11:9022-9037. [PMID: 34522225 PMCID: PMC8419040 DOI: 10.7150/thno.60350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal types of cancer due to the relatively late diagnosis and the limited therapeutic options. Current treatment regimens mainly comprise the cytotoxic agents gemcitabine and FOLFIRINOX. These compounds have shown limited efficacy and severe side effects, highlighting the necessity for earlier detection and the development of more effective, and better-tolerated treatments. Although targeted therapies are promising for the treatment of several types of cancer, identification of suitable targets for early diagnosis and targeted therapy of PDAC is challenging. Interestingly, several transmembrane proteins are overexpressed in PDAC cells that show low expression in healthy pancreas and may therefore serve as potential targets for treatment and/or diagnostic purposes. In this review we describe the 11 most promising transmembrane proteins, carefully selected after a thorough literature search. Favorable features and potential applications of each target, as well as the results of the preclinical and clinical studies conducted in the past ten years, are discussed in detail.
Collapse
Affiliation(s)
- Vida Mashayekhi
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Orsola Mocellin
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Marcel H.A.M. Fens
- Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Gerard C. Krijger
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Faculty of Medicine, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Lodewijk A.A. Brosens
- Department of Pathology, University Medical Center Utrecht, Faculty of Medicine, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Sabrina Oliveira
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
- Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| |
Collapse
|
11
|
Li J. Targeting claudins in cancer: diagnosis, prognosis and therapy. Am J Cancer Res 2021; 11:3406-3424. [PMID: 34354852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/18/2021] [Indexed: 11/09/2022] Open
Abstract
Increasing evidence has linked claudins to signal transduction and tumorigenesis. The expression of claudins is frequently dysregulated in the context of neoplastic transformation, suggesting their promise as biomarkers for diagnosis and prognosis or targets for treatment. Claudin binders (Clostridium perfringens enterotoxin and monoclonal antibody) have been tested in preclinical experiments, and some of them have progressed into clinical trials involving patients with certain cancers. However, the clinical development of many of these agents has not advanced to clinical applications. Herein, I review the current status of preclinical and clinical investigations of agents targeting claudins for diagnosis, prognosis and therapy. I also discuss the potential of combining claudin binders with other currently approved therapeutic agents.
Collapse
Affiliation(s)
- Jian Li
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center Mianyang 621000, Sichuan, China
| |
Collapse
|
12
|
Zeeshan MS, Ramzan Z. Current controversies and advances in the management of pancreatic adenocarcinoma. World J Gastrointest Oncol 2021; 13:472-494. [PMID: 34163568 PMCID: PMC8204360 DOI: 10.4251/wjgo.v13.i6.472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/22/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic adenocarcinoma is a lethal disease with a mortality rate that has not significantly improved over decades. This is likely due to several challenges unique to pancreatic cancer. Most patients with pancreatic cancer are diagnosed at a late stage of disease due to the lack of specific symptoms prompting an early investigation. A small subset of patients who are diagnosed at an early stage have a better chance at survival with curative surgical resection, but most patients still succumb to the disease in a few years. The dismal overall prognosis is due to suspected micro-metastasis at an early stage. Due to this reason, there is a recent interest in treating all patients with pancreatic cancers with systemic therapy upfront (including the ones that are surgically resectable). This approach is still not the standard of care due to the lack of robust prospective data available. Recent advancements in treatment regimens of chemotherapy, radiation and immunotherapy have improved the overall short-term survival but the long-term survival still remains poor. Novel approaches in diagnosis and treatment have shown promise in clinical studies but long-term clinical data is lacking. The following manuscript presents an overview of the epidemiology, diagnosis, staging, recent advances, novel approaches and controversies in the management of pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Muhammad Shehroz Zeeshan
- Gastrointestinal Section, Department of Medicine, Texas Health Harris Methodist Hospital, Fort Worth, TX 76104, United States
| | - Zeeshan Ramzan
- Gastrointestinal Section, Department of Medicine, Texas Health Harris Methodist Hospital, Fort Worth, TX 76104, United States
| |
Collapse
|
13
|
Dbouk M, Brewer Gutierrez OI, Lennon AM, Chuidian M, Shin EJ, Kamel IR, Fishman EK, He J, Burkhart RA, Wolfgang CL, Hruban RH, Goggins MG, Canto MI. Guidelines on management of pancreatic cysts detected in high-risk individuals: An evaluation of the 2017 Fukuoka guidelines and the 2020 International Cancer of the Pancreas Screening (CAPS) consortium statements. Pancreatology 2021; 21:613-621. [PMID: 33593706 DOI: 10.1016/j.pan.2021.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/10/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Objectives: Pancreatic cysts are frequently detected in high-risk individuals (HRI) undergoing surveillance for pancreatic cancer. The International Cancer of the Pancreas Screening (CAPS) Consortium developed consensus recommendations for surgical resection of pancreatic cysts in HRI that are similar to the Fukuoka guidelines used for the management of sporadic cysts. We compared the performance characteristics of CAPS criteria for pancreatic cyst management in HRI with the Fukuoka guidelines originally designed for the management of cysts in non-HRI. METHODS Using prospectively collected data from CAPS studies, we determined for each patient with resected screen-detected cyst(s) whether Fukuoka guidelines or CAPS consensus statements would have recommended surgery. We compared sensitivity, specificity, PPV, NPV, and Receiver Operator Characteristics (ROC) curves of these guidelines at predicting the presence of high-grade dysplasia or invasive cancer in pancreatic cysts. RESULTS 356/732 HRI had ≥ one pancreatic cyst detected; 24 had surgery for concerning cystic lesions. The sensitivity, specificity, PPV, and NPV for the Fukuoka criteria were 40%, 85%, 40%, and 85%, while those of the CAPS criteria were 60%, 85%, 50%, 89%, respectively. ROC curve analyses showed no significant difference between the Fukuoka and CAPS criteria. CONCLUSIONS In HRI, the CAPS and Fukuoka criteria are moderately specific, but not sufficiently sensitive for detecting advanced neoplasia in cystic lesions. New approaches are needed to guide the surgical management of cystic lesions in HRI.
Collapse
Affiliation(s)
- Mohamad Dbouk
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Olaya I Brewer Gutierrez
- Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Anne Marie Lennon
- Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Miguel Chuidian
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Eun Ji Shin
- Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ihab R Kamel
- Department of Radiology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Elliot K Fishman
- Department of Radiology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Jin He
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Richard A Burkhart
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Christopher L Wolfgang
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Michael G Goggins
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Marcia Irene Canto
- Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| |
Collapse
|
14
|
Shim MK, Na J, Cho IK, Jang EH, Park J, Lee S, Kim JH. Targeting of claudin-4 by Clostridium perfringens enterotoxin-conjugated polysialic acid nanoparticles for pancreatic cancer therapy. J Control Release 2021; 331:434-442. [DOI: 10.1016/j.jconrel.2021.01.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
|
15
|
Torres JB, Mosley M, Koustoulidou S, Hopkins S, Knapp S, Chaikuad A, Kondoh M, Tachibana K, Kersemans V, Cornelissen B. Radiolabeled cCPE Peptides for SPECT Imaging of Claudin-4 Overexpression in Pancreatic Cancer. J Nucl Med 2020; 61:1756-1763. [PMID: 32414951 PMCID: PMC8679629 DOI: 10.2967/jnumed.120.243113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/16/2020] [Indexed: 01/09/2023] Open
Abstract
Overexpression of tight-junction protein claudin-4 has been detected in primary and metastatic pancreatic cancer tissue and is associated with better prognosis in patients. Noninvasive measurement of claudin-4 expression by imaging methods could provide a means for accelerating detection and stratifying patients into risk groups. Clostridium perfringens enterotoxin (CPE) is a natural ligand for claudin-4 and holds potential as a targeting vector for molecular imaging of claudin-4 overexpression. A glutathione S-transferases (GST)-tagged version of the C terminus of CPE (cCPE) was previously used to delineate claudin-4 overexpression by SPECT but showed modest binding affinity and slow blood clearance in vivo. Methods: On the basis of the crystal structure of cCPE, a series of smaller cCPE194-319 mutants with putatively improved binding affinity for claudin-4 was generated by site-directed mutagenesis. All peptides were conjugated site-specifically on a C-terminal cysteine using maleimide-diethylenetriamine pentaacetate to enable radiolabeling with 111In. The binding affinity of all radioconjugates was evaluated in claudin-4-expressing PSN-1 cells and HT1080-negative controls. The specificity of all cCPE mutants to claudin-4 was assessed in HT1080 cells stably transfected with claudin-4. SPECT/CT imaging of BALB/c nude mice bearing PSN-1 or HT1080 tumor xenografts was performed to determine the claudin-4-targeting ability of these peptides in vivo. Results: Uptake of all cCPE-based radioconjugates was significantly higher in PSN-1 cells than in HT1080-negative controls. All peptides showed a marked improvement in affinity for claudin-4 in vitro when compared with previously reported values (dissociation constant: 2.2 ± 0.8, 3 ± 0.1, 4.2 ± 0.5, 10 ± 0.9, and 9.7 ± 0.7 nM). Blood clearance of [111In]In-cCPE194-319, as measured by SPECT, was considerably faster than that of [111In]In-cCPE.GST (half-life, <1 min). All radiopeptides showed significantly higher accumulation in PSN-1 xenografts than in HT1080 tumors at 90 min after injection of the tracer ([111In]In-cCPE194-319, 2.7 ± 0.8 vs. 0.4 ± 0.1 percentage injected dose per gram [%ID/g], P < 0.001; [111In]In-S313A, 2.3 ± 0.9 vs. 0.5 ± 0.1 %ID/g, P < 0.01; [111In]In-S307A + N309A + S313A, 2 ± 0.4 vs. 0.3 ± 0.1 %ID/g, P < 0.01; [111In]In-D284A, 2 ± 0.2 vs. 0.7 ± 0.1 %ID/g, P < 0.05; [111In]In-L254F + K257D, 6.3 ± 0.9 vs. 0.7 ± 0.2 %ID/g, P < 0.001). Conclusion: These optimized cCPE-based SPECT imaging agents show great promise as claudin-4-targeting vectors for in vivo imaging of claudin-4 overexpression in pancreatic cancer.
Collapse
Affiliation(s)
- Julia Baguña Torres
- Cancer Research United Kingdom and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Michael Mosley
- Cancer Research United Kingdom and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Sofia Koustoulidou
- Cancer Research United Kingdom and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Samantha Hopkins
- Cancer Research United Kingdom and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry and Structure Genomics Consortium, Goethe-University Frankfurt, Frankfurt am Main, Germany
- German Cancer Network, Mainz-Frankfurt, Germany; and
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry and Structure Genomics Consortium, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Keisuke Tachibana
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Veerle Kersemans
- Cancer Research United Kingdom and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Bart Cornelissen
- Cancer Research United Kingdom and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Expression of Tight Junction Proteins Is Altered in Bladder Cancer. ACTA ACUST UNITED AC 2020; 2020:6341256. [PMID: 33282635 PMCID: PMC7685791 DOI: 10.1155/2020/6341256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/03/2020] [Indexed: 11/17/2022]
Abstract
Bladder cancer (BC) is one of the tumors which occur most frequently in urological system, but less is known about the expression of tight junction proteins and its clinical significance in BC. In this study, expression of claudin-4, zonula occludens-1 (ZO-1) and zonula occludens-1 nucleic acid-binding protein (ZONAB), in BC tissues, adjacent nontumor tissue (ANTT), and BC cell lines was examined by Western blotting, semiquantitative RT-PCR, and immunohistochemistry, and then, the clinical significance of these proteins was investigated. The mRNA and protein expression of ZONAB were significantly upregulated, while those of ZO-1 was significantly downregulated in some BC cell lines and tissues in comparison with nontumor urothelial cell lines and ANTT. High expression rate of ZO-1 and ZONAB had negative correlation in BC tissues and was also correlated with muscle-invasive lesions in BC tissues. In conclusion, the expression of tight junction proteins is significantly altered in BC and ZO-1, and ZONAB interaction might be involved in BC development.
Collapse
|
17
|
Fischer CG, Wood LD. From somatic mutation to early detection: insights from molecular characterization of pancreatic cancer precursor lesions. J Pathol 2019; 246:395-404. [PMID: 30105857 DOI: 10.1002/path.5154] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/02/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer arises from noninvasive precursor lesions, including pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm (MCN), which are curable if detected early enough. Recently, these types of precursor lesions have been extensively characterized at the molecular level, defining the timing of critical genetic alterations in tumorigenesis pathways. The results of these studies deepen our understanding of tumorigenesis in the pancreas, providing novel insights into tumor initiation and progression. Perhaps more importantly, they also provide a rational foundation for early detection approaches that could allow clinical intervention prior to malignant transformation. In this review, we summarize the results of comprehensive molecular characterization of PanINs, IPMNs, and MCNs and discuss the implications for cancer biology as well as early detection. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Catherine G Fischer
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Abedi S, Doosti A, Jami MS. Evaluation of the preventive and therapeutic effects of a recombinant vector co-expressing prostate-specific stem cell antigen and Clostridium perfringens enterotoxin on prostate cancer in rats. Biotechnol Prog 2019; 36:e2906. [PMID: 31513734 DOI: 10.1002/btpr.2906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022]
Abstract
The effects of Clostridium perfringens enterotoxin (CPE) and prostate stem cell antigen (PSCA) on cancer prevention or treatment have been previously studied separately. For the first time, here we have elaborated a recombinant vector to co-express and study the cumulative effects of both of these factors on prostate cancer (PCa) in an animal model. The recombinant pBudCE4.1-cpe-PSCA vector was constructed in large scale. Rats were vaccinated by vector or vector plus chitosan nanoparticles before or after induction of PCa (preventive or therapeutic studies) by N-methyl N-nitrosurea and testosterone. Prostate tumors were weighed and histologically examined. Tumors and infusion site tissues as well as blood samples of all rats were collected and assessed by serological and molecular tests. We showed that vaccination with vector (along with or without nanoparticles) led to lower PCa incidence and tumor weight. The L-1β, IL6, and TNF-α serum levels and their gene expression accompanied by C-CAM1 gene expression in vaccinated groups were significantly higher than controls while no difference was seen in CK20 expression among all groups. Our findings showed that vector could effectively stimulate the immune system of rats to either prevent or suppress the PCa tumors. Adding chitosan nanoparticles did not affect the results significantly.
Collapse
Affiliation(s)
- Saied Abedi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad-Saied Jami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department Neurology, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
19
|
Ye X, Zhao L, Kang J. Expression and significance of PTEN and Claudin-3 in prostate cancer. Oncol Lett 2019; 17:5628-5634. [PMID: 31186785 PMCID: PMC6507465 DOI: 10.3892/ol.2019.10212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
Expression and significance of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and Claudin-3 in the blood of patients with prostate cancer [prostate cancer (PCa)] were investigated. Retrospective analysis of 84 cases of PCa patients confirmed by pathological diagnosis were studied, as the experiment group. Moreover, the physical examination data of 84 healthy volunteers examined in the Affiliated Hospital of Beihua University were the control group. The expression levels of blood in the PTEN and Claudin-3 of both the experiment group and the control group were determined by enzyme-linked immunosorbent assay. According to the blood expression in PTEN and Claudin-3 between both the experiment group and the control group, the test value of the ROC curve in PTEN and Claudin-3 were detected by both single detection and joint detection. The expression levels of PTEN in the experiment group were significantly lower than the control group (P<0.05). The expression levels of Claudin-3 were higher in the experiment group than the control group (P<0.01). The expression levels of PTEN and Claudin-3 in the experiment group were significantly associated with the distant metastasis of cancer cells, preoperative prostate-specific antigen levels, tumor diameter and pathological stages (P<0.01). The expression levels of PTEN in the pathological stage of T1-T2 group was lower than that of the T3-T4 group (P<0.01). The expression levels of PTEN and Claudin-3 are closely related to the distant metastasis of cancer cells, preoperative prostate-specific antigen level, tumor diameter and pathological stage. Combined detection of both PTEN and Claudin-3 can improve the specificity levels of PCa for diagnosis and has an important diagnostic value for PCa. It can be used as a biological indicator for PCa diagnosis, disease severity analysis and efficacy evaluation.
Collapse
Affiliation(s)
- Xinglong Ye
- Department of Urology Surgery, The Affiliated Hospital of Beihua University, Jilin, Jilin 132001, P.R. China
| | - Lijing Zhao
- School of Basic Medical Sciences, Jilin Medical College, Jilin, Jilin 132001, P.R. China
| | - Jing Kang
- School of Basic Medical Sciences, Jilin Medical College, Jilin, Jilin 132001, P.R. China
| |
Collapse
|
20
|
Castillo J, Bernard V, San Lucas FA, Allenson K, Capello M, Kim DU, Gascoyne P, Mulu FC, Stephens BM, Huang J, Wang H, Momin AA, Jacamo RO, Katz M, Wolff R, Javle M, Varadhachary G, Wistuba II, Hanash S, Maitra A, Alvarez H. Surfaceome profiling enables isolation of cancer-specific exosomal cargo in liquid biopsies from pancreatic cancer patients. Ann Oncol 2019; 29:223-229. [PMID: 29045505 DOI: 10.1093/annonc/mdx542] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Detection of circulating tumor DNA can be limited due to their relative scarcity in circulation, particularly while patients are actively undergoing therapy. Exosomes provide a vehicle through which cancer-specific material can be enriched from the compendium of circulating non-neoplastic tissue-derived nucleic acids. We carried out a comprehensive profiling of the pancreatic ductal adenocarcinoma (PDAC) exosomal 'surfaceome' in order to identify surface proteins that will render liquid biopsies amenable to cancer-derived exosome enrichment for downstream molecular profiling. Patients and methods Surface exosomal proteins were profiled in 13 human PDAC and 2 non-neoplastic cell lines by liquid chromatography-mass spectrometry. A total of 173 prospectively collected blood samples from 103 PDAC patients underwent exosome isolation. Droplet digital PCR was used on 74 patients (136 total exosome samples) to determine baseline KRAS mutation call rates while patients were on therapy. PDAC-specific exosome capture was then carried out on additional 29 patients (37 samples) using an antibody cocktail directed against selected proteins, followed by droplet digital PCR analysis. Exosomal DNA in a PDAC patient resistant to therapy were profiled using a molecular barcoded, targeted sequencing panel to determine the utility of enriched nucleic acid material for comprehensive molecular analysis. Results Proteomic analysis of the exosome 'surfaceome' revealed multiple PDAC-specific biomarker candidates: CLDN4, EPCAM, CD151, LGALS3BP, HIST2H2BE, and HIST2H2BF. KRAS mutations in total exosomes were detected in 44.1% of patients undergoing active therapy compared with 73.0% following exosome capture using the selected biomarkers. Enrichment of exosomal cargo was amenable to molecular profiling, elucidating a putative mechanism of resistance to PARP inhibitor therapy in a patient harboring a BRCA2 mutation. Conclusion Exosomes provide unique opportunities in the context of liquid biopsies for enrichment of tumor-specific material in circulation. We present a comprehensive surfaceome characterization of PDAC exosomes which allows for capture and molecular profiling of tumor-derived DNA.
Collapse
Affiliation(s)
- J Castillo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - V Bernard
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA.,The University of Texas MD Anderson Cancer UTHealth Graduate School of Biomedical Sciences, Houston, USA
| | - F A San Lucas
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - K Allenson
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - M Capello
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - D U Kim
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | | | - F C Mulu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - B M Stephens
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - J Huang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - H Wang
- McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - A A Momin
- McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - R O Jacamo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - M Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - R Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - M Javle
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - G Varadhachary
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - I I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - S Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - A Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA.,Department of Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - H Alvarez
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA.,Department of Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
21
|
Jimenez L, Yu H, McKenzie AJ, Franklin JL, Patton JG, Liu Q, Weaver AM. Quantitative Proteomic Analysis of Small and Large Extracellular Vesicles (EVs) Reveals Enrichment of Adhesion Proteins in Small EVs. J Proteome Res 2019; 18:947-959. [PMID: 30608700 DOI: 10.1021/acs.jproteome.8b00647] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) are important mediators of cell-cell communication due to their cargo content of proteins, lipids, and RNAs. We previously reported that small EVs (SEVs) called exosomes promote directed and random cell motility, invasion, and serum-independent growth. In contrast, larger EVs (LEVs) were not active in those assays, but might have unique functional properties. In order to identify protein cargos that may contribute to different functions of SEVs and LEVs, we used isobaric tags for relative and absolute quantitation (iTRAQ)-liquid chromatography (LC) tandem mass spectrometry (MS) on EVs isolated from a colon cancer cell line. Bioinformatics analyses revealed that SEVs are enriched in proteins associated with cell-cell junctions, cell-matrix adhesion, exosome biogenesis machinery, and various signaling pathways. In contrast, LEVs are enriched in proteins associated with ribosome and RNA biogenesis, processing, and metabolism. Western blot analysis of EVs purified from two different cancer cell types confirmed the enrichment of cell-matrix and cell-cell adhesion proteins in SEVs. Consistent with those data, we found that cells exhibit enhanced adhesion to surfaces coated with SEVs compared to an equal protein concentration of LEVs. These data suggest that a major function of SEVs is to promote cellular adhesion.
Collapse
Affiliation(s)
- Lizandra Jimenez
- Department of Cell and Developmental Biology , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States
| | - Hui Yu
- Department of Internal Medicine , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Andrew J McKenzie
- Sarah Cannon Research Institute , Nashville , Tennessee 37203 , United States
| | - Jeffrey L Franklin
- Department of Cell and Developmental Biology , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States.,Department of Medicine , Vanderbilt University Medical Center , Nashville , Tennessee 37212 , United States
| | - James G Patton
- Department of Biological Sciences , Vanderbilt University School of Medicine , Nashville , Tennessee 37212 , United States
| | - Qi Liu
- Department of Biostatistics , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States
| | - Alissa M Weaver
- Department of Cell and Developmental Biology , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States.,Department of Pathology, Microbiology and Immunology , Vanderbilt University Medical Center , Nashville , Tennessee 37212 , United States
| |
Collapse
|
22
|
Romero-Calvo I, Weber CR, Ray M, Brown M, Kirby K, Nandi RK, Long TM, Sparrow SM, Ugolkov A, Qiang W, Zhang Y, Brunetti T, Kindler H, Segal JP, Rzhetsky A, Mazar AP, Buschmann MM, Weichselbaum R, Roggin K, White KP. Human Organoids Share Structural and Genetic Features with Primary Pancreatic Adenocarcinoma Tumors. Mol Cancer Res 2019; 17:70-83. [PMID: 30171177 PMCID: PMC6647028 DOI: 10.1158/1541-7786.mcr-18-0531] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/06/2018] [Accepted: 08/17/2018] [Indexed: 12/18/2022]
Abstract
Patient-derived pancreatic ductal adenocarcinoma (PDAC) organoid systems show great promise for understanding the biological underpinnings of disease and advancing therapeutic precision medicine. Despite the increased use of organoids, the fidelity of molecular features, genetic heterogeneity, and drug response to the tumor of origin remain important unanswered questions limiting their utility. To address this gap in knowledge, primary tumor- and patient-derived xenograft (PDX)-derived organoids, and 2D cultures for in-depth genomic and histopathologic comparisons with the primary tumor were created. Histopathologic features and PDAC representative protein markers (e.g., claudin 4 and CA19-9) showed strong concordance. DNA- and RNA-sequencing (RNAseq) of single organoids revealed patient-specific genomic and transcriptomic consistency. Single-cell RNAseq demonstrated that organoids are primarily a clonal population. In drug response assays, organoids displayed patient-specific sensitivities. In addition, the in vivo PDX response to FOLFIRINOX and gemcitabine/abraxane treatments were examined, which was recapitulated in vitro with organoids. This study has demonstrated that organoids are potentially invaluable for precision medicine as well as preclinical drug treatment studies because they maintain distinct patient phenotypes and respond differently to drug combinations and dosage. IMPLICATIONS: The patient-specific molecular and histopathologic fidelity of organoids indicate that they can be used to understand the etiology of the patient's tumor and the differential response to therapies and suggests utility for predicting drug responses.
Collapse
Affiliation(s)
- Isabel Romero-Calvo
- Institute for Genomic & Systems Biology, The University of Chicago, Chicago, Illinois
- Department of Surgery, The University of Chicago Medicine, Chicago, Illinois
| | - Christopher R Weber
- Department of Pathology, The University of Chicago Medicine, Chicago, Illinois
| | - Mohana Ray
- Institute for Genomic & Systems Biology, The University of Chicago, Chicago, Illinois
- Department of Pathology, The University of Chicago Medicine, Chicago, Illinois
| | - Miguel Brown
- Institute for Genomic & Systems Biology, The University of Chicago, Chicago, Illinois
- Department of Surgery, The University of Chicago Medicine, Chicago, Illinois
| | - Kori Kirby
- Institute for Genomic & Systems Biology, The University of Chicago, Chicago, Illinois
- Department of Surgery, The University of Chicago Medicine, Chicago, Illinois
| | - Rajib K Nandi
- The Computer Science Department, Division of the Physical Sciences, The University of Chicago, Chicago, Illinois
| | - Tiha M Long
- Department of Medicine, The University of Chicago Medicine, Chicago, Illinois
| | - Samantha M Sparrow
- Institute for Genomic & Systems Biology, The University of Chicago, Chicago, Illinois
- Department of Medicine, The University of Chicago Medicine, Chicago, Illinois
| | - Andrey Ugolkov
- Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Center for Development Therapeutics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
- Tempus Labs, Chicago, Illinois
| | - Wenan Qiang
- Center for Development Therapeutics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | | | - Tonya Brunetti
- Institute for Genomic & Systems Biology, The University of Chicago, Chicago, Illinois
- Department of Medicine, The University of Chicago Medicine, Chicago, Illinois
| | - Hedy Kindler
- Department of Medicine, The University of Chicago Medicine, Chicago, Illinois
| | - Jeremy P Segal
- Department of Pathology, The University of Chicago Medicine, Chicago, Illinois
| | - Andrey Rzhetsky
- Institute for Genomic & Systems Biology, The University of Chicago, Chicago, Illinois
| | - Andrew P Mazar
- Center for Development Therapeutics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Mary M Buschmann
- Institute for Genomic & Systems Biology, The University of Chicago, Chicago, Illinois
- Department of Surgery, The University of Chicago Medicine, Chicago, Illinois
| | - Ralph Weichselbaum
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis, The University of Chicago Medicine, Chicago, Illinois
| | - Kevin Roggin
- Department of Surgery, The University of Chicago Medicine, Chicago, Illinois.
| | - Kevin P White
- Institute for Genomic & Systems Biology, The University of Chicago, Chicago, Illinois.
- Tempus Labs, Chicago, Illinois
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois
| |
Collapse
|
23
|
Cornelissen B, Knight JC, Mukherjee S, Evangelista L, Xavier C, Caobelli F, Del Vecchio S, Rbah-Vidal L, Barbet J, de Jong M, van Leeuwen FWB. Translational molecular imaging in exocrine pancreatic cancer. Eur J Nucl Med Mol Imaging 2018; 45:2442-2455. [PMID: 30225616 PMCID: PMC6208802 DOI: 10.1007/s00259-018-4146-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023]
Abstract
Effective treatment for pancreatic cancer remains challenging, particularly the treatment of pancreatic ductal adenocarcinoma (PDAC), which makes up more than 95% of all pancreatic cancers. Late diagnosis and failure of chemotherapy and radiotherapy are all too common, and many patients die soon after diagnosis. Here, we make the case for the increased use of molecular imaging in PDAC preclinical research and in patient management.
Collapse
Affiliation(s)
- Bart Cornelissen
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, Oxford, UK.
| | - James C Knight
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, Oxford, UK
| | - Somnath Mukherjee
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, Oxford, UK
| | | | | | - Federico Caobelli
- Department of Radiology, Universitätsspital Basel, Basel, Switzerland
| | | | - Latifa Rbah-Vidal
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Jacques Barbet
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Marion de Jong
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
24
|
Löser R, Bader M, Kuchar M, Wodtke R, Lenk J, Wodtke J, Kuhne K, Bergmann R, Haase-Kohn C, Urbanová M, Steinbach J, Pietzsch J. Synthesis, 18F-labelling and radiopharmacological characterisation of the C-terminal 30mer of Clostridium perfringens enterotoxin as a potential claudin-targeting peptide. Amino Acids 2018; 51:219-244. [PMID: 30264172 DOI: 10.1007/s00726-018-2657-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/17/2018] [Indexed: 12/26/2022]
Abstract
The cell surface receptor claudin-4 (Cld-4) is upregulated in various tumours and represents an important emerging target for both diagnosis and treatment of solid tumours of epithelial origin. The C-terminal fragment of the Clostridium perfringens enterotoxin cCPE290-319 appears as a suitable ligand for targeting Cld-4. The synthesis of this 30mer peptide was attempted via several approaches, which has revealed sequential SPPS using three pseudoproline dipeptide building blocks to be the most efficient one. Labelling with fluorine-18 was achieved on solid phase using N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) and 4-[18F]fluorobenzoyl chloride as 18F-acylating agents, which was the most advantageous when [18F]SFB was reacted with the resin-bound 30mer containing an N-terminal 6-aminohexanoic spacer. Binding to Cld-4 was demonstrated via surface plasmon resonance using a protein construct containing both extracellular loops of Cld-4. In addition, cell binding experiments were performed for 18F-labelled cCPE290-319 with the Cld-4 expressing tumour cell lines HT-29 and A431 that were complemented by fluorescence microscopy studies using the corresponding fluorescein isothiocyanate-conjugated peptide. The 30mer peptide proved to be sufficiently stable in blood plasma. Studying the in vivo behaviour of 18F-labelled cCPE290-319 in healthy mice and rats by dynamic PET imaging and radiometabolite analyses has revealed that the peptide is subject to substantial liver uptake and rapid metabolic degradation in vivo, which limits its suitability as imaging probe for tumour-associated Cld-4.
Collapse
Affiliation(s)
- Reik Löser
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany.
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany.
| | - Miriam Bader
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Manuela Kuchar
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Jens Lenk
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Johanna Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Konstantin Kuhne
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Ralf Bergmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Cathleen Haase-Kohn
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Marie Urbanová
- Department of Physics and Measurements, University of Chemistry and Technology, 166 28, Prague, Czech Republic
| | - Jörg Steinbach
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| |
Collapse
|
25
|
Dugnani E, Pasquale V, Marra P, Liberati D, Canu T, Perani L, De Sanctis F, Ugel S, Invernizzi F, Citro A, Venturini M, Doglioni C, Esposito A, Piemonti L. Four-class tumor staging for early diagnosis and monitoring of murine pancreatic cancer using magnetic resonance and ultrasound. Carcinogenesis 2018; 39:1197-1206. [DOI: 10.1093/carcin/bgy094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/23/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Erica Dugnani
- Division of Immunology, Transplantation and Infectious diseases, Diabetes Research Institute, Milan, Italy
| | - Valentina Pasquale
- Division of Immunology, Transplantation and Infectious diseases, Diabetes Research Institute, Milan, Italy
| | - Paolo Marra
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Via Olgettina, Milan, Italy
| | - Daniela Liberati
- Division of Genetics and Cell Biology, Genomic Unit for the diagnosis of human pathologies, IRCCS San Raffaele Scientific Institute, Via Olgettina, Milan, Italy
| | - Tamara Canu
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Via Olgettina, Milan, Italy
| | - Laura Perani
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Via Olgettina, Milan, Italy
| | - Francesco De Sanctis
- University Hospital and Department of Medicine, Immunology Section, Verona, Italy
| | - Stefano Ugel
- University Hospital and Department of Medicine, Immunology Section, Verona, Italy
| | - Francesca Invernizzi
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Via Olgettina, Milan, Italy
| | - Antonio Citro
- Division of Immunology, Transplantation and Infectious diseases, Diabetes Research Institute, Milan, Italy
| | - Massimo Venturini
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Via Olgettina, Milan, Italy
| | - Claudio Doglioni
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Via Olgettina, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Esposito
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Via Olgettina, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Lorenzo Piemonti
- Division of Immunology, Transplantation and Infectious diseases, Diabetes Research Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
26
|
Guo X, Ling X, Du F, Wang Q, Huang W, Wang Z, Ding X, Bai M, Wu Z. Molecular Imaging of Pancreatic Duct Adenocarcinoma Using a Type 2 Cannabinoid Receptor-Targeted Near-Infrared Fluorescent Probe. Transl Oncol 2018; 11:1065-1073. [PMID: 30005208 PMCID: PMC6043890 DOI: 10.1016/j.tranon.2018.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 12/19/2022] Open
Abstract
Imaging probes targeting type 2 cannabinoid receptor (CB2R) overexpressed in pancreatic duct adenocarcinoma (PDAC) tissue have the potential to improve early detection and surgical outcome of PDAC. The aim of our study was to evaluate the molecular imaging potential of a CB2R-targeted near-infrared (NIR) fluorescent probe (NIR760-XLP6) for PDAC. CB2R overexpression was observed in both PDAC patient tissues and various pancreatic cancer cell lines. In vitro fluorescence imaging indicated specific binding of NIR760-XLP6 to CB2R in human PDAC PANC-1 cells. In a xenograft mouse tumor model, NIR760-XLP6 showed remarkable 50- (ex vivo) and 3.2-fold (in vivo) tumor to normal contrast enhancement with minimal liver and kidney uptake. In a PDAC lymph node metastasis model, significant signal contrast was observed in bilateral axillary lymph nodes with PDAC metastasis after injection of the probe. In conclusion, NIR760-XLP6 exhibits promising characteristics for imaging PDAC, and CB2R appears to be an attractive target for PDAC imaging.
Collapse
Affiliation(s)
- Xiaoxia Guo
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoxi Ling
- Department of Medicine, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA 15213, USA
| | - Fang Du
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qingbing Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Huang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhongmin Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoyi Ding
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mingfeng Bai
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Zhiyuan Wu
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
27
|
Torres JB, Knight JC, Mosley MJ, Kersemans V, Koustoulidou S, Allen D, Kinchesh P, Smart S, Cornelissen B. Imaging of Claudin-4 in Pancreatic Ductal Adenocarcinoma Using a Radiolabelled Anti-Claudin-4 Monoclonal Antibody. Mol Imaging Biol 2018; 20:292-299. [PMID: 28842811 PMCID: PMC5862916 DOI: 10.1007/s11307-017-1112-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Despite its widespread use, the positron emission tomography (PET) radiotracer 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) has been shown in clinical settings to be ineffective for improving early diagnosis of pancreatic ductal adenocarcinoma (PDAC). A promising biomarker for PDAC detection is the tight junction protein claudin-4. The purpose of this study was to evaluate a new single-photon emission computed tomography (SPECT) imaging agent, [111In]anti-claudin-4 mAb, with regard to its ability to allow visualisation of claudin-4 in a xenograft and a genetically engineered mouse model of PDAC. PROCEDURES The ability of [111In]anti-claudin-4 mAb to selectively target claudin-4 was assessed using two human xenograft tumour models with differential claudin-4 status in mice. [111In]anti-claudin-4 mAb was also used to detect PDAC development in genetically engineered KPC mice. The PDAC status of these mice was confirmed with [18F]FDG-PET, magnetic resonance imaging (MRI), histology, and immunofluorescence microscopy. RESULTS High uptake of [111In]anti-claudin-4 mAb was observed in PDAC xenografts in mice, reaching 16.9 ± 4.5 % of injected dose per gram (% ID/g) at 72 h post-injection. This uptake was mediated specifically by the expression of claudin-4. Uptake of [111In]anti-claudin-4 mAb also enabled clear visualisation of spontaneous PDAC formation in KPC mice. CONCLUSIONS [111In]anti-claudin-4 mAb allows non-invasive detection of claudin-4 upregulation during development of PDAC and could potentially be used to aid in the early detection and characterisation of this malignancy.
Collapse
Affiliation(s)
- Julia Baguña Torres
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - James C Knight
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Michael J Mosley
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Veerle Kersemans
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Sofia Koustoulidou
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Danny Allen
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Paul Kinchesh
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Sean Smart
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Bart Cornelissen
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
28
|
Chen X, Zhou H, Li X, Duan N, Hu S, Liu Y, Yue Y, Song L, Zhang Y, Li D, Wang Z. Plectin-1 Targeted Dual-modality Nanoparticles for Pancreatic Cancer Imaging. EBioMedicine 2018; 30:129-137. [PMID: 29574092 PMCID: PMC5952251 DOI: 10.1016/j.ebiom.2018.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 01/17/2023] Open
Abstract
Background Biomarker-targeted molecular imaging holds promise for early detection of pancreatic cancer. The aim of this study was to design and evaluate a plectin-1 targeted multi-functional nanoparticle probe for pancreatic cancer imaging. Methods 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-amino(polyethylene glycol) (DSPE-PEG-NH2)-modified superparamagnetic iron oxide (Fe3O4) nanoparticles (SPION) were conjugated with plectin-1 antibody and/or Cy7 to create the multi-functional targeted nanoparticle targeted probe (Plectin-SPION-Cy7) or non-targeted probe (SPION-Cy7). Pancreatic carcinoma cell lines expressing plectin-1 were cultured with the targeted or control probes and then were imaged using confocal laser scanning microscopy and magnetic resonance imaging (MRI). Accumulations of the nanoparticles in pancreatic tumor xenografted mice were determined by MRI and fluorescence imaging. Results In vitro optical imaging and MRI showed that the targeted nanoparticles were highly accumulated in MIAPaCa2 and XPA-1 carcinoma cells but not in non-carcinoma MIN6 cells, which was further confirmed by Prussian blue staining. In vivo MRI showed a significant T2 signal reduction. Prussian blue staining further confirmed that the plectin-1 targeted nanoparticles were highly accumulated in the tumor mass but not in normal pancreatic tissues, or in the liver and kidney, and few nanoparticles were observed in the tumors of mice injected with SPION-Cy7. Conclusions Our data demonstrate that plectin-1 targeted fluorescence and MR dual-functional nanoparticle can visualize pancreatic cancer, and it has great potential to be used with various imaging devices for pancreatic cancer detection. We designed a plectin-1 targeted dual-modality nanoparticle (Plectin-SPION-Cy7). The targeted nanoparticles were highly accumulated in carcinoma cells but not in non-carcinoma cells. Plectin-1 targeted dual-functional nanoparticle has great potential in pancreatic cancer detection.
Molecular-based radiographic tests hold the promise to help precisely identifying pancreatic malignant lesions and their precursors at early stages. Previous studies showed that plectin-1 highly expressed in pancreatic ductal adenocarcinoma but not in non-carcinoma tissues. In the current study, we designed a plectin-1 targeted dual-modality nanoparticle (Plectin-SPION-Cy7). In vitro and in vivo data both indicated that plectin-1 targeted nanoparticles were highly accumulated in carcinoma cells/tissues but not in non-carcinoma cells/tissues. These results show that plectin-1 targeted fluorescence and MR dual-functional nanoparticle is useful for pancreatic cancer detection.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Division of Nephrology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Hao Zhou
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Xiaoshuang Li
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Na Duan
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Shouyou Hu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yongkang Liu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yali Yue
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Lina Song
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yifen Zhang
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
29
|
Convenient Preparation of 18F-Labeled Peptide Probes for Potential Claudin-4 PET Imaging. Pharmaceuticals (Basel) 2017; 10:ph10040099. [PMID: 29258264 PMCID: PMC5748654 DOI: 10.3390/ph10040099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 01/08/2023] Open
Abstract
Since pancreatic cancer is often diagnosed in a late state of cancer development, diagnostic opportunities allowing early disease detection are highly sought after. As such, cancer expression of claudin proteins is markedly dysregulated, making it an attractive target for molecular imaging like positron emission tomography (PET). Claudins are a family of transmembrane proteins that have a pivotal role as members of the tight junctions. In particular, claudin-3 and claudin-4 are frequently overexpressed in pancreatic cancer. 18F-Labeled claudin selective peptides would provide access to a novel kind of imaging tools for pancreatic cancer. In this work we describe the synthesis of the first 18F-labeled probes potentially suitable for PET imaging of claudin-4 expression. These probes were prepared using oxime ligation of 5-[18F]fluoro-5-deoxyribose (5-[18F]FDR) to claudin selective peptides. As a proof-of-principle, one of them, 5-[18F]FDR-Clone 27, was isolated in >98% radiochemical purity and in 15% radiochemical yield (EOB) within 98 min, and with a molar activity of 4.0 GBq/μmol (for 30 MBq of tracer). Moreover, we present first biological data for the prepared 5-FDR-conjugates. These tracers could pave the way for an early diagnosis of pancreatic tumor, and thus improve the outcome of anticancer therapy.
Collapse
|
30
|
Takigawa M, Iida M, Nagase S, Suzuki H, Watari A, Tada M, Okada Y, Doi T, Fukasawa M, Yagi K, Kunisawa J, Kondoh M. Creation of a Claudin-2 Binder and Its Tight Junction-Modulating Activity in a Human Intestinal Model. J Pharmacol Exp Ther 2017; 363:444-451. [PMID: 28928120 DOI: 10.1124/jpet.117.242214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 08/31/2017] [Indexed: 01/03/2023] Open
Abstract
Disruption of the gastrointestinal epithelial barrier is a hallmark of chronic inflammatory bowel diseases (IBDs). The transmembrane protein claudin 2 (CLDN2) is a component of epithelial tight junctions (TJs). In the intestines of patients with IBDs, the expression of the pore-forming TJ protein CLDN2 is upregulated. Although CLDN2 is involved in these leaky barriers, whether it can be a target to enhance TJ integrity is unknown because a CLDN2-specific inhibitor has not been developed. Here, we used DNA immunization to generate a monoclonal antibody (mAb) that recognized an extracellular loop of CLDN2. Treatment of epithelial cell monolayers with the mAb increased barrier integrity. In addition, the anti-CLDN2 mAb attenuated the decrease in TJ integrity induced by the proinflammatory cytokine tumor necrosis factor-α (TNF-α), and cotreatment of cells with anti-TNF-α mAb and anti-CLDN2 mAb showed additive attenuating effects. These findings indicate that CLDN2 may be a target for enhancing TJ integrity, and CLDN2 binder may be an enhancer of mucosal barrier integrity and a potential therapeutic option for IBDs.
Collapse
Affiliation(s)
- Mutsumi Takigawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Mu.T., M.I., S.N., A.W., Y.O., T.D., K.Y., J.K., M.K.); Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, National Institute of Biomedical Innovation, Osaka, Japan (Mu.T., H.S., J.K.); Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (Mi.T.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); Graduate School of Medicine and Graduate School of Dentistry, Osaka University, Osaka, Japan (J.K.); Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (J.K.); and Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Hyogo, Japan (J.K.)
| | - Manami Iida
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Mu.T., M.I., S.N., A.W., Y.O., T.D., K.Y., J.K., M.K.); Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, National Institute of Biomedical Innovation, Osaka, Japan (Mu.T., H.S., J.K.); Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (Mi.T.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); Graduate School of Medicine and Graduate School of Dentistry, Osaka University, Osaka, Japan (J.K.); Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (J.K.); and Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Hyogo, Japan (J.K.)
| | - Shotaro Nagase
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Mu.T., M.I., S.N., A.W., Y.O., T.D., K.Y., J.K., M.K.); Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, National Institute of Biomedical Innovation, Osaka, Japan (Mu.T., H.S., J.K.); Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (Mi.T.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); Graduate School of Medicine and Graduate School of Dentistry, Osaka University, Osaka, Japan (J.K.); Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (J.K.); and Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Hyogo, Japan (J.K.)
| | - Hidehiko Suzuki
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Mu.T., M.I., S.N., A.W., Y.O., T.D., K.Y., J.K., M.K.); Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, National Institute of Biomedical Innovation, Osaka, Japan (Mu.T., H.S., J.K.); Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (Mi.T.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); Graduate School of Medicine and Graduate School of Dentistry, Osaka University, Osaka, Japan (J.K.); Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (J.K.); and Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Hyogo, Japan (J.K.)
| | - Akihiro Watari
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Mu.T., M.I., S.N., A.W., Y.O., T.D., K.Y., J.K., M.K.); Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, National Institute of Biomedical Innovation, Osaka, Japan (Mu.T., H.S., J.K.); Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (Mi.T.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); Graduate School of Medicine and Graduate School of Dentistry, Osaka University, Osaka, Japan (J.K.); Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (J.K.); and Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Hyogo, Japan (J.K.)
| | - Minoru Tada
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Mu.T., M.I., S.N., A.W., Y.O., T.D., K.Y., J.K., M.K.); Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, National Institute of Biomedical Innovation, Osaka, Japan (Mu.T., H.S., J.K.); Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (Mi.T.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); Graduate School of Medicine and Graduate School of Dentistry, Osaka University, Osaka, Japan (J.K.); Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (J.K.); and Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Hyogo, Japan (J.K.)
| | - Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Mu.T., M.I., S.N., A.W., Y.O., T.D., K.Y., J.K., M.K.); Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, National Institute of Biomedical Innovation, Osaka, Japan (Mu.T., H.S., J.K.); Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (Mi.T.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); Graduate School of Medicine and Graduate School of Dentistry, Osaka University, Osaka, Japan (J.K.); Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (J.K.); and Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Hyogo, Japan (J.K.)
| | - Takefumi Doi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Mu.T., M.I., S.N., A.W., Y.O., T.D., K.Y., J.K., M.K.); Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, National Institute of Biomedical Innovation, Osaka, Japan (Mu.T., H.S., J.K.); Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (Mi.T.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); Graduate School of Medicine and Graduate School of Dentistry, Osaka University, Osaka, Japan (J.K.); Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (J.K.); and Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Hyogo, Japan (J.K.)
| | - Masayoshi Fukasawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Mu.T., M.I., S.N., A.W., Y.O., T.D., K.Y., J.K., M.K.); Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, National Institute of Biomedical Innovation, Osaka, Japan (Mu.T., H.S., J.K.); Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (Mi.T.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); Graduate School of Medicine and Graduate School of Dentistry, Osaka University, Osaka, Japan (J.K.); Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (J.K.); and Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Hyogo, Japan (J.K.)
| | - Kiyohito Yagi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Mu.T., M.I., S.N., A.W., Y.O., T.D., K.Y., J.K., M.K.); Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, National Institute of Biomedical Innovation, Osaka, Japan (Mu.T., H.S., J.K.); Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (Mi.T.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); Graduate School of Medicine and Graduate School of Dentistry, Osaka University, Osaka, Japan (J.K.); Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (J.K.); and Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Hyogo, Japan (J.K.)
| | - Jun Kunisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Mu.T., M.I., S.N., A.W., Y.O., T.D., K.Y., J.K., M.K.); Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, National Institute of Biomedical Innovation, Osaka, Japan (Mu.T., H.S., J.K.); Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (Mi.T.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); Graduate School of Medicine and Graduate School of Dentistry, Osaka University, Osaka, Japan (J.K.); Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (J.K.); and Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Hyogo, Japan (J.K.)
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Mu.T., M.I., S.N., A.W., Y.O., T.D., K.Y., J.K., M.K.); Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, National Institute of Biomedical Innovation, Osaka, Japan (Mu.T., H.S., J.K.); Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (Mi.T.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); Graduate School of Medicine and Graduate School of Dentistry, Osaka University, Osaka, Japan (J.K.); Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (J.K.); and Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Hyogo, Japan (J.K.)
| |
Collapse
|
31
|
Perez EC, Xander P, Laurindo MFL, Novaes e Brito RR, Vivanco BC, Mortara RA, Mariano M, Lopes JD, Keller AC. The axis IL-10/claudin-10 is implicated in the modulation of aggressiveness of melanoma cells by B-1 lymphocytes. PLoS One 2017; 12:e0187333. [PMID: 29145406 PMCID: PMC5690663 DOI: 10.1371/journal.pone.0187333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/18/2017] [Indexed: 11/18/2022] Open
Abstract
B-1 lymphocytes are known to increase the metastatic potential of B16F10 melanoma cells via the extracellular signal-regulated kinase (ERK) pathway. Since IL-10 is associated with B-1 cells performance, we hypothesized that IL-10 could be implicated in the progression of melanoma. In the present work, we found that the C57BL/6 mice, inoculated with B16F10 cells that were co-cultivated with B-1 lymphocytes from IL-10 knockout mice, developed fewer metastatic nodules than the ones which were injected with the melanoma cells that were cultivated in the presence of wild-type B-1 cells. The impairment of metastatic potential of the B16F10 cells was correlated with low activation of the ERK signaling pathway, supporting the idea that the production of IL-10 by B-1 cells influences the behavior of the tumor. A microarray analysis of the B-1 lymphocytes revealed that IL-10 deficiency is associated with down-regulation of the genes that code for claudin-10, a protein that is involved in cell-to-cell contact and that has been linked to lung adenocarcinoma. In order to determine the impact of claudin-10 in the cross-talk between B-1 lymphocytes and the B16F10 tumor cells, we took advantage of small interfering RNA. The silencing of claudin-10 gene in B-1 lymphocytes inhibited activation of the ERK pathway and abrogated the B-1-induced aggressive behavior of the B16F10 cells. Thus, our findings suggest that the axis IL-10/claudin-10 is a promising target for the development of therapeutic agents against aggressive melanoma.
Collapse
Affiliation(s)
- Elizabeth Cristina Perez
- Environmental and Experimental Pathology Program, Universidade Paulista, São Paulo, São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo—Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, São Paulo, Brazil
| | - Patricia Xander
- Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, Campus Diadema, Diadema São Paulo, Brazil
| | - Maria Fernanda Lucatelli Laurindo
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo—Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, São Paulo, Brazil
| | | | - Bruno Camolese Vivanco
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo—Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, São Paulo, Brazil
| | - Renato Arruda Mortara
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo—Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, São Paulo, Brazil
| | - Mario Mariano
- Environmental and Experimental Pathology Program, Universidade Paulista, São Paulo, São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo—Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, São Paulo, Brazil
| | - José Daniel Lopes
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo—Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, São Paulo, Brazil
| | - Alexandre Castro Keller
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo—Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, São Paulo, Brazil
- Department of Medicine, Nephrology Division, Universidade Federal de São Paulo–Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, São Paulo, Brazil
- * E-mail: ,
| |
Collapse
|
32
|
Hashimoto Y, Shirakura K, Okada Y, Takeda H, Endo K, Tamura M, Watari A, Sadamura Y, Sawasaki T, Doi T, Yagi K, Kondoh M. Claudin-5-Binders Enhance Permeation of Solutes across the Blood-Brain Barrier in a Mammalian Model. J Pharmacol Exp Ther 2017; 363:275-283. [PMID: 28819070 DOI: 10.1124/jpet.117.243014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 08/07/2017] [Indexed: 03/08/2025] Open
Abstract
A current bottleneck in the development of central nervous system (CNS) drugs is the lack of drug delivery systems targeting the CNS. The intercellular space between endothelial cells of the blood-brain barrier (BBB) is sealed by complex protein-based structures called tight junctions (TJs). Claudin-5 (CLDN-5), a tetra-transmembrane protein is a key component of the TJ seal that prevents the paracellular diffusion of drugs into the CNS. In the present study, to investigate whether CLDN-5 binders can be used for delivery of drugs to the CNS, we generated monoclonal antibodies (mAbs) specific to the extracellular domains of CLDN-5. In an in vitro model of the BBB, the anti-CLDN-5 mAbs attenuated trans-epithelial/endothelial electrical resistance and enhanced solute permeation. These anti-CLDN-5 mAbs are potential leads for the development of novel drug delivery systems targeting the CNS.
Collapse
Affiliation(s)
- Yosuke Hashimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.H., K.S., Y.O., A.W., T.D., K.Y., M.K.); Proteo-Science Center, Ehime University, Ehime, Japan (H.T., T.S.); and Life Science Research Laboratories, Wako Pure Chemical Industries, Ltd., Hyogo, Japan (K.E., M.T., Y.S.)
| | - Keisuke Shirakura
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.H., K.S., Y.O., A.W., T.D., K.Y., M.K.); Proteo-Science Center, Ehime University, Ehime, Japan (H.T., T.S.); and Life Science Research Laboratories, Wako Pure Chemical Industries, Ltd., Hyogo, Japan (K.E., M.T., Y.S.)
| | - Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.H., K.S., Y.O., A.W., T.D., K.Y., M.K.); Proteo-Science Center, Ehime University, Ehime, Japan (H.T., T.S.); and Life Science Research Laboratories, Wako Pure Chemical Industries, Ltd., Hyogo, Japan (K.E., M.T., Y.S.)
| | - Hiroyuki Takeda
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.H., K.S., Y.O., A.W., T.D., K.Y., M.K.); Proteo-Science Center, Ehime University, Ehime, Japan (H.T., T.S.); and Life Science Research Laboratories, Wako Pure Chemical Industries, Ltd., Hyogo, Japan (K.E., M.T., Y.S.)
| | - Kohki Endo
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.H., K.S., Y.O., A.W., T.D., K.Y., M.K.); Proteo-Science Center, Ehime University, Ehime, Japan (H.T., T.S.); and Life Science Research Laboratories, Wako Pure Chemical Industries, Ltd., Hyogo, Japan (K.E., M.T., Y.S.)
| | - Maki Tamura
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.H., K.S., Y.O., A.W., T.D., K.Y., M.K.); Proteo-Science Center, Ehime University, Ehime, Japan (H.T., T.S.); and Life Science Research Laboratories, Wako Pure Chemical Industries, Ltd., Hyogo, Japan (K.E., M.T., Y.S.)
| | - Akihiro Watari
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.H., K.S., Y.O., A.W., T.D., K.Y., M.K.); Proteo-Science Center, Ehime University, Ehime, Japan (H.T., T.S.); and Life Science Research Laboratories, Wako Pure Chemical Industries, Ltd., Hyogo, Japan (K.E., M.T., Y.S.)
| | - Yoshifusa Sadamura
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.H., K.S., Y.O., A.W., T.D., K.Y., M.K.); Proteo-Science Center, Ehime University, Ehime, Japan (H.T., T.S.); and Life Science Research Laboratories, Wako Pure Chemical Industries, Ltd., Hyogo, Japan (K.E., M.T., Y.S.)
| | - Tatsuya Sawasaki
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.H., K.S., Y.O., A.W., T.D., K.Y., M.K.); Proteo-Science Center, Ehime University, Ehime, Japan (H.T., T.S.); and Life Science Research Laboratories, Wako Pure Chemical Industries, Ltd., Hyogo, Japan (K.E., M.T., Y.S.)
| | - Takefumi Doi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.H., K.S., Y.O., A.W., T.D., K.Y., M.K.); Proteo-Science Center, Ehime University, Ehime, Japan (H.T., T.S.); and Life Science Research Laboratories, Wako Pure Chemical Industries, Ltd., Hyogo, Japan (K.E., M.T., Y.S.)
| | - Kiyohito Yagi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.H., K.S., Y.O., A.W., T.D., K.Y., M.K.); Proteo-Science Center, Ehime University, Ehime, Japan (H.T., T.S.); and Life Science Research Laboratories, Wako Pure Chemical Industries, Ltd., Hyogo, Japan (K.E., M.T., Y.S.)
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.H., K.S., Y.O., A.W., T.D., K.Y., M.K.); Proteo-Science Center, Ehime University, Ehime, Japan (H.T., T.S.); and Life Science Research Laboratories, Wako Pure Chemical Industries, Ltd., Hyogo, Japan (K.E., M.T., Y.S.)
| |
Collapse
|
33
|
Piontek A, Witte C, May Rose H, Eichner M, Protze J, Krause G, Piontek J, Schröder L. A cCPE-based xenon biosensor for magnetic resonance imaging of claudin-expressing cells. Ann N Y Acad Sci 2017. [PMID: 28636798 DOI: 10.1111/nyas.13363] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The majority of malignant tumors originate from epithelial cells, and many of them are characterized by an overexpression of claudins (Cldns) and their mislocalization out of tight junctions. We utilized the C-terminal claudin-binding domain of Clostridium perfringens enterotoxin (cCPE), with its high affinity to specific members of the claudin family, as the targeting unit for a claudin-sensitive cancer biosensor. To overcome the poor sensitivity of conventional relaxivity-based magnetic resonance imaging (MRI) contrast agents, we utilized the superior sensitivity of xenon Hyper-CEST biosensors. We labeled cCPE for both xenon MRI and fluorescence detection. As one readout module, we employed a cryptophane (CrA) monoacid and, as the second, a fluorescein molecule. Both were conjugated separately to a biotin molecule via a polyethyleneglycol chemical spacer and later via avidin linked to GST-cCPE. Nontransfected HEK293 cells and HEK293 cells stably expressing Cldn4-FLAG were incubated with the cCPE-based biosensor. Fluorescence-based flow cytometry and xenon MRI demonstrated binding of the biosensor specifically to Cldn4-expressing cells. This study provides proof of concept for the use of cCPE as a carrier for diagnostic contrast agents, a novel approach for potential detection of Cldn3/-4-overexpressing tumors for noninvasive early cancer detection.
Collapse
Affiliation(s)
- Anna Piontek
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Structural Bioinformatics and Protein Design, Berlin, Germany
| | - Christopher Witte
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Molecular Imaging, Berlin, Germany
| | - Honor May Rose
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Molecular Imaging, Berlin, Germany
| | - Miriam Eichner
- Institute of Clinical Physiology Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jonas Protze
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Structural Bioinformatics and Protein Design, Berlin, Germany
| | - Gerd Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Structural Bioinformatics and Protein Design, Berlin, Germany
| | - Jörg Piontek
- Institute of Clinical Physiology Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leif Schröder
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Molecular Imaging, Berlin, Germany
| |
Collapse
|
34
|
Hashimoto Y, Fukasawa M, Kuniyasu H, Yagi K, Kondoh M. Claudin-targeted drug development using anti-claudin monoclonal antibodies to treat hepatitis and cancer. Ann N Y Acad Sci 2017; 1397:5-16. [PMID: 28415141 DOI: 10.1111/nyas.13337] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 12/26/2022]
Abstract
The 27-member family of tetraspan membrane proteins known as claudins (CLDNs) is a major component of tight junctions. A series of studies elucidating the relationship between CLDNs and various pathological conditions has provided new insights into drug development. For instance, CLDN-1 may be a potent target for epidermal absorption of drugs and for treating hepatitis C virus (HCV) infection. CLDN-4 may be a target for treating cancer. Because CLDNs are also expressed in various normal tissues, safety and efficacy evaluations are critical for translational research. We previously developed several anti-CLDN antibodies and have established proof of concept for CLDN-targeted drug development using these reagents. Here, we provide an overview of CLDN-1 as a target for improving epidermal drug absorption and preventing HCV infection and of CLDN-4 as a target for anticancer therapeutics.
Collapse
Affiliation(s)
- Yosuke Hashimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | - Kiyohito Yagi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
35
|
Tabariès S, Siegel PM. The role of claudins in cancer metastasis. Oncogene 2017; 36:1176-1190. [PMID: 27524421 DOI: 10.1038/onc.2016.289] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 01/24/2023]
Abstract
TJs are large intercellular adhesion complexes that maintain cell polarity in normal epithelia and endothelia. During the metastatic process, TJs must be 'loosened' or dismantled in cancer cells to enable migration and dissemination. Diminished TJ integrity must also occur within endothelial cells to allow intravasation and extravasation of cancer cells across endothelial barriers. Claudins are critical components of TJs, forming homo- and heteromeric interactions between the adjacent cells, which have been implicated as key modulators of carcinogenesis and metastasis. Numerous epithelial-derived cancers display altered claudin expression patterns and certain claudins can now be used as biomarkers to predict patient prognosis. Moreover, claudins have been functionally implicated in numerous steps of the metastatic cascade. The distinct roles played by claudins during the cancer progression to metastatic disease are just starting to be elucidated. A more complete understanding of the mechanisms through which claudins augment cancer metastasis is required to develop new therapeutic agents against this family of proteins. In this review, we will summarize the relationship between the claudin expression and clinical outcomes in diverse cancers, discuss tumor intrinisic roles through which claudins regulate metastasis and explore claudin-mediated functions within stromal cells that influence the metastatic process. Finally, we will consider possible strategies for targeting claudins that have the potential to improve the management of metastatic cancer.
Collapse
Affiliation(s)
- S Tabariès
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | - P M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
36
|
Pahle J, Menzel L, Niesler N, Kobelt D, Aumann J, Rivera M, Walther W. Rapid eradication of colon carcinoma by Clostridium perfringens Enterotoxin suicidal gene therapy. BMC Cancer 2017; 17:129. [PMID: 28193196 PMCID: PMC5307849 DOI: 10.1186/s12885-017-3123-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/08/2017] [Indexed: 12/23/2022] Open
Abstract
Background Bacterial toxins have evolved to an effective therapeutic option for cancer therapy. The Clostridium perfringens enterotoxin (CPE) is a pore-forming toxin with selective cytotoxicity. The transmembrane tight junction proteins claudin-3 and -4 are known high affinity CPE receptors. Their expression is highly upregulated in human cancers, including breast, ovarian and colon carcinoma. CPE binding to claudins triggers membrane pore complex formation, which leads to rapid cell death. Previous studies demonstrated the anti-tumoral effect of treatment with recombinant CPE-protein. Our approach aimed at evaluation of a selective and targeted cancer gene therapy of claudin-3- and/or claudin-4- expressing colon carcinoma in vitro and in vivo by using translation optimized CPE expressing vector. Methods In this study the recombinant CPE and a translation optimized CPE expressing vector (optCPE) was used for targeted gene therapy of claudin-3 and/or -4 overexpressing colon cancer cell lines. All experiments were performed in the human SW480, SW620, HCT116, CaCo-2 and HT-29 colon cancer and the isogenic Sk-Mel5 and Sk-Mel5 Cldn-3-YFP melanoma cell lines. Claudin expression analysis was done at protein and mRNA level, which was confirmed by immunohistochemistry. The CPE induced cytotoxicity was analyzed by the MTT cytotoxicity assay. In addition patient derived colon carcinoma xenografts (PDX) were characterized and used for the intratumoral in vivo gene transfer of the optCPE expressing vector in PDX bearing nude mice. Results Claudin-3 and -4 overexpressing colon carcinoma lines showed high sensitivity towards both recCPE application and optCPE gene transfer. The positive correlation between CPE cytotoxicity and level of claudin expression was demonstrated. Transfection of optCPE led to targeted, rapid cytotoxic effects such as membrane disruption and necrosis in claudin overexpressing cells. The intratumoral optCPE in vivo gene transfer led to tumor growth inhibition in colon carcinoma PDX bearing mice in association with massive necrosis due to the intratumoral optCPE expression. Conclusions This novel approach demonstrates that optCPE gene transfer represents a promising and efficient therapeutic option for a targeted suicide gene therapy of claudin-3 and/or claudin-4 overexpressing colon carcinomas, leading to rapid and effective tumor cell killing in vitro and in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3123-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica Pahle
- Experimental and Clinical Research Center, Charité University Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Lutz Menzel
- Max-Delbrück-Center for Molecular Medicine, Rober-Rössle-Str.10, 13125, Berlin, Germany
| | - Nicole Niesler
- Max-Delbrück-Center for Molecular Medicine, Rober-Rössle-Str.10, 13125, Berlin, Germany
| | - Dennis Kobelt
- Max-Delbrück-Center for Molecular Medicine, Rober-Rössle-Str.10, 13125, Berlin, Germany
| | - Jutta Aumann
- Experimental and Clinical Research Center, Charité University Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Maria Rivera
- Experimental Pharmacology & Oncology (EPO) GmbH Berlin, Rober-Rössle-Str. 10, 13125, Berlin, Germany
| | - Wolfgang Walther
- Experimental and Clinical Research Center, Charité University Medicine, Lindenberger Weg 80, 13125, Berlin, Germany. .,Max-Delbrück-Center for Molecular Medicine, Rober-Rössle-Str.10, 13125, Berlin, Germany.
| |
Collapse
|
37
|
Petrelli F, Inno A, Barni S, Ghidini A, Labianca R, Falconi M, Reni M, Cascinu S. Borderline resectable pancreatic cancer: More than an anatomical concept. Dig Liver Dis 2017; 49:223-226. [PMID: 27931968 DOI: 10.1016/j.dld.2016.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022]
Abstract
Borderline resectable pancreatic cancer (BRPC) accounts for about 10-15% of newly diagnosed pancreatic cancer, and its management requires a skilled multidisciplinary team. The main definition of BRPC refers to resectability, but also a high risk of positive surgical margins and recurrence. This raises questions about the value of surgery and suggests an opportunity to utilize preoperative treatment in this subset of patients. Besides technical borderline resectable disease which is defined on anatomical and radiological criteria, there is also a biological borderline resectable disease which is defined on clinical and biological prognostic factors. Technical borderline resectable disease requires tumor shrinkage with aggressive therapy including modern drug combinations +/- radiotherapy to achieve radical surgery. Biological BRPC needs always an early systemic treatment in order to select the best candidates for subsequent radical surgery. It is important to distinguish between these different clinical scenarios, both in clinical practice and for clinical trials design.
Collapse
Affiliation(s)
| | - Alessandro Inno
- Medical Oncology Unit, Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Sandro Barni
- Medical Oncology Unit, ASST Bergamo Ovest, Bergamo, Italy
| | | | - Roberto Labianca
- Medical Oncology Unit, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Massimo Falconi
- Surgical Department of Pancreas, San Raffaele Hospital, IRCCS, Milano, Italy
| | - Michele Reni
- Medical Oncology Unit, San Raffaele Hospital, IRCCS, Milano, Italy
| | - Stefano Cascinu
- Department of Oncology and Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
38
|
Park JY, Lee JY, Zhang Y, Hoffman RM, Bouvet M. Targeting the insulin growth factor-1 receptor with fluorescent antibodies enables high resolution imaging of human pancreatic cancer in orthotopic mouse models. Oncotarget 2017; 7:18262-8. [PMID: 26919100 PMCID: PMC4951286 DOI: 10.18632/oncotarget.7576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/11/2016] [Indexed: 12/11/2022] Open
Abstract
The goal of the present study was to determine whether insulin-like growth factor-1 receptor (IGF-1R) antibodies, conjugated with bright fluorophores, could enable visualization of pancreatic cancer in orthotopic nude mouse models. IGF-1R antibody (clone 24-31) was conjugated with 550 nm or 650 nm fluorophores. Western blotting confirmed the expression of IGF-1R in Panc-1, BxPC3, and MIAPaCa-2 human pancreatic cancer cell lines. Labeling with fluorophore-conjugated IGF-1R antibody demonstrated fluorescent foci on the membrane of the pancreatic cancer cells. Subcutaneous Panc-1, BxPC-3, and MIA PaCa-2 tumors became fluorescent after intravenous administration of fluorescent IGF-1R antibodies. Orthotopically-transplanted BxPC-3 tumors became fluorescent with the conjugated IGF-1R antibodies, and were easily visible with intravital imaging. Gross and microscopic ex vivo imaging of resected pancreatic tumor and normal pancreas confirmed that fluorescence indeed came from the membrane of cancer cells, and it was stronger from the tumor than the normal tissue. The present study demonstrates that fluorophore-conjugated IGF-1R antibodies can visualize pancreatic cancer and it can be used with various imaging devices such as endoscopy and laparoscopy for diagnosis and fluorescence-guided surgery.
Collapse
Affiliation(s)
- Jeong Youp Park
- Department of Surgery, University of California San Diego, San Diego, CA, USA.,AntiCancer, Inc., San Diego, CA, USA.,Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Young Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | | | - Robert M Hoffman
- Department of Surgery, University of California San Diego, San Diego, CA, USA.,AntiCancer, Inc., San Diego, CA, USA
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, San Diego, CA, USA.,Surgical Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
39
|
Targeting and alteration of tight junctions by bacteria and their virulence factors such as Clostridium perfringens enterotoxin. Pflugers Arch 2016; 469:77-90. [DOI: 10.1007/s00424-016-1902-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/01/2016] [Accepted: 11/06/2016] [Indexed: 01/01/2023]
|
40
|
|
41
|
Hicks DA, Galimanis CE, Webb PG, Spillman MA, Behbakht K, Neville MC, Baumgartner HK. Claudin-4 activity in ovarian tumor cell apoptosis resistance and migration. BMC Cancer 2016; 16:788. [PMID: 27724921 PMCID: PMC5057472 DOI: 10.1186/s12885-016-2799-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/22/2016] [Indexed: 02/06/2023] Open
Abstract
Background Claudin-4 is a transmembrane protein expressed at high levels in the majority of epithelial ovarian tumors, irrespective of subtype, and has been associated with tumor cells that are both chemoresistant and highly mobile. The objective of this study was to determine the functional role that claudin-4 plays in apoptosis resistance and migration as well as the therapeutic utility of targeting claudin-4 activity with a small mimic peptide. Methods We examined claudin-4 activity in human ovarian tumor cell lines (SKOV3, OVCAR3, PEO4) using in vitro caspase and scratch assays as well as an in vivo mouse model of ovarian cancer. Claudin-4 activity was disrupted by treating cells with a small peptide that mimics the DFYNP sequence in the second extracellular loop of claudin-4. Claudin-4 expression was also altered using shRNA-mediated gene silencing. Results Both the disruption of claudin-4 activity and the loss of claudin-4 expression significantly increased tumor cell caspase-3 activation (4 to 10-fold, respectively) in response to the apoptotic inducer staurosporine and reduced tumor cell migration by 50 %. The mimic peptide had no effect on cells that lacked claudin-4 expression. Female athymic nude mice bearing ZsGreen-PEO4 ovarian tumors showed a significant decrease in ovarian tumor burden, due to increased apoptosis, after treatment with intraperitoneal injections of 4 mg/kg mimic peptide every 48 h for three weeks, compared to control peptide treated mice. Conclusion Claudin-4 functionally contributes to both ovarian tumor cell apoptosis resistance and migration and targeting extracellular loop interactions of claudin-4 may have therapeutic implications for reducing ovarian tumor burden.
Collapse
Affiliation(s)
- Douglas A Hicks
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Mail Stop 8613, 12700 E. 19th Avenue, Aurora, Colorado, 80045, USA
| | - Carly E Galimanis
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Mail Stop 8613, 12700 E. 19th Avenue, Aurora, Colorado, 80045, USA
| | - Patricia G Webb
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Mail Stop 8613, 12700 E. 19th Avenue, Aurora, Colorado, 80045, USA
| | - Monique A Spillman
- Texas Oncology, Sammons Cancer Center, Baylor University Medical Center, 3410 Worth Street, Dallas, Texas, 75246, USA
| | - Kian Behbakht
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Mail Stop 8613, 12700 E. 19th Avenue, Aurora, Colorado, 80045, USA
| | - Margaret C Neville
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Mail Stop 8613, 12700 E. 19th Avenue, Aurora, Colorado, 80045, USA
| | - Heidi K Baumgartner
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Mail Stop 8613, 12700 E. 19th Avenue, Aurora, Colorado, 80045, USA.
| |
Collapse
|
42
|
Hashimoto Y, Yagi K, Kondoh M. Roles of the first-generation claudin binder, Clostridium perfringens enterotoxin, in the diagnosis and claudin-targeted treatment of epithelium-derived cancers. Pflugers Arch 2016; 469:45-53. [PMID: 27629072 DOI: 10.1007/s00424-016-1878-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/20/2016] [Accepted: 09/06/2016] [Indexed: 12/11/2022]
Abstract
Given that most malignant tumors are derived from epithelium, developing a strategy for treatment of epithelium-derived cancers (i.e., carcinomas) is a pivotal issue in cancer therapy. Carcinomas, including ovarian, breast, prostate, and pancreatic cancers, are known to overexpress various claudins (CLDNs); in particular, CLDN-3 and -4 are frequently overexpressed in malignant case. The generation of CLDN binders is a key for expanding CLDN-targeted cancer therapy but has been delayed due to the small size of CLDN extracellular domains (approximately 50 amino acids for the first domain and 15 amino acids for the second) and their high homology among species. Interestingly, however, the receptors for Clostridium perfringens enterotoxin (CPE), a foodborne toxin in humans, happen to be identical to CLDN-3 and -4. Thus, the first CLDN binder, CPE, has provided us CLDN-targeted cancer therapy from a concept into a potential reality. In this review, we describe roles of CPE technology in cancer therapy and discuss future directions in the CLDN-targeting concept-to-therapy process.
Collapse
Affiliation(s)
- Yosuke Hashimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kiyohito Yagi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
43
|
Wang Z, Tong M, Chen X, Hu S, Yang Z, Zhang Y, Zhou H, Wu Y, Li X, Li D. Survivin-targeted nanoparticles for pancreatic tumor imaging in mouse model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1651-61. [DOI: 10.1016/j.nano.2016.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/29/2016] [Accepted: 02/03/2016] [Indexed: 12/21/2022]
|
44
|
Kleeff J, Korc M, Apte M, La Vecchia C, Johnson CD, Biankin AV, Neale RE, Tempero M, Tuveson DA, Hruban RH, Neoptolemos JP. Pancreatic cancer. Nat Rev Dis Primers 2016; 2:16022. [PMID: 27158978 DOI: 10.1038/nrdp.2016.22] [Citation(s) in RCA: 1292] [Impact Index Per Article: 143.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer is a major cause of cancer-associated mortality, with a dismal overall prognosis that has remained virtually unchanged for many decades. Currently, prevention or early diagnosis at a curable stage is exceedingly difficult; patients rarely exhibit symptoms and tumours do not display sensitive and specific markers to aid detection. Pancreatic cancers also have few prevalent genetic mutations; the most commonly mutated genes are KRAS, CDKN2A (encoding p16), TP53 and SMAD4 - none of which are currently druggable. Indeed, therapeutic options are limited and progress in drug development is impeded because most pancreatic cancers are complex at the genomic, epigenetic and metabolic levels, with multiple activated pathways and crosstalk evident. Furthermore, the multilayered interplay between neoplastic and stromal cells in the tumour microenvironment challenges medical treatment. Fewer than 20% of patients have surgically resectable disease; however, neoadjuvant therapies might shift tumours towards resectability. Although newer drug combinations and multimodal regimens in this setting, as well as the adjuvant setting, appreciably extend survival, ∼80% of patients will relapse after surgery and ultimately die of their disease. Thus, consideration of quality of life and overall survival is important. In this Primer, we summarize the current understanding of the salient pathophysiological, molecular, translational and clinical aspects of this disease. In addition, we present an outline of potential future directions for pancreatic cancer research and patient management.
Collapse
Affiliation(s)
- Jorg Kleeff
- NIHR Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Duncan Building, Daulby Street, Liverpool L69 3GA, UK
- Department of General, Visceral and Pediatric Surgery, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Murray Korc
- Departments of Medicine, and Biochemistry and Molecular Biology, Indiana University School of Medicine, the Melvin and Bren Simon Cancer Center, and the Pancreatic Cancer Signature Center, Indianapolis, Indiana, USA
| | - Minoti Apte
- SWS Clinical School, University of New South Wales, and Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Colin D Johnson
- University Surgical Unit, University Hospital Southampton, Southampton, UK
| | - Andrew V Biankin
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Garscube Estate, Bearsden, Glasgow, Scotland, UK
| | - Rachel E Neale
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Margaret Tempero
- UCSF Pancreas Center, University of California San Francisco - Mission Bay Campus/Mission Hall, San Francisco, California, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, New York, USA
| | - Ralph H Hruban
- The Sol Goldman Pancreatic Cancer Research Center, Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John P Neoptolemos
- NIHR Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Duncan Building, Daulby Street, Liverpool L69 3GA, UK
| |
Collapse
|
45
|
Ha Y, Choi HK. Recent conjugation strategies of small organic fluorophores and ligands for cancer-specific bioimaging. Chem Biol Interact 2016; 248:36-51. [DOI: 10.1016/j.cbi.2016.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 01/03/2023]
|
46
|
Serrao EM, Kettunen MI, Rodrigues TB, Dzien P, Wright AJ, Gopinathan A, Gallagher FA, Lewis DY, Frese KK, Almeida J, Howat WJ, Tuveson DA, Brindle KM. MRI with hyperpolarised [1-13C]pyruvate detects advanced pancreatic preneoplasia prior to invasive disease in a mouse model. Gut 2016; 65:465-75. [PMID: 26347531 PMCID: PMC4789827 DOI: 10.1136/gutjnl-2015-310114] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/19/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Pancreatic cancer (PCa) is treatable by surgery when detected at an early stage. Non-invasive imaging methods able to detect both established tumours and their precursor lesions are needed to select patients for surgery. We investigated here whether pancreatic preneoplasia could be detected prior to the development of invasive cancers in genetically engineered mouse models of PCa using metabolic imaging. DESIGN The concentrations of alanine and lactate and the activities of lactate dehydrogenase (LDH) and alanine aminotransferase (ALT) were measured in extracts prepared from the pancreas of animals at different stages of disease progression; from pancreatitis, through tissue with predominantly low-grade and then high-grade pancreatic intraepithelial neoplasia and then tumour. (13)C magnetic resonance spectroscopic imaging ((13)C-MRSI) was used to measure non-invasively changes in (13)C labelling of alanine and lactate with disease progression, following injection of hyperpolarised [1-(13)C]pyruvate. RESULTS Progressive decreases in the alanine/lactate concentration ratio and ALT/LDH activity ratio with disease progression were accompanied by a corresponding decrease in the [1-(13)C]alanine/[1-(13)C]lactate signal ratio observed in (13)C-MRSI images of the pancreas. CONCLUSIONS Metabolic imaging with hyperpolarised [1-(13)C]pyruvate enables detection and monitoring of the progression of PCa precursor lesions. Translation of this MRI technique to the clinic has the potential to improve the management of patients at high risk of developing PCa.
Collapse
Affiliation(s)
- Eva M Serrao
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Mikko I Kettunen
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tiago B Rodrigues
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Piotr Dzien
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Alan J Wright
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Aarthi Gopinathan
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ferdia A Gallagher
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - David Y Lewis
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Jaime Almeida
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - William J Howat
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
47
|
Abstract
The development of novel molecular cancer imaging agents has considerably advanced in recent years. Numerous cancer imaging agents have demonstrated remarkable potential for aiding the diagnosis, staging, and treatment planning at the preclinical stage, which in turn has led to a number of agents being approved for human trials. Pancreatic ductal adenocarcinoma is currently the most deadly common carcinoma with an overall 5-year survival rate of about 6%. As detection technologies progress, the need for molecular imaging tools that will allow the diagnosis at an early stage will be crucial to improving patient outcomes. In this review, we will highlight agents that illuminate various cell populations that comprise the tumor: epithelial, endothelial, and stromal tumor cells.
Collapse
|
48
|
Alikanoglu AS, Gunduz S, Demirpence O, Suren D, Gunduz UR, Sezer C, Yildiz M, Yildirim M. Expression pattern and prognostic significance of claudin 1, 4 and 7 in pancreatic cancer. Asian Pac J Cancer Prev 2016; 16:4387-92. [PMID: 26028104 DOI: 10.7314/apjcp.2015.16.10.4387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tight junctions (TJs) organise paracellular permeability and they have an important role in epithelial and endothelial cell polarity and permanence of barrier function. It has been demonstrated that the Claudin family constitutes an important component of them. In this study, we assessed expression patterns of of Claudin1, 4 and 7 and whether they have any relation with prognosis in patients with pancreatic cancer. MATERIALS AND METHODS Expression patterns of Claudin 1,4 and 7 were examined by immunohistochemistry in 25 patients with a histopathological diagnosis of pancreatic cancer using a semiquantitative scoring of the extent and intensity of staining. After grouping the staining scores as low (final score 0-2) and high (final score 3-9) the relation between expression of Claudin 1,4 and 7 and survival was evaluated. RESULTS There was no significant relation between expression of Claudin 1,4 and 7 and gender and stage. No statistically significant relation was found between Claudin 1 and 4 expression and survival whereas a statistically significant relation was found between decrease in Claudin 7 expression and decrease in survival. CONCLUSIONS Claudins have important functions other than their popular function known as adhesion. Supporting this hypothesis, we found a statistically significant relationship between increased Claudin 7 expression and increased survival time, and this suggests that Claudin 7 may exert different tumorigenic effects in pancreatic cancer other than its well- known adhesion effect.
Collapse
|
49
|
Kono T, Kondoh M, Kyuno D, Ito T, Kimura Y, Imamura M, Kohno T, Konno T, Furuhata T, Sawada N, Hirata K, Kojima T. Claudin-4 binder C-CPE 194 enhances effects of anticancer agents on pancreatic cancer cell lines via a MAPK pathway. Pharmacol Res Perspect 2015; 3:e00196. [PMID: 27022469 PMCID: PMC4777248 DOI: 10.1002/prp2.196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 09/28/2015] [Accepted: 10/07/2015] [Indexed: 12/14/2022] Open
Abstract
The C‐terminal fragment of Clostridium perfringens enterotoxin (C‐CPE) modulates the tight junction protein claudin and disrupts the tight junctional barrier. It also can enhance the effectiveness of anticancer agents. However, the detailed mechanisms of the effects of C‐CPE remain unclear in both normal and cancerous cells. The C‐CPE mutant called C‐CPE 194 binds only to claudin‐4, but the C‐CPE 194 mutant called C‐CPE m19 binds not only to claudin‐4 but also to claudin‐1. In the present study, to investigate the mechanisms of the effects of C‐CPE on claudin expression, the tight junctional functions and the cytotoxicity of anticancer agents, human pancreatic cancer cells, and normal human pancreatic duct epithelial cells (HPDEs) were treated with C‐CPE 194 and C‐CPE m19. In well‐differentiated cells of the pancreatic cancer cell line HPAC, C‐CPE 194 and C‐CPE m19 disrupted both the barrier and fence functions without changes in expression of claudin‐1 and ‐4, together with an increase of MAPK phosphorylation. C‐CPE 194, but not C‐CPE m19, enhanced the cytotoxicity of the anticancer agents gemcitabine and S‐1. In poorly differentiated pancreatic cancer cell line PANC‐1, C‐CPE 194, but not C‐CPE m19, decreased claudin‐4 expression and enhanced MAPK activity and the cytotoxicity of the anticancer agents. In normal HPDEs, C‐CPE 194 and C‐CPE m19 decreased claudin‐4 expression and enhanced the MAPK activity, whereas they did not affect the cytotoxicity of the anticancer agents. Our findings suggest that the claudin‐4 binder C‐CPE 194 enhances effects of anticancer agents on pancreatic cancer cell lines via a MAPK pathway.
Collapse
Affiliation(s)
- Tsuyoshi Kono
- Department of Surgery Sapporo Medical University School of Medicine Sapporo Japan; Department of Cell Science Research Institute for Frontier Medicine Sapporo Medical University School of Medicine Sapporo Japan
| | - Masuo Kondoh
- Laboratory of Bio-Functional Molecular Chemistry Graduate School of Pharmaceutical Sciences Osaka University Suita Japan
| | - Daisuke Kyuno
- Department of Surgery Sapporo Medical University School of Medicine Sapporo Japan
| | - Tatsuya Ito
- Department of Surgery Sapporo Medical University School of Medicine Sapporo Japan
| | - Yasutoshi Kimura
- Department of Surgery Sapporo Medical University School of Medicine Sapporo Japan
| | - Masafumi Imamura
- Department of Surgery Sapporo Medical University School of Medicine Sapporo Japan
| | - Takayuki Kohno
- Department of Cell Science Research Institute for Frontier Medicine Sapporo Medical University School of Medicine Sapporo Japan
| | - Takumi Konno
- Department of Cell Science Research Institute for Frontier Medicine Sapporo Medical University School of Medicine Sapporo Japan
| | - Tomohisa Furuhata
- Department of Surgery Sapporo Medical University School of Medicine Sapporo Japan
| | - Norimasa Sawada
- Department of Pathology Sapporo Medical University School of Medicine Sapporo Japan
| | - Koichi Hirata
- Department of Surgery Sapporo Medical University School of Medicine Sapporo Japan
| | - Takashi Kojima
- Department of Cell Science Research Institute for Frontier Medicine Sapporo Medical University School of Medicine Sapporo Japan
| |
Collapse
|
50
|
Neesse A, Algül H, Tuveson DA, Gress TM. Stromal biology and therapy in pancreatic cancer: a changing paradigm. Gut 2015; 64:1476-84. [PMID: 25994217 DOI: 10.1136/gutjnl-2015-309304] [Citation(s) in RCA: 415] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/20/2015] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) exhibits one of the poorest prognosis of all solid tumours and poses an unsolved problem in cancer medicine. Despite the recent success of two combination chemotherapies for palliative patients, the modest survival benefits are often traded against significant side effects and a compromised quality of life. Although the molecular events underlying the initiation and progression of PDA have been intensively studied and are increasingly understood, the reasons for the poor therapeutic response are hardly apprehended. One leading hypothesis over the last few years has been that the pronounced tumour microenvironment in PDA not only promotes carcinogenesis and tumour progression but also mediates therapeutic resistance. To this end, targeting of various stromal components and pathways was considered a promising strategy to biochemically and biophysically enhance therapeutic response. However, none of the efforts have yet led to efficacious and approved therapies in patients. Additionally, recent data have shown that tumour-associated fibroblasts may restrain rather than promote tumour growth, reinforcing the need to critically revisit the complexity and complicity of the tumour-stroma with translational implications for future therapy and clinical trial design.
Collapse
Affiliation(s)
- Albrecht Neesse
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Centre Goettingen, Georg August University Goettingen, Goettingen, Germany
| | - Hana Algül
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York, USA
| | - Thomas M Gress
- Department of Gastroenterology, Endocrinology, Infectiology and Metabolism, Philipps-University, Marburg, Germany
| |
Collapse
|