1
|
Cecchini A, Ceccon L, Calandro S, Chen A, Schwesig JK, Cornelison D. Ephrin-A5 or EphA7 stimulation is anti-proliferative for human rhabdomyosarcoma in vitro. Skelet Muscle 2025; 15:14. [PMID: 40426233 PMCID: PMC12107885 DOI: 10.1186/s13395-025-00384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Rhabdomyosarcoma (RMS) is a tumor which resembles skeletal muscle. Current treatments are limited to surgery and non-targeted chemotherapy, highlighting the need for alternative therapies. Differentiation therapy uses molecules that act to shift the tumor cells' phenotype from proliferating to differentiated, which in the case of skeletal muscle includes exit from the cell cycle and potentially fusion into myofibers. We previously identified EphA7 expressed on terminally differentiated myocytes as a potent driver of skeletal muscle differentiation: stimulation of ephrin-A5-expressing myoblasts with EphA7 causes them to undergo rapid, collective differentiation. We therefore tested EphA7 as a candidate molecule for differentiation therapy on human RMS (hRMS) cell lines. Surprisingly, EphA7 had a lesser effect than ephrin-A5, a difference explained by the divergent suite of Ephs and ephrins expressed by hRMS. We show that in hRMS ephrin-A5 binds and signals to EphA8 and EphA7 binds and signals to ephrin-A2, and that Fc chimeras of both molecules are potent inhibitors of hRMS proliferation. These results identify key differences between hRMS and normal muscle cells and support further research into Eph: ephrin signaling as potential differentiation therapies.
Collapse
Affiliation(s)
- Alessandra Cecchini
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
- Sanford Burnam Prebys Discovery Institute, La Jolla, CA, USA
| | - Lorenzo Ceccon
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Steven Calandro
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Anna Chen
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Jenna K Schwesig
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
- Medical University of South Carolina, Charleston, SC, USA
| | - Ddw Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
2
|
Papke DJ. Mesenchymal Neoplasms of the Bladder and Male Genital Tract, including the Perineum and Scrotum. Surg Pathol Clin 2025; 18:229-247. [PMID: 39890306 DOI: 10.1016/j.path.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Mesenchymal neoplasms of the bladder and male genital tract are uncommonly encountered in routine diagnostic practice and present diagnostic challenges. Here, I systematically survey mesenchymal tumors at each body site, including the spermatic cord, scrotum, and perineum. I provide a detailed overview of tumor types that specifically or most commonly occur in the bladder and male genital tract, including pseudosarcomatous myofibroblastic neoplasm of the bladder, proliferative funiculitis, paratesticular sclerosing rhabdomyoma, penile myointimoma, and so-called prostatic stromal tumors.
Collapse
Affiliation(s)
- David J Papke
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Chiloleti G, Lituli H, Sobbo S, Sensa V, Mushi F. Successful treatment of rare case of rhabdomyosarcoma of urinary bladder in adult, experience from tertiary hospital. Case report. Int J Surg Case Rep 2024; 123:110296. [PMID: 39293226 PMCID: PMC11424959 DOI: 10.1016/j.ijscr.2024.110296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024] Open
Abstract
INTRODUCTION AND IMPORTANCE Rhabdomyosarcoma [RMS] is a malignant soft-tissue neoplasm characterized by skeletal muscle differentiation. It accounts for 7 % of childhood malignancies and is, by a wide margin, the most common sarcoma of childhood (Pappo, 1996). Approximately 20 % of cases of childhood rhabdomyosarcoma occur in the genitourinary tract (vagina, urinary bladder, prostate, paratestis, and uterus), and they are most commonly observed in the head and neck region. CASE PRESENTATION We reviewed the case of a 42-year-old male who presented with a 2-week history of blood in the urine, which was painless, started on gradual onset, and progressively increased, involving the whole stream of urine. The blood clots were amorphous in shape but had no history of passed tissue shreds, childhood schistosomiasis, cigarette smoking, or working in chemical industries. On physical examination, the patient was anxious and conscious, with normal vital signs. The abdomen revealed distended abdomen shifting dullness, a palpable urinary bladder with suprapubic distension, and a tenderness on palpation, which disappeared upon catheterization 3-way 24F, with normal male genitalia and right lower limb edema. Other systems were essentially normal. On image KUB USS revealed a bladder mass, Cystoscopy showed a broad base bleeding tumor located at dome to the left lateral, fungating, with some necrotic tissue. TURBT was done into completion and histology revealed an embryonal rhabdomyosarcoma of urinary bladder, a botryoid subtype. After TURBT, the patient received adjuvant chemotherapy, the MAID protocol and underwent a 6-cycle cycle. The cycle was repeated every 21 days, and his height was 171.5 c, and his weight was 89 kg. Serial of check cystoscopy for one year revealed no recurrency of tumor. He repeated check CT scan, which showed a radiological improvement compared to the initial image. CLINICAL DISCUSSION Rhabdomyosarcoma in adults is a rare type of urinary bladder carcinoma that is quite aggressive and is usually reported to be a pediatric malignant urinary bladder tumor. The modality of treatment is not universal because of its rarity. We used a combination of TURB and chemotherapy and performed strict follow-up, with no tumor recurrence occurring at least after one year of follow-up. These patients show significant improvement from the first presentation, both clinically and radiologically. CONCLUSION The lack of a universal standard treatment approach for adult rhabdomyosarcoma indicates the need for more data on adult rhabdomyosarcoma, with a detailed description of its histological subtype.
Collapse
Affiliation(s)
- Geofrey Chiloleti
- Department of Surgery, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| | - Hashim Lituli
- Department of Urology, Muhimbili National Hospital, Dar es salaam, Tanzania
| | - Salim Sobbo
- Department of Surgery, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Victor Sensa
- Department of Urology, Muhimbili National Hospital, Dar es salaam, Tanzania
| | - Fransia Mushi
- Department of Surgery, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
4
|
Zhang K, Fang X, Zhang Y, Zhang Y, Chao M. Transcriptional activation of PINK1 by MyoD1 mediates mitochondrial homeostasis to induce renal calcification in pediatric nephrolithiasis. Cell Death Discov 2024; 10:397. [PMID: 39242558 PMCID: PMC11379875 DOI: 10.1038/s41420-024-02117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 09/09/2024] Open
Abstract
This study aims to uncover the molecular mechanisms underlying pediatric kidney stone formation induced by renal calcium deposition by utilizing high-throughput sequencing data to reveal the regulation of PINK1 by MyoD1. We performed transcriptome sequencing on peripheral blood samples from healthy children and children with kidney stones to obtain differentially expressed genes (DEGs). Genes related to mitochondrial oxidative stress were obtained from the Genecards website and intersected with DEGs to obtain candidate target genes. Additionally, we conducted protein-protein interaction (PPI) analysis using the STRING database to identify core genes involved in pediatric kidney stone disease (KSD) and predicted their transcription factors using the hTFtarget database. We assessed the impact of MyoD1 on the activity of the PINK1 promoter using dual-luciferase reporter assays and investigated the enrichment of MyoD1 on the PINK1 promoter through chromatin immunoprecipitation (ChIP) experiments. To validate our hypothesis, we selected HK-2 cells and established an in vitro kidney stone model induced by calcium oxalate monohydrate (COM). We evaluated the expression levels of various genes, cell viability, volume of adherent crystals in each group, as well as mitochondrial oxidative stress in cells by measuring mitochondrial membrane potential (Δψm), superoxide dismutase (SOD) activity, reactive oxygen species (ROS), and malondialdehyde (MDA) content. Mitochondrial autophagy was assessed using mtDNA fluorescence staining and Western blot analysis of PINK1-related proteins. Apoptosis-related proteins were evaluated using Western blot analysis, and cell apoptosis was measured using flow cytometry. Furthermore, we developed a rat model of KSD and assessed the expression levels of various genes, as well as the pathologic changes in rat renal tissues using H&E and von Kossa staining, transmission electron microscopy (TEM), and the expression of creatinine, blood urea nitrogen, neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) to evaluate the mitochondrial oxidative stress in vivo (through measurement of Δψm, SOD activity, ROS, and MDA content). Mitochondrial autophagy was evaluated by Western blot analysis of PINK1-associated proteins. Apoptosis-related proteins were detected using Western blot analysis, and cellular apoptosis was examined using cell flow cytometry and TUNEL staining. Bioinformatics analysis revealed that the PINK1 gene is upregulated and vital in pediatric kidney stone patients. Our in vitro and in vivo experiments demonstrated that silencing PINK1 could inhibit kidney stone formation by suppressing mitochondrial oxidative stress both in vitro and in vivo. We identified MyoD1 as an upstream transcription factor of PINK1 that contributes to the occurrence of pediatric kidney stones through the activation of PINK1. Our in vivo and in vitro experiments collectively confirmed that silencing MyoD1 could inhibit mitochondrial oxidative stress, mitochondrial autophagy, and cellular apoptosis in a rat model of kidney stones by downregulating PINK1 expression, consequently suppressing the formation of kidney stones. In this study, we discovered that MyoD1 may promote kidney stone formation and development in pediatric patients by transcriptionally activating PINK1 to induce mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Kaiping Zhang
- Department of Urology, Anhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch), Hefei, 230000, PR China
| | - Xiang Fang
- Department of Urology, Anhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch), Hefei, 230000, PR China
| | - Ye Zhang
- Department of Urology, Anhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch), Hefei, 230000, PR China
| | - Yin Zhang
- Department of Urology, Anhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch), Hefei, 230000, PR China
| | - Min Chao
- Department of Urology, Anhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch), Hefei, 230000, PR China.
| |
Collapse
|
5
|
Crane H, Young RJ, Fernando MS, Griffin J. Sinonasal alveolar rhabdomyosarcoma with PAX3::NCOA1 fusion expressing SOX10 and with nodal metastases: a double diagnostic pitfall. J Clin Pathol 2024:jcp-2024-209640. [PMID: 39209443 DOI: 10.1136/jcp-2024-209640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Hannah Crane
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
- Histopathology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Robin J Young
- Weston Park Cancer Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Malee S Fernando
- Histopathology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Jon Griffin
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
- Histopathology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
6
|
Majchrzak K, Hentschel E, Hönzke K, Geithe C, von Maltzahn J. We need to talk-how muscle stem cells communicate. Front Cell Dev Biol 2024; 12:1378548. [PMID: 39050890 PMCID: PMC11266305 DOI: 10.3389/fcell.2024.1378548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Skeletal muscle is one of the tissues with the highest ability to regenerate, a finely controlled process which is critically depending on muscle stem cells. Muscle stem cell functionality depends on intrinsic signaling pathways and interaction with their immediate niche. Upon injury quiescent muscle stem cells get activated, proliferate and fuse to form new myofibers, a process involving the interaction of multiple cell types in regenerating skeletal muscle. Receptors in muscle stem cells receive the respective signals through direct cell-cell interaction, signaling via secreted factors or cell-matrix interactions thereby regulating responses of muscle stem cells to external stimuli. Here, we discuss how muscle stem cells interact with their immediate niche focusing on how this controls their quiescence, activation and self-renewal and how these processes are altered in age and disease.
Collapse
Affiliation(s)
- Karolina Majchrzak
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Erik Hentschel
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Katja Hönzke
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Christiane Geithe
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Julia von Maltzahn
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Faculty for Environment and Natural Sciences, Brandenburg University of Technology Cottbus—Senftenberg, Senftenberg, Germany
| |
Collapse
|
7
|
Pomella S, Cassandri M, D'Archivio L, Porrazzo A, Cossetti C, Phelps D, Perrone C, Pezzella M, Cardinale A, Wachtel M, Aloisi S, Milewski D, Colletti M, Sreenivas P, Walters ZS, Barillari G, Di Giannatale A, Milano GM, De Stefanis C, Alaggio R, Rodriguez-Rodriguez S, Carlesso N, Vakoc CR, Velardi E, Schafer BW, Guccione E, Gatz SA, Wasti A, Yohe M, Ignatius M, Quintarelli C, Shipley J, Miele L, Khan J, Houghton PJ, Marampon F, Gryder BE, De Angelis B, Locatelli F, Rota R. MYOD-SKP2 axis boosts tumorigenesis in fusion negative rhabdomyosarcoma by preventing differentiation through p57 Kip2 targeting. Nat Commun 2023; 14:8373. [PMID: 38102140 PMCID: PMC10724275 DOI: 10.1038/s41467-023-44130-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Rhabdomyosarcomas (RMS) are pediatric mesenchymal-derived malignancies encompassing PAX3/7-FOXO1 Fusion Positive (FP)-RMS, and Fusion Negative (FN)-RMS with frequent RAS pathway mutations. RMS express the master myogenic transcription factor MYOD that, whilst essential for survival, cannot support differentiation. Here we discover SKP2, an oncogenic E3-ubiquitin ligase, as a critical pro-tumorigenic driver in FN-RMS. We show that SKP2 is overexpressed in RMS through the binding of MYOD to an intronic enhancer. SKP2 in FN-RMS promotes cell cycle progression and prevents differentiation by directly targeting p27Kip1 and p57Kip2, respectively. SKP2 depletion unlocks a partly MYOD-dependent myogenic transcriptional program and strongly affects stemness and tumorigenic features and prevents in vivo tumor growth. These effects are mirrored by the investigational NEDDylation inhibitor MLN4924. Results demonstrate a crucial crosstalk between transcriptional and post-translational mechanisms through the MYOD-SKP2 axis that contributes to tumorigenesis in FN-RMS. Finally, NEDDylation inhibition is identified as a potential therapeutic vulnerability in FN-RMS.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Matteo Cassandri
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
- Department of Radiological Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Lucrezia D'Archivio
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Antonella Porrazzo
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
- Department of Radiological Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Cristina Cossetti
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Doris Phelps
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Science Center, San Antonio, TX, USA
| | - Clara Perrone
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Michele Pezzella
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Antonella Cardinale
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Sara Aloisi
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - David Milewski
- Oncogenomics Section, Genetics Branch, National Cancer Institute, NIH,, Bethesda, MD, USA
| | - Marta Colletti
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Prethish Sreenivas
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Science Center, San Antonio, TX, USA
| | - Zoë S Walters
- Sarcoma Molecular Pathology, Divisions of Molecular Pathology, The Institute of Cancer Research, London, UK
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Angela Di Giannatale
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Giuseppe Maria Milano
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | | | - Rita Alaggio
- Department of Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sonia Rodriguez-Rodriguez
- Department of Stem Cell and Regenerative Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Nadia Carlesso
- Department of Stem Cell and Regenerative Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | | | - Enrico Velardi
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Beat W Schafer
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Ernesto Guccione
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susanne A Gatz
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, West Midlands, UK
| | - Ajla Wasti
- Children and Young People's Unit, The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton, UK
| | - Marielle Yohe
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, NIH, Frederick, MD, USA
| | - Myron Ignatius
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Science Center, San Antonio, TX, USA
| | - Concetta Quintarelli
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Janet Shipley
- Sarcoma Molecular Pathology, Divisions of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, National Cancer Institute, NIH,, Bethesda, MD, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Science Center, San Antonio, TX, USA
| | - Francesco Marampon
- Department of Radiological Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Berkley E Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Biagio De Angelis
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Franco Locatelli
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy.
| |
Collapse
|
8
|
Nakazawa K, Shaw T, Song YK, Kouassi-Brou M, Molotkova A, Tiwari PB, Chou HC, Wen X, Wei JS, Deniz E, Toretsky JA, Keller C, Barr FG, Khan J, Üren A. Piperacetazine Directly Binds to the PAX3::FOXO1 Fusion Protein and Inhibits Its Transcriptional Activity. CANCER RESEARCH COMMUNICATIONS 2023; 3:2030-2043. [PMID: 37732905 PMCID: PMC10557868 DOI: 10.1158/2767-9764.crc-23-0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/17/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
The tumor-specific chromosomal translocation product, PAX3::FOXO1, is an aberrant fusion protein that plays a key role for oncogenesis in the alveolar subtype of rhabdomyosarcoma (RMS). PAX3::FOXO1 represents a validated molecular target for alveolar RMS and successful inhibition of its oncogenic activity is likely to have significant clinical applications. Even though several PAX3::FOXO1 function-based screening studies have been successfully completed, a directly binding small-molecule inhibitor of PAX3::FOXO1 has not been reported. Therefore, we screened small-molecule libraries to identify compounds that were capable of directly binding to PAX3::FOXO1 protein using surface plasmon resonance technology. Compounds that directly bound to PAX3::FOXO1 were further evaluated in secondary transcriptional activation assays. We discovered that piperacetazine can directly bind to PAX3::FOXO1 protein and inhibit fusion protein-derived transcription in multiple alveolar RMS cell lines. Piperacetazine inhibited anchorage-independent growth of fusion-positive alveolar RMS cells but not embryonal RMS cells. On the basis of our findings, piperacetazine is a molecular scaffold upon which derivatives could be developed as specific inhibitors of PAX3::FOXO1. These novel inhibitors could potentially be evaluated in future clinical trials for recurrent or metastatic alveolar RMS as novel targeted therapy options. SIGNIFICANCE RMS is a malignant soft-tissue tumor mainly affecting the pediatric population. A subgroup of RMS with worse prognosis harbors a unique chromosomal translocation creating an oncogenic fusion protein, PAX3::FOXO1. We identified piperacetazine as a direct inhibitor of PAX3::FOXO1, which may provide a scaffold for designing RMS-specific targeted therapy.
Collapse
Affiliation(s)
- Kay Nakazawa
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| | - Taryn Shaw
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| | - Young K. Song
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Marilyn Kouassi-Brou
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| | - Anna Molotkova
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| | - Purushottam B. Tiwari
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| | - Hsien-Chao Chou
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Xinyu Wen
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Jun S. Wei
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Emre Deniz
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| | - Jeffrey A. Toretsky
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| | - Charles Keller
- Children's Cancer Therapy Development Institute, Hillsboro, Oregon
| | - Frederic G. Barr
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Aykut Üren
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| |
Collapse
|
9
|
Hüttner SS, Henze H, Elster D, Koch P, Anderer U, von Eyss B, von Maltzahn J. A dysfunctional miR-1-TRPS1-MYOG axis drives ERMS by suppressing terminal myogenic differentiation. Mol Ther 2023; 31:2612-2632. [PMID: 37452493 PMCID: PMC10492030 DOI: 10.1016/j.ymthe.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Rhabdomyosarcoma is the most common pediatric soft tissue tumor, comprising two major subtypes: the PAX3/7-FOXO1 fusion-negative embryonal and the PAX3/7-FOXO1 fusion-positive alveolar subtype. Here, we demonstrate that the expression levels of the transcriptional repressor TRPS1 are specifically enhanced in the embryonal subtype, resulting in impaired terminal myogenic differentiation and tumor growth. During normal myogenesis, expression levels of TRPS1 have to decrease to allow myogenic progression, as demonstrated by overexpression of TRPS1 in myoblasts impairing myotube formation. Consequentially, myogenic differentiation in embryonal rhabdomyosarcoma in vitro as well as in vivo can be achieved by reducing TRPS1 levels. Furthermore, we show that TRPS1 levels in RD cells, the bona fide model cell line for embryonal rhabdomyosarcoma, are regulated by miR-1 and that TRPS1 and MYOD1 share common genomic binding sites. The myogenin (MYOG) promoter is one of the critical targets of TRPS1 and MYOD1; we demonstrate that TRPS1 restricts MYOG expression and thereby inhibits terminal myogenic differentiation. Therefore, reduction of TRPS1 levels in embryonal rhabdomyosarcoma might be a therapeutic approach to drive embryonal rhabdomyosarcoma cells into myogenic differentiation, thereby generating postmitotic myotubes.
Collapse
Affiliation(s)
- Sören S Hüttner
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Henriette Henze
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Dana Elster
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Philipp Koch
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Ursula Anderer
- Department of Cell Biology and Tissue Engineering, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany
| | - Björn von Eyss
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Julia von Maltzahn
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany; Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany.
| |
Collapse
|
10
|
Liu Y, Liu Y, Wen LJ, Yu D. Diagnosis and Treatment of Rare Adult Embryonal Rhabdomyosarcoma in Maxillary Sinus. J Craniofac Surg 2023; 34:e505-e507. [PMID: 37226309 DOI: 10.1097/scs.0000000000009378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/11/2023] [Indexed: 05/26/2023] Open
Abstract
OBJECTIVE To investigate the clinicopathological features, imaging features, diagnosis, and prognosis of embryonal rhabdomyosarcoma (ERMS) in the maxillary sinus. METHODS The detailed clinical data of rare patients with embryonal ERMS of maxillary sinus admitted to our hospital were retrospectively analyzed, and the embryonal ERMS was confirmed by pathological examination and immunohistochemistry, and the relevant literature was reviewed. RESULTS A 58-year-old man was admitted to the hospital with the chief complaint of "numbness and swelling of the left cheek for 1 and a half months". Blood routine, biochemistry, paranasal sinus computed tomography, and magnetic resonance imaging were performed after admission, and the pathology showed ERMS. At present, it is generally in good condition. Pathological examination showed that the cells were all small and round. Immunohistochemistry showed Desmin (+) and Ki-67 (+70%). CONCLUSION The early symptoms of ERMS of the maxillary sinus are atypical and diverse, with a high degree of malignancy, rapid progression, strong invasiveness, and poor prognosis. Early diagnosis and treatment should be based on clinical characteristics, imaging examination, and immunohistochemical results.
Collapse
Affiliation(s)
- Yue Liu
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | | | | | | |
Collapse
|
11
|
Khojastehpour S, Foroughi F, Gheibi N, Mohammadi Z, Ahmadi MH, Nasirian N, Maali A, Azad M. The Association of Methylation Status and Expression Level of MyoD1 with DNMT1 Expression Level in Breast Cancer Patients. Int J Hematol Oncol Stem Cell Res 2023; 17:133-144. [PMID: 37817971 PMCID: PMC10560649 DOI: 10.18502/ijhoscr.v17i3.13303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/22/2023] [Indexed: 10/12/2023] Open
Abstract
Background: Breast cancer (BC) is the most common malignancy in women worldwide. The methylation status of MyoD1, a tumor suppressor gene, is enrolled in various cancers, i.e., BC. Various studies showed the impact of MyoD1 epigenetic dysregulation in BC. This study aimed to investigate the methylation status and expression level of MyoD1 in BC patients and its association with the expression of DNMT1. Materials and Methods: This case-control study was conducted on 30 cases (pathology-confirmed ductal carcinoma) and 18 controls (fibroadenoma and fibrocystic masses), referred to Velayat Hospital, Qazvin, Iran. The expression of the MyoD1 and DNMT1 and the promoter methylation of the MyoD1 were evaluated in tissue blocks of BC patient masses using qRT-PCR and MS-PCR assays, respectively. SPSS 24.0 was used to analyze the data. Results: The MyoD1 promoter is hypermethylated in BC patients compared to controls (p =0.001). The expression level of MyoD1 in BC patients was significantly reduced compared to controls (fold change =0.13, p =0.042). In addition, in BC patients, the reduced expression level of MyoD1 was significantly associated with methylation of the MyoD1 promoter (p =0.001). There is no significant difference between the expression level of DNMT1 in BC patients and controls (p =0.197). A significant association is found between the expression of DNMT1 and the methylation status of the MyoD1 promoter (p =0.038). Discussion: The expression level of MyoD1 is affected by the methylation status of the promoter of this gene. Moreover, the expression level and methylation status of MyoD1 are correlated with clinical parameters.
Collapse
Affiliation(s)
- Sahar Khojastehpour
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farshad Foroughi
- Department of Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zahra Mohammadi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Hossein Ahmadi
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Neda Nasirian
- Department of Pathology, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
12
|
DeMartino J, Meister MT, Visser LL, Brok M, Groot Koerkamp MJA, Wezenaar AKL, Hiemcke-Jiwa LS, de Souza T, Merks JHM, Rios AC, Holstege FCP, Margaritis T, Drost J. Single-cell transcriptomics reveals immune suppression and cell states predictive of patient outcomes in rhabdomyosarcoma. Nat Commun 2023; 14:3074. [PMID: 37244912 DOI: 10.1038/s41467-023-38886-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 05/19/2023] [Indexed: 05/29/2023] Open
Abstract
Paediatric rhabdomyosarcoma (RMS) is a soft tissue malignancy of mesenchymal origin that is thought to arise as a consequence of derailed myogenic differentiation. Despite intensive treatment regimens, the prognosis for high-risk patients remains dismal. The cellular differentiation states underlying RMS and how these relate to patient outcomes remain largely elusive. Here, we use single-cell mRNA sequencing to generate a transcriptomic atlas of RMS. Analysis of the RMS tumour niche reveals evidence of an immunosuppressive microenvironment. We also identify a putative interaction between NECTIN3 and TIGIT, specific to the more aggressive fusion-positive (FP) RMS subtype, as a potential cause of tumour-induced T-cell dysfunction. In malignant RMS cells, we define transcriptional programs reflective of normal myogenic differentiation and show that these cellular differentiation states are predictive of patient outcomes in both FP RMS and the less aggressive fusion-negative subtype. Our study reveals the potential of therapies targeting the immune microenvironment of RMS and suggests that assessing tumour differentiation states may enable a more refined risk stratification.
Collapse
Affiliation(s)
- Jeff DeMartino
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Michael T Meister
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Lindy L Visser
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Mariël Brok
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Marian J A Groot Koerkamp
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Amber K L Wezenaar
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Laura S Hiemcke-Jiwa
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Terezinha de Souza
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Johannes H M Merks
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Frank C P Holstege
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Center for Molecular Medicine, UMC Utrecht and Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Thanasis Margaritis
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Danielli SG, Porpiglia E, De Micheli AJ, Navarro N, Zellinger MJ, Bechtold I, Kisele S, Volken L, Marques JG, Kasper S, Bode PK, Henssen AG, Gürgen D, Delattre O, Surdez D, Roma J, Bühlmann P, Blau HM, Wachtel M, Schäfer BW. Single-cell profiling of alveolar rhabdomyosarcoma reveals RAS pathway inhibitors as cell-fate hijackers with therapeutic relevance. SCIENCE ADVANCES 2023; 9:eade9238. [PMID: 36753540 PMCID: PMC9908029 DOI: 10.1126/sciadv.ade9238] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Rhabdomyosarcoma (RMS) is a group of pediatric cancers with features of developing skeletal muscle. The cellular hierarchy and mechanisms leading to developmental arrest remain elusive. Here, we combined single-cell RNA sequencing, mass cytometry, and high-content imaging to resolve intratumoral heterogeneity of patient-derived primary RMS cultures. We show that the aggressive alveolar RMS (aRMS) subtype contains plastic muscle stem-like cells and cycling progenitors that drive tumor growth, and a subpopulation of differentiated cells that lost its proliferative potential and correlates with better outcomes. While chemotherapy eliminates cycling progenitors, it enriches aRMS for muscle stem-like cells. We screened for drugs hijacking aRMS toward clinically favorable subpopulations and identified a combination of RAF and MEK inhibitors that potently induces myogenic differentiation and inhibits tumor growth. Overall, our work provides insights into the developmental states underlying aRMS aggressiveness, chemoresistance, and progression and identifies the RAS pathway as a promising therapeutic target.
Collapse
Affiliation(s)
- Sara G. Danielli
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zürich 8032, Switzerland
| | - Ermelinda Porpiglia
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedicine, Aarhus University, Aarhus C 8000, Denmark
- Corresponding author. (B.W.S.); (M.W.); (E.P.)
| | - Andrea J. De Micheli
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zürich 8032, Switzerland
| | - Natalia Navarro
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | | | - Ingrid Bechtold
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zürich 8032, Switzerland
| | - Samanta Kisele
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zürich 8032, Switzerland
| | - Larissa Volken
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zürich 8032, Switzerland
| | - Joana G. Marques
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zürich 8032, Switzerland
| | - Stephanie Kasper
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zürich 8032, Switzerland
| | - Peter K. Bode
- Department of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Anton G. Henssen
- Department of Pediatric Oncology/Hematology, Charité–Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Dennis Gürgen
- EPO Experimental Pharmacology and Oncology Berlin-Buch GmbH Berlin 13125, Germany
| | - Olivier Delattre
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris 75005, France
| | - Didier Surdez
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris 75005, France
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland
| | - Josep Roma
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Peter Bühlmann
- Seminar for Statistics, ETH Zürich, Zürich 8092, Switzerland
| | - Helen M. Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marco Wachtel
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zürich 8032, Switzerland
- Corresponding author. (B.W.S.); (M.W.); (E.P.)
| | - Beat W. Schäfer
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zürich 8032, Switzerland
- Corresponding author. (B.W.S.); (M.W.); (E.P.)
| |
Collapse
|
14
|
Qu S, Li W, Yao Y, Huang H. An uncommon perineal embryonal rhabdomyosarcoma in adult: A case report. Medicine (Baltimore) 2022; 101:e32529. [PMID: 36596039 PMCID: PMC9803527 DOI: 10.1097/md.0000000000032529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RATIONALE Embryonal rhabdomyosarcoma (ERMS) is a major subtype of rhabdomyosarcoma, mainly affect children. There is seldom report for perineal ERMS in adults, since its rare location and the age. PATIENT CONCERNS A 20-year old male adult was admitted due to the perineal mass. DIAGNOSES Diagnosis by histopathological examination of the biopsy sample was ERMS. Magnetic resonance imaging showed the tumor was found in the perineal region, with metastasis to pelvic cavity, right testis, lymph nodes and bone. INTERVENTIONS The patient received Isophosphamide and Epirubicin for 4 cycles, followed by Irinotecan and Vindesine Sulfate for 2 cycles, then cisplatin, Dacarbazine and Apatinib for 3 cycles. OUTCOME The patient showed no response to chemotherapy. LESSONS Perineal ERMS in adults is very rare. There is still no standard therapy for adult ERMS. Personalized therapy might be promising treatment for each individual.
Collapse
Affiliation(s)
- Sifeng Qu
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- * Correspondence: Sifeng Qu, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China (e-mail: )
| | - Weiwei Li
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan Yao
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huangwei Huang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
15
|
Hidari K, Nakamoto Y, Sakurai K, Sakurai Y, Nibe K, Nakamoto M. Case report: Presumptive subcutaneous malignant peripheral nerve sheath tumor with intracranial invasion and osteolysis in the posterior fossa of a dog. Front Vet Sci 2022; 9:977099. [PMID: 36425125 PMCID: PMC9679371 DOI: 10.3389/fvets.2022.977099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
A 13-year-old castrated male Toy Poodle presented with an acute vestibular disorder. Magnetic resonance imaging and computed tomography revealed a large oval space-occupying mass with skull destruction located from the subcutaneous tissue to the posterior fossa region. Histopathologically, the mass was a bundled growth of spindle-shaped mesenchymal tumor cells between the myofibrillar and collagen bundles. The cells were moderately irregular in size and had eosinophilic stained cytoplasm. The cells were highly atypical and had rare mitotic figures. Neoplastic cells were immunoreactive for S100, GFAP, Olig-2, SOX10 and immunonegative for NF, E-cadherin, and Claudin-1. Collective findings were presumptive with a diagnosis of malignant peripheral nerve sheath tumor.
Collapse
Affiliation(s)
| | - Yuya Nakamoto
- Neuro Vets Animal Neurology Clinic, Kyoto, Japan
- Veterinary Medical Center, Osaka Metropolitan University, Osaka, Japan
- *Correspondence: Yuya Nakamoto
| | | | | | - Kazumi Nibe
- FUJIFUILM VET Systems Co., Ltd., Tokyo, Japan
| | | |
Collapse
|
16
|
LaCombe R, Cecchini A, Seibert M, Cornelison DDW. EphA1 receptor tyrosine kinase is localized to the nucleus in rhabdomyosarcoma from multiple species. Biol Open 2022; 11:bio059352. [PMID: 36214254 PMCID: PMC9581518 DOI: 10.1242/bio.059352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
While the typical role of receptor tyrosine kinases is to receive and transmit signals at the cell surface, in some cellular contexts (particularly transformed cells) they may also act as nuclear proteins. Aberrant nuclear localization of receptor tyrosine kinases associated with transformation often enhances the transformed phenotype (i.e. nuclear ErbBs promote tumor progression in breast cancer). Rhabdomyosarcoma (RMS), the most common soft tissue tumor in children, develops to resemble immature skeletal muscle and has been proposed to derive from muscle stem/progenitor cells (satellite cells). It is an aggressive cancer with a 5-year survival rate of 33% if it has metastasized. Eph receptor tyrosine kinases have been implicated in the development and progression of many other tumor types, but there are only two published studies of Ephs localizing to the nucleus of any cell type and to date no nuclear RTKs have been identified in RMS. In a screen for protein expression of Ephs in canine RMS primary tumors as well as mouse and human RMS cell lines, we noted strong expression of EphA1 in the nucleus of interphase cells in tumors from all three species. This localization pattern changes in dividing cells, with EphA1 localizing to the nucleus or the cytoplasm depending on the phase of the cell cycle. These data represent the first case of a nuclear RTK in RMS, and the first time that EphA1 has been detected in the nucleus of any cell type.
Collapse
Affiliation(s)
- Ronnie LaCombe
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Alessandra Cecchini
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Morgan Seibert
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - DDW Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
17
|
Butler E, Xu L, Rakheja D, Schwettmann B, Toubbeh S, Guo L, Kim J, Skapek SX, Zheng Y. Exon skipping in genes encoding lineage-defining myogenic transcription factors in rhabdomyosarcoma. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006190. [PMID: 35933111 PMCID: PMC9528969 DOI: 10.1101/mcs.a006190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a childhood sarcoma composed of myoblast-like cells, which suggests a defect in terminal skeletal muscle differentiation. To explore potential defects in the differentiation program, we searched for mRNA splicing variants in genes encoding transcription factors driving skeletal muscle lineage commitment and differentiation. We studied two RMS cases and identified altered splicing resulting in "skipping" the second of three exons in MYOD1. RNA-Seq data from 42 tumors and additional RMS cell lines revealed exon 2 skipping in both MYOD1 and MYF5 but not in MYF6 or MYOG. Complementary molecular analysis of MYOD1 mRNA found evidence for exon skipping in 5 additional RMS cases. Functional studies showed that so-called MYODΔEx2 protein failed to robustly induce muscle-specific genes, and its ectopic expression conferred a selective advantage in cultured fibroblasts and an RMS xenograft. In summary, we present previously unrecognized exon skipping within MYOD1 and MYF5 in RMS, and we propose that alternative splicing can represent a mechanism to alter the function of these two transcription factors in RMS.
Collapse
Affiliation(s)
- Erin Butler
- University of Texas Southwestern Medical Center;
| | - Lin Xu
- University of Texas Southwestern Medical Center
| | | | | | | | - Lei Guo
- University of Texas Southwestern Medical Center
| | - Jiwoon Kim
- University of Texas Southwestern Medical Center
| | | | | |
Collapse
|
18
|
Wei Y, Qin Q, Yan C, Hayes MN, Garcia SP, Xi H, Do D, Jin AH, Eng TC, McCarthy KM, Adhikari A, Onozato ML, Spentzos D, Neilsen GP, Iafrate AJ, Wexler LH, Pyle AD, Suvà ML, Dela Cruz F, Pinello L, Langenau DM. Single-cell analysis and functional characterization uncover the stem cell hierarchies and developmental origins of rhabdomyosarcoma. NATURE CANCER 2022; 3:961-975. [PMID: 35982179 PMCID: PMC10430812 DOI: 10.1038/s43018-022-00414-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/24/2022] [Indexed: 04/29/2023]
Abstract
Rhabdomyosarcoma (RMS) is a common childhood cancer that shares features with developing skeletal muscle. Yet, the conservation of cellular hierarchy with human muscle development and the identification of molecularly defined tumor-propagating cells has not been reported. Using single-cell RNA-sequencing, DNA-barcode cell fate mapping and functional stem cell assays, we uncovered shared tumor cell hierarchies in RMS and human muscle development. We also identified common developmental stages at which tumor cells become arrested. Fusion-negative RMS cells resemble early myogenic cells found in embryonic and fetal development, while fusion-positive RMS cells express a highly specific gene program found in muscle cells transiting from embryonic to fetal development at 7-7.75 weeks of age. Fusion-positive RMS cells also have neural pathway-enriched states, suggesting less-rigid adherence to muscle-lineage hierarchies. Finally, we identified a molecularly defined tumor-propagating subpopulation in fusion-negative RMS that shares remarkable similarity to bi-potent, muscle mesenchyme progenitors that can make both muscle and osteogenic cells.
Collapse
Affiliation(s)
- Yun Wei
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Qian Qin
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Chuan Yan
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Madeline N Hayes
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Sara P Garcia
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
| | - Haibin Xi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel Do
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Alexander H Jin
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Tiffany C Eng
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Karin M McCarthy
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Abhinav Adhikari
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Maristela L Onozato
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Dimitrios Spentzos
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Gunnlaugur P Neilsen
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - A John Iafrate
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Leonard H Wexler
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - April D Pyle
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Mario L Suvà
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Filemon Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luca Pinello
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA.
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
| | - David M Langenau
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA.
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
19
|
Patel AG, Chen X, Huang X, Clay MR, Komorova N, Krasin MJ, Pappo A, Tillman H, Orr BA, McEvoy J, Gordon B, Blankenship K, Reilly C, Zhou X, Norrie JL, Karlstrom A, Yu J, Wodarz D, Stewart E, Dyer MA. The myogenesis program drives clonal selection and drug resistance in rhabdomyosarcoma. Dev Cell 2022; 57:1226-1240.e8. [PMID: 35483358 PMCID: PMC9133224 DOI: 10.1016/j.devcel.2022.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/07/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022]
Abstract
Rhabdomyosarcoma (RMS) is a pediatric cancer with features of skeletal muscle; patients with unresectable or metastatic RMS fare poorly due to high rates of disease recurrence. Here, we use single-cell and single-nucleus RNA sequencing to show that RMS tumors recapitulate the spectrum of embryonal myogenesis. Using matched patient samples from a clinical trial and orthotopic patient-derived xenografts (O-PDXs), we show that chemotherapy eliminates the most proliferative component with features of myoblasts within embryonal RMS; after treatment, the immature population with features of paraxial mesoderm expands to reconstitute the developmental hierarchy of the original tumor. We discovered that this paraxial mesoderm population is dependent on EGFR signaling and is sensitive to EGFR inhibitors. Taken together, these data serve as a proof of concept that targeting each developmental state in embryonal RMS is an effective strategy for improving outcomes by preventing disease recurrence.
Collapse
Affiliation(s)
- Anand G Patel
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xin Huang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michael R Clay
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Natalia Komorova
- Department of Mathematics, University of California, Irvine, CA 92697, USA
| | - Matthew J Krasin
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alberto Pappo
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Heather Tillman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Justina McEvoy
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brittney Gordon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kaley Blankenship
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Colleen Reilly
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jackie L Norrie
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Asa Karlstrom
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dominik Wodarz
- Department of Population Health and Disease Prevention, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA
| | - Elizabeth Stewart
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
20
|
Huayanay Espinoza JL, Mego Ramírez FN, Guerra Miller H, Guelfguat M. An Overview of Rare Breast Neoplasms with Radiologic-Pathologic Correlation. CURRENT BREAST CANCER REPORTS 2021. [DOI: 10.1007/s12609-021-00433-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Pankova V, Thway K, Jones RL, Huang PH. The Extracellular Matrix in Soft Tissue Sarcomas: Pathobiology and Cellular Signalling. Front Cell Dev Biol 2021; 9:763640. [PMID: 34957097 PMCID: PMC8696013 DOI: 10.3389/fcell.2021.763640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022] Open
Abstract
Soft tissue sarcomas are rare cancers of mesenchymal origin or differentiation comprising over 70 different histological subtypes. Due to their mesenchymal differentiation, sarcomas are thought to produce and deposit large quantities of extracellular matrix (ECM) components. Interactions between ECM ligands and their corresponding adhesion receptors such as the integrins and the discoidin domain receptors play key roles in driving many fundamental oncogenic processes including uncontrolled proliferation, cellular invasion and altered metabolism. In this review, we focus on emerging studies that describe the key ECM components commonly found in soft tissue sarcomas and discuss preclinical and clinical evidence outlining the important role that these proteins and their cognate adhesion receptors play in sarcomagenesis. We conclude by providing a perspective on the need for more comprehensive in-depth analyses of both the ECM and adhesion receptor biology in multiple histological subtypes in order to identify new drug targets and prognostic biomarkers for this group of rare diseases of unmet need.
Collapse
Affiliation(s)
- Valeriya Pankova
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Khin Thway
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Robin L. Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, United Kingdom
| | - Paul H. Huang
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
- *Correspondence: Paul H. Huang,
| |
Collapse
|
22
|
Laubscher D, Gryder BE, Sunkel BD, Andresson T, Wachtel M, Das S, Roschitzki B, Wolski W, Wu XS, Chou HC, Song YK, Wang C, Wei JS, Wang M, Wen X, Ngo QA, Marques JG, Vakoc CR, Schäfer BW, Stanton BZ, Khan J. BAF complexes drive proliferation and block myogenic differentiation in fusion-positive rhabdomyosarcoma. Nat Commun 2021; 12:6924. [PMID: 34836971 PMCID: PMC8626462 DOI: 10.1038/s41467-021-27176-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric malignancy of skeletal muscle lineage. The aggressive alveolar subtype is characterized by t(2;13) or t(1;13) translocations encoding for PAX3- or PAX7-FOXO1 chimeric transcription factors, respectively, and are referred to as fusion positive RMS (FP-RMS). The fusion gene alters the myogenic program and maintains the proliferative state while blocking terminal differentiation. Here, we investigated the contributions of chromatin regulatory complexes to FP-RMS tumor maintenance. We define the mSWI/SNF functional repertoire in FP-RMS. We find that SMARCA4 (encoding BRG1) is overexpressed in this malignancy compared to skeletal muscle and is essential for cell proliferation. Proteomic studies suggest proximity between PAX3-FOXO1 and BAF complexes, which is further supported by genome-wide binding profiles revealing enhancer colocalization of BAF with core regulatory transcription factors. Further, mSWI/SNF complexes localize to sites of de novo histone acetylation. Phenotypically, interference with mSWI/SNF complex function induces transcriptional activation of the skeletal muscle differentiation program associated with MYCN enhancer invasion at myogenic target genes, which is recapitulated by BRG1 targeting compounds. We conclude that inhibition of BRG1 overcomes the differentiation blockade of FP-RMS cells and may provide a therapeutic strategy for this lethal childhood tumor.
Collapse
Affiliation(s)
- Dominik Laubscher
- grid.412341.10000 0001 0726 4330Department of Oncology and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Berkley E. Gryder
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA ,grid.67105.350000 0001 2164 3847Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH USA
| | - Benjamin D. Sunkel
- grid.240344.50000 0004 0392 3476Nationwide Children’s Hospital, Center for Childhood Cancer and Blood Diseases, Columbus, OH USA
| | - Thorkell Andresson
- grid.418021.e0000 0004 0535 8394Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Marco Wachtel
- grid.412341.10000 0001 0726 4330Department of Oncology and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Sudipto Das
- grid.418021.e0000 0004 0535 8394Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Bernd Roschitzki
- grid.7400.30000 0004 1937 0650Functional Genomics Center, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Witold Wolski
- grid.7400.30000 0004 1937 0650Functional Genomics Center, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Xiaoli S. Wu
- grid.225279.90000 0004 0387 3667Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724 USA
| | - Hsien-Chao Chou
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA
| | - Young K. Song
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA
| | - Chaoyu Wang
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA
| | - Jun S. Wei
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA
| | - Meng Wang
- grid.240344.50000 0004 0392 3476Nationwide Children’s Hospital, Center for Childhood Cancer and Blood Diseases, Columbus, OH USA
| | - Xinyu Wen
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA
| | - Quy Ai Ngo
- grid.412341.10000 0001 0726 4330Department of Oncology and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Joana G. Marques
- grid.412341.10000 0001 0726 4330Department of Oncology and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Christopher R. Vakoc
- grid.225279.90000 0004 0387 3667Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724 USA
| | - Beat W. Schäfer
- grid.412341.10000 0001 0726 4330Department of Oncology and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Benjamin Z. Stanton
- grid.240344.50000 0004 0392 3476Nationwide Children’s Hospital, Center for Childhood Cancer and Blood Diseases, Columbus, OH USA ,grid.261331.40000 0001 2285 7943Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH USA ,grid.261331.40000 0001 2285 7943Department of Biological Chemistry & Pharmacology, The Ohio State University College of Medicine, Columbus, OH USA
| | - Javed Khan
- Genetics Branch, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
23
|
Ferreira-Facio CDS, Botafogo V, Ferrão PM, Canellas MC, Milito CB, Romano S, Lopes DV, Teixeira LC, Oliveira E, Bruno-Riscarolli E, Mello FV, Siqueira PFR, Moura P, Macedo FN, Forny DN, Simião L, Pureza AL, Land MGP, Pedreira CE, van Dongen JJM, Orfao A, da Costa ES. Flow Cytometry Immunophenotyping for Diagnostic Orientation and Classification of Pediatric Cancer Based on the EuroFlow Solid Tumor Orientation Tube (STOT). Cancers (Basel) 2021; 13:cancers13194945. [PMID: 34638431 PMCID: PMC8508207 DOI: 10.3390/cancers13194945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/15/2022] Open
Abstract
Simple Summary Pediatric solid tumors are a heterogenous group of diseases that comprise ≈ 40% of all pediatric cancers, early diagnosis being key for improved survival. Here we designed, tested, and validated a single eight-color tube for the diagnostic screening of pediatric cancer—solid tumor orientation tube (STOT)—based on multiparameter flow cytometry vs. conventional diagnostic procedures. Prospective clinical validation of STOT in 149 samples (63 tumor mass, 38 bone marrow, 30 lymph node, and 18 body fluid samples) screened for pediatric cancer, apart from 26 blood specimens that were excluded from analysis, showed concordant results with the final WHO/ICCC-3 diagnosis in 138/149 cases (92.6%). This included correct diagnostic orientation by STOT in 43/44 (98%) malignant and 4/4 (100%) benign non-hematopoietic tumors, together with 28/38 (74%) leukemia/lymphoma cases. The only recurrently missed diagnosis was Hodgkin lymphoma (0/8), which would require additional markers. These results support the use of STOT as a complementary tool for fast and accurate diagnostic screening, orientation, and classification of pediatric cancer in suspicious patients. Abstract Early diagnosis of pediatric cancer is key for adequate patient management and improved outcome. Although multiparameter flow cytometry (MFC) has proven of great utility in the diagnosis and classification of hematologic malignancies, its application to non-hematopoietic pediatric tumors remains limited. Here we designed and prospectively validated a new single eight-color antibody combination—solid tumor orientation tube, STOT—for diagnostic screening of pediatric cancer by MFC. A total of 476 samples (139 tumor mass, 138 bone marrow, 86 lymph node, 58 peripheral blood, and 55 other body fluid samples) from 296 patients with diagnostic suspicion of pediatric cancer were analyzed by MFC vs. conventional diagnostic procedures. STOT was designed after several design–test–evaluate–redesign cycles based on a large panel of monoclonal antibody combinations tested on 301 samples. In its final version, STOT consists of a single 8-color/12-marker antibody combination (CD99-CD8/numyogenin/CD4-EpCAM/CD56/GD2/smCD3-CD19/cyCD3-CD271/CD45). Prospective validation of STOT in 149 samples showed concordant results with the patient WHO/ICCC-3 diagnosis in 138/149 cases (92.6%). These included: 63/63 (100%) reactive/disease-free samples, 43/44 (98%) malignant and 4/4 (100%) benign non-hematopoietic tumors together with 28/38 (74%) leukemia/lymphoma cases; the only exception was Hodgkin lymphoma that required additional markers to be stained. In addition, STOT allowed accurate discrimination among the four most common subtypes of malignant CD45− CD56++ non-hematopoietic solid tumors: 13/13 (GD2++ numyogenin− CD271−/+ nuMyoD1− CD99− EpCAM−) neuroblastoma samples, 5/5 (GD2− numyogenin++ CD271++ nuMyoD1++ CD99−/+ EpCAM−) rhabdomyosarcomas, 2/2 (GD2−/+ numyogenin− CD271+ nuMyoD1− CD99+ EpCAM−) Ewing sarcoma family of tumors, and 7/7 (GD2− numyogenin− CD271+ nuMyoD1− CD99− EpCAM+) Wilms tumors. In summary, here we designed and validated a new standardized antibody combination and MFC assay for diagnostic screening of pediatric solid tumors that might contribute to fast and accurate diagnostic orientation and classification of pediatric cancer in routine clinical practice.
Collapse
Affiliation(s)
- Cristiane de Sá Ferreira-Facio
- Internal Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil; (C.d.S.F.-F.); (V.B.); (L.C.T.); (E.O.); (E.B.-R.); (P.F.R.S.); (M.G.P.L.)
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Vitor Botafogo
- Internal Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil; (C.d.S.F.-F.); (V.B.); (L.C.T.); (E.O.); (E.B.-R.); (P.F.R.S.); (M.G.P.L.)
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Patrícia Mello Ferrão
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Maria Clara Canellas
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Cristiane B. Milito
- Department of Pathology, Faculty of Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil;
| | - Sérgio Romano
- Laboratory of Anatomical Pathology and Cytopathology, Instituto Nacional de Câncer (INCa), Rio de Janeiro 20220-400, Brazil;
| | - Daiana V. Lopes
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Lisandra C. Teixeira
- Internal Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil; (C.d.S.F.-F.); (V.B.); (L.C.T.); (E.O.); (E.B.-R.); (P.F.R.S.); (M.G.P.L.)
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Elen Oliveira
- Internal Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil; (C.d.S.F.-F.); (V.B.); (L.C.T.); (E.O.); (E.B.-R.); (P.F.R.S.); (M.G.P.L.)
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Enrico Bruno-Riscarolli
- Internal Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil; (C.d.S.F.-F.); (V.B.); (L.C.T.); (E.O.); (E.B.-R.); (P.F.R.S.); (M.G.P.L.)
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Fabiana V. Mello
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Patrícia F. R. Siqueira
- Internal Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil; (C.d.S.F.-F.); (V.B.); (L.C.T.); (E.O.); (E.B.-R.); (P.F.R.S.); (M.G.P.L.)
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Patrícia Moura
- I’Dor Institute, Hospital Estadual da Criança, Rio de Janeiro 21330-400, Brazil; (P.M.); (F.N.M.)
| | - Francisco Nicanor Macedo
- I’Dor Institute, Hospital Estadual da Criança, Rio de Janeiro 21330-400, Brazil; (P.M.); (F.N.M.)
| | - Danielle N. Forny
- Department of Pediatric Surgery, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil;
| | - Luíza Simião
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Ana Luíza Pureza
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Marcelo Gerardin Poirot Land
- Internal Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil; (C.d.S.F.-F.); (V.B.); (L.C.T.); (E.O.); (E.B.-R.); (P.F.R.S.); (M.G.P.L.)
| | - Carlos Eduardo Pedreira
- Systems and Computing Engineering Department (COPPE-PESC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-972, Brazil;
| | - Jacques J. M. van Dongen
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands;
| | - Alberto Orfao
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL), Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence: (A.O.); (E.S.d.C.); Tel.: +34-9232-9481 (A.O.); +55-21-3938-4725 (E.S.d.C.)
| | - Elaine Sobral da Costa
- Internal Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil; (C.d.S.F.-F.); (V.B.); (L.C.T.); (E.O.); (E.B.-R.); (P.F.R.S.); (M.G.P.L.)
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
- Correspondence: (A.O.); (E.S.d.C.); Tel.: +34-9232-9481 (A.O.); +55-21-3938-4725 (E.S.d.C.)
| |
Collapse
|
24
|
TERAMOTO N, IKEDA M, SUGIHARA H, SHIGA T, MATSUWAKI T, NISHIHARA M, UCHIDA K, YAMANOUCHI K. Loss of p16/Ink4a drives high frequency of rhabdomyosarcoma in a rat model of Duchenne muscular dystrophy. J Vet Med Sci 2021; 83:1416-1424. [PMID: 34334511 PMCID: PMC8498826 DOI: 10.1292/jvms.21-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is an aggressive type of soft tissue sarcoma, and pleomorphic RMS is a rare subtype of RMS found in adult. p16 is a tumor suppressor which inhibits cell cycle. In human RMS, p16 gene is frequently deleted, but p16-null mice do not develop RMS. We reported that genetic ablation of p16 by the crossbreeding of p16 knock-out rats (p16-KO rats) improved the dystrophic phenotype of a rat model of Duchenne muscular dystrophy (Dmd-KO rats). However, p16/Dmd double knock-out rats (dKO rats) unexpectedly developed sarcoma. In the present study, we raised p16-KO, Dmd-KO, and dKO rats until 11 months of age. Twelve out of 22 dKO rats developed pleomorphic RMS after 9 months of age, while none of p16-KO rats and Dmd-KO rats developed tumor. The neoplasms were connected to skeletal muscle tissue with indistinct borders and characterized by diffuse proliferation of pleomorphic cells which had eosinophilic cytoplasm and atypical nuclei with anisokaryosis. For almost all cases, the tumor cells immunohistochemically expressed myogenic markers including desmin, MyoD, and myogenin. The single cell cloning from tumor primary cells gained 20 individual Pax7-negative MyoD-positive RMS cell clones. Our results demonstrated that double knock-out of p16 and dystrophin in rats leads to the development of pleomorphic RMS, providing an animal model that may be useful to study the developmental mechanism of pleomorphic RMS.
Collapse
Affiliation(s)
- Naomi TERAMOTO
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masanari IKEDA
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hidetoshi SUGIHARA
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takanori SHIGA
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takashi MATSUWAKI
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masugi NISHIHARA
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazuyuki UCHIDA
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Keitaro YAMANOUCHI
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
25
|
An Image Analysis Solution For Quantification and Determination of Immunohistochemistry Staining Reproducibility. Appl Immunohistochem Mol Morphol 2021; 28:428-436. [PMID: 31082827 PMCID: PMC7368846 DOI: 10.1097/pai.0000000000000776] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Supplemental Digital Content is available in the text. With immunohistochemical (IHC) staining increasingly being used to guide clinical decisions, variability in staining quality and reproducibility are becoming essential factors in generating diagnoses using IHC tissue preparations. The current study tested a method to track and quantify the interrun, intrarun, and intersite variability of IHC staining intensity. Our hypothesis was that staining precision between laboratory sites, staining runs, and individual slides may be verified quantitatively, efficiently and effectively utilizing algorithm-based, automated image analysis. To investigate this premise, we tested the consistency of IHC staining in 40 routinely processed (formalin-fixed, paraffin-embedded) human tissues using 10 common antibiomarker antibodies on 2 Dako Omnis instruments at 2 locations (Carpinteria, CA: 30 m above sea level and Longmont, CO: 1500 m above sea level) programmed with identical, default settings and sample pretreatments. Digital images of IHC-labeled sections produced by a whole slide scanner were analyzed by a simple commercially available algorithm and compared with a board-certified veterinary pathologist’s semiquantitative scoring of staining intensity. The image analysis output correlated well with pathology scores but had increased sensitivity for discriminating subtle variations and providing reproducible digital quantification across sites as well as within and among staining runs at the same site. Taken together, our data indicate that digital image analysis offers an objective and quantifiable means of verifying IHC staining parameters as a part of laboratory quality assurance systems.
Collapse
|
26
|
Habibzadeh P, Ansari Asl M, Foroutan HR, Bahador A, Anbardar MH. Clinicopathological study of hepatic mesenchymal hamartoma and undifferentiated embryonal sarcoma of the liver: a single center study from Iran. Diagn Pathol 2021; 16:55. [PMID: 34162402 PMCID: PMC8223305 DOI: 10.1186/s13000-021-01117-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/10/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Undifferentiated embryonal sarcoma of liver (UESL) and hepatic mesenchymal hamartoma (HMH) are two rare entities which mainly affect the pediatric population. The aim of this investigation was to provide a comprehensive overview of the clinicopathologic characteristics of the patients diagnosed with these two conditions in a tertiary referral center in Iran. METHODS In this retrospective study patients diagnosed with UESL or HMH between 2012 and 2020 were studied. A comprehensive histopathologic evaluation of the cases along with immunohistochemistry evaluation using a panel of antibodies was conducted. Furthermore, clinical, paraclinical, and treatment data and follow up information was collected. RESULTS A total of 16 patients (8 UESL, 8 HMH) were studied in this investigation. Patients with UESL had a significantly (p = 0.002) higher age at diagnosis compared with those with HMH. Histologically, UESL cases were characterized by anaplastic cells with eosinophilic cytoplasm and bizarre nuclei and frequent atypical mitosis and spindling in a myxoid stroma while disordered arrangement of hepatic parenchyma, bile ducts, and primitive mesenchyme was seen in HMH. Furthermore, small round cells and extramedullary hematopoiesis were seen in 2 UESL and 3 HMH cases, respectively. Concurrent HMH was also seen in two UESL cases. Immunohistochemistry panel showed positive staining for Vimentin, Glypican-3, Desmin, CD56, CD10, and BCL2 in UESL cases and immunoreactivity for Vimentin, HepPar 1, Glypican-3, SMA, CD56, BCL2, and CD34 in various components of HMH. CONCLUSIONS In this study, the clinicopathologic features of UESL and HMH cases are presented. We also evaluated the utility of an immunohistochemistry panel in the diagnosis of these two rare entities and suggested novel markers. Our study corroborated the findings of previous investigations and expanded the clinicopathologic features of these two rare entities with diagnostic and potential therapeutic implications.
Collapse
Affiliation(s)
- Parham Habibzadeh
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hamid Reza Foroutan
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pediatric Surgery, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Bahador
- Department of Pediatric Surgery, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Anbardar
- Department of Pathology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
27
|
Pruller J, Hofer I, Ganassi M, Heher P, Ma MT, Zammit PS. A human Myogenin promoter modified to be highly active in alveolar rhabdomyosarcoma drives an effective suicide gene therapy. Cancer Gene Ther 2021; 28:427-441. [PMID: 32973362 PMCID: PMC8119243 DOI: 10.1038/s41417-020-00225-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 11/29/2022]
Abstract
Rhabdomyosarcoma is a rare childhood soft tissue cancer whose cells resemble poorly differentiated skeletal muscle, expressing myogenic proteins including MYOGENIN. Alveolar rhabdomyosarcoma (ARMS) accounts for ~40% of cases and is associated with a poorer prognosis than other rhabdomyosarcoma variants, especially if containing the chromosomal translocation generating the PAX3-FOXO1 hybrid transcription factor. Metastasis is commonly present at diagnosis, with a five-year survival rate of <30%, highlighting the need for novel therapeutic approaches. We designed a suicide gene therapy by generating an ARMS-targeted promoter to drive the herpes simplex virus thymidine kinase (HSV-TK) suicide gene. We modified the minimal human MYOGENIN promoter by deleting both the NF1 and MEF3 transcription factor binding motifs to produce a promoter that is highly active in ARMS cells. Our bespoke ARMS promoter driving HSV-TK efficiently killed ARMS cells in vitro, but not skeletal myoblasts. Using a xenograft mouse model, we also demonstrated that ARMS promoter-HSV-TK causes apoptosis of ARMS cells in vivo. Importantly, combining our suicide gene therapy with standard chemotherapy agents used in the treatment of rhabdomyosarcoma, reduced the effective drug dose, diminishing deleterious side effects/patient burden. This modified, highly ARMS-specific promoter could provide a new therapy option for this difficult-to-treat cancer.
Collapse
Affiliation(s)
- Johanna Pruller
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK.
| | - Isabella Hofer
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK
| | - Massimo Ganassi
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK
| | - Philipp Heher
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK
| | - Michelle T Ma
- King's College London, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, London, SE1 7EH, UK
| | - Peter S Zammit
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK.
| |
Collapse
|
28
|
Tuohy JL, Byer BJ, Royer S, Keller C, Nagai-Singer MA, Regan DP, Seguin B. Evaluation of Myogenin and MyoD1 as Immunohistochemical Markers of Canine Rhabdomyosarcoma. Vet Pathol 2021; 58:516-526. [PMID: 33691532 DOI: 10.1177/0300985820988146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Canine rhabdomyosarcoma (RMS) presents a diagnostic challenge due to its overlapping histologic features with other soft tissue sarcomas. The diagnosis of RMS currently relies on positive immunohistochemical (IHC) labeling for desmin; however, desmin expression is also observed in non-RMS tumors. Myogenin and MyoD1 are transcription factors reported to be sensitive and specific IHC markers for human RMS, but they are not widely used in veterinary oncology. The goals of this study were to develop an IHC protocol for myogenin and MyoD1, evaluate myogenin and MyoD1 labeling in canine RMS, and report clinical outcomes. Sixteen cases of possible RMS were retrospectively evaluated. A diagnosis of RMS was confirmed in 13 cases based on histological features and immunolabeling for myogenin and MyoD1, with the aid of electron microscopy in 2 cases. Desmin was negative in 3 cases of RMS. Two cases were of the sclerosing variant. The median age of dogs with RMS was 7.2 years. Anatomic tumor locations included previously reported sites such as bladder, larynx, heart, and orbit, as well as other locations typical of soft tissue sarcomas. Survival ranged from 47 to 1480 days for 5 dogs with available data. This study demonstrated that MyoD1 and myogenin should be included with desmin as part of a diagnostic IHC panel for canine RMS. Utilization of these antibodies to improve the accuracy of canine RMS diagnosis will ultimately allow for better characterization of the biological behavior and clinical outcomes of this disease, providing the groundwork for future comparative investigations in canine RMS.
Collapse
Affiliation(s)
| | | | - Suzanne Royer
- 3447Colorado State University, Fort Collins, CO, USA
| | - Charles Keller
- Children's Cancer Therapy Development Institute, Beaverton, OR, USA
| | | | | | | |
Collapse
|
29
|
Giordano G, D'Adda T, Pizzi S, Campanini N, Gambino G, Berretta R. Neuroendocrine small cell carcinoma of the cervix: A case report. Mol Clin Oncol 2021; 14:92. [PMID: 33767861 PMCID: PMC7976432 DOI: 10.3892/mco.2021.2254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) has been found in patients with Merkel cell carcinoma and respiratory tract infections. Merkel cell carcinoma is a primary aggressive neuroendocrine carcinoma of the skin. It has been demonstrated that MCPyV can be transmitted during sexual activity and may be present in the oral and anogenital mucosa. The aim of the present study was to evaluate whether MCPyV coexisted with HPV in three cases of neuroendocrine small cell carcinoma of the cervix using PCR and immunohistochemical analysis Three cases of NSC of the cervix were identified in the pathology archives of Parma University (Italy). Of these, two cases were associated with an adenocarcinomatous component. A set of general primers from the L1 region (forward, L1C1 and reverse, L1C2 or L1C2M) was PCR amplified to detect the broad-spectrum DNA of genital HPV. The presence of MCPyV was investigated via immunohistochemistry using a mouse monoclonal antibody against the MCPyV LT antigen and through PCR analysis to separate viral DNA. HPV DNA was present in all three neuroendocrine carcinomas and in the adenocarcinoma component of the two mixed cases. None of the cases were immunoreactive to CM2B4 and did not contain viral DNA in either their neuroendocrine or adenocarcinomatous component. Whilst it is difficult to draw definitive conclusions from such a small sample size, these data suggested that MCPyV does not coexist with HPV in the cervix. However, in the present study, the absence of detectable MCPyV may have been due to the presence of a genotype that was not detected by the primers used in the PCR analysis or by the antibody used for the immunohistochemical study. MCPyV microRNA may also have been present, inhibiting LT expression. Additional studies with larger cohorts and more advanced molecular biology techniques are required to confirm the hypothesis of the current study.
Collapse
Affiliation(s)
- Giovanna Giordano
- Department of Medicine and Surgery, Pathology Unit, University of Parma, Gramsci, I-43126 Parma, Italy
| | - Tiziana D'Adda
- Department of Medicine and Surgery, Pathology Unit, University of Parma, Gramsci, I-43126 Parma, Italy
| | - Silvia Pizzi
- Department of Medicine and Surgery, Pathology Unit, University of Parma, Gramsci, I-43126 Parma, Italy
| | - Nicoletta Campanini
- Department of Medicine and Surgery, Pathology Unit, University of Parma, Gramsci, I-43126 Parma, Italy
| | - Giulia Gambino
- Department of Obsterics and Gynecology, University of Parma, Gramsci, I-43126 Parma, Italy
| | - Roberto Berretta
- Department of Obsterics and Gynecology, University of Parma, Gramsci, I-43126 Parma, Italy
| |
Collapse
|
30
|
Rashid T, Noyd DH, Iranzad N, Davis JT, Deel MD. Advances in the Diagnosis and Management of Neonatal Sarcomas. Clin Perinatol 2021; 48:117-145. [PMID: 33583500 DOI: 10.1016/j.clp.2020.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neonatal sarcomas comprise a heterogeneous group of rare soft tissue neoplasms that present unique diagnostic and therapeutic challenges. Recent advances in molecular profiling have improved diagnostic capabilities and reveal novel therapeutic targets. Clinical trials demonstrate differences in behavior between sarcoma subtypes that allow for better clinical management. Surgical resection has been replaced with a multimodal approach that includes chemotherapy and radiotherapy. Despite these advances, neonates with sarcoma continue to fare worse than histologically similar sarcomas in older children, likely reflecting differences in tumor biology and the complexities of neonatal medicine. This review focuses on recent advances in managing neonatal sarcomas.
Collapse
Affiliation(s)
- Tooba Rashid
- Pediatric Hematology/Oncology, Duke University School of Medicine, DUMC, Box 102382, Durham, NC 27710, USA
| | - David H Noyd
- Pediatric Hematology/Oncology, Duke University School of Medicine, DUMC, Box 102382, Durham, NC 27710, USA
| | - Natasha Iranzad
- Pediatric Hematology/Oncology, Duke University School of Medicine, DUMC, Box 3712, Durham, NC 27710, USA
| | - Joseph T Davis
- Pediatric Hematology/Oncology, Duke University School of Medicine, DUMC, Box 3808, Durham, NC 27710, USA
| | - Michael D Deel
- Pediatric Hematology/Oncology, Duke University School of Medicine, DUMC, Box 102382, Durham, NC 27710, USA.
| |
Collapse
|
31
|
Skeletal Muscle Subpopulation Rearrangements upon Rhabdomyosarcoma Development through Single-Cell Mass Cytometry. J Clin Med 2021; 10:jcm10040823. [PMID: 33671425 PMCID: PMC7922544 DOI: 10.3390/jcm10040823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022] Open
Abstract
The embryonal rhabdomyosarcoma (eRMS) is a soft tissue sarcoma commonly affecting the head and neck, the extremities and the genitourinary tract. To contribute to revealing the cell types that may originate this tumor, we exploited mass cytometry, a single-cell technique that, by using heavy-metal-tagged antibodies, allows the accurate monitoring of the changes occurring in the mononuclear cell composition of skeletal muscle tissue during tumor development. To this end, we compared cell populations of healthy muscles with those from spatiotemporal-induced eRMS tumors in a mouse model (LSL-KrasG12D/+;Tp53Fl/Fl) that can be used to develop rhabdomyosarcoma by means of infection with an adenovirus vector expressing Cre (Ad-Cre) recombinase. By monitoring different time points after tumor induction, we were able to analyze tumor progression and composition, identifying fibro/adipogenic progenitors (FAPs) as the cell type that, in this model system, had a pivotal role in tumor development. In vitro studies highlighted that both FAPs and satellite cells (SCs), upon infection with the Ad-Cre, acquired the potential to develop rhabdomyosarcomas when transplanted into immunocompromised mice. However, only infected FAPs had an antigen profile that was similar to embryonal rhabdomyosarcoma cells. Overall, our analysis supports the involvement of FAPs in eRMS development.
Collapse
|
32
|
Ahmadi M, Mohammadi Z, Azad M, Foroughi F, Khojastehpour S, Gheibi N, Samiee-Rad F, Maali A. Evaluation of expression level and methylation profile of CXX1 gene in breast cancer tissue blocks. J Cancer Res Ther 2021; 17:1328-1334. [DOI: 10.4103/jcrt.jcrt_27_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
33
|
Tombolan L, Millino C, Pacchioni B, Cattelan M, Zin A, Bonvini P, Bisogno G. Circulating miR-26a as Potential Prognostic Biomarkers in Pediatric Rhabdomyosarcoma. Front Genet 2020; 11:606274. [PMID: 33362864 PMCID: PMC7758343 DOI: 10.3389/fgene.2020.606274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Rhabdomyosarcoma (RMS) arises from myogenic precursors that fail to complete muscle differentiation and represents the most frequent soft tissue sarcoma in children. Two major histological subtypes are recognized: alveolar RMS, characterized by a more aggressive behavior and a greater proneness to metastasis, and embryonal RMS which accounts for the 80% of cases and carries a better prognosis. Despite the survival of patients with localized tumors has progressively improved, RMS remains a challenging disease especially for metastatic patients and in case of progressive or recurrent disease after front-line therapy. MicroRNAs, a class of small non-coding RNA, have emerged as crucial players in cancer development and progression, and their detection in plasma (circulating miRNAs) represents a promising minimally invasive approach that deserve to be exploited in clinical practice. We evaluated the utility of circulating miRNAs as diagnostic and prognostic biomarkers in children with RMS profiling miRNAs from plasma of a small cohort of RMS patients and healthy donors (HD) using a qPCR Cancer Panel. An assessment of hemolysis status of plasma using miR-451/miR-23a ratio was performed as pre-analytical analysis. Statistical analysis revealed that miRNAs expression pattern clearly distinguished RMS patients from HD (p < 0.05). Interestingly, plasma levels of muscle-specific miR-206 were found to be significantly increased in RMS patients compared to HD, whereas levels of three potential tumor-suppressor miRNAs, miR-26a and miR-30b/30c, were found lower. Reduced levels of circulating miR-26a and miR-30b/c were further measured in an independent larger cohort of patients (validation set) by digital droplet PCR. In particular, we evidenced that miR-26a absolute plasma levels were associated with fusion status and adverse outcome (p < 0.05). Taken together, these findings demonstrate the potential of circulating miRNA as diagnostic and prognostic biomarker in children affected by this malignancy and enforced the key role of miR-26a in pediatric rhabdomyosarcoma.
Collapse
Affiliation(s)
- Lucia Tombolan
- Institute of Pediatric Research (IRP), Fondazione Città della Speranza, Padua, Italy
| | - Caterina Millino
- Functional Genomics Laboratory, Department of Biology, University of Padua, Padua, Italy
| | - Beniamina Pacchioni
- Functional Genomics Laboratory, Department of Biology, University of Padua, Padua, Italy
| | - Manuela Cattelan
- Department of Statistical Sciences, University of Padua, Padua, Italy
| | - Angelica Zin
- Institute of Pediatric Research (IRP), Fondazione Città della Speranza, Padua, Italy
| | - Paolo Bonvini
- Institute of Pediatric Research (IRP), Fondazione Città della Speranza, Padua, Italy
| | - Gianni Bisogno
- Institute of Pediatric Research (IRP), Fondazione Città della Speranza, Padua, Italy.,Department of Woman's and Children's Health, Hematology and Oncology Unit, University of Padua, Padua, Italy
| |
Collapse
|
34
|
Lai H, Guo Y, He W, Sun T, Ouyang L, Tian L, Li Y, Li X, You Z, Yang G. Non-target genetic manipulation induces rhabdomyosarcoma in KrasPten-driven mouse model of ovarian cancer. Transl Cancer Res 2020; 9:7458-7468. [PMID: 35117346 PMCID: PMC8798327 DOI: 10.21037/tcr-20-2561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/28/2020] [Indexed: 11/29/2022]
Abstract
Background Genetically engineered mice are ideal models to advance our understanding the tumorigenesis of ovarian cancer. Our original objective was to establish an ovarian cancer model induced by Kras activation and Pten deletion. However, proficiently establishing the model remains a technical problem, which limits its application. Methods We established the Kras activation/Pten deletion-induced mouse model of ovarian cancer by injecting Cre recombinase-expressing adenovirus in the ovarian bursa. PCR analysis, Western blotting, and immunohistochemistry staining were performed to verify the alteration of conditional genes. We detected expression of canonical molecular markers in order to examine the origin of the tumors. Results Subcutaneous lumps developed accidentally in mice with ovarian cancer, as early as 2 weeks post in vivo genetic manipulation, far before the destructive growth of ovarian cancer. PCR analysis confirmed the efficient Cre-mediated recombination of Kras and Pten in tumor tissues, which are consistent with the activation of the MAPK and PI3K/Akt/mTOR pathways. Histomorphological and histological analysis showed that the lumps were actually rhabdomyosarcoma (RMS). We confirmed that the leakage of adenovirus transformed healthy adjacent tissues into RMS. Conclusions Avoiding accidental exposure of non-target tissues to adenovirus is crucial to successfully establish the ovarian cancer mouse model. Moreover, non-specific genetic manipulations can induce the development of RMS.
Collapse
Affiliation(s)
- Huiling Lai
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunyun Guo
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weipeng He
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingting Sun
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Linglong Ouyang
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liming Tian
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Li
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaohui Li
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zeshan You
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guofen Yang
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Gonzalez Curto G, Der Vartanian A, Frarma YEM, Manceau L, Baldi L, Prisco S, Elarouci N, Causeret F, Korenkov D, Rigolet M, Aurade F, De Reynies A, Contremoulins V, Relaix F, Faklaris O, Briscoe J, Gilardi-Hebenstreit P, Ribes V. The PAX-FOXO1s trigger fast trans-differentiation of chick embryonic neural cells into alveolar rhabdomyosarcoma with tissue invasive properties limited by S phase entry inhibition. PLoS Genet 2020; 16:e1009164. [PMID: 33175861 PMCID: PMC7682867 DOI: 10.1371/journal.pgen.1009164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/23/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
The chromosome translocations generating PAX3-FOXO1 and PAX7-FOXO1 chimeric proteins are the primary hallmarks of the paediatric fusion-positive alveolar subtype of Rhabdomyosarcoma (FP-RMS). Despite the ability of these transcription factors to remodel chromatin landscapes and promote the expression of tumour driver genes, they only inefficiently promote malignant transformation in vivo. The reason for this is unclear. To address this, we developed an in ovo model to follow the response of spinal cord progenitors to PAX-FOXO1s. Our data demonstrate that PAX-FOXO1s, but not wild-type PAX3 or PAX7, trigger the trans-differentiation of neural cells into FP-RMS-like cells with myogenic characteristics. In parallel, PAX-FOXO1s remodel the neural pseudo-stratified epithelium into a cohesive mesenchyme capable of tissue invasion. Surprisingly, expression of PAX-FOXO1s, similar to wild-type PAX3/7, reduce the levels of CDK-CYCLIN activity and increase the fraction of cells in G1. Introduction of CYCLIN D1 or MYCN overcomes this PAX-FOXO1-mediated cell cycle inhibition and promotes tumour growth. Together, our findings reveal a mechanism that can explain the apparent limited oncogenicity of PAX-FOXO1 fusion transcription factors. They are also consistent with certain clinical reports indicative of a neural origin of FP-RMS.
Collapse
Affiliation(s)
| | | | | | - Line Manceau
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Lorenzo Baldi
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Selene Prisco
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Nabila Elarouci
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Frédéric Causeret
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Daniil Korenkov
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Muriel Rigolet
- Univ Paris Est Créteil, INSERM, EnVA, EFS, IMRB, Créteil, France
| | - Frédéric Aurade
- Univ Paris Est Créteil, INSERM, EnVA, EFS, IMRB, Créteil, France
- Sorbonne Université, INSERM, UMRS974, Center for Research in Myology, Paris, France
| | - Aurélien De Reynies
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Vincent Contremoulins
- ImagoSeine core facility of Institut Jacques Monod and member of France-BioImaging, France
| | - Frédéric Relaix
- Univ Paris Est Créteil, INSERM, EnVA, EFS, IMRB, Créteil, France
| | - Orestis Faklaris
- ImagoSeine core facility of Institut Jacques Monod and member of France-BioImaging, France
| | - James Briscoe
- The Francis Crick Institute, 1 Midland Road, London, United Kingdom
| | | | - Vanessa Ribes
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| |
Collapse
|
36
|
Merle C, Thébault N, LeGuellec S, Baud J, Pérot G, Lesluyes T, Delespaul L, Lartigue L, Chibon F. Tetraploidization of Immortalized Myoblasts Induced by Cell Fusion Drives Myogenic Sarcoma Development with DMD Deletion. Cancers (Basel) 2020; 12:cancers12051281. [PMID: 32438562 PMCID: PMC7281535 DOI: 10.3390/cancers12051281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Whole-genome doubling is the second most frequent genomic event, after TP53 alterations, in advanced solid tumors and is associated with poor prognosis. Tetraploidization step will lead to aneuploidy and chromosomic rearrangements. The mechanism leading to tetraploid cells is important since endoreplication, abortive cytokinesis and cell fusion could have distinct consequences. Unlike processes based on duplication, cell fusion involves the merging of two different genomes, epigenomes and cellular states. Since it is involved in muscle differentiation, we hypothesized that it could play a role in the oncogenesis of myogenic cancers. Spontaneous hybrids, but not their non-fused immortalized myoblast counterparts they are generated from, induced tumors in mice. Unstable upon fusion, the hybrid genome evolved from initial mitosis to tumors with a highly rearranged genome. This genome remodeling finally produced targeted DMD deletions associated with replicative stress, isoform relocalization and metastatic spreading, exactly as observed in human myogenic sarcomas. In conclusion, these results draw a model of myogenic oncogenesis in which cell fusion and oncogene activation combine to produce pleomorphic aggressive sarcomas.
Collapse
Affiliation(s)
- Candice Merle
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Cancer Research Center in Toulouse (CRCT), 31037 Toulouse, France; (C.M.); (N.T.); (S.L.); (G.P.); (T.L.); (L.D.)
- Department of Biology, University of Toulouse 3, Paul Sabatier, 118 route de Narbonne, 31062 Toulouse CEDEX 9, France
- Institut Claudius Régaud, IUCT-Oncopole, 31037 Toulouse, France
| | - Noémie Thébault
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Cancer Research Center in Toulouse (CRCT), 31037 Toulouse, France; (C.M.); (N.T.); (S.L.); (G.P.); (T.L.); (L.D.)
| | - Sophie LeGuellec
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Cancer Research Center in Toulouse (CRCT), 31037 Toulouse, France; (C.M.); (N.T.); (S.L.); (G.P.); (T.L.); (L.D.)
- Department of Pathology, Institut Claudius Régaud, IUCT-Oncopole, 31037 Toulouse, France
| | - Jessica Baud
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1218, 229 cours de l’Argonne, F-33076 Bordeaux, France; (J.B.); (L.L.)
- Department of Life and Health Sciences, University of Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux, France
| | - Gaëlle Pérot
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Cancer Research Center in Toulouse (CRCT), 31037 Toulouse, France; (C.M.); (N.T.); (S.L.); (G.P.); (T.L.); (L.D.)
- Centre Hospitalier Universitaire (CHU) de Toulouse, IUCT-Oncopole, 31037 Toulouse, France
| | - Tom Lesluyes
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Cancer Research Center in Toulouse (CRCT), 31037 Toulouse, France; (C.M.); (N.T.); (S.L.); (G.P.); (T.L.); (L.D.)
| | - Lucile Delespaul
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Cancer Research Center in Toulouse (CRCT), 31037 Toulouse, France; (C.M.); (N.T.); (S.L.); (G.P.); (T.L.); (L.D.)
| | - Lydia Lartigue
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1218, 229 cours de l’Argonne, F-33076 Bordeaux, France; (J.B.); (L.L.)
- Department of Life and Health Sciences, University of Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux, France
| | - Frédéric Chibon
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Cancer Research Center in Toulouse (CRCT), 31037 Toulouse, France; (C.M.); (N.T.); (S.L.); (G.P.); (T.L.); (L.D.)
- Institut Claudius Régaud, IUCT-Oncopole, 31037 Toulouse, France
- Centre de Recherche en Cancérologie de Toulouse—Institut Universitaire de Cancérologie de Toulouse—Oncopôle (CRCT-IUCT-O), 2 Avenue Hubert Curien, 31037 Toulouse CEDEX 1, France
- Correspondence:
| |
Collapse
|
37
|
Connell DR, Rodriguez CO, Sternberg RA, Singh K, Barger A, Garrett LD. Biological behaviour and ezrin expression in canine rhabdomyosarcomas: 25 cases (1990-2012). Vet Comp Oncol 2020; 18:675-682. [PMID: 32246519 DOI: 10.1111/vco.12594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/01/2022]
Abstract
There are few published reports of canine rhabdomyosarcomas. In human paediatrics, rhabdomyosarcomas account for 5%-10% of all tumours and >50% of soft tissue sarcomas. They have an aggressive biologic behaviour; most patients develop diffuse metastatic disease. Ezrin, a cytoskeleton linker protein, has been correlated with metastasis in a number of tumours, including rhabdomyosarcomas. The goal of this study was to describe dogs with non-urinary rhabdomyosarcomas including clinical findings, ezrin expression and outcome. Twenty-five dogs with rhabdomyosarcomas were identified from two institutions' databases. Signalment, primary tumour location, cytologic and histologic findings, metastatic sites, treatments, survival time and necropsy results were recorded. Immunohistochemical staining for ezrin expression was performed on archived samples; cellular localization of ezrin was characterized. The mean and median age of all patients was 4.3 and 2 years, respectively. Subcutaneous and retrobulbar/orbital were the most common primary tumour locations. Sixteen dogs had metastatic disease at diagnosis. Three dogs presented with diffuse disease where a primary tumour could not be identified. A round cell tumour was the initial diagnosis in 32% of cases, and 76% of cases required immunohistochemistry to establish the diagnosis. The median survival was 10 days. Twenty-one cases had archived samples available for ezrin staining; all but one was positive and exhibited both membranous and cytoplasmic localization. Rhabdomyosarcomas occur in young dogs, may have a round cell appearance, and exhibit aggressive biologic behaviour. Given ezrin's defined role in metastasis, its observed expression in the tumours in this study suggest its possible role in canine rhabdomyosarcoma's aggressive biologic behaviour.
Collapse
Affiliation(s)
- Dana R Connell
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois, USA
| | - Carlos O Rodriguez
- Veterinary Medical Teaching Hospital, University of California, Davis, California, USA
| | - Rachel A Sternberg
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois, USA
| | - Kuldeep Singh
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois, USA
| | - Anne Barger
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois, USA
| | - Laura D Garrett
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
38
|
Barisic D, Erb M, Follo M, Al-Mudaris D, Rolauffs B, Hart ML. Lack of a skeletal muscle phenotype in adult human bone marrow stromal cells following xenogeneic-free expansion. Stem Cell Res Ther 2020; 11:79. [PMID: 32087752 PMCID: PMC7036219 DOI: 10.1186/s13287-020-1587-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/22/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
Background Many studies have elegantly shown that murine and rat bone marrow-derived mesenchymal stromal cells (bmMSCs) contribute to muscle regeneration and improve muscle function. Yet, the ability of transplanted human bmMSCs to manifest myogenic potential shows conflicting results. While human adipose- and umbilical cord-derived MSCs can be differentiated into a skeletal muscle phenotype using horse serum (HS), bmMSCs have only been shown to differentiate towards the skeletal muscle lineage using a complex mixture of cytokines followed by transfection with notch intracellular domain. Methods Since xenogeneic-free growth supplements are increasingly being used in the expansion of bmMSCs in clinical trials, we investigated the effects of human plasma and platelet lysate (P/PL) on the expression of neuromuscular markers and whether P/PL-expanded human bmMSCs could be differentiated towards a skeletal myogenic phenotype. Neuromuscular markers were measured using the highly sensitive droplet digital polymerase chain reaction for measuring the expression of Myf5, MyoD, MyoG, ACTA1, Desmin, GAP-43, and Coronin 1b transcripts, by performing immunofluorescence for the expression of Desmin, GAP-43, and MEF2, and flow cytometry for the expression of CD56/neural cell adhesion molecule (NCAM). Results Despite that bmMSCs expressed the myogenic regulatory factor (MRF) MEF2 after expansion in P/PL, bmMSCs cultured under such conditions did not express other essential MRFs including Myf5, MyoD, MyoG, or ACTA1 needed for myogenesis. Moreover, HS did not induce myogenesis of bmMSCs and hence did not induce the expression of any of these myogenic markers. P/PL, however, did lead to a significant increase in neurogenic GAP-43, as well as Desmin expression, and resulted in a high baseline expression of the neurogenic gene Coronin 1b which was sustained under further P/PL or HS culture conditions. Fetal bovine serum resulted in equally high levels of GAP-43 and Coronin 1b. Moreover, the proportion of CD56/NCAM-positive bmMSCs cultured in P/PL was 5.9 ± 2.1. Conclusions These data suggest that P/PL may prime a small portion of bmMSCs towards an early neural precursor cell type. Collectively, this shows that P/PL partially primes the cells towards a neurogenic phenotype, but does not prime adult human bmMSCs towards the skeletal muscle lineage.
Collapse
Affiliation(s)
- Dominik Barisic
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marita Erb
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marie Follo
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dahlia Al-Mudaris
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie L Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
39
|
Whaley RD, Thompson LDR. Primary Thyroid Gland Alveolar Soft Part Sarcoma. Head Neck Pathol 2019; 14:701-706. [PMID: 31782115 PMCID: PMC7413940 DOI: 10.1007/s12105-019-01099-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
Abstract
Alveolar soft part sarcoma (ASPS) is a rare soft tissue tumor of unknown histogenesis generally characterized by the der(17)t(X;17)(p11.2;q25) translocation which results in the ASPSCR1-TFE3 gene fusion. Primary ASPS of the thyroid gland has not yet been reported. During oncology follow-up for breast cancer, a pulmonary nodule and thyroid gland mass were identified in a 71-year-old Korean male. Thyroid ultrasound showed a 5.7 cm left thyroid gland mass. After several fine needle aspirations, a thyroid gland lobectomy was performed after documenting only non-caseating granulomatous inflammation in a biopsy of the lung nodule. A 7.6 cm bulging nodular thyroid gland mass was identified, showing significant destructive invasion. Alveolar nests of large polygonal, eosinophilic, granular neoplastic cells were separated by vascularized stroma. Colloid was absent. Tumor necrosis and increased mitoses were identified. The neoplastic cells were positive with TFE3 and CD68, but negative with pancytokeratin, thyroglobulin, TTF-1, napsin-A, calcitonin, PAX8, CAIX, S100 protein, HMB45, SMA, and desmin. FISH confirmed a TFE3 gene rearrangement. The differential includes several primary thyroid gland epithelial neoplasms, paraganglioma, PEComa, melanoma, crystal storage disease, and metastatic carcinomas, especially Xp11 translocation renal cell carcinoma. The patient has refused additional therapy, but is alive without tumor identified (primary or metastatic).
Collapse
Affiliation(s)
- Rumeal D. Whaley
- grid.257413.60000 0001 2287 3919Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN USA
| | - Lester D. R. Thompson
- grid.280062.e0000 0000 9957 7758Department of Pathology, Southern California Permanente Medical Group, 5601 De Soto Avenue, Woodland Hills, CA 91365 USA
| |
Collapse
|
40
|
Sanna L, Piredda R, Marchesi I, Bordoni V, Forcales SV, Calvisi DF, Bagella L. “Verteporfin exhibits anti-proliferative activity in embryonal and alveolar rhabdomyosarcoma cell lines”. Chem Biol Interact 2019; 312:108813. [DOI: 10.1016/j.cbi.2019.108813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/14/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022]
|
41
|
c-Myb regulates tumorigenic potential of embryonal rhabdomyosarcoma cells. Sci Rep 2019; 9:6342. [PMID: 31004084 PMCID: PMC6474878 DOI: 10.1038/s41598-019-42684-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/04/2019] [Indexed: 02/08/2023] Open
Abstract
Rhabdomyosarcomas (RMS) are a heterogeneous group of mesodermal tumors, the most common sub-types are embryonal (eRMS) and alveolar (aRMS) rhabdomyosarcoma. Immunohistochemical analysis revealed c-Myb expression in both eRMS and aRMS. c-Myb has been reported to be often associated with malignant human cancers. We therefore investigated the c-Myb role in RMS using cellular models of RMS. Specific suppression of c-Myb by a lentiviral vector expressing doxycycline (Dox)-inducible c-Myb shRNA inhibited proliferation, colony formation, and migration of the eRMS cell line (RD), but not of the aRMS cell line (RH30). Upon c-Myb knockdown in eRMS cells, cells accumulated in G0/G1 phase, the invasive behaviour of cells was repressed, and elevated levels of myosin heavy chain, marker of muscle differentiation, was detected. Next, we used an RD-based xenograft model to investigate the role of c-Myb in eRMS tumorigenesis in vivo. We found that Dox administration did not result in efficient suppression of c-Myb in growing tumors. However, when c-Myb-deficient RD cells were implanted into SCID mice, we observed inefficient tumor grafting and attenuation of tumor growth during the initial stages of tumor expansion. The presented study suggests that c-Myb could be a therapeutic target in embryonal rhabdomyosarcoma assuming that its expression is ablated.
Collapse
|
42
|
Kohama I, Kosaka N, Chikuda H, Ochiya T. An Insight into the Roles of MicroRNAs and Exosomes in Sarcoma. Cancers (Basel) 2019; 11:E428. [PMID: 30917542 PMCID: PMC6468388 DOI: 10.3390/cancers11030428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/15/2022] Open
Abstract
Sarcomas are rare solid tumors, but at least one-third of patients with sarcoma die from tumor-related disease. MicroRNA (miRNA) is a noncoding RNA that regulates gene expression in all cells and plays a key role in the progression of cancers. Recently, it was identified that miRNAs are transferred between cells by enclosure in extracellular vesicles, especially exosomes. The exosome is a 100 nm-sized membraned vesicle that is secreted by many kinds of cells and contains miRNA, mRNA, DNA, and proteins. Cancer uses exosomes to influence not only the tumor microenvironment but also the distant organ to create a premetastatic niche. The progression of sarcoma is also regulated by miRNAs and exosomes. These miRNAs and exosomes can be targeted as biomarkers and treatments. In this review, we summarize the studies of miRNA and exosomes in sarcoma.
Collapse
Affiliation(s)
- Isaku Kohama
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, 3-39-22 Showamachi, Maebashi, Gunma 371-8511, Japan.
| | - Nobuyoshi Kosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
- Department of Translational Research for Extracellular Vesicles, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
| | - Hirotaka Chikuda
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, 3-39-22 Showamachi, Maebashi, Gunma 371-8511, Japan.
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
| |
Collapse
|
43
|
Cardiac mesenchymal hamartoma associated with transposition of the great arteries in a neonate. REV ROMANA MED LAB 2019. [DOI: 10.2478/rrlm-2019-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Mehrkens LR, Gorman ME, Dores C. What is your diagnosis? Laryngeal mass in a pug dog. Vet Clin Pathol 2019; 48:370-372. [PMID: 30624799 DOI: 10.1111/vcp.12688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Lea R Mehrkens
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - M Elena Gorman
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Camila Dores
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| |
Collapse
|
45
|
Tarnowski M, Tkacz M, Kopytko P, Bujak J, Piotrowska K, Pawlik A. Trichostatin A Inhibits Rhabdomyosarcoma Proliferation and Induces Differentiation through MyomiR Reactivation. Folia Biol (Praha) 2019; 65:43-52. [PMID: 31171081 DOI: 10.14712/fb2019065010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Rhabdomyosarcoma (RMS) is a malignant tumour of soft tissues, occurring mainly in children and young adults. RMS cells derive from muscle cells, which due to mutations and epigenetic modifications have lost their ability to differentiate. Epigenetic modifications regulate expression of genes responsible for cell proliferation, maturation, differentiation and apoptosis. HDAC inhibitors suppress histone acetylation; therefore, they are a promising tool used in cancer therapy. Trichostatin A (TsA) is a pan-inhibitor of HDAC. In our study, we investigated the effect of TsA on RMS cell biology. Our findings strongly suggest that TsA inhibits RMS cell proliferation, induces cell apoptosis, and reactivates tumour cell differentiation. TsA up-regulates miR-27b expression, which is involved in the process of myogenesis. Moreover, TsA increases susceptibility of RMS cells to routinely used chemotherapeutics. In conclusion, TsA exhibits anti-cancer properties, triggers differentiation, and thereby can complement an existing spectrum of chemotherapeutics used in RMS therapy.
Collapse
Affiliation(s)
- M Tarnowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - M Tkacz
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - P Kopytko
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - J Bujak
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - K Piotrowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - A Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
46
|
Lacey A, Hedrick E, Cheng Y, Mohankumar K, Warren M, Safe S. Interleukin-24 (IL24) Is Suppressed by PAX3-FOXO1 and Is a Novel Therapy for Rhabdomyosarcoma. Mol Cancer Ther 2018; 17:2756-2766. [PMID: 30190424 PMCID: PMC6279487 DOI: 10.1158/1535-7163.mct-18-0118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/08/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022]
Abstract
Alveolar rhabdomyosarcoma (ARMS) patients have a poor prognosis, and this is primarily due to overexpression of the oncogenic fusion protein PAX3-FOXO1. Results of RNA-sequencing studies show that PAX3-FOXO1 represses expression of interleukin-24 (IL24), and these two genes are inversely expressed in patient tumors. PAX3-FOXO1 also regulates histone deacetylase 5 (HDAC5) in ARMS cells, and results of RNA interference studies confirmed that PAX3-FOXO1-mediated repression of IL24 is HDAC5-dependent. Knockdown of PAX3-FOXO1 decreases ARMS cell proliferation, survival, and migration, and we also observed similar responses in cells after overexpression of IL24, consistent with results reported for this tumor suppressor-like cytokine in other solid tumors. We also observed in double knockdown studies that the inhibition of ARMS cell proliferation, survival, and migration after knockdown of PAX3-FOXO1 was significantly (>75%) reversed by knockdown of IL24. Adenoviral-expressed IL24 was directly injected into ARMS tumors in athymic nude mice, and this resulted in decreased tumor growth and weight. Because adenoviral IL24 has already successfully undergone phase I in clinical trials, this represents an alternative approach (alone and/or combination) for treating ARMS patients who currently undergo cytotoxic drug therapies.
Collapse
Affiliation(s)
- Alexandra Lacey
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Erik Hedrick
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Yating Cheng
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Melanie Warren
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| |
Collapse
|
47
|
Helbig D, Mauch C, Buettner R, Quaas A. Immunohistochemical expression of melanocytic and myofibroblastic markers and their molecular correlation in atypical fibroxanthomas and pleomorphic dermal sarcomas. J Cutan Pathol 2018; 45:880-885. [DOI: 10.1111/cup.13346] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/28/2018] [Accepted: 08/15/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Doris Helbig
- Department of Dermatology; University Hospital Cologne; Cologne Germany
| | - Cornelia Mauch
- Department of Dermatology; University Hospital Cologne; Cologne Germany
| | - Reinhard Buettner
- Institute of Pathology; University Hospital Cologne; Cologne Germany
| | - Alexander Quaas
- Institute of Pathology; University Hospital Cologne; Cologne Germany
| |
Collapse
|
48
|
Rekhi B, Gupta C, Chinnaswamy G, Qureshi S, Vora T, Khanna N, Laskar S. Clinicopathologic features of 300 rhabdomyosarcomas with emphasis upon differential expression of skeletal muscle specific markers in the various subtypes: A single institutional experience. Ann Diagn Pathol 2018; 36:50-60. [PMID: 30098515 DOI: 10.1016/j.anndiagpath.2018.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/07/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
Abstract
The present study was aimed at evaluating clinicopathologic and immunohistochemical (IHC) features of 300 rhabdomyosarcomas (RMSs), including differential IHC expression and prognostic value of myogenin and MyoD1 across various subtypes of RMSs. IHC expression of myogenin and MyoD1 was graded on the basis of percentage of tumor cells displaying positive intranuclear immunostaining i.e. grade 1 (1-25%); grade 2 (26-50%); grade 3 (51-76%) and grade 4 (76-100%).Clinical follow-up was available in 238 (79.3%) patients. Various clinicopathologic parameters were correlated with 3-year disease free survival (DFS) and overall survival (OS). There were 140 cases (46.7%) of alveolar RMS (ARMS), 90 of embryonal RMS (ERMS) (30%), 61 (20.3%) of spindle cell/sclerosing RMS and 9 cases (3%) of pleomorphic RMS. Most cases, barring pleomorphic RMSs, occurred in the first two decades (228 cases) (76%), frequently in males, in the head and neck region (126) (42%). By immunohistochemistry, desmin was positive in 292/299 (97.6%) tumors; myogenin in 238/267 (89.1%) and MyoD1 in 192/266 (72.2%) tumors. High myogenin expression (in ≥51% positive tumor cells) was significantly associated with ARMSs (95/121, 78.5%), as compared to other subtypes (48/117, 41%) (p value < 0.001). High MyoD1 expression (≥51% tumor cells) was seen in more cases of pure sclerosing, combined with spindle cell/sclerosing RMSs (10/10, 100%), as compared to the other subtypes (91/141, 67.4%) (p = 0.032). There was no significant difference between high myogenin expression and clinical outcomes. Patients without metastasis and harbouring tumors, measuring ≤5 cm showed a significant increase in OS, with p values = 0.01 and <0.001, respectively. ARMS was the most frequent subtype. There was a significant association between high myogenin expression and ARMSs and high MyoD1 expression and spindle cell/sclerosing RMSs. High myogenin expression did not correlate with clinical outcomes. Patients with smaller sized tumors and without metastasis had significantly better clinical outcomes.
Collapse
Affiliation(s)
- Bharat Rekhi
- Department of Surgical Pathology, Tata Memorial Hospital, Maharashtra, Mumbai, India.
| | - Chhavi Gupta
- Department of Surgical Pathology, Tata Memorial Hospital, Maharashtra, Mumbai, India
| | - Girish Chinnaswamy
- Department of Medical Oncology, Tata Memorial Hospital, Maharashtra, Mumbai, India
| | - Sajid Qureshi
- Department of Surgical Oncology, Tata Memorial Hospital, Maharashtra, Mumbai, India
| | - Tushar Vora
- Department of Medical Oncology, Tata Memorial Hospital, Maharashtra, Mumbai, India
| | - Nehal Khanna
- Department of Radiation Oncology, Tata Memorial Hospital, Maharashtra, Mumbai, India
| | - Siddhartha Laskar
- Department of Radiation Oncology, Tata Memorial Hospital, Maharashtra, Mumbai, India
| |
Collapse
|
49
|
Lei WH, Wu WF, Zhen JY, Li YH, Li J, Xin J. Alveolar paratesticular rhabdomyosarcoma mimicing epididymitis: Case report and literature review. Medicine (Baltimore) 2018; 97:e11164. [PMID: 29924027 PMCID: PMC6024466 DOI: 10.1097/md.0000000000011164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
RATIONALE Most patients with paratesticular rhabdomyosarcoma may typically present as a unilateral, painless palpable scrotum mass. However, only a few cases of RMS presenting as painful edema of the scrotum mimicing epididymitis. We herein report an unusual case of alveolar paratesticular rhabdomyosarcoma misdiagnosed as epididymitis. PATIENT CONCERNS A 19-year-old adolescent, presented to urologist with painful swelling of the scrotum on the left side over the preceding several days. Antibiotics were administered by physician for two months and the pain improved, but the swelling did not fade. DIAGNOSES Alveolar praratesticular rhabdomyosarcoma. INTERVENTIONS A left, soft tissue mass in the scrotum without definite metastasis or lymphadenopathy was confirmed by computed tomography (CT) and magnetic resonance imaging. A radical left orchiectomy via the inguinal approach was performed successfully. OUTCOME The patient received 8 cycles of adjuvant chemotherapy, the patient remains recurrence- and metastasis-free at 13 months after surgery. LESSONS When paratesticular RMS is presenting with symptoms of epididymitis, this malignant tumor is usually overlooked. When patients complain of painful scrotal swelling, RMS arise from paratesticular tissue should be considered.
Collapse
Affiliation(s)
- W-H Lei
- Department of Medicine, Lishui Central Hospital, Lishui, Zhejiang Province
| | | | - Jin-Yang Zhen
- Department of Pathology, The First Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yang-Hui Li
- Department of Pathology, The First Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Jie Li
- Department of Medicine, Lishui Central Hospital, Lishui, Zhejiang Province
| | | |
Collapse
|
50
|
Gong W, Gao Q, Xu Z, Dai Y. Giant intrascrotal embryonal rhabdomyosarcoma in an adult: a case report and review of the literature. J Med Case Rep 2018; 12:149. [PMID: 29804543 PMCID: PMC5971421 DOI: 10.1186/s13256-018-1607-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/07/2018] [Indexed: 12/03/2022] Open
Abstract
Background Intrascrotal embryonal rhabdomyosarcoma in adults is a rare tumor with high aggression and a poor prognosis. We report our patient’s case and review the relevant literature to improve the understanding of this rare disease. Case presentation A 21-year-old Han Chinese man presented to our hospital with a right intrascrotal mass of 1 year’s duration. His physical examination revealed an enlarged right scrotum containing a huge tender mass measuring about 10 × 7 cm. Ordinary and contrast-enhanced ultrasonography showed a solid mass in the right scrotum, which was suspected to be a malignant tumor. An abdominopelvic computed tomographic scan revealed metastases in the retroperitoneal lymph nodes. The patient was diagnosed with malignant testicular tumor and underwent a right radical orchiectomy by an inguinal approach. Postoperative pathological examination suggested an intrascrotal embryonal rhabdomyosarcoma. Conclusions Intrascrotal embryonal rhabdomyosarcoma is a rare but highly aggressive tumor. Clinical and imaging manifestations of this tumor are nonspecific, so the definitive diagnosis depends on postoperative pathology and immunohistochemistry. Early suspicion, radical orchiectomy, accurate pathologic diagnosis, and adjuvant chemotherapy and/or radiotherapy are the keys to optimal prognosis.
Collapse
Affiliation(s)
- Wentao Gong
- Medical School of Nanjing University, Nanjing, 210093, China.,Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Qingqiang Gao
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhipeng Xu
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Yutian Dai
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|