1
|
Cuenca-Escalona J, Sweep MWD, Gorris MAJ, Duiveman-de Boer T, Cambi A, Flórez-Grau G, de Vries JM. Distinct roles of PGE2 signaling via EP2 and EP4 in circulating pDCs: Implications for immune modulation in the tumor microenvironment. J Leukoc Biol 2025; 117:qiaf034. [PMID: 40116121 DOI: 10.1093/jleuko/qiaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/30/2024] [Accepted: 03/19/2025] [Indexed: 03/23/2025] Open
Abstract
Dendritic cells (DCs) play a pivotal role in orchestrating adaptive immunity in response to environmental cues such as prostaglandin E2 (PGE2). Tumors are known to establish a microenvironment rich in PGE2. Tumor-derived PGE2 is regarded as mediator of regulatory features in DCs, facilitating immune evasion and tumor progression. In DCs, the effects of PGE2 are mediated through the E-prostanoid receptor type 2 (EP2) and EP4. While the immunomodulatory effects of PGE2 signaling via EP2/4 in monocyte-derived DCs (moDCs) is well established, its role in human blood plasmacytoid DCs (pDCs) is poorly characterized. Therefore, in this study we investigated the effect of EP2 and EP4 signaling on pDC function, as well as the relevance of modulating these receptors in pDCs exposed to tumor-derived PGE2. Our findings reveal that EP2 and EP4 exhibit distinct functions in pDCs. PGE2-EP4 signaling mediates the upregulation of maturation markers (e.g., CD83 and HLA-DR), enhances a CCR7-based migratory function, impairs the production of proinflammatory mediators (e.g., interferon α and CXCL9), and stimulates the expansion of CD8 T cells with a marked suppressive phenotype. In contrast, PGE2-EP2 signaling hinders the upregulation of maturation markers and induces the expansion of CD8 T cells with a suppressive character. Additionally, using different in vitro tumor models, we show that EP2/4 blockade modulates the phenotype of pDCs exposed to tumor-derived PGE2. Together, these results identify the distinctive role of EP2 and EP4 signaling in pDCs and illustrate the potential therapeutic benefit of targeting this signaling axis to mitigate tumor-induced pDCs dysfunction.
Collapse
Affiliation(s)
- Jorge Cuenca-Escalona
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28 6500HB, Nijmegen, the Netherlands
| | - Mark W D Sweep
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28 6500HB, Nijmegen, the Netherlands
- Department of Medical Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 10 6525GA, Nijmegen, the Netherlands
| | - Mark A J Gorris
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28 6500HB, Nijmegen, the Netherlands
| | - Tjitske Duiveman-de Boer
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28 6500HB, Nijmegen, the Netherlands
| | - Alessandra Cambi
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28 6500HB, Nijmegen, the Netherlands
| | - Georgina Flórez-Grau
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28 6500HB, Nijmegen, the Netherlands
| | - Jolanda M de Vries
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28 6500HB, Nijmegen, the Netherlands
| |
Collapse
|
2
|
Lyothier I, Diethelm S, Pothier J, Sifferlen T, Pozzi D, Richard-Bildstein S, Siendt H, Fretz H, Boss C, Wyder L, Jeay S, de Kanter R, Gnerre C, Lehembre F, Meyer DS, Corminboeuf O. Discovery of ACT-1002-4271 as a Dual Prostaglandin E2 Receptor 2/Prostaglandin E2 Receptor 4 Antagonist with In Vivo Anti-Tumor Efficacy. ChemMedChem 2025:e2500120. [PMID: 40192498 DOI: 10.1002/cmdc.202500120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/30/2025] [Indexed: 04/22/2025]
Abstract
Prostaglandin E2 (PGE2) signaling via receptors prostaglandin E2 receptor 2 (EP2) and prostaglandin E2 receptor 4 (EP4) is involved in various aspects of cancer and has been shown to promote tumor progression, metastasis, and immune evasion. Inhibition of PGE2 signaling by blockade of the EP2 and EP4 receptors has the potential to counteract the tumor-promoting effects of PGE2. Herein, the discovery of compound 30 (ACT-1002-4271), a dual EP2/EP4 antagonist with single-digit nanomolar potency on both receptors, is presented. The medicinal chemistry strategy is based on fine-tuning of the substitution pattern on an EP2 selective starting point to achieve dual EP2/EP4 antagonism. ACT-1002-4271 demonstrated significant antitumor efficacy in an experimental mammary tumour-6 mouse model when administered subcutaneously.
Collapse
Affiliation(s)
- Isabelle Lyothier
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Stefan Diethelm
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Julien Pothier
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Thierry Sifferlen
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Davide Pozzi
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Sylvia Richard-Bildstein
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Hervé Siendt
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Heinz Fretz
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Christoph Boss
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Lorenza Wyder
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Sébastien Jeay
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Ruben de Kanter
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Carmela Gnerre
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - François Lehembre
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Dominique S Meyer
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Olivier Corminboeuf
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| |
Collapse
|
3
|
Liu D, Gong J, Zhang J, Shu Y, Wu H, Liu T, Xu Y, Zhang L, Li M, Hu X, Shen L. A phase I dose-escalation and expansion study of RMX1002, a selective E-type prostanoid receptor 4 antagonist, as monotherapy and in combination with anti-PD-1 antibody in advanced solid tumors. Invest New Drugs 2025; 43:250-261. [PMID: 39976872 PMCID: PMC12048420 DOI: 10.1007/s10637-025-01512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/28/2025] [Indexed: 05/03/2025]
Abstract
RMX1002 (grapiprant) is a selective E-type prostanoid receptor 4 (EP4) antagonist and a promising candidate for cancer therapy, potentially enhancing anti-tumor immune responses. This study aimed to evaluate the safety, pharmacokinetics, pharmacodynamics, and efficacy of RMX1002 as monotherapy and in combination with anti-PD-1 antibody toripalimab for advanced solid tumors. This multicenter, phase I trial enrolled patients with histologically or cytologically confirmed advanced solid tumors. This study included three phases: Ia (dose-escalation of RMX1002 monotherapy from 200 to 650 mg BID), Ib (dose-escalation from 500 to 650 mg BID in combination with toripalimab), and Ic (dose-expansion of 500 mg BID with toripalimab). Safety, pharmacokinetics, pharmacodynamics, and efficacy were assessed. A total of 45 patients were enrolled (17 in phase Ia, 12 in phase Ib, and 16 in phase Ic). No dose-limiting toxicity was reported, and the MTD was not reached. Overall, 21 patients experienced RMX1002-related adverse events with CTCAE grade ≥ 3. Pharmacokinetics revealed rapid absorption of RMX1002 with the maximum concentration (Cmax) reached within 2 to 5 h, and dose-dependent increases in Cmax and area under the concentration-time curve. The increase in urinary metabolite of PGE2 suggested the inhibition of EP4 signaling pathway. The best response was stable disease, reported in 64.7%, 28.6%, and 18.8% of patients in phase Ia, Ib, and Ic, respectively. RMX1002 was well tolerated and showed a best response of stable disease. RMX1002 500 mg BID with toripalimab 240 mg every 3 weeks is the recommended dose for future trials.
Collapse
MESH Headings
- Humans
- Male
- Female
- Middle Aged
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Aged
- Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors
- Adult
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/therapeutic use
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Dose-Response Relationship, Drug
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Aged, 80 and over
- Maximum Tolerated Dose
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Early Drug Development Center, Peking University Cancer Hospital and Institute, Hai-Dian District, Beijing, 100142, China
| | - Jifang Gong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Early Drug Development Center, Peking University Cancer Hospital and Institute, Hai-Dian District, Beijing, 100142, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Hao Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Tianshu Liu
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Yanhua Xu
- Ningbo Newbay Pharmaceutical Technology Co., Ltd, Ningbo, 315000, China
| | - Lijia Zhang
- Ningbo Newbay Pharmaceutical Technology Co., Ltd, Ningbo, 315000, China
| | - Min Li
- Ningbo Newbay Pharmaceutical Technology Co., Ltd, Ningbo, 315000, China
| | - Xichun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- , 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| | - Lin Shen
- , 399 Lingling Road, Xuhui District, Shanghai, 200000, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
4
|
Tredicine M, Mucci M, Recchiuti A, Mattoscio D. Immunoregulatory mechanisms of the arachidonic acid pathway in cancer. FEBS Lett 2025; 599:927-951. [PMID: 39973474 PMCID: PMC11995684 DOI: 10.1002/1873-3468.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/10/2025] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
Abstract
The arachidonic acid (AA) pathway promotes tumor progression by modulating the complex interactions between cancer and immune cells within the microenvironment. In this Review, we summarize the knowledge acquired thus far concerning the intricate mechanisms through which eicosanoids either promote or suppress the antitumor immune response. In addition, we will discuss the impact of eicosanoids on immune cells and how they affect responsiveness to immunotherapy, as well as potential strategies for manipulating the AA pathway to improve anticancer immunotherapy. Understanding the molecular pathways and mechanisms underlying the role played by AA and its metabolites in tumor progression may contribute to the development of more effective anticancer immunotherapies.
Collapse
Affiliation(s)
- Maria Tredicine
- Department of Medical, Oral and Biotechnological SciencesUniversity of Chieti‐PescaraItaly
- Center for Advanced Studies and TechnologyUniversity of Chieti‐PescaraItaly
| | - Matteo Mucci
- Department of Medical, Oral and Biotechnological SciencesUniversity of Chieti‐PescaraItaly
- Center for Advanced Studies and TechnologyUniversity of Chieti‐PescaraItaly
| | - Antonio Recchiuti
- Department of Medical, Oral and Biotechnological SciencesUniversity of Chieti‐PescaraItaly
- Center for Advanced Studies and TechnologyUniversity of Chieti‐PescaraItaly
| | - Domenico Mattoscio
- Department of Medical, Oral and Biotechnological SciencesUniversity of Chieti‐PescaraItaly
- Center for Advanced Studies and TechnologyUniversity of Chieti‐PescaraItaly
| |
Collapse
|
5
|
Yan D, Hou Y, Lei X, Xiao H, Zeng Z, Xiong W, Fan C. The Impact of Polyunsaturated Fatty Acids in Cancer and Therapeutic Strategies. Curr Nutr Rep 2025; 14:46. [PMID: 40085324 DOI: 10.1007/s13668-025-00639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
PURPOSE OF REVIEW Cancer is a disease influenced by both genetic and environmental factors, with dietary lipids being a significant contributing factor. This review summarizes the role of polyunsaturated fatty acids (PUFAs) in the mechanism of tumor occurrence and development, and elucidate the role of PUFAs in tumor treatment. RECENT FINDINGS PUFAs exert their impact on cancer through altering lipid composition in cell membranes, interacting with cell membrane lipid receptors, directly modulating gene expression in the cell nucleus, and participating in the metabolism of lipid mediators. Most omega-3 PUFAs are believed to inhibit cell proliferation, promote cancer cell death, suppress cancer metastasis, alter energy metabolism, inhibit tumor microenvironment inflammation, and regulate immune responses involving macrophages, T cells, NK cells, and others. However, certain omega-6 PUFAs exhibit weaker anti-tumor effects and may even promote tumor development, such as by fostering inflammatory tumor microenvironment and enhancing tumor cell proliferation. PUFAs play important roles in hallmarks of cancer including tumor cell proliferation, cell death, migration and invasion, energy metabolism remodeling, epigenetics, and immunity. These findings provide insights into the mechanisms of cancer development and offers options for dietary management of cancer.
Collapse
Affiliation(s)
- Dong Yan
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Yingshan Hou
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Xinyi Lei
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Hao Xiao
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Zhaoyang Zeng
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
- Department of Histology and Embryology, School of Basic Medicine Sciences, Central South University, Changsha, 410013, Hunan Province, China.
| |
Collapse
|
6
|
Cutolo EA, Campitiello R, Di Dato V, Orefice I, Angstenberger M, Cutolo M. Marine Phytoplankton Bioactive Lipids and Their Perspectives in Clinical Inflammation. Mar Drugs 2025; 23:86. [PMID: 39997210 PMCID: PMC11857744 DOI: 10.3390/md23020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
Marine phytoplankton is an emerging source of immunomodulatory bioactive lipids (BLs). Under physiological growth conditions and upon stress challenges, several eukaryotic microalgal species accumulate lipid metabolites that resemble the precursors of animal mediators of inflammation: eicosanoids and prostaglandins. Therefore, marine phytoplankton could serve as a biotechnological platform to produce functional BLs with therapeutic applications in the management of chronic inflammatory diseases and other clinical conditions. However, to be commercially competitive, the lipidic precursor yields should be enhanced. Beside tailoring the cultivation of native producers, genetic engineering is a feasible strategy to accrue the production of lipid metabolites and to introduce heterologous biosynthetic pathways in microalgal hosts. Here, we present the state-of-the-art clinical research on immunomodulatory lipids from eukaryotic marine phytoplankton and discuss synthetic biology approaches to boost their light-driven biosynthesis.
Collapse
Affiliation(s)
- Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Rosanna Campitiello
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, 16132 Genova, Italy; (R.C.); (M.C.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Valeria Di Dato
- Stazione Zoologica Anton Dohrn Napoli, Ecosustainable Marine Biotechnology Department, Via Ammiraglio Ferdinando Acton 55, 80133 Napoli, Italy; (V.D.D.)
| | - Ida Orefice
- Stazione Zoologica Anton Dohrn Napoli, Ecosustainable Marine Biotechnology Department, Via Ammiraglio Ferdinando Acton 55, 80133 Napoli, Italy; (V.D.D.)
| | - Max Angstenberger
- Institute of Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany;
| | - Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, 16132 Genova, Italy; (R.C.); (M.C.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| |
Collapse
|
7
|
Cheng Z, Zhang Y, Du L, Wang W, Chai X, He M, Zhang H, Wu D, Lu J, Zhang S, Feng B, Yang L, Liu M, Lu W. Subtle Structural Modifications Spanning from EP4 Antagonism to EP2/EP4 Dual Antagonism: A Novel Class of Thienocyclic-Based Derivatives. J Med Chem 2025; 68:1587-1607. [PMID: 39757828 DOI: 10.1021/acs.jmedchem.4c02241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The development of dual prostaglandin E2 receptors 2/4 (EP2/EP4) antagonists represents an attractive strategy for cancer immunotherapy. Herein, a series of 4,7-dihydro-5H-thieno[2,3-c]pyran derivatives with potent EP2/EP4 dual antagonism were discovered by fine-tuned structural modifications. The biphenyl side chain was found to be the key pharmacophore for the transition from EP4 antagonism to EP2/EP4 dual antagonism. The introduction of large sterically hindered segments posed challenges on obtaining EP2 potency, while having minimal impact on EP4 potency. Molecular dynamics simulations verified that the EP2 pocket is relatively narrow compared to EP4, and the key residues surrounding the EP2 pocket impose spatial restrictions on the entry of antagonists. Representative compound 29 (CZY-1068) significantly reduced PGE2-induced expression of immunosuppression-related genes in macrophages. Notably, compound 29 elicited robust antitumor efficacy in the syngeneic MC38 tumor model. Taken together, this study provides a proof-of-concept for obtaining novel potent dual EP2/EP4 antagonists based on rational structural modifications.
Collapse
Affiliation(s)
- Zhiyuan Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yao Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Limin Du
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaolei Chai
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mengxian He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hankun Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Deyan Wu
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jian Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Sen Zhang
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Bo Feng
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Linlin Yang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- University Engineering Research Center of Oncolytic & Nanosystem Development, Nanning, Guangxi 530021, China
| |
Collapse
|
8
|
He S, Zheng L, Qi C. Myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment and their targeting in cancer therapy. Mol Cancer 2025; 24:5. [PMID: 39780248 PMCID: PMC11707952 DOI: 10.1186/s12943-024-02208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
The advent of immunotherapy represents a significant breakthrough in cancer treatment, with immune checkpoint inhibitors (ICIs) targeting PD-1 and CTLA-4 demonstrating remarkable therapeutic efficacy. However, patient responses to immunotherapy vary significantly, with immunosuppression within the tumor microenvironment (TME) being a critical factor influencing this variability. Immunosuppression plays a pivotal role in regulating cancer progression, metastasis, and reducing the success rates of immunotherapy. Myeloid-derived suppressor cells (MDSCs), due to their potent immunosuppressive capabilities, emerged as major negative regulators within the TME, facilitating tumor immune evasion by modulating various immune cells. In addition to their immunosuppressive functions, MDSCs also promote tumor growth and metastasis through non-immunological mechanisms, such as angiogenesis and the formation of pre-metastatic niches. Consequently, MDSCs in the TME are key regulators of cancer immune responses and potential therapeutic targets in cancer treatment. This review describes the origins and phenotypes of MDSCs, their biological roles in tumor progression, and regulatory mechanisms, with a focus on current therapeutic approaches targeting tumor-associated MDSCs. Furthermore, the synergistic effects of targeting MDSCs in combination with immunotherapy are explored, aiming to provide new insights and directions for cancer therapy.
Collapse
Affiliation(s)
- Shuyan He
- Department of Tumor Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, China
| | - Lu Zheng
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Chunjian Qi
- Laboratory of Oncology, Basic Research Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
9
|
Xu L, Zhu J, Shen X, Chai J, Shi L, Wu B, Li W, Ma D. 6-Hydroxy Picolinohydrazides Promoted Cu(I)-Catalyzed Hydroxylation Reaction in Water: Machine-Learning Accelerated Ligands Design and Reaction Optimization. Angew Chem Int Ed Engl 2024; 63:e202412552. [PMID: 39189301 DOI: 10.1002/anie.202412552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 08/28/2024]
Abstract
Hydroxylated (hetero)arenes are privileged motifs in natural products, materials, small-molecule pharmaceuticals and serve as versatile intermediates in synthetic organic chemistry. Herein, we report an efficient Cu(I)/6-hydroxy picolinohydrazide-catalyzed hydroxylation reaction of (hetero)aryl halides (Br, Cl) in water. By establishing machine learning (ML) models, the design of ligands and optimization of reaction conditions were effectively accelerated. The N-(1,3-dimethyl-9H- carbazol-9-yl)-6-hydroxypicolinamide (L32, 6-HPA-DMCA) demonstrated high efficiency for (hetero)aryl bromides, promoting hydroxylation reactions with a minimal catalyst loading of 0.01 mol % (100 ppm) at 80 °C to reach 10000 TON; for substrates containing sensitive functional groups, the catalyst loading needs to be increased to 3.0 mol % under near-room temperature conditions. N-(2,7-Di-tert-butyl-9H-carbazol-9-yl)-6-hydroxypicolinamide (L42, 6-HPA-DTBCA) displayed superior reaction activity for chloride substrates, enabling hydroxylation reactions at 100 °C with 2-3 mol % catalyst loading. These represent the state of art for both lowest catalyst loading and temperature in the copper-catalyzed hydroxylation reactions. Furthermore, this method features a sustainable and environmentally friendly solvent system, accommodates a wide range of substrates, and shows potential for developing robust and scalable synthesis processes for key pharmaceutical intermediates.
Collapse
Affiliation(s)
- Lanting Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Jiazhou Zhu
- Suzhou Novartis Technical Development Co., Ltd., #18-1, Tonglian Road, Bixi Subdistrict, Changshu, Jiangsu, 215537, China
| | - Xiaodong Shen
- Suzhou Novartis Technical Development Co., Ltd., #18-1, Tonglian Road, Bixi Subdistrict, Changshu, Jiangsu, 215537, China
| | - Jiashuang Chai
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuang Lu, Shanghai, 200062, China
| | - Lei Shi
- Suzhou Novartis Technical Development Co., Ltd., #18-1, Tonglian Road, Bixi Subdistrict, Changshu, Jiangsu, 215537, China
| | - Bin Wu
- Suzhou Novartis Technical Development Co., Ltd., #18-1, Tonglian Road, Bixi Subdistrict, Changshu, Jiangsu, 215537, China
| | - Wei Li
- Suzhou Novartis Technical Development Co., Ltd., #18-1, Tonglian Road, Bixi Subdistrict, Changshu, Jiangsu, 215537, China
| | - Dawei Ma
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
10
|
Ielpo S, Barberini F, Dabbagh Moghaddam F, Pesce S, Cencioni C, Spallotta F, De Ninno A, Businaro L, Marcenaro E, Bei R, Cifaldi L, Barillari G, Melaiu O. Crosstalk and communication of cancer-associated fibroblasts with natural killer and dendritic cells: New frontiers and unveiled opportunities for cancer immunotherapy. Cancer Treat Rev 2024; 131:102843. [PMID: 39442289 DOI: 10.1016/j.ctrv.2024.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Natural killer (NK) cells and dendritic cells (DCs) are critical mediators of anti-cancer immune responses. In addition to their individual roles, NK cells and DCs are involved in intercellular crosstalk which is essential for the initiation and coordination of adaptive immunity against cancer. However, NK cell and DC activity is often compromised in the tumor microenvironment (TME). Recently, much attention has been paid to one of the major components of the TME, the cancer-associated fibroblasts (CAFs), which not only contribute to extracellular matrix (ECM) deposition and tumor progression but also suppress immune cell functions. It is now well established that CAFs support T cell exclusion from tumor nests and regulate their cytotoxic activity. In contrast, little is currently known about their interaction with NK cells, and DCs. In this review, we describe the interaction of CAFs with NK cells and DCs, by secreting and expressing various mediators in the TME of adult solid tumors. We also provide a detailed overview of ongoing clinical studies evaluating the targeting of stromal factors alone or in combination with immunotherapy based on immune checkpoint inhibitors. Finally, we discuss currently available strategies for the selective depletion of detrimental CAFs and for a better understanding of their interaction with NK cells and DCs.
Collapse
Affiliation(s)
- Simone Ielpo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Barberini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Silvia Pesce
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Chiara Cencioni
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI-CNR), Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University, 00185, Rome, Italy; Pasteur Institute Italy-Fondazione Cenci Bolognetti, Italy
| | - Adele De Ninno
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Luca Businaro
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
11
|
Yang H, Kim C, Zou W. Metabolism and macrophages in the tumor microenvironment. Curr Opin Immunol 2024; 91:102491. [PMID: 39368171 DOI: 10.1016/j.coi.2024.102491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024]
Abstract
Tumor-associated macrophages (TAMs) constitute the primary subset of immune cells within the tumor microenvironment (TME). Exhibiting both phenotypic and functional heterogeneity, TAMs play distinct roles in tumor initiation, progression, and responses to therapy in patients with cancer. In response to various immune and metabolic cues within the TME, TAMs dynamically alter their metabolic profiles to adapt. Changes in glucose, amino acid, and lipid metabolism in TAMs, as well as their interaction with oncometabolites, not only sustain their energy demands but also influence their impact on tumor immune responses. Understanding the molecular mechanisms underlying the metabolic reprogramming of TAMs and their orchestration of metabolic processes can offer insights for the development of novel cancer immunotherapies targeting TAMs. Here, we discuss how metabolism reprograms macrophages in the TME and review clinical trials aiming to normalize metabolic alterations in TAMs and alleviate TAM-mediated immune suppression and protumor activity.
Collapse
Affiliation(s)
- Hannah Yang
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Medical Oncology, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Chan Kim
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Medical Oncology, CHA University School of Medicine, Seongnam, Republic of Korea.
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Graduate Programs in Cancer Biology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Cuenca-Escalona J, Bödder J, Subtil B, Sánchez-Sánchez M, Vidal-Manrique M, Sweep MWD, Fauerbach JA, Cambi A, Flórez-Grau G, de Vries JM. EP2/EP4 targeting prevents tumor-derived PGE2-mediated immunosuppression in cDC2s. J Leukoc Biol 2024; 116:1554-1567. [PMID: 39041661 DOI: 10.1093/jleuko/qiae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/11/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024] Open
Abstract
Tumor-derived prostaglandin E2 (PGE2) impairs antitumor immunity by priming suppressive functions on various immune cell types, including dendritic cells (DCs). In this way, tumors mediate DC dysfunction and hamper their antitumoral activity. PGE2 is known to modulate DC function via signaling through the E-type prostanoid receptor 2 (EP2) and EP4. Preclinical studies have demonstrated the therapeutic value of targeting EP2/4 receptor signaling in DCs. Ongoing phase 1 clinical trials with EP antagonists have shown immunomodulation in cancer patients. However, the systemic drug administration leads to off-target events and subsequent side effects. To limit the off-target effects of EP targeting, EP2 and EP4 antagonists were encapsulated in polymeric nanoparticles (NPs). In this study, we evaluated the efficacy of EP2/4-specific antagonists encapsulated in NPs to protect conventional type 2 DCs (cDC2s) from suppressive effects of tumor-derived PGE2 in different tumor models. We show that tumor-derived PGE2 signals via EP2/4 to mediate the acquisition of a suppressive phenotype of cDC2s. EP2/4 antagonists encapsulated in NPs impaired the conversion of cDC2s toward a suppressive state and inhibited the occurrence of suppressive features such as interleukin-10 production or the ability to expand regulatory T cells. Importantly, the NPs abolished the transition toward this suppressive state in different tumor models: melanoma-conditioned media, ascites fluid derived from ovarian cancer patients (2-dimensional), and upon coculture with colorectal cancer patient-derived organoids (3-dimensional). We propose that targeting the PGE2-EP2/4 axis using NPs can achieve immunomodulation in the immune system of cancer patients, alleviate tumor-derived suppression, and thus facilitate the development of potent antitumor immunity in cancer patients.
Collapse
MESH Headings
- Receptors, Prostaglandin E, EP2 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Dinoprostone/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/drug effects
- Animals
- Mice
- Cell Line, Tumor
- Female
- Humans
- Mice, Inbred C57BL
- Immune Tolerance/drug effects
- Nanoparticles/chemistry
Collapse
Affiliation(s)
- Jorge Cuenca-Escalona
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Johanna Bödder
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Beatriz Subtil
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Marta Sánchez-Sánchez
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Marcos Vidal-Manrique
- Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Mark W D Sweep
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
- Department of Medical Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Jonathan A Fauerbach
- R&D Reagents, Chemical Biology Department; Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Alessandra Cambi
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Georgina Flórez-Grau
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Jolanda M de Vries
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| |
Collapse
|
13
|
Punyawatthananukool S, Matsuura R, Wongchang T, Katsurada N, Tsuruyama T, Tajima M, Enomoto Y, Kitamura T, Kawashima M, Toi M, Yamanoi K, Hamanishi J, Hisamori S, Obama K, Charoensawan V, Thumkeo D, Narumiya S. Prostaglandin E 2-EP2/EP4 signaling induces immunosuppression in human cancer by impairing bioenergetics and ribosome biogenesis in immune cells. Nat Commun 2024; 15:9464. [PMID: 39487111 PMCID: PMC11530437 DOI: 10.1038/s41467-024-53706-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
While prostaglandin E2 (PGE2) is produced in human tumor microenvironment (TME), its role therein remains poorly understood. Here, we examine this issue by comparative single-cell RNA sequencing of immune cells infiltrating human cancers and syngeneic tumors in female mice. PGE receptors EP4 and EP2 are expressed in lymphocytes and myeloid cells, and their expression is associated with the downregulation of oxidative phosphorylation (OXPHOS) and MYC targets, glycolysis and ribosomal proteins (RPs). Mechanistically, CD8+ T cells express EP4 and EP2 upon TCR activation, and PGE2 blocks IL-2-STAT5 signaling by downregulating Il2ra, which downregulates c-Myc and PGC-1 to decrease OXPHOS, glycolysis, and RPs, impairing migration, expansion, survival, and antitumor activity. Similarly, EP4 and EP2 are induced upon macrophage activation, and PGE2 downregulates c-Myc and OXPHOS in M1-like macrophages. These results suggest that PGE2-EP4/EP2 signaling impairs both adaptive and innate immunity in TME by hampering bioenergetics and ribosome biogenesis of tumor-infiltrating immune cells.
Collapse
MESH Headings
- Dinoprostone/metabolism
- Humans
- Animals
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Signal Transduction
- Female
- Tumor Microenvironment/immunology
- Mice
- Energy Metabolism
- Ribosomes/metabolism
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/genetics
- Neoplasms/pathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Oxidative Phosphorylation
- Glycolysis
- Macrophages/metabolism
- Macrophages/immunology
- Mice, Inbred C57BL
- Cell Line, Tumor
- Immune Tolerance
Collapse
Affiliation(s)
| | - Ryuma Matsuura
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Thamrong Wongchang
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
- Division of Pharmacology, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Nao Katsurada
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Tatsuaki Tsuruyama
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
- Department of Medical Technology and Sciences, Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto, 607-8175, Japan
| | - Masaki Tajima
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Yutaka Enomoto
- Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Toshio Kitamura
- Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, 650-0047, Japan
| | - Masahiro Kawashima
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Shigeo Hisamori
- Department of Gastrointestinal Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Kazutaka Obama
- Department of Gastrointestinal Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Varodom Charoensawan
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, 73170, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Dean Thumkeo
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.
- AMED-FORCE, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
- Foundation for Biomedical Research and Innovation at Kobe, Kobe, 650-0047, Japan.
| |
Collapse
|
14
|
Qiu GH, Yu B, Ma M. G protein-coupled receptor-mediated signaling of immunomodulation in tumor progression. FASEB J 2024; 38:e23829. [PMID: 39017658 DOI: 10.1096/fj.202400458r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
G protein-coupled receptors (GPCRs) are essential contributors to tumor growth and metastasis due to their roles in immune cell regulation. Therefore, GPCRs are potential targets for cancer immunotherapy. Here, we discuss the current understanding of the roles of GPCRs and their signaling pathways in tumor progression from an immunocellular perspective. Additionally, we focus on the roles of GPCRs in regulating immune checkpoint proteins involved in immune evasion. Finally, we review the progress of clinical trials of GPCR-targeted drugs for cancer treatment, which may be combined with immunotherapy to improve treatment efficacy. This expanded understanding of the role of GPCRs may shed light on the mechanisms underlying tumor progression and provide a novel perspective on cancer immunotherapy.
Collapse
Affiliation(s)
- Guang-Hong Qiu
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - Bin Yu
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - Mei Ma
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| |
Collapse
|
15
|
Guo M, Hu P, Xie J, Tang K, Hu S, Sun J, He Y, Li J, Lu W, Liu H, Liu M, Yi Z, Peng S. Remodeling the immune microenvironment for gastric cancer therapy through antagonism of prostaglandin E2 receptor 4. Genes Dis 2024; 11:101164. [PMID: 38560505 PMCID: PMC10980949 DOI: 10.1016/j.gendis.2023.101164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 04/04/2024] Open
Abstract
Gastric cancer is highly prevalent among digestive tract tumors. Due to the intricate nature of the gastric cancer immune microenvironment, there is currently no effective treatment available for advanced gastric cancer. However, there is promising potential for immunotherapy targeting the prostaglandin E2 receptor subtype 4 (EP4) in gastric cancer. In our previous study, we identified a novel small molecule EP4 receptor antagonist called YY001. Treatment with YY001 alone demonstrated a significant reduction in gastric cancer growth and inhibited tumor metastasis to the lungs in a mouse model. Furthermore, administration of YY001 stimulated a robust immune response within the tumor microenvironment, characterized by increased infiltration of antigen-presenting cells, T cells, and M1 macrophages. Additionally, our research revealed that YY001 exhibited remarkable synergistic effects when combined with the PD-1 antibody and the clinically targeted drug apatinib, rather than fluorouracil. These findings suggest that YY001 holds great promise as a potential therapeutic strategy for gastric cancer, whether used as a standalone treatment or in combination with other drugs.
Collapse
Affiliation(s)
- Mengmeng Guo
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Pan Hu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiayi Xie
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kefu Tang
- Prenatal Diagnosis Center, Department of Clinical Laboratory, Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
| | - Shixiu Hu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jialiang Sun
- Fengxian Hospital Affiliated to Southern Medical University, Shanghai 201400, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jing Li
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Huirong Liu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shihong Peng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Yuyao Biotech Co., Ltd., Shanghai 200241, China
| |
Collapse
|
16
|
Santiso A, Heinemann A, Kargl J. Prostaglandin E2 in the Tumor Microenvironment, a Convoluted Affair Mediated by EP Receptors 2 and 4. Pharmacol Rev 2024; 76:388-413. [PMID: 38697857 DOI: 10.1124/pharmrev.123.000901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 05/05/2024] Open
Abstract
The involvement of the prostaglandin E2 (PGE2) system in cancer progression has long been recognized. PGE2 functions as an autocrine and paracrine signaling molecule with pleiotropic effects in the human body. High levels of intratumoral PGE2 and overexpression of the key metabolic enzymes of PGE2 have been observed and suggested to contribute to tumor progression. This has been claimed for different types of solid tumors, including, but not limited to, lung, breast, and colon cancer. PGE2 has direct effects on tumor cells and angiogenesis that are known to promote tumor development. However, one of the main mechanisms behind PGE2 driving cancerogenesis is currently thought to be anchored in suppressed antitumor immunity, thus providing possible therapeutic targets to be used in cancer immunotherapies. EP2 and EP4, two receptors for PGE2, are emerging as being the most relevant for this purpose. This review aims to summarize the known roles of PGE2 in the immune system and its functions within the tumor microenvironment. SIGNIFICANCE STATEMENT: Prostaglandin E2 (PGE2) has long been known to be a signaling molecule in cancer. Its presence in tumors has been repeatedly associated with disease progression. Elucidation of its effects on immunological components of the tumor microenvironment has highlighted the potential of PGE2 receptor antagonists in cancer treatment, particularly in combination with immune checkpoint inhibitor therapeutics. Adjuvant treatment could increase the response rates and the efficacy of immune-based therapies.
Collapse
Affiliation(s)
- Ana Santiso
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
17
|
Cuenca-Escalona J, Flórez-Grau G, van den Dries K, Cambi A, de Vries IJM. PGE2-EP4 signaling steers cDC2 maturation toward the induction of suppressive T-cell responses. Eur J Immunol 2024; 54:e2350770. [PMID: 38088451 DOI: 10.1002/eji.202350770] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Dendritic cells (DCs) shape adaptive immunity in response to environmental cues such as cytokines or lipid mediators, including prostaglandin E2 (PGE2). In cancer, tumors are known to establish an enriched PGE2 microenvironment. Tumor-derived PGE2 primes regulatory features across immune cells, including DCs, facilitating tumor progression. PGE2 shapes DC function by providing signaling via its two so-called E-prostanoid receptors (EPs) EP2 and EP4. Although studies with monocyte-derived DCs have shown the importance of PGE2 signaling, the role of PGE2-EP2/EP4 on conventional DCs type 2 (cDC2s), is still poorly defined. In this study, we investigated the function of EP2 and EP4 using specific EP antagonists on human cDC2s. Our results show that EP2 and EP4 exhibit different functions in cDC2s, with EP4 modulating the upregulation of activation markers (CD80, CD86, CD83, MHC class II) and the production of IL-10 and IL-23. Furthermore, PGE2-EP4 boosts CCR type 7-based migration as well as a higher T-cell expansion capacity, characterized by the enrichment of suppressive rather than pro-inflammatory T-cell populations. Our findings are relevant to further understanding the role of EP receptors in cDC2s, underscoring the benefit of targeting the PGE2-EP2/4 axis for therapeutic purposes in diseases such as cancer.
Collapse
Affiliation(s)
- Jorge Cuenca-Escalona
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, Nijmegen, 6525GA, the Netherlands
| | - Georgina Flórez-Grau
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, Nijmegen, 6525GA, the Netherlands
| | - Koen van den Dries
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, Nijmegen, 6525GA, the Netherlands
| | - Alessandra Cambi
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, Nijmegen, 6525GA, the Netherlands
| | - I Jolanda M de Vries
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, Nijmegen, 6525GA, the Netherlands
| |
Collapse
|
18
|
Cuenca-Escalona J, Subtil B, Garcia-Perez A, Cambi A, de Vries IJM, Flórez-Grau G. EP2 and EP4 blockade prevents tumor-induced suppressive features in human monocytic myeloid-derived suppressor cells. Front Immunol 2024; 15:1355769. [PMID: 38343540 PMCID: PMC10853404 DOI: 10.3389/fimmu.2024.1355769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Tumors educate their environment to prime the occurrence of suppressive cell subsets, which enable tumor evasion and favors tumor progression. Among these, there are the myeloid-derived suppressor cells (MDSCs), their presence being associated with the poor clinical outcome of cancer patients. Tumor-derived prostaglandin E2 (PGE2) is known to mediate MDSC differentiation and the acquisition of pro-tumor features. In myeloid cells, PGE2 signaling is mediated via E-prostanoid receptor type 2 (EP2) and EP4. Although the suppressive role of PGE2 is well established in MDSCs, the role of EP2/4 on human MDSCs or whether EP2/4 modulation can prevent MDSCs suppressive features upon exposure to tumor-derived PGE2 is poorly defined. In this study, using an in vitro model of human monocytic-MDSCs (M-MDSCs) we demonstrate that EP2 and EP4 signaling contribute to the induction of a pro-tumor phenotype and function on M-MDSCs. PGE2 signaling via EP2 and EP4 boosted M-MDSC ability to suppress T and NK cell responses. Combined EP2/4 blockade on M-MDSCs during PGE2 exposure prevented the occurrence of these suppressive features. Additionally, EP2/4 blockade attenuated the suppressive phenotype of M-MDSCs in a 3D coculture with colorectal cancer patient-derived organoids. Together, these results identify the role of tumor-derived PGE2 signaling via EP2 and EP4 in this human M-MDSC model, supporting the therapeutic value of targeting PGE2-EP2/4 axis in M-MDSCs to alleviate immunosuppression and facilitate the development of anti-tumor immunity.
Collapse
|
19
|
Corminboeuf O, Diethelm S, Zumbrunn C, Lyothier I, Niggli N, Gnerre C, Jeay S, Lehembre F, Boss C. Design of Dual EP2/EP4 Antagonists through Scaffold Merging of Selective Inhibitors. ChemMedChem 2024; 19:e202300606. [PMID: 37983645 DOI: 10.1002/cmdc.202300606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Prostaglandin E2 (PGE2) plays a key role in various stages of cancer. PGE2 signals through the EP2 and the EP4 receptors, promoting tumorigenesis, metastasis, and/or immune suppression. Dual inhibition of both the EP2 and the EP4 receptors has the potential to counteract the effect of PGE2 and to result in antitumor efficacy. We herein disclose for the first time the structure of dual EP2/EP4 antagonists. By merging the scaffolds of EP2 selective and EP4 selective inhibitors, we generated a new chemical series of compounds blocking both receptors with comparable potency. In vitro and in vivo profiling suggests that the newly identified compounds are promising lead structures for further development into dual EP2/EP4 antagonists for use in cancer therapy.
Collapse
Affiliation(s)
- Olivier Corminboeuf
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Stefan Diethelm
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Cornelia Zumbrunn
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Isabelle Lyothier
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Nadja Niggli
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Carmela Gnerre
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Sébastien Jeay
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - François Lehembre
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Christoph Boss
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| |
Collapse
|
20
|
Gahbauer S, DeLeon C, Braz JM, Craik V, Kang HJ, Wan X, Huang XP, Billesbølle CB, Liu Y, Che T, Deshpande I, Jewell M, Fink EA, Kondratov IS, Moroz YS, Irwin JJ, Basbaum AI, Roth BL, Shoichet BK. Docking for EP4R antagonists active against inflammatory pain. Nat Commun 2023; 14:8067. [PMID: 38057319 PMCID: PMC10700596 DOI: 10.1038/s41467-023-43506-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023] Open
Abstract
The lipid prostaglandin E2 (PGE2) mediates inflammatory pain by activating G protein-coupled receptors, including the prostaglandin E2 receptor 4 (EP4R). Nonsteroidal anti-inflammatory drugs (NSAIDs) reduce nociception by inhibiting prostaglandin synthesis, however, the disruption of upstream prostanoid biosynthesis can lead to pleiotropic effects including gastrointestinal bleeding and cardiac complications. In contrast, by acting downstream, EP4R antagonists may act specifically as anti-inflammatory agents and, to date, no selective EP4R antagonists have been approved for human use. In this work, seeking to diversify EP4R antagonist scaffolds, we computationally dock over 400 million compounds against an EP4R crystal structure and experimentally validate 71 highly ranked, de novo synthesized molecules. Further, we show how structure-based optimization of initial docking hits identifies a potent and selective antagonist with 16 nanomolar potency. Finally, we demonstrate favorable pharmacokinetics for the discovered compound as well as anti-allodynic and anti-inflammatory activity in several preclinical pain models in mice.
Collapse
Affiliation(s)
- Stefan Gahbauer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Chelsea DeLeon
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA
| | - Joao M Braz
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Veronica Craik
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Hye Jin Kang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Xiaobo Wan
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA
| | - Christian B Billesbølle
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Yongfeng Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA
| | - Tao Che
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA
- Center of Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ishan Deshpande
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Madison Jewell
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Elissa A Fink
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Ivan S Kondratov
- Enamine Ltd., Kyiv, Ukraine
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yurii S Moroz
- Chemspace LLC, Kyiv, Ukraine
- National Taras Shevchenko University of Kyiv, Kyiv, Ukraine
| | - John J Irwin
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Allan I Basbaum
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94158, USA.
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA.
- National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA.
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill Eshelman School of Pharmacy, Chapel Hill, NC, 27514, USA.
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
21
|
Grădinaru TC, Gilca M, Vlad A, Dragoș D. Relevance of Phytochemical Taste for Anti-Cancer Activity: A Statistical Inquiry. Int J Mol Sci 2023; 24:16227. [PMID: 38003415 PMCID: PMC10671173 DOI: 10.3390/ijms242216227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Targeting inflammation and the pathways linking inflammation with cancer is an innovative therapeutic strategy. Tastants are potential candidates for this approach, since taste receptors display various biological functions, including anti-inflammatory activity (AIA). The present study aims to explore the power different tastes have to predict a phytochemical's anti-cancer properties. It also investigates whether anti-inflammatory phytocompounds also have anti-cancer effects, and whether there are tastes that can better predict a phytochemical's bivalent biological activity. Data from the PlantMolecularTasteDB, containing a total of 1527 phytochemicals, were used. Out of these, only 624 phytocompounds met the inclusion criterion of having 40 hits in a PubMed search, using the name of the phytochemical as the keyword. Among them, 461 phytochemicals were found to possess anti-cancer activity (ACA). The AIA and ACA of phytochemicals were strongly correlated, irrespective of taste/orosensation or chemical class. Bitter taste was positively correlated with ACA, while sweet taste was negatively correlated. Among chemical classes, only flavonoids (which are most frequently bitter) had a positive association with both AIA and ACA, a finding confirming that taste has predictive primacy over chemical class. Therefore, bitter taste receptor agonists and sweet taste receptor antagonists may have a beneficial effect in slowing down the progression of inflammation to cancer.
Collapse
Affiliation(s)
- Teodora-Cristiana Grădinaru
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Marilena Gilca
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Adelina Vlad
- Department of Functional Sciences I/Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Dorin Dragoș
- Department of Medical Semiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- 1st Internal Medicine Clinic, University Emergency Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 050098 Bucharest, Romania
| |
Collapse
|
22
|
Schlicher L, Green LG, Romagnani A, Renner F. Small molecule inhibitors for cancer immunotherapy and associated biomarkers - the current status. Front Immunol 2023; 14:1297175. [PMID: 38022587 PMCID: PMC10644399 DOI: 10.3389/fimmu.2023.1297175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Following the success of cancer immunotherapy using large molecules against immune checkpoint inhibitors, the concept of using small molecules to interfere with intracellular negative regulators of anti-tumor immune responses has emerged in recent years. The main targets for small molecule drugs currently include enzymes of negative feedback loops in signaling pathways of immune cells and proteins that promote immunosuppressive signals within the tumor microenvironment. In the adaptive immune system, negative regulators of T cell receptor signaling (MAP4K1, DGKα/ζ, CBL-B, PTPN2, PTPN22, SHP1), co-receptor signaling (CBL-B) and cytokine signaling (PTPN2) have been preclinically validated as promising targets and initial clinical trials with small molecule inhibitors are underway. To enhance innate anti-tumor immune responses, inhibitory immunomodulation of cGAS/STING has been in the focus, and inhibitors of ENPP1 and TREX1 have reached the clinic. In addition, immunosuppressive signals via adenosine can be counteracted by CD39 and CD73 inhibition, while suppression via intratumoral immunosuppressive prostaglandin E can be targeted by EP2/EP4 antagonists. Here, we present the status of the most promising small molecule drug candidates for cancer immunotherapy, all residing relatively early in development, and the potential of relevant biomarkers.
Collapse
Affiliation(s)
- Lisa Schlicher
- Cancer Cell Targeted Therapy, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Luke G. Green
- Therapeutic Modalities, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Andrea Romagnani
- Cancer Cell Targeted Therapy, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Florian Renner
- Cancer Cell Targeted Therapy, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| |
Collapse
|
23
|
Wyrwicz L, Saunders M, Hall M, Ng J, Hong T, Xu S, Lucas J, Lu X, Lautermilch N, Formenti S, Glynne-Jones R. AN0025, a novel antagonist of PGE2-receptor E-type 4 (EP4), in combination with total neoadjuvant treatment of advanced rectal cancer. Radiother Oncol 2023; 185:109669. [PMID: 37054987 DOI: 10.1016/j.radonc.2023.109669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
PURPOSE To assess the safety and efficacy of AN0025 in combination with preoperative radiotherapy and chemotherapy in either short course (SCRT) or long course radiotherapy (LCRT) settings for those with locally advanced rectal cancer. PATIENTS AND METHODS Twenty-eight subjects with locally advanced rectal cancer participated in this multicenter, open-label, Phase Ib trial. Enrolled subjects received either 250 mg or 500 mg of AN0025 once daily for 10 weeks with either LCRT or SCRT with chemotherapy (7 subjects/group). Participants were assessed for safety/efficacy starting from the first dose of study drug administration and were followed for 2 years. RESULTS No treatment-emergent adverse or serious adverse events meeting dose-limiting criteria were observed, with only 3 subjects discontinuing AN0025 treatment due to adverse events. Twenty-five of 28 subjects completed 10 weeks of AN0025 and adjuvant therapy and were evaluated for efficacy. Overall, 36.0% of subjects (9/25 subjects) achieved a pathological complete response or a complete clinical response, including 26.7% of subjects (4/15 subjects who underwent surgery) who achieved a pathological complete response. A total of 65.4% of subjects had magnetic resonance imaging-confirmed down-staging ≤ stage 3 following completion of treatment. With a median follow-up of 30 months. The 12-month disease-free survival and overall survival were 77.5% (95% confidence interval [CI]: 56.6, 89.2) and 96.3% (95% CI: 76.5, 99.5), respectively. CONCLUSIONS Treatment with AN0025 administered for 10 weeks along with preoperative SCRT or LCRT did not appear to worsen the toxicity in subjects with locally advanced rectal cancer, was well-tolerated and showed promise in inducing both a pathological and complete clinical response. These findings suggest its activity deserves further investigation in larger clinical trials.
Collapse
Affiliation(s)
- Lucjan Wyrwicz
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.
| | - Mark Saunders
- Clinical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Marcia Hall
- Medical Oncology, Mount Vernon Cancer Centre, Northwood, United Kingdom
| | - John Ng
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Theodore Hong
- Massachusetts General Hospital, Harvard Medical School, Hatfield, United Kingdom
| | - Sherry Xu
- Adlai Nortye USA, North Brunswick, NJ, United States
| | - Justin Lucas
- Adlai Nortye USA, North Brunswick, NJ, United States
| | - Xuyang Lu
- Adlai Nortye USA, North Brunswick, NJ, United States
| | | | - Silvia Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | | |
Collapse
|
24
|
Akbari B, Soltantoyeh T, Shahosseini Z, Jadidi-Niaragh F, Hadjati J, Brown CE, Mirzaei HR. PGE2-EP2/EP4 signaling elicits mesoCAR T cell immunosuppression in pancreatic cancer. Front Immunol 2023; 14:1209572. [PMID: 37457723 PMCID: PMC10348647 DOI: 10.3389/fimmu.2023.1209572] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction For many years, surgery, adjuvant and combination chemotherapy have been the cornerstone of pancreatic cancer treatment. Although these approaches have improved patient survival, relapse remains a common occurrence, necessitating the exploration of novel therapeutic strategies. CAR T cell therapies are now showing tremendous success in hematological cancers. However, the clinical efficacy of CAR T cells in solid tumors remained low, notably due to presence of an immunosuppressive tumor microenvironment (TME). Prostaglandin E2, a bioactive lipid metabolite found within the TME, plays a significant role in promoting cancer progression by increasing tumor proliferation, improving angiogenesis, and impairing immune cell's function. Despite the well-established impact of PGE2 signaling on cancer, its specific effects on CAR T cell therapy remain under investigation. Methods To address this gap in knowledge the role of PGE2-related genes in cancer tissue and T cells of pancreatic cancer patients were evaluated in-silico. Through our in vitro study, we manufactured fully human functional mesoCAR T cells specific for pancreatic cancer and investigated the influence of PGE2-EP2/EP4 signaling on proliferation, cytotoxicity, and cytokine production of mesoCAR T cells against pancreatic cancer cells. Results In-silico investigations uncovered a significant negative correlation between PGE2 expression and gene signature of memory T cells. Furthermore, in vitro experiments demonstrated that the activation of PGE2 signaling through EP2 and EP4 receptors suppressed the proliferation and major antitumor functions of mesoCAR T cells. Interestingly, the dual blockade of EP2 and EP4 receptors effectively reversed PGE2-mediated suppression of mesoCAR T cells, while individual receptor antagonists failed to mitigate the PGE2-induced suppression. Discussion In summary, our findings suggest that mitigating PGE2-EP2/EP4 signaling may be a viable strategy for enhancing CAR T cell activity within the challenging TME, thereby improving the efficacy of CAR T cell therapy in clinical settings.
Collapse
Affiliation(s)
- Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Shahosseini
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Virology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Christine E. Brown
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, United States
- Department of Immuno-Oncology, City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
25
|
Han Z, Li Y, Wang X, Li C, Li C, Lin Q, Xu E, Tang J, Lai M, Ma Y, Gu Y. In Vivo Staging the Progression of Colitis and Associated Cancer by Concurrent Microimaging of Key Biomarkers. Anal Chem 2023. [PMID: 37366081 DOI: 10.1021/acs.analchem.3c00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Currently colorectal cancer (CRC) staging (colitis, adenoma, and carcinoma) mainly relies on ex vivo pathologic analysis requiring an invasive surgical process with limited sample collection and increased metastatic risk. Thus, in vivo noninvasive pathological diagnosis is extremely demanded. By verifying the samples of clinical patients and CRC mouse models, it was found that vascular endothelial growth factor receptor 2 (VEGFR2) was barely expressed in the colitis stage and only appeared in adenoma and carcinoma stages with obvious elevation, while prostaglandin E receptor 4 (PTGER4) could be observed from colitis to adenoma and carcinoma stages with a gradient increase of expression. VEGFR2 and PTGER4 were further chosen as key biomarkers for molecular pathological diagnosis in vivo and corresponding molecular probes were constructed. The feasibility of in vivo noninvasive CRC staging by concurrent microimaging of dual biomarkers using confocal laser endoscopy (CLE) was verified in CRC mouse models and further confirmed by ex vivo pathological analysis. In vivo CLE imaging exhibited the correlation of severe colonic crypt structural alteration with a higher biomarker expression in adenoma and carcinoma stages. This strategy shows promise in benefiting patients undergoing CRC progression with in-time, noninvasive, and precise pathological staging, thus providing valuable guidance for selecting therapeutic strategies.
Collapse
Affiliation(s)
- Zhihao Han
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Li
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xin Wang
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Chang Li
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Changsheng Li
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Qiao Lin
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Enping Xu
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinlong Tang
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310014, China
| | - Maode Lai
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Ma
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
26
|
Cheng Z, Wang Y, Zhang Y, Zhang C, Wang M, Wang W, He J, Wang Y, Zhang H, Zhang Q, Ding C, Wu D, Yang L, Liu M, Lu W. Discovery of 2 H-Indazole-3-carboxamide Derivatives as Novel Potent Prostanoid EP4 Receptor Antagonists for Colorectal Cancer Immunotherapy. J Med Chem 2023; 66:6218-6238. [PMID: 36880691 DOI: 10.1021/acs.jmedchem.2c02058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Nowadays, small-molecule drugs have become an indispensable part of tumor immunotherapy. Accumulating evidence has indicated that specifically blocking PGE2/EP4 signaling to induce robust antitumor immune response represents an attractive immunotherapy strategy. Herein, a 2H-indazole-3-carboxamide containing compound 1 was identified as a EP4 antagonist hit by screening our in-house small-molecule library. Systematic structure-activity relationship exploration leads to the discovery of compound 14, which displayed single-nanomolar EP4 antagonistic activity in a panel of cell functional assays, high subtype selectivity, and favorable drug-like profiles. Moreover, compound 14 profoundly inhibited the up-regulation of multiple immunosuppression-related genes in macrophages. Oral administration of compound 14, either as monotherapy or in combination with an anti-PD-1 antibody, significantly impaired tumor growth via enhancing cytotoxic CD8+ T cell-mediated antitumor immunity in a syngeneic colon cancer model. Thus, these results demonstrate the potential of compound 14 as a candidate for developing novel EP4 antagonists for tumor immunotherapy.
Collapse
Affiliation(s)
- Zhiyuan Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yijie Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yao Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chan Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Mengru Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Wei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jiacheng He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yang Wang
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Hankun Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chunyong Ding
- Targeted Drug Research Center of Digestive Tract Tumor, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Deyan Wu
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Linlin Yang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
27
|
Lipids as Targets for Renal Cell Carcinoma Therapy. Int J Mol Sci 2023; 24:ijms24043272. [PMID: 36834678 PMCID: PMC9963825 DOI: 10.3390/ijms24043272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Kidney cancer is among the top ten most common cancers to date. Within the kidney, renal cell carcinoma (RCC) is the most common solid lesion occurring. While various risk factors are suspected, including unhealthy lifestyle, age, and ethnicity, genetic mutations seem to be a key risk factor. In particular, mutations in the von Hippel-Lindau gene (Vhl) have attracted a lot of interest since this gene regulates the hypoxia inducible transcription factors HIF-1α and HIF-2α, which in turn drive the transcription of many genes that are important for renal cancer growth and progression, including genes involved in lipid metabolism and signaling. Recent data suggest that HIF-1/2 are themselves regulated by bioactive lipids which make the connection between lipids and renal cancer obvious. This review will summarize the effects and contributions of the different classes of bioactive lipids, including sphingolipids, glycosphingolipids, eicosanoids, free fatty acids, cannabinoids, and cholesterol to renal carcinoma progression. Novel pharmacological strategies interfering with lipid signaling to treat renal cancer will be highlighted.
Collapse
|
28
|
Menter DG, Bresalier RS. An Aspirin a Day: New Pharmacological Developments and Cancer Chemoprevention. Annu Rev Pharmacol Toxicol 2023; 63:165-186. [PMID: 36202092 DOI: 10.1146/annurev-pharmtox-052020-023107] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chemoprevention refers to the use of natural or synthetic agents to reverse, suppress, or prevent the progression or recurrence of cancer. A large body of preclinical and clinical data suggest the ability of aspirin to prevent precursor lesions and cancers, but much of the clinical data are inferential and based on descriptive epidemiology, case control, and cohort studies or studies designed to answer other questions (e.g., cardiovascular mortality). Multiple pharmacological, clinical, and epidemiologic studies suggest that aspirin can prevent certain cancers but may also cause other effects depending on the tissue or disease and organ site in question. The best-known biological targets of aspirin are cyclooxygenases, which drive a wide variety of functions, including hemostasis, inflammation, and immune modulation. Newly recognized molecular and cellular interactions suggest additional modifiable functional targets, and the existence of consensus molecular cancer subtypes suggests that aspirin may have differential effects based on tumor heterogeneity. This review focuses on new pharmacological developments and innovations in biopharmacology that clarify the potential role of aspirin in cancer chemoprevention.
Collapse
Affiliation(s)
- David G Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert S Bresalier
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA;
| |
Collapse
|
29
|
Bödder J, Kok LM, Fauerbach JA, Flórez-Grau G, de Vries IJM. Tailored PGE2 Immunomodulation of moDCs by Nano-Encapsulated EP2/EP4 Antagonists. Int J Mol Sci 2023; 24:ijms24021392. [PMID: 36674907 PMCID: PMC9866164 DOI: 10.3390/ijms24021392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Prostaglandin E2 (PGE2) is an important maturation mediator for dendritic cells (DCs). However, increased PGE2 levels in the tumor exert immunosuppressive effects on DCs by signaling through two E-Prostanoid (EP) receptors: EP2 and EP4. Blocking EP-receptor signaling of PGE2 with antagonists is currently being investigated for clinical applications to enhance anti-tumor immunity. In this study, we investigated a new delivery approach by encapsulating EP2/EP4 antagonists in polymeric nanoparticles. The nanoparticles were characterized for size, antagonist loading, and release. The efficacy of the encapsulated antagonists to block PGE2 signaling was analyzed using monocyte-derived DCs (moDCs). The obtained nanoparticles were sized between 210 and 260 nm. The encapsulation efficacy of the EP2/EP4 antagonists was 20% and 17%, respectively, and was further increased with the co-encapsulation of both antagonists. The treatment of moDCs with co-encapsulation EP2/EP4 antagonists prevented PGE2-induced co-stimulatory marker expression. Even though both antagonists showed a burst release within 15 min at 37 °C, the nanoparticles executed the immunomodulatory effects on moDCs. In summary, we demonstrate the functionality of EP2/EP4 antagonist-loaded nanoparticles to overcome PGE2 modulation of moDCs.
Collapse
Affiliation(s)
- Johanna Bödder
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Leanne M. Kok
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jonathan A. Fauerbach
- R&D Reagents, Chemical Biology Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Georgina Flórez-Grau
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Correspondence:
| |
Collapse
|
30
|
Immunoregulatory signal networks and tumor immune evasion mechanisms: insights into therapeutic targets and agents in clinical development. Biochem J 2022; 479:2219-2260. [DOI: 10.1042/bcj20210233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022]
Abstract
Through activation of immune cells, the immune system is responsible for identifying and destroying infected or otherwise damaged cells including tumorigenic cells that can be recognized as foreign, thus maintaining homeostasis. However, tumor cells have evolved several mechanisms to avoid immune cell detection and killing, resulting in tumor growth and progression. In the tumor microenvironment, tumor infiltrating immune cells are inactivated by soluble factors or tumor promoting conditions and lose their effects on tumor cells. Analysis of signaling and crosstalk between immune cells and tumor cells have helped us to understand in more detail the mechanisms of tumor immune evasion and this forms basis for drug development strategies in the area of cancer immunotherapy. In this review, we will summarize the dominant signaling networks involved in immune escape and describe the status of development of therapeutic strategies to target tumor immune evasion mechanisms with focus on how the tumor microenvironment interacts with T cells.
Collapse
|
31
|
Thumkeo D, Punyawatthananukool S, Prasongtanakij S, Matsuura R, Arima K, Nie H, Yamamoto R, Aoyama N, Hamaguchi H, Sugahara S, Takeda S, Charoensawan V, Tanaka A, Sakaguchi S, Narumiya S. PGE 2-EP2/EP4 signaling elicits immunosuppression by driving the mregDC-Treg axis in inflammatory tumor microenvironment. Cell Rep 2022; 39:110914. [PMID: 35675777 DOI: 10.1016/j.celrep.2022.110914] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 02/11/2022] [Accepted: 05/11/2022] [Indexed: 11/20/2022] Open
Abstract
Active inflammation generally promotes immune activation. However, in the tumor microenvironment (TME), active inflammation occurs in parallel with immunosuppression, and both contribute to tumor growth. Why inflammation does not lead to immune activation in TME remains unclear. In this study, using the immune checkpoint inhibitor-insensitive mouse cancer model and single-cell RNA sequencing, we show that PGE2-EP2/EP4 signaling simultaneously promotes active inflammation by inducing expression of the NF-κB genes in myeloid cells and elicits immunosuppression by driving the mregDC (mature DC enriched in immunoregulatory molecules)-Treg (regulatory T cell) axis for Treg recruitment and activation in the tumor. Importantly, the EP2/EP4 expression level is strongly correlated with the gene signatures of both active inflammation and the mregDC-Treg axis and has significant prognosis value in various human cancers. Thus, PGE2-EP2/EP4 signaling functions as the key regulatory node linking active inflammation and immunosuppression in TME, which can be targeted by EP2 and EP4 antagonists for cancer therapeutics.
Collapse
Affiliation(s)
- Dean Thumkeo
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Alliance Laboratory for Advanced Medical Research, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | | | - Somsak Prasongtanakij
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Ryuma Matsuura
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kentaro Arima
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Huan Nie
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Rie Yamamoto
- Alliance Laboratory for Advanced Medical Research, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Drug Discovery Research, Astellas Pharma, Tsukuba, Ibaraki 305-8585, Japan
| | - Naohiro Aoyama
- Drug Discovery Research, Astellas Pharma, Tsukuba, Ibaraki 305-8585, Japan
| | - Hisao Hamaguchi
- Drug Discovery Research, Astellas Pharma, Tsukuba, Ibaraki 305-8585, Japan
| | - Shingo Sugahara
- Drug Discovery Research, Astellas Pharma, Tsukuba, Ibaraki 305-8585, Japan
| | - Shinobu Takeda
- Drug Discovery Research, Astellas Pharma, Tsukuba, Ibaraki 305-8585, Japan
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; System Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Atsushi Tanaka
- Department of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Shimon Sakaguchi
- Department of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Alliance Laboratory for Advanced Medical Research, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; AMED-FORCE, Japan Agency for Medical Research and Development, Chiyoda, Tokyo 100-0004, Japan.
| |
Collapse
|
32
|
Wang W, He J, Yang J, Zhang C, Cheng Z, Zhang Y, Zhang Q, Wang P, Tang S, Wang X, Liu M, Lu W, Zhang HK. Scaffold Hopping Strategy to Identify Prostanoid EP4 Receptor Antagonists for Cancer Immunotherapy. J Med Chem 2022; 65:7896-7917. [PMID: 35640059 DOI: 10.1021/acs.jmedchem.2c00448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cancer cells can effectively suppress the natural immune response in humans, and prostaglandin E2 (PGE2) is a key mediator in the development of tumor cell resistance to immunotherapy. As a major contributor to PGE2-elicited immunosuppressive activity, the EP4 receptor promotes tumor development and progression in the tumor microenvironment, and the development of selective and potent EP4 receptor antagonists should have promising potential for tumor immunotherapy. Aiming at improving the drug-like properties, a series of 4,7-dihydro-5H-thieno[2,3-c]pyran derivatives were designed and synthesized through a scaffold hopping strategy. The most promising compound 47 exhibited good EP4 antagonistic activity and excellent subtype selectivity, as well as favorable drug-like properties. It effectively suppressed the expression of multiple immunosuppression-related genes in macrophages. Meanwhile, oral administration of compound 47, alone or in combination with anti-PD-1 antibody, significantly enhanced the antitumor immune response and inhibited tumor growth in the mouse CT26 colon carcinoma model.
Collapse
Affiliation(s)
- Wei Wang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jiacheng He
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Junjie Yang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chan Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhiyuan Cheng
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yao Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Qiansen Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Peili Wang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Shuowen Tang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xin Wang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Mingyao Liu
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Weiqiang Lu
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Han-Kun Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
33
|
Cao Y, Mai W, Li R, Deng S, Li L, Zhou Y, Qin Q, Zhang Y, Zhou X, Han M, Liang P, Yan Y, Hao Y, Xie W, Yan J, Zhu L. Macrophages evoke autophagy of hepatic stellate cells to promote liver fibrosis in NAFLD mice via the PGE2/EP4 pathway. Cell Mol Life Sci 2022; 79:303. [PMID: 35588334 PMCID: PMC11071853 DOI: 10.1007/s00018-022-04319-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023]
Abstract
The pathogenesis of liver fibrosis in nonalcoholic fatty liver disease (NAFLD) remains unclear and the effective treatments have not been explored yet. The activation of hepatic stellate cells (HSCs) is considered as the most critical factor in the progression of liver fibrosis and cirrhosis. Autophagy has recently been identified as a new mechanism to regulate HSC activation. Here, we found that liver macrophages were polarized toward type 2 (M2) during the progression of nonalcoholic steatohepatitis (NASH) and liver fibrosis in both patients and NAFLD mice. Using the methionine-choline-deficient (MCD) diet NAFLD murine model and the in vitro cell culture system, we identified that the M2 macrophages promoted HSC autophagy by secreting prostaglandin E2 (PGE2) and binding its receptor EP4 on the surface of HSCs, which consequently enhanced HSC activation, extracellular matrix deposition, and liver fibrosis. Mechanistically, PGE2/EP4 signals enhanced HSC autophagy through the Erk pathway. A specific PGE2/EP4 antagonist E7046 significantly inhibited M2 macrophage-mediated HSC autophagy and improved liver fibrosis and histopathology in NAFLD mice. Our study provides novel mechanistic insights into the regulation of HSC activation and liver fibrosis. Our findings suggest that the PGE2/EP4 pathway is a promising therapeutic target to prevent NASH progression into cirrhosis.
Collapse
Affiliation(s)
- Ying Cao
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Weili Mai
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Department of Gastroenterology, General Hospital of the Southern Theater of the Chinese People's Liberation Army, Guangzhou, 510030, China
| | - Rui Li
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Shuwei Deng
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Lan Li
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Yanxi Zhou
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Qiushi Qin
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Institute of Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing, 100015, China
| | - Yue Zhang
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Xingang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Ming Han
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Pu Liang
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Yonghong Yan
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Yu Hao
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Wen Xie
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Jie Yan
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Liuluan Zhu
- Beijing Institute of Infectious Diseases, Beijing, 100015, China.
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| |
Collapse
|
34
|
Feddersen UR, Hendel SK, Berner-Hansen MA, Jepps TA, Berner-Hansen M, Bindslev N. Nanomolar EP4 receptor potency and expression of eicosanoid-related enzymes in normal appearing colonic mucosa from patients with colorectal neoplasia. BMC Gastroenterol 2022; 22:234. [PMID: 35549670 PMCID: PMC9097415 DOI: 10.1186/s12876-022-02311-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
Background Aberrations in cyclooxygenase and lipoxygenase (LOX) pathways in non-neoplastic, normal appearing mucosa from patients with colorectal neoplasia (CRN), could hypothetically qualify as predisposing CRN-markers. Methods To test this hypothesis, biopsies were obtained during colonoscopy from macroscopically normal colonic mucosa from patients with and without CRN. Prostaglandin E2 (PGE2) receptors, EP1-4, were examined in Ussing-chambers by exposing biopsies to selective EP receptor agonists, antagonists and PGE2. Furthermore, mRNA expression of EP receptors, prostanoid synthases and LOX enzymes were evaluated with qPCR. Results Data suggest that PGE2 binds to both high and low affinity EP receptors. In particular, PGE2 demonstrated EP4 receptor potency in the low nanomolar range. Similar results were detected using EP2 and EP4 agonists. In CRN patients, mRNA-levels were higher for EP1 and EP2 receptors and for enzymes prostaglandin-I synthase, 5-LOX, 12-LOX and 15-LOX. Conclusions In conclusion, normal appearing colonic mucosa from CRN patients demonstrates deviating expression in eicosanoid pathways, which might indicate a likely predisposition for early CRN development and furthermore that PGE2 potently activates high affinity EP4 receptor subtypes, supporting relevance of testing EP4 antagonists in colorectal neoplasia management. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02311-z.
Collapse
Affiliation(s)
| | | | | | - Thomas Andrew Jepps
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Mark Berner-Hansen
- Digestive Disease Center, Bispebjerg Hospital, 2400, Copenhagen NV, Denmark
| | - Niels Bindslev
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| |
Collapse
|
35
|
Wilson DJ, DuBois RN. Role of prostaglandin E2 in the progression of gastrointestinal cancer. Cancer Prev Res (Phila) 2022; 15:355-363. [PMID: 35288737 DOI: 10.1158/1940-6207.capr-22-0038] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022]
Abstract
Chronic inflammation is a well-established risk factor for several diseases, including cancer. It influences tumor cell biology and the type and density of immune cells in the tumor microenvironment (TME), promoting cancer development. While pro-inflammatory cytokines and chemokines modulate cancer development, emerging evidence has shown that prostaglandin E2 (PGE2) is a known mediator connecting chronic inflammation to cancerization. This review highlights recent advances in our understanding of how the elevation of PGE2 production promotes gastrointestinal cancer initiation, progression, invasion, metastasis, and recurrence, including modulation of immune checkpoint signaling and the type and density of immune cells in the tumor/tissue microenvironment.
Collapse
Affiliation(s)
- David Jay Wilson
- Medical University of South Carolina, Greenville, South Carolina, United States
| | - Raymond N DuBois
- Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
36
|
Rovati G, Contursi A, Bruno A, Tacconelli S, Ballerini P, Patrignani P. Antiplatelet Agents Affecting GPCR Signaling Implicated in Tumor Metastasis. Cells 2022; 11:725. [PMID: 35203374 PMCID: PMC8870128 DOI: 10.3390/cells11040725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Metastasis requires that cancer cells survive in the circulation, colonize distant organs, and grow. Despite platelets being central contributors to hemostasis, leukocyte trafficking during inflammation, and vessel stability maintenance, there is significant evidence to support their essential role in supporting metastasis through different mechanisms. In addition to their direct interaction with cancer cells, thus forming heteroaggregates such as leukocytes, platelets release molecules that are necessary to promote a disseminating phenotype in cancer cells via the induction of an epithelial-mesenchymal-like transition. Therefore, agents that affect platelet activation can potentially restrain these prometastatic mechanisms. Although the primary adhesion of platelets to cancer cells is mainly independent of G protein-mediated signaling, soluble mediators released from platelets, such as ADP, thromboxane (TX) A2, and prostaglandin (PG) E2, act through G protein-coupled receptors (GPCRs) to cause the activation of more additional platelets and drive metastatic signaling pathways in cancer cells. In this review, we examine the contribution of the GPCRs of platelets and cancer cells in the development of cancer metastasis. Finally, the possible use of agents affecting GPCR signaling pathways as antimetastatic agents is discussed.
Collapse
Affiliation(s)
- Gianenrico Rovati
- Department of Pharmaceutical Sciences, University of Milan, 20122 Milan, Italy;
| | - Annalisa Contursi
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Annalisa Bruno
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Stefania Tacconelli
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Paola Patrignani
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| |
Collapse
|
37
|
Li X, Zhong J, Deng X, Guo X, Lu Y, Lin J, Huang X, Wang C. Targeting Myeloid-Derived Suppressor Cells to Enhance the Antitumor Efficacy of Immune Checkpoint Blockade Therapy. Front Immunol 2022; 12:754196. [PMID: 35003065 PMCID: PMC8727744 DOI: 10.3389/fimmu.2021.754196] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that are activated under pathological conditions, such as cancer, or mature myeloid cells that are converted immune-suppressive cells via tumor-derived exosomes, and potently support the tumor processes at different levels. Currently, multiple studies have demonstrated that MDSCs induce immune checkpoint blockade (ICB) therapy resistance through their contribution to the immunosuppressive network in the tumor microenvironment. In addition, non-immunosuppressive mechanisms of MDSCs such as promotion of angiogenesis and induction of cancer stem cells also exert a powerful role in tumor progression. Thus, MDSCs are potential therapeutic targets to enhance the antitumor efficacy of ICB therapy in cases of multiple cancers. This review focuses on the tumor-promoting mechanism of MDSCs and provides an overview of current strategies that target MDSCs with the objective of enhancing the antitumor efficacy of ICB therapy.
Collapse
Affiliation(s)
- Xueyan Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Jiahui Zhong
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xuan Guo
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yantong Lu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Juze Lin
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Xuhui Huang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Changjun Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| |
Collapse
|
38
|
A Novel Small Molecular Prostaglandin Receptor EP4 Antagonist, L001, Suppresses Pancreatic Cancer Metastasis. Molecules 2022; 27:molecules27041209. [PMID: 35208999 PMCID: PMC8879074 DOI: 10.3390/molecules27041209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 01/30/2023] Open
Abstract
Metastatic pancreatic cancer remains a major clinical challenge, emphasizing the urgent need for the exploitation of novel therapeutic approaches with superior response. In this study, we demonstrate that the aberrant activation of prostaglandin E2 (PGE2) receptor 4 (EP4) is a pro-metastatic signal in pancreatic cancer. To explore the therapeutic role of EP4 signaling, we developed a potent and selective EP4 antagonist L001 with single-nanomolar activity using a panel of cell functional assays. EP4 antagonism by L001 effectively repressed PGE2-elicited cell migration and the invasion of pancreatic cancer cells in a dose-dependent manner. Importantly, L001 alone or combined with the chemotherapy drug gemcitabine exhibited remarkably anti-metastasis activity in a pancreatic cancer hepatic metastasis model with excellent tolerability and safety. Mechanistically, EP4 blockade by L001 abrogated Yes-associated protein 1 (YAP)-driven pro-metastatic factor expression in pancreatic cancer cells. The suppression of YAP’s activity was also observed upon L001 treatment in vivo. Together, these findings support the notions that EP4–YAP signaling axis is a vital pro-metastatic pathway in pancreatic cancer and that EP4 inhibition with L001 may deliver a therapeutic benefit for patients with metastatic pancreatic cancer.
Collapse
|
39
|
Augustin RC, Leone RD, Naing A, Fong L, Bao R, Luke JJ. Next steps for clinical translation of adenosine pathway inhibition in cancer immunotherapy. J Immunother Cancer 2022; 10:jitc-2021-004089. [PMID: 35135866 PMCID: PMC8830302 DOI: 10.1136/jitc-2021-004089] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 12/20/2022] Open
Abstract
Increasing evidence supports targeting the adenosine pathway in immuno-oncology with several clinical programs directed at adenosine A2 receptor (A2AR, A2BR), CD73 and CD39 in development. Through a cyclic-AMP-mediated intracellular cascade, adenosine shifts the cytokine and cellular profile of the tumor microenvironment away from cytotoxic T cell inflammation toward one of immune tolerance. A perpetuating cycle of tumor cell proliferation, tissue injury, dysregulated angiogenesis, and hypoxia promote adenosine accumulation via ATP catabolism. Adenosine receptor (eg, A2AR, A2BR) stimulation of both the innate and adaptive cellular precursors lead to immunosuppressive phenotypic differentiation. Preclinical work in various tumor models with adenosine receptor inhibition has demonstrated restoration of immune cell function and tumor regression. Given the broad activity but known limitations of anti-programmed cell death protein (PD1) therapy and other checkpoint inhibitors, ongoing studies have sought to augment the successful outcomes of anti-PD1 therapy with combinatorial approaches, particularly adenosine signaling blockade. Preliminary data have demonstrated an optimal safety profile and enhanced overall response rates in several early phase clinical trials with A2AR and more recently CD73 inhibitors. However, beneficial outcomes for both monotherapy and combinations have been mostly lower than expected based on preclinical studies, indicating a need for more nuanced patient selection or biomarker integration that might predict and optimize patient outcomes. In the context of known immuno-oncology biomarkers such as tumor mutational burden and interferon-associated gene expression, a comparison of adenosine-related gene signatures associated with clinical response indicates an underlying biology related to immunosuppression, angiogenesis, and T cell inflammation. Importantly, though, adenosine associated gene expression may point to a unique intratumoral phenotype independent from IFN-γ related pathways. Here, we discuss the cellular and molecular mechanisms of adenosine-mediated immunosuppression, preclinical investigation of adenosine signaling blockade, recent response data from clinical trials with A2AR, CD73, CD39 and PD1/L1 inhibitors, and ongoing development of predictive gene signatures to enhance combinatorial immune-based therapies.
Collapse
Affiliation(s)
- Ryan C Augustin
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert D Leone
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lawrence Fong
- Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Riyue Bao
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Jason J Luke
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA .,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
40
|
Wang Q, Morris RJ, Bode AM, Zhang T. Prostaglandin Pathways: Opportunities for Cancer Prevention and Therapy. Cancer Res 2021; 82:949-965. [PMID: 34949672 DOI: 10.1158/0008-5472.can-21-2297] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/27/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022]
Abstract
Because of profound effects observed in carcinogenesis, prostaglandins (PGs), prostaglandin-endoperoxide synthases, and PG receptors are implicated in cancer development and progression. Understanding the molecular mechanisms of PG actions has potential clinical relevance for cancer prevention and therapy. This review focuses on the current status of PG signaling pathways in modulating cancer progression and aims to provide insights into the mechanistic actions of PGs and their receptors in influencing tumor progression. We also examine several small molecules identified as having anticancer activity that target prostaglandin receptors. The literature suggests that targeting PG pathways could provide opportunities for cancer prevention and therapy.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota
| | | | - Ann M Bode
- The Hormel Institute, University of Minnesota
| | | |
Collapse
|
41
|
Peng S, Hu P, Xiao YT, Lu W, Guo D, Hu S, Xie J, Wang M, Yu W, Yang J, Chen H, Zhang X, Zhu Y, Wang Y, Yang Y, Zhu G, Chen S, Wang J, Zhang B, Chen W, Wu H, Sun Z, Ding T, Zhang H, Yi Z, Liu M, Ren S. Single-cell analysis reveals EP4 as a target for restoring T cell infiltration and sensitizing prostate cancer to immunotherapy. Clin Cancer Res 2021; 28:552-567. [PMID: 34740924 DOI: 10.1158/1078-0432.ccr-21-0299] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/22/2021] [Accepted: 10/29/2021] [Indexed: 12/09/2022]
Abstract
PURPOSE Immunotherapies targeting immune checkpoint molecules have shown promising treatment for a subset of cancers; however, many "cold" tumors, such as prostate cancer, remain unresponsive. We aimed to identify a potential targetable marker relevant to prostate cancer and develop novel immunotherapy. EXPERIMENTAL DESIGN Analysis of transcriptomic profiles at single-cell resolution was performed in clinical patients' samples, along with integrated analysis of multiple RNA-seq datasets. The antitumor activity of YY001, a novel EP4 antagonist, combined with anti-programmed cell death protein 1 (PD-1) antibody was evaluated both in vitro and in vivo Results: We identified EP4 (PTGER4) as expressed in epithelial cells and various immune cells and involved in modulating the prostate cancer immune microenvironment. YY001, a novel EP4 antagonist, inhibited the differentiation, maturation, and immunosuppressive function of myeloid-derived suppressor cells (MDSCs) while enhancing the proliferation and anticancer functions of T cells. Furthermore, it reversed the infiltration levels of MDSCs and T cells in the tumor microenvironment by overturning the chemokine profile of tumor cells in vitro and in vivo The combined immunotherapy demonstrated a robust antitumor immune response as indicated by the robust accumulation and activation of CD8+ cytotoxic T cells, with a significantly decreased MDSC ratio and reduced MDSC immunosuppression function. CONCLUSIONS Our study identified EP4 as a specific target for prostate cancer immunotherapy and demonstrated that YY001 inhibited the growth of prostate tumors by regulating the immune microenvironment and strongly synergized with anti-PD-1 antibodies to convert completely unresponsive prostate cancers into responsive cancers, resulting in marked tumor regression, long-term survival, and lasting immunologic memory.
Collapse
Affiliation(s)
- Shihong Peng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
| | - Pan Hu
- East China Normal University
| | - Yu-Tian Xiao
- Department of Urology, Shanghai Changhai Hospital
| | - Weiqiang Lu
- East China Normal University, Institute of Biomedical Sciences and School of Life Sciences
| | - Dandan Guo
- Biomedical Sciences and School of Life Sciences, East China Normal University
| | - Shixiu Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
| | | | | | - Weiwei Yu
- School of Life Sciences, Institute of Biomedical Sciences
| | - Junjie Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
| | | | | | - Yasheng Zhu
- Department of Urology, Second Military Medical University
| | | | - Yue Yang
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University
| | | | | | | | | | | | - Huangan Wu
- Shanghai University of Traditional Chinese Medicine
| | - Zhenliang Sun
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus
| | - Tao Ding
- Urology, Shanghai Putuo Hospital, Shanghai Traditional Chinese Medicine University
| | - Hankun Zhang
- East China Normal University, Institute of Biomedical Sciences and School of Life Sciences
| | - Zhengfang Yi
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
| | | |
Collapse
|
42
|
Abstract
Cancer therapy, such as chemotherapy, induces tumor cell death (“debris”), which can stimulate metastasis. Chemotherapy-generated debris upregulates soluble epoxide hydrolase (sEH) and the prostaglandin E2 receptor 4 (EP4), which triggers a macrophage-derived storm of proinflammatory and proangiogenic lipid autacoid and cytokine mediators. Although sEH inhibitors and EP4 antagonists are in clinical development for multiple inflammatory diseases, their combined role in cancer is unknown. Here, we show that the synergistic antitumor activity of sEH and EP4 inhibition suppresses hepato-pancreatic tumor growth, without overt toxicity, via macrophage phagocytosis of debris and counterregulation of a debris-stimulated cytokine storm. Thus, stimulating the resolution of inflammation via combined inhibition of sEH and EP4 may be an approach for preventing metastatic progression driven by cancer therapy. Cancer therapy reduces tumor burden via tumor cell death (“debris”), which can accelerate tumor progression via the failure of inflammation resolution. Thus, there is an urgent need to develop treatment modalities that stimulate the clearance or resolution of inflammation-associated debris. Here, we demonstrate that chemotherapy-generated debris stimulates metastasis by up-regulating soluble epoxide hydrolase (sEH) and the prostaglandin E2 receptor 4 (EP4). Therapy-induced tumor cell debris triggers a storm of proinflammatory and proangiogenic eicosanoid-driven cytokines. Thus, targeting a single eicosanoid or cytokine is unlikely to prevent chemotherapy-induced metastasis. Pharmacological abrogation of both sEH and EP4 eicosanoid pathways prevents hepato-pancreatic tumor growth and liver metastasis by promoting macrophage phagocytosis of debris and counterregulating a protumorigenic eicosanoid and cytokine storm. Therefore, stimulating the clearance of tumor cell debris via combined sEH and EP4 inhibition is an approach to prevent debris-stimulated metastasis and tumor growth.
Collapse
|
43
|
Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021; 6:263. [PMID: 34248142 PMCID: PMC8273155 DOI: 10.1038/s41392-021-00658-5] [Citation(s) in RCA: 1224] [Impact Index Per Article: 306.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer development and its response to therapy are regulated by inflammation, which either promotes or suppresses tumor progression, potentially displaying opposing effects on therapeutic outcomes. Chronic inflammation facilitates tumor progression and treatment resistance, whereas induction of acute inflammatory reactions often stimulates the maturation of dendritic cells (DCs) and antigen presentation, leading to anti-tumor immune responses. In addition, multiple signaling pathways, such as nuclear factor kappa B (NF-kB), Janus kinase/signal transducers and activators of transcription (JAK-STAT), toll-like receptor (TLR) pathways, cGAS/STING, and mitogen-activated protein kinase (MAPK); inflammatory factors, including cytokines (e.g., interleukin (IL), interferon (IFN), and tumor necrosis factor (TNF)-α), chemokines (e.g., C-C motif chemokine ligands (CCLs) and C-X-C motif chemokine ligands (CXCLs)), growth factors (e.g., vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β), and inflammasome; as well as inflammatory metabolites including prostaglandins, leukotrienes, thromboxane, and specialized proresolving mediators (SPM), have been identified as pivotal regulators of the initiation and resolution of inflammation. Nowadays, local irradiation, recombinant cytokines, neutralizing antibodies, small-molecule inhibitors, DC vaccines, oncolytic viruses, TLR agonists, and SPM have been developed to specifically modulate inflammation in cancer therapy, with some of these factors already undergoing clinical trials. Herein, we discuss the initiation and resolution of inflammation, the crosstalk between tumor development and inflammatory processes. We also highlight potential targets for harnessing inflammation in the treatment of cancer.
Collapse
|
44
|
Shirakami Y, Nakanishi T, Ozawa N, Ideta T, Kochi T, Kubota M, Sakai H, Ibuka T, Tanaka T, Shimizu M. Inhibitory effects of a selective prostaglandin E2 receptor antagonist RQ-15986 on inflammation-related colon tumorigenesis in APC-mutant rats. PLoS One 2021; 16:e0251942. [PMID: 34003864 PMCID: PMC8130959 DOI: 10.1371/journal.pone.0251942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/05/2021] [Indexed: 12/04/2022] Open
Abstract
Prostaglandin E2 receptor EP4 is involved in inflammation and related tumorigenesis in the colorectum. This study aimed to investigate the chemopreventive ability of RQ-15986, a selective EP4 antagonist, in colitis-related colorectal tumorigenesis. Male Kyoto APC delta rats, which have APC mutations, were treated with azoxymethane and dextran sulfate sodium and subsequently administered RQ-15986 for eight weeks. At the end of the experiment, the development of colorectal tumor was significantly inhibited in the RQ-15986-treated group. The cell proliferation of the crypts and tumors in the colorectum was decreased following RQ-15986 treatment. RQ-15986 also suppressed the expression of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-6, interleukin-18, and monocyte chemotactic protein-1, in the colon mucosa. In addition, the expression levels of indoleamine 2,3-dioxygenase, which is involved in immune tolerance, were decreased in the colorectal epithelium and tumors of the RQ-15986-treated group. These findings indicate that RQ-15986 inhibits colitis-associated colorectal tumorigenesis by attenuating inflammation, suppressing cell proliferation, and modulating the expression of indoleamine 2,3-dioxygenase. Targeting prostaglandin E2/EP4 signaling might be a useful strategy for chemoprevention of inflammation-related colorectal cancer.
Collapse
Affiliation(s)
- Yohei Shirakami
- Departments of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
- * E-mail:
| | - Takayuki Nakanishi
- Departments of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Noritaka Ozawa
- Departments of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takayasu Ideta
- Departments of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takahiro Kochi
- Departments of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masaya Kubota
- Departments of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyasu Sakai
- Departments of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takashi Ibuka
- Departments of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takuji Tanaka
- Department of Pathological Diagnosis, Gifu Municipal Hospital, Gifu, Japan
| | - Masahito Shimizu
- Departments of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
45
|
Wang Y, Cui L, Georgiev P, Singh L, Zheng Y, Yu Y, Grein J, Zhang C, Muise ES, Sloman DL, Ferguson H, Yu H, Pierre CS, Dakle PJ, Pucci V, Baker J, Loboda A, Linn D, Brynczka C, Wilson D, Haines BB, Long B, Wnek R, Sadekova S, Rosenzweig M, Haidle A, Han Y, Ranganath SH. Combination of EP 4 antagonist MF-766 and anti-PD-1 promotes anti-tumor efficacy by modulating both lymphocytes and myeloid cells. Oncoimmunology 2021; 10:1896643. [PMID: 33796403 PMCID: PMC7993229 DOI: 10.1080/2162402x.2021.1896643] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Prostaglandin E2 (PGE2), an arachidonic acid pathway metabolite produced by cyclooxygenase (COX)-1/2, has been shown to impair anti-tumor immunity through engagement with one or more E-type prostanoid receptors (EP1-4). Specific targeting of EP receptors, as opposed to COX-1/2 inhibition, has been proposed to achieve preferential antagonism of PGE2–mediated immune suppression. Here we describe the anti-tumor activity of MF-766, a potent and highly selective small-molecule inhibitor of the EP4 receptor. EP4 inhibition by MF-766 synergistically improved the efficacy of anti-programmed cell death protein 1 (PD-1) therapy in CT26 and EMT6 syngeneic tumor mouse models. Multiparameter flow cytometry analysis revealed that treatment with MF-766 promoted the infiltration of CD8+ T cells, natural killer (NK) cells and conventional dendritic cells (cDCs), induced M1-like macrophage reprogramming, and reduced granulocytic myeloid-derived suppressor cells (MDSC) in the tumor microenvironment (TME). In vitro experiments demonstrated that MF-766 restored PGE2-mediated inhibition of lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α production in THP-1 cells and human blood, and PGE2-mediated inhibition of interleukin (IL)-2-induced interferon (IFN)-γ production in human NK cells. MF-766 reversed the inhibition of IFN-γ in CD8+ T-cells by PGE2 and impaired suppression of CD8+ T-cells induced by myeloid-derived suppressor cells (MDSC)/PGE2. In translational studies using primary human tumors, MF-766 enhanced anti-CD3-stimulated IFN-γ, IL-2, and TNF-α production in primary histoculture and synergized with pembrolizumab in a PGE2 high TME. Our studies demonstrate that the combination of EP4 blockade with anti-PD-1 therapy enhances antitumor activity by differentially modulating myeloid cell, NK cell, cDC and T-cell infiltration profiles.
Collapse
Affiliation(s)
- Yun Wang
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Long Cui
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Peter Georgiev
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Latika Singh
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Yanyan Zheng
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Ying Yu
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Jeff Grein
- Department of Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Chunsheng Zhang
- Department of Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Eric S Muise
- Department of Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, Massachusetts, USA
| | - David L Sloman
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Heidi Ferguson
- Department of Pharmaceutical Science, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Hongshi Yu
- Department of Pharmaceutical Science, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Cristina St Pierre
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Pranal J Dakle
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Vincenzo Pucci
- Department of Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts, USA
| | - James Baker
- Department of Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Andrey Loboda
- Department of Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Doug Linn
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Christopher Brynczka
- Dept. Safety and Exploratory Pharmacology, Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Doug Wilson
- Department of Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Brian B Haines
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Brian Long
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Richard Wnek
- Department of Translational Biomarkers, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Svetlana Sadekova
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Michael Rosenzweig
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Andrew Haidle
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Yongxin Han
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Sheila H Ranganath
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, USA
| |
Collapse
|
46
|
Prostaglandin E2 Receptor 4 (EP4) as a Therapeutic Target to Impede Breast Cancer-Associated Angiogenesis and Lymphangiogenesis. Cancers (Basel) 2021; 13:cancers13050942. [PMID: 33668160 PMCID: PMC7956318 DOI: 10.3390/cancers13050942] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
The formation of new blood (angiogenesis) and lymphatic (lymphangiogenesis) vessels are major events associated with most epithelial malignancies, including breast cancer. Angiogenesis is essential for cancer cell survival. Lymphangiogenesis is critical in maintaining tumoral interstitial fluid balance and importing tumor-facilitatory immune cells. Both vascular routes also serve as conduits for cancer metastasis. Intratumoral hypoxia promotes both events by stimulating multiple angiogenic/lymphangiogenic growth factors. Studies on tumor-associated lymphangiogenesis and its exploitation for therapy have received less attention from the research community than those on angiogenesis. Inflammation is a key mediator of both processes, hijacked by many cancers by the aberrant expression of the inflammation-associated enzyme cyclo-oxygenase (COX)-2. In this review, we focus on breast cancer and showed that COX-2 is a major promoter of both events, primarily resulting from the activation of prostaglandin (PG) E receptor EP4 on tumor cells, tumor-infiltrating immune cells, and endothelial cells; and the induction of oncogenic microRNAs. The COX-2/EP4 pathway also promotes additional events in breast cancer progression, such as cancer cell migration, invasion, and the stimulation of stem-like cells. Based on a combination of studies using multiple breast cancer models, we show that EP4 antagonists hold a major promise in breast cancer therapy in combination with other modalities including immune check-point inhibitors.
Collapse
|
47
|
Postler TS. A most versatile kinase: The catalytic subunit of PKA in T-cell biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 361:301-318. [PMID: 34074497 DOI: 10.1016/bs.ircmb.2021.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cAMP-dependent protein kinase, more commonly referred to as protein kinase A (PKA), is one of the most-studied enzymes in biology. PKA is ubiquitously expressed in mammalian cells, can be activated in response to a plethora of biological stimuli, and phosphorylates more than 250 known substrates. Indeed, PKA is of central importance to a wide range of organismal processes, including energy homeostasis, memory formation and immunity. It serves as the primary effector of the second-messenger molecule 3',5'-cyclic adenosine monophosphate (cAMP), which is believed to have mostly inhibitory effects on the adaptive immune response. In particular, elevated levels of intracellular cAMP inhibit the activation of conventional T cells by limiting signal transduction through the T-cell receptor and altering gene expression, primarily in a PKA-dependent manner. Regulatory T cells have been shown to increase the cAMP levels in adjacent T cells by direct and indirect means, but the role of cAMP within regulatory T cells themselves remains incompletely understood. Paradoxically, cAMP has been implicated in promoting T-cell activation as well, adding another functional dimension beyond its established immunosuppressive effects. Furthermore, PKA can phosphorylate the NF-κB subunit p65, a transcription factor that is essential for T-cell activation, independently of cAMP. This phosphorylation of p65 drastically enhances NF-κB-dependent transcription and thus is likely to facilitate immune activation. How these immunosuppressive and immune-activating properties of PKA balance in vivo remains to be elucidated. This review provides a brief overview of PKA regulation, its ability to affect NF-κB activation, and its diverse functions in T-cell biology.
Collapse
Affiliation(s)
- Thomas S Postler
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
48
|
Fibroblast Subsets in Intestinal Homeostasis, Carcinogenesis, Tumor Progression, and Metastasis. Cancers (Basel) 2021; 13:cancers13020183. [PMID: 33430285 PMCID: PMC7825703 DOI: 10.3390/cancers13020183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Colorectal cancer often develops via the adenoma–carcinoma sequence, a process which is accompanied by (epi) genetic alterations in epithelial cells and gradual phenotypic changes in fibroblast populations. Recent studies have made it clear that these fibroblast populations which, in the context of invasive cancers are termed cancer-associated fibroblasts (CAFs), play an important role in intestinal tumor progression. This review provides an overview on the emerging role of fibroblasts in various stages of colorectal cancer development, ranging from adenoma initiation to metastatic spread of tumor cells. As fibroblasts show considerable heterogeneity in subsets and phenotypes during cancer development, a better functional understanding of stage-specific (alterations in) fibroblast/CAF populations is key to increase the effectiveness of fibroblast-based prognosticators and therapies. Abstract In intestinal homeostasis, continuous renewal of the epithelium is crucial to withstand the plethora of stimuli which can damage the structural integrity of the intestines. Fibroblasts contribute to this renewal by facilitating epithelial cell differentiation as well as providing the structural framework in which epithelial cells can regenerate. Upon dysregulation of intestinal homeostasis, (pre-) malignant neoplasms develop, a process which is accompanied by (epi) genetic alterations in epithelial cells as well as phenotypic changes in fibroblast populations. In the context of invasive carcinomas, these fibroblast populations are termed cancer-associated fibroblasts (CAFs). CAFs are the most abundant cell type in the tumor microenvironment of colorectal cancer (CRC) and consist of various functionally heterogeneous subsets which can promote or restrain cancer progression. Although most previous research has focused on the biology of epithelial cells, accumulating evidence shows that certain fibroblast subsets can also importantly contribute to tumor initiation and progression, thereby possibly providing avenues for improvement of clinical care for CRC patients. In this review, we summarized the current literature on the emerging role of fibroblasts in various stages of CRC development, ranging from adenoma initiation to the metastatic spread of cancer cells. In addition, we highlighted translational and therapeutic perspectives of fibroblasts in the different stages of intestinal tumor progression.
Collapse
|
49
|
Armitage JD, Newnes HV, McDonnell A, Bosco A, Waithman J. Fine-Tuning the Tumour Microenvironment: Current Perspectives on the Mechanisms of Tumour Immunosuppression. Cells 2021; 10:E56. [PMID: 33401460 PMCID: PMC7823446 DOI: 10.3390/cells10010056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy has revolutionised the treatment of cancers by harnessing the power of the immune system to eradicate malignant tissue. However, it is well recognised that some cancers are highly resistant to these therapies, which is in part attributed to the immunosuppressive landscape of the tumour microenvironment (TME). The contexture of the TME is highly heterogeneous and contains a complex architecture of immune, stromal, vascular and tumour cells in addition to acellular components such as the extracellular matrix. While understanding the dynamics of the TME has been instrumental in predicting durable responses to immunotherapy and developing new treatment strategies, recent evidence challenges the fundamental paradigms of how tumours can effectively subvert immunosurveillance. Here, we discuss the various immunosuppressive features of the TME and how fine-tuning these mechanisms, rather than ablating them completely, may result in a more comprehensive and balanced anti-tumour response.
Collapse
Affiliation(s)
- Jesse D. Armitage
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Hannah V. Newnes
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Alison McDonnell
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
- National Centre for Asbestos Related Diseases, QEII Medical Centre, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Anthony Bosco
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Jason Waithman
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| |
Collapse
|