1
|
Chi R, Liu Y, Wang P, Yang F, Wang X, He X, Di R, Chu M. Estrogen-induced circFAM171A1 regulates sheep myoblast proliferation through the oar-miR-485-5p/MAPK15/MAPK pathway. Cell Mol Life Sci 2025; 82:123. [PMID: 40105989 PMCID: PMC11923336 DOI: 10.1007/s00018-025-05639-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
Estrogen is an important hormone that affects muscle development in female animals. Previous studies have shown that estrogen can protect muscle cells from apoptosis by inhibiting the MAPK signaling pathway. However, the molecular mechanisms by which estrogen-induced MAPK signaling regulates myoblast growth and development remain unclear. In this study, RNA-seq was performed on ovariectomized small-tailed Han (OR-STH) sheep and sham surgery small-tailed Han (STH) sheep to analyze the effects of estrogen on muscle growth and development in female animals. There were 8721 differentially expressed circRNAs (DECs), 143 differentially expressed miRNAs (DEMs) and 2238 differentially expressed mRNAs (DEGs) in the longissimus dorsi between the OR-STH and STH groups. Bioinformatics analysis revealed that the differentially expressed gene MAPK15 was significantly enriched in the MAPK signaling pathway, which is important for muscle development. Therefore, we constructed the ceRNA network circFAM171A1/oar-miR-485-5p/MAPK15 and explored its effect on muscle growth and development. The results of the molecular mechanism experiments indicated that circFAM171A1 can sponge oar-miR-485-5p to regulate MAPK15. The addition of the exogenous hormone estradiol (E2) to sheep myoblasts could induce circFAM171A1, regulate the expression of oar-miR-485-5p and MAPK15, and promote the proliferation of sheep myoblasts. The results showed that MAPK15 and circFAM171A1 significantly promoted the proliferation of myoblasts and inhibited the apoptosis of myoblasts in sheep, whereas oar-miR-485-5p inhibited the expression of MAPK15 and circFAM171A1, inhibited myoblast proliferation and promoted apoptosis. Furthermore, circFAM171A1 attenuated the inhibitory effect of oar-miR-485-5p on myoblasts. In summary, estrogen induced the expression of circFAM171A1 in sheep myoblasts, and circFAM171A1 can act as a sponge for oar-miR-485-5p to promote the expression of the target gene MAPK15 and ultimately regulate the proliferation of sheep myoblasts. This study provides new insights into the molecular mechanism of estrogen regulation of muscle growth and development in female animals.
Collapse
Affiliation(s)
- Runqing Chi
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Yufang Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, 230031, China
| | - Peng Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Fan Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xiangyu Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xiaoyun He
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Ran Di
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.
| |
Collapse
|
2
|
Tu M, Ge B, Li J, Pan Y, Zhao B, Han J, Wu J, Zhang K, Liu G, Hou M, Yue M, Han X, Sun T, An Y. Emerging biological functions of Twist1 in cell differentiation. Dev Dyn 2025; 254:8-25. [PMID: 39254141 DOI: 10.1002/dvdy.736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Twist1 is required for embryonic development and expresses after birth in mesenchymal stem cells derived from mesoderm, where it governs mesenchymal cell development. As a well-known regulator of epithelial-mesenchymal transition or embryonic organogenesis, Twist1 is important in a variety of developmental systems, including mesoderm formation, neurogenesis, myogenesis, cranial neural crest cell migration, and differentiation. In this review, we first highlight the physiological significance of Twist1 in cell differentiation, including osteogenic, chondrogenic, and myogenic differentiation, and then detail its probable molecular processes and signaling pathways. On this premise, we summarize the significance of Twist1 in distinct developmental disorders and diseases to provide a reference for studies on cell differentiation/development-related diseases.
Collapse
Affiliation(s)
- Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Bingqian Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiali Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yanbing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jialin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Kaifeng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Guangchao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Mengwen Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Man Yue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| |
Collapse
|
3
|
Yang P, Li X, Liu C, Han Y, E G, Huang Y. Role and Regulatory Mechanism of circRNA_14820 in the Proliferation and Differentiation of Goat Skeletal Muscle Satellite Cells. Int J Mol Sci 2024; 25:8900. [PMID: 39201586 PMCID: PMC11354305 DOI: 10.3390/ijms25168900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Skeletal muscle satellite cells (SMSCs), a type of myogenic stem cell, play a pivotal role in postnatal muscle regeneration and repair in animals. Circular RNAs (circRNAs) are a distinct class of non-coding RNA molecules capable of regulating muscle development by modulating gene expression, acting as microRNAs, or serving as protein decoys. In this study, we identified circ_14820, an exonic transcript derived from adenosine triphosphatase family protein 2 (ATAD2), through initial RNA-Seq analysis. Importantly, overexpression of circ_14820 markedly enhanced the proliferation of goat SMSCs while concomitantly suppressing their differentiation. Moreover, circ_14820 exhibited predominant localization in the cytoplasm of SMSCs. Subsequent small RNA and mRNA sequencing of circ_14820-overexpressing SMSCs systematically elucidated the molecular regulatory mechanisms associated with circ_14820. Our preliminary findings suggest that the circ_14820-miR-206-CCND2 regulatory axis may govern the development of goat SMSCs. These discoveries contribute to a deeper understanding of circRNA-mediated mechanisms in regulating skeletal muscle development, thereby advancing our knowledge of muscle biology.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongfu Huang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (P.Y.); (X.L.); (C.L.); (Y.H.); (G.E.)
| |
Collapse
|
4
|
Liu D, Mi J, Yan X, Qin C, Wang J, Nie G. Taurine Alleviated the Negative Effects of an Oxidized Lipid Diet on Growth Performance, Antioxidant Properties, and Muscle Quality of the Common Carp ( Cyprinus carpio L.). AQUACULTURE NUTRITION 2024; 2024:5205506. [PMID: 39555525 PMCID: PMC11213642 DOI: 10.1155/2024/5205506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 11/19/2024]
Abstract
In the present study, we conducted a 10-week culture experiment to investigate the effects of taurine on the growth performance, antioxidant properties, and muscle quality of the common carp fed an oxidized lipid diet. There were five experimental groups with three replicates each. Based on the fresh fish oil group (FO), equal amounts of oxidized fish oil (with a thiobarbituric acid-reactive substances value of 49.57 ± 2.34 mg/kg) and 0 g/kg (OFO), 4 g/kg (OT4), 8 g/kg (OT8), and 12 g/kg (OT12) taurine were added to the diet, while the same composition ratio was maintained by changing the microcrystalline cellulose content. Compared to the FO group, the feed conversion ratio, weight gain rate, muscle crude lipid, and n-3/n-6 polyunsaturated fatty acids (PUFA) ratio were significantly lower in the group OFO (P < 0.05). In addition, compared to the FO group, OFO fish showed an increased content of malondialdehyde and protein carbonylation and decreased hardness, brightness, pH, superoxide dismutase, and catalase levels in the muscle (P < 0.05). Notably, the growth index significantly improved in the OT4 group compared to that in the OFO group (P < 0.05). In addition, dietary taurine increased the crude lipid content, n-3/n-6 PUFA, antioxidant capacity, hardness, springiness, brightness, pH, and collagen content in the muscle compared with OFO fish (P < 0.05). Moreover, taurine supplementation significantly reduced myofiber diameter and increased myofiber density (P < 0.05) and enhanced the expression levels of paired box 7 (pax7), myogenic factor 5 (myf5), myogenic differentiation antigen (myod), and myogenic regulatory factor 4 (mrf4) compared with that of the OFO group (P < 0.05). Considering growth performance and muscle quality, the optimal supplemental levels of taurine in the oxidized lipid diet were 4 g/kg and 6.84-7.70 g/kg, respectively.
Collapse
Affiliation(s)
- Dan Liu
- College of Life ScienceHenan Normal University, Xinxiang 453007, China
| | - Jiali Mi
- Aquatic Animal Nutrition and Feed Research TeamCollege of FisheriesHenan Normal University, Xinxiang 453007, China
| | - Xiao Yan
- Aquatic Animal Nutrition and Feed Research TeamCollege of FisheriesHenan Normal University, Xinxiang 453007, China
| | - Chaobin Qin
- Aquatic Animal Nutrition and Feed Research TeamCollege of FisheriesHenan Normal University, Xinxiang 453007, China
| | - Junli Wang
- College of Life ScienceHenan Normal University, Xinxiang 453007, China
| | - Guoxing Nie
- Aquatic Animal Nutrition and Feed Research TeamCollege of FisheriesHenan Normal University, Xinxiang 453007, China
| |
Collapse
|
5
|
Li H, Ji S, Yuan X, Li Y, Kaneko G, Sun J, Ji H. Eicosapentaenoic acid (EPA) improves grass carp (Ctenopharyngodon idellus) muscle development and nutritive value by activating the mTOR signaling pathway. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:687-703. [PMID: 38285408 DOI: 10.1007/s10695-024-01299-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Skeletal muscle is the mainly edible part of fish. Eicosapentaenoic acid (EPA) is a crucial nutrient for fish. This study investigated the effect of EPA on the muscle development of grass carp along with the potential molecular mechanisms in vivo and in vitro. Muscle cells treated with 50 μM EPA in vitro showed the elevated proliferation, and the expression of mammalian target of rapamycin (mTOR) signaling pathway-related genes was upregulated (P < 0.05). In vivo experiments, 270 grass carp (27.92 g) were fed with one of the three experimental diets for 56 days: control diet (CN), 0.3% EPA-supplement diet (EPA), and the diet supplemented with 0.3% EPA and 30 mg/kg rapamycin (EPA + Rap). Fish weight gain rate (WGR) was improved in EPA group (P < 0.05). There was no difference in the viscerosomatic index (VSI) and body height (BH) among all groups (P > 0.05), whereas the carcass ratio (CR) and body length in the EPA group were obviously higher than those of other groups (P < 0.05), indicating that the increase of WGR was due to muscle growth. In addition, both muscle fiber density and muscle crude protein also increased in EPA group (P < 0.05). The principal component analysis showed that total weight of muscle amino acid in EPA group ranked first. Dietary EPA also increased protein levels of the total mTOR, S6k1, Myhc, Myog, and Myod in muscle (P < 0.05). In conclusion, EPA promoted the muscle development and nutritive value via activating the mTOR signaling pathway.
Collapse
Affiliation(s)
- Handong Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shanxi, China
| | - Shanghong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shanxi, China
| | - Xiangtong Yuan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shanxi, China
| | - Yunhe Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shanxi, China
| | - Gen Kaneko
- College of Natural and Applied Science, University of Houston-Victoria, Victoria, Texas, USA
| | - Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shanxi, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shanxi, China.
| |
Collapse
|
6
|
Chae J, Hahn D, Nam JO. Macamide, a component of maca (Lepidium meyenii Walp) lipophilic extract, enhances myogenic differentiation via AKT/p38 signaling and attenuates dexamethasone-induced muscle atrophy. Biomed Pharmacother 2024; 172:116249. [PMID: 38340399 DOI: 10.1016/j.biopha.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Maca (Lepidium meyenii) is a plant that grows in the central Andes region of Peru, and it has been reported to have various bioactive functions, such as improving or preventing osteoporosis, sexual dysfunction, and memory impairment. In this study, maca roots of various colors (yellow, red, or black) were extracted using different polar solvents (PE, HEX, or BuOH) to compare their effects on muscle differentiation. Among them, the red maca lipophilic extract, which showed the most effectiveness, was chosen for further investigation. Our results show that RMLE enhances muscle differentiation by inducing MyoD-E2A heterodimerization through the activation of the AKT/p38 pathway. Additionally, RMLE attenuated dexamethasone-induced muscle atrophy by inhibiting nuclear translocation of FoxO3a and expression of E3-ligase (MAFbx and MURF1) in vitro and in vivo. Therefore, based on these results suggest that lipophilic extract of maca, which can abundantly contain nonpolar compounds, macamides, can enhance the functional properties of maca in alleviating muscle homeostasis.
Collapse
Affiliation(s)
- Jongbeom Chae
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dongyup Hahn
- School of Food Science and Biotechnology, Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Ju-Ock Nam
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea; Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
7
|
Awad S, Skipper W, Vostrejs W, Ozorowski K, Min K, Pfuhler L, Mehta D, Cooke A. The YBX3 RNA-binding protein posttranscriptionally controls SLC1A5 mRNA in proliferating and differentiating skeletal muscle cells. J Biol Chem 2024; 300:105602. [PMID: 38159852 PMCID: PMC10837625 DOI: 10.1016/j.jbc.2023.105602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
In humans, skeletal muscles comprise nearly 40% of total body mass, which is maintained throughout adulthood by a balance of muscle protein synthesis and breakdown. Cellular amino acid (AA) levels are critical for these processes, and mammalian cells contain transporter proteins that import AAs to maintain homeostasis. Until recently, the control of transporter regulation has largely been studied at the transcriptional and posttranslational levels. However, here, we report that the RNA-binding protein YBX3 is critical to sustain intracellular AAs in mouse skeletal muscle cells, which aligns with our recent findings in human cells. We find that YBX3 directly binds the solute carrier (SLC)1A5 AA transporter messenger (m)RNA to posttranscriptionally control SLC1A5 expression during skeletal muscle cell differentiation. YBX3 regulation of SLC1A5 requires the 3' UTR. Additionally, intracellular AAs transported by SLC1A5, either directly or indirectly through coupling to other transporters, are specifically reduced when YBX3 is depleted. Further, we find that reduction of the YBX3 protein reduces proliferation and impairs differentiation in skeletal muscle cells, and that YBX3 and SLC1A5 protein expression increase substantially during skeletal muscle differentiation, independently of their respective mRNA levels. Taken together, our findings suggest that YBX3 regulates AA transport in skeletal muscle cells, and that its expression is critical to maintain skeletal muscle cell proliferation and differentiation.
Collapse
Affiliation(s)
- Silina Awad
- Biology Department, Haverford College, Haverford, Pennsylvania, USA
| | - William Skipper
- Biology Department, Haverford College, Haverford, Pennsylvania, USA
| | - William Vostrejs
- Biology Department, Haverford College, Haverford, Pennsylvania, USA
| | | | - Kristen Min
- Biology Department, Haverford College, Haverford, Pennsylvania, USA
| | - Liva Pfuhler
- Biology Department, Haverford College, Haverford, Pennsylvania, USA
| | - Darshan Mehta
- Biology Department, Haverford College, Haverford, Pennsylvania, USA
| | - Amy Cooke
- Biology Department, Haverford College, Haverford, Pennsylvania, USA.
| |
Collapse
|
8
|
Melo DSD, de Sá ALA, de Matos Guerreiro SL, Natividade J, Gomes PFF, Takata R, da Silva Filho E, Palheta GDA, de Melo NFAC, Sterzelecki FC, Hamoy I. Growth, survival, and myogenic gene expression in the post-larvae of Colossoma macropomum provisioned with Artemia nauplii. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:145-155. [PMID: 36971872 DOI: 10.1007/s10695-023-01182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Artemia nauplii are widely used as fish larvae feed due to its beneficial nutritional characteristics for larval development; however, efficient feeding strategies are needed to balance its high costs. Therefore, we evaluated the effects of different densities of Artemia nauplii (100, 250, 500, 750, and 1000 nauplii/post-larvae) on the growth, survival, water quality, and myogenic gene expression of tambaqui (Colossoma macropomum) post-larvae cultivated in a recirculating aquaculture system. After 2 weeks of trial, there was a significant decrease in dissolved oxygen concentration with the increase in nauplii density, but it did not interfere with larval performance and survival. In the first week, larvae fed with fewer than 500 nauplii/post-larvae presented slower growth, while in the second week, larvae fed with 1000 nauplii/post-larvae had the highest final weight and length. Regression analysis suggests that the optimum feeding density of Artemia nauplii during the first week is 411 nauplii/post-larvae, while for the second week, the growth increased proportionally to the feeding densities. The relative expression of the myod, myog, and mstn genes was higher in larvae fed with fewer than 500 nauplii/post-larvae. Although low-growing larvae showed increased expression of myod and myog genes, responsible for muscle hyperplasia and hypertrophy, respectively, mstn expression may have played a significant inhibitory role in larval development. Further research is needed to better determine the effects of the live food on the zootechnical performance and the expression of the myogenic genes in the initial phase of the life cycle of the tambaqui post-larvae.
Collapse
Affiliation(s)
- Debora Sayumi Doami Melo
- Laboratório de Genética Aplicada (LGA), Instituto Socioambiental E Dos Recursos Hídricos (ISARH), Universidade Federal Rural da Amazônia (UFRA), Belém, Pará, Brazil
| | - André Luiz Alves de Sá
- Laboratório de Genética Aplicada (LGA), Instituto Socioambiental E Dos Recursos Hídricos (ISARH), Universidade Federal Rural da Amazônia (UFRA), Belém, Pará, Brazil
| | - Sávio Lucas de Matos Guerreiro
- Laboratório de Genética Humana E Médica (LGHM), Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, Pará, Brazil
| | - Joane Natividade
- Laboratório de Biossistemas Aquáticos Amazônicos (BIOAQUAM), ISARH, UFRA, Belém, Pará, Brazil
| | | | - Rodrigo Takata
- Departamento de Pesquisa E Produção, Fundação Instituto de Pesca Do Estado Do Rio de Janeiro (FIPERJ), Rio de Janeiro, Cordeiro, Brazil
| | - Ednaldo da Silva Filho
- Laboratório de Sorologia E Biologia Molecular (LSBM), Instituto de Ciências Agrárias, UFRA, Belém, Pará, Brazil
| | | | | | | | - Igor Hamoy
- Laboratório de Genética Aplicada (LGA), Instituto Socioambiental E Dos Recursos Hídricos (ISARH), Universidade Federal Rural da Amazônia (UFRA), Belém, Pará, Brazil.
| |
Collapse
|
9
|
Hasan M, Oster M, Reyer H, Wimmers K, Fischer DC. Efficacy of dietary vitamin D 3 and 25(OH)D 3 on reproductive capacities, growth performance, immunity and bone development in pigs. Br J Nutr 2023; 130:1298-1307. [PMID: 36847163 PMCID: PMC10511684 DOI: 10.1017/s0007114523000442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 03/01/2023]
Abstract
Vitamin D3 (Vit D3) and 25(OH)D3 are used as dietary sources of active vitamin D (1,25(OH)2D3) in pig husbandry. Although acting primarily on intestine, kidney and bone, their use in pig nutrition has shown a wide range of effects also in peripheral tissues. However, there is an ambiguity in the existing literature about whether the effects of Vit D3 and 25(OH)D3 differ in attributing the molecular and phenotypic outcomes in pigs. We searched Web of Science and PubMed databases concerning the efficacy of Vit D3 in comparison with 25(OH)D3 on pig physiology, i.e. reproductive capacities, growth performance, immunity and bone development. Dietary intake of Vit D3 or 25(OH)D3 did not influence the reproductive capacity of sows. Unlike Vit D3, the maternal intake of 25(OH)D3 significantly improved the growth performance of piglets, which might be attributed to maternally induced micronutrient efficiency. Consequently, even in the absence of maternal vitamin D supplementation, 25(OH)D3-fed offspring also demonstrated better growth than the offspring received Vit D3. Moreover, a similar superior impact of 25(OH)D3 was seen with respect to serum markers of innate and humoral immunity. Last but not least, supplements containing 25(OH)D3 were found to be more effective than Vit D3 to improve bone mineralisation and formation, especially in pigs receiving basal diets low in Ca and phosphorus. The insights are of particular value in determining the principal dietary source of vitamin D to achieve its optimum utilisation efficiency, nutritional benefits and therapeutic potency and to further improve animal welfare across different management types.
Collapse
Affiliation(s)
- Maruf Hasan
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196Dummerstorf, Germany
- Department of Pediatrics, Rostock University Hospital, Ernst-Heydemann-Str. 8, 18057Rostock, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, Justus-von-Liebig-Weg 6b, University of Rostock, 18059Rostock, Germany
| | - Dagmar-Christiane Fischer
- Department of Pediatrics, Rostock University Hospital, Ernst-Heydemann-Str. 8, 18057Rostock, Germany
| |
Collapse
|
10
|
Li H, Xue R, Sun J, Ji H. Improving flesh quality of grass carp ( Ctenopharyngodon idellus) by completely replacing dietary soybean meal with yellow mealworm ( Tenebrio molitor). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 12:375-387. [PMID: 36733784 PMCID: PMC9883186 DOI: 10.1016/j.aninu.2022.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/16/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
In order to find viable alternative protein sources for aquaculture, we evaluated the effect of partial or complete replacement of dietary soybean meal with yellow mealworm (TM) on the flesh quality of grass carp. In this study, 180 grass carp (511.85 ± 0.25 g) were fed 3 experimental diets in which 0% (CN), 30% (YM30) and 100% (YM100) dietary soybean meal was replaced by TM for 90 d. The results showed that growth performance, biological parameters and serum antioxidant capacity of grass carp were not affected by dietary TM (P > 0.05). Both muscle and whole body crude protein were obviously promoted with the increase of dietary TM (P < 0.05), and the concentration of heavy metal in muscle was not influenced (P > 0.05), indicating that food safety was not influenced by TM. Dietary TM improved muscle textural characteristics by elevating adhesiveness, springiness and chewiness in YM100 (P < 0.05). In addition, the muscle tenderness was significantly increased by declining the shear force (P < 0.05). The muscle fiber density in YM30 &YM100 and length of dark bands and sarcomeres in YM100 were obviously increased (P < 0.05). The expression of myf5, myog and myhc exhibited a significant upward trend with the increase of dietary TM (P < 0.05), which promoted fiber density, length of sarcomere and texture of grass carp muscle. According to the results of metabolomics, the arachidonate (ARA) and eicosapentaenoic acid (EPA) were notably elevated in YM30 and YM100, which indicated that the improvement of flesh quality of grass carp may contribute to the dietary TM influence on muscle lipid metabolism, especially the polyunsaturated fatty acids. In conclusion, TM can completely replace dietary soybean meal and improve the nutritional value of grass carp.
Collapse
Affiliation(s)
- Handong Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Rongrong Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
11
|
Lei S, Li C, She Y, Zhou S, Shi H, Chen R. Roles of super enhancers and enhancer RNAs in skeletal muscle development and disease. Cell Cycle 2023; 22:495-505. [PMID: 36184878 PMCID: PMC9928468 DOI: 10.1080/15384101.2022.2129240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 11/03/2022] Open
Abstract
Skeletal muscle development is a multistep biological process regulated by a variety of myogenic regulatory factors, including MyoG, MyoD, Myf5, and Myf6 (also known as MRF4), as well as members of the FoxO subfamily. Differentiation and regeneration during skeletal muscle myogenesis contribute to the physiological function of muscles. Super enhancers (SEs) and enhancer RNAs (eRNAs) are involved in the regulation of development and diseases. Few studies have identified the roles of SEs and eRNAs in muscle development and pathophysiology. To develop approaches to enhance skeletal muscle mass and function, a more comprehensive understanding of the key processes underlying muscular diseases is needed. In this review, we summarize the roles of SEs and eRNAs in muscle development and disease through affecting of DNA methylation, FoxO subfamily, RAS-MEK signaling, chromatin modifications and accessibility, MyoD and cis regulating target genes. The summary could inform strategies to increase muscle mass and treat muscle-related diseases.
Collapse
Affiliation(s)
- Si Lei
- Guangdong Second Provincial General Hospital, Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangzhou, China
| | - Cheng Li
- Guangdong Second Provincial General Hospital, Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangzhou, China
| | - Yanling She
- Guangdong Second Provincial General Hospital, Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangzhou, China
| | - Shanyao Zhou
- Guangdong Second Provincial General Hospital, Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangzhou, China
| | - Huacai Shi
- Guangdong Second Provincial General Hospital, Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangzhou, China
| | - Rui Chen
- Guangdong Second Provincial General Hospital, Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangzhou, China
| |
Collapse
|
12
|
Kent E, Coleman S, Bruemmer J, Casagrande RR, Levihn C, Romo G, Herkelman K, Hess T. Comparison of an Antioxidant Source and Antioxidant Plus BCAA on Athletic Performance and Post Exercise Recovery of Horses. J Equine Vet Sci 2023; 121:104200. [PMID: 36577471 DOI: 10.1016/j.jevs.2022.104200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/11/2022] [Accepted: 12/19/2022] [Indexed: 12/26/2022]
Abstract
Antioxidant supplementation decreases postexercise oxidative stress but could also decrease muscle protein synthesis. This study compared the effects of three diets: low antioxidant (control, CON), high antioxidant (AO), and branched-chain amino acid high antioxidant (BCAO) supplementation on postexercise protein synthesis and oxidative stress. We hypothesized that supplementing antioxidants with branched-chain amino acids(BCAA) would reduce oxidative stress without hindering muscle protein synthesis. Eighteen mixed-breed polo horses (11 mares and 7 geldings, with age range between 5 and 18 years, were on CON diet for 30 days (from day -45 until day 0) and then were assigned to one of the treatments after the first lactate threshold test (day 0, LT). LT were also conducted on days 15 and 30 of supplemenation. Oxidative stress was assessed by measuring blood glutathione peroxidase, superoxide dismutase, and malondialdehyde concentrations before 2 and 4 hours after each LT. Muscle biopsies were taken before and 4 hours after each LT and analyzed for gene expression of protein synthesis by RTqPCR. Data were analyzed by ANOVA and compared by least-square means. A reduction in oxidative stress occurred over time (P < .05), from day 0 to day 30. An up-regulation in the abundance of muscle protein mRNA transcripts was found for CD36, CPT1, PDK4, MYF5, and MYOG (P < .05) after all lactate threshold tests, without a treatment effect. A treatment-by-exercise effect was observed for MYOD1 (P = .0041). Transcript abundance was upregulated in AO samples post exercise compared to other treatments. MYF6 exhibited a time-by-treatment effect (P = .045), where abundance increased more in AO samples from day 0 to day 15 and 30 compared to other treatments. Transcript abundance for metabolic and myogenic genes was upregulated in post exercise muscle samples with no advantage from supplementation of antioxidants with branched-chain amino acids compared to antioxidants alone.
Collapse
Affiliation(s)
- Emily Kent
- Department of Animal Sciences, Colorado State University, Fort Collins CO
| | - Stephen Coleman
- Department of Animal Sciences, Colorado State University, Fort Collins CO
| | - Jason Bruemmer
- USDA APHIS WS, National Wildlife Research Center, Fort Collins, CO
| | - Regan R Casagrande
- Department of Animal Sciences, Colorado State University, Fort Collins CO
| | - Christine Levihn
- Department of Animal Sciences, Colorado State University, Fort Collins CO
| | - Grace Romo
- Department of Animal Sciences, Colorado State University, Fort Collins CO
| | | | - Tanja Hess
- Department of Animal Sciences, Colorado State University, Fort Collins CO.
| |
Collapse
|
13
|
Lee JH, Peng DQ, Jin XC, Smith SB, Lee HG. Vitamin D3 decreases myoblast fusion during the growth and increases myogenic gene expression during the differentiation phase in muscle satellite cells from Korean native beef cattle. J Anim Sci 2023; 101:skad192. [PMID: 37313716 PMCID: PMC10424720 DOI: 10.1093/jas/skad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023] Open
Abstract
The process of myogenesis, which involves the growth and differentiation of muscle cells, is a crucial determinant of meat yield and quality in beef cattle. Essential nutrients, such as vitamins D and A, play vital roles in the development and maintenance of various tissues, including muscle. However, limited knowledge exists regarding the specific effects of vitamins A and D in bovine muscle. Therefore, the aim of this study was to investigate the impact of vitamins A and D treatment on myogenic fusion and differentiation in bovine satellite cells (BSC). BSC were isolated from Korean native beef cattle, specifically from four female cows approximately 30 mo old. These individual cows were used as biological replicates (n = 3 or 4), and we examined the effects of varying concentrations of vitamins A (All-trans retinoic acid; 100 nM) and D (1,25-dihydroxy-vitamin D3; 1 nM, 10 nM, and 100 nM), both individually and in combination, on myoblast fusion and myogenic differentiation during the growth phase (48 h) or differentiation phase (6 d). The results were statistically analyzed using GLM procedure of SAS with Tukey's test and t-tests or one-way ANOVA where appropriate. The findings revealed that vitamin A enhanced the myoblast fusion index, while vitamin D treatment decreased the myoblast fusion index during the growth phase. Furthermore, vitamin A treatment during the differentiation phase promoted terminal differentiation by regulating the expression of myogenic regulatory factors (Myf5, MyoD, MyoG, and Myf6) and inducing myotube hypertrophy compared to the control satellite cells (P < 0.01). In contrast, vitamin D treatment during the differentiation phase enhanced myogenic differentiation by increasing the mRNA expression of MyoG and Myf6 (P < 0.01). Moreover, the combined treatment of vitamins A and D during the growth phase increased myoblast fusion and further promoted myogenic differentiation and hypertrophy of myotubes during the differentiation phase (P < 0.01). These results suggest that vitamin A and D supplementation may have differential effects on muscle development in Korean native beef cattle during the feeding process.
Collapse
Affiliation(s)
- Jun Hee Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Dong Qiao Peng
- College of Animal Sciences, Jilin University, Jilin Provincial key laboratory of livestock and poultry feed and feeding in northeastern frigid area, Changchun, China
| | - Xue Cheng Jin
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Stephen B Smith
- Department of Animal Science, A&M University, College Station, TX, USA
| | - Hong Gu Lee
- †Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| |
Collapse
|
14
|
Colasuonno F, Price R, Moreno S. Upper and Lower Motor Neurons and the Skeletal Muscle: Implication for Amyotrophic Lateral Sclerosis (ALS). ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:111-129. [PMID: 37955773 DOI: 10.1007/978-3-031-38215-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The relationships between motor neurons and the skeletal muscle during development and in pathologic contexts are addressed in this Chapter.We discuss the developmental interplay of muscle and nervous tissue, through neurotrophins and the activation of differentiation and survival pathways. After a brief overview on muscular regulatory factors, we focus on the contribution of muscle to early and late neurodevelopment. Such a role seems especially intriguing in relation to the epigenetic shaping of developing motor neuron fate choices. In this context, emphasis is attributed to factors regulating energy metabolism, which may concomitantly act in muscle and neural cells, being involved in common pathways.We then review the main features of motor neuron diseases, addressing the cellular processes underlying clinical symptoms. The involvement of different muscle-associated neurotrophic factors for survival of lateral motor column neurons, innervating MyoD-dependent limb muscles, and of medial motor column neurons, innervating Myf5-dependent back musculature is discussed. Among the pathogenic mechanisms, we focus on oxidative stress, that represents a common and early trait in several neurodegenerative disorders. The role of organelles primarily involved in reactive oxygen species scavenging and, more generally, in energy metabolism-namely mitochondria and peroxisomes-is discussed in the frame of motor neuron degeneration.We finally address muscular involvement in amyotrophic lateral sclerosis (ALS), a multifactorial degenerative disorder, hallmarked by severe weight loss, caused by imbalanced lipid metabolism. Even though multiple mechanisms have been recognized to play a role in the disease, current literature generally assumes that the primum movens is neuronal degeneration and that muscle atrophy is only a consequence of such pathogenic event. However, several lines of evidence point to the muscle as primarily involved in the disease, mainly through its role in energy homeostasis. Data from different ALS mouse models strongly argue for an early mitochondrial dysfunction in muscle tissue, possibly leading to motor neuron disturbances. Detailed understanding of skeletal muscle contribution to ALS pathogenesis will likely lead to the identification of novel therapeutic strategies.
Collapse
Affiliation(s)
- Fiorella Colasuonno
- Department of Experimental Medicine , University of Rome "Tor Vergata", Rome, Italy
- Department of Science, LIME, University Roma Tre, Rome, Italy
| | - Rachel Price
- Department of Science, LIME, University Roma Tre, Rome, Italy
- Laboratory of Neurodevelopmental Biology, Neurogenetics and Molecular Neurobiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Sandra Moreno
- Department of Science, LIME, University Roma Tre, Rome, Italy.
- Laboratory of Neurodevelopmental Biology, Neurogenetics and Molecular Neurobiology, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
15
|
Xue R, Li H, Liu S, Hu Z, Wu Q, Ji H. Substitution of soybean meal with Clostridium autoethanogenum protein in grass carp (Ctenopharygodon idella) diets: Effects on growth performance, feed utilization, muscle nutritional value and sensory characteristics. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Lysolecithin Improves Broiler Growth Performance through Upregulating Growth-Related Genes and Nutrient Transporter Genes Expression Independent of Experimental Diet Nutrition Level. Animals (Basel) 2022; 12:ani12233365. [PMID: 36496888 PMCID: PMC9739769 DOI: 10.3390/ani12233365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
We investigated the effect and interaction of lysolecithin (LPL) and nutrition level on growth performance, nutrient ileal digestibility, expression of growth-related genes and nutrient transporter genes in broilers. A total of 1280 one day old Ross 308 mixed sex chicks with an average body weight 42.23 ± 2.4 g were randomly allotted into 2 × 2 factorial arrangement (20 replicates per treatment and 16 chickens per replicate) with two types of diet (Normal nutrition treatments starter, grower and finisher diets with ME of 3000 kcal/kg, 3100 kcal/kg and 3200 kcal/kg, respectively, and CP level of 22%, 21%, and 20%, respectively; high nutrition treatments diets with 50 kcal/kg ME and 0.5% CP higher than normal nutrition treatment at each stage). Two levels of LPL supplementation (0 and 500 mg/kg) were also employed. From day 21 to day 35 and full stage of the experiment, the birds fed a high nutrition (HN) diet had a greater body weight gain (BWG) and lower feed conversion ratio (FCR) than those fed a normal nutrition (NN) diet (p < 0.05). Besides, lysolecithin increased BWG significantly (p < 0.05). The birds fed a diet with LPL revealed increasing fat digestibility compared to birds fed the basal diet (p < 0.05). LPL significantly increased the ileal digestibility of amino acids, including Ile, Thr, Phe, His, Arg, Tyr, Glu, Pro, Gly, Ala (p < 0.05). No interaction was found between LPL and nutrition level in BWG, FCR and nutrient digestibility. In HN diet, the genes expression of myogenic differentiation 1 (MYOD1), myogenin (MYOG), cluster of differentiation 36 (CD36), fatty acid-binding protein (FABP1), cationic amino acid transporter 1 (CAT1) and Y + L amino acid transporter 1 (y+, LAT1) were significantly elevated via LPL supplementation (p < 0.05). In NN diet, LPL significantly increased the genes expression of growth hormone (GH), insulin-like growth factor 1 (IGF1), MYOD1 and y+, LAT1 (p < 0.05). In conclusion, upregulating the nutrients transporter gene and growth-related gene expression of the host, independent of nutrition level changes, may be the action mechanism of lysolecithin on growth promotion in animals.
Collapse
|
17
|
Yang Z, Song C, Jiang R, Huang Y, Lan X, Lei C, Qi X, Zhang C, Huang B, Chen H. CircNDST1 Regulates Bovine Myoblasts Proliferation and Differentiation via the miR-411a/ Smad4 Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10044-10057. [PMID: 35916743 DOI: 10.1021/acs.jafc.1c08167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Circular RNA (circRNA) is endogenous noncoding RNA found throughout the eukaryotic genome. It regulates several biological activities at the transcription or post-transcription level. However, the underlying function of circRNA in bovine skeletal muscle development remains unknown. Here, we identified a novel circRNA, circNDST1, and investigated its function and mechanism on the proliferation and differentiation of bovine myoblasts. At the molecular and cellular levels, circNDST1 could promote bovine myoblasts proliferation and inhibit differentiation. Mechanistically, circNDST1 is expressed in the cytoplasmic of myoblast and was enriched by protein Ago2. circNDST1 acts as a competing endogenous RNA that sponges miR-411a and alleviates the inhibitory effect on its target gene, Smad4. miR-411a and Smad4 were also involved in regulating bovine myoblast proliferation and differentiation. These findings suggest that circNDST1 functions as a competing endogenous RNA and regulates bovine myoblast proliferation and differentiation through the miR-411a/Smad4 axis.
Collapse
Affiliation(s)
- Zhaoxin Yang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, Shaanxi 712100, China
| | - Chengchuang Song
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, Shaanxi 712100, China
- Institute of Cellular and Molecular Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Rui Jiang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, Shaanxi 712100, China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, Shaanxi 712100, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, Shaanxi 712100, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, Shaanxi 712100, China
| | - Xinglei Qi
- Bureau of Animal Husbandry of Biyang County, Biyang, Henan 463700, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, Yunnan 650212, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, Shaanxi 712100, China
- Institute of Cellular and Molecular Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
18
|
Myocyte Culture with Decellularized Skeletal Muscle Sheet with Observable Interaction with the Extracellular Matrix. Bioengineering (Basel) 2022; 9:bioengineering9070309. [PMID: 35877360 PMCID: PMC9311603 DOI: 10.3390/bioengineering9070309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
In skeletal muscles, muscle fibers are highly organized and bundled within the basement membrane. Several microfabricated substrate models have failed to mimic the macrostructure of native muscle, including various extracellular matrix (ECM) proteins. Therefore, we developed and evaluated a system using decellularized muscle tissue and mouse myoblasts C2C12 to analyze the interaction between native ECM and myocytes. Chicken skeletal muscle was sliced into sheets and decellularized to prepare decellularized skeletal muscle sheets (DSMS). C2C12 was then seeded and differentiated on DSMS. Immunostaining for ECM molecules was performed to examine the relationship between myoblast adhesion status, myotube orientation, and collagen IV orientation. Myotube survival in long-term culture was confirmed by calcein staining. C2C12 myoblasts adhered to scaffolds in DSMS and developed adhesion plaques and filopodia. Furthermore, C2C12 myotubes showed orientation along the ECM orientation within DSMS. Compared to plastic dishes, detachment was less likely to occur on DSMS, and long-term incubation was possible. This culture technique reproduces a cell culture environment reflecting the properties of living skeletal muscle, thereby allowing studies on the interaction between the ECM and myocytes.
Collapse
|
19
|
Zhong J, Jin Z, Jiang L, Zhang L, Hu Z, Zhang Y, Liu Y, Ma J, Huang Y. Structural basis of the bHLH domains of MyoD-E47 heterodimer. Biochem Biophys Res Commun 2022; 621:88-93. [PMID: 35810596 DOI: 10.1016/j.bbrc.2022.06.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022]
Abstract
The basic helix-loop-helix (bHLH) family is one of the most conserved transcription factor families that plays an important role in regulating cell growth, differentiation and tissue development. Typically, members of this family form homo- or heterodimers to recognize specific motifs and activate transcription. MyoD is a vital transcription factor that regulates muscle cell differentiation. However, it is necessary for MyoD to form a heterodimer with E-proteins to activate transcription. Even though the crystal structure of the MyoD homodimer has been determined, the structure of the MyoD heterodimer in complex with the E-box protein remains unclear. In this study, we determined the crystal structure of the bHLH domain of the MyoD-E47 heterodimer at 2.05 Å. Our structural analysis revealed that MyoD interacts with E47 through a hydrophobic interface. Moreover, we confirmed that heterodimerization could enhance the binding affinity of MyoD to E-box sequences. Our results provide new structural insights into the heterodimer of MyoD and E-box protein, suggesting the molecular mechanism of transcription activation of MyoD upon binding to E-box protein.
Collapse
Affiliation(s)
- Jiayun Zhong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Zhaohui Jin
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, 200092, Shanghai, China
| | - Lin Jiang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, 200092, Shanghai, China
| | - Lingxiao Zhang
- Department of Biliary-Pancreatic Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University, 200120, Shanghai, China
| | - Zetao Hu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Yuhan Zhang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, 200092, Shanghai, China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University, 200120, Shanghai, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China.
| | - Ying Huang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, 200092, Shanghai, China.
| |
Collapse
|
20
|
Yang F, Liu S, Qu J, Zhang Q. Identification and functional characterization of Pomstna in Japanese flounder (Paralichthys olivaceus). Gene 2022; 837:146675. [PMID: 35738447 DOI: 10.1016/j.gene.2022.146675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/13/2022] [Accepted: 06/10/2022] [Indexed: 11/04/2022]
Abstract
Myostatin (MSTN) as a negative regulator of muscle growth has been identified in Japanese flounder. Yet, most fish experienced the teleost specific genome duplication and possess at least two mstn genes. In current study, the second mstn gene named Pomstna is identified in Japanese flounder. Pomstna is clustered with other mstn2 of teleosts and owned highly conserved TGF-beta domain. In addition to muscle, Pomstna also highly expressed in brain and spleen. Using the primarily cultured muscle cells of Japanese flounder, we found that Pomstna could inhibit the proliferation and differentiation of muscle cells in vitro. As a ligand of TGF-beta signaling pathway, Pomstnb could regulate the expression of p21 and myod by activating the TGF-beta signaling pathway. Different from the function of Pomstnb, Pomstna could not activate the TGF-beta signaling pathway in vitro. During the differentiation of PoM cells, the expression of Pomstnb decreased significantly but the expression of Pomstna showed no change. Our study suggests that Pomstna could negatively regulate the growth and differentiation of muscle like Pomstnb yet through a different regulatory mechanism than Pomstnb. The present study suggests that muscle proliferation and differentiation were regulated by mstn not only through the TGF-beta signaling pathway but also other unknown mechanisms.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Saisai Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Jiangbo Qu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Process, Pilot National Laboratory for Marine Science and Technology (Qingdao), 266237 Qingdao, Shandong, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, 572000 Sanya, China.
| |
Collapse
|
21
|
Shirakawa T, Toyono T, Inoue A, Matsubara T, Kawamoto T, Kokabu S. Factors Regulating or Regulated by Myogenic Regulatory Factors in Skeletal Muscle Stem Cells. Cells 2022; 11:cells11091493. [PMID: 35563799 PMCID: PMC9104119 DOI: 10.3390/cells11091493] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
MyoD, Myf5, myogenin, and MRF4 (also known as Myf6 or herculin) are myogenic regulatory factors (MRFs). MRFs are regarded as master transcription factors that are upregulated during myogenesis and influence stem cells to differentiate into myogenic lineage cells. In this review, we summarize MRFs, their regulatory factors, such as TLE3, NF-κB, and MRF target genes, including non-myogenic genes such as taste receptors. Understanding the function of MRFs and the physiology or pathology of satellite cells will contribute to the development of cell therapy and drug discovery for muscle-related diseases.
Collapse
Affiliation(s)
- Tomohiko Shirakawa
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.S.); (A.I.); (T.K.)
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Takashi Toyono
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Asako Inoue
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.S.); (A.I.); (T.K.)
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.S.); (A.I.); (T.K.)
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
- Correspondence: ; Tel.: +81-93-582-1131; Fax: +81-93-285-6000
| |
Collapse
|
22
|
Mbadhi MN, Tang JM, Zhang JX. Histone Lysine Methylation and Long Non-Coding RNA: The New Target Players in Skeletal Muscle Cell Regeneration. Front Cell Dev Biol 2021; 9:759237. [PMID: 34926450 PMCID: PMC8678087 DOI: 10.3389/fcell.2021.759237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Satellite stem cell availability and high regenerative capacity have made them an ideal therapeutic approach for muscular dystrophies and neuromuscular diseases. Adult satellite stem cells remain in a quiescent state and become activated upon muscular injury. A series of molecular mechanisms succeed under the control of epigenetic regulation and various myogenic regulatory transcription factors myogenic regulatory factors, leading to their differentiation into skeletal muscles. The regulation of MRFs via various epigenetic factors, including DNA methylation, histone modification, and non-coding RNA, determine the fate of myogenesis. Furthermore, the development of histone deacetylation inhibitors (HDACi) has shown promising benefits in their use in clinical trials of muscular diseases. However, the complete application of using satellite stem cells in the clinic is still not achieved. While therapeutic advancements in the use of HDACi in clinical trials have emerged, histone methylation modulations and the long non-coding RNA (lncRNA) are still under study. A comprehensive understanding of these other significant epigenetic modulations is still incomplete. This review aims to discuss some of the current studies on these two significant epigenetic modulations, histone methylation and lncRNA, as potential epigenetic targets in skeletal muscle regeneration. Understanding the mechanisms that initiate myoblast differentiation from its proliferative state to generate new muscle fibres will provide valuable information to advance the field of regenerative medicine and stem cell transplant.
Collapse
Affiliation(s)
- Magdaleena Naemi Mbadhi
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Jing-Xuan Zhang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
23
|
Tanaka S, Hamada Y, Yokoyama Y, Yamamoto H, Kogo M. Osteopontin-derived synthetic peptide SVVYGLR upregulates functional regeneration of oral and maxillofacial soft-tissue injury. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:174-181. [PMID: 34630775 PMCID: PMC8487951 DOI: 10.1016/j.jdsr.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 01/03/2023] Open
Abstract
Wound healing in the oral and maxillofacial region is a complicated and interactive process. Severe mucosal or skeletal muscle injury by trauma or surgery induces worse healing conditions, including delayed wound closure and repair with excessive scar tissue. These complications lead to persistent functional impairment, such as digestive behavior or suppression of maxillofacial growth in infancy. Osteopontin (OPN), expressed in a variety of cells, is multifunctional and comprises a number of functional domains. Seven amino acids sequence, SVVYGLR (SV peptide), exposed by thrombin cleavage of OPN, has angiogenic activity and promotes fibroblast differentiation into myofibroblasts and increased expression of collagen type III. Additionally, synthetic SV peptide shows faster dermal and oral mucosal wound closure by facilitating cell motility and migratory activities in dermal- or mucosal-derived keratinocytes and fibroblasts. Moreover, cell motility and differentiation in myogenic cell populations are accelerated by SV peptide, which contributes to the facilitation of matured myofibers and scarless healing and favorable functional regeneration after skeletal muscle injury. SV peptide has high affinity with TGF-β, with potential involvement of the TGF-β/Smad signaling pathway. Clinical application of single-dose SV peptide could be a powerful alternative treatment option for excessive oral and maxillofacial wound care to prevent disadvantageous events.
Collapse
Affiliation(s)
- Susumu Tanaka
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Yoshinosuke Hamada
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Health Economics and Management, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Pediatric Dentistry, Osaka Dental University, Osaka, Japan
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hirofumi Yamamoto
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mikihiko Kogo
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| |
Collapse
|
24
|
Qiao J, Wang S, Zhou J, Tan B, Li Z, Zheng E, Cai G, Wu Z, Hong L, Gu T. ITGB6 inhibits the proliferation of porcine skeletal muscle satellite cells. Cell Biol Int 2021; 46:96-105. [PMID: 34519117 DOI: 10.1002/cbin.11702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/30/2021] [Accepted: 09/12/2021] [Indexed: 01/17/2023]
Abstract
The formation of embryonic muscle fibers determines the amount of postnatal muscles and is regulated by a variety of signaling pathways and transcription factors. Previously, by using chromatin immunoprecipitation-sequencing and RNA-Seq techniques, we identified a large number of genes that are regulated by H3K27me3 in porcine embryonic skeletal muscles. Among these genes, we found that ITGB6 is regulated by H3K27me3. However, its function in muscle development is unknown. In this study, we first verified that ITGB6 was differentially regulated by H3K27me3 and that its expression levels were upregulated in porcine skeletal muscles at embryonic Days 33, 65, and 90. Then, we performed gain- or loss-of-function studies on porcine skeletal muscle satellite cells to study the role of ITGB6 in porcine skeletal muscle development. The proliferation of porcine skeletal muscle satellite cells was studied through real-time polymerase chain reaction, Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine staining, Western blot, and flow cytometry analyses. We found that the ITGB6 gene was regulated by H3K27me3 during muscle development and had an inhibitory effect on the proliferation of porcine skeletal muscle satellite cells.
Collapse
Affiliation(s)
- Jiaxin Qiao
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shanshan Wang
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jian Zhou
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baohua Tan
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zicong Li
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, China.,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Guangzhou, China.,Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
| | - Enqin Zheng
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gengyuan Cai
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
| | - Zhenfang Wu
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, China.,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Guangzhou, China.,Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
| | - Linjun Hong
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Gu
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
25
|
C2C12 myoblasts are more sensitive to the toxic effects of simvastatin than myotubes and show impaired proliferation and myotube formation. Biochem Pharmacol 2021; 190:114649. [PMID: 34111424 DOI: 10.1016/j.bcp.2021.114649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 11/23/2022]
Abstract
Statins reduce cardiovascular complications in patients with high LDL-cholesterol but are associated with myopathy. We compared the toxicity of simvastatin of C2C12 myoblasts and myotubes. Since myoblasts can proliferate and fuse to myotubes, myoblasts can be considered as satellite cells and myotubes as mature muscle fibers. Simvastatin increased plasma membrane permeability and decreased the cellular ATP content in both myoblasts and myotubes, but with a stronger effect on myoblasts. While insulin prevented cytotoxicity up to 8 h after addition of simvastatin to myotubes, prevention in myoblasts required simultaneous addition. Mevalonate and geranylgeraniol prevented simvastatin-associated cytotoxicity in both myoblasts and myotubes. Simvastatin impaired the phosphorylation of the insulin receptor (IR β), Akt ser473 and S6rp, and increased phosphorylation of AMPK thr172 in both myotubes and myoblasts, which was prevented by insulin and mevalonate. Simvastatin impaired oxygen consumption and increased superoxide production by myoblasts and myotubes and induced apoptosis via cytochrome c release. In addition, simvastatin impaired proliferation and fusion of myoblasts to myotubes by inhibiting the expression of the nuclear transcription factor MyoD and of the metalloprotease ADAM-12. Decreased expression of the proliferation factor Ki-67 and of ADAM-12 were also observed in gastrocnemius of mice treated with simvastatin. In conclusion, myoblasts were more susceptible to the toxic effects of simvastatin and simvastatin impaired myoblast proliferation and myotube formation. Impaired muscle regeneration may represent a new mechanism of statin myotoxicity.
Collapse
|
26
|
Aase-Remedios ME, Coll-Lladó C, Ferrier DEK. More Than One-to-Four via 2R: Evidence of an Independent Amphioxus Expansion and Two-Gene Ancestral Vertebrate State for MyoD-Related Myogenic Regulatory Factors (MRFs). Mol Biol Evol 2021; 37:2966-2982. [PMID: 32520990 PMCID: PMC7530620 DOI: 10.1093/molbev/msaa147] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The evolutionary transition from invertebrates to vertebrates involved extensive gene duplication, but understanding precisely how such duplications contributed to this transition requires more detailed knowledge of specific cases of genes and gene families. Myogenic differentiation (MyoD) has long been recognized as a master developmental control gene and member of the MyoD family of bHLH transcription factors (myogenic regulatory factors [MRFs]) that drive myogenesis across the bilaterians. Phylogenetic reconstructions within this gene family are complicated by multiple instances of gene duplication and loss in several lineages. Following two rounds of whole-genome duplication (2R WGD) at the origin of the vertebrates, the ancestral function of MRFs is thought to have become partitioned among the daughter genes, so that MyoD and Myf5 act early in myogenic determination, whereas Myog and Myf6 are expressed later, in differentiating myoblasts. Comparing chordate MRFs, we find an independent expansion of MRFs in the invertebrate chordate amphioxus, with evidence for a parallel instance of subfunctionalization relative to that of vertebrates. Conserved synteny between chordate MRF loci supports the 2R WGD events as a major force in shaping the evolution of vertebrate MRFs. We also resolve vertebrate MRF complements and organization, finding a new type of vertebrate MRF gene in the process, which allowed us to infer an ancestral two-gene state in the vertebrates corresponding to the early- and late-acting types of MRFs. This necessitates a revision of previous conclusions about the simple one-to-four origin of vertebrate MRFs.
Collapse
Affiliation(s)
- Madeleine E Aase-Remedios
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Clara Coll-Lladó
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| | - David E K Ferrier
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| |
Collapse
|
27
|
Tanaka S, Fujishita Y, Kawaguchi N, Usuki T, Yokoyama Y, Wu X, Mori S, Yamamoto H, Kogo M. The synthetic peptide SVVYGLR promotes cell motility of myogenic cells and facilitates differentiation in skeletal muscle regeneration. Dent Mater J 2021; 40:766-771. [PMID: 33563848 DOI: 10.4012/dmj.2020-317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present study was designed to evaluate the effects of the osteopontin-derived multifunctional short peptide, SVVYGLR (SV) peptide on the biological properties of skeletal muscle-specific myogenic cells. We employed human-derived satellite cells (HSkMSC) and skeletal muscle myoblasts (HSMM) and performed a series of biochemical experiments. The synthetic SV peptide showed no influence on the proliferation and adhesion properties of HSkMSC and HSMM, while it showed a significant increase in cell motility, including migration activities upon treatment with the SV peptide. In a rat model with volumetric loss of masticatory muscle, immunohistochemical staining of regenerating muscle tissue immediately after injury demonstrated an increase of the number of both MyoD- and myogenin-positive cells in SV peptide-treated group. These results suggest that SV peptide plays a potent role in facilitating skeletal muscle regeneration by promoting the migration, and differentiation of myogenic precursor and progenitor cells.
Collapse
Affiliation(s)
- Susumu Tanaka
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Yohei Fujishita
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Naomasa Kawaguchi
- Department of Cardiovascular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University.,Departments of Drug Discovery Cardiovascular Regeneration, Graduate School of Medicine, Osaka, Osaka University.,Graduate School of Health Sciences, Morinomiya University of Medical Sciences
| | - Takasuke Usuki
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University
| | - Xin Wu
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University
| | - Seiji Mori
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University.,Department of Medical Technology, Faculty of Health Sciences, Morinomiya University of Medical Sciences
| | - Hirofumi Yamamoto
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University
| | - Mikihiko Kogo
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| |
Collapse
|
28
|
Fei W, Liu M, Zhang Y, Cao S, Wang X, Xie B, Wang J. Identification of key pathways and hub genes in the myogenic differentiation of pluripotent stem cell: a bioinformatics and experimental study. J Orthop Surg Res 2021; 16:4. [PMID: 33397419 PMCID: PMC7784349 DOI: 10.1186/s13018-020-01979-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Background The regeneration of muscle cells from stem cells is an intricate process, and various genes are included in the process such as myoD, mf5, mf6, etc. The key genes and pathways in the differentiating stages are various. Therefore, the differential expression of key genes after 4 weeks of differentiation were investigated in our study. Method Three published gene expression profiles, GSE131125, GSE148994, and GSE149055, about the comparisons of pluripotent stem cells to differentiated cells after 4 weeks were obtained from the Gene Expression Omnibus (GEO) database. Common differentially expressed genes (DEGs) were obtained for further analysis such as protein-protein interaction (PPI) network, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and GSEA analysis. After hub genes and key pathways were obtained, we manipulated in vitro cell research for substantiation such as immunohistochemical staining and semi-quantitative analysis and quantitative real-time PCR. Results A total of 824 DEGs including 350 upregulated genes and 474 downregulated genes were identified in the three GSEs. Nineteen hub genes were identified from the PPI network. The GO and KEGG pathway analyses confirmed that myogenic differentiation at 4 weeks was strongly associated with pathway in cancer, PI3K pathway, actin cytoskeleton regulation and metabolic pathway, biosynthesis of antibodies, and cell cycle. GSEA analysis indicated the differentiated cells were enriched in muscle cell development and myogenesis. Meanwhile, the core genes in each pathway were identified from the GSEA analysis. The in vitro cell research revealed that actin cytoskeleton and myoD were upregulated after 4-week differentiation. Conclusions The research revealed the potential hub genes and key pathways after 4-week differentiation of stem cells which contribute to further study about the molecular mechanism of myogenesis regeneration, paving a way for more accurate treatment for muscle dysfunction. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-020-01979-x.
Collapse
Affiliation(s)
- Wenyong Fei
- Sports Medicine Department, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, 98# Nantong xi Road, Yangzhou, 225001, China
| | - Mingsheng Liu
- Dalian Medical University, Dalian, 116044, Dalian, China
| | - Yao Zhang
- Dalian Medical University, Dalian, 116044, Dalian, China
| | - Shichao Cao
- Dalian Medical University, Dalian, 116044, Dalian, China
| | - Xuanqi Wang
- Dalian Medical University, Dalian, 116044, Dalian, China
| | - Bin Xie
- Dalian Medical University, Dalian, 116044, Dalian, China
| | - Jingcheng Wang
- Sports Medicine Department, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, 98# Nantong xi Road, Yangzhou, 225001, China.
| |
Collapse
|
29
|
Láruson ÁJ, Yeaman S, Lotterhos KE. The Importance of Genetic Redundancy in Evolution. Trends Ecol Evol 2020; 35:809-822. [DOI: 10.1016/j.tree.2020.04.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022]
|
30
|
Chromatin and transcriptome changes in human myoblasts show spatio-temporal correlations and demonstrate DPP4 inhibition in differentiated myotubes. Sci Rep 2020; 10:14336. [PMID: 32868771 PMCID: PMC7459101 DOI: 10.1038/s41598-020-70756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/03/2020] [Indexed: 12/03/2022] Open
Abstract
Although less attention was paid to understanding physical localization changes in cell nuclei recently, depicting chromatin interaction maps is a topic of high interest. Here, we focused on defining extensive physical changes in chromatin organization in the process of skeletal myoblast differentiation. Based on RNA profiling data and 3D imaging of myogenic (NCAM1, DES, MYOG, ACTN3, MYF5, MYF6, ACTN2, and MYH2) and other selected genes (HPRT1, CDH15, DPP4 and VCAM1), we observed correlations between the following: (1) expression change and localization, (2) a gene and its genomic neighbourhood expression and (3) intra-chromosome and microscopical locus-centromere distances. In particular, we demonstrated the negative regulation of DPP4 mRNA (p < 0.001) and protein (p < 0.05) in differentiated myotubes, which coincided with a localization change of the DPP4 locus towards the nuclear lamina (p < 0.001) and chromosome 2 centromere (p < 0.001). Furthermore, we discuss the possible role of DPP4 in myoblasts (supported by an inhibition assay). We also provide positive regulation examples (VCAM1 and MYH2). Overall, we describe for the first time existing mechanisms of spatial gene expression regulation in myoblasts that might explain the issue of heterogenic responses observed during muscle regenerative therapies.
Collapse
|
31
|
Zhu KC, Liu BS, Guo HY, Zhang N, Guo L, Jiang SG, Zhang DC. Functional analysis of two MyoDs revealed their role in the activation of myomixer expression in yellowfin seabream (Acanthopagrus latus) (Hottuyn, 1782). Int J Biol Macromol 2020; 156:1081-1090. [PMID: 31756488 DOI: 10.1016/j.ijbiomac.2019.11.139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/11/2019] [Accepted: 11/17/2019] [Indexed: 11/24/2022]
Abstract
Myoblast determination protein (MyoD), a muscle-specific basic helix-loop-helix (bHLH) transcription factor, plays a pivotal role in regulating skeletal muscle growth and development. However, the regulation mechanism of MyoD has not been determined in marine fishes. In the present study, we isolated the MyoD1 (AlMyoD1) and MyoD2 (AlMyoD2) genomic sequences and analyzed the expression patterns in different tissues of yellowfin seabream (Acanthopagrus latus). The open reading frame (ORF) sequences of AlMyoD1 and AlMyoD2 encoded 297 and 271 amino acids possessing three common characteristic domains, respectively, containing a myogenic basic domain, a bHLH domain, and a ser-rich region (helix III). Phylogenetic and genome structure analyses exhibited classic phylogeny and highly conserved exon/intron architecture. Furthermore, the AlMyoD1 and AlMyoD2 transcription levels were higher in white muscle than in the other tissues. In order to further study AlMyoD function in muscle, promoter sequence analysis found that several E-box binding sites were present. Additionally, binding sites of Almyomixer involved in mammal myoblast fusion, which expression was also the highest in white muscle, were found in the promoter of AlMyoD. Pomoter activity assays further confirmed that both AlMyoD1 and AlMyoD2 can dramatically activate Almyomixer expression, and the AlMyoD1 M2 and AlMyoD2 M5 E-box binding sites were functionally important for Almyomixer transcription based on mutation analysis and electrophoretic mobile shift assays (EMSA). In summary, two MyoDs play a core role in Almyomixer regulation and may promote myofibre formation during muscle development and growth by regulating Almyomixer expression.
Collapse
Affiliation(s)
- Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
32
|
Mosele FC, Bissi Ricci R, Abreu P, Rosa Neto JC. Muscle regeneration in adiponectin knockout mice showed early activation of anti-inflammatory response with perturbations in myogenesis. J Cell Physiol 2020; 235:6183-6193. [PMID: 32003014 DOI: 10.1002/jcp.29547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Activation, proliferation, and differentiation of satellite cells can be influenced by extracellular factors, such as adiponectin. This adipokine has been proposed as a regulator of in vitro myogenesis, but its action on in vivo regeneration is not still elucidated. We used C57BL/6 (wild-type [WT]) and adiponectin knockout (AdKO) mice injured with barium chloride at periods of 3, 7, and 14 days after injury. The AdKO presented a higher number of centralized nuclei after 7 days, and a reduction in myogenic genes was observed after 3 days. Moreover, these mice presented an increase in anti-inflammatory cytokines after 3 and 7 days, and an increase in the M2 gene marker and proinflammatory cytokines after 7 days. The WT demonstrated an increase in adiponectin messenger RNA after 7 days. These results demonstrate that adiponectin is important in tissue remodeling during regeneration and that its deficiency does not compromise the maturation of muscle fibers, due to an increase in anti-inflammatory response; however, there is a possible impairment in proinflammatory response and an increase in centralized myonuclei.
Collapse
Affiliation(s)
- Francielle C Mosele
- Department of Cellular Biology and Development, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Rafael Bissi Ricci
- Department of Cellular Biology and Development, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Phablo Abreu
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo, Brazil
| | - José C Rosa Neto
- Department of Cellular Biology and Development, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
33
|
Tavera-Montañez C, Hainer SJ, Cangussu D, Gordon SJV, Xiao Y, Reyes-Gutierrez P, Imbalzano AN, Navea JG, Fazzio TG, Padilla-Benavides T. The classic metal-sensing transcription factor MTF1 promotes myogenesis in response to copper. FASEB J 2019; 33:14556-14574. [PMID: 31690123 PMCID: PMC6894080 DOI: 10.1096/fj.201901606r] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022]
Abstract
Metal-regulatory transcription factor 1 (MTF1) is a conserved metal-binding transcription factor in eukaryotes that binds to conserved DNA sequence motifs, termed metal response elements. MTF1 responds to both metal excess and deprivation, protects cells from oxidative and hypoxic stresses, and is required for embryonic development in vertebrates. To examine the role for MTF1 in cell differentiation, we use multiple experimental strategies [including gene knockdown (KD) mediated by small hairpin RNA and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9), immunofluorescence, chromatin immunopreciptation sequencing, subcellular fractionation, and atomic absorbance spectroscopy] and report a previously unappreciated role for MTF1 and copper (Cu) in cell differentiation. Upon initiation of myogenesis from primary myoblasts, both MTF1 expression and nuclear localization increased. Mtf1 KD impaired differentiation, whereas addition of nontoxic concentrations of Cu+-enhanced MTF1 expression and promoted myogenesis. Furthermore, we observed that Cu+ binds stoichiometrically to a C terminus tetra-cysteine of MTF1. MTF1 bound to chromatin at the promoter regions of myogenic genes, and Cu addition stimulated this binding. Of note, MTF1 formed a complex with myogenic differentiation (MYOD)1, the master transcriptional regulator of the myogenic lineage, at myogenic promoters. These findings uncover unexpected mechanisms by which Cu and MTF1 regulate gene expression during myoblast differentiation.-Tavera-Montañez, C., Hainer, S. J., Cangussu, D., Gordon, S. J. V., Xiao, Y., Reyes-Gutierrez, P., Imbalzano, A. N., Navea, J. G., Fazzio, T. G., Padilla-Benavides, T. The classic metal-sensing transcription factor MTF1 promotes myogenesis in response to copper.
Collapse
Affiliation(s)
- Cristina Tavera-Montañez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Sarah J. Hainer
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and
| | - Daniella Cangussu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shellaina J. V. Gordon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Yao Xiao
- Department of Chemistry, Skidmore College, Saratoga Springs, New York, USA
| | - Pablo Reyes-Gutierrez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anthony N. Imbalzano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Juan G. Navea
- Department of Chemistry, Skidmore College, Saratoga Springs, New York, USA
| | - Thomas G. Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
34
|
Torok ZA, Busekrus RB, Hydock DS. Effects of Creatine Supplementation on Muscle Fatigue in Rats Receiving Doxorubicin Treatment. Nutr Cancer 2019; 72:252-259. [PMID: 31184509 DOI: 10.1080/01635581.2019.1623900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The purpose of this study was to investigate the effects of in vivo creatine monohydrate (Cr) supplementation on doxorubicin (Dox)-induced muscle dysfunction. Male rats were fed a diet supplemented with 3% Cr or a standard chow for 2 wk. After 2 wk of feeding, animals received Dox or saline as a placebo. Five days post-injection, grip strength was measured, and muscle fatigue was analyzed ex vivo. When compared with controls, a significantly lower grip strength was observed with Dox treatment, but no significant handgrip difference was observed with Cr feeding prior to Dox treatment when compared to controls. In the isolated muscle fatigue experiments, solei (primarily type I muscle) from controls produced significantly less force than baseline at 60 s and solei from Dox treated rats produced significantly less force than baseline at 30 s; however, Cr feeding prior to Dox produced significantly less force than baseline at 60 s. In the primarily type II EDL, a decline in force production from baseline was observed at 50 s in controls and Cr + Dox and at 20 s in standard chow + Dox. Cr attenuated the increase in fatigue that accompanies Dox treatment suggesting that Cr supplementation may have use in managing Dox myotoxicity.
Collapse
Affiliation(s)
- Zoltan A Torok
- School of Sport and Exercise Science, University of Northern Colorado, Greeley, Colorado, USA
| | - Raquel B Busekrus
- School of Sport and Exercise Science, University of Northern Colorado, Greeley, Colorado, USA
| | - David S Hydock
- School of Sport and Exercise Science, University of Northern Colorado, Greeley, Colorado, USA.,The University of Northern Colorado Cancer Rehabilitation Institute, University of Northern Colorado, Greeley, Colorado, USA
| |
Collapse
|
35
|
Chen R, Wen C, Cheng Y, Chen Y, Zhuang S, Zhou Y. Effects of dietary supplementation with betaine on muscle growth, muscle amino acid contents and meat quality in Cherry Valley ducks. J Anim Physiol Anim Nutr (Berl) 2019; 103:1050-1059. [PMID: 31140661 DOI: 10.1111/jpn.13083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/08/2019] [Accepted: 02/22/2019] [Indexed: 01/09/2023]
Abstract
The effects of dietary betaine supplementation on growth performance, carcass characteristics, muscle amino acid contents, meat quality, antioxidant capacity, myogenic gene expression and mechanistic target of rapamycin (mTOR) signalling pathway in Cherry Valley ducks were evaluated. A total of 720 1-day-old Cherry Valley ducks were randomly distributed into four groups with six replicates of 30 birds for a 42-day feeding trial. Ducks were fed a basal diet supplemented with 0 (control), 250, 500 or 1,000 mg/kg betaine, respectively. Growth performance was not affected by betaine. Incremental levels of betaine linearly (p < 0.05) increased the breast muscle yield and linearly (p < 0.05) decreased the subcutaneous fat thickness and the abdominal fat yield. The contents of methionine, serine, glycine, glutamate and total non-essential amino acid in breast muscle were linearly (p < 0.05) increased by betaine supplementation. With increasing betaine levels, the drip loss and the content of malondialdehyde (MDA) were linearly (p < 0.05) decreased, and the redness of meat (linear p < 0.05), the activities of catalase (CAT) (linear p < 0.05) and total superoxide dismutase (T-SOD) (linear p < 0.05, quadratic p < 0.05) were increased. Moreover, the myogenic differentiation factor 1 (MyoD1) mRNA expression and the mTOR mRNA expression and protein phosporylation were linearly (p < 0.05) up-regulated, and the myostatin (MSTN) mRNA expression was linearly (p < 0.05) down-regulated by betaine supplementation. Overall, this study indicated that betaine supplementation did not affect the growth performance of Cherry Valley ducks, but could linearly increase some amino acid contents in breast muscle, especially glycine, and increase muscle antioxidant activity to improve meat quality. Moreover, betaine supplementation could improve the breast muscle yield by increasing MyoD1 mRNA expression, decreasing MSTN mRNA expression and regulating mTOR signalling pathway.
Collapse
Affiliation(s)
- Rui Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chao Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yefei Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Su Zhuang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
36
|
Salomão RAS, De Paula TG, Zanella BTT, Carvalho PLPF, da Silva Duran BO, Valente JS, de Almeida Fantinatti BE, Fernandes AA, Barros MM, Mareco EA, Carvalho RF, Dos Santos VB, Dal-Pai-Silva M. The combination of resveratrol and exercise enhances muscle growth characteristics in pacu (Piaractus mesopotamicus). Comp Biochem Physiol A Mol Integr Physiol 2019; 235:46-55. [PMID: 31077846 DOI: 10.1016/j.cbpa.2019.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/15/2019] [Accepted: 05/02/2019] [Indexed: 02/08/2023]
Abstract
Pacu is a tropical fish with important value to aquaculture. During cellular metabolism, reactive oxygen species (ROS) are produced, which can influence muscle growth. Resveratrol is an effective antioxidant that scavenges ROS and can modulate physical performance preventing oxidative stress. We investigated the effects of resveratrol and exercise on pacu muscle growth characteristics. Four groups were used: fish fed with control diet /without exercise (C); fish fed with control diet/subjected to exercise (CE); fish fed resveratrol-supplemented diet/without exercise (R); and fish fed resveratrol-supplemented diet/subjected to exercise (RE). At 30 days, the RE group presented a significant increase in body weight, fewer muscle fibers in the 20-40 μm and more fibers in the >60 μm diameter class compared to the C group. At day 7, catalase activity decreased in CE and RE groups. Superoxide dismutase activity decreased only in the CE group. Myod and mtor gene expression was higher in R and RE and igf-1 was up-regulated in the RE group. Murf1a level decreased in CE, R, and RE, while sdha expression was higher in the RE group. We suggest that resveratrol in combination with exercise was beneficial for muscle growth and metabolism, increasing the expression levels of genes related to muscle anabolism and oxidative metabolism, besides the decrease of catabolic gene expression. Notably, all of these changes occurred together with muscle hypertrophy and increased body weight. Our results show a positive application for resveratrol in association with exercise as a strategy to improve the growth performance of juvenile pacus.
Collapse
Affiliation(s)
- Rondinelle Artur Simões Salomão
- Department of Morphology, Institute of Bioscience, Sao Paulo State University, UNESP, Botucatu, SP, Brazil; Aquaculture Center, CAUNESP, Sao Paulo State University, UNESP, Jaboticabal, SP, Brazil
| | | | | | | | | | - Jéssica Silvino Valente
- Department of Morphology, Institute of Bioscience, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | | | - Ana Angélica Fernandes
- Department of Chemistry and Biochemistry, Institute of Bioscience, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Margarida Maria Barros
- Department of Breeding and Animal Nutrition, FMVZ, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Edson Assunção Mareco
- Department of Biology, University of Western Sao Paulo, UNOESTE, Presidente Prudente, SP, Brazil
| | - Robson Francisco Carvalho
- Department of Morphology, Institute of Bioscience, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | | | - Maeli Dal-Pai-Silva
- Department of Morphology, Institute of Bioscience, Sao Paulo State University, UNESP, Botucatu, SP, Brazil; Aquaculture Center, CAUNESP, Sao Paulo State University, UNESP, Jaboticabal, SP, Brazil.
| |
Collapse
|
37
|
Wang J, Cheng J, Li Y, Yan H, Wu P, Zhu X, Liu L, Chen L, Chu W, Zhang J. Gene structure, recombinant expression and function characterization of Siniperca chuatsi Fsrp-3. JOURNAL OF FISH BIOLOGY 2019; 94:714-724. [PMID: 30756375 DOI: 10.1111/jfb.13931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
A full-length complementary (c)DNA sequence encoding follistatin-related protein 3 (fsrp-3) was determined from skeletal muscle in Chinese mandarin fish Siniperca chuatsi, its molecular structure was characterised and its function suggested. The putative structure of S. chuatsi Fsrp-3 contains an N-terminal domain and two follistatin domains. Quantitative reverse-transcription (qRT)-PCR assays revealed that fsrp-3 messenger (m)RNA was differentially expressed among assayed tissues and was highly expressed in heart and intestine. fsrp-3 mRNA exhibited increasing expression from the larval to the juvenile stage (500 g). To investigate the potential function of S. chuatsi fsrp-3 in muscle growth, we constructed a Fsrp-3 prokaryotic expression system and injected the purified Fsrp-3 fusion protein into the dorsal muscle. Fsrp-3 administration significantly influenced cross-section area, satellite cell activation frequency and nuclear density of S. chuatsi muscle fibres. Following Fsrp-3 treatment, the expression of myogenic regulatory factors was up-regulated and decline in the expression of myostatin was observed. The study revealed that Fsrp-3 may affect muscle growth by regulating myogenic regulatory factor expression and antagonizing myostatin function to initiate satellite cell activation and differentiation in S. chuatsi.
Collapse
Affiliation(s)
- Jianhua Wang
- Department of Bioscience and Environmental Engineering, Changsha University, Changsha, China
- College of Life Science, Guangxi Normal University, Guilin, China
| | - Jia Cheng
- Department of Bioscience and Environmental Engineering, Changsha University, Changsha, China
| | - Yulong Li
- Department of Bioscience and Environmental Engineering, Changsha University, Changsha, China
| | - Huiling Yan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ping Wu
- Department of Bioscience and Environmental Engineering, Changsha University, Changsha, China
| | - Xin Zhu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Li Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Lin Chen
- Department of Bioscience and Environmental Engineering, Changsha University, Changsha, China
| | - Wuying Chu
- Department of Bioscience and Environmental Engineering, Changsha University, Changsha, China
| | - Jianshe Zhang
- Department of Bioscience and Environmental Engineering, Changsha University, Changsha, China
| |
Collapse
|
38
|
Wang F, Zhang QB, Zhou Y, Chen S, Huang PP, Liu Y, Xu YH. The mechanisms and treatments of muscular pathological changes in immobilization-induced joint contracture: A literature review. Chin J Traumatol 2019; 22:93-98. [PMID: 30928194 PMCID: PMC6488749 DOI: 10.1016/j.cjtee.2019.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/15/2018] [Accepted: 01/26/2019] [Indexed: 02/04/2023] Open
Abstract
The clinical treatment of joint contracture due to immobilization remains difficult. The pathological changes of muscle tissue caused by immobilization-induced joint contracture include disuse skeletal muscle atrophy and skeletal muscle tissue fibrosis. The proteolytic pathways involved in disuse muscle atrophy include the ubiquitin-proteasome-dependent pathway, caspase system pathway, matrix metalloproteinase pathway, Ca2+-dependent pathway and autophagy-lysosomal pathway. The important biological processes involved in skeletal muscle fibrosis include intermuscular connective tissue thickening caused by transforming growth factor-β1 and an anaerobic environment within the skeletal muscle leading to the induction of hypoxia-inducible factor-1α. This article reviews the progress made in understanding the pathological processes involved in immobilization-induced muscle contracture and the currently available treatments. Understanding the mechanisms involved in immobilization-induced contracture of muscle tissue should facilitate the development of more effective treatment measures for the different mechanisms in the future.
Collapse
Affiliation(s)
- Feng Wang
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Quan-Bing Zhang
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yun Zhou
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Shuang Chen
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Peng-Peng Huang
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yi Liu
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yuan-Hong Xu
- Department of Clinical Laboratory, The First Hospital of Anhui Medical University, Hefei, 230601, China
| |
Collapse
|
39
|
Recombinant porcine myostatin propeptide generated by the Pichia pastoris elevates myoblast growth and ameliorates high-fat diet-induced glucose intolerance. Res Vet Sci 2019; 124:200-211. [PMID: 30921567 DOI: 10.1016/j.rvsc.2019.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 02/12/2019] [Accepted: 03/12/2019] [Indexed: 01/07/2023]
Abstract
Myostatin (MSTN) was identified as a negative regulator of skeletal muscle growth. MSTN inhibition by myostatin propeptide (MSPP) increased skeletal muscle mass, myofiber growth and muscle force. Thus, this study was designed to produce wild-type porcine MSPP (WT-MSPP) and its mutated form (D75A-MSPP) in yeast Pichia pastoris and to investigate its potential enhancement of myoblast growth and differentiation. In an in vitro study, C2C12 myoblasts were treated with the purified WT-MSPP or D75A-MSPP (10 μg/mL) in either a regular culture medium or in a differentiation medium for 72 h. In an animal trial, post-weaning C57BL/6 mice fed with a high-fat diet (HFD) were administered WT-MSPP or D75A-MSPP for 6 weeks. The results showed that C2C12 myoblasts treated with the purified WT-MSPP or D75A-MSPP could dramatically promote cell proliferation. Both myoD and myogenin were significantly increased (p < .05) after WT-MSPP or D75A-MSPP treatment. D75A-MSPP was particularly more effective than WT-MSPP in promoting myotube formation (p < .05). The post-weaning mice treated with D75A-MSPP significantly increased both body and muscle weights compared with the mock and WT-MSPP groups (p < .05). Furthermore, the mice treatment with D75A-MSPP could prevent increased glucose injection from inducing glucose elevation. Our data indicated that a mutant-type MSPP (D75A-MSPP) was superior to WT-MSPP in effectively enhancing myofiber growth due to the highly resistant to proteolytic cleavage by the bone morphogenetic protein-1/tolloid (BMP-1/TLD) and thus has potential applications for clinical muscle wasting diseases or for increasing muscle mass in meat-producing animals.
Collapse
|
40
|
Chen R, Zhuang S, Chen YP, Cheng YF, Wen C, Zhou YM. Betaine improves the growth performance and muscle growth of partridge shank broiler chickens via altering myogenic gene expression and insulin-like growth factor-1 signaling pathway. Poult Sci 2019; 97:4297-4305. [PMID: 30085311 DOI: 10.3382/ps/pey303] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/25/2018] [Indexed: 11/20/2022] Open
Abstract
This study was conducted to investigate the effect of betaine on growth performance, carcass characteristics, myogenic gene expression, and insulin-like growth factor-1 (IGF-1) signaling pathway in partridge shank broiler chickens. A total of 192 one-day-old partridge shank broiler chickens were randomly divided into 4 groups with 6 replicates of 8 chickens for a 52-d feeding trial. Broilers were fed a basal diet supplemented with 0 (control), 250 (B250), 500 (B500), or 1,000 (B1000) mg/kg betaine. Compared with the control group, the B500 and B1000 groups had higher (P < 0.05) body weight gain (BWG), and the B500 group had a lower (P < 0.05) feed/gain ratio (F:G) during the whole trial period. Moreover, the B1000 group increased (P < 0.05) the breast muscle yield and decreased (P < 0.05) relative abdominal fat weight. The mRNA expression of myocyte enhancer factor 2B (MEF2B) and mechanistic target of rapamycin (mTOR) and mTOR phosporylation were higher (P < 0.05) in both breast and thigh muscles in the B500 and B1000 groups than those in the control group. The higher (P < 0.05) concentration and mRNA expression of IGF-1 were also observed in breast muscle in the B500 and B1000 groups. Additionally, the B1000 group up-regulated (P < 0.05) the mRNA level of myogenic differentiation factor 1 (MyoD1) in breast muscle and myogenin (MyoG) in thigh muscle. In conclusion, diets supplemented with 500 or 1,000 mg/kg betaine improved the growth performance of partridge shank broiler chickens during the whole trial period, and the B1000 group significantly improved the breast muscle growth. These improvements might result from increased mRNA expression of MyoD1 and MEF2B in breast muscle and MyoG and MEF2B in thigh muscle, and through alterations in IGF-1/mTOR signaling pathway.
Collapse
Affiliation(s)
- R Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - S Zhuang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Y P Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Y F Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - C Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Y M Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
41
|
Grafe I, Alexander S, Peterson JR, Snider TN, Levi B, Lee B, Mishina Y. TGF-β Family Signaling in Mesenchymal Differentiation. Cold Spring Harb Perspect Biol 2018; 10:a022202. [PMID: 28507020 PMCID: PMC5932590 DOI: 10.1101/cshperspect.a022202] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) can differentiate into several lineages during development and also contribute to tissue homeostasis and regeneration, although the requirements for both may be distinct. MSC lineage commitment and progression in differentiation are regulated by members of the transforming growth factor-β (TGF-β) family. This review focuses on the roles of TGF-β family signaling in mesenchymal lineage commitment and differentiation into osteoblasts, chondrocytes, myoblasts, adipocytes, and tenocytes. We summarize the reported findings of cell culture studies, animal models, and interactions with other signaling pathways and highlight how aberrations in TGF-β family signaling can drive human disease by affecting mesenchymal differentiation.
Collapse
Affiliation(s)
- Ingo Grafe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Stefanie Alexander
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Jonathan R Peterson
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Taylor Nicholas Snider
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Benjamin Levi
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
42
|
HDAC4 regulates satellite cell proliferation and differentiation by targeting P21 and Sharp1 genes. Sci Rep 2018; 8:3448. [PMID: 29472596 PMCID: PMC5823886 DOI: 10.1038/s41598-018-21835-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 02/12/2018] [Indexed: 12/31/2022] Open
Abstract
Skeletal muscle exhibits a high regenerative capacity, mainly due to the ability of satellite cells to replicate and differentiate in response to appropriate stimuli. Epigenetic control is effective at different stages of this process. It has been shown that the chromatin-remodeling factor HDAC4 is able to regulate satellite cell proliferation and commitment. However, its molecular targets are still uncovered. To explain the signaling pathways regulated by HDAC4 in satellite cells, we generated tamoxifen-inducible mice with conditional inactivation of HDAC4 in Pax7+ cells (HDAC4 KO mice). We found that the proliferation and differentiation of HDAC4 KO satellite cells were compromised, although similar amounts of satellite cells were found in mice. Moreover, we found that the inhibition of HDAC4 in satellite cells was sufficient to block the differentiation process. By RNA-sequencing analysis we identified P21 and Sharp1 as HDAC4 target genes. Reducing the expression of these target genes in HDAC4 KO satellite cells, we also defined the molecular pathways regulated by HDAC4 in the epigenetic control of satellite cell expansion and fusion.
Collapse
|
43
|
Hernández-Hernández JM, García-González EG, Brun CE, Rudnicki MA. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Semin Cell Dev Biol 2017; 72:10-18. [PMID: 29127045 DOI: 10.1016/j.semcdb.2017.11.010] [Citation(s) in RCA: 386] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
The Myogenic Regulatory Factors (MRFs) Myf5, MyoD, myogenin and MRF4 are members of the basic helix-loop-helix family of transcription factors that control the determination and differentiation of skeletal muscle cells during embryogenesis and postnatal myogenesis. The dynamics of their temporal and spatial expression as well as their biochemical properties have allowed the identification of a precise and hierarchical relationship between the four MRFs. This relationship establishes the myogenic lineage as well as the maintenance of the terminal myogenic phenotype. The application of genome-wide technologies has provided important new information as to how the MRFs function to activate muscle gene expression. Application of combined functional genomics technologies along with single cell lineage tracing strategies will allow a deeper understanding of the mechanisms mediating myogenic determination, cell differentiation and muscle regeneration.
Collapse
Affiliation(s)
- J Manuel Hernández-Hernández
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Estela G García-González
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Caroline E Brun
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Michael A Rudnicki
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
44
|
Kim AR, Kim KM, Byun MR, Hwang JH, Park JI, Oh HT, Kim HK, Jeong MG, Hwang ES, Hong JH. Catechins activate muscle stem cells by Myf5 induction and stimulate muscle regeneration. Biochem Biophys Res Commun 2017; 489:142-148. [PMID: 28546002 DOI: 10.1016/j.bbrc.2017.05.114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/21/2017] [Indexed: 01/06/2023]
Abstract
Muscle weakness is one of the most common symptoms in aged individuals and increases risk of mortality. Thus, maintenance of muscle mass is important for inhibiting aging. In this study, we investigated the effect of catechins, polyphenol compounds in green tea, on muscle regeneration. We found that (-)-epicatechin gallate (ECG) and (-)-epigallocatechin-3-gallate (EGCG) activate satellite cells by induction of Myf5 transcription factors. For satellite cell activation, Akt kinase was significantly induced after ECG treatment and ECG-induced satellite cell activation was blocked in the presence of Akt inhibitor. ECG also promotes myogenic differentiation through the induction of myogenic markers, including Myogenin and Muscle creatine kinase (MCK), in satellite and C2C12 myoblast cells. Finally, EGCG administration to mice significantly increased muscle fiber size for regeneration. Taken together, the results suggest that catechins stimulate muscle stem cell activation and differentiation for muscle regeneration.
Collapse
Affiliation(s)
- A Rum Kim
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Kyung Min Kim
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Mi Ran Byun
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Jun-Ha Hwang
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Jung Il Park
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Ho Taek Oh
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Hyo Kyeong Kim
- College of Pharmacy, Ewha Woman's University, Seoul 03760, South Korea
| | - Mi Gyeong Jeong
- College of Pharmacy, Ewha Woman's University, Seoul 03760, South Korea
| | - Eun Sook Hwang
- College of Pharmacy, Ewha Woman's University, Seoul 03760, South Korea
| | - Jeong-Ho Hong
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
45
|
Wen C, Jiang X, Ding L, Wang T, Zhou Y. Effects of dietary methionine on breast muscle growth, myogenic gene expression and IGF-I signaling in fast- and slow-growing broilers. Sci Rep 2017; 7:1924. [PMID: 28507342 PMCID: PMC5432508 DOI: 10.1038/s41598-017-02142-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/06/2017] [Indexed: 11/23/2022] Open
Abstract
This study investigated the responses of fast- (FG) and slow- (SG) growing broilers to dietary methionine (Met) status. The broilers were subjected to low (LM, 0.38 and 0.28 g/100 g), adequate (AM, 0.51 and 0.42 g/100 g) and high (HM, 0.65 and 0.52 g/100 g) Met during 1–21 and 22–42 d, respectively. Compared with the LM diets, the AM and HM diets increased body weight gain only in the FG broilers. The HM diets increased breast muscle yield only in the FG broilers, although insulin-like growth factor-I (IGF-I) concentration was increased in both strains of broilers. The HM diets increased mRNA levels of myogenic regulatory factors (MRF4, Myf5) and myocyte enhancer factor 2 (MEF2A and MEF2B) in the FG broilers, and increased MEF2A and decreased myostatin mRNA level in the SG broilers. Extracellular signal-regulated kinase (ERK) phosphorylation of breast muscle was increased by the HM diets in both strains of broilers, but mechanistic target of rapamycin (mTOR) phosphorylation was increased by the AM and HM diets only in the FG broilers. These results reflect a strain difference in broiler growth and underlying mechanism in response to dietary Met.
Collapse
Affiliation(s)
- Chao Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xueying Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liren Ding
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
46
|
Ignacio DL, Silvestre DHS, Anne-Palmer E, Bocco BMLC, Fonseca TL, Ribeiro MO, Gereben B, Bianco AC, Werneck-de-Castro JP. Early Developmental Disruption of Type 2 Deiodinase Pathway in Mouse Skeletal Muscle Does Not Impair Muscle Function. Thyroid 2017; 27:577-586. [PMID: 27967605 PMCID: PMC5385430 DOI: 10.1089/thy.2016.0392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Myogenesis is positively regulated by thyroid hormone (triiodothyronine [T3]), which is amplified by the type 2 deiodinase (D2) activation of thyroxine to T3. Global inactivation of the Dio2 gene impairs skeletal muscle (SKM) differentiation and regeneration in response to muscle injury. Given that newborn and adult mice with late developmental SKM Dio2 disruption do not develop a significant phenotype, it was hypothesized that D2 plays an early role in this process. METHODS This was tested in mice with SKM disruption of Dio2 driven by two early developmental promoters: MYF5 and MYOD. RESULTS MYF5 myoblasts in culture differentiate normally into myotubes, despite loss of almost all D2 activity. Dio2 mRNA levels in developing SKM obtained from MYF5-D2KO embryos (E18.5) were about 54% of control littermates, but the expression of the T3-responsive genes Myh1 and 7 and Atp2a1 and 2 were not affected. In MYF5-D2KO and MYOD-D2KO neonatal hind-limb muscle, the expression of Myh1 and 7 and Atp2a2 remained unaffected, despite 60-70% loss in D2 activity and/or mRNA. Only in MYOD-D2KO neonatal muscle was there a 40% reduction in Atp2a1 mRNA. Postnatal growth of both mouse models and SKM function as assessed by exercise capacity and measurement of muscle strength were normal. Furthermore, an analysis of the adult soleus revealed no changes in the expression of T3-responsive genes, except for an about 18% increase in MYOD-D2KO SOL Myh7 mRNA. CONCLUSION Two mouse models of early developmental disruption of Dio2 in myocyte precursor exhibit no significant SKM phenotype.
Collapse
Affiliation(s)
- Daniele L Ignacio
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
- 2 Biophysics Institute and School of Physical Education and Sports, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | - Diego H S Silvestre
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
- 2 Biophysics Institute and School of Physical Education and Sports, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
- 3 Nutrition Institute Josué de Castro, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | - Elena Anne-Palmer
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
| | - Barbara M L C Bocco
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
- 4 Department of Translational Medicine, Federal University of São Paulo , São Paulo, Brazil
| | - Tatiana L Fonseca
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
| | - Miriam O Ribeiro
- 5 Developmental Disorders Program, Center for Biological and Health Sciences, Mackenzie Presbyterian University , São Paulo, Brazil
| | - Balázs Gereben
- 6 Department of Endocrine Neurobiology, Institute of Experimental Medicine , Hungarian Academy of Sciences, Budapest, Hungary
| | - Antonio C Bianco
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
| | - Joao P Werneck-de-Castro
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
- 2 Biophysics Institute and School of Physical Education and Sports, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
- 3 Nutrition Institute Josué de Castro, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Okamura LH, Cordero P, Palomino J, Parraguez VH, Torres CG, Peralta OA. Myogenic Differentiation Potential of Mesenchymal Stem Cells Derived from Fetal Bovine Bone Marrow. Anim Biotechnol 2017; 29:1-11. [DOI: 10.1080/10495398.2016.1276926] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Lucas Hidenori Okamura
- Departamento de Apoio, Produção e Saúde Animal, Faculdade de Medicina Veterinária, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Araçatuba, São Paulo, Brasil
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Paloma Cordero
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Jaime Palomino
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Victor Hugo Parraguez
- Departamento de Ciencias Biológicas, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Cristian Gabriel Torres
- Departamento de Ciencias Clínicas, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Oscar Alejandro Peralta
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
48
|
The maintenance ability and Ca 2+ availability of skeletal muscle are enhanced by sildenafil. Exp Mol Med 2016; 48:e278. [PMID: 27932789 PMCID: PMC5192075 DOI: 10.1038/emm.2016.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/08/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022] Open
Abstract
Sildenafil relaxes vascular smooth muscle cells and is used to treat pulmonary artery hypertension as well as erectile dysfunction. However, the effectiveness of sildenafil on skeletal muscle and the benefit of its clinical use have been controversial, and most studies focus primarily on tissues and organs from disease models without cellular examination. Here, the effects of sildenafil on skeletal muscle at the cellular level were examined using mouse primary skeletal myoblasts (the proliferative form of skeletal muscle stem cells) and myotubes, along with single-cell Ca2+ imaging experiments and cellular and biochemical studies. The proliferation of skeletal myoblasts was enhanced by sildenafil in a dose-independent manner. In skeletal myotubes, sildenafil enhanced the activity of ryanodine receptor 1, an internal Ca2+ channel, and Ca2+ movement that promotes skeletal muscle contraction, possibly due to an increase in the resting cytosolic Ca2+ level and a unique microscopic shape in the myotube membranes. Therefore, these results suggest that the maintenance ability of skeletal muscle mass and the contractility of skeletal muscle could be improved by sildenafil by enhancing the proliferation of skeletal myoblasts and increasing the Ca2+ availability of skeletal myotubes, respectively.
Collapse
|
49
|
Confortim HD, Jerônimo LC, Centenaro LA, Pinheiro PFF, Matheus SMM, Torrejais MM. Maternal protein restriction during pregnancy and lactation affects the development of muscle fibers and neuromuscular junctions in rats. Muscle Nerve 2016; 55:109-115. [PMID: 27171684 DOI: 10.1002/mus.25187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 05/02/2016] [Accepted: 05/11/2016] [Indexed: 11/08/2022]
Abstract
INTRODUCTION A balanced maternal diet is a determining factor in normal fetal development. The objective of this study was to evaluate the effects of maternal protein restriction during pregnancy and lactation on muscle fiber and neuromuscular junction (NMJ) morphology of rat offspring at 21 days of age. METHODS Wistar rats were divided into a control group (CG), offspring of mothers fed a normal protein diet (17%), and a restricted group (RG), offspring of mothers fed a low-protein diet (6%). After a period of lactation, the animals were euthanized, and soleus muscles were obtained from pups for analysis. RESULTS The soleus muscles of the RG exhibited an increase of 133% in the number of fibers and of 79% in the amount of nuclei. Moreover, the number of NMJs was lower in the restricted group than in the CG. CONCLUSIONS Maternal protein restriction alters the normal development of the neuromuscular system. Muscle Nerve 55: 109-115, 2017.
Collapse
Affiliation(s)
- Heloisa Deola Confortim
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Leslie Cazetta Jerônimo
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Lígia Aline Centenaro
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Patrícia Fernanda Felipe Pinheiro
- Departamento de Anatomia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, São Paulo, Brazil
| | - Selma Maria Michelin Matheus
- Departamento de Anatomia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, São Paulo, Brazil
| | - Marcia Miranda Torrejais
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| |
Collapse
|
50
|
Ilavenil S, Kim DH, Srigopalram S, Arasu MV, Lee KD, Lee JC, Lee JS, Renganathan S, Choi KC. Potential Application of p-Coumaric Acid on Differentiation of C2C12 Skeletal Muscle and 3T3-L1 Preadipocytes-An in Vitro and in Silico Approach. Molecules 2016; 21:molecules21080997. [PMID: 27490527 PMCID: PMC6274435 DOI: 10.3390/molecules21080997] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 01/10/2023] Open
Abstract
Coumaric acid (CA) is a phenolic acid of the hydroxycinnamic acid family, and it has many biological functions such as anti-oxidant, anti-inflammatory, antidiabetic, anti-ulcer, anti-platelet, anti-cancer activities, etc. In the present study, we planned to analyse the potential molecular function of CA on skeletal muscle and preadipocytes differentiation using PCR and Western blot techniques. First, we analysed the impact of CA on C2C12 skeletal muscle differentiation. It revealed that CA treatment inhibited horse serum-induced skeletal muscle differentiation as evidenced by the decreased expression of early myogenic differentiation markers such as Myogenin and myoD via the AMP activated protein kinase- alpha AMPK-α mediated pathway. Furthermore, the level of lipid accumulation and changes in genes and protein expressions that are associated with lipogenesis and lipolysis were analyzed in 3T3-L1 cells. The Oil Red O staining evidenced that CA treatment inhibited lipid accumulation at the concentration of 0.1 and 0.2 mM. Furthermore, coumaric acid treatment decreased the expression of main transcriptional factors such as CCAAT/enhancer binding protein-alpha (C/EBP-α) and peroxisome proliferator-activated receptor gamma-2 (PPAR-γ2). Subsequently, CA treatment decreased the expression of sterol regulatory element binding protein-1 (SREBP-1), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC) and adiponectin. Finally, we identified conformational changes induced by CA in PPAR-γ2 using computational biology tools. It revealed that CA might downregulate the PPAR-γ2 expression by directly binding with amino acids of PPAR-γ2 by hydrogen at 3.26 distance and hydrophobic interactions at 3.90 contact distances. These data indicated that CA suppressed skeletal muscle and preadipocytes differentiation through downregulation of the main transcriptional factors and their downstream targets.
Collapse
Affiliation(s)
- Soundharrajan Ilavenil
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 330-801, Korea.
| | - Da Hye Kim
- Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai 980-8577, Japan.
| | - Srisesharam Srigopalram
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 330-801, Korea.
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Kyung Dong Lee
- Department of Oriental Medicine Materials, Dongsin University, Naju 520-714, Korea.
| | - Jeong Chae Lee
- Research Center of Bioactive Materials, Institute of Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, Korea.
| | - Jong Suk Lee
- Biocenter, Gyeonggi Institute of Science and Technology, Suwon 443-270, Korea.
| | - Senthil Renganathan
- Department of Bioinformatics, Marudupandiyar College, Tamilnadu 613-403, India.
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 330-801, Korea.
| |
Collapse
|