1
|
Lim C, McKendry J, Lees M, Atherton PJ, Burd NA, Holwerda AM, van Loon LJC, McGlory C, Mitchell CJ, Smith K, Wilkinson DJ, Stokes T, Phillips SM. Turning over new ideas in human skeletal muscle proteostasis: What do we know and where to from here? Exp Physiol 2025. [PMID: 39910909 DOI: 10.1113/ep092353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025]
Abstract
Understanding the turnover of proteins in tissues gives information as to how external stimuli result in phenotypic change. Nowhere is such phenotypic change more conspicuous than skeletal muscle, which can be effectively remodelled by increased loading, ageing and unloading (disuse), all of which are subject to modification by nutrition and other environmental stimuli. The understanding of muscle proteome remodelling has undergone a renaissance recently with the reintroduction of deuterated water (D2O) and its ingestion to label amino acids and measure their incorporation into proteins. However, there is confusion around the use of the deuterated water methodology and the interpretation of the data it provides. Here, we provide a short review of some of the more salient features of the method and clarify some of the confusion around the method of deuterated water methods and its use in humans and how the interpretation of the data is in contrast to that of rodents.
Collapse
Affiliation(s)
- Changhyun Lim
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Matthew Lees
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Philip J Atherton
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK
- Ritsumeikan Advanced Research Academy (RARA) Fellow and Visiting Professor, Faculty of Sport and Health Science, Ritsumeikan University, Kyoto, Japan
| | - Nicholas A Burd
- Department of Health and Kinesiology and Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Andrew M Holwerda
- Department of Human Biology, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Cameron J Mitchell
- Faculty of Education, School of Kinesiology, The University of British Columbia, Vancouver, BC, Canada
| | - Kenneth Smith
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Daniel J Wilkinson
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, UK
| |
Collapse
|
2
|
Acheson J, Joanisse S, Sale C, Hodson N. Recycle, repair, recover: the role of autophagy in modulating skeletal muscle repair and post-exercise recovery. Biosci Rep 2025; 45:1-30. [PMID: 39670455 DOI: 10.1042/bsr20240137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024] Open
Abstract
Skeletal muscle is a highly plastic tissue that can adapt relatively rapidly to a range of stimuli. In response to novel mechanical loading, e.g. unaccustomed resistance exercise, myofibers are disrupted and undergo a period of ultrastructural remodeling to regain full physiological function, normally within 7 days. The mechanisms that underpin this remodeling are believed to be a combination of cellular processes including ubiquitin-proteasome/calpain-mediated degradation, immune cell infiltration, and satellite cell proliferation/differentiation. A relatively understudied system that has the potential to be a significant contributing mechanism to repair and recovery is the autophagolysosomal system, an intracellular process that degrades damaged and redundant cellular components to provide constituent metabolites for the resynthesis of new organelles and cellular structures. This review summarizes our current understanding of the autophagolysosomal system in the context of skeletal muscle repair and recovery. In addition, we also provide hypothetical models of how this system may interact with other processes involved in skeletal muscle remodeling and provide avenues for future research to improve our understanding of autophagy in human skeletal muscle.
Collapse
Affiliation(s)
- Jordan Acheson
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Institute of Sport, Manchester, U.K
| | - Sophie Joanisse
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, U.K
| | - Craig Sale
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Institute of Sport, Manchester, U.K
| | - Nathan Hodson
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Institute of Sport, Manchester, U.K
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Kirmse M, Lottmann TM, Volk NR, DE Marées M, Holwerda AM, VAN Loon LJC, Platen P. Collagen Peptide Supplementation during Training Does Not Further Increase Connective Tissue Protein Synthesis Rates. Med Sci Sports Exerc 2024; 56:2296-2304. [PMID: 39086044 DOI: 10.1249/mss.0000000000003519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Protein supplementation increases postexercise muscle protein synthesis rates and, as such, supports exercise-induced muscle conditioning. Collagen protein has been suggested as the preferred protein source to stimulate muscle connective protein synthesis rates during recovery from exercise. Here we assessed the effects of hydrolyzed collagen peptide supplementation on both myofibrillar as well as muscle connective protein synthesis rates during 1 wk of strenuous resistance exercise training. METHODS In a randomized, double-blind, parallel design, 25 young men (24 ± 3 yr, 76.9 ± 6.4 kg) were selected to perform 1 wk of intense resistance-type exercise training. Subjects were randomly assigned into two groups receiving either 15 g hydrolyzed collagen peptides (COL) or a noncaloric placebo (PLA) twice daily during the intervention. Subjects were administered deuterated water ( 2 H 2 O) daily, with blood and skeletal muscle tissue samples being collected before and after the intervention to determine daily myofibrillar and muscle connective protein synthesis rates. RESULTS Post-absorptive plasma glycine, proline, and hydroxyproline concentrations increased following collagen peptide supplementation ( P < 0.05) and showed higher levels when compared with the placebo group ( P < 0.05). Daily muscle connective protein synthesis rates during the intervention period exceeded myofibrillar protein synthesis rates (1.99 ± 0.38 vs 1.34 ± 0.23%·d -1 , respectively; P < 0.001). Collagen peptide supplementation did not result in higher myofibrillar or muscle connective protein synthesis rates (1.34 ± 0.19 and 1.97 ± 0.47%·d -1 , respectively) when compared with the placebo group (1.34 ± 0.27 and 2.00 ± 0.27%·d -1 , respectively; P > 0.05). CONCLUSIONS Collagen peptide supplementation (2 × 15 g daily) does not increase myofibrillar or muscle connective protein synthesis rates during 1 wk of intense resistance exercise training in young, recreational athletes.
Collapse
Affiliation(s)
- Marius Kirmse
- Department of Sports Medicine & Sports Nutrition, Faculty of Sport Science, Ruhr University Bochum, Bochum, GERMANY
| | - Theo M Lottmann
- Department of Sports Medicine & Sports Nutrition, Faculty of Sport Science, Ruhr University Bochum, Bochum, GERMANY
| | - Nicola R Volk
- Department of Sports Medicine & Sports Nutrition, Faculty of Sport Science, Ruhr University Bochum, Bochum, GERMANY
| | - Markus DE Marées
- Department of Sports Medicine & Sports Nutrition, Faculty of Sport Science, Ruhr University Bochum, Bochum, GERMANY
| | - Andrew M Holwerda
- Department of Human Biology, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the NETHERLANDS
| | - Luc J C VAN Loon
- Department of Human Biology, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the NETHERLANDS
| | - Petra Platen
- Department of Sports Medicine & Sports Nutrition, Faculty of Sport Science, Ruhr University Bochum, Bochum, GERMANY
| |
Collapse
|
4
|
Hammert WB, Kataoka R, Yamada Y, Song JS, Kang A, Spitz RW, Loenneke JP. Progression of total training volume in resistance training studies and its application to skeletal muscle growth. Physiol Meas 2024; 45:08TR03. [PMID: 39178897 DOI: 10.1088/1361-6579/ad7348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
Progressive overload describes the gradual increase of stress placed on the body during exercise training, and is often quantified (i.e. in resistance training studies) through increases in total training volume (i.e. sets × repetitions × load) from the first to final week of the exercise training intervention. Within the literature, it has become increasingly common for authors to discuss skeletal muscle growth adaptations in the context of increases in total training volume (i.e. the magnitude progression in total training volume). The present manuscript discusses a physiological rationale for progressive overload and then explains why, in our opinion, quantifying the progression of total training volume within research investigations tells very little about muscle growth adaptations to resistance training. Our opinion is based on the following research findings: (1) a noncausal connection between increases in total training volume (i.e. progressively overloading the resistance exercise stimulus) and increases in skeletal muscle size; (2) similar changes in total training volume may not always produce similar increases in muscle size; and (3) the ability to exercise more and consequently amass larger increases in total training volume may not inherently produce more skeletal muscle growth. The methodology of quantifying changes in total training volume may therefore provide a means through which researchers can mathematically determine the total amount of external 'work' performed within a resistance training study. It may not, however, always explain muscle growth adaptations.
Collapse
Affiliation(s)
- William B Hammert
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, United States of America
| | - Ryo Kataoka
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, United States of America
| | - Yujiro Yamada
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, United States of America
| | - Jun Seob Song
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, United States of America
| | - Anna Kang
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, United States of America
| | - Robert W Spitz
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, United States of America
| |
Collapse
|
5
|
Lim C, Janssen TAH, Currier BS, Paramanantharajah N, McKendry J, Abou Sawan S, Phillips SM. Muscle Protein Synthesis in Response to Plant-Based Protein Isolates With and Without Added Leucine Versus Whey Protein in Young Men and Women. Curr Dev Nutr 2024; 8:103769. [PMID: 38846451 PMCID: PMC11153912 DOI: 10.1016/j.cdnut.2024.103769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Background Plant-based protein supplements often contain lower amounts of leucine and other essential amino acids (EAAs), potentially making them less effective in stimulating muscle protein synthesis (MPS) than animal-based proteins. Combining plant proteins could improve the EAA profile and more effectively support MPS. Objectives The aim of this study was to determine the effect of a novel plant-based blend protein (PBP), PBP with added leucine (PBP + Leu) to levels equivalent to whey protein isolate (WHEY) on aminoacidemia and MPS responses in young men and women. We hypothesized that PBP + Leu would stimulate MPS equivalent to WHEY, and both would be greater than PBP. Methods We employed a randomized, double-blind, crossover study consisting of 3 separate study visits to compare PBP, PBP + Leu, and WHEY. To measure MPS response to ingestion of the supplements, a primed continuous infusion of L-[ring13C6] phenylalanine was administered for 8 h at each study visit. Skeletal muscle tissue and blood samples were collected to measure aminoacidemia and MPS. Results All protein supplements increased mixed MPS above postabsorptive levels (P < 0.001). However, MPS increase following ingestion of PBP was less than that following ingestion of PBP + Leu (P = 0.002) and WHEY (P = 0.046). There were no differences in MPS between PBP + Leu and WHEY (P = 0.052). Conclusions Consumption of PBP isolate with added leucine stimulated MPS to a similar extent as whey protein in young men and women. PBPs containing higher leucine content promote anabolism to a similar extent as animal-based proteins.This study was registered at clinicaltrials.gov as NCT05139160.
Collapse
Affiliation(s)
| | | | - Brad S Currier
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - James McKendry
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Sidney Abou Sawan
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Zeng Y, He X, Peng X, Zhao L, Yin C, Mao S. Combined Nutrition with Exercise: Fueling the Fight Against Sarcopenia Through a Bibliometric Analysis and Review. Int J Gen Med 2024; 17:1861-1876. [PMID: 38715745 PMCID: PMC11075762 DOI: 10.2147/ijgm.s462594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/21/2024] [Indexed: 05/24/2024] Open
Abstract
Objective This bibliometric analysis and review aimed to examine the current research status and trends in the combination of nutrition and exercise training for sarcopenia. Additionally, it sought to provide researchers with future research directions in this field. Methods Relevant publications were obtained from the Web of Science Core Collection (WoSCC) database, covering the period from January 1995 to October 2023. The collected publications were analyzed using CiteSpace, VOSviewer, Bibliometrix, and Review Manager. Results Out of the 2528 retrieved publications, the United States emerged as the leading contributor in terms of publication volume. The University of Texas System was identified as the most productive institution. Luc J C van Loon emerged as the most published author in this field. Analysis of keywords revealed recent hot topics and emerging areas of interest, such as "gut microbiota" and "mechanisms". Upon further evaluation, resistance training (RT) and protein supplementation were identified as the most commonly employed and effective methods. Conclusion RT and protein supplementation are widely recognized as effective strategies. Future research should focus on investigating the molecular aspects of sarcopenia. Moreover, the potential therapeutic role of gut microbiota in sarcopenia requires further comprehensive investigation in human subjects to establish its correlation.
Collapse
Affiliation(s)
- Yixian Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, People’s Republic of China
| | - Xingfei He
- Wuxi Huishan District Rehabilitation Hospital, Wuxi, 214001, People’s Republic of China
| | - Xinchun Peng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, People’s Republic of China
| | - Li Zhao
- School of Sports Science, Beijing Sport University, Beijing, 100084, People’s Republic of China
| | - Chengqian Yin
- Department of Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, People’s Republic of China
| | - Shanshan Mao
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, People’s Republic of China
| |
Collapse
|
7
|
Kataoka R, Hammert WB, Yamada Y, Song JS, Seffrin A, Kang A, Spitz RW, Wong V, Loenneke JP. The Plateau in Muscle Growth with Resistance Training: An Exploration of Possible Mechanisms. Sports Med 2024; 54:31-48. [PMID: 37787845 DOI: 10.1007/s40279-023-01932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
It is hypothesized that there is likely a finite ability for muscular adaptation. While it is difficult to distinguish between a true plateau following a long-term training period and short-term stalling in muscle growth, a plateau in muscle growth has been attributed to reaching a genetic potential, with limited discussion on what might physiologically contribute to this muscle growth plateau. The present paper explores potential physiological factors that may drive the decline in muscle growth after prolonged resistance training. Overall, with chronic training, the anabolic signaling pathways may become more refractory to loading. While measures of anabolic markers may have some predictive capabilities regarding muscle growth adaptation, they do not always demonstrate a clear connection. Catabolic processes may also constrain the ability to achieve further muscle growth, which is influenced by energy balance. Although speculative, muscle cells may also possess cell scaling mechanisms that sense and regulate their own size, along with molecular brakes that hinder growth rate over time. When considering muscle growth over the lifespan, there comes a point when the anabolic response is attenuated by aging, regardless of whether or not individuals approach their muscle growth potential. Our goal is that the current review opens avenues for future experimental studies to further elucidate potential mechanisms to explain why muscle growth may plateau.
Collapse
Affiliation(s)
- Ryo Kataoka
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - William B Hammert
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Yujiro Yamada
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Jun Seob Song
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Aldo Seffrin
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Anna Kang
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Robert W Spitz
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Vickie Wong
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA.
| |
Collapse
|
8
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
9
|
Villota-Narvaez Y, Garzón-Alvarado DA, Röhrle O, Ramírez-Martínez AM. Multi-scale mechanobiological model for skeletal muscle hypertrophy. Front Physiol 2022; 13:899784. [PMID: 36277181 PMCID: PMC9582841 DOI: 10.3389/fphys.2022.899784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle adaptation is correlated to training exercise by triggering different signaling pathways that target many functions; in particular, the IGF1-AKT pathway controls protein synthesis and degradation. These two functions regulate the adaptation in size and strength of muscles. Computational models for muscle adaptation have focused on: the biochemical description of signaling pathways or the mechanical description of muscle function at organ scale; however, an interrelation between these two models should be considered to understand how an adaptation in muscle size affects the protein synthesis rate. In this research, a dynamical model for the IGF1-AKT signaling pathway is linked to a continuum-mechanical model describing the active and passive mechanical response of a muscle; this model is used to study the impact of the adaptive muscle geometry on the protein synthesis at the fiber scale. This new computational model links the signaling pathway to the mechanical response by introducing a growth tensor, and links the mechanical response to the signaling pathway through the evolution of the protein synthesis rate. The predicted increase in cross sectional area (CSA) due to an 8 weeks training protocol excellently agreed with experimental data. Further, our results show that muscle growth rate decreases, if the correlation between protein synthesis and CSA is negative. The outcome of this study suggests that multi-scale models coupling continuum mechanical properties and molecular functions may improve muscular therapies and training protocols.
Collapse
Affiliation(s)
- Yesid Villota-Narvaez
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
- *Correspondence: Yesid Villota-Narvaez ,
| | - Diego A. Garzón-Alvarado
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
- Biomimetics Laboratory, Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Oliver Röhrle
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Sciences (SC SimTech), Stuttgart, Germany
| | - Angelica M. Ramírez-Martínez
- Biomimetics Laboratory, Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
- Biomedical Engineering Department, Engineering Faculty, Universidad Militar Nueva Granada, Bogotá, Colombia
| |
Collapse
|
10
|
Aging, Skeletal Muscle, and Epigenetics. Plast Reconstr Surg 2022; 150:27S-33S. [DOI: 10.1097/prs.0000000000009670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Myofibrillar protein synthesis rates are increased in chronically exercised skeletal muscle despite decreased anabolic signaling. Sci Rep 2022; 12:7553. [PMID: 35534615 PMCID: PMC9085756 DOI: 10.1038/s41598-022-11621-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/23/2022] [Indexed: 01/05/2023] Open
Abstract
The molecular responses to acute resistance exercise are well characterized. However, how cellular signals change over time to modulate chronic adaptations to more prolonged exercise training is less well understood. We investigated anabolic signaling and muscle protein synthesis rates at several time points after acute and chronic eccentric loading. Adult rat tibialis anterior muscle was stimulated for six sets of ten repetitions, and the muscle was collected at 0 h, 6 h, 18 h and 48 h. In the last group of animals, 48 h after the first exercise bout a second bout was conducted, and the muscle was collected 6 h later (54 h total). In a second experiment, rats were exposed to four exercise sessions over the course of 2 weeks. Anabolic signaling increased robustly 6 h after the first bout returning to baseline between 18 and 48 h. Interestingly, 6 h after the second bout mTORC1 activity was significantly lower than following the first bout. In the chronically exercised rats, we found baseline anabolic signaling was decreased, whereas myofibrillar protein synthesis (MPS) was substantially increased, 48 h after the last bout of exercise. The increase in MPS occurred in the absence of changes to muscle fiber size or mass. In conclusion, we find that anabolic signaling is already diminished after the second bout of acute resistance type exercise. Further, chronic exposure to resistance type exercise training results in decreased basal anabolic signaling but increased overall MPS rates.
Collapse
|
12
|
Rubenstein AB, Hinkley JM, Nair VD, Nudelman G, Standley RA, Yi F, Yu G, Trappe TA, Bamman MM, Trappe SW, Sparks LM, Goodpaster BH, Vega RB, Sealfon SC, Zaslavsky E, Coen PM. Skeletal muscle transcriptome response to a bout of endurance exercise in physically active and sedentary older adults. Am J Physiol Endocrinol Metab 2022; 322:E260-E277. [PMID: 35068187 PMCID: PMC8897039 DOI: 10.1152/ajpendo.00378.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Age-related declines in cardiorespiratory fitness and physical function are mitigated by regular endurance exercise in older adults. This may be due, in part, to changes in the transcriptional program of skeletal muscle following repeated bouts of exercise. However, the impact of chronic exercise training on the transcriptional response to an acute bout of endurance exercise has not been clearly determined. Here, we characterized baseline differences in muscle transcriptome and exercise-induced response in older adults who were active/endurance trained or sedentary. RNA-sequencing was performed on vastus lateralis biopsy specimens obtained before, immediately after, and 3 h following a bout of endurance exercise (40 min of cycling at 60%-70% of heart rate reserve). Using a recently developed bioinformatics approach, we found that transcript signatures related to type I myofibers, mitochondria, and endothelial cells were higher in active/endurance-trained adults and were associated with key phenotypic features including V̇o2peak, ATPmax, and muscle fiber proportion. Immune cell signatures were elevated in the sedentary group and linked to visceral and intermuscular adipose tissue mass. Following acute exercise, we observed distinct temporal transcriptional signatures that were largely similar among groups. Enrichment analysis revealed catabolic processes were uniquely enriched in the sedentary group at the 3-h postexercise timepoint. In summary, this study revealed key transcriptional signatures that distinguished active and sedentary adults, which were associated with difference in oxidative capacity and depot-specific adiposity. The acute response signatures were consistent with beneficial effects of endurance exercise to improve muscle health in older adults irrespective of exercise history and adiposity.NEW & NOTEWORTHY Muscle transcript signatures associated with oxidative capacity and immune cells underlie important phenotypic and clinical characteristics of older adults who are endurance trained or sedentary. Despite divergent phenotypes, the temporal transcriptional signatures in response to an acute bout of endurance exercise were largely similar among groups. These data provide new insight into the transcriptional programs of aging muscle and the beneficial effects of endurance exercise to promote healthy aging in older adults.
Collapse
Affiliation(s)
- Aliza B Rubenstein
- Department of Neurology, Center for Advanced Research on Diagnostic Assays (CARDA), Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Venugopalan D Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays (CARDA), Icahn School of Medicine at Mount Sinai, New York, New York
| | - German Nudelman
- Department of Neurology, Center for Advanced Research on Diagnostic Assays (CARDA), Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Fanchao Yi
- AdventHealth Translational Research Institute, Orlando, Florida
| | - GongXin Yu
- AdventHealth Translational Research Institute, Orlando, Florida
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Indianapolis, Indiana
| | - Marcas M Bamman
- Department of Cell, Developmental, and Integrative Biology, UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Scott W Trappe
- Human Performance Laboratory, Ball State University, Indianapolis, Indiana
| | - Lauren M Sparks
- AdventHealth Translational Research Institute, Orlando, Florida
| | | | - Rick B Vega
- AdventHealth Translational Research Institute, Orlando, Florida
| | - Stuart C Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays (CARDA), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Elena Zaslavsky
- Department of Neurology, Center for Advanced Research on Diagnostic Assays (CARDA), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paul M Coen
- AdventHealth Translational Research Institute, Orlando, Florida
| |
Collapse
|
13
|
dos Santos LP, Santo RCDE, Ramis TR, Portes JKS, Chakr RMDS, Xavier RM. The effects of resistance training with blood flow restriction on muscle strength, muscle hypertrophy and functionality in patients with osteoarthritis and rheumatoid arthritis: A systematic review with meta-analysis. PLoS One 2021; 16:e0259574. [PMID: 34758045 PMCID: PMC8580240 DOI: 10.1371/journal.pone.0259574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Rheumatoid arthritis(RA) and osteoarthritis(OA) patients showed systemic manifestations that may lead to a reduction in muscle strength, muscle mass and, consequently, to a reduction in functionality. On the other hand, moderate intensity resistance training(MIRT) and high intensity resistance training(HIRT) are able to improve muscle strength and muscle mass in RA and OA without affecting the disease course. However, due to the articular manifestations caused by these diseases, these patients may present intolerance to MIRT or HIRT. Thus, the low intensity resistance training combined with blood flow restriction(LIRTBFR) may be a new training strategy for these populations. Objective To perform a systematic review with meta-analysis to verify the effects of LIRTBFR on muscle strength, muscle mass and functionality in RA and OA patients. Materials and methods A systematic review with meta-analysis of randomized clinical trials(RCTs), published in English, between 1957–2021, was conducted using MEDLINE(PubMed), Embase and Cochrane Library. The methodological quality was assessed using Physiotherapy Evidence Database scale. The risk of bias was assessed using RoB2.0. Mean difference(MD) or standardized mean difference(SMD) and 95% confidence intervals(CI) were pooled using a random-effects model. A P<0.05 was considered statistically significant. Results Five RCTs were included. We found no significant differences in the effects between LIRTBFR, MIRT and HIRT on muscle strength, which was assessed by tests of quadriceps strength(SMD = -0.01[-0.57, 0.54], P = 0.96; I² = 58%) and functionality measured by tests with patterns similar to walking(SMD = -0.04[-0.39, 0.31], P = 0.82; I² = 0%). Compared to HIRT, muscle mass gain after LIRTBFR was reported to be similar. When comparing LIRTBFR with low intensity resistance training without blood flow restriction(LIRT), the effect LIRTBFR was reported to be higher on muscle strength, which was evaluated by the knee extension test. Conclusion LIRTBFR appears to be a promising strategy for gains in muscle strength, muscle mass and functionality in a predominant sample of RA and OA women.
Collapse
Affiliation(s)
- Leonardo Peterson dos Santos
- Autoimmune Diseases Laboratory, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Division of Rheumatology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
- Medical School, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| | - Rafaela Cavalheiro do Espírito Santo
- Autoimmune Diseases Laboratory, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Division of Rheumatology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
- Medical School, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Rozales Ramis
- Exercise Research Laboratory (LAPEX), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Juliana Katarina Schoer Portes
- Autoimmune Diseases Laboratory, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Division of Rheumatology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
- Medical School, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafael Mendonça da Silva Chakr
- Autoimmune Diseases Laboratory, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Division of Rheumatology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
- Medical School, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Ricardo Machado Xavier
- Autoimmune Diseases Laboratory, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Division of Rheumatology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
- Medical School, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
14
|
Gillis C, Phillips SM. Protein for the Pre-Surgical Cancer Patient: a Narrative Review. CURRENT ANESTHESIOLOGY REPORTS 2021. [DOI: 10.1007/s40140-021-00494-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Making Sense of Muscle Protein Synthesis: A Focus on Muscle Growth During Resistance Training. Int J Sport Nutr Exerc Metab 2021; 32:49-61. [PMID: 34697259 DOI: 10.1123/ijsnem.2021-0139] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/20/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022]
Abstract
The acute response of muscle protein synthesis (MPS) to resistance exercise and nutrition is often used to inform recommendations for exercise programming and dietary interventions, particularly protein nutrition, to support and enhance muscle growth with training. Those recommendations are worthwhile only if there is a predictive relationship between the acute response of MPS and subsequent muscle hypertrophy during resistance exercise training. The metabolic basis for muscle hypertrophy is the dynamic balance between the synthesis and degradation of myofibrillar proteins in muscle. There is ample evidence that the process of MPS is much more responsive to exercise and nutrition interventions than muscle protein breakdown. Thus, it is intuitively satisfying to translate the acute changes in MPS to muscle hypertrophy with training over a longer time frame. Our aim is to examine and critically evaluate the strength and nature of this relationship. Moreover, we examine the methodological and physiological factors related to measurement of MPS and changes in muscle hypertrophy that contribute to uncertainty regarding this relationship. Finally, we attempt to offer recommendations for practical and contextually relevant application of the information available from studies of the acute response of MPS to optimize muscle hypertrophy with training.
Collapse
|
16
|
Lysenko EA, Vinogradova OL, Popov DV. The Mechanisms of Muscle Mass and Strength Increase during Strength Training. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Abou Sawan S, Hodson N, Babits P, Malowany JM, Kumbhare D, Moore DR. Satellite cell and myonuclear accretion is related to training-induced skeletal muscle fiber hypertrophy in young males and females. J Appl Physiol (1985) 2021; 131:871-880. [PMID: 34264129 DOI: 10.1152/japplphysiol.00424.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Satellite cells (SC) play an integral role in the recovery from skeletal muscle damage and supporting muscle hypertrophy. Acute resistance exercise typically elevates type I and type II SC content 24-96 h post exercise in healthy young males, although comparable research in females is lacking. We aimed to elucidate whether sex-based differences exist in fiber type-specific SC content after resistance exercise in the untrained (UT) and trained (T) states. Ten young males (23.0 ± 4.0 yr) and females (23.0 ± 4.8 yr) completed an acute bout of resistance exercise before and after 8 wk of whole body resistance training. Muscle biopsies were taken from the vastus lateralis immediately before and 24 and 48 h after each bout to determine SC and myonuclear content by immunohistochemistry. Males had greater SC associated with type II fibers (P ≤ 0.03). There was no effect of acute resistance exercise on SC content in either fiber type (P ≥ 0.58) for either sex; however, training increased SC in type II fibers (P < 0.01) irrespective of sex. The change in mean 0-48 h type II SC was positively correlated with muscle fiber hypertrophy in type II fibers (r = 0.47; P = 0.035). Furthermore, the change in myonuclei per fiber was positively correlated with type I and type II fiber hypertrophy (both r = 0.68; P < 0.01). Our results suggest that SC responses to acute and chronic resistance exercise are similar in males and females and that SC and myonuclear accretion is related to training-induced muscle fiber hypertrophy.NEW & NOTEWORTHY We demonstrate that training-induced increase in SC content in type II fibers and myonuclear content in type I and II fibers is similar between males and females. Furthermore, these changes are related to the extent of muscle fiber hypertrophy. Thus, SC and myonuclear accretion appear to contribute to muscle hypertrophy irrespective of sex, highlighting the importance of these muscle stem cells in human skeletal muscle growth.
Collapse
Affiliation(s)
- Sidney Abou Sawan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Hodson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Paul Babits
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Julia M Malowany
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | | | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
McKendry J, Stokes T, Mcleod JC, Phillips SM. Resistance Exercise, Aging, Disuse, and Muscle Protein Metabolism. Compr Physiol 2021; 11:2249-2278. [PMID: 34190341 DOI: 10.1002/cphy.c200029] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle is the organ of locomotion, its optimal function is critical for athletic performance, and is also important for health due to its contribution to resting metabolic rate and as a site for glucose uptake and storage. Numerous endogenous and exogenous factors influence muscle mass. Much of what is currently known regarding muscle protein turnover is owed to the development and use of stable isotope tracers. Skeletal muscle mass is determined by the meal- and contraction-induced alterations of muscle protein synthesis and muscle protein breakdown. Increased loading as resistance training is the most potent nonpharmacological strategy by which skeletal muscle mass can be increased. Conversely, aging (sarcopenia) and muscle disuse lead to the development of anabolic resistance and contribute to the loss of skeletal muscle mass. Nascent omics-based technologies have significantly improved our understanding surrounding the regulation of skeletal muscle mass at the gene, transcript, and protein levels. Despite significant advances surrounding the mechanistic intricacies that underpin changes in skeletal muscle mass, these processes are complex, and more work is certainly needed. In this article, we provide an overview of the importance of skeletal muscle, describe the influence that resistance training, aging, and disuse exert on muscle protein turnover and the molecular regulatory processes that contribute to changes in muscle protein abundance. © 2021 American Physiological Society. Compr Physiol 11:2249-2278, 2021.
Collapse
Affiliation(s)
- James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan C Mcleod
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
19
|
A Low-Protein High-Fat Diet Leads to Loss of Body Weight and White Adipose Tissue Weight via Enhancing Energy Expenditure in Mice. Metabolites 2021; 11:metabo11050301. [PMID: 34064590 PMCID: PMC8150844 DOI: 10.3390/metabo11050301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/23/2022] Open
Abstract
Obesity has become a worldwide health problem over the past three decades. During obesity, metabolic dysfunction of white adipose tissue (WAT) is a key factor increasing the risk of type 2 diabetes. A variety of diet approaches have been proposed for the prevention and treatment of obesity. The low-protein high-fat diet (LPHF) is a special kind of high-fat diet, characterized by the intake of a low amount of protein, while compared to typical high-fat diet, may induce weight loss and browning of WAT. Physical activity is another effective intervention to treat obesity by reducing WAT mass, inducing browning of WAT. In order to determine whether an LPHF, along with exercise enhanced body weight loss and body fat loss as well as the synergistic effect of an LPHF and exercise on energy expenditure in a mice model, we combined a 10-week LPHF with an 8-week forced treadmill training. Meanwhile, a traditional high-fat diet (HPHF) containing the same fat and relatively more protein was introduced as a comparison. In the current study, we further analyzed energy metabolism-related gene expression, plasma biomarkers, and related physiological changes. When comparing to HPHF, which induced a dramatic increase in body weight and WAT weight, the LPHF led to considerable loss of body weight and WAT, without muscle mass and strength decline, while it exhibited a risk of liver and pancreas damage. The mechanism underlying the LPHF-induced loss of body weight and WAT may be attributed to the synergistically upregulated expression of Ucp1 in WAT and Fgf21 in the liver, which may enhance energy expenditure. The 8-week training did not further enhance weight loss and increased plasma biomarkers of muscle damage when combined with LPHF. Furthermore, LPHF reduced the expression of fatty acid oxidation-related genes in adipose tissues, muscle tissues, and liver. Our results indicated that an LPHF has potential for obesity treatment, while the physiological condition should be monitored during application.
Collapse
|
20
|
Effects of acute and chronic strength training on skeletal muscle autophagy in frail elderly men and women. Exp Gerontol 2020; 142:111122. [PMID: 33132146 DOI: 10.1016/j.exger.2020.111122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022]
Abstract
Aging is associated with alterations in skeletal muscle autophagy, potentially affecting both muscle mass and quality in a negative manner. Strength training with protein supplementation has been reported to improve both muscle mass and quality in frail elderly individuals, but whether improvements are accompanied by alterations in protein quality control is not known. To address this issue, we investigated protein degradation markers in skeletal muscle biopsies (m. vastus lateralis) from twenty-four frail elderly men and women (86 ± 7 yr) after acute and chronic (10 weeks) strength training with protein supplementation (ST + PRO) or protein supplementation alone (PRO). Acute increases in mRNA expression of genes related to the ubiquitin proteasome system (MuRF-1, MUSA1), autophagy (ATG7, LC3, p62), and mitochondrial fission (DRP1) were observed after the first, but not after the last training session in ST + PRO. Acute changes in gene expression were accompanied by changes in protein levels of both LC3-I and LC3-II. Hence, the acute training-induced activation of proteasomal degradation and autophagy seems to depend on training status, with activation in the untrained, but not trained state. The ten-week training intervention did not affect basal levels of autophagy mRNAs and proteins, and neither markers of the ubiquitin-proteasome system. This suggests that a relatively short period of strength training may not be sufficient to increase the basal rate of protein degradation in frail elderly.
Collapse
|
21
|
Mallinson JE, Taylor T, Constantin-Teodosiu D, Billeter-Clark R, Constantin D, Franchi MV, Narici MV, Auer D, Greenhaff PL. Longitudinal hypertrophic and transcriptional responses to high-load eccentric-concentric vs concentric training in males. Scand J Med Sci Sports 2020; 30:2101-2115. [PMID: 32762021 DOI: 10.1111/sms.13791] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/09/2023]
Abstract
High-load eccentric training reputedly produces greater muscle hypertrophy than concentric training, possibly due to greater loading and/or inflammation. We quantified the temporal impact of combined maximal concentric-eccentric training vs maximal concentric training on muscle cross-sectional area (CSA), volume, and targeted mRNA expression (93 transcripts). Eight recreationally active males (24 ± 5 years, BMI 23.5 ± 2.5 kg/m2 ) performed 3 x 30 maximal eccentric isokinetic knee extensions and 2 x 30 maximal concentric knee extensions in dominant limb (ECC + CON) and 5 x 30 maximal concentric contractions (CON) in the non-dominant limb for 12 weeks (all 90°/s, 3x/wk). Quadriceps muscle CSA and volume were measured at baseline, 28 days (d), and 84 d in both limbs (3T MRI). Resting vastus lateralis biopsies were obtained from both limbs at baseline, 24 hours (h), 7, 28, and 84 d for mRNA abundance measurements (RT-PCR microfluidic cards). Work output was greater throughout training in ECC + CON vs CON (20.8 ± 9.7%, P < .001). Muscle CSA increased from baseline in both limbs at 28 d (CON 4.3 ± 2.6%, ECC + CON 4.0 ± 1.9%, both P < .001) and 84d (CON 3.9 ± 2.3%, ECC + CON 4.0 ± 3.1%, both P < .001), and muscle volume and isometric strength at 84 d (CON 44.8 ± 40.0%, P < .001; ECC + CON 36.9 ± 40.0%, P < .01), but no between-limb differences existed in any parameter. Ingenuity Pathway Analysis identified several cellular functions associated with regulation of muscle mass and metabolism as altered by both modalities at 24 h and 7 d, but particularly with ECC + CON. However, mRNA responses waned thereafter, regardless of modality. Initial muscle mRNA responses to training did not reflect chronic training-induced hypertrophy. Moreover, ECC + CON did not produce greater hypertrophy than CON, despite greater loading throughout and a differential mRNA response during the initial training week.
Collapse
Affiliation(s)
| | - Tariq Taylor
- School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre for Sport, Exercise and Osteoarthritis Research Versus Arthritis, Nottingham, UK
| | - Dumitru Constantin-Teodosiu
- School of Life Sciences, University of Nottingham, Nottingham, UK.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingham, UK
| | | | - Despina Constantin
- School of Life Sciences, University of Nottingham, Nottingham, UK.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingham, UK
| | - Martino V Franchi
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingham, UK.,School of Medicine, University of Nottingham, Nottingham, UK
| | - Marco V Narici
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingham, UK.,School of Medicine, University of Nottingham, Nottingham, UK
| | - Dorothee Auer
- School of Life Sciences, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Paul L Greenhaff
- School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre for Sport, Exercise and Osteoarthritis Research Versus Arthritis, Nottingham, UK.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| |
Collapse
|
22
|
MOBERG MARCUS, LINDHOLM MALENEE, REITZNER STEFANM, EKBLOM BJÖRN, SUNDBERG CARLJOHAN, PSILANDER NIKLAS. Exercise Induces Different Molecular Responses in Trained and Untrained Human Muscle. Med Sci Sports Exerc 2020; 52:1679-1690. [DOI: 10.1249/mss.0000000000002310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
23
|
McKendry J, Currier BS, Lim C, Mcleod JC, Thomas AC, Phillips SM. Nutritional Supplements to Support Resistance Exercise in Countering the Sarcopenia of Aging. Nutrients 2020; 12:E2057. [PMID: 32664408 PMCID: PMC7399875 DOI: 10.3390/nu12072057] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle plays an indispensable role in metabolic health and physical function. A decrease in muscle mass and function with advancing age exacerbates the likelihood of mobility impairments, disease development, and early mortality. Therefore, the development of non-pharmacological interventions to counteract sarcopenia warrant significant attention. Currently, resistance training provides the most effective, low cost means by which to prevent sarcopenia progression and improve multiple aspects of overall health. Importantly, the impact of resistance training on skeletal muscle mass may be augmented by specific dietary components (i.e., protein), feeding strategies (i.e., timing, per-meal doses of specific macronutrients) and nutritional supplements (e.g., creatine, vitamin-D, omega-3 polyunsaturated fatty acids etc.). The purpose of this review is to provide an up-to-date, evidence-based account of nutritional strategies to enhance resistance training-induced adaptations in an attempt to combat age-related muscle mass loss. In addition, we provide insight on how to incorporate the aforementioned nutritional strategies that may support the growth or maintenance of skeletal muscle and subsequently extend the healthspan of older individuals.
Collapse
Affiliation(s)
| | | | | | | | | | - Stuart M. Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.M.); (B.S.C.); (C.L.); (J.C.M.); (A.C.Q.T.)
| |
Collapse
|
24
|
Boisgontier MP, Iversen MD. Physical Inactivity: A Behavioral Disorder in the Physical Therapist's Scope of Practice. Phys Ther 2020; 100:743-746. [PMID: 31944246 DOI: 10.1093/ptj/pzaa011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 08/26/2019] [Accepted: 11/20/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Matthieu P Boisgontier
- School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Maura D Iversen
- College of Health Professions, Sacred Heart University, Fairfield, Connecticut; Department of Medicine, Section of Clinical Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
25
|
Resistance Training and Skeletal Muscle Protein Metabolism in Eumenorrheic Females: Implications for Researchers and Practitioners. Sports Med 2020; 49:1637-1650. [PMID: 31190324 DOI: 10.1007/s40279-019-01132-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Resistance training is essential for health and performance and confers many benefits such as increasing skeletal muscle mass, increasing strength and power output, and improving metabolic health. Resistance training is a major component of the physical activity guidelines, yet research in female populations is limited. Recent increases in the promotion of, and the participation by, females in sport and exercise, highlight the need for an increase in understanding of evidence-based best practice exercise prescription for females. The aim of this review is to provide an overview of the current research regarding resistance training performance and skeletal muscle adaptation in females, with a focus on the hormonal variables that may influence resistance training outcomes. Findings suggest that the menstrual cycle phase may impact strength, but not skeletal muscle protein metabolism. In comparison, oral contraception use in females may reduce skeletal muscle protein synthesis, but not strength outcomes, when compared to non-users. Future research should investigate the role of resistance training in the maintenance of skeletal muscle protein metabolism during pregnancy, menopause and in athletes experiencing relative energy deficiency in sport. The review concludes with recommendations for researchers to assist them in the inclusion of female participants in resistance training research specifically, with commentary on the most appropriate methods of controlling for, or understanding the implications of, hormonal fluctuations. For practitioners, the current evidence suggests possible resistance training practices that could optimise performance outcomes in females, although further research is warranted.
Collapse
|
26
|
Parker BL, Kiens B, Wojtaszewski JFP, Richter EA, James DE. Quantification of exercise‐regulated ubiquitin signaling in human skeletal muscle identifies protein modification cross talk via NEDDylation. FASEB J 2020; 34:5906-5916. [DOI: 10.1096/fj.202000075r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Benjamin L. Parker
- Charles Perkins Centre School of Life and Environmental Science The University of Sydney Sydney NSW Australia
- Department of Physiology Centre for Muscle Research The University of Melbourne Melbourne VIC Australia
| | - Bente Kiens
- Section of Molecular Physiology, Faculty of Science, Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Jørgen F. P. Wojtaszewski
- Section of Molecular Physiology, Faculty of Science, Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Erik A. Richter
- Section of Molecular Physiology, Faculty of Science, Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - David E. James
- Charles Perkins Centre School of Life and Environmental Science The University of Sydney Sydney NSW Australia
- School of Medicine The University of Sydney Sydney NSW Australia
| |
Collapse
|
27
|
Joanisse S, Lim C, McKendry J, Mcleod JC, Stokes T, Phillips SM. Recent advances in understanding resistance exercise training-induced skeletal muscle hypertrophy in humans. F1000Res 2020; 9. [PMID: 32148775 PMCID: PMC7043134 DOI: 10.12688/f1000research.21588.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/18/2020] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle plays a pivotal role in the maintenance of physical and metabolic health and, critically, mobility. Accordingly, strategies focused on increasing the quality and quantity of skeletal muscle are relevant, and resistance exercise is foundational to the process of functional hypertrophy. Much of our current understanding of skeletal muscle hypertrophy can be attributed to the development and utilization of stable isotopically labeled tracers. We know that resistance exercise and sufficient protein intake act synergistically and provide the most effective stimuli to enhance skeletal muscle mass; however, the molecular intricacies that underpin the tremendous response variability to resistance exercise-induced hypertrophy are complex. The purpose of this review is to discuss recent studies with the aim of shedding light on key regulatory mechanisms that dictate hypertrophic gains in skeletal muscle mass. We also aim to provide a brief up-to-date summary of the recent advances in our understanding of skeletal muscle hypertrophy in response to resistance training in humans.
Collapse
Affiliation(s)
- Sophie Joanisse
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Changhyun Lim
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Jonathan C Mcleod
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
28
|
Figueiredo VC. Revisiting the roles of protein synthesis during skeletal muscle hypertrophy induced by exercise. Am J Physiol Regul Integr Comp Physiol 2019; 317:R709-R718. [PMID: 31508978 DOI: 10.1152/ajpregu.00162.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein synthesis is deemed the underpinning mechanism enhancing protein balance required for skeletal muscle hypertrophy in response to resistance exercise. The current model of skeletal muscle hypertrophy induced by resistance training states that the acute increase in the rates of protein synthesis after each bout of resistance exercise is the basis for muscle growth. Within this paradigm, each resistance exercise session would add a specific amount of muscle mass; therefore, muscle hypertrophy could be defined as the result of intermittent and short-lived increases in muscle protein synthesis rates following each resistance exercise session. Although a substantial amount of data has accumulated in the last decades regarding the acute changes in protein synthesis (or translational efficiency) following resistance exercise, considerable gaps on the mechanism of muscle growth still exist. Ribosome biogenesis and translational capacity have emerged as important mediators of skeletal muscle hypertrophy. Recent advances in the field have demonstrated that skeletal muscle hypertrophy is associated with markers of translational capacity and long-term changes in protein synthesis under resting conditions. This review will discuss the caveats of the current model of skeletal muscle hypertrophy induced by resistance training while proposing a working model that takes into consideration the novel data generated by independent laboratories utilizing different methodologies. It is argued, herein, that the role of protein synthesis in the current model of muscle hypertrophy warrants revisiting.
Collapse
Affiliation(s)
- Vandré Casagrande Figueiredo
- College of Health Sciences, Department of Rehabilitation Sciences, the Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
29
|
Abstract
Muscle protein breakdown (MPB) is an important metabolic component of muscle remodeling, adaptation to training, and increasing muscle mass. Degradation of muscle proteins occurs via the integration of three main systems—autophagy and the calpain and ubiquitin-proteasome systems. These systems do not operate independently, and the regulation is complex. Complete degradation of a protein requires some combination of the systems. Determination of MPB in humans is technically challenging, leading to a relative dearth of information. Available information on the dynamic response of MPB primarily comes from stable isotopic methods with expression and activity measures providing complementary information. It seems clear that resistance exercise increases MPB, but not as much as the increase in muscle protein synthesis. Both hyperaminoacidemia and hyperinsulinemia inhibit the post-exercise response of MPB. Available data do not allow a comprehensive examination of the mechanisms behind these responses. Practical nutrition recommendations for interventions to suppress MPB following exercise are often made. However, it is likely that some degree of increased MPB following exercise is an important component for optimal remodeling. At this time, it is not possible to determine the impact of nutrition on any individual muscle protein. Thus, until we can develop and employ better methods to elucidate the role of MPB following exercise and the response to nutrition, recommendations to optimize post exercise nutrition should focus on the response of muscle protein synthesis. The aim of this review is to provide a comprehensive examination of the state of knowledge, including methodological considerations, of the response of MPB to exercise and nutrition in humans.
Collapse
|
30
|
Prehabilitation and functional recovery for colorectal cancer patients. Eur J Surg Oncol 2018; 44:919-926. [PMID: 29754828 DOI: 10.1016/j.ejso.2018.04.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 01/24/2023] Open
|
31
|
Trouwborst I, Verreijen A, Memelink R, Massanet P, Boirie Y, Weijs P, Tieland M. Exercise and Nutrition Strategies to Counteract Sarcopenic Obesity. Nutrients 2018; 10:E605. [PMID: 29757230 PMCID: PMC5986485 DOI: 10.3390/nu10050605] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 02/08/2023] Open
Abstract
As the population is aging rapidly, there is a strong increase in the number of individuals with chronic disease and physical limitations. The decrease in skeletal muscle mass and function (sarcopenia) and the increase in fat mass (obesity) are important contributors to the development of physical limitations, which aggravates the chronic diseases prognosis. The combination of the two conditions, which is referred to as sarcopenic obesity, amplifies the risk for these negative health outcomes, which demonstrates the importance of preventing or counteracting sarcopenic obesity. One of the main challenges is the preservation of the skeletal muscle mass and function, while simultaneously reducing the fat mass in this population. Exercise and nutrition are two key components in the development, as well as the prevention and treatment of sarcopenic obesity. The main aim of this narrative review is to summarize the different, both separate and combined, exercise and nutrition strategies so as to prevent and/or counteract sarcopenic obesity. This review therefore provides a current update of the various exercise and nutritional strategies to improve the contrasting body composition changes and physical functioning in sarcopenic obese individuals.
Collapse
Affiliation(s)
- Inez Trouwborst
- Faculty of Sports and Nutrition, Amsterdam University of Applied Sciences, 1097 SM Amsterdam, The Netherlands.
| | - Amely Verreijen
- Faculty of Sports and Nutrition, Amsterdam University of Applied Sciences, 1097 SM Amsterdam, The Netherlands.
| | - Robert Memelink
- Faculty of Sports and Nutrition, Amsterdam University of Applied Sciences, 1097 SM Amsterdam, The Netherlands.
| | - Pablo Massanet
- Medical Intensive Care Unit, Nimes University Hospital, place du Pr Debré, 30029 Nimes, France.
| | - Yves Boirie
- Medical Intensive Care Unit, Nimes University Hospital, place du Pr Debré, 30029 Nimes, France.
- Unité de Nutrition Humaine, Université Clermont Auvergne, INRA, CRNH Auvergne, CHU Clermont-Ferrand, Service Nutrition Clinique, F-63000 Clermont-Ferrand, France.
| | - Peter Weijs
- Faculty of Sports and Nutrition, Amsterdam University of Applied Sciences, 1097 SM Amsterdam, The Netherlands.
- Department of Nutrition and Dietetics, Internal Medicine, VU University Medical Center, De Boelenlaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Michael Tieland
- Faculty of Sports and Nutrition, Amsterdam University of Applied Sciences, 1097 SM Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Damas F, Libardi CA, Ugrinowitsch C. The development of skeletal muscle hypertrophy through resistance training: the role of muscle damage and muscle protein synthesis. Eur J Appl Physiol 2017; 118:485-500. [PMID: 29282529 DOI: 10.1007/s00421-017-3792-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/16/2017] [Indexed: 11/25/2022]
Abstract
Resistance training (RT)-induced skeletal muscle hypertrophy is a highly intricate process. Despite substantial advances, we are far from understanding exactly how muscle hypertrophy develops during RT. The aim of the present review is to discuss new insights related to the role of skeletal muscle damage and muscle protein synthesis (MPS) in mediating RT-induced hypertrophy. Specifically, the thesis that in the early phase of RT (≤ 4 previous RT sessions) increases in muscle cross-sectional area are mostly attributable to muscle damage-induced muscle swelling; then (after ~ 10 sessions), a modest magnitude of muscle hypertrophy ensues; but only during a latter phase of RT (after ~ 18 sessions) is true muscle hypertrophy observed. We argue that the initial increases in MPS post-RT are likely directed to muscle repair and remodelling due to damage, and do not correlate with eventual muscle hypertrophy induced by several RT weeks. Increases in MPS post-RT session only contribute to muscle hypertrophy after a progressive attenuation of muscle damage, and even more significantly when damage is minimal. Furthermore, RT protocols that do not promote significant muscle damage still induce similar muscle hypertrophy and strength gains compared to conditions that do promote initial muscle damage. Thus, we conclude that muscle damage is not the process that mediates or potentiates RT-induced muscle hypertrophy.
Collapse
Affiliation(s)
- Felipe Damas
- School of Physical Education and Sport, University of São Paulo, Av. Prof. Mello Moraes, 65, São Paulo, SP, 05508-030, Brazil. .,Laboratory of Neuromuscular Adaptations to Resistance Training-MUSCULAB, Department of Physical Education, Federal University of São Carlos, Rod. Washington Luiz, km 235-SP310, São Carlos, SP, 13565-905, Brazil.
| | - Cleiton A Libardi
- Laboratory of Neuromuscular Adaptations to Resistance Training-MUSCULAB, Department of Physical Education, Federal University of São Carlos, Rod. Washington Luiz, km 235-SP310, São Carlos, SP, 13565-905, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, Av. Prof. Mello Moraes, 65, São Paulo, SP, 05508-030, Brazil
| |
Collapse
|
33
|
Latella C, Teo WP, Harris D, Major B, VanderWesthuizen D, Hendy AM. Effects of acute resistance training modality on corticospinal excitability, intra-cortical and neuromuscular responses. Eur J Appl Physiol 2017; 117:2211-2224. [DOI: 10.1007/s00421-017-3709-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 08/13/2017] [Indexed: 01/01/2023]
|
34
|
D'Souza RF, Bjørnsen T, Zeng N, Aasen KMM, Raastad T, Cameron-Smith D, Mitchell CJ. MicroRNAs in Muscle: Characterizing the Powerlifter Phenotype. Front Physiol 2017. [PMID: 28638346 PMCID: PMC5461344 DOI: 10.3389/fphys.2017.00383] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Powerlifters are the epitome of muscular adaptation and are able to generate extreme forces. The molecular mechanisms underpinning the significant capacity for force generation and hypertrophy are not fully elucidated. MicroRNAs (miRs) are short non-coding RNA sequences that control gene expression via promotion of transcript breakdown and/or translational inhibition. Differences in basal miR expression may partially account for phenotypic differences in muscle mass and function between powerlifters and untrained age-matched controls. Muscle biopsies were obtained from m. vastus lateralis of 15 national level powerlifters (25.1 ± 5.8 years) and 13 untrained controls (24.1 ± 2.0 years). The powerlifters were stronger than the controls (isokinetic knee extension at 60°/s: 307.8 ± 51.6 Nm vs. 211.9 ± 41.9 Nm, respectively P < 0.001), and also had larger muscle fibers (type I CSA 9,122 ± 1,238 vs. 4,511 ± 798 μm2p < 0.001 and type II CSA 11,100 ± 1,656 vs. 5,468 ± 1,477 μm2p < 0.001). Of the 17 miRs species analyzed, 12 were differently expressed (p < 0.05) between groups with 7 being more abundant in powerlifters and five having lower expression. Established transcriptionally regulated miR downstream gene targets involved in muscle mass regulation, including myostatin and MyoD, were also differentially expressed between groups. Correlation analysis demonstrates the abundance of eight miRs was correlated to phenotype including peak strength, fiber size, satellite cell abundance, and fiber type regardless of grouping. The unique miR expression profiles between groups allow for categorization of individuals as either powerlifter or healthy controls based on a five miR signature (miR-126, -23b, -16, -23a, -15a) with considerable accuracy (100%). Thus, this unique miR expression may be important to the characterization of the powerlifter phenotype.
Collapse
Affiliation(s)
| | - Thomas Bjørnsen
- Department of Public Health, Sport and Nutrition, Faculty of Health and Sport Sciences, University of AgderKristiansand, Norway
| | - Nina Zeng
- Liggins Institute, University of AucklandAuckland, New Zealand
| | | | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport SciencesOslo, Norway
| | | | | |
Collapse
|
35
|
Post-absorptive muscle protein turnover affects resistance training hypertrophy. Eur J Appl Physiol 2017; 117:853-866. [PMID: 28280974 DOI: 10.1007/s00421-017-3566-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/07/2017] [Indexed: 01/18/2023]
Abstract
PURPOSE Acute bouts of resistance exercise and subsequent training alters protein turnover in skeletal muscle. The mechanisms responsible for the changes in basal post-absorptive protein turnover and its impact on muscle hypertrophy following resistance exercise training are unknown. Our goal was to determine whether post-absorptive muscle protein turnover following 12 weeks of resistance exercise training (RET) plays a role in muscle hypertrophy. In addition, we were interested in determining potential molecular mechanisms responsible for altering post-training muscle protein turnover. METHODS Healthy young men (n = 31) participated in supervised whole body progressive RET at 60-80% 1 repetition maximum (1-RM), 3 days/week for 3 months. Pre- and post-training vastus lateralis muscle biopsies and blood samples taken during an infusion of 13C6 and 15N phenylalanine and were used to assess skeletal muscle protein turnover in the post-absorptive state. Lean body mass (LBM), muscle strength (determined by dynamometry), vastus lateralis muscle thickness (MT), myofiber type-specific cross-sectional area (CSA), and mRNA were assessed pre- and post-RET. RESULTS RET increased strength (12-40%), LBM (~5%), MT (~15%) and myofiber CSA (~20%) (p < 0.05). Muscle protein synthesis (MPS) increased 24% while muscle protein breakdown (MPB) decreased 21%, respectively. These changes in protein turnover resulted in an improved net muscle protein balance in the basal state following RET. Further, the change in basal MPS is positively associated (r = 0.555, p = 0.003) with the change in muscle thickness. CONCLUSION Post-absorptive muscle protein turnover is associated with muscle hypertrophy during resistance exercise training.
Collapse
|
36
|
Borack MS, Reidy PT, Husaini SH, Markofski MM, Deer RR, Richison AB, Lambert BS, Cope MB, Mukherjea R, Jennings K, Volpi E, Rasmussen BB. Soy-Dairy Protein Blend or Whey Protein Isolate Ingestion Induces Similar Postexercise Muscle Mechanistic Target of Rapamycin Complex 1 Signaling and Protein Synthesis Responses in Older Men. J Nutr 2016; 146:2468-2475. [PMID: 27798330 PMCID: PMC5118761 DOI: 10.3945/jn.116.231159] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/08/2016] [Accepted: 09/22/2016] [Indexed: 12/29/2022] Open
Abstract
Background: Previous work demonstrated that a soy-dairy protein blend (PB) prolongs hyperaminoacidemia and muscle protein synthesis in young adults after resistance exercise. Objective: We investigated the effect of PB in older adults. We hypothesized that PB would prolong hyperaminoacidemia, enhancing mechanistic target of rapamycin complex 1 (mTORC1) signaling and muscle protein anabolism compared with a whey protein isolate (WPI). Methods: This double-blind, randomized controlled trial studied men 55–75 y of age. Subjects consumed 30 g protein from WPI or PB (25% soy, 25% whey, and 50% casein) 1 h after leg extension exercise (8 sets of 10 repetitions at 70% one-repetition maximum). Blood and muscle amino acid concentrations and basal and postexercise muscle protein turnover were measured by using stable isotopic methods. Muscle mTORC1 signaling was assessed by immunoblotting. Results: Both groups increased amino acid concentrations (P < 0.05) and mTORC1 signaling after protein ingestion (P < 0.05). Postexercise fractional synthesis rate (FSR; P ≥ 0.05), fractional breakdown rate (FBR; P ≥ 0.05), and net balance (P = 0.08) did not differ between groups. WPI increased FSR by 67% (mean ± SEM: rest: 0.05% ± 0.01%; postexercise: 0.09% ± 0.01%; P < 0.05), decreased FBR by 46% (rest: 0.17% ± 0.01%; postexercise: 0.09% ± 0.03%; P < 0.05), and made net balance less negative (P < 0.05). PB ingestion did not increase FSR (rest: 0.07% ± 0.03%; postexercise: 0.09% ± 0.01%; P ≥ 0.05), tended to decrease FBR by 42% (rest: 0.25% ± 0.08%; postexercise: 0.15% ± 0.08%; P = 0.08), and made net balance less negative (P < 0.05). Within-group percentage of change differences were not different between groups for FSR, FBR, or net balance (P ≥ 0.05). Conclusions: WPI and PB ingestion after exercise in older men induced similar responses in hyperaminoacidemia, mTORC1 signaling, muscle protein synthesis, and breakdown. These data add new evidence for the use of whey or soy-dairy PBs as targeted nutritional interventions to counteract sarcopenia. This trial was registered at clinicaltrials.gov as NCT01847261.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kristofer Jennings
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX; and
| | - Elena Volpi
- Sealy Center on Aging.,Department of Internal Medicine/Geriatrics, and
| | - Blake B Rasmussen
- Division of Rehabilitation Sciences, .,Department of Nutrition and Metabolism.,Sealy Center on Aging
| |
Collapse
|
37
|
Damas F, Phillips SM, Libardi CA, Vechin FC, Lixandrão ME, Jannig PR, Costa LAR, Bacurau AV, Snijders T, Parise G, Tricoli V, Roschel H, Ugrinowitsch C. Resistance training-induced changes in integrated myofibrillar protein synthesis are related to hypertrophy only after attenuation of muscle damage. J Physiol 2016; 594:5209-22. [PMID: 27219125 PMCID: PMC5023708 DOI: 10.1113/jp272472] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/18/2016] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Skeletal muscle hypertrophy is one of the main outcomes from resistance training (RT), but how it is modulated throughout training is still unknown. We show that changes in myofibrillar protein synthesis (MyoPS) after an initial resistance exercise (RE) bout in the first week of RT (T1) were greater than those seen post-RE at the third (T2) and tenth week (T3) of RT, with values being similar at T2 and T3. Muscle damage (Z-band streaming) was the highest during post-RE recovery at T1, lower at T2 and minimal at T3. When muscle damage was the highest, so was the integrated MyoPS (at T1), but neither were related to hypertrophy; however, integrated MyoPS at T2 and T3 were correlated with hypertrophy. We conclude that muscle hypertrophy is the result of accumulated intermittent increases in MyoPS mainly after a progressive attenuation of muscle damage. ABSTRACT Skeletal muscle hypertrophy is one of the main outcomes of resistance training (RT), but how hypertrophy is modulated and the mechanisms regulating it are still unknown. To investigate how muscle hypertrophy is modulated through RT, we measured day-to-day integrated myofibrillar protein synthesis (MyoPS) using deuterium oxide and assessed muscle damage at the beginning (T1), at 3 weeks (T2) and at 10 weeks of RT (T3). Ten young men (27 (1) years, mean (SEM)) had muscle biopsies (vastus lateralis) taken to measure integrated MyoPS and muscle damage (Z-band streaming and indirect parameters) before, and 24 h and 48 h post resistance exercise (post-RE) at T1, T2 and T3. Fibre cross-sectional area (fCSA) was evaluated using biopsies at T1, T2 and T3. Increases in fCSA were observed only at T3 (P = 0.017). Changes in MyoPS post-RE at T1, T2 and T3 were greater at T1 (P < 0.03) than at T2 and T3 (similar values between T2 and T3). Muscle damage was the highest during post-RE recovery at T1, attenuated at T2 and further attenuated at T3. The change in MyoPS post-RE at both T2 and T3, but not at T1, was strongly correlated (r ≈ 0.9, P < 0.04) with muscle hypertrophy. Initial MyoPS response post-RE in an RT programme is not directed to support muscle hypertrophy, coinciding with the greatest muscle damage. However, integrated MyoPS is quickly 'refined' by 3 weeks of RT, and is related to muscle hypertrophy. We conclude that muscle hypertrophy is the result of accumulated intermittent changes in MyoPS post-RE in RT, which coincides with progressive attenuation of muscle damage.
Collapse
Affiliation(s)
- Felipe Damas
- School of Physical Education and Sport, University of São Paulo, Av. Prof. Mello de Morais, 65, 05508-030, São Paulo, SP, Brazil
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1.
| | - Cleiton A Libardi
- Department of Physical Education, Federal University of São Carlos, Rod Washington Luiz, km 235 - SP310, 13565-905, São Carlos, SP, Brazil
| | - Felipe C Vechin
- School of Physical Education and Sport, University of São Paulo, Av. Prof. Mello de Morais, 65, 05508-030, São Paulo, SP, Brazil
| | - Manoel E Lixandrão
- School of Physical Education and Sport, University of São Paulo, Av. Prof. Mello de Morais, 65, 05508-030, São Paulo, SP, Brazil
| | - Paulo R Jannig
- School of Physical Education and Sport, University of São Paulo, Av. Prof. Mello de Morais, 65, 05508-030, São Paulo, SP, Brazil
| | - Luiz A R Costa
- School of Physical Education and Sport, University of São Paulo, Av. Prof. Mello de Morais, 65, 05508-030, São Paulo, SP, Brazil
| | - Aline V Bacurau
- School of Physical Education and Sport, University of São Paulo, Av. Prof. Mello de Morais, 65, 05508-030, São Paulo, SP, Brazil
| | - Tim Snijders
- Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Gianni Parise
- Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Valmor Tricoli
- School of Physical Education and Sport, University of São Paulo, Av. Prof. Mello de Morais, 65, 05508-030, São Paulo, SP, Brazil
| | - Hamilton Roschel
- School of Physical Education and Sport, University of São Paulo, Av. Prof. Mello de Morais, 65, 05508-030, São Paulo, SP, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, Av. Prof. Mello de Morais, 65, 05508-030, São Paulo, SP, Brazil
| |
Collapse
|
38
|
Simmons E, Fluckey JD, Riechman SE. Cumulative Muscle Protein Synthesis and Protein Intake Requirements. Annu Rev Nutr 2016; 36:17-43. [PMID: 27215586 DOI: 10.1146/annurev-nutr-071813-105549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Muscle protein synthesis (MPS) fluctuates widely over the course of a day and is influenced by many factors. The time course of MPS responses to exercise and the influence of training and nutrition can only be pieced together from several different investigations and methods, many of which create unnatural experimental conditions. Measurements of cumulative MPS, the sum synthesis over an extended period, using deuterium oxide have been shown to accurately reflect muscle responses and may allow investigations of the response to exercise, total protein intake requirements, and interaction with protein timing in free-living experimental conditions; these factors have yet to be carefully integrated. Such studies could include clinical and athletic populations to integrate nutritional and exercise recommendations and help guide their revisions to optimize the skeletal muscle function that is so important to overall health.
Collapse
Affiliation(s)
- Erin Simmons
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843; ,
| | - James D Fluckey
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas 77843;
| | - Steven E Riechman
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843; , .,Department of Health and Kinesiology, Texas A&M University, College Station, Texas 77843;
| |
Collapse
|
39
|
Witard OC, Wardle SL, Macnaughton LS, Hodgson AB, Tipton KD. Protein Considerations for Optimising Skeletal Muscle Mass in Healthy Young and Older Adults. Nutrients 2016; 8:181. [PMID: 27023595 PMCID: PMC4848650 DOI: 10.3390/nu8040181] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle is critical for human health. Protein feeding, alongside resistance exercise, is a potent stimulus for muscle protein synthesis (MPS) and is a key factor that regulates skeletal muscle mass (SMM). The main purpose of this narrative review was to evaluate the latest evidence for optimising the amino acid or protein source, dose, timing, pattern and macronutrient coingestion for increasing or preserving SMM in healthy young and healthy older adults. We used a systematic search strategy of PubMed and Web of Science to retrieve all articles related to this review objective. In summary, our findings support the notion that protein guidelines for increasing or preserving SMM are more complex than simply recommending a total daily amount of protein. Instead, multifactorial interactions between protein source, dose, timing, pattern and macronutrient coingestion, alongside exercise, influence the stimulation of MPS, and thus should be considered in the context of protein recommendations for regulating SMM. To conclude, on the basis of currently available scientific literature, protein recommendations for optimising SMM should be tailored to the population or context of interest, with consideration given to age and resting/post resistance exercise conditions.
Collapse
Affiliation(s)
- Oliver C Witard
- Health & Exercise Sciences Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4LA, UK.
| | - Sophie L Wardle
- Health & Exercise Sciences Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4LA, UK.
| | - Lindsay S Macnaughton
- Health & Exercise Sciences Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4LA, UK.
| | - Adrian B Hodgson
- Lucozade Ribena Suntory Limited, 2 Longwalk Road, Stockley Park, Uxbridge UB11 1BA, UK.
| | - Kevin D Tipton
- Health & Exercise Sciences Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4LA, UK.
| |
Collapse
|
40
|
Kazior Z, Willis SJ, Moberg M, Apró W, Calbet JAL, Holmberg HC, Blomstrand E. Endurance Exercise Enhances the Effect of Strength Training on Muscle Fiber Size and Protein Expression of Akt and mTOR. PLoS One 2016; 11:e0149082. [PMID: 26885978 PMCID: PMC4757413 DOI: 10.1371/journal.pone.0149082] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/26/2016] [Indexed: 12/21/2022] Open
Abstract
Reports concerning the effect of endurance exercise on the anabolic response to strength training have been contradictory. This study re-investigated this issue, focusing on training effects on indicators of protein synthesis and degradation. Two groups of male subjects performed 7 weeks of resistance exercise alone (R; n = 7) or in combination with preceding endurance exercise, including both continuous and interval cycling (ER; n = 9). Muscle biopsies were taken before and after the training period. Similar increases in leg-press 1 repetition maximum (30%; P<0.05) were observed in both groups, whereas maximal oxygen uptake was elevated (8%; P<0.05) only in the ER group. The ER training enlarged the areas of both type I and type II fibers, whereas the R protocol increased only the type II fibers. The mean fiber area increased by 28% (P<0.05) in the ER group, whereas no significant increase was observed in the R group. Moreover, expression of Akt and mTOR protein was enhanced in the ER group, whereas only the level of mTOR was elevated following R training. Training-induced alterations in the levels of both Akt and mTOR protein were correlated to changes in type I fiber area (r = 0.55-0.61, P<0.05), as well as mean fiber area (r = 0.55-0.61, P<0.05), reflecting the important role played by these proteins in connection with muscle hypertrophy. Both training regimes reduced the level of MAFbx protein (P<0.05) and tended to elevate that of MuRF-1. The present findings indicate that the larger hypertrophy observed in the ER group is due more to pronounced stimulation of anabolic rather than inhibition of catabolic processes.
Collapse
Affiliation(s)
- Zuzanna Kazior
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Sarah J. Willis
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Marcus Moberg
- Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - José A. L. Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Canary Island, Spain
| | - Hans-Christer Holmberg
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Eva Blomstrand
- Swedish School of Sport and Health Sciences, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
41
|
Damas F, Phillips S, Vechin FC, Ugrinowitsch C. A review of resistance training-induced changes in skeletal muscle protein synthesis and their contribution to hypertrophy. Sports Med 2016; 45:801-7. [PMID: 25739559 DOI: 10.1007/s40279-015-0320-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Muscle protein synthesis (MPS) is stimulated by resistance exercise (RE) and is further stimulated by protein ingestion. The summation of periods of RE-induced increases in MPS can induce hypertrophy chronically. As such, studying the response of MPS with resistance training (RT) is informative, as adaptations in this process can modulate muscle mass gain. Previous studies have shown that the amplitude and duration of increases in MPS after an acute bout of RE are modulated by an individual's training status. Nevertheless, it has been shown that the initial responses of MPS to RE and nutrition are not correlated with subsequent hypertrophy. Thus, early acute responses of MPS in the hours after RE, in an untrained state, do not capture how MPS can affect RE-induced muscle hypertrophy. The purpose of this review is provide an in-depth understanding of the dynamic process of muscle hypertrophy throughout RT by examining all of the available data on MPS after RE and in different phases of an RT programme. Analysis of the time course and the overall response of MPS is critical to determine the potential protein accretion after an RE bout. Exercise-induced increases in MPS are shorter lived and peak earlier in the trained state than in the untrained state, resulting in a smaller overall muscle protein synthetic response in the trained state. Thus, RT induces a dampening of the MPS response, potentially limiting protein accretion, but when this occurs remains unknown.
Collapse
Affiliation(s)
- Felipe Damas
- School of Physical Education and Sports, University of São Paulo, Av. Prof. Mello Moraes, 65, São Paulo, Brazil,
| | | | | | | |
Collapse
|
42
|
Reidy PT, Rasmussen BB. Role of Ingested Amino Acids and Protein in the Promotion of Resistance Exercise-Induced Muscle Protein Anabolism. J Nutr 2016; 146:155-83. [PMID: 26764320 PMCID: PMC4725426 DOI: 10.3945/jn.114.203208] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/03/2015] [Accepted: 11/25/2015] [Indexed: 12/16/2022] Open
Abstract
The goal of this critical review is to comprehensively assess the evidence for the molecular, physiologic, and phenotypic skeletal muscle responses to resistance exercise (RE) combined with the nutritional intervention of protein and/or amino acid (AA) ingestion in young adults. We gathered the literature regarding the translational response in human skeletal muscle to acute exposure to RE and protein/AA supplements and the literature describing the phenotypic skeletal muscle adaptation to RE and nutritional interventions. Supplementation of protein/AAs with RE exhibited clear protein dose-dependent effects on translational regulation (protein synthesis) through mammalian target of rapamycin complex 1 (mTORC1) signaling, which was most apparent through increases in p70 ribosomal protein S6 kinase 1 (S6K1) phosphorylation, compared with postexercise recovery in the fasted or carbohydrate-fed state. These acute findings were critically tested via long-term exposure to RE training (RET) and protein/AA supplementation, and it was determined that a diminishing protein/AA supplement effect occurs over a prolonged exposure stimulus after exercise training. Furthermore, we found that protein/AA supplements, combined with RET, produced a positive, albeit minor, effect on the promotion of lean mass growth (when assessed in >20 participants/treatment); a negligible effect on muscle mass; and a negligible to no additional effect on strength. A potential concern we discovered was that the majority of the exercise training studies were underpowered in their ability to discern effects of protein/AA supplementation. Regardless, even when using optimal methodology and large sample sizes, it is clear that the effect size for protein/AA supplementation is low and likely limited to a subset of individuals because the individual variability is high. With regard to nutritional intakes, total protein intake per day, rather than protein timing or quality, appears to be more of a factor on this effect during long-term exercise interventions. There were no differences in strength or mass/muscle mass on RET outcomes between protein types when a leucine threshold (>2 g/dose) was reached. Future research with larger sample sizes and more homogeneity in design is necessary to understand the underlying adaptations and to better evaluate the individual variability in the muscle-adaptive response to protein/AA supplementation during RET.
Collapse
Affiliation(s)
- Paul T Reidy
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX
| | - Blake B Rasmussen
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
43
|
Abstract
Protein quality control (proteostasis) depends on constant protein degradation and resynthesis, and is essential for proper homeostasis in systems from single cells to whole organisms. Cells possess several mechanisms and processes to maintain proteostasis. At one end of the spectrum, the heat shock proteins modulate protein folding and repair. At the other end, the proteasome and autophagy as well as other lysosome-dependent systems, function in the degradation of dysfunctional proteins. In this review, we examine how these systems interact to maintain proteostasis. Both the direct cellular data on heat shock control over autophagy and the time course of exercise-associated changes in humans support the model that heat shock response and autophagy are tightly linked. Studying the links between exercise stress and molecular control of proteostasis provides evidence that the heat shock response and autophagy coordinate and undergo sequential activation and downregulation, and that this is essential for proper proteostasis in eukaryotic systems.
Collapse
Key Words
- AKT, v-akt murine thymoma viral oncogene homolog 1
- AMPK, adenosine monophosphate-activated protein kinase
- ATG, autophagy-related
- BECN1, Beclin 1, autophagy related
- EIF4EBP1, eukaryotic translation initiation factor 4E binding protein 1
- ER, endoplasmic reticulum
- FOXO, forkhead box O
- HSF1, heat shock transcription factor 1
- HSP, heat shock protein
- HSP70
- HSPA8/HSC70, heat shock 70kDa protein 8
- IL, interleukin
- LC3, MAP1LC3, microtubule-associated protein 1 light chain 3
- MTMR14/hJumpy, myotubularin related protein 14
- MTOR, mechanistic target of rapamycin
- NR1D1/Rev-Erb-α, nuclear receptor subfamily 1, group D, member 1
- PBMC, peripheral blood mononuclear cell
- PPARGC1A/PGC-1α, peroxisome proliferator-activated receptor, gamma, coactivator 1 α
- RHEB, Ras homolog enriched in brain
- SOD, superoxide dismutase
- SQSTM1/p62, sequestosome 1
- TPR, translocated promoter region, nuclear basket protein
- TSC, tuberous sclerosis complex
- ULK1, unc-51 like autophagy activating kinase 1
- autophagy
- exercise
- heat shock response
- humans
- protein breakdown
- protein synthesis
Collapse
Affiliation(s)
- Karol Dokladny
- a Department of Internal Medicine; Health Sciences Center; Health, Exercise & Sports Science of University of New Mexico ; Albuquerque , NM USA
| | | | | |
Collapse
|
44
|
Chao T, Herndon DN, Porter C, Chondronikola M, Chaidemenou A, Abdelrahman DR, Bohanon FJ, Andersen C, Sidossis LS. Skeletal Muscle Protein Breakdown Remains Elevated in Pediatric Burn Survivors up to One-Year Post-Injury. Shock 2015; 44:397-401. [PMID: 26263438 PMCID: PMC4615533 DOI: 10.1097/shk.0000000000000454] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Acute alterations in skeletal muscle protein metabolism are a well-established event associated with the stress response to burns. Nevertheless, the long-lasting effects of burn injury on skeletal muscle protein turnover are incompletely understood. This study was undertaken to investigate fractional synthesis (FSR) and breakdown (FBR) rates of protein in skeletal muscle of pediatric burn patients (n = 42, >30% total body surface area burns) for up to 1 year after injury. Skeletal muscle protein kinetics were measured in the post-prandial state following bolus injections of C6 and N phenylalanine stable isotopes. Plasma and muscle phenylalanine enrichments were quantified using gas chromatography-mass spectrometry. We found that the FSR in burn patients was 2- to 3-fold higher than values from healthy men previously reported in the literature (P ≤ 0.05). The FBR was 4- to 6-fold higher than healthy values (P < 0.01). Therefore, net protein balance was lower in burn patients compared with healthy men from 2 weeks to 12 months post-injury (P < 0.05). These findings show that skeletal muscle protein turnover stays elevated for up to 1 year after burn, an effect attributable to simultaneous increases in FBR and FSR. Muscle FBR exceeds FSR during this time, producing a persistent negative net protein balance, even in the post-prandial state, which likely contributes to the prolonged cachexia seen in burned victims.
Collapse
Affiliation(s)
- Tony Chao
- Metabolism Unit, Shriners Hospitals for Children, Galveston, TX
- Division of Rehabilitation Sciences, Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX
| | - David N. Herndon
- Metabolism Unit, Shriners Hospitals for Children, Galveston, TX
- Department of Surgery, University of Texas Medical Branch, Galveston, TX
| | - Craig Porter
- Metabolism Unit, Shriners Hospitals for Children, Galveston, TX
- Department of Surgery, University of Texas Medical Branch, Galveston, TX
| | - Maria Chondronikola
- Metabolism Unit, Shriners Hospitals for Children, Galveston, TX
- Division of Rehabilitation Sciences, Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX
- Department of Nutrition and Dietetics, Harokopio University of Athens, Greece
| | | | - Doaa Reda Abdelrahman
- Metabolism Unit, Shriners Hospitals for Children, Galveston, TX
- Department of Surgery, University of Texas Medical Branch, Galveston, TX
| | | | - Clark Andersen
- Department of Surgery, University of Texas Medical Branch, Galveston, TX
| | - Labros S. Sidossis
- Metabolism Unit, Shriners Hospitals for Children, Galveston, TX
- Department of Surgery, University of Texas Medical Branch, Galveston, TX
- Department of Nutrition and Dietetics, Harokopio University of Athens, Greece
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
45
|
Glynn EL, Piner LW, Huffman KM, Slentz CA, Elliot-Penry L, AbouAssi H, White PJ, Bain JR, Muehlbauer MJ, Ilkayeva OR, Stevens RD, Porter Starr KN, Bales CW, Volpi E, Brosnan MJ, Trimmer JK, Rolph TP, Newgard CB, Kraus WE. Impact of combined resistance and aerobic exercise training on branched-chain amino acid turnover, glycine metabolism and insulin sensitivity in overweight humans. Diabetologia 2015; 58:2324-35. [PMID: 26254576 PMCID: PMC4793723 DOI: 10.1007/s00125-015-3705-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/24/2015] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESES Obesity is associated with decreased insulin sensitivity (IS) and elevated plasma branched-chain amino acids (BCAAs). The purpose of this study was to investigate the relationship between BCAA metabolism and IS in overweight (OW) individuals during exercise intervention. METHODS Whole-body leucine turnover, IS by hyperinsulinaemic-euglycaemic clamp, and circulating and skeletal muscle amino acids, branched-chain α-keto acids and acylcarnitines were measured in ten healthy controls (Control) and nine OW, untrained, insulin-resistant individuals (OW-Untrained). OW-Untrained then underwent a 6 month aerobic and resistance exercise programme and repeated testing (OW-Trained). RESULTS IS was higher in Control vs OW-Untrained and increased significantly following exercise. IS was lower in OW-Trained vs Control expressed relative to body mass, but was not different from Control when normalised to fat-free mass (FFM). Plasma BCAAs and leucine turnover (relative to FFM) were higher in OW-Untrained vs Control, but did not change on average with exercise. Despite this, within individuals, the decrease in molar sum of circulating BCAAs was the best metabolic predictor of improvement in IS. Circulating glycine levels were higher in Control and OW-Trained vs OW-Untrained, and urinary metabolic profiling suggests that exercise induces more efficient elimination of excess acyl groups derived from BCAA and aromatic amino acid (AA) metabolism via formation of urinary glycine adducts. CONCLUSIONS/INTERPRETATION A mechanism involving more efficient elimination of excess acyl groups derived from BCAA and aromatic AA metabolism via glycine conjugation in the liver, rather than increased BCAA disposal through oxidation and turnover, may mediate interactions between exercise, BCAA metabolism and IS. TRIAL REGISTRATION Clinicaltrials.gov NCT01786941.
Collapse
Affiliation(s)
- Erin L Glynn
- Sarah W. Stedman Nutrition & Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA
| | - Lucy W Piner
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA
| | - Kim M Huffman
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA
| | - Cris A Slentz
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cardiology, Duke University Medical Center, Durham, NC, USA
| | - Lorraine Elliot-Penry
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA
| | - Hiba AbouAssi
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - Phillip J White
- Sarah W. Stedman Nutrition & Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA
| | - James R Bain
- Sarah W. Stedman Nutrition & Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition & Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA
| | - Olga R Ilkayeva
- Sarah W. Stedman Nutrition & Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA
| | - Robert D Stevens
- Sarah W. Stedman Nutrition & Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | | | - Connie W Bales
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Division of Geriatrics, Duke University Medical Center, Durham, NC, USA
- GRECC, Durham VA Medical Center, Durham, NC, USA
| | - Elena Volpi
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, USA
| | - M Julia Brosnan
- The CV and Metabolic Diseases Research Unit, Pfizer, Cambridge, MA, USA
| | - Jeff K Trimmer
- The CV and Metabolic Diseases Research Unit, Pfizer, Cambridge, MA, USA
| | - Timothy P Rolph
- The CV and Metabolic Diseases Research Unit, Pfizer, Cambridge, MA, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition & Metabolism Center, Duke University Medical Center, Durham, NC, USA.
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA.
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA.
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA.
| | - William E Kraus
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA.
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.
- Department of Cardiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
46
|
Brook MS, Wilkinson DJ, Smith K, Atherton PJ. The metabolic and temporal basis of muscle hypertrophy in response to resistance exercise. Eur J Sport Sci 2015; 16:633-44. [PMID: 26289597 DOI: 10.1080/17461391.2015.1073362] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Constituting ∼40% of body mass, skeletal muscle has essential locomotory and metabolic functions. As such, an insight into the control of muscle mass is of great importance for maintaining health and quality-of-life into older age, under conditions of cachectic disease and with rehabilitation. In healthy weight-bearing individuals, muscle mass is maintained by the equilibrium between muscle protein synthesis (MPS) and muscle protein breakdown; when this balance tips in favour of MPS hypertrophy occurs. Despite considerable research into pharmacological/nutraceutical interventions, resistance exercise training (RE-T) remains the most potent stimulator of MPS and hypertrophy (in the majority of individuals). However, the mechanism(s) and time course of hypertrophic responses to RE-T remain poorly understood. We would suggest that available data are very much in favour of the notion that the majority of hypertrophy occurs in the early phases of RE-T (though still controversial to some) and that, for the most part, continued gains are hard to come by. Whilst the mechanisms of muscle hypertrophy represent the culmination of mechanical, auto/paracrine and endocrine events, the measurement of MPS remains a cornerstone for understanding the control of hypertrophy - mainly because it is the underlying driving force behind skeletal muscle hypertrophy. Development of sophisticated isotopic techniques (i.e. deuterium oxide) that lend to longer term insight into the control of hypertrophy by sustained RE-T will be paramount in providing insights into the metabolic and temporal regulation of hypertrophy. Such technologies will have broad application in muscle mass intervention for both athletes and for mitigating disease/age-related cachexia and sarcopenia, alike.
Collapse
Affiliation(s)
- Matthew S Brook
- a MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology , University of Nottingham , UK
| | - Daniel J Wilkinson
- a MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology , University of Nottingham , UK
| | - Kenneth Smith
- a MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology , University of Nottingham , UK
| | - Philip J Atherton
- a MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology , University of Nottingham , UK
| |
Collapse
|
47
|
The effects of protein supplements on muscle mass, strength, and aerobic and anaerobic power in healthy adults: a systematic review. Sports Med 2015; 45:111-31. [PMID: 25169440 DOI: 10.1007/s40279-014-0242-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Protein supplements are frequently consumed by athletes and recreationally active adults to achieve greater gains in muscle mass and strength and improve physical performance. OBJECTIVE This review provides a systematic and comprehensive analysis of the literature that tested the hypothesis that protein supplements accelerate gains in muscle mass and strength resulting in improvements in aerobic and anaerobic power. Evidence statements were created based on an accepted strength of recommendation taxonomy. DATA SOURCES English language articles were searched through PubMed and Google Scholar using protein and supplements together with performance, exercise, strength, and muscle, alone or in combination as keywords. Additional articles were retrieved from reference lists found in these papers. STUDY SELECTION Studies recruiting healthy adults between 18 and 50 years of age that evaluated the effects of protein supplements alone or in combination with carbohydrate on a performance metric (e.g., one repetition maximum or isometric or isokinetic muscle strength), metrics of body composition, or measures of aerobic or anaerobic power were included in this review. The literature search identified 32 articles which incorporated test metrics that dealt exclusively with changes in muscle mass and strength, 5 articles that implemented combined resistance and aerobic training or followed participants during their normal sport training programs, and 1 article that evaluated changes in muscle oxidative enzymes and maximal aerobic power. STUDY APPRAISAL AND SYNTHESIS METHODS All papers were read in detail, and examined for experimental design confounders such as dietary monitoring, history of physical training (i.e., trained and untrained), and the number of participants studied. Studies were also evaluated based on the intensity, frequency, and duration of training, the type and timing of protein supplementation, and the sensitivity of the test metrics. RESULTS For untrained individuals, consuming supplemental protein likely has no impact on lean mass and muscle strength during the initial weeks of resistance training. However, as the duration, frequency, and volume of resistance training increase, protein supplementation may promote muscle hypertrophy and enhance gains in muscle strength in both untrained and trained individuals. Evidence also suggests that protein supplementation may accelerate gains in both aerobic and anaerobic power. LIMITATIONS To demonstrate measureable gains in strength and performance with exercise training and protein supplementation, many of the studies reviewed recruited untrained participants. Since skeletal muscle responses to exercise and protein supplementation differ between trained and untrained individuals, findings are not easily generalized for all consumers who may be considering the use of protein supplements. CONCLUSIONS This review suggests that protein supplementation may enhance muscle mass and performance when the training stimulus is adequate (e.g., frequency, volume, duration), and dietary intake is consistent with recommendations for physically active individuals.
Collapse
|
48
|
|
49
|
Apró W, Moberg M, Hamilton DL, Ekblom B, van Hall G, Holmberg HC, Blomstrand E. Resistance exercise-induced S6K1 kinase activity is not inhibited in human skeletal muscle despite prior activation of AMPK by high-intensity interval cycling. Am J Physiol Endocrinol Metab 2015; 308:E470-81. [PMID: 25605643 DOI: 10.1152/ajpendo.00486.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Combining endurance and strength training in the same session has been reported to reduce the anabolic response to the latter form of exercise. The underlying mechanism, based primarily on results from rodent muscle, is proposed to involve AMPK-dependent inhibition of mTORC1 signaling. This hypothesis was tested in eight trained male subjects who in randomized order performed either resistance exercise only (R) or interval cycling followed by resistance exercise (ER). Biopsies taken from the vastus lateralis before and after endurance exercise and repeatedly after resistance exercise were assessed for glycogen content, kinase activity, protein phosphorylation, and gene expression. Mixed muscle fractional synthetic rate was measured at rest and during 3 h of recovery using the stable isotope technique. In ER, AMPK activity was elevated immediately after both endurance and resistance exercise (∼90%, P < 0.05) but was unchanged in R. Thr(389) phosphorylation of S6K1 was increased severalfold immediately after exercise (P < 0.05) in both trials and increased further throughout recovery. After 90 and 180 min recovery, S6K1 activity was elevated (∼55 and ∼110%, respectively, P < 0.05) and eukaryotic elongation factor 2 phosphorylation was reduced (∼55%, P < 0.05) with no difference between trials. In contrast, markers for protein catabolism were differently influenced by the two modes of exercise; ER induced a significant increase in gene and protein expression of MuRF1 (P < 0.05), which was not observed following R exercise only. In conclusion, cycling-induced elevation in AMPK activity does not inhibit mTOR complex 1 signaling after subsequent resistance exercise but may instead interfere with the hypertrophic response by influencing key components in protein breakdown.
Collapse
Affiliation(s)
- William Apró
- Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden; Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden;
| | - Marcus Moberg
- Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - D Lee Hamilton
- Health and Exercise Sciences Research Group, University of Stirling, Stirling, United Kingdom
| | - Björn Ekblom
- Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Gerrit van Hall
- Department of Biomedical Sciences, Rigshospitalet, University of Copenhagen, Denmark
| | - Hans-Christer Holmberg
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden; and
| | - Eva Blomstrand
- Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
50
|
Bell KE, Séguin C, Parise G, Baker SK, Phillips SM. Day-to-Day Changes in Muscle Protein Synthesis in Recovery From Resistance, Aerobic, and High-Intensity Interval Exercise in Older Men. J Gerontol A Biol Sci Med Sci 2015; 70:1024-9. [DOI: 10.1093/gerona/glu313] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/17/2014] [Indexed: 12/14/2022] Open
|